WorldWideScience

Sample records for quantum chemical verification

  1. Quantum money with classical verification

    Energy Technology Data Exchange (ETDEWEB)

    Gavinsky, Dmitry [NEC Laboratories America, Princeton, NJ (United States)

    2014-12-04

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.

  2. Quantum money with classical verification

    International Nuclear Information System (INIS)

    Gavinsky, Dmitry

    2014-01-01

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it

  3. Experimental preparation and verification of quantum money

    Science.gov (United States)

    Guan, Jian-Yu; Arrazola, Juan Miguel; Amiri, Ryan; Zhang, Weijun; Li, Hao; You, Lixing; Wang, Zhen; Zhang, Qiang; Pan, Jian-Wei

    2018-03-01

    A quantum money scheme enables a trusted bank to provide untrusted users with verifiable quantum banknotes that cannot be forged. In this work, we report a proof-of-principle experimental demonstration of the preparation and verification of unforgeable quantum banknotes. We employ a security analysis that takes experimental imperfections fully into account. We measure a total of 3.6 ×106 states in one verification round, limiting the forging probability to 10-7 based on the security analysis. Our results demonstrate the feasibility of preparing and verifying quantum banknotes using currently available experimental techniques.

  4. Entanglement verification and its applications in quantum communication

    International Nuclear Information System (INIS)

    Haeseler, Hauke

    2010-01-01

    In this thesis, we investigate the uses of entanglement and its verification in quantum communication. The main object here is to develop a verification procedure which is adaptable to a wide range of applications, and whose implementation has low requirements on experimental resources. We present such a procedure in the form of the Expectation Value Matrix. The structure of this thesis is as follows: Chapters 1 and 2 give a short introduction and background information on quantum theory and the quantum states of light. In particular, we discuss the basic postulates of quantum mechanics, quantum state discrimination, the description of quantum light and the homodyne detector. Chapter 3 gives a brief introduction to quantum information and in particular to entanglement, and we discuss the basics of quantum key distribution and teleportation. The general framework of the Expectation Value Matrix is introduced. The main matter of this thesis is contained in the subsequent three chapters, which describe different quantum communication protocols and the corresponding adaptation of the entanglement verification method. The subject of Chapter 4 is quantum key distribution, where the detection of entanglement is a means of excluding intercept-resend attacks, and the presence of quantum correlations in the raw data is a necessary precondition for the generation of secret key. We investigate a continuous-variable version of the two-state protocol and develop the Expectation Value Matrix method for such qubit-mode systems. Furthermore, we analyse the role of the phase reference with respect to the security of the protocol and raise awareness of a corresponding security threat. For this, we adapt the verification method to different settings of Stokes operator measurements. In Chapter 5, we investigate quantum memory channels and propose a fundamental benchmark for these based on the verification of entanglement. After describing some physical effects which can be used for the

  5. Verification of Chemical Weapons Destruction

    International Nuclear Information System (INIS)

    Lodding, J.

    2010-01-01

    The Chemical Weapons Convention is the only multilateral treaty that bans completely an entire category of weapons of mass destruction under international verification arrangements. Possessor States, i.e. those that have chemical weapons stockpiles at the time of becoming party to the CWC, commit to destroying these. All States undertake never to acquire chemical weapons and not to help other States acquire such weapons. The CWC foresees time-bound chemical disarmament. The deadlines for destruction for early entrants to the CWC are provided in the treaty. For late entrants, the Conference of States Parties intervenes to set destruction deadlines. One of the unique features of the CWC is thus the regime for verifying destruction of chemical weapons. But how can you design a system for verification at military sites, while protecting military restricted information? What degree of assurance is considered sufficient in such circumstances? How do you divide the verification costs? How do you deal with production capability and initial declarations of existing stockpiles? The founders of the CWC had to address these and other challenges in designing the treaty. Further refinement of the verification system has followed since the treaty opened for signature in 1993 and since inspection work was initiated following entry-into-force of the treaty in 1997. Most of this work concerns destruction at the two large possessor States, Russia and the United States. Perhaps some of the lessons learned from the OPCW experience may be instructive in a future verification regime for nuclear weapons. (author)

  6. Automated Verification of Quantum Protocols using MCMAS

    Directory of Open Access Journals (Sweden)

    F. Belardinelli

    2012-07-01

    Full Text Available We present a methodology for the automated verification of quantum protocols using MCMAS, a symbolic model checker for multi-agent systems The method is based on the logical framework developed by D'Hondt and Panangaden for investigating epistemic and temporal properties, built on the model for Distributed Measurement-based Quantum Computation (DMC, an extension of the Measurement Calculus to distributed quantum systems. We describe the translation map from DMC to interpreted systems, the typical formalism for reasoning about time and knowledge in multi-agent systems. Then, we introduce dmc2ispl, a compiler into the input language of the MCMAS model checker. We demonstrate the technique by verifying the Quantum Teleportation Protocol, and discuss the performance of the tool.

  7. Entanglement verification and its applications in quantum communication; Verschraenkungsnachweise mit Anwendungen in der Quantenkommunikation

    Energy Technology Data Exchange (ETDEWEB)

    Haeseler, Hauke

    2010-02-16

    In this thesis, we investigate the uses of entanglement and its verification in quantum communication. The main object here is to develop a verification procedure which is adaptable to a wide range of applications, and whose implementation has low requirements on experimental resources. We present such a procedure in the form of the Expectation Value Matrix. The structure of this thesis is as follows: Chapters 1 and 2 give a short introduction and background information on quantum theory and the quantum states of light. In particular, we discuss the basic postulates of quantum mechanics, quantum state discrimination, the description of quantum light and the homodyne detector. Chapter 3 gives a brief introduction to quantum information and in particular to entanglement, and we discuss the basics of quantum key distribution and teleportation. The general framework of the Expectation Value Matrix is introduced. The main matter of this thesis is contained in the subsequent three chapters, which describe different quantum communication protocols and the corresponding adaptation of the entanglement verification method. The subject of Chapter 4 is quantum key distribution, where the detection of entanglement is a means of excluding intercept-resend attacks, and the presence of quantum correlations in the raw data is a necessary precondition for the generation of secret key. We investigate a continuous-variable version of the two-state protocol and develop the Expectation Value Matrix method for such qubit-mode systems. Furthermore, we analyse the role of the phase reference with respect to the security of the protocol and raise awareness of a corresponding security threat. For this, we adapt the verification method to different settings of Stokes operator measurements. In Chapter 5, we investigate quantum memory channels and propose a fundamental benchmark for these based on the verification of entanglement. After describing some physical effects which can be used for the

  8. Quantum indistinguishability in chemical reactions.

    Science.gov (United States)

    Fisher, Matthew P A; Radzihovsky, Leo

    2018-05-15

    Quantum indistinguishability plays a crucial role in many low-energy physical phenomena, from quantum fluids to molecular spectroscopy. It is, however, typically ignored in most high-temperature processes, particularly for ionic coordinates, implicitly assumed to be distinguishable, incoherent, and thus well approximated classically. We explore enzymatic chemical reactions involving small symmetric molecules and argue that in many situations a full quantum treatment of collective nuclear degrees of freedom is essential. Supported by several physical arguments, we conjecture a "quantum dynamical selection" (QDS) rule for small symmetric molecules that precludes chemical processes that involve direct transitions from orbitally nonsymmetric molecular states. As we propose and discuss, the implications of the QDS rule include ( i ) a differential chemical reactivity of para- and orthohydrogen, ( ii ) a mechanism for inducing intermolecular quantum entanglement of nuclear spins, ( iii ) a mass-independent isotope fractionation mechanism, ( iv ) an explanation of the enhanced chemical activity of "reactive oxygen species", ( v ) illuminating the importance of ortho-water molecules in modulating the quantum dynamics of liquid water, and ( vi ) providing the critical quantum-to-biochemical linkage in the nuclear spin model of the (putative) quantum brain, among others.

  9. One-time pad, complexity of verification of keys, and practical security of quantum cryptography

    Energy Technology Data Exchange (ETDEWEB)

    Molotkov, S. N., E-mail: sergei.molotkov@gmail.com [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2016-11-15

    A direct relation between the complexity of the complete verification of keys, which is one of the main criteria of security in classical systems, and a trace distance used in quantum cryptography is demonstrated. Bounds for the minimum and maximum numbers of verification steps required to determine the actual key are obtained.

  10. One-time pad, complexity of verification of keys, and practical security of quantum cryptography

    International Nuclear Information System (INIS)

    Molotkov, S. N.

    2016-01-01

    A direct relation between the complexity of the complete verification of keys, which is one of the main criteria of security in classical systems, and a trace distance used in quantum cryptography is demonstrated. Bounds for the minimum and maximum numbers of verification steps required to determine the actual key are obtained.

  11. Classical verification of quantum circuits containing few basis changes

    Science.gov (United States)

    Demarie, Tommaso F.; Ouyang, Yingkai; Fitzsimons, Joseph F.

    2018-04-01

    We consider the task of verifying the correctness of quantum computation for a restricted class of circuits which contain at most two basis changes. This contains circuits giving rise to the second level of the Fourier hierarchy, the lowest level for which there is an established quantum advantage. We show that when the circuit has an outcome with probability at least the inverse of some polynomial in the circuit size, the outcome can be checked in polynomial time with bounded error by a completely classical verifier. This verification procedure is based on random sampling of computational paths and is only possible given knowledge of the likely outcome.

  12. Synergies across verification regimes: Nuclear safeguards and chemical weapons convention compliance

    International Nuclear Information System (INIS)

    Kadner, Steven P.; Turpen, Elizabeth

    2001-01-01

    In the implementation of all arms control agreements, accurate verification is essential. In setting a course for verifying compliance with a given treaty - whether the NPT or the CWC, one must make a technical comparison of existing information-gathering capabilities against the constraints in an agreement. Then it must be decided whether this level of verifiability is good enough. Generally, the policy standard of 'effective verification' includes the ability to detect significant violations, with high confidence, in sufficient time to respond effectively with policy adjustments or other responses, as needed. It is at this juncture where verification approaches have traditionally diverged. Nuclear safeguards requirements have taken one path while chemical verification methods have pursued another. However, recent technological advances have brought a number of changes affecting verification, and lately their pace has been accelerating. First, all verification regimes have more and better information as a result of new kinds of sensors, imagery, and other technologies. Second, the verification provisions in agreements have also advanced, to include on-site inspections, portal monitoring, data exchanges, and a variety of transparency, confidence-building, and other cooperative measures, Together these developments translate into a technological overlap of certain institutional verification measures such as the NPT's safeguards requirements and the IAEA and the CWC's verification visions and the OPCW. Hence, a priority of international treaty-implementing organizations is exploring the development of a synergistic and coordinated approach to WMD policy making that takes into account existing inter-linkages between nuclear, chemical, and biological weapons issues. Specific areas of coordination include harmonizing information systems and information exchanges and the shared application of scientific mechanisms, as well as collaboration on technological developments

  13. Quantum supremacy in constant-time measurement-based computation: A unified architecture for sampling and verification

    Science.gov (United States)

    Miller, Jacob; Sanders, Stephen; Miyake, Akimasa

    2017-12-01

    While quantum speed-up in solving certain decision problems by a fault-tolerant universal quantum computer has been promised, a timely research interest includes how far one can reduce the resource requirement to demonstrate a provable advantage in quantum devices without demanding quantum error correction, which is crucial for prolonging the coherence time of qubits. We propose a model device made of locally interacting multiple qubits, designed such that simultaneous single-qubit measurements on it can output probability distributions whose average-case sampling is classically intractable, under similar assumptions as the sampling of noninteracting bosons and instantaneous quantum circuits. Notably, in contrast to these previous unitary-based realizations, our measurement-based implementation has two distinctive features. (i) Our implementation involves no adaptation of measurement bases, leading output probability distributions to be generated in constant time, independent of the system size. Thus, it could be implemented in principle without quantum error correction. (ii) Verifying the classical intractability of our sampling is done by changing the Pauli measurement bases only at certain output qubits. Our usage of random commuting quantum circuits in place of computationally universal circuits allows a unique unification of sampling and verification, so they require the same physical resource requirements in contrast to the more demanding verification protocols seen elsewhere in the literature.

  14. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    journal of. Feb. & Mar. 2001 physics pp. 239–243. A verification of quantum field theory ... minum coated a sphere and flat plate using an atomic force microscope. ... where R is the radius of curvature of the spherical surface. The finite .... sured by AFM) of 60% Au/40% Pd, to form a nonreactive and conductive top layer. For.

  15. Verification of Many-Qubit States

    Directory of Open Access Journals (Sweden)

    Yuki Takeuchi

    2018-06-01

    Full Text Available Verification is a task to check whether a given quantum state is close to an ideal state or not. In this paper, we show that a variety of many-qubit quantum states can be verified with only sequential single-qubit measurements of Pauli operators. First, we introduce a protocol for verifying ground states of Hamiltonians. We next explain how to verify quantum states generated by a certain class of quantum circuits. We finally propose an adaptive test of stabilizers that enables the verification of all polynomial-time-generated hypergraph states, which include output states of the Bremner-Montanaro-Shepherd-type instantaneous quantum polynomial time (IQP circuits. Importantly, we do not make any assumption that the identically and independently distributed copies of the same states are given: Our protocols work even if some highly complicated entanglement is created among copies in any artificial way. As applications, we consider the verification of the quantum computational supremacy demonstration with IQP models, and verifiable blind quantum computing.

  16. Quantum Mechanics and locality in the K0 K-bar0 system experimental verification possibilities

    International Nuclear Information System (INIS)

    Muller, A.

    1994-11-01

    It is shown that elementary Quantum Mechanics, applied to the K 0 K-bar 0 system, predicts peculiar long range EPR correlations. Possible experimental verifications are discussed, and a concrete experiment with anti-protons annihilations at rest is proposed. A pedestrian approach to local models shows that K 0 K-bar 0 experimentation could provide arguments to the local realism versus quantum theory controversy. (author). 17 refs., 23 figs

  17. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    Science.gov (United States)

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  18. Resource Theory of Quantum Memories and Their Faithful Verification with Minimal Assumptions

    Science.gov (United States)

    Rosset, Denis; Buscemi, Francesco; Liang, Yeong-Cherng

    2018-04-01

    We provide a complete set of game-theoretic conditions equivalent to the existence of a transformation from one quantum channel into another one, by means of classically correlated preprocessing and postprocessing maps only. Such conditions naturally induce tests to certify that a quantum memory is capable of storing quantum information, as opposed to memories that can be simulated by measurement and state preparation (corresponding to entanglement-breaking channels). These results are formulated as a resource theory of genuine quantum memories (correlated in time), mirroring the resource theory of entanglement in quantum states (correlated spatially). As the set of conditions is complete, the corresponding tests are faithful, in the sense that any non-entanglement-breaking channel can be certified. Moreover, they only require the assumption of trusted inputs, known to be unavoidable for quantum channel verification. As such, the tests we propose are intrinsically different from the usual process tomography, for which the probes of both the input and the output of the channel must be trusted. An explicit construction is provided and shown to be experimentally realizable, even in the presence of arbitrarily strong losses in the memory or detectors.

  19. NMR chemical shift and J coupling parameterization and quantum mechanical reference spectrum simulation for selected nerve agent degradation products in aqueous conditions.

    Science.gov (United States)

    Koskela, Harri; Anđelković, Boban

    2017-10-01

    The spectral parameters of selected nerve agent degradation products relevant to the Chemical Weapons Convention, namely, ethyl methylphosphonate, isopropyl methylphosphonate, pinacolyl methylphosphonate and methylphosphonic acid, were studied in wide range of pH conditions and selected temperatures. The pH and temperature dependence of chemical shifts and J couplings was parameterized using Henderson-Hasselbalch-based functions. The obtained parameters allowed calculation of precise chemical shifts and J coupling constants in arbitrary pH conditions and typical measurement temperatures, thus facilitating quantum mechanical simulation of reference spectra in the chosen magnetic field strength for chemical verification. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Experimental quantum verification in the presence of temporally correlated noise

    Science.gov (United States)

    Mavadia, S.; Edmunds, C. L.; Hempel, C.; Ball, H.; Roy, F.; Stace, T. M.; Biercuk, M. J.

    2018-02-01

    Growth in the capabilities of quantum information hardware mandates access to techniques for performance verification that function under realistic laboratory conditions. Here we experimentally characterise the impact of common temporally correlated noise processes on both randomised benchmarking (RB) and gate-set tomography (GST). Our analysis highlights the role of sequence structure in enhancing or suppressing the sensitivity of quantum verification protocols to either slowly or rapidly varying noise, which we treat in the limiting cases of quasi-DC miscalibration and white noise power spectra. We perform experiments with a single trapped 171Yb+ ion-qubit and inject engineered noise (" separators="∝σ^ z ) to probe protocol performance. Experiments on RB validate predictions that measured fidelities over sequences are described by a gamma distribution varying between approximately Gaussian, and a broad, highly skewed distribution for rapidly and slowly varying noise, respectively. Similarly we find a strong gate set dependence of default experimental GST procedures in the presence of correlated errors, leading to significant deviations between estimated and calculated diamond distances in the presence of correlated σ^ z errors. Numerical simulations demonstrate that expansion of the gate set to include negative rotations can suppress these discrepancies and increase reported diamond distances by orders of magnitude for the same error processes. Similar effects do not occur for correlated σ^ x or σ^ y errors or depolarising noise processes, highlighting the impact of the critical interplay of selected gate set and the gauge optimisation process on the meaning of the reported diamond norm in correlated noise environments.

  1. Quantum Mechanics and locality in the K{sup 0} K-bar{sup 0} system experimental verification possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Muller, A.

    1994-11-01

    It is shown that elementary Quantum Mechanics, applied to the K{sup 0} K-bar{sup 0} system, predicts peculiar long range EPR correlations. Possible experimental verifications are discussed, and a concrete experiment with anti-protons annihilations at rest is proposed. A pedestrian approach to local models shows that K{sup 0} K-bar{sup 0} experimentation could provide arguments to the local realism versus quantum theory controversy. (author). 17 refs., 23 figs.

  2. Quantum mechanical tunneling in chemical physics

    CERN Document Server

    Nakamura, Hiroki

    2016-01-01

    Quantum mechanical tunneling plays important roles in a wide range of natural sciences, from nuclear and solid-state physics to proton transfer and chemical reactions in chemistry and biology. Responding to the need for further understanding of multidimensional tunneling, the authors have recently developed practical methods that can be applied to multidimensional systems. Quantum Mechanical Tunneling in Chemical Physics presents basic theories, as well as original ones developed by the authors. It also provides methodologies and numerical applications to real molecular systems. The book offers information so readers can understand the basic concepts and dynamics of multidimensional tunneling phenomena and use the described methods for various molecular spectroscopy and chemical dynamics problems. The text focuses on three tunneling phenomena: (1) energy splitting, or tunneling splitting, in symmetric double well potential, (2) decay of metastable state through tunneling, and (3) tunneling effects in chemical...

  3. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  4. Quantum chemical studies of estrogenic compounds

    Science.gov (United States)

    Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...

  5. Quantum Statistical Testing of a Quantum Random Number Generator

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL

    2014-01-01

    The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.

  6. Accurate quantum chemical calculations

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  7. Quantum optics and fundamentals of quantum theory

    International Nuclear Information System (INIS)

    Dusek, M.

    1997-01-01

    Quantum optics has opened up new opportunities for experimental verification of the basic principles of quantum mechanics, particularly in the field of quantum interference and so-called non-local phenomena. The results of the experiments described provide unambiguous support to quantum mechanics. (Z.J.)

  8. Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna.

    Science.gov (United States)

    Reenu; Vikas

    2015-09-01

    Various quantum-mechanically computed molecular and thermodynamic descriptors along with physico-chemical, electrostatic and topological descriptors are compared while developing quantitative structure-activity relationships (QSARs) for the acute toxicity of 252 diverse organic chemicals towards Daphnia magna. QSAR models based on the quantum-chemical descriptors, computed with routinely employed advanced semi-empirical and ab-initio methods, along with the electron-correlation contribution (CORR) of the descriptors, are analyzed for the external predictivity of the acute toxicity. The models with reliable internal stability and external predictivity are found to be based on the HOMO energy along with the physico-chemical, electrostatic and topological descriptors. Besides this, the total energy and electron-correlation energy are also observed as highly reliable descriptors, suggesting that the intra-molecular interactions between the electrons play an important role in the origin of the acute toxicity, which is in fact an unexplored phenomenon. The models based on quantum-chemical descriptors such as chemical hardness, absolute electronegativity, standard Gibbs free energy and enthalpy are also observed to be reliable. A comparison of the robust models based on the quantum-chemical descriptors computed with various quantum-mechanical methods suggests that the advanced semi-empirical methods such as PM7 can be more reliable than the ab-initio methods which are computationally more expensive. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Location-dependent communications using quantum entanglement

    International Nuclear Information System (INIS)

    Malaney, Robert A.

    2010-01-01

    The ability to unconditionally verify the location of a communication receiver would lead to a wide range of new security paradigms. However, it is known that unconditional location verification in classical communication systems is impossible. In this work we show how unconditional location verification can be achieved with the use of quantum communication channels. Our verification remains unconditional irrespective of the number of receivers, computational capacity, or any other physical resource held by an adversary. Quantum location verification represents an application of quantum entanglement that delivers a feat not possible in the classical-only channel. It gives us the ability to deliver real-time communications viable only at specified geographical coordinates.

  10. Protein Structure Validation and Refinement Using Chemical Shifts Derived from Quantum Mechanics

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen

    to within 3 A. Furthermore, a fast quantum mechanics based chemical shift predictor was developed together with methodology for using chemical shifts in structure simulations. The developed predictor was used for renement of several protein structures and for reducing the computational cost of quantum...... mechanics / molecular mechanics (QM/MM) computations of chemical shieldings. Several improvements to the predictor is ongoing, where among other things, kernel based machine learning techniques have successfully been used to improve the quantum mechanical level of theory used in the predictions....

  11. Impact of field-induced quantum confinement on the onset of tunneling field-effect transistors: Experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Smets, Quentin, E-mail: quentin.smets@imec.be; Verreck, Devin; Heyns, Marc M. [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); KULeuven, 3000 Leuven (Belgium); Verhulst, Anne S.; Martens, Koen; Lin, Han Chung; Kazzi, Salim El; Simoen, Eddy; Collaert, Nadine; Thean, Aaron [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); Raskin, Jean-Pierre [ICTEAM, Université catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2014-11-17

    The Tunneling Field-Effect Transistor (TFET) is a promising device for future low-power logic. Its performance is often predicted using semiclassical simulations, but there is usually a large discrepancy with experimental results. An important reason is that Field-Induced Quantum Confinement (FIQC) is neglected. Quantum mechanical simulations show FIQC delays the onset of Band-To-Band Tunneling (BTBT) with hundreds of millivolts in the promising line-TFET configuration. In this letter, we provide experimental verification of this delayed onset. We accomplish this by developing a method where line-TFET are modeled using highly doped MOS capacitors (MOS-CAP). Using capacitance-voltage measurements, we demonstrate AC inversion by BTBT, which was so far unobserved in MOS-CAP. Good agreement is shown between the experimentally obtained BTBT onset and quantum mechanical predictions, proving the need to include FIQC in all TFET simulations. Finally, we show that highly doped MOS-CAP is promising for characterization of traps deep into the conduction band.

  12. Impact of field-induced quantum confinement on the onset of tunneling field-effect transistors: Experimental verification

    International Nuclear Information System (INIS)

    Smets, Quentin; Verreck, Devin; Heyns, Marc M.; Verhulst, Anne S.; Martens, Koen; Lin, Han Chung; Kazzi, Salim El; Simoen, Eddy; Collaert, Nadine; Thean, Aaron; Raskin, Jean-Pierre

    2014-01-01

    The Tunneling Field-Effect Transistor (TFET) is a promising device for future low-power logic. Its performance is often predicted using semiclassical simulations, but there is usually a large discrepancy with experimental results. An important reason is that Field-Induced Quantum Confinement (FIQC) is neglected. Quantum mechanical simulations show FIQC delays the onset of Band-To-Band Tunneling (BTBT) with hundreds of millivolts in the promising line-TFET configuration. In this letter, we provide experimental verification of this delayed onset. We accomplish this by developing a method where line-TFET are modeled using highly doped MOS capacitors (MOS-CAP). Using capacitance-voltage measurements, we demonstrate AC inversion by BTBT, which was so far unobserved in MOS-CAP. Good agreement is shown between the experimentally obtained BTBT onset and quantum mechanical predictions, proving the need to include FIQC in all TFET simulations. Finally, we show that highly doped MOS-CAP is promising for characterization of traps deep into the conduction band

  13. Operational tools for moment characterization, entanglement verification and quantum key distribution

    International Nuclear Information System (INIS)

    Moroder, Tobias

    2009-01-01

    idealized quantum key distribution protocol to the real experiment. We develop a formalism to check whether a given realistic measurement device has such a squash model or not and provide relevant detection schemes with and without this particular property. We also address an experimental option which equally well provides security of a realistic quantum key distribution experiment by just using the idealized version of it. We exploit the idea that one can combine a variable beam splitter with a simple click/no-click detector in order to achieve the statistics of a photon number resolving detector. Via this hardware change it is straightforward to estimate the crucial parameters for the security statement. Lastly we focus on experimental entanglement verification. Considering the mere question of entanglement verification this practicality issue occurs since one often uses - because of various reasons - an oversimplified model for the performed measurements. We show that via such a misinterpretation of the measurement results one can indeed make mistakes, nevertheless we are more interested in conditions under which such errors can be excluded. For that we introduce and investigate a similar, but less restrictive, concept of the squash model. As an application we show that the usual tomography entanglement test, typically used in parametric down-conversion or even multipartite photonic experiments, can easily be made error-free. (orig.)

  14. Operational tools for moment characterization, entanglement verification and quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Moroder, Tobias

    2009-07-31

    security analysis of an idealized quantum key distribution protocol to the real experiment. We develop a formalism to check whether a given realistic measurement device has such a squash model or not and provide relevant detection schemes with and without this particular property. We also address an experimental option which equally well provides security of a realistic quantum key distribution experiment by just using the idealized version of it. We exploit the idea that one can combine a variable beam splitter with a simple click/no-click detector in order to achieve the statistics of a photon number resolving detector. Via this hardware change it is straightforward to estimate the crucial parameters for the security statement. Lastly we focus on experimental entanglement verification. Considering the mere question of entanglement verification this practicality issue occurs since one often uses - because of various reasons - an oversimplified model for the performed measurements. We show that via such a misinterpretation of the measurement results one can indeed make mistakes, nevertheless we are more interested in conditions under which such errors can be excluded. For that we introduce and investigate a similar, but less restrictive, concept of the squash model. As an application we show that the usual tomography entanglement test, typically used in parametric down-conversion or even multipartite photonic experiments, can easily be made error-free. (orig.)

  15. Protein structure refinement using a quantum mechanics-based chemical shielding predictor

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Jensen, Jan Halborg

    2017-01-01

    The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor...... of a protein backbone and CB chemical shifts (ProCS15, PeerJ, 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic...

  16. molecular dynamics simulations and quantum chemical calculations

    African Journals Online (AJOL)

    ABSTRACT. The molecular dynamic (MD) simulation and quantum chemical calculations for the adsorption of [2-(2-Henicos-10- .... electronic properties of molecule clusters, surfaces and ... The local reactivity was analyzed by determining the.

  17. Quantum mechanical facets of chemical bonds

    International Nuclear Information System (INIS)

    Daudel, R.

    1976-01-01

    To define the concept of bond is both a central problem of quantum chemistry and a difficult one. The concept of bond appeared little by little in the mind of chemists from empirical observations. From the wave-mechanical viewpoint it is not an observable. Therefore there is no precise operator associated with that concept. As a consequence there is not a unique approach to the idea of chemical bond. This is why it is preferred to present various quantum mechanical facets, e.g. the energetic facet, the density facet, the partitioning facet and the functional facet, of that important concept. (Auth.)

  18. Swept frequency acoustic interferometry technique for chemical weapons verification and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, D.N.; Anthony, B.W.; Lizon, D.C.

    1995-03-01

    Nondestructive evaluation (NDE) techniques are important for rapid on-site verification and monitoring of chemical munitions, such as artillery shells and bulk containers. Present NDE techniques provide only limited characterizations of such munitions. This paper describes the development of a novel noninvasive technique, swept-frequency acoustic interferometry (SFAI), that significantly enhances the capability of munitions characterizations. The SFAI technique allows very accurate and simultaneous determination of sound velocity and attenuation of chemical agents over a large frequency range inside artillery shells, in addition to determining agent density. The frequency-dependent sound velocity and attenuation can, in principle, provide molecular relaxation properties of the chemical agent. The same instrument also enables a direct fill-level measurement in bulk containers. Industrial and other applications of this general-purpose technique are also discussed.

  19. Experimental verification of multidimensional quantum steering

    Science.gov (United States)

    Li, Che-Ming; Lo, Hsin-Pin; Chen, Liang-Yu; Yabushita, Atsushi

    2018-03-01

    Quantum steering enables one party to communicate with another remote party even if the sender is untrusted. Such characteristics of quantum systems not only provide direct applications to quantum information science, but are also conceptually important for distinguishing between quantum and classical resources. While concrete illustrations of steering have been shown in several experiments, quantum steering has not been certified for higher dimensional systems. Here, we introduce a simple method to experimentally certify two different kinds of quantum steering: Einstein-Podolsky-Rosen (EPR) steering and single-system (SS) steering (i.e., temporal steering), for dimensionality (d) up to d = 16. The former reveals the steerability among bipartite systems, whereas the latter manifests itself in single quantum objects. We use multidimensional steering witnesses to verify EPR steering of polarization-entangled pairs and SS steering of single photons. The ratios between the measured witnesses and the maximum values achieved by classical mimicries are observed to increase with d for both EPR and SS steering. The designed scenario offers a new method to study further the genuine multipartite steering of large dimensionality and potential uses in quantum information processing.

  20. Electron-beam generated porous dextran gels: experimental and quantum chemical studies.

    Science.gov (United States)

    Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta

    2014-06-01

    The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.

  1. Quantum chemical investigation of levofloxacin-boron complexes: A computational approach

    Science.gov (United States)

    Sayin, Koray; Karakaş, Duran

    2018-04-01

    Quantum chemical calculations are performed over some boron complexes with levofloxacin. Boron complex with fluorine atoms are optimized at three different methods (HF, B3LYP and M062X) with 6-31 + G(d) basis set. The best level is determined as M062X/6-31 + G(d) by comparison of experimental and calculated results of complex (1). The other complexes are optimized by using the best level. Structural properties, IR and NMR spectrum are examined in detail. Biological activities of mentioned complexes are investigated by some quantum chemical descriptors and molecular docking analyses. As a result, biological activities of complex (2) and (4) are close to each other and higher than those of other complexes. Additionally, NLO properties of mentioned complexes are investigated by some quantum chemical parameters. It is found that complex (3) is the best candidate for NLO applications.

  2. Quantum chemical calculations of using density functional theory ...

    Indian Academy of Sciences (India)

    K RACKESH JAWAHER

    2018-02-15

    Feb 15, 2018 ... Quantum chemical calculations have been employed to study the molecular effects produced by. Cr2O3/SnO2 optimised structure. ... are exploited in solar cells [2], high-capacity lithium– storage [3], solid-state chemical ..... bond distance of metal–oxygen is positively (0.5 Е) deviated to oxygen–oxygen ...

  3. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    Science.gov (United States)

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-12

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  4. Quantum dynamics of fast chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Light, J.C. [Univ. of Chicago, IL (United States)

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  5. Quantum chemical evaluation for the stability of liquid sodium containing titanium nanoparticles

    International Nuclear Information System (INIS)

    Suzuki, Ai; Inaba, Kenji; Ishizawa, Yukie; Miura, Ryuji; Hatakeyama, Nozomu; Miyamoto, Akira; Saito, Jun-ichi; Ara, Kuniaki

    2015-01-01

    Recently, liquid sodium containing titanium nanoparticles (LSnanop) have attracted considerable attention. In this study, suspension state of Ti nanoparticle in liquid sodium was quantum chemically evaluated. The atomic interaction between Ti nanoparticles and sodium atoms in the liquid sodium medium was investigated. There were some literatures which gained quantum chemical insight into a nanoparticle with the surrounding sodium atom. However, liquid sodium medium itself together with a Ti nanoparticle under the realistic temperature has not yet been investigated theoretically. To overcome the problem of conventional theoretical method, we applied computationally low-load Tight Binding Quantum Chemical Molecular Dynamics (TB-QCMD) calculation method to investigate the suspension state of the Ti nanoparticle in liquid sodium metal. (author)

  6. Quantum chemical studies on the some inorganic corrosion inhibitors

    International Nuclear Information System (INIS)

    Sayin, Koray; Karakaş, Duran

    2013-01-01

    Highlights: •Some quantum chemical parameters are important to determine inhibition efficiency. •Quantum chemical calculations were performed on six inorganic inhibitors. •Five experimental reports were used to explain the theoretical results. •Atomic charges and %contributions were used to determine the atom at protonation process. •For inorganic inhibitors, the best method and basis set were investigated. -- Abstract: Some quantum chemical parameters were calculated by using Hartree–Fock (HF) approximation, Density Functional Theory (DFT/B3LYP) and Møller Plesset perturbation theory (MP3) methods at LANL2DZ, LANL2MB and SDD levels in gas phase and water for dichromate (Cr 2 O 7 2- ), chromate (CrO 4 2- ), tungstate (WO 4 2- ), molybdate (MoO 4 2- ), nitrite (NO 2 - ) and nitrate (NO 3 - ) which are used as inorganic corrosion inhibitors. All theoretical results and experimental inhibition efficiencies of inhibitors were subjected to correlation analyses. In a summary, MP3/SDD level in water was found as the best level. In this level, the inhibition efficiency ranking was found as CrO 4 2- >WO 4 2- >MoO 4 2- >Cr 2 O 7 2- >NO 2 - ≈NO 3 -

  7. Continuous-variable quantum homomorphic signature

    Science.gov (United States)

    Li, Ke; Shang, Tao; Liu, Jian-wei

    2017-10-01

    Quantum cryptography is believed to be unconditionally secure because its security is ensured by physical laws rather than computational complexity. According to spectrum characteristic, quantum information can be classified into two categories, namely discrete variables and continuous variables. Continuous-variable quantum protocols have gained much attention for their ability to transmit more information with lower cost. To verify the identities of different data sources in a quantum network, we propose a continuous-variable quantum homomorphic signature scheme. It is based on continuous-variable entanglement swapping and provides additive and subtractive homomorphism. Security analysis shows the proposed scheme is secure against replay, forgery and repudiation. Even under nonideal conditions, it supports effective verification within a certain verification threshold.

  8. Loss of quantum coherence from discrete quantum gravity

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge

    2004-01-01

    We show that a recent proposal for the quantization of gravity based on discrete spacetime implies a modification of standard quantum mechanics that naturally leads to a loss of coherence in quantum states of the type discussed by Milburn. The proposal overcomes the energy conservation problem of previously proposed decoherence mechanisms stemming from quantum gravity. Mesoscopic quantum systems (as Bose-Einstein condensates) appear as the most promising testing grounds for an experimental verification of the mechanism. (letter to the editor)

  9. Quantum Chemical: New name and focus for National Distillers

    Energy Technology Data Exchange (ETDEWEB)

    Reisch, M.S.

    1988-03-14

    This article explains why the National Distillers and Chemical Corporation has narrowed its focus on petrochemicals and energy. At one time the company had diversified into wine and spirits, insurance, metals, chemicals and energy. However, the company decided to reexamine where its commitments should be. It decided to stick with chemicals and energy because it could be a leader in these fields and not in its other interests. The article explains how the new company, Quantum Chemical, is doing and where it is headed in the future.

  10. Disarmament Verification - the OPCW Experience

    International Nuclear Information System (INIS)

    Lodding, J.

    2010-01-01

    The Chemical Weapons Convention is the only multilateral treaty that bans completely an entire category of weapons of mass destruction under international verification arrangements. Possessor States, i.e. those that have chemical weapons stockpiles at the time of becoming party to the CWC, commit to destroying these. All States undertake never to acquire chemical weapons and not to help other States acquire such weapons. The CWC foresees time-bound chemical disarmament. The deadlines for destruction for early entrants to the CWC are provided in the treaty. For late entrants, the Conference of States Parties intervenes to set destruction deadlines. One of the unique features of the CWC is thus the regime for verifying destruction of chemical weapons. But how can you design a system for verification at military sites, while protecting military restricted information? What degree of assurance is considered sufficient in such circumstances? How do you divide the verification costs? How do you deal with production capability and initial declarations of existing stockpiles? The founders of the CWC had to address these and other challenges in designing the treaty. Further refinement of the verification system has followed since the treaty opened for signature in 1993 and since inspection work was initiated following entry-into-force of the treaty in 1997. Most of this work concerns destruction at the two large possessor States, Russia and the United States. Perhaps some of the lessons learned from the OPCW experience may be instructive in a future verification regime for nuclear weapons. (author)

  11. Quantum chemical investigation of mechanisms of silane oxidation

    DEFF Research Database (Denmark)

    Mader, Mary M.; Norrby, Per-Ola

    2001-01-01

    Several mechanisms for the peroxide oxidation of organosilanes to alcohols are compared by quantum chemical calculations, including solvation with the PCM method. Without doubt, the reaction proceeds via anionic, pentacoordinate silicate species, but a profound difference is found between in vacuo...

  12. Synthesis of reference compounds related to Chemical Weapons Convention for verification and drug development purposes – a Brazilian endeavour

    Science.gov (United States)

    Cavalcante, S. F. A.; de Paula, R. L.; Kitagawa, D. A. S.; Barcellos, M. C.; Simas, A. B. C.; Granjeiro, J. M.

    2018-03-01

    This paper deals with challenges that Brazilian Army Organic Synthesis Laboratory has been going through to access reference compounds related to the Chemical Weapons Convention in order to support verification analysis and for research of novel antidotes. Some synthetic procedures to produce the chemicals, as well as Quality Assurance issues and a brief introduction of international agreements banning chemical weapons are also presented.

  13. Experimental quantum Hamiltonian learning

    NARCIS (Netherlands)

    Wang, J.; Paesani, S.; Santagati, R.; Knauer, S.; Gentile, A.A.; Wiebe, N.; Petruzzella, M.; O’Brien, J.L.; Rarity, J.G.; Laing, A.; Thompson, M.G.

    2017-01-01

    The efficient characterization of quantum systems1, 2, 3, the verification of the operations of quantum devices4, 5, 6 and the validation of underpinning physical models7, 8, 9, are central challenges for quantum technologies10, 11, 12 and fundamental physics13, 14. The computational cost of such

  14. Opportunistic quantum network coding based on quantum teleportation

    Science.gov (United States)

    Shang, Tao; Du, Gang; Liu, Jian-wei

    2016-04-01

    It seems impossible to endow opportunistic characteristic to quantum network on the basis that quantum channel cannot be overheard without disturbance. In this paper, we propose an opportunistic quantum network coding scheme by taking full advantage of channel characteristic of quantum teleportation. Concretely, it utilizes quantum channel for secure transmission of quantum states and can detect eavesdroppers by means of quantum channel verification. What is more, it utilizes classical channel for both opportunistic listening to neighbor states and opportunistic coding by broadcasting measurement outcome. Analysis results show that our scheme can reduce the times of transmissions over classical channels for relay nodes and can effectively defend against classical passive attack and quantum active attack.

  15. Experimental and quantum chemical studies on corrosion inhibition ...

    Indian Academy of Sciences (India)

    Abstract. The corrosion inhibition effect of fluconazole (FLU) was investigated on steel in 1 M hydrochloric acid solution. Weight loss measurements and atomic force microscope analysis were utilized to investigate the corrosion inhibition properties and film formation behaviour of FLU. Quantum chemical approach was also ...

  16. Experimental and quantum chemical studies on corrosion inhibition

    Indian Academy of Sciences (India)

    The corrosion inhibition effect of fluconazole (FLU) was investigated on steel in 1 M hydrochloric acid solution. Weight loss measurements and atomic force microscope analysis were utilized to investigate the corrosion inhibition properties and film formation behaviour of FLU. Quantum chemical approach was also used to ...

  17. Phenomenon of quantum low temperature limit of chemical reaction rates

    International Nuclear Information System (INIS)

    Gol'danskij, V.I.

    1975-01-01

    The influence of quantum-mechanical effects on one of the fundamental laws of chemical kinetics - the Arrhenius law - is considered. Criteria characterising the limits of the low-temperature region where the extent of quantum-mechanical tunnelling transitions exceeds exponentially the transitions over the barrier are quoted. Studies of the low-temperature tunnelling of electrons and hydrogen atoms are briefly mentioned and the history of research on low-temperature radiation-induced solid-phase polymerisation, the development of which led to the discovery of the phenomenon of the low-temperature quantum-mechanical limit for the rates of chemical reactions in relation to the formaldehyde polymerisation reaction, is briefly considered. The results of experiments using low-inertia calorimeters, whereby it is possible to determine directly the average time (tau 0 ) required to add one new link to the polymer chain of formaldehyde during its polymerisation by radiation and during postpolymerisation and to establish that below 80K the increase of tau 0 slows down and that at T approximately equal to 10-4K the time tau 0 reaches a plateau (tau 0 approximately equals 0.01s), are described. Possible explanations of the observed low-temperature limit for the rate of a chemical reaction are critically examined and a semiquantitative explanation is given for this phenomenon, which may be particularly common in combined electronic-confirmational transitions in complex biological molecules and may play a definite role in chemical and biological evolution (cold prehistory of life)

  18. Phenomenon of quantum low temperature limit of chemical reaction rates

    Energy Technology Data Exchange (ETDEWEB)

    Gol' danskii, V I [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1975-12-01

    The influence of quantum-mechanical effects on one of the fundamental laws of chemical kinetics - the Arrhenius Law - is considered. Criteria characterising the limits of the low-temperature region where the extent of quantum-mechanical tunnelling transitions exceeds exponentially the transitions over the barrier are quoted. Studies of the low-temperature tunnelling of electrons and hydrogen atoms are briefly mentioned and the history of research on low-temperature radiation-induced solid-phase polymerization, the development of which led to the discovery of the phenomenon of the low-temperature quantum-mechanical limit for the rates of chemical reactions in relation to the formaldehyde polymerization reaction, is briefly considered. The results of experiments using low-inertia calorimeters, whereby it is possible to determine directly the average time (tau/sub 0/) required to add one new link to the polymer chain of formaldehyde during its polymerization by radiation and during postpolymerization and to establish that below 80K the increase of tau/sub 0/ slows down and that at T approximately equal to 10-4K the time tau/sub 0/ reaches a plateau (tau/sub 0/ approximately equals 0.01s), are described. Possible explanations of the observed low-temperature limit for the rate of a chemical reaction are critically examined and a semiquantitative explanation is given for this phenomenon, which may be particularly common in combined electronic-confirmational transitions in complex biological molecules and may play a definite role in chemical and biological evolution (cold prehistory of life).

  19. Improve photocurrent quantum efficiency of carbon nanotube by chemical treatment

    International Nuclear Information System (INIS)

    Wang Hongguang; Wei Jinquan; Jia Yi; Li Zhen; Zhu Hongwei; Wang Kunlin; Wu Dehai

    2012-01-01

    Highlights: ► The QE of photocurrent for the H 2 O 2 -treated CNTs reaches to 5.28% at U bias = 0.1 V. ► Moderate chemical treatment can enhance the QE of photocurrent of CNTs. ► Excessive chemical treatment decreases the photocurrent quantum efficiency of CNTs. - Abstract: High photocurrent quantum efficiency (QE) of carbon nanotubes (CNTs) is important to their photovoltaic applications. The ability of photocurrent generation of CNTs depends on their band structure and surface state. For given CNTs, it is possible to improve the QE of photocurrent by chemical modification. Here, we study the effects of simple chemical treatment on the QE of CNTs by measuring the photocurrent of macroscopic CNT bundles. The QE of the H 2 O 2 -treated CNT bundle reaches 5.28% at 0.1 V bias voltage at a laser (λ = 473 nm) illumination, which is 85% higher than that of the pristine sample. But the QE of the CNTs treated in concentrated HNO 3 is lower than that of the pristine sample. It shows that moderate chemical treatment can enhance the photocurrent QE and excessive chemical treatment will decrease the QE because of introducing lots of structural defects.

  20. Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions

    OpenAIRE

    Adrian Jinich; Dmitrij Rappoport; Ian Dunn; Benjamin Sanchez-Lengeling; Roberto Olivares-Amaya; Elad Noor; Arren Bar Even; Alán Aspuru-Guzik

    2014-01-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfe...

  1. Robustness and device independence of verifiable blind quantum computing

    International Nuclear Information System (INIS)

    Gheorghiu, Alexandru; Kashefi, Elham; Wallden, Petros

    2015-01-01

    Recent advances in theoretical and experimental quantum computing bring us closer to scalable quantum computing devices. This makes the need for protocols that verify the correct functionality of quantum operations timely and has led to the field of quantum verification. In this paper we address key challenges to make quantum verification protocols applicable to experimental implementations. We prove the robustness of the single server verifiable universal blind quantum computing protocol of Fitzsimons and Kashefi (2012 arXiv:1203.5217) in the most general scenario. This includes the case where the purification of the deviated input state is in the hands of an adversarial server. The proved robustness property allows the composition of this protocol with a device-independent state tomography protocol that we give, which is based on the rigidity of CHSH games as proposed by Reichardt et al (2013 Nature 496 456–60). The resulting composite protocol has lower round complexity for the verification of entangled quantum servers with a classical verifier and, as we show, can be made fault tolerant. (paper)

  2. Challenges for effective WMD verification

    International Nuclear Information System (INIS)

    Andemicael, B.

    2006-01-01

    Effective verification is crucial to the fulfillment of the objectives of any disarmament treaty, not least as regards the proliferation of weapons of mass destruction (WMD). The effectiveness of the verification package depends on a number of factors, some inherent in the agreed structure and others related to the type of responses demanded by emerging challenges. The verification systems of three global agencies-the IAEA, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO, currently the Preparatory Commission), and the Organization for the Prohibition of Chemical Weapons (OPCW)-share similarities in their broad objectives of confidence-building and deterrence by assuring members that rigorous verification would deter or otherwise detect non-compliance. Yet they are up against various constraints and other issues, both internal and external to the treaty regime. These constraints pose major challenges to the effectiveness and reliability of the verification operations. In the nuclear field, the IAEA safeguards process was the first to evolve incrementally from modest Statute beginnings to a robust verification system under the global Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The nuclear non-proliferation regime is now being supplemented by a technology-intensive verification system of the nuclear test-ban treaty (CTBT), a product of over three decades of negotiation. However, there still remain fundamental gaps and loopholes in the regime as a whole, which tend to diminish the combined effectiveness of the IAEA and the CTBT verification capabilities. He three major problems are (a) the lack of universality of membership, essentially because of the absence of three nuclear weapon-capable States-India, Pakistan and Israel-from both the NPT and the CTBT, (b) the changes in US disarmament policy, especially in the nuclear field, and (c) the failure of the Conference on Disarmament to conclude a fissile material cut-off treaty. The world is

  3. Evaluation of quantum-chemical methods of radiolysis stability for macromolecular structures

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia

    2005-01-01

    The behavior of macromolecular structures in ionising fields was analyzed by quantum-chemical methods. In this study the primary radiolytic effect was analyzed using a two-step radiolytic mechanism: a) ionisation of molecule and spatial redistribution of atoms in order to reach a minimum value of energy, characteristic to the quantum state; b) neutralisation of the molecule by electron capture and its rapid dissociation into free radicals. Chemical bonds suspected to break are located in the distribution region of LUMO orbital and have minimal homolytic dissociation energies. Representative polymer structures (polyethylene, polypropylene, polystyrene, poly α and β polystyrene, polyisobutylene, polytetrafluoroethylene, poly methylsiloxanes) were analyzed. (authors)

  4. Experimental investigation of practical unforgeable quantum money

    Science.gov (United States)

    Bozzio, Mathieu; Orieux, Adeline; Trigo Vidarte, Luis; Zaquine, Isabelle; Kerenidis, Iordanis; Diamanti, Eleni

    2018-01-01

    Wiesner's unforgeable quantum money scheme is widely celebrated as the first quantum information application. Based on the no-cloning property of quantum mechanics, this scheme allows for the creation of credit cards used in authenticated transactions offering security guarantees impossible to achieve by classical means. However, despite its central role in quantum cryptography, its experimental implementation has remained elusive because of the lack of quantum memories and of practical verification techniques. Here, we experimentally implement a quantum money protocol relying on classical verification that rigorously satisfies the security condition for unforgeability. Our system exploits polarization encoding of weak coherent states of light and operates under conditions that ensure compatibility with state-of-the-art quantum memories. We derive working regimes for our system using a security analysis taking into account all practical imperfections. Our results constitute a major step towards a real-world realization of this milestone protocol.

  5. Quantum signature scheme for known quantum messages

    International Nuclear Information System (INIS)

    Kim, Taewan; Lee, Hyang-Sook

    2015-01-01

    When we want to sign a quantum message that we create, we can use arbitrated quantum signature schemes which are possible to sign for not only known quantum messages but also unknown quantum messages. However, since the arbitrated quantum signature schemes need the help of a trusted arbitrator in each verification of the signature, it is known that the schemes are not convenient in practical use. If we consider only known quantum messages such as the above situation, there can exist a quantum signature scheme with more efficient structure. In this paper, we present a new quantum signature scheme for known quantum messages without the help of an arbitrator. Differing from arbitrated quantum signature schemes based on the quantum one-time pad with the symmetric key, since our scheme is based on quantum public-key cryptosystems, the validity of the signature can be verified by a receiver without the help of an arbitrator. Moreover, we show that our scheme provides the functions of quantum message integrity, user authentication and non-repudiation of the origin as in digital signature schemes. (paper)

  6. Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method.

    Science.gov (United States)

    Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi

    2017-07-21

    In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.

  7. Quantum mechanical calculations to chemical accuracy

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The accuracy of current molecular-structure calculations is illustrated with examples of quantum mechanical solutions for chemical problems. Two approaches are considered: (1) the coupled-cluster singles and doubles (CCSD) with a perturbational estimate of the contribution of connected triple excitations, or CCDS(T); and (2) the multireference configuration-interaction (MRCI) approach to the correlation problem. The MRCI approach gains greater applicability by means of size-extensive modifications such as the averaged-coupled pair functional approach. The examples of solutions to chemical problems include those for C-H bond energies, the vibrational frequencies of O3, identifying the ground state of Al2 and Si2, and the Lewis-Rayleigh afterglow and the Hermann IR system of N2. Accurate molecular-wave functions can be derived from a combination of basis-set saturation studies and full configuration-interaction calculations.

  8. Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution

    DEFF Research Database (Denmark)

    Carbonell-Sanroma, Eduard; Brandimarte, Pedro; Balog, Richard

    2017-01-01

    Bottom-up chemical reactions of selected molecular precursors on a gold surface can produce high quality graphene nanoribbons (GNRs). Here, we report on the formation of quantum dots embedded in an armchair GNR by substitutional inclusion of pairs of boron atoms into the GNR backbone. The boron...

  9. From quantum chemical formation free energies to evaporation rates

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2012-01-01

    Full Text Available Atmospheric new particle formation is an important source of atmospheric aerosols. Large efforts have been made during the past few years to identify which molecules are behind this phenomenon, but the actual birth mechanism of the particles is not yet well known. Quantum chemical calculations have proven to be a powerful tool to gain new insights into the very first steps of particle formation. In the present study we use formation free energies calculated by quantum chemical methods to estimate the evaporation rates of species from sulfuric acid clusters containing ammonia or dimethylamine. We have found that dimethylamine forms much more stable clusters with sulphuric acid than ammonia does. On the other hand, the existence of a very deep local minimum for clusters with two sulfuric acid molecules and two dimethylamine molecules hinders their growth to larger clusters. These results indicate that other compounds may be needed to make clusters grow to larger sizes (containing more than three sulfuric acid molecules.

  10. Quantum chemical and spectroscopic analysis of calcium hydroxyapatite and related materials

    International Nuclear Information System (INIS)

    Khavryuchenko, V.D.; Khavryuchenko, O.V.; Lisnyak, V.V.

    2007-01-01

    Amorphous calcium hydroxyapatite was examined by vibrational spectroscopy (Raman and infra-red (IR)) and quantum chemical simulation techniques. The structures and vibrational (IR, Raman and inelastic neutron scattering) spectra of PO 4 3- ion, Ca 3 (PO 4 ) 2 , [Ca 3 (PO 4 ) 2 ] 3 , Ca 5 (PO 4 ) 3 OH, CaHPO 4 , [CaHPO 4 ] 2 , Ca 3 (PO 4 ) 2 .H 2 O, Ca 3 (PO 4 ) 2 .2H 2 O and Ca 3 (PO 4 ) 2 .3H 2 O clusters were quantum chemically simulated at ab initio and semiempirical levels of approximation. A complete coordinate analysis of the vibrational spectra was performed. The comparison of the theoretically simulated spectra with the experimental ones allows to identify correctly the phase composition of the amorphous calcium hydroxyapatite and related materials. The shape of the bands in the IR spectra of the hydroxoapatite can be used in order to characterize the structural properties of the material, e.g., the PO 4 3- ion status, the degree of hydrolysis of the material and the presence of hydrolysis products. - Graphical abstract: The structure of the quantum chemically optimized Ca 5 (PO 4 ) 3 (OH) cluster, which was used for vibrations spectra simulation

  11. Use of ab initio quantum chemical methods in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Deiss, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.

  12. Improved performance of nanowire–quantum-dot–polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials

    International Nuclear Information System (INIS)

    Nadarajah, A; Smith, T; Könenkamp, R

    2012-01-01

    We report a nanowire–quantum-dot–polymer solar cell consisting of a chemically treated CdSe quantum dot film deposited on n-type ZnO nanowires. The electron and hole collecting contacts are a fluorine-doped tin-oxide/zinc oxide layer and a P3HT/Au layer. This device architecture allows for enhanced light absorption and an efficient collection of photogenerated carriers. A detailed analysis of the chemical treatment of the quantum dots, their deposition, and the necessary annealing processes are discussed. We find that the surface treatment of CdSe quantum dots with pyridine, and the use of 1,2-ethanedithiol (EDT) ligands, critically improves the device performance. Annealing at 380 °C for 2 h is found to cause a structural conversion of the CdSe from its initial isolated quantum dot arrangement into a polycrystalline film with excellent surface conformality, thereby resulting in a further enhancement of device performance. Moreover, long-term annealing of 24 h leads to additional increases in device efficiency. Our best conversion efficiency reached for this type of cell is 3.4% under 85 mW cm −2 illumination. (paper)

  13. Green wet chemical route to synthesize capped CdSe quantum dots

    Indian Academy of Sciences (India)

    In the present work, we report green synthesis of tartaric acid (TA) and triethanolamine (TEA) capped ... CdSe quantum dots; chemical bath deposition; capping; green chemistry; nanomaterials. 1. .... at high concentration of nanoparticles.

  14. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids

    International Nuclear Information System (INIS)

    Kroon, Maaike C.; Buijs, Wim; Peters, Cor J.; Witkamp, Geert-Jan

    2007-01-01

    The long-term thermal stability of ionic liquids is of utmost importance for their industrial application. Although the thermal decomposition temperatures of various ionic liquids have been measured previously, experimental data on the thermal decomposition mechanisms and kinetics are scarce. It is desirable to develop quantitative chemical tools that can predict thermal decomposition mechanisms and temperatures (kinetics) of ionic liquids. In this work ab initio quantum chemical calculations (DFT-B3LYP) have been used to predict thermal decomposition mechanisms, temperatures and the activation energies of the thermal breakdown reactions. These quantum chemical calculations proved to be an excellent method to predict the thermal stability of various ionic liquids

  15. Differential multiple quantum relaxation caused by chemical exchange outside the fast exchange limit

    International Nuclear Information System (INIS)

    Wang Chunyu; Palmer, Arthur G.

    2002-01-01

    Differential relaxation of multiple quantum coherences is a signature for chemical exchange processes in proteins. Previous analyses of experimental data have used theoretical descriptions applicable only in the limit of fast exchange. Theoretical expressions for differential relaxation rate constants that are accurate outside fast exchange are presented for two-spin-system subject to two-site chemical exchange. The theoretical expressions are validated using experimental results for 15 N- 1 H relaxation in basic pancreatic trypsin inhibitor. The new theoretical expression is valuable for identification and characterization of exchange processes in proteins using differential relaxation of multiple quantum coherences

  16. Verification of hypergraph states

    Science.gov (United States)

    Morimae, Tomoyuki; Takeuchi, Yuki; Hayashi, Masahito

    2017-12-01

    Hypergraph states are generalizations of graph states where controlled-Z gates on edges are replaced with generalized controlled-Z gates on hyperedges. Hypergraph states have several advantages over graph states. For example, certain hypergraph states, such as the Union Jack states, are universal resource states for measurement-based quantum computing with only Pauli measurements, while graph state measurement-based quantum computing needs non-Clifford basis measurements. Furthermore, it is impossible to classically efficiently sample measurement results on hypergraph states unless the polynomial hierarchy collapses to the third level. Although several protocols have been proposed to verify graph states with only sequential single-qubit Pauli measurements, there was no verification method for hypergraph states. In this paper, we propose a method for verifying a certain class of hypergraph states with only sequential single-qubit Pauli measurements. Importantly, no i.i.d. property of samples is assumed in our protocol: any artificial entanglement among samples cannot fool the verifier. As applications of our protocol, we consider verified blind quantum computing with hypergraph states, and quantum computational supremacy demonstrations with hypergraph states.

  17. Quantum blind dual-signature scheme without arbitrator

    International Nuclear Information System (INIS)

    Li, Wei; Shi, Ronghua; Huang, Dazu; Shi, Jinjing; Guo, Ying

    2016-01-01

    Motivated by the elegant features of a bind signature, we suggest the design of a quantum blind dual-signature scheme with three phases, i.e., initial phase, signing phase and verification phase. Different from conventional schemes, legal messages are signed not only by the blind signatory but also by the sender in the signing phase. It does not rely much on an arbitrator in the verification phase as the previous quantum signature schemes usually do. The security is guaranteed by entanglement in quantum information processing. Security analysis demonstrates that the signature can be neither forged nor disavowed by illegal participants or attacker. It provides a potential application for e-commerce or e-payment systems with the current technology. (paper)

  18. Quantum blind dual-signature scheme without arbitrator

    Science.gov (United States)

    Li, Wei; Shi, Ronghua; Huang, Dazu; Shi, Jinjing; Guo, Ying

    2016-03-01

    Motivated by the elegant features of a bind signature, we suggest the design of a quantum blind dual-signature scheme with three phases, i.e., initial phase, signing phase and verification phase. Different from conventional schemes, legal messages are signed not only by the blind signatory but also by the sender in the signing phase. It does not rely much on an arbitrator in the verification phase as the previous quantum signature schemes usually do. The security is guaranteed by entanglement in quantum information processing. Security analysis demonstrates that the signature can be neither forged nor disavowed by illegal participants or attacker. It provides a potential application for e-commerce or e-payment systems with the current technology.

  19. Chemical Reactivity as Described by Quantum Chemical Methods

    Directory of Open Access Journals (Sweden)

    F. De Proft

    2002-04-01

    Full Text Available Abstract: Density Functional Theory is situated within the evolution of Quantum Chemistry as a facilitator of computations and a provider of new, chemical insights. The importance of the latter branch of DFT, conceptual DFT is highlighted following Parr's dictum "to calculate a molecule is not to understand it". An overview is given of the most important reactivity descriptors and the principles they are couched in. Examples are given on the evolution of the structure-property-wave function triangle which can be considered as the central paradigm of molecular quantum chemistry to (for many purposes a structure-property-density triangle. Both kinetic as well as thermodynamic aspects can be included when further linking reactivity to the property vertex. In the field of organic chemistry, the ab initio calculation of functional group properties and their use in studies on acidity and basicity is discussed together with the use of DFT descriptors to study the kinetics of SN2 reactions and the regioselectivity in Diels Alder reactions. Similarity in reactivity is illustrated via a study on peptide isosteres. In the field of inorganic chemistry non empirical studies of adsorption of small molecules in zeolite cages are discussed providing Henry constants and separation constants, the latter in remarkable good agreement with experiments. Possible refinements in a conceptual DFT context are presented. Finally an example from biochemistry is discussed : the influence of point mutations on the catalytic activity of subtilisin.

  20. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations.

    Science.gov (United States)

    Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai

    2018-06-13

    An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.

  1. Some double resonance and multiple quantum NMR studies in solids

    International Nuclear Information System (INIS)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of 13 C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D 2 O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, Δsigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO 3 .D 2 O, α,β d-2 HMB and α,β,γ d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules Δm = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made

  2. Blind quantum computation with identity authentication

    Science.gov (United States)

    Li, Qin; Li, Zhulin; Chan, Wai Hong; Zhang, Shengyu; Liu, Chengdong

    2018-04-01

    Blind quantum computation (BQC) allows a client with relatively few quantum resources or poor quantum technologies to delegate his computational problem to a quantum server such that the client's input, output, and algorithm are kept private. However, all existing BQC protocols focus on correctness verification of quantum computation but neglect authentication of participants' identity which probably leads to man-in-the-middle attacks or denial-of-service attacks. In this work, we use quantum identification to overcome such two kinds of attack for BQC, which will be called QI-BQC. We propose two QI-BQC protocols based on a typical single-server BQC protocol and a double-server BQC protocol. The two protocols can ensure both data integrity and mutual identification between participants with the help of a third trusted party (TTP). In addition, an unjammable public channel between a client and a server which is indispensable in previous BQC protocols is unnecessary, although it is required between TTP and each participant at some instant. Furthermore, the method to achieve identity verification in the presented protocols is general and it can be applied to other similar BQC protocols.

  3. Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing

    Science.gov (United States)

    Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias

    2017-10-01

    Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.

  4. Quantum money with nearly optimal error tolerance

    Science.gov (United States)

    Amiri, Ryan; Arrazola, Juan Miguel

    2017-06-01

    We present a family of quantum money schemes with classical verification which display a number of benefits over previous proposals. Our schemes are based on hidden matching quantum retrieval games and they tolerate noise up to 23 % , which we conjecture reaches 25 % asymptotically as the dimension of the underlying hidden matching states is increased. Furthermore, we prove that 25 % is the maximum tolerable noise for a wide class of quantum money schemes with classical verification, meaning our schemes are almost optimally noise tolerant. We use methods in semidefinite programming to prove security in a substantially different manner to previous proposals, leading to two main advantages: first, coin verification involves only a constant number of states (with respect to coin size), thereby allowing for smaller coins; second, the reusability of coins within our scheme grows linearly with the size of the coin, which is known to be optimal. Last, we suggest methods by which the coins in our protocol could be implemented using weak coherent states and verified using existing experimental techniques, even in the presence of detector inefficiencies.

  5. Physico-chemical mechanism for the vapors sensitivity of photoluminescent InP quantum dots

    Science.gov (United States)

    Prosposito, P.; De Angelis, R.; De Matteis, F.; Hatami, F.; Masselink, W. T.; Zhang, H.; Casalboni, M.

    2016-03-01

    InP/InGaP surface quantum dots are interesting materials for optical chemical sensors since they present an intense emission at room temperature, whose intensity changes rapidly and reversibly depending on the composition of the environmental atmosphere. We present here their emission properties by time resolved photoluminescence spectroscopy investigation and we discuss the physico-chemical mechanism behind their sensitivity to the surrounding atmosphere. Photoluminescence transients in inert atmosphere (N2) and in solvent vapours of methanol, clorophorm, acetone and water were measured. The presence of vapors of clorophorm, acetone and water showed a very weak effect on the transient times, while an increase of up to 15% of the decay time was observed for methanol vapour exposure. On the basis of the vapor molecule nature (polarity, proticity, steric hindrance, etc.) and of the interaction of the vapor molecules with the quantum dots surface a sensing mechanism involving quantum dots non-radiative surface states is proposed.

  6. Physico-chemical mechanism for the vapors sensitivity of photoluminescent InP quantum dots

    International Nuclear Information System (INIS)

    Prosposito, P.; De Angelis, R.; De Matteis, F.; Casalboni, M.; Hatami, F.; Masselink, W.T.; Zhang, H.

    2016-01-01

    InP/InGaP surface quantum dots are interesting materials for optical chemical sensors since they present an intense emission at room temperature, whose intensity changes rapidly and reversibly depending on the composition of the environmental atmosphere. We present here their emission properties by time resolved photoluminescence spectroscopy investigation and we discuss the physico-chemical mechanism behind their sensitivity to the surrounding atmosphere. Photoluminescence transients in inert atmosphere (N 2 ) and in solvent vapours of methanol, chloroform, acetone and water were measured. The presence of vapors of chloroform, acetone and water showed a very weak effect on the transient times, while an increase of up to 15% of the decay time was observed for methanol vapour exposure. On the basis of the vapor molecule nature (polarity, proticity, steric hindrance, etc.) and of the interaction of the vapor molecules with the quantum dots surface a sensing mechanism involving quantum dots non-radiative surface states is proposed. (paper)

  7. Arbitrated Quantum Signature with Hamiltonian Algorithm Based on Blind Quantum Computation

    Science.gov (United States)

    Shi, Ronghua; Ding, Wanting; Shi, Jinjing

    2018-03-01

    A novel arbitrated quantum signature (AQS) scheme is proposed motivated by the Hamiltonian algorithm (HA) and blind quantum computation (BQC). The generation and verification of signature algorithm is designed based on HA, which enables the scheme to rely less on computational complexity. It is unnecessary to recover original messages when verifying signatures since the blind quantum computation is applied, which can improve the simplicity and operability of our scheme. It is proved that the scheme can be deployed securely, and the extended AQS has some extensive applications in E-payment system, E-government, E-business, etc.

  8. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-01-01

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), 1 H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong 1 H– 1 H homonuclear dipolar couplings and narrow 1 H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) 1 H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about 1 H– 1 H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical

  9. Quantum Fully Homomorphic Encryption with Verification

    DEFF Research Database (Denmark)

    Alagic, Gorjan; Dulek, Yfke; Schaffner, Christian

    2017-01-01

    Fully-homomorphic encryption (FHE) enables computation on encrypted data while maintaining secrecy. Recent research has shown that such schemes exist even for quantum computation. Given the numerous applications of classical FHE (zero-knowledge proofs, secure two-party computation, obfuscation, e...

  10. Post-quantum rsa

    NARCIS (Netherlands)

    Bernstein, D.J.; Heninger, N.; Lou, P.; Valenta, L.; Lange, T.; Takagi, T.

    2017-01-01

    This paper proposes RSA parameters for which (1) key generation, encryption, decryption, signing, and verification are feasible on today’s computers while (2) all known attacks are infeasible, even assuming highly scalable quantum computers. As part of the performance analysis, this paper introduces

  11. Some double resonance and multiple quantum NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of /sup 13/C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D/sub 2/O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, ..delta..sigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO/sub 3/.D/sub 2/O, ..cap alpha..,..beta.. d-2 HMB and ..cap alpha..,..beta..,..gamma.. d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules ..delta..m = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made.

  12. Quantum-Chemical Electron Densities of Proteins and of Selected Protein Sites from Subsystem Density Functional Theory

    NARCIS (Netherlands)

    Kiewisch, K.; Jacob, C.R.; Visscher, L.

    2013-01-01

    The ability to calculate accurate electron densities of full proteins or of selected sites in proteins is a prerequisite for a fully quantum-mechanical calculation of protein-protein and protein-ligand interaction energies. Quantum-chemical subsystem methods capable of treating proteins and other

  13. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    Science.gov (United States)

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.

  14. Development of a quantum chemical molecular dynamics tribochemical simulator and its application to tribochemical reaction dynamics of lubricant additives

    International Nuclear Information System (INIS)

    Onodera, T; Tsuboi, H; Hatakeyama, N; Endou, A; Miyamoto, A; Miura, R; Takaba, H; Suzuki, A; Kubo, M

    2010-01-01

    Tribology at the atomistic and molecular levels has been theoretically studied by a classical molecular dynamics (MD) method. However, this method inherently cannot simulate the tribochemical reaction dynamics because it does not consider the electrons in nature. Although the first-principles based MD method has recently been used for understanding the chemical reaction dynamics of several molecules in the tribology field, the method cannot simulate the tribochemical reaction dynamics of a large complex system including solid surfaces and interfaces due to its huge computation costs. On the other hand, we have developed a quantum chemical MD tribochemical simulator on the basis of a hybrid tight-binding quantum chemical/classical MD method. In the simulator, the central part of the chemical reaction dynamics is calculated by the tight-binding quantum chemical MD method, and the remaining part is calculated by the classical MD method. Therefore, the developed tribochemical simulator realizes the study on tribochemical reaction dynamics of a large complex system, which cannot be treated by using the conventional classical MD or the first-principles MD methods. In this paper, we review our developed quantum chemical MD tribochemical simulator and its application to the tribochemical reaction dynamics of a few lubricant additives

  15. Mechanical and chemical spinodal instabilities in finite quantum systems

    International Nuclear Information System (INIS)

    Colonna, M.; Chomaz, Ph.; Ayik, S.

    2001-01-01

    Self consistent quantum approaches are used to study the instabilities of finite nuclear systems. The frequencies of multipole density fluctuations are determined as a function of dilution and temperature, for several isotopes. The spinodal region of the phase diagrams is determined and it appears reduced by finite size effects. The role of surface and volume instabilities is discussed. Important chemical effects are associated with mechanical disruption and may lead to isospin fractionation. (authors)

  16. Lighting up micromotors with quantum dots for smart chemical sensing.

    Science.gov (United States)

    Jurado-Sánchez, B; Escarpa, A; Wang, J

    2015-09-25

    A new "on-the-fly" chemical optical detection strategy based on the incorporation of fluorescence CdTe quantum dots (QDs) on the surface of self-propelled tubular micromotors is presented. The motion-accelerated binding of trace Hg to the QDs selectively quenches the fluorescence emission and leads to an effective discrimination between different mercury species and other co-existing ions.

  17. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    International Nuclear Information System (INIS)

    Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R

    2014-01-01

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H

  18. A Logical Analysis of Quantum Voting Protocols

    Science.gov (United States)

    Rad, Soroush Rafiee; Shirinkalam, Elahe; Smets, Sonja

    2017-12-01

    In this paper we provide a logical analysis of the Quantum Voting Protocol for Anonymous Surveying as developed by Horoshko and Kilin in (Phys. Lett. A 375, 1172-1175 2011). In particular we make use of the probabilistic logic of quantum programs as developed in (Int. J. Theor. Phys. 53, 3628-3647 2014) to provide a formal specification of the protocol and to derive its correctness. Our analysis is part of a wider program on the application of quantum logics to the formal verification of protocols in quantum communication and quantum computation.

  19. Chemical Safety Vulnerability Working Group report. Volume 2

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site

  20. Chemical Safety Vulnerability Working Group report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  1. Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters

    Science.gov (United States)

    Vlaisavljevich, Bess

    Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.

  2. A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells

    KAUST Repository

    Risko, Chad

    2011-03-15

    The recent and rapid enhancement in power conversion efficiencies of organic-based, bulk heterojunction solar cells has been a consequence of both improved materials design and better understanding of the underlying physical processes involved in photocurrent generation. In this Perspective, we first present an overview of the application of quantum-chemical techniques to study the intrinsic material properties and molecular- and nano-scale processes involved in device operation. In the second part, these quantum-chemical tools are applied to an oligomer-based study on a collection of donor-acceptor copolymers that have been used in the highest-efficiency solar cell devices reported to date. The quantum-chemical results are found to be in good agreement with the empirical data related to the electronic and optical properties. In particular, they provide insight into the natures of the electronic excitations responsible for the near-infrared/visible absorption profiles, as well as into the energetics of the low-lying singlet and triplet states. These results lead to a better understanding of the inherent differences among the materials, and highlight the usefulness of quantum chemistry as an instrument for material design. Importantly, the results also point to the need to continue the development of integrated, multi scale modeling approaches to provide a thorough understanding of the materials properties. © The Royal Society of Chemistry 2011.

  3. Demonstration of measurement-only blind quantum computing

    Science.gov (United States)

    Greganti, Chiara; Roehsner, Marie-Christine; Barz, Stefanie; Morimae, Tomoyuki; Walther, Philip

    2016-01-01

    Blind quantum computing allows for secure cloud networks of quasi-classical clients and a fully fledged quantum server. Recently, a new protocol has been proposed, which requires a client to perform only measurements. We demonstrate a proof-of-principle implementation of this measurement-only blind quantum computing, exploiting a photonic setup to generate four-qubit cluster states for computation and verification. Feasible technological requirements for the client and the device-independent blindness make this scheme very applicable for future secure quantum networks.

  4. Quantum chemical modeling of enzymatic reactions: the case of 4-oxalocrotonate tautomerase.

    Science.gov (United States)

    Sevastik, Robin; Himo, Fahmi

    2007-12-01

    The reaction mechanism of 4-oxalocrotonate tautomerase (4-OT) is studied using the density functional theory method B3LYP. This enzyme catalyzes the isomerisation of unconjugated alpha-keto acids to their conjugated isomers. Two different quantum chemical models of the active site are devised and the potential energy curves for the reaction are computed. The calculations support the proposed reaction mechanism in which Pro-1 acts as a base to shuttle a proton from the C3 to the C5 position of the substrate. The first step (proton transfer from C3 to proline) is shown to be the rate-limiting step. The energy of the charge-separated intermediate (protonated proline-deprotonated substrate) is calculated to be quite low, in accordance with measured pKa values. The results of the two models are used to evaluate the methodology employed in modeling enzyme active sites using quantum chemical cluster models.

  5. Sub-nanometrically resolved chemical mappings of quantum-cascade laser active regions

    International Nuclear Information System (INIS)

    Pantzas, Konstantinos; Beaudoin, Grégoire; Patriarche, Gilles; Largeau, Ludovic; Mauguin, Olivia; Sagnes, Isabelle; Pegolotti, Giulia; Vasanelli, Angela; Calvar, Ariane; Amanti, Maria; Sirtori, Carlo

    2016-01-01

    A procedure that produces sub-nanometrically resolved chemical mappings of MOCVD-grown InGaAs/InAlAs/InP quantum cascade lasers is presented. The chemical mappings reveal that, although the structure is lattice-matched to InP, the InAlAs barriers do not attain the nominal aluminum content—48%—and are, in fact, InGaAlAs quaternaries. This information is used to adjust the aluminum precursor flow and fine-tune the composition of the barriers, resulting in a significant improvement of the fabricated lasers. (paper)

  6. Tuning electronic properties in graphene quantum dots by chemical functionalization: Density functional theory calculations

    Science.gov (United States)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-03-01

    The energy gap and dipole moment of chemically functionalized graphene quantum dots are investigated by density functional theory. The energy gap can be tuned through edge passivation by different elements or groups. Edge passivation by oxygen considerably decreases the energy gap in hexagonal nanodots. Edge states in triangular quantum dots can also be manipulated by passivation with fluorine. The dipole moment depends on: (a) shape and edge termination of the quantum dot, (b) attached group, and (c) position to which the groups are attached. Depending on the position of attached groups, the total dipole can be increased, decreased, or eliminated.

  7. Complementing high-throughput X-ray powder diffraction data with quantum-chemical calculations

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; van de Streek, Jacco; Rantanen, Jukka

    2012-01-01

    of piroxicam form III. These combined experimental/quantum-chemical methods can provide access to reliable structural information in the course of an intensive experimentally based solid-form screening activity or in other circumstances wherein single crystals might never be viable, for example, for polymorphs...

  8. Performance test of multicomponent quantum mechanical calculation with polarizable continuum model for proton chemical shift.

    Science.gov (United States)

    Kanematsu, Yusuke; Tachikawa, Masanori

    2015-05-21

    Multicomponent quantum mechanical (MC_QM) calculations with polarizable continuum model (PCM) have been tested against liquid (1)H NMR chemical shifts for a test set of 80 molecules. Improvement from conventional quantum mechanical calculations was achieved for MC_QM calculations. The advantage of the multicomponent scheme could be attributed to the geometrical change from the equilibrium geometry by the incorporation of the hydrogen nuclear quantum effect, while that of PCM can be attributed to the change of the electronic structure according to the polarization by solvent effects.

  9. Device-independence for two-party cryptography and position verification

    DEFF Research Database (Denmark)

    Ribeiro, Jeremy; Thinh, Le Phuc; Kaniewski, Jedrzej

    Quantum communication has demonstrated its usefulness for quantum cryptography far beyond quantum key distribution. One domain is two-party cryptography, whose goal is to allow two parties who may not trust each other to solve joint tasks. Another interesting application is position......-based cryptography whose goal is to use the geographical location of an entity as its only identifying credential. Unfortunately, security of these protocols is not possible against an all powerful adversary. However, if we impose some realistic physical constraints on the adversary, there exist protocols for which...... security can be proven, but these so far relied on the knowledge of the quantum operations performed during the protocols. In this work we give device-independent security proofs of two-party cryptography and Position Verification for memoryless devices under different physical constraints on the adversary...

  10. Quantum entanglement

    International Nuclear Information System (INIS)

    Hadjiivanov, L.; Todorov, I.

    2015-01-01

    Expository paper providing a historical survey of the gradual transformation of the 'philosophical discussions' between Bohr, Einstein and Schrödinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schrödinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminating with the work of Alain Aspect) it was Feynman who made public the idea of a quantum computer based on the observed effect

  11. Quantum multi-signature protocol based on teleportation

    International Nuclear Information System (INIS)

    Wen Xiao-jun; Liu Yun; Sun Yu

    2007-01-01

    In this paper, a protocol which can be used in multi-user quantum signature is proposed. The scheme of signature and verification is based on the correlation of Greenberger-Horne-Zeilinger (GHZ) states and the controlled quantum teleportation. Different from the digital signatures, which are based on computational complexity, the proposed protocol has perfect security in the noiseless quantum channels. Compared to previous quantum signature schemes, this protocol can verify the signature independent of an arbitrator as well as realize multi-user signature together. (orig.)

  12. Demonstration of measurement-only blind quantum computing

    International Nuclear Information System (INIS)

    Greganti, Chiara; Roehsner, Marie-Christine; Barz, Stefanie; Walther, Philip; Morimae, Tomoyuki

    2016-01-01

    Blind quantum computing allows for secure cloud networks of quasi-classical clients and a fully fledged quantum server. Recently, a new protocol has been proposed, which requires a client to perform only measurements. We demonstrate a proof-of-principle implementation of this measurement-only blind quantum computing, exploiting a photonic setup to generate four-qubit cluster states for computation and verification. Feasible technological requirements for the client and the device-independent blindness make this scheme very applicable for future secure quantum networks. (paper)

  13. Capacity estimation and verification of quantum channels with arbitrarily correlated errors.

    Science.gov (United States)

    Pfister, Corsin; Rol, M Adriaan; Mantri, Atul; Tomamichel, Marco; Wehner, Stephanie

    2018-01-02

    The central figure of merit for quantum memories and quantum communication devices is their capacity to store and transmit quantum information. Here, we present a protocol that estimates a lower bound on a channel's quantum capacity, even when there are arbitrarily correlated errors. One application of these protocols is to test the performance of quantum repeaters for transmitting quantum information. Our protocol is easy to implement and comes in two versions. The first estimates the one-shot quantum capacity by preparing and measuring in two different bases, where all involved qubits are used as test qubits. The second verifies on-the-fly that a channel's one-shot quantum capacity exceeds a minimal tolerated value while storing or communicating data. We discuss the performance using simple examples, such as the dephasing channel for which our method is asymptotically optimal. Finally, we apply our method to a superconducting qubit in experiment.

  14. Recent Trends in Quantum Chemical Modeling of Enzymatic Reactions.

    Science.gov (United States)

    Himo, Fahmi

    2017-05-24

    The quantum chemical cluster approach is a powerful method for investigating enzymatic reactions. Over the past two decades, a large number of highly diverse systems have been studied and a great wealth of mechanistic insight has been developed using this technique. This Perspective reviews the current status of the methodology. The latest technical developments are highlighted, and challenges are discussed. Some recent applications are presented to illustrate the capabilities and progress of this approach, and likely future directions are outlined.

  15. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiteng [Purdue Univ., West Lafayette, IN (United States); Kais, Sabre [Purdue Univ., West Lafayette, IN (United States); Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  16. Quantum-chemical study of hydride transfer in catalytic transformation of paraffins on zeolites

    NARCIS (Netherlands)

    Kazansky, V.B.; Frash, M.V.; Santen, van R.A.; Chon, H.; Ihm, S.-K.; Uh, Y.S.

    1997-01-01

    Ab initio quantum-chemical cluster calculations demonstrate that the activated complexes of hydride transfer reaction in catalytic transformation of paraffins on zeolites very much resembles adsorbed nonclassical carbonium ions. The calculated activation energies for reactions involving propane and

  17. Oxygen-vacancy defects on BaTiO3 (001) surface: a quantum chemical study

    International Nuclear Information System (INIS)

    Duque, Carlos; Stashans, Arvids

    2003-01-01

    A quantum-chemical study of technologically important BaTiO 3 crystal and oxygen-vacancy defects on its (001) surface is reported in the present work. The computations are made using a quantum-chemical method developed for periodic systems (crystals), which is based on the Hartree-Fock theory. The atomic rearrangement due to the surface creation is obtained for a pure BaTiO 3 by means of the periodic large unit cell (LUC) model and using an automated geometry optimisation procedure. The same technique is employed to study the electronic and structural properties of the material due to the presence of an O vacancy and F centre (two electrons trapped in an oxygen vacancy). The computations are carried out for both cubic and tetragonal lattices

  18. Protein structure refinement using a quantum mechanics-based chemical shielding predictor.

    Science.gov (United States)

    Bratholm, Lars A; Jensen, Jan H

    2017-03-01

    The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor of a protein backbone and CB chemical shifts (ProCS15, PeerJ , 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic chemical shielding values (ProCS15) can be used to refine protein structures using Markov Chain Monte Carlo (MCMC) simulations, relating the chemical shielding values to the experimental chemical shifts probabilistically. Two kinds of MCMC structural refinement simulations were performed using force field geometry optimized X-ray structures as starting points: simulated annealing of the starting structure and constant temperature MCMC simulation followed by simulated annealing of a representative ensemble structure. Annealing of the CHARMM structure changes the CA-RMSD by an average of 0.4 Å but lowers the chemical shift RMSD by 1.0 and 0.7 ppm for CA and N. Conformational averaging has a relatively small effect (0.1-0.2 ppm) on the overall agreement with carbon chemical shifts but lowers the error for nitrogen chemical shifts by 0.4 ppm. If an amino acid specific offset is included the ProCS15 predicted chemical shifts have RMSD values relative to experiments that are comparable to popular empirical chemical shift predictors. The annealed representative ensemble structures differ in CA-RMSD relative to the initial structures by an average of 2.0 Å, with >2.0 Å difference for six proteins. In four of the cases, the largest structural differences arise in structurally flexible regions of the protein as determined by NMR, and in the remaining two cases, the large structural

  19. Application of quantum dots as analytical tools in automated chemical analysis: A review

    International Nuclear Information System (INIS)

    Frigerio, Christian; Ribeiro, David S.M.; Rodrigues, S. Sofia M.; Abreu, Vera L.R.G.; Barbosa, João A.C.; Prior, João A.V.; Marques, Karine L.; Santos, João L.M.

    2012-01-01

    Highlights: ► Review on quantum dots application in automated chemical analysis. ► Automation by using flow-based techniques. ► Quantum dots in liquid chromatography and capillary electrophoresis. ► Detection by fluorescence and chemiluminescence. ► Electrochemiluminescence and radical generation. - Abstract: Colloidal semiconductor nanocrystals or quantum dots (QDs) are one of the most relevant developments in the fast-growing world of nanotechnology. Initially proposed as luminescent biological labels, they are finding new important fields of application in analytical chemistry, where their photoluminescent properties have been exploited in environmental monitoring, pharmaceutical and clinical analysis and food quality control. Despite the enormous variety of applications that have been developed, the automation of QDs-based analytical methodologies by resorting to automation tools such as continuous flow analysis and related techniques, which would allow to take advantage of particular features of the nanocrystals such as the versatile surface chemistry and ligand binding ability, the aptitude to generate reactive species, the possibility of encapsulation in different materials while retaining native luminescence providing the means for the implementation of renewable chemosensors or even the utilisation of more drastic and even stability impairing reaction conditions, is hitherto very limited. In this review, we provide insights into the analytical potential of quantum dots focusing on prospects of their utilisation in automated flow-based and flow-related approaches and the future outlook of QDs applications in chemical analysis.

  20. Metal compounds in zeolites as active components of chemisorption and catalysis. Quantum chemical approach

    International Nuclear Information System (INIS)

    Zhidomirov, G.M.

    1996-01-01

    A short review of possible catalitic active sites associated with various types of metal species in zoolite is presented. The structural and electronic peculiarity of aluminum ions in zeolite lattice and their distribution in the lattice are discussed on the basis of quantum chemical calculations in connection with the formation of Broensted activity of zeolites. Various molecular models of Lewis Acid Sites associated the extra-lattice oxide-hydroxide aluminum species have been investigated by means of density functional model cluster calculations using CO molecule as a probe. Probable ways of formation of the selective oxidation center in FeZSM-5 by decomposition of dinitrogen monoxide have been studied by ab-initio quantum chemical calculations. The immediate oxidizing site is reasonably represented by the binuclear iron-hydroxide cluster with peroxo-like fragment located between iron atoms. Various probable intermediates of the selective oxidation center formation resulted from interaction of a hydroperoxide molecule with a lattice titanium ion in titanium silicalite have been investigated by quantum chemical calculations. It was concluded that this reaction requires essential structural reconstruction in the vicinity of the titanium ion. Probability of this structural reconstruction is discussed. Possible reasons of an electron-deficient and electron-enriched state of metal particles entrapped in zoolite cavities are discussed. Also, various probable molecular models of such modified metal particles in zeolite are considered

  1. Verifying detailed fluctuation relations for discrete feedback-controlled quantum dynamics

    Science.gov (United States)

    Camati, Patrice A.; Serra, Roberto M.

    2018-04-01

    Discrete quantum feedback control consists of a managed dynamics according to the information acquired by a previous measurement. Energy fluctuations along such dynamics satisfy generalized fluctuation relations, which are useful tools to study the thermodynamics of systems far away from equilibrium. Due to the practical challenge to assess energy fluctuations in the quantum scenario, the experimental verification of detailed fluctuation relations in the presence of feedback control remains elusive. We present a feasible method to experimentally verify detailed fluctuation relations for discrete feedback control quantum dynamics. Two detailed fluctuation relations are developed and employed. The method is based on a quantum interferometric strategy that allows the verification of fluctuation relations in the presence of feedback control. An analytical example to illustrate the applicability of the method is discussed. The comprehensive technique introduced here can be experimentally implemented at a microscale with the current technology in a variety of experimental platforms.

  2. Electrochemical and Quantum Chemical Study of Reactivity of Orthophthalaldehyde with Aliphatic Primary Amines

    Czech Academy of Sciences Publication Activity Database

    Donkeng Dazie, Joel; Liška, Alan; Ludvík, Jiří

    2016-01-01

    Roč. 163, č. 9 (2016), G127-G132 ISSN 0013-4651 R&D Projects: GA ČR GA13-21704S Institutional support: RVO:61388955 Keywords : electrochemistry * quantum chemical study * amines Subject RIV: CG - Electrochemistry Impact factor: 3.259, year: 2016

  3. Evidence of Non-local Chemical, Thermal and Gravitational Effects

    Directory of Open Access Journals (Sweden)

    Hu H.

    2007-04-01

    Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.

  4. Monitoring/Verification Using DMS: TATP Example

    International Nuclear Information System (INIS)

    Kevin Kyle; Stephan Weeks

    2008-01-01

    Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operations management systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a 'smart dust' sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biological materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. GC is the leading analytical method for the separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15-300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements

  5. Experimental Blind Quantum Computing for a Classical Client

    Science.gov (United States)

    Huang, He-Liang; Zhao, Qi; Ma, Xiongfeng; Liu, Chang; Su, Zu-En; Wang, Xi-Lin; Li, Li; Liu, Nai-Le; Sanders, Barry C.; Lu, Chao-Yang; Pan, Jian-Wei

    2017-08-01

    To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.

  6. Experimental Blind Quantum Computing for a Classical Client.

    Science.gov (United States)

    Huang, He-Liang; Zhao, Qi; Ma, Xiongfeng; Liu, Chang; Su, Zu-En; Wang, Xi-Lin; Li, Li; Liu, Nai-Le; Sanders, Barry C; Lu, Chao-Yang; Pan, Jian-Wei

    2017-08-04

    To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.

  7. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7

    Directory of Open Access Journals (Sweden)

    A. V. Sulimov

    2017-01-01

    Full Text Available Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  8. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7.

    Science.gov (United States)

    Sulimov, A V; Kutov, D C; Katkova, E V; Sulimov, V B

    2017-01-01

    Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  9. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    Science.gov (United States)

    Jhin, Changho; Hwang, Keum Taek

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.

  10. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    Directory of Open Access Journals (Sweden)

    Changho Jhin

    Full Text Available One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS applied quantitative structure-activity relationship models (QSAR were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.

  11. Quantum chemical approaches: semiempirical molecular orbital and hybrid quantum mechanical/molecular mechanical techniques.

    Science.gov (United States)

    Bryce, Richard A; Hillier, Ian H

    2014-01-01

    The use of computational quantum chemical methods to aid drug discovery is surveyed. An overview of the various computational models spanning ab initio, density function theory, semiempirical molecular orbital (MO), and hybrid quantum mechanical (QM)/molecular mechanical (MM) methods is given and their strengths and weaknesses are highlighted, focussing on the challenge of obtaining the accuracy essential for them to make a meaningful contribution to drug discovery. Particular attention is given to hybrid QM/MM and semiempirical MO methods which have the potential to yield the necessary accurate predictions of macromolecular structure and reactivity. These methods are shown to have advanced the study of many aspects of substrate-ligand interactions relevant to drug discovery. Thus, the successful parametrization of semiempirical MO methods and QM/MM methods can be used to model noncovalent substrate-protein interactions, and to lead to improved scoring functions. QM/MM methods can be used in crystal structure refinement and are particularly valuable for modelling covalent protein-ligand interactions and can thus aid the design of transition state analogues. An extensive collection of examples from the areas of metalloenzyme structure, enzyme inhibition, and ligand binding affinities and scoring functions are used to illustrate the power of these techniques.

  12. Some approaches to the quantum-chemical theory of heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhidomirov, G M

    1977-09-01

    A discussion of mathematical methods, models, and parameters used in various quantum-chemical descriptions of chemisorption and reaction at silica and aluminosilicate surfaces covers the continuous-surface model, the cluster model of the surface, the variation of pseudo-atom parameters to reduce the magnitude of boundary effects in the cluster model, the calculation of individual bond strengths in chemisorbed molecules, dissociative adsorption, applications to adsorption on silica and aluminosilicates, the mechanisms of hydrogen-deuterium exchange, etc. Diagrams, graphs, and 42 references.

  13. Development and new applications of quantum chemical simulation methodology

    International Nuclear Information System (INIS)

    Weiss, A. K. H.

    2012-01-01

    The Division of Theoretical Chemistry at the University of Innsbruck is focused on the study of chemical compounds in aqueous solution, in terms of mainly hybrid quantum mechanical / molecular mechanical molecular dynamics simulations (QM/MM MD). Besides the standard means of data analysis employed for such simulations, this study presents several advanced and capable algorithms for the description of structural and dynamic properties of the simulated species and its hydration. The first part of this thesis further presents selected exemplary simulations, in particular a comparative study of Formamide and N-methylformamide, Guanidinium, and Urea. An included review article further summarizes the major advances of these studies. The computer programs developed in the course of this thesis are by now well established in the research field. The second part of this study presents the theory and a development guide for a quantum chemical program, QuMuLuS, that is by now used as a QM program for recent QM/MM simulations at the division. In its course, this part presents newly developed algorithms for electron integral evaluation and point charge embedding. This program is validated in terms of benchmark computations. The associated theory is presented on a detailed level, to serve as a source for contemporary and future studies in the division. In the third and final part, further investigations of related topics are addressed. This covers additional schemes of molecular simulation analysis, new software, as well as a mathematical investigation of a non-standard two-electron integral. (author)

  14. Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium

    International Nuclear Information System (INIS)

    Arslan, Taner; Kandemirli, Fatma; Ebenso, Eno E.; Love, Ian; Alemu, Hailemichael

    2009-01-01

    Quantum chemical calculations using the density functional theory (DFT) and some semi-empirical methods were performed on four sulphonamides (sulfaguanidine, sulfamethazine, sulfamethoxazole and sulfadiazine) used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental %IE were subjected to correlation analysis and indicate that their inhibition effect are closely related to E HOMO , E LUMO , hardness, polarizability, dipole moment and charges. The %IE increased with increase in the E HOMO and decrease in E HOMO - E LUMO . The negative sign of the E HOMO values and other kinetic and thermodynamic parameters indicates that the data obtained support physical adsorption mechanism

  15. Surface emitting ring quantum cascade lasers for chemical sensing

    Science.gov (United States)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  16. Remaining Sites Verification Package for the 116-C-3, 105-C Chemical Waste Tanks. Attachment to Waste Site Reclassification Form 2008-002

    International Nuclear Information System (INIS)

    Dittmer, L.M.

    2008-01-01

    The 116-C-3 waste site consisted of two underground storage tanks designed to receive mixed waste from the 105-C Reactor Metals Examination Facility chemical dejacketing process. Confirmatory evaluation and subsequent characterization of the site determined that the southern tank contained approximately 34,000 L (9,000 gal) of dejacketing wastes, and that the northern tank was unused. In accordance with this evaluation, the verification sampling and modeling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrate that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also show that residual contaminant concentrations are protective of groundwater and the Columbia River

  17. Quantum chemical modeling of antioxidant activity of glutathione interacting with hydroxyl- and superoxide anion radicals

    Directory of Open Access Journals (Sweden)

    N. V. Solovyova

    2015-04-01

    Full Text Available Following the analysis of the results of quantum chemical simulation of interaction between a GSH molecule and oxygen radicals •ОН and •ООˉ, it was found that it takes place through the acid-base mechanism, where GSH acts as a base towards •ОН, and as an acid towards •ООˉ. The results of quantum chemical calculations (electron density redistribution, energy characteristics were correlated at the time of interaction of a GSH molecule with •ОН and •ООˉ with a change of macroscopic parameters of the process of free oxygen radical electroreduction in the presence of GSH (potential and maximum current of reduction waves, which is a direct experimental macroscale evidence of results of the conducted nanoscale theoretical simulation.

  18. Principles of quantum chemistry

    CERN Document Server

    George, David V

    2013-01-01

    Principles of Quantum Chemistry focuses on the application of quantum mechanics in physical models and experiments of chemical systems.This book describes chemical bonding and its two specific problems - bonding in complexes and in conjugated organic molecules. The very basic theory of spectroscopy is also considered. Other topics include the early development of quantum theory; particle-in-a-box; general formulation of the theory of quantum mechanics; and treatment of angular momentum in quantum mechanics. The examples of solutions of Schroedinger equations; approximation methods in quantum c

  19. Simulating chemistry using quantum computers.

    Science.gov (United States)

    Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2011-01-01

    The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  20. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  1. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...

  2. Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase.

    Science.gov (United States)

    Zhang, Hai-Mei; Chen, Shi-Lu

    2015-06-09

    The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.

  3. Improvement of a Quantum Proxy Blind Signature Scheme

    Science.gov (United States)

    Zhang, Jia-Lei; Zhang, Jian-Zhong; Xie, Shu-Cui

    2018-06-01

    Improvement of a quantum proxy blind signature scheme is proposed in this paper. Six-qubit entangled state functions as quantum channel. In our scheme, a trust party Trent is introduced so as to avoid David's dishonest behavior. The receiver David verifies the signature with the help of Trent in our scheme. The scheme uses the physical characteristics of quantum mechanics to implement message blinding, delegation, signature and verification. Security analysis proves that our scheme has the properties of undeniability, unforgeability, anonymity and can resist some common attacks.

  4. Quantum chemical molecular dynamical investigation of alkyl nitrite photo-dissociated on copper surfaces

    International Nuclear Information System (INIS)

    Wang Xiaojing; Wang Wei; Han Peilin; Kubo, Momoji; Miyamoto, Akira

    2008-01-01

    An accelerated quantum chemical molecular dynamical code 'Colors-Excite' was used to investigate the photolysis of alkyl nitrites series, RONO (R=CH 3 and C(CH 3 ) 3 ) on copper surfaces. Our calculations showed that the photo-dissociated processes are associated with the alkyl substituents of RONO when adsorbed on copper surfaces. For R=CH 3 , a two-step photolysis reaction occurred, yielding diverse intermediate products including RO radical, NO, and HNO, consistent with those reported in gas phase. While for R=C(CH 3 ) 3 , only one-step photolysis reaction occurred and gave intermediate products of RO radical and NO. Consequently, pure RO species were achieved to adsorb on metal surfaces by removing the NO species in photolysis reaction. The detailed photo-dissociated behaviors of RONO on copper surfaces with different alkyl substituents which are uncovered by the present simulation can be extended to explain the diverse dissociative mechanism experimentally observed. The quantum chemical molecular dynamical code 'Colors-Excite' is proved to be highly applicable to the photo-dissociations on metal surfaces

  5. A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells

    KAUST Repository

    Risko, Chad; McGehee, Michael D.; Bré das, Jean-Luc

    2011-01-01

    in photocurrent generation. In this Perspective, we first present an overview of the application of quantum-chemical techniques to study the intrinsic material properties and molecular- and nano-scale processes involved in device operation. In the second part

  6. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-04-01

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ and 6-311++G** basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds shows notable vibrational effects.

  7. Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique

    Directory of Open Access Journals (Sweden)

    Tyagi Renu

    2009-01-01

    Full Text Available Abstract Self-assembled InAs quantum dots (QDs were grown on germanium substrates by metal organic chemical vapor deposition technique. Effects of growth temperature and InAs coverage on the size, density, and height of quantum dots were investigated. Growth temperature was varied from 400 to 450 °C and InAs coverage was varied between 1.40 and 2.35 monolayers (MLs. The surface morphology and structural characteristics of the quantum dots analyzed by atomic force microscope revealed that the density of the InAs quantum dots first increased and then decreased with the amount of InAs coverage; whereas density decreased with increase in growth temperature. It was observed that the size and height of InAs quantum dots increased with increase in both temperature and InAs coverage. The density of QDs was effectively controlled by growth temperature and InAs coverage on GaAs buffer layer.

  8. Molecular interactions of nucleic acid bases. A review of quantum-chemical studies

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří; Hobza, Pavel

    2003-01-01

    Roč. 68, č. 12 (2003), s. 2231-2282 ISSN 0010-0765 R&D Projects: GA MŠk LN00A032; GA AV ČR IAA4040904 Grant - others:Wellcome Trust(GB) GR067507MF Institutional research plan: CEZ:AV0Z5004920; CEZ:AV0Z4040901 Keywords : DNA base pairs * initio quantum -chemical calculations * electron correlation Subject RIV: BO - Biophysics Impact factor: 1.041, year: 2003

  9. Predicting allergic contact dermatitis: a hierarchical structure activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors

    Science.gov (United States)

    Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.

    2008-06-01

    A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.

  10. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  11. Recent trials to verify quantum mechanics

    International Nuclear Information System (INIS)

    Paty, M.

    1974-01-01

    An account of the experiments which deal with the verification of Quantum Mechanics and the hidden variable problem is made. First, the well-known EPR paradox is recalled which, in spite of its refutation by Bohr, was the starting point of the questionning on the completeness of Quantum Mechanics and of hidden variable theories; and then Bell's theorem, which shows that the two approaches, Quantum Mechanics and hidden variables, can be put in contradiction. Thereafter the various types of experiments which have been carried out on that subject, mostly concerning the correlation measurements between two photons emitted by a quantum system are described. The most recent experimental results are diverging, some of them to confirm and some others to contradict quantum mechanics. A review of these is given; and a discussion is presented about their possible implications [fr

  12. Characterization of heterocyclic rings through quantum chemical topology.

    Science.gov (United States)

    Griffiths, Mark Z; Popelier, Paul L A

    2013-07-22

    Five-membered rings are found in a myriad of molecules important in a wide range of areas such as catalysis, nutrition, and drug and agrochemical design. Systematic insight into their largely unexplored chemical space benefits from first principle calculations presented here. This study comprehensively investigates a grand total of 764 different rings, all geometry optimized at the B3LYP/6-311+G(2d,p) level, from the perspective of Quantum Chemical Topology (QCT). For the first time, a 3D space of local topological properties was introduced, in order to characterize rings compactly. This space is called RCP space, after the so-called ring critical point. This space is analogous to BCP space, named after the bond critical point, which compactly and successfully characterizes a chemical bond. The relative positions of the rings in RCP space are determined by the nature of the ring scaffold, such as the heteroatoms within the ring or the number of π-bonds. The summed atomic QCT charges of the five ring atoms revealed five features (number and type of heteroatom, number of π-bonds, substituent and substitution site) that dictate a ring's net charge. Each feature independently contributes toward a ring's net charge. Each substituent has its own distinct and systematic effect on the ring's net charge, irrespective of the ring scaffold. Therefore, this work proves the possibility of designing a ring with specific properties by fine-tuning it through manipulation of these five features.

  13. Towards quantum chemistry on a quantum computer.

    Science.gov (United States)

    Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G

    2010-02-01

    Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

  14. Experimental verification of quantum discord in continuous-variable states

    International Nuclear Information System (INIS)

    Hosseini, S; Haw, J Y; Assad, S M; Chrzanowski, H M; Janousek, J; Symul, T; Lam, P K; Rahimi-Keshari, S; Ralph, T C

    2014-01-01

    We introduce a simple and efficient technique to verify quantum discord in unknown Gaussian states and a certain class of non-Gaussian states. We show that any separation in the peaks of the marginal distributions of one subsystem conditioned on two different outcomes of homodyne measurements performed on the other subsystem indicates correlation between the corresponding quadratures, and hence nonzero discord. We also apply this method to non-Gaussian states that are prepared by overlapping a statistical mixture of coherent and vacuum states on a beam splitter. We experimentally demonstrate this technique by verifying nonzero quantum discord in a bipartite Gaussian and certain non-Gaussian states. (paper)

  15. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations.

    Science.gov (United States)

    Arjunan, V; Kalaivani, M; Marchewka, M K; Mohan, S

    2013-04-15

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G(**), cc-pVDZ and 6-311++G(**) basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak OH···O and NH···O hydrogen bonds shows notable vibrational effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Structural studies of crystals of organic and organoelement compounds using modern quantum chemical calculations within the framework of the density functional theory

    International Nuclear Information System (INIS)

    Korlyukov, Alexander A; Antipin, Mikhail Yu

    2012-01-01

    The review generalizes the results of structural studies of crystals of organic and organometallic compounds by modern quantum chemical calculations within the framework of the density functional theory reported in the last decade. Features of the software for such calculations are discussed. Examples of the use of quantum chemical calculations for the studies of the electronic structure, spectroscopic and other physicochemical properties of molecular crystals are presented. The bibliography includes 223 references.

  17. Chemical applications of molecular quantum theory

    International Nuclear Information System (INIS)

    Ungemach, S.R.

    1977-09-01

    Molecular systems of chemical interest are investigated with the aid of molecular quantum theory. The self-consistent field (SCF) method is used to predict the molecular structures of ClF 2 , ClF 4 and Cl 3 radicals, and the ions ClF 2 + , ClF 2 - , ClF 4 + and ClF 4 - . The ClF 2 and Cl 3 radicals are predicted to be bent with bond angles of 145.2 0 and 158.6 0 , respectively, while the ions ClF 2 + and ClF 2 - are predicted to be bent with a bond angle of 97.4 0 and linear, respectively. The geometry predictions for the ClF 4 radical and the ClF 4 + ion are found to be notably basis set dependent. The ClF 4 - ion is predicted to be square-planar. Multi-configuration self-consistent field (MCSCF) calculations have yielded the dipole moment function for the 1 sigma + state of HI, which qualitatively confirms the experimental finding that the dipole derivative at R/sub e/ is negative. The 2 sigma + F + H 2 potential energy surface is studied extensively with the configuration interaction (CI) method. The most complete calculations yield an activation energy of 2.74 kcal/mole and an exothermicity of 30.0 kcal/mole. The production of a potential energy surface of ''chemical accuracy'' for this system is found to be more difficult than previously believed. The simplest hydrophobic model, the water-methane system, is studied with the SCF method in order to determine the nature and magnitude of the interaction. The most favorable geometric arrangement corresponds to an attraction of 0.5 kcal/mole

  18. Quantum nondemolition squeezing of a nanomechanical resonator

    Science.gov (United States)

    Ruskov, Rusko; Schwab, Keith; Korotkov, Alexander

    2005-03-01

    We discuss squeezing of the nanoresonator state produced by periodic measurement of position by a quantum point contact or a single-electron transistor. The mechanism of squeezing is the stroboscopic quantum nondemolition measurement generalized to the case of continuous measurement by a weakly coupled detector. The magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of measurement, taking into account detector efficiency and nanoresonator quality factor. We also analyze the operation of the quantum feedback, which prevents fluctuations of the wavepacket center due to measurement back-action. Verification of the squeezed state can be performed in almost the same way as its preparation; similar procedure can also be used for the force detection with sensitivity beyond the standard quantum limit.

  19. Exploiting Locality in Quantum Computation for Quantum Chemistry.

    Science.gov (United States)

    McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-12-18

    Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.

  20. Empirical, thermodynamic and quantum-chemical investigations of inclusion complexation between flavanones and (2-hydroxypropyl)-cyclodextrins.

    Science.gov (United States)

    Liu, Benguo; Li, Wei; Nguyen, Tien An; Zhao, Jian

    2012-09-15

    The inclusion complexation of (2-hydroxypropyl)-cyclodextrins with flavanones was investigated by phase solubility measurements, as well as thermodynamic and quantum chemical methods. Inclusion complexes were formed between (2-hydroxypropyl)-α-cyclodextrin (HP-α-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), (2-hydroxypropyl)-γ-cyclodextrin (HP-γ-CD) and β-cyclodextrin (β-CD) and four flavanones (naringenin, naringin, hesperetin and dihydromyricetin) in aqueous solutions and their phase solubility was determined. For all the flavanones, the stability constants of their complexes formed with different CDs followed the rank order: HP-β-CD (MW 1540)>HP-β-CD (MW 1460)>HP-β-CD (MW 1380)>β-CD>HP-γ-CD>HP-α-CD. Experimental results and quantum chemical calculations showed that the ability of flavanones to form inclusion complex with (2-hydroxypropyl)-cyclodextrins was determined by both the steric effect and hydrophobicity of the flavanones. For flavanones that have similar molecular volumes, the hydrophobicity of the molecule was the main determining factor of its ability to form inclusion complexes with HP-β-CD, and the hydrophobicity parameter Log P is highly correlated with the stability constant of the complexes. Results of thermodynamic study demonstrated that hydrophobic interaction is the main driving force for the formation process of the flavanone-CD inclusion complexes. Quantum chemical analysis of the most active hydroxyl groups and HOMO (the highest occupied molecular orbital) showed that the B ring of the flavanones was most likely involved in hydrogen bonding with the side groups in the cavity of the CDs, through which the inclusion complex was stabilised. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Mechanisms of gas phase decomposition of C-nitro compounds from quantum chemical data

    International Nuclear Information System (INIS)

    Khrapkovskii, Grigorii M; Shamov, Alexander G; Nikolaeva, E V; Chachkov, D V

    2009-01-01

    Data on the mechanisms of gas-phase monomolecular decomposition of nitroalkanes, nitroalkenes and nitroarenes obtained using modern quantum chemical methods are described systematically. The attention is focused on the discussion of multistage decomposition of nitro compounds to elementary experimentally observed products. Characteristic features of competition of different mechanisms and the effect of molecular structure on the change in the Arrhenius parameters of the primary reaction step are considered.

  2. Mechanisms of gas phase decomposition of C-nitro compounds from quantum chemical data

    Energy Technology Data Exchange (ETDEWEB)

    Khrapkovskii, Grigorii M; Shamov, Alexander G; Nikolaeva, E V; Chachkov, D V [Kazan State Technological University, Kazan (Russian Federation)

    2009-10-31

    Data on the mechanisms of gas-phase monomolecular decomposition of nitroalkanes, nitroalkenes and nitroarenes obtained using modern quantum chemical methods are described systematically. The attention is focused on the discussion of multistage decomposition of nitro compounds to elementary experimentally observed products. Characteristic features of competition of different mechanisms and the effect of molecular structure on the change in the Arrhenius parameters of the primary reaction step are considered.

  3. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    Science.gov (United States)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  4. The use of quantum chemically derived descriptors for QSAR modelling of reductive dehalogenation of aromatic compounds

    NARCIS (Netherlands)

    Rorije E; Richter J; Peijnenburg WJGM; ECO; IHE Delft

    1994-01-01

    In this study, quantum-chemically derived parameters are developed for a limited number of halogenated aromatic compounds to model the anaerobic reductive dehalogenation reaction rate constants of these compounds. It is shown that due to the heterogeneity of the set of compounds used, no single

  5. Chemical potentials and thermodynamic characteristics of ideal Bose- and Fermi-gases in the region of quantum degeneracy

    Science.gov (United States)

    Sotnikov, A. G.; Sereda, K. V.; Slyusarenko, Yu. V.

    2017-01-01

    Calculations of chemical potentials for ideal monatomic gases with Bose-Einstein and Fermi-Dirac statistics as functions of temperature, across the temperature region that is typical for the collective quantum degeneracy effect, are presented. Numerical calculations are performed without any additional approximations, and explicit dependences of the chemical potentials on temperature are constructed at a fixed density of gas particles. Approximate polynomial dependences of chemical potentials on temperature are obtained that allow for the results to be used in further studies without re-applying the involved numerical methods. The ease of using the obtained representations is demonstrated on examples of deformation of distribution for a population of energy states at low temperatures, and on the impact of quantum statistics (exchange interaction) on the equations of state for ideal gases and some of the thermodynamic properties thereof. The results of this study essentially unify two opposite limiting cases in an intermediate region that are used to describe the equilibrium states of ideal gases, which are well known from university courses on statistical physics, thus adding value from an educational point of view.

  6. Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability

    KAUST Repository

    Tang, Jiang

    2010-02-23

    We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this ordersof-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots. © 2010 American Chemical Society.

  7. Quantum psyche

    CERN Document Server

    Baaquie, Belal E; Demongeot, J; Galli-Carminati, Giuliana; Martin, F; Teodorani, Massimo

    2015-01-01

    At the end of the 19th century Sigmund Freud discovered that our acts and choices are not only decisions of our consciousness, but that they are also deeply determined by our unconscious (the so-called "Freudian unconscious"). During a long correspondence between them (1932-1958) Wolfgang Pauli and Carl Gustav Jung speculated that the unconscious could be a quantum system. This book is addressed both to all those interested in the new developments of the age-old enquiry in the relations between mind and matter, and also to the experts in quantum physics that are interested in a formalisation of this new approach. The description of the "Bilbao experiment" adds a very interesting experimental inquiry into the synchronicity effect in a group situation, linking theory to a quantifiable verification of these subtle effects. Cover design: "Entangled Minds". Riccardo Carminati Galli, 2014.

  8. Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration.

    Science.gov (United States)

    Kozuch, Sebastian; Shaik, Sason

    2008-07-03

    A combined kinetic-quantum chemical model is developed with the goal of estimating in a straightforward way the turnover frequency (TOF) of catalytic cycles, based on the state energies obtained by quantum chemical calculations. We describe how the apparent activation energy of the whole cycle, so-called energetic span (delta E), is influenced by the energy levels of two species: the TOF determining transition state (TDTS) and the TOF determining intermediate (TDI). Because these key species need not be adjoining states, we conclude that for catalysis there are no rate-determining steps, only rate determining states. In addition, we add here the influence of reactants concentrations. And, finally, the model is applied to the Haber-Bosch process of ammonia synthesis, for which we show how to calculate which catalyst will be the most effective under specific reagents conditions.

  9. Influence of wet chemical cleaning on quantum efficiency of GaN photocathode

    International Nuclear Information System (INIS)

    Wang Xiao-Hui; Gao Pin; Wang Hong-Gang; Li Biao; Chang Ben-Kang

    2013-01-01

    GaN samples 1–3 are cleaned by a 2:2:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%) to de-ionized water; hydrochloric acid (37%); or a 4:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%). The samples are activated by Cs/O after the same annealing process. X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows: sample 1 has the largest proportion of Ga, N, and O among the three samples, while its C content is the lowest. After activation the quantum efficiency curves show sample 1 has the best photocathode performance. We think the wet chemical cleaning method is a process which will mainly remove C contamination. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. An investigation into the effective surface passivation of quantum dots by a photo-assisted chemical method

    Directory of Open Access Journals (Sweden)

    So-Yeong Joo

    2018-01-01

    Full Text Available In this study, we have developed an effective amino passivation process for quantum dots (QDs at room temperature and have investigated a passivation mechanism using a photo-assisted chemical method. As a result of the reverse reaction of the H2O molecules, the etching kinetics of the photo-assisted chemical method increased upon increasing the 3-amino-1-propanol (APOL/H2O ratio of the etching solution. Photon-excited electron-hole pairs lead to strong bonding between the organic and surface atoms of the QDs, and results in an increase of the quantum yield (QY%. This passivation method is also applicable to CdSe/ZnSe core/shell structures of QDs, due to the passivation of mid-gap defects states at the interface. The QY% of the as-synthesized CdSe QDs is dramatically enhanced by the amino passivation from 37% to 75% and the QY% of the CdSe/ZnSe core/shell QDs is also improved by ∼28%.

  11. Quantum probabilistic logic programming

    Science.gov (United States)

    Balu, Radhakrishnan

    2015-05-01

    We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.

  12. Quantum mechanical model for the anticarcinogenic effect of extremely-low-frequency electromagnetic fields on early chemical hepatocarcinogenesis

    Science.gov (United States)

    Godina-Nava, Juan José; Torres-Vega, Gabino; López-Riquelme, Germán Octavio; López-Sandoval, Eduardo; Samana, Arturo Rodolfo; García Velasco, Fermín; Hernández-Aguilar, Claudia; Domínguez-Pacheco, Arturo

    2017-02-01

    Using the conventional Haberkorn approach, it is evaluated the recombination of the radical pair (RP) singlet spin state to study theoretically the cytoprotective effect of an extremely-low-frequency electromagnetic field (ELF-EMF) on early stages of hepatic cancer chemically induced in rats. The proposal is that ELF-EMF modulates the interconversion rate of singlet and triplet spin states of the RP populations modifying the products from the metabolization of carcinogens. Previously, we found that the daily treatment with ELF-EMF 120 Hz inhibited the number and area of preneoplastic lesions in chemical carcinogenesis. The singlet spin population is evaluated diagonalizing the spin density matrix through the Lanczos method in a radical pair mechanism (RPM). Using four values of the interchange energy, we have studied the variations over the singlet population. The low magnetic field effect as a test of the influence over the enzymatic chemical reaction is evaluated calculating the quantum yield. Through a bootstrap technique the range is found for the singlet decay rate for the process. Applying the quantum measurements concept, we addressed the impact toward hepatic cells. The result contributes to improving our understanding of the chemical carcinogenesis process affected by charged particles that damage the DNA.

  13. Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers.

    Science.gov (United States)

    Svelle, Stian; Tuma, Christian; Rozanska, Xavier; Kerber, Torsten; Sauer, Joachim

    2009-01-21

    The methylation of ethene, propene, and t-2-butene by methanol over the acidic microporous H-ZSM-5 catalyst has been investigated by a range of computational methods. Density functional theory (DFT) with periodic boundary conditions (PBE functional) fails to describe the experimentally determined decrease of apparent energy barriers with the alkene size due to inadequate description of dispersion forces. Adding a damped dispersion term expressed as a parametrized sum over atom pair C(6) contributions leads to uniformly underestimated barriers due to self-interaction errors. A hybrid MP2:DFT scheme is presented that combines MP2 energy calculations on a series of cluster models of increasing size with periodic DFT calculations, which allows extrapolation to the periodic MP2 limit. Additionally, errors caused by the use of finite basis sets, contributions of higher order correlation effects, zero-point vibrational energy, and thermal contributions to the enthalpy were evaluated and added to the "periodic" MP2 estimate. This multistep approach leads to enthalpy barriers at 623 K of 104, 77, and 48 kJ/mol for ethene, propene, and t-2-butene, respectively, which deviate from the experimentally measured values by 0, +13, and +8 kJ/mol. Hence, enthalpy barriers can be calculated with near chemical accuracy, which constitutes significant progress in the quantum chemical modeling of reactions in heterogeneous catalysis in general and microporous zeolites in particular.

  14. A Quantum Approach to Subset-Sum and Similar Problems

    OpenAIRE

    Daskin, Ammar

    2017-01-01

    In this paper, we study the subset-sum problem by using a quantum heuristic approach similar to the verification circuit of quantum Arthur-Merlin games. Under described certain assumptions, we show that the exact solution of the subset sum problem my be obtained in polynomial time and the exponential speed-up over the classical algorithms may be possible. We give a numerical example and discuss the complexity of the approach and its further application to the knapsack problem.

  15. Quantum Chemical Modeling of Enzymatic Reactions: The Case of Decarboxylation.

    Science.gov (United States)

    Liao, Rong-Zhen; Yu, Jian-Guo; Himo, Fahmi

    2011-05-10

    We present a systematic study of the decarboxylation step of the enzyme aspartate decarboxylase with the purpose of assessing the quantum chemical cluster approach for modeling this important class of decarboxylase enzymes. Active site models ranging in size from 27 to 220 atoms are designed, and the barrier and reaction energy of this step are evaluated. To model the enzyme surrounding, homogeneous polarizable medium techniques are used with several dielectric constants. The main conclusion is that when the active site model reaches a certain size, the solvation effects from the surroundings saturate. Similar results have previously been obtained from systematic studies of other classes of enzymes, suggesting that they are of a quite general nature.

  16. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells.

    Science.gov (United States)

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang

    2018-03-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm -2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO 2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn 2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn 2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn 2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.

  17. In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution

    International Nuclear Information System (INIS)

    Kowsari, E.; Arman, S.Y.; Shahini, M.H.; Zandi, H.; Ehsani, A.; Naderi, R.; PourghasemiHanza, A.; Mehdipour, M.

    2016-01-01

    Highlights: • Electrochemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Quantum chemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Finding correlation between electrochemical analysis and quantum chemical analysis. - Abstract: In this study, an amino acid-derived ionic liquid inhibitor, namely tetra-n-butyl ammonium methioninate, was synthesized and the role this inhibitor for corrosion protection of mild steel exposed to 1.0 M HCl was investigated using electrochemical, quantum and surface analysis. By taking advantage of potentiodynamic polarization, the inhibitory action of tetra-n-butyl ammonium methioninate was found to be mainly mixed-type with dominant anodic inhibition. The effectiveness of the inhibitor was also indicated using electrochemical impedance spectroscopy (EIS). Moreover, to provide further insight into the mechanism of inhibition, electrochemical noise (EN) and quantum chemical calculations of the inhibitor were performed.

  18. Efficient tomography of a quantum many-body system

    Science.gov (United States)

    Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.

    2017-12-01

    Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.

  19. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  20. Quantum Chemical Prediction of Equilibrium Acidities of Ureas, Deltamides, Squaramides, and Croconamides.

    Science.gov (United States)

    Ho, Junming; Zwicker, Vincent E; Yuen, Karen K Y; Jolliffe, Katrina A

    2017-10-06

    Robust quantum chemical methods are employed to predict the pK a 's of several families of dual hydrogen-bonding organocatalysts/anion receptors, including deltamides and croconamides as well as their thio derivatives. The average accuracy of these predictions is ∼1 pK a unit and allows for a comparison of the acidity between classes of receptors and for quantitative studies of substituent effects. These computational insights further explain the relationship between pK a and chloride anion affinity of these receptors that will be important for designing future anion receptors and organocatalysts.

  1. Quantum wave packet revivals

    International Nuclear Information System (INIS)

    Robinett, R.W.

    2004-01-01

    The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems

  2. A quantum-chemical study of oxygen-vacancy defects in PbTiO3 crystals

    International Nuclear Information System (INIS)

    Stashans, Arvids; Serrano, Sheyla; Medina, Paul

    2006-01-01

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO 3 crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results

  3. Benchmarking quantum mechanical calculations with experimental NMR chemical shifts of 2-HADNT

    Science.gov (United States)

    Liu, Yuemin; Junk, Thomas; Liu, Yucheng; Tzeng, Nianfeng; Perkins, Richard

    2015-04-01

    In this study, both GIAO-DFT and GIAO-MP2 calculations of nuclear magnetic resonance (NMR) spectra were benchmarked with experimental chemical shifts. The experimental chemical shifts were determined experimentally for carbon-13 (C-13) of seven carbon atoms for the TNT degradation product 2-hydroxylamino-4,6-dinitrotoluene (2-HADNT). Quantum mechanics GIAO calculations were implemented using Becke-3-Lee-Yang-Parr (B3LYP) and other six hybrid DFT methods (Becke-1-Lee-Yang-Parr (B1LYP), Becke-half-and-half-Lee-Yang-Parr (BH and HLYP), Cohen-Handy-3-Lee-Yang-Parr (O3LYP), Coulomb-attenuating-B3LYP (CAM-B3LYP), modified-Perdew-Wang-91-Lee-Yang-Parr (mPW1LYP), and Xu-3-Lee-Yang-Parr (X3LYP)) which use the same correlation functional LYP. Calculation results showed that the GIAO-MP2 method gives the most accurate chemical shift values, and O3LYP method provides the best prediction of chemical shifts among the B3LYP and other five DFT methods. Three types of atomic partial charges, Mulliken (MK), electrostatic potential (ESP), and natural bond orbital (NBO), were also calculated using MP2/aug-cc-pVDZ method. A reasonable correlation was discovered between NBO partial charges and experimental chemical shifts of carbon-13 (C-13).

  4. Quantum chemical simulation of hydrogen like states in silicon and diamond

    International Nuclear Information System (INIS)

    Gel'fand, R.B.; Gordeev, V.A.; Gorelkinskij, Yu.V.

    1989-01-01

    The quantum-chemical methods of the complete neglect of differential overlap (CNDO) and intermediate neglect of differential overlap (INDO) are used to calculate the electronic structure of atomic hydrogen (muonium) located at different interstital sites of the silicon and diamond crystal lattices. The electronic g- and hyperfine interaction tensors of the impure atom are determined.The results obtained are compared with the experimental data on the 'normal' (Mu') and 'anomalous' (Mu * ) muonium centers as well as on the hydrogen-bearing Si-AA9 EPR center which is a hydrogen-bearing analogue of (Mu * ). The most likely localization sites for hydrogen (muonium) atoms in silicon and diamond crystals are established. 22 refs

  5. Structural and optical characteristics of InN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Je Won; Lee, Kyu Han; Hong, Sangsu

    2007-01-01

    The structural and electrical properties of InN/GaN multiple quantum wells, which were grown by metalorganic chemical vapor deposition, were characterized by transmission electron microscopy (TEM) and electroluminescence measurements. From the TEM micrographs, it was shown that the well layer was grown like a quantum dot. The well layer is expected to be the nano-size structures in the InN multiple quantum well layers. The multi-photon confocal laser scanning microscopy was used to investigate the optical properties of the light emitting diode (LED) structures with InN active layers. It was found that the two-photon excitation was possible in InN system. The pit density was measured by using the far-field optical technique. In the varied current conditions, the blue LED with the InN multiple quantum well structures did not have the wavelength shift. With this result, we can expect that the white LEDs with the InN multiple quantum well structures do not show the color temperature changes with the variations of applied currents

  6. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling

    International Nuclear Information System (INIS)

    Ahuactzin-Pérez, Miriam; Tlecuitl-Beristain, Saúl; García-Dávila, Jorge; González-Pérez, Manuel; Gutiérrez-Ruíz, María Concepción; Sánchez, Carmen

    2016-01-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (X_m_a_x), biodegradation constant of DEHP (k), half-life (t_1_/_2) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000 mg/L). The greatest μ and the largest X_m_a_x occurred in media supplemented with 1000 mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000 mg/L) within 60 h of growth. The k and t_1_/_2 were 0.024 h"−"1 and 28 h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC–MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. - Highlights: • F. culmorum degraded 95% of DEHP (1000 mg/L) within 60 h. • Removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. • DEHP was fully metabolized by F. culmorum, with butanediol as the final product. • A DEHP biodegradation pathway was proposed using on quantum chemical modeling.

  7. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ahuactzin-Pérez, Miriam [Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I) (Mexico); Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala (Mexico); Tlecuitl-Beristain, Saúl; García-Dávila, Jorge [Universidad Politécnica de Tlaxcala, San Pedro Xalcatzinco, Tepeyanco, Tlaxcala CP 90180 (Mexico); González-Pérez, Manuel [Universidad Popular Autónoma del Estado de Puebla, Puebla CP 72410 (Mexico); Gutiérrez-Ruíz, María Concepción [Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, D.F (Mexico); Sánchez, Carmen, E-mail: sanher6@hotmail.com [Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala CP. 90062 (Mexico)

    2016-10-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (X{sub max}), biodegradation constant of DEHP (k), half-life (t{sub 1/2}) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000 mg/L). The greatest μ and the largest X{sub max} occurred in media supplemented with 1000 mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000 mg/L) within 60 h of growth. The k and t{sub 1/2} were 0.024 h{sup −1} and 28 h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC–MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. - Highlights: • F. culmorum degraded 95% of DEHP (1000 mg/L) within 60 h. • Removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. • DEHP was fully metabolized by F. culmorum, with butanediol as the final product. • A DEHP biodegradation pathway was proposed using on quantum chemical modeling.

  8. Chemical sensors based on quantum cascade lasers

    Science.gov (United States)

    Tittel, Frank K.; Kosterev, Anatoliy A.; Rochat, Michel; Beck, Mattias; Faist, Jerome

    2002-09-01

    There is an increasing need in many chemical sensing applications ranging from industrial process control to environmental science and medical diagnostics for fast, sensitive, and selective gas detection based on laser spectroscopy. The recent availability of novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers as mid-infrared spectroscopic sources address this need. A number of spectroscopic techniques have been demonstrated. For example, the authors have employed QC-DFB lasers for the monitoring and quantification of several trace gases and isotopic species in ambient air at ppmv and ppbv levels by means of direct absorption, wavelength modulation, cavity enhanced and cavity ringdown spectroscopy. In this work, pulsed thermoelectrically cooled QC-DFB lasers operating at ~15.6 μm were characterized for spectroscopic gas sensing applications. A new method for wavelength scanning based on the repetition rate modulation was developed. A non-wavelength-selective pyroelectric detector was incorporated in the gas sensor giving an advantage of room-temperature operation and low cost. Absorption lines of CO2 and H2O were observed in ambient air providing information about the concentration of these species.

  9. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    Science.gov (United States)

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. TG-FTIR, DSC and quantum chemical studies of the thermal decomposition of quaternary methylammonium halides

    International Nuclear Information System (INIS)

    Sawicka, Marlena; Storoniak, Piotr; Skurski, Piotr; Blazejowski, Jerzy; Rak, Janusz

    2006-01-01

    The thermal decomposition of quaternary methylammonium halides was studied using thermogravimetry coupled to FTIR (TG-FTIR) and differential scanning calorimetry (DSC) as well as the DFT, MP2 and G2 quantum chemical methods. There is almost perfect agreement between the experimental IR spectra and those predicted at the B3LYP/6-311G(d,p) level: this has demonstrated for the first time that an equimolar mixture of trimethylamine and a methyl halide is produced as a result of decomposition. The experimental enthalpies of dissociation are 153.4, 171.2, and 186.7 kJ/mol for chloride, bromide and iodide, respectively, values that correlate well with the calculated enthalpies of dissociation based on crystal lattice energies and quantum chemical thermodynamic barriers. The experimental activation barriers estimated from the least-squares fit of the F1 kinetic model (first-order process) to thermogravimetric traces - 283, 244 and 204 kJ/mol for chloride, bromide and iodide, respectively - agree very well with theoretically calculated values. The theoretical approach assumed in this work has been shown capable of predicting the relevant characteristics of the thermal decomposition of solids with experimental accuracy

  11. Conformational, structural, vibrational and quantum chemical analysis on 4-aminobenzohydrazide and 4-hydroxybenzohydrazide--a comparative study.

    Science.gov (United States)

    Arjunan, V; Jayaprakash, A; Carthigayan, K; Periandy, S; Mohan, S

    2013-05-01

    Experimental and theoretical quantum chemical studies were carried out on 4-hydroxybenzohydrazide (4HBH) and 4-aminobenzohydrazide (4ABH) using FTIR and FT-Raman spectral data. The structural characteristics and vibrational spectroscopic analysis were carried performed by quantum chemical methods with the hybrid exchange-correlation functional B3LYP using 6-31G(**), 6-311++G(**) and aug-cc-pVDZ basis sets. The most stable conformer of the title compounds have been determined from the analysis of potential energy surface. The stable molecular geometries, electronic and thermodynamic parameters, IR intensities, harmonic vibrational frequencies, depolarisation ratio and Raman intensities have been computed. Molecular electrostatic potential and frontier molecular orbitals were constructed to understand the electronic properties. The potential energy distributions (PEDs) were calculated to explain the mixing of fundamental modes. The theoretical geometrical parameters and the fundamental frequencies were compared with the experimental. The interactions of hydroxy and amino group substitutions on the characteristic vibrations of the ring and hydrazide group have been analysed. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Application of surface-enhanced Raman spectroscopy (SERS) for cleaning verification in pharmaceutical manufacture.

    Science.gov (United States)

    Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean

    2009-01-01

    Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.

  13. Recent developments of the quantum chemical cluster approach for modeling enzyme reactions.

    Science.gov (United States)

    Siegbahn, Per E M; Himo, Fahmi

    2009-06-01

    The quantum chemical cluster approach for modeling enzyme reactions is reviewed. Recent applications have used cluster models much larger than before which have given new modeling insights. One important and rather surprising feature is the fast convergence with cluster size of the energetics of the reactions. Even for reactions with significant charge separation it has in some cases been possible to obtain full convergence in the sense that dielectric cavity effects from outside the cluster do not contribute to any significant extent. Direct comparisons between quantum mechanics (QM)-only and QM/molecular mechanics (MM) calculations for quite large clusters in a case where the results differ significantly have shown that care has to be taken when using the QM/MM approach where there is strong charge polarization. Insights from the methods used, generally hybrid density functional methods, have also led to possibilities to give reasonable error limits for the results. Examples are finally given from the most extensive study using the cluster model, the one of oxygen formation at the oxygen-evolving complex in photosystem II.

  14. Quantum-Chemical Insights into the Self-Assembly of Carbon-Based Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Joaquín Calbo

    2018-01-01

    Full Text Available Understanding how molecular systems self-assemble to form well-organized superstructures governed by noncovalent interactions is essential in the field of supramolecular chemistry. In the nanoscience context, the self-assembly of different carbon-based nanoforms (fullerenes, carbon nanotubes and graphene with, in general, electron-donor molecular systems, has received increasing attention as a means of generating potential candidates for technological applications. In these carbon-based systems, a deep characterization of the supramolecular organization is crucial to establish an intimate relation between supramolecular structure and functionality. Detailed structural information on the self-assembly of these carbon-based nanoforms is however not always accessible from experimental techniques. In this regard, quantum chemistry has demonstrated to be key to gain a deep insight into the supramolecular organization of molecular systems of high interest. In this review, we intend to highlight the fundamental role that quantum-chemical calculations can play to understand the supramolecular self-assembly of carbon-based nanoforms through a limited selection of supramolecular assemblies involving fullerene, fullerene fragments, nanotubes and graphene with several electron-rich π-conjugated systems.

  15. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  16. Single-shot secure quantum network coding on butterfly network with free public communication

    Science.gov (United States)

    Owari, Masaki; Kato, Go; Hayashi, Masahito

    2018-01-01

    Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.

  17. [Chemical weapons and chemical terrorism].

    Science.gov (United States)

    Nakamura, Katsumi

    2005-10-01

    Chemical Weapons are kind of Weapons of Mass Destruction (WMD). They were used large quantities in WWI. Historically, large quantities usage like WWI was not recorded, but small usage has appeared now and then. Chemical weapons are so called "Nuclear weapon for poor countrys" because it's very easy to produce/possession being possible. They are categorized (1) Nerve Agents, (2) Blister Agents, (3) Cyanide (blood) Agents, (4) Pulmonary Agents, (5) Incapacitating Agents (6) Tear Agents from the viewpoint of human body interaction. In 1997 the Chemical Weapons Convention has taken effect. It prohibits chemical weapons development/production, and Organization for the Prohibition of Chemical Weapons (OPCW) verification regime contributes to the chemical weapons disposal. But possibility of possession/use of weapons of mass destruction by terrorist group represented in one by Matsumoto and Tokyo Subway Sarin Attack, So new chemical terrorism countermeasures are necessary.

  18. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    Science.gov (United States)

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  19. Quantum-chemical consideration of extermal valent forms of actinides

    International Nuclear Information System (INIS)

    Ionova, G.V.; Pershina, V.G.; Spitsyn, V.I.

    1982-01-01

    Stability of valent forms of actinides that has not yet studied experimentally, is considered within the framework of quantum-chemical considerations. Oxidizing potentials E 0 for actinide elements are determined theoretically. A dependence of the definite valent state stability on relativistic effect is shown. A conclusion is made that oxidizing potential E 0 (4-5) for americium should be higher than E 0 (4-5) for plutonium. A relatively small oxidizing potential E 0 (4-5) for curium speaks about principle possibility of production of five-valent curium in solution, though it is less stable than the six-valent one. Oxidizing potential corresponding to transition of three-valent californium into the four-valent state should be less than the value adopted in literature. A relatively small oxidizing potential of californium E 0 (4-5) speaks about possible existence of five-valent californium in solution

  20. Quantum chemical prediction of antennae structures in lanthanide complexes

    International Nuclear Information System (INIS)

    Ottonelli, M.; Musso, G.F.; Rizzo, F.; Dellepiane, G.; Porzio, W.; Destri, S.

    2008-01-01

    In this paper the quantum chemical semiempirical procedure recently proposed by us to predict ground- and excited-state geometries of lanthanide complexes, the pseudo coordination centre method (PCC), is preliminarily compared with the semiempirical sparkle model for the calculation of lanthanide complexes (SMLC). Contrary to the SMLC method, where the rare-earth ion is replaced by a reparameterized sparkle atom, in our approach we replace it with a metal ion which is already present in the chosen semiempirical parameterization. This implies that in the optimization of the geometry of the complexes a different weight is implicitly given to the complex region including the rare-earth ion and its neighbour atoms with respect to the region of the ligands aggregate. As a consequence our approach is expected to reproduce better than the SMLC one the geometry of the ligands aggregate embedded in the complex, while the contrary happens for the coordination distances

  1. Radiochemical verification and validation in the environmental data collection process

    International Nuclear Information System (INIS)

    Rosano-Reece, D.; Bottrell, D.; Bath, R.J.

    1994-01-01

    A credible and cost effective environmental data collection process should produce analytical data which meets regulatory and program specific requirements. Analytical data, which support the sampling and analysis activities at hazardous waste sites, undergo verification and independent validation before the data are submitted to regulators. Understanding the difference between verification and validation and their respective roles in the sampling and analysis process is critical to the effectiveness of a program. Verification is deciding whether the measurement data obtained are what was requested. The verification process determines whether all the requirements were met. Validation is more complicated than verification. It attempts to assess the impacts on data use, especially when requirements are not met. Validation becomes part of the decision-making process. Radiochemical data consists of a sample result with an associated error. Therefore, radiochemical validation is different and more quantitative than is currently possible for the validation of hazardous chemical data. Radiochemical data include both results and uncertainty that can be statistically compared to identify significance of differences in a more technically defensible manner. Radiochemical validation makes decisions about analyte identification, detection, and uncertainty for a batch of data. The process focuses on the variability of the data in the context of the decision to be made. The objectives of this paper are to present radiochemical verification and validation for environmental data and to distinguish the differences between the two operations

  2. Heterotic quantum and classical computing on convergence spaces

    Science.gov (United States)

    Patten, D. R.; Jakel, D. W.; Irwin, R. J.; Blair, H. A.

    2015-05-01

    Category-theoretic characterizations of heterotic models of computation, introduced by Stepney et al., combine computational models such as classical/quantum, digital/analog, synchronous/asynchronous, etc. to obtain increased computational power. A highly informative classical/quantum heterotic model of computation is represented by Abramsky's simple sequential imperative quantum programming language which extends the classical simple imperative programming language to encompass quantum computation. The mathematical (denotational) semantics of this classical language serves as a basic foundation upon which formal verification methods can be developed. We present a more comprehensive heterotic classical/quantum model of computation based on heterotic dynamical systems on convergence spaces. Convergence spaces subsume topological spaces but admit finer structure from which, in prior work, we obtained differential calculi in the cartesian closed category of convergence spaces allowing us to define heterotic dynamical systems, given by coupled systems of first order differential equations whose variables are functions from the reals to convergence spaces.

  3. Advanced verification topics

    CERN Document Server

    Bhattacharya, Bishnupriya; Hall, Gary; Heaton, Nick; Kashai, Yaron; Khan Neyaz; Kirshenbaum, Zeev; Shneydor, Efrat

    2011-01-01

    The Accellera Universal Verification Methodology (UVM) standard is architected to scale, but verification is growing and in more than just the digital design dimension. It is growing in the SoC dimension to include low-power and mixed-signal and the system integration dimension to include multi-language support and acceleration. These items and others all contribute to the quality of the SOC so the Metric-Driven Verification (MDV) methodology is needed to unify it all into a coherent verification plan. This book is for verification engineers and managers familiar with the UVM and the benefits it brings to digital verification but who also need to tackle specialized tasks. It is also written for the SoC project manager that is tasked with building an efficient worldwide team. While the task continues to become more complex, Advanced Verification Topics describes methodologies outside of the Accellera UVM standard, but that build on it, to provide a way for SoC teams to stay productive and profitable.

  4. The quantum dynamics of electronically nonadiabatic chemical reactions

    Science.gov (United States)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  5. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana

    2018-03-22

    Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.

  6. Leading quantum gravitational corrections to scalar QED

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.

    2002-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitude, which are known to give the long range, low energy, leading quantum corrections, are used to construct the leading post-Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for two charged scalars. The result is discussed in relation to experimental verifications

  7. Quantum retrodiction and causality principle

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    1994-01-01

    Quantum mechanics is factually a predictive science. But quantum retrodiction may also be needed, e.g., for the experimental verification of the validity of the Schroedinger equation for the wave function in the past if the present state is given. It is shown that in the retrodictive analog of the prediction the measurement must be replaced by another physical process called the retromeasurement. In this process, the reduction of a state vector into eigenvectors of a measured observable must proceed in the opposite direction of time as compared to the usual reduction. Examples of such processes are unknown. Moreover, they are shown to be forbidden by the causality principle stating that the later event cannot influence the earlier one. So quantum retrodiction seems to be unrealizable. It is demonstrated that the approach to the retrodiction given by S.Watanabe and F.Belinfante must be considered as an unsatisfactory ersatz of retrodicting. 20 refs., 3 figs

  8. Optimised resource construction for verifiable quantum computation

    International Nuclear Information System (INIS)

    Kashefi, Elham; Wallden, Petros

    2017-01-01

    Recent developments have brought the possibility of achieving scalable quantum networks and quantum devices closer. From the computational point of view these emerging technologies become relevant when they are no longer classically simulatable. Hence a pressing challenge is the construction of practical methods to verify the correctness of the outcome produced by universal or non-universal quantum devices. A promising approach that has been extensively explored is the scheme of verification via encryption through blind quantum computation. We present here a new construction that simplifies the required resources for any such verifiable protocol. We obtain an overhead that is linear in the size of the input (computation), while the security parameter remains independent of the size of the computation and can be made exponentially small (with a small extra cost). Furthermore our construction is generic and could be applied to any universal or non-universal scheme with a given underlying graph. (paper)

  9. Chemical Potential for the Interacting Classical Gas and the Ideal Quantum Gas Obeying a Generalized Exclusion Principle

    Science.gov (United States)

    Sevilla, F. J.; Olivares-Quiroz, L.

    2012-01-01

    In this work, we address the concept of the chemical potential [mu] in classical and quantum gases towards the calculation of the equation of state [mu] = [mu](n, T) where n is the particle density and "T" the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are…

  10. Self-guaranteed measurement-based quantum computation

    Science.gov (United States)

    Hayashi, Masahito; Hajdušek, Michal

    2018-05-01

    In order to guarantee the output of a quantum computation, we usually assume that the component devices are trusted. However, when the total computation process is large, it is not easy to guarantee the whole system when we have scaling effects, unexpected noise, or unaccounted for correlations between several subsystems. If we do not trust the measurement basis or the prepared entangled state, we do need to be worried about such uncertainties. To this end, we propose a self-guaranteed protocol for verification of quantum computation under the scheme of measurement-based quantum computation where no prior-trusted devices (measurement basis or entangled state) are needed. The approach we present enables the implementation of verifiable quantum computation using the measurement-based model in the context of a particular instance of delegated quantum computation where the server prepares the initial computational resource and sends it to the client, who drives the computation by single-qubit measurements. Applying self-testing procedures, we are able to verify the initial resource as well as the operation of the quantum devices and hence the computation itself. The overhead of our protocol scales with the size of the initial resource state to the power of 4 times the natural logarithm of the initial state's size.

  11. Chemical potential for the interacting classical gas and the ideal quantum gas obeying a generalized exclusion principle

    International Nuclear Information System (INIS)

    Sevilla, F J; Olivares-Quiroz, L

    2012-01-01

    In this work, we address the concept of the chemical potential μ in classical and quantum gases towards the calculation of the equation of state μ = μ(n, T) where n is the particle density and T the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are presented with detailed calculations. The first one refers to the explicit calculation of μ for the interacting classical gas exemplified by van der Waals gas. For this purpose, we used the method described by van Kampen (1961 Physica 27 783). The second one refers to the calculation of μ for ideal quantum gases that obey a generalized Pauli's exclusion principle that leads to statistics that go beyond the Bose-Einstein and Fermi-Dirac cases. The audience targeted in this work corresponds mainly to advanced undergraduates and graduate students in the physical-chemical sciences but it is not restricted to them. In regard of this, we have put a special emphasis on showing some additional details of calculations that usually do not appear explicitly in textbooks. (paper)

  12. Elements of classical and quantum physics

    CERN Document Server

    Cini, Michele

    2018-01-01

    This book presents the basic elements of theoretical physics in a highly accessible, captivating way for university students in the third year of a degree in physics. It covers analytical mechanics, thermodynamics and statistical physics, special and general relativity and non-relativistic quantum theory, fully developing the necessary mathematical methods beyond standard calculus. The central theme is scientific curiosity and the main focus is on the experimental meaning of all quantities and equations. Several recent verifications of General Relativity are presented, with emphasis on the physical effects – why they were predicted to exist and what signals they were seen to produce. Similarly, the basic reasons why superconductors have zero resistance and are perfect diamagnets are pinpointed. Quantum Eraser Experiments and Delayed Choice Experiments are described. Many statements of Quantum Theory are a challenge to common sense and some crucial predictions have often been considered hard to believe and h...

  13. Compensation effects in molecular interactions and the quantum chemical le Chatelier principle.

    Science.gov (United States)

    Mezey, Paul G

    2015-05-28

    Components of molecular interactions and various changes in the components of total energy changes during molecular processes typically exhibit some degrees of compensation. This may be as prominent as the over 90% compensation of the electronic energy and nuclear repulsion energy components of the total energy in some conformational changes. Some of these compensations are enhanced by solvent effects. For various arrangements of ions in a solvent, however, not only compensation but also a formal, mutual enhancement between the electronic energy and nuclear repulsion energy components of the total energy may also occur, when the tools of nuclear charge variation are applied to establish quantum chemically rigorous energy inequalities.

  14. ELECTROREDUCTION MECHANISM OF Ni(DMG)-2 COMPLEX STUDIED WITH QUANTUM CHEMICAL METHOD

    Institute of Scientific and Technical Information of China (English)

    倪亚明; 任镜清; 黎健; 王德民; 梁伟根; 朱芝仙; 高小霞

    1990-01-01

    The electronic structures of the species Ni(DMG)2, (Ni(DMG)2)- and (Ni(DMG)2)2- have been studied by INDO quantum chemical method. The results have clearly shown that in the first stage of the electroreduction of Ni(DMG)2, one electron interacts with the d orbitals on the nickel atom, while in the further stage the second electron interacts with the p orbitals on the nitrogen atoms. It conforms with our electrochemical experimental studies which showed that not only Ni(Ⅱ) is reduced but also DMG is catalytically reduced during the reduction of Ni(DMG)2.

  15. Generation and confirmation of a (100 x 100)-dimensional entangled quantum system.

    Science.gov (United States)

    Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2014-04-29

    Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising.

  16. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system

    Science.gov (United States)

    Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2014-01-01

    Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising. PMID:24706902

  17. A quantum-chemical study of oxygen-vacancy defects in PbTiO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids [Laboratorio de Fisica, Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)]. E-mail: arvids@utpl.edu.ec; Serrano, Sheyla [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador); Escuela de Ingenierias, Universidad Politecnica Salesiana, Campus Sur, Rumichaca s/n y Moran Valverde, Apartado 17-12-536, Quito (Ecuador); Medina, Paul [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador)

    2006-05-31

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO{sub 3} crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results.

  18. Quantum size effect and thermal stability of carbon-nanotube-based quantum dot

    International Nuclear Information System (INIS)

    Huang, N.Y.; Peng, J.; Liang, S.D.; Li, Z.B.; Xu, N.S.

    2004-01-01

    Full text: Based on semi-experience quantum chemical calculation, we have investigated the quantum size effect and thermal stability of open-end carbon nanotube (5, 5) quantum dots of 20 to 400 atoms. It was found that there is a gap in the energy band of all carbon nanotube (5, 5) quantum dots although a (5, 5) carbon nanotube is metallic. The energy gap of quantum dots is much dependent of the number of atoms in a dot, as a result of the quantization rules imposed by the finite scales in both radial and axial directions of a carbon nanotube quantum dot. Also, the heat of formation of carbon nanotube quantum dots is dependent of the size of a quantum dot. (author)

  19. Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback

    Science.gov (United States)

    Ruskov, Rusko; Schwab, Keith; Korotkov, Alexander N.

    2005-06-01

    We analyze squeezing of the nanoresonator state produced by periodic measurement of position by a quantum point contact or a single-electron transistor. The mechanism of squeezing is the stroboscopic quantum nondemolition measurement generalized to the case of continuous measurement by a weakly coupled detector. The magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of measurement, taking into account detector efficiency and nanoresonator quality factor. We also analyze the operation of the quantum feedback, which prevents fluctuations of the wave packet center due to measurement back-action. Verification of the squeezed state can be performed in almost the same way as its preparation; a similar procedure can also be used for the force detection with sensitivity beyond the standard quantum limit.

  20. The US National Resources Defense Council/Soviet Academy of Sciences Nuclear Test Ban Verification Project

    International Nuclear Information System (INIS)

    Cochran, T.B.

    1989-01-01

    The first week in September 1987 was an extraordinary one for arms control verification. As part of the co-operative Test Ban Verification Project of the Natural Resources Defense Council (NRDC) and the Soviet Academy of Sciences, fourteen American scientists from the Scripps Institution of Oceanography (at the University of California- San Diego), University of Nevada-Reno and the University of Colorado went to the region of the Soviet's principal nuclear test site near Semipalatinsk. Together with their Soviet counterparts from the Institute of Physics of the Earth (IPE) in Moscow, they fired off three large chemical explosions. The purpose of these explosions was to demonstrate the sensitivity of the three seismic stations surrounding the test site, to study the efficiency with which high-frequency seismic waves propagate in the region, and to study differences between chemical explosions, nuclear explosions and earthquakes in order more firmly to establish procedures for verification of a nuclear test ban. This paper presents a review of the results of these experiments, an update on the status of the joint project, and a review of the significance of high frequency seismic data to test ban verification

  1. Proton exchange between oxymethyl radical and acids and bases: semiempirical quantum-chemical study

    Directory of Open Access Journals (Sweden)

    Irina Pustolaikina

    2016-12-01

    Full Text Available The reactions with proton participation are widely represented in the analytical, technological and biological chemistry. Quantum-chemical study of the exchange processes in hydrogen bonding complexes will allow us to achieve progress in the understanding of the elementary act mechanism of proton transfer in hydrogen bonding chain as well as the essence of the acid-base interactions. Oxymethyl radical •CH2ОН is small in size and comfortable as a model particle that well transmits protolytic properties of paramagnetic acids having more complex structure. Quantum-chemical modeling of proton exchange reaction oxymethyl radical ∙CH2OH and its diamagnetic analog CH3OH with amines, carboxylic acids and water was carried out using UAM1 method with the help of Gaussian-2009 program. QST2 method was used for the search of transition state, IRC procedure was applied for the calculation of descents along the reaction coordinate. The difference in the structure of transition states of ∙CH2OH/ CH3OH with bases and acids has been shown. It has been confirmed that in the case of bases, consecutive proton exchange mechanism was fixed, and in the case of complexes with carboxylic acids parallel proton exchange mechanism was fixed. The similarity in the reaction behavior of paramagnetic and diamagnetic systems in the proton exchange has been found. It was suggested that the mechanism of proton exchange reaction is determined by the structure of the hydrogen bonding cyclic complex, which is, in turn, depends from the nature of the acid-base interactions partners.

  2. Prediction of monomer reactivity in radical copolymerizations from transition state quantum chemical descriptors

    Directory of Open Access Journals (Sweden)

    Zhengde Tan

    2013-01-01

    Full Text Available In comparison with the Q-e scheme, the Revised Patterns Scheme: the U, V Version (the U-V scheme has greatly improved both its accessibility and its accuracy in interpreting and predicting the reactivity of a monomer in free-radical copolymerizations. Quantitative structure-activity relationship (QSAR models were developed to predict the reactivity parameters u and v of the U-V scheme, by applying genetic algorithm (GA and support vector machine (SVM techniques. Quantum chemical descriptors used for QSAR models were calculated from transition state species with structures C¹H3 - C²HR³• or •C¹H2 - C²H2R³ (formed from vinyl monomers C¹H²=C²HR³ + H•, using density functional theory (DFT, at the UB3LYP level of theory with 6-31G(d basis set. The optimum support vector regression (SVR model of the reactivity parameter u based on Gaussian radial basis function (RBF kernel (C = 10, ε = 10- 5 and γ = 1.0 produced root-mean-square (rms errors for the training, validation and prediction sets being 0.220, 0.326 and 0.345, respectively. The optimal SVR model for v with the RBF kernel (C = 20, ε = 10- 4 and γ = 1.2 produced rms errors for the training set of 0.123, the validation set of 0.206 and the prediction set of 0.238. The feasibility of applying the transition state quantum chemical descriptors to develop SVM models for reactivity parameters u and v in the U-V scheme has been demonstrated.

  3. Verification of thermo-fluidic CVD reactor model

    International Nuclear Information System (INIS)

    Lisik, Z; Turczynski, M; Ruta, L; Raj, E

    2014-01-01

    Presented paper describes the numerical model of CVD (Chemical Vapour Deposition) reactor created in ANSYS CFX, whose main purpose is the evaluation of numerical approaches used to modelling of heat and mass transfer inside the reactor chamber. Verification of the worked out CVD model has been conducted with measurements under various thermal, pressure and gas flow rate conditions. Good agreement between experimental and numerical results confirms correctness of the elaborated model.

  4. Introductory quantum chemistry

    International Nuclear Information System (INIS)

    Chandra, A.K.

    1974-01-01

    This book on quantum chemistry is primarily intended for university students at the senior undergraduate level. It serves as an aid to the basic understanding of the important concepts of quantum mechanics introduced in the field of chemistry. Various chapters of the book are devoted to the following : (i) Waves and quanta, (ii) Operator concept in quantum chemistry, (iii) Wave mechanics of some simple systems, (iv) Perturbation theory, (v) Many-electron atoms and angular momenta (vi) Molecular orbital theory and its application to the electronic structure of diatomic molecules, (vii) Chemical bonding in polyatomic molecules and (viii) Chemical applications of Hellmann-Feynman theorem. At the end of each chapter, a set of problems is given and the answers to these problems are given at the end of the book. (A.K.)

  5. Quantum information and computation for chemistry

    CERN Document Server

    Kais, Sabre; Rice, Stuart A

    2014-01-01

    Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science

  6. Spectroscopic studies and quantum chemical investigations of (3,4-dimethoxybenzylidene) propanedinitrile.

    Science.gov (United States)

    Gupta, Ujval; Kumar, Vinay; Singh, Vivek K; Kant, Rajni; Khajuria, Yugal

    2015-04-05

    The Fourier Transform Infrared (FTIR), Ultra-Violet Visible (UV-Vis) spectroscopy and Thermogravimetric (TG) analysis of (3,4-dimethoxybenzylidene) propanedinitrile have been carried out and investigated using quantum chemical calculations. The molecular geometry, harmonic vibrational frequencies, Mulliken charges, natural atomic charges and thermodynamic properties in the ground state have been investigated by using Hartree Fock Theory (HF) and Density Functional Theory (DFT) using B3LYP functional with 6-311G(d,p) basis set. Both HF and DFT methods yield good agreement with the experimental data. Vibrational modes are assigned with the help of Vibrational Energy Distribution Analysis (VEDA) program. UV-Visible spectrum was recorded in the spectral range of 190-800nm and the results are compared with the calculated values using TD-DFT approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results obtained from the studies of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are used to calculate molecular parameters like ionization potential, electron affinity, global hardness, electron chemical potential and global electrophilicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Multilateral disarmament verification

    International Nuclear Information System (INIS)

    Persbo, A.

    2013-01-01

    Non-governmental organisations, such as VERTIC (Verification Research, Training and Information Centre), can play an important role in the promotion of multilateral verification. Parties involved in negotiating nuclear arms accords are for the most part keen that such agreements include suitable and robust provisions for monitoring and verification. Generally progress in multilateral arms control verification is often painstakingly slow, but from time to time 'windows of opportunity' - that is, moments where ideas, technical feasibility and political interests are aligned at both domestic and international levels - may occur and we have to be ready, so the preparatory work is very important. In the context of nuclear disarmament, verification (whether bilateral or multilateral) entails an array of challenges, hurdles and potential pitfalls relating to national security, health, safety and even non-proliferation, so preparatory work is complex and time-greedy. A UK-Norway Initiative was established in order to investigate the role that a non-nuclear-weapon state such as Norway could potentially play in the field of nuclear arms control verification. (A.C.)

  8. The Alexandria library, a quantum-chemical database of molecular properties for force field development.

    Science.gov (United States)

    Ghahremanpour, Mohammad M; van Maaren, Paul J; van der Spoel, David

    2018-04-10

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  9. The Alexandria library, a quantum-chemical database of molecular properties for force field development

    Science.gov (United States)

    Ghahremanpour, Mohammad M.; van Maaren, Paul J.; van der Spoel, David

    2018-04-01

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  10. Standoff detection of turbulent chemical mixture plumes using a swept external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C. [Pacific Northwest National Laboratory, Richland, Washington; Brumfield, Brian E. [Pacific Northwest National Laboratory, Richland, Washington

    2017-08-21

    We demonstrate standoff detection of turbulent mixed-chemical plumes using a broadly-tunable external cavity quantum cascade laser (ECQCL). The ECQCL was directed through plumes of mixed methanol/ethanol vapor to a partially-reflective surface located 10 m away. The reflected power was measured as the ECQCL was swept over its tuning range of 930-1065 cm-1 (9.4-10.8 µm) at rates up to 200 Hz. Analysis of the transmission spectra though the plume was performed to determine chemical concentrations with time resolution of 0.005 s. Comparison of multiple spectral sweep rates of 2 Hz, 20 Hz, and 200 Hz shows that higher sweep rates reduce effects of atmospheric and source turbulence, resulting in lower detection noise and more accurate measurement of the rapidly-changing chemical concentrations. Detection sensitivities of 0.13 ppm*m for MeOH and 1.2 ppm*m for EtOH are demonstrated for a 200 Hz spectral sweep rate, normalized to 1 s detection time.

  11. Structure activity studies of an analgesic drug tapentadol hydrochloride by spectroscopic and quantum chemical methods

    Science.gov (United States)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-11-01

    Tapentadol is a novel opioid pain reliever drug with a dual mechanism of action, having potency between morphine and tramadol. Quantum chemical calculations have been carried out for tapentadol hydrochloride (TAP.Cl) to determine the properties. The geometry is optimised and the structural properties of the compound were determined from the optimised geometry by B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVDZ basis sets. FT-IR and FT-Raman spectra are recorded in the solid phase in the region of 4000-400 and 4000-100 cm-1, respectively. Frontier molecular orbital energies, LUMO-HOMO energy gap, ionisation potential, electron affinity, electronegativity, hardness and chemical potential are also calculated. The stability of the molecule arising from hyperconjugative interactions and charge delocalisation has been analysed using NBO analysis. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule are analysed.

  12. What is Quantum Mechanics? A Minimal Formulation

    Science.gov (United States)

    Friedberg, R.; Hohenberg, P. C.

    2018-03-01

    This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called "microscopic theory", applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen-Specker-Bell theorem and Gleason's theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.

  13. From wave mechanics to quantum chemistry

    International Nuclear Information System (INIS)

    Daudel, R.

    1996-01-01

    The origin of wave mechanics, which is now called quantum mechanics, is evoked. The main stages of the birth of quantum chemistry are related as resulting from the application of quantum mechanics to the study of molecular properties and chemical reactions. (author). 14 refs

  14. Verification and the safeguards legacy

    International Nuclear Information System (INIS)

    Perricos, Demetrius

    2001-01-01

    of Iraq was a case of late detection of undeclared activities, the case of DPRK was a case of prompt detection of discrepancies in the initial declaration through implementation of modem detection techniques, such as environmental sampling, and access to information. Access to the Security Council became important in view of the protracted process of non-compliance. The Model Additional Protocol (INFCIRC 540) agreed in 1997 incorporates the results of the efforts to strengthen the safeguards system and as such provides the possibility for more transparency by the States and more access to locations by the inspectors on the basis of information. It does not provide the broad and intrusive access rights as in the case of Iraq, since such rights are unprecedented and the result of a cease-fire arrangement involving the Security Council. But the expectations are that the broad implementation of the Additional Protocol will result in an effective and efficient safeguards verification system for the future. The on-site verification systems on a national, regional or multinational basis that have been put into operation in the past or are being discussed by States for the implementation of disarmament and non-proliferation conventions related to weapons of mass destruction whether nuclear, chemical or biological, have benefited and will benefit in the future from the guiding experience - both from the strengths and weaknesses -of the IAEA verification system. This is hopefully a legacy for the future of verification

  15. Prediction of radical scavenging activities of anthocyanins applying adaptive neuro-fuzzy inference system (ANFIS) with quantum chemical descriptors.

    Science.gov (United States)

    Jhin, Changho; Hwang, Keum Taek

    2014-08-22

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.

  16. Prediction of Radical Scavenging Activities of Anthocyanins Applying Adaptive Neuro-Fuzzy Inference System (ANFIS with Quantum Chemical Descriptors

    Directory of Open Access Journals (Sweden)

    Changho Jhin

    2014-08-01

    Full Text Available Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A and electronegativity (χ of flavylium cation, and ionization potential (I of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.

  17. Embedded software verification and debugging

    CERN Document Server

    Winterholer, Markus

    2017-01-01

    This book provides comprehensive coverage of verification and debugging techniques for embedded software, which is frequently used in safety critical applications (e.g., automotive), where failures are unacceptable. Since the verification of complex systems needs to encompass the verification of both hardware and embedded software modules, this book focuses on verification and debugging approaches for embedded software with hardware dependencies. Coverage includes the entire flow of design, verification and debugging of embedded software and all key approaches to debugging, dynamic, static, and hybrid verification. This book discusses the current, industrial embedded software verification flow, as well as emerging trends with focus on formal and hybrid verification and debugging approaches. Includes in a single source the entire flow of design, verification and debugging of embedded software; Addresses the main techniques that are currently being used in the industry for assuring the quality of embedded softw...

  18. Synthesis of Aqueous CdTe/CdS/ZnS Core/shell/shell Quantum Dots by a Chemical Aerosol Flow Method

    Directory of Open Access Journals (Sweden)

    Chen Dong

    2009-01-01

    Full Text Available Abstract This work described a continuous method to synthesize CdTe/CdS/ZnS core/shell/shell quantum dots. In an integrated system by flawlessly combining the chemical aerosol flow system working at high temperature (200–300°C to generate CdTe/CdS intermediate products and an additional heat-up setup at relatively low temperature to overcoat the ZnS shells, the CdTe/CdS/ZnS multishell structures were realized. The as-synthesized CdTe/CdS/ZnS core/shell/shell quantum dots are characterized by photoluminescence spectra, X-ray diffraction (XRD, energy-dispersive X-ray spectra (EDS, transmission electron microscopy (TEM, and high-resolution transmission electron microscopy (HRTEM. Fluorescence and XRD results confirm that the obtained quantum dots have a core/shell/shell structure. It shows the highest quantum yield above 45% when compared to the rhodamine 6G. The core/shell/shell QDs were more stable via the oxidation experiment by H2O2.

  19. Quantum chemistry an introduction

    CERN Document Server

    Kauzmann, Walter

    2013-01-01

    Quantum Chemistry: An Introduction provides information pertinent to the fundamental aspects of quantum mechanics. This book presents the theory of partial differentiation equations by using the classical theory of vibrations as a means of developing physical insight into this essential branch of mathematics.Organized into five parts encompassing 16 chapters, this book begins with an overview of how quantum mechanical deductions are made. This text then describes the achievements and limitations of the application of quantum mechanics to chemical problems. Other chapters provide a brief survey

  20. Nonequilibrium chemical potential in a two-dimensional electron gas in the quantum-Hall-effect regime

    Energy Technology Data Exchange (ETDEWEB)

    Pokhabov, D. A., E-mail: pokhabov@isp.nsc.ru; Pogosov, A. G.; Budantsev, M. V.; Zhdanov, E. Yu.; Bakarov, A. K. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2016-08-15

    The nonequilibrium state of a two-dimensional electron gas in the quantum-Hall-effect regime is studied in Hall bars equipped with additional inner contacts situated within the bar. The magnetic-field dependence of the voltage drop between different contact pairs are studied at various temperatures. It was found that the voltage between the inner and outer contacts exhibits peaks of significant amplitude in narrow magnetic-field intervals near integer filling factors. Furthermore, the magnetic-field dependence of the voltage in these intervals exhibits a hysteresis, whereas the voltage between the outer contacts remains zero in the entire magnetic-field range. The appearance of the observed voltage peaks and their hysteretic behavior can be explained by an imbalance between the chemical potentials of edge and bulk states, resulting from nonequilibrium charge redistribution between the edge and bulk states when the magnetic field sweeps under conditions of the quantum Hall effect. The results of the study significantly complement the conventional picture of the quantum Hall effect, explicitly indicating the existence of a significant imbalance at the edge of the two-dimensional electron gas: the experimentally observed difference between the electrochemical potentials of the edge and bulk exceeds the distance between Landau levels by tens of times.

  1. Software verification for nuclear industry

    International Nuclear Information System (INIS)

    Wilburn, N.P.

    1985-08-01

    Why verification of software products throughout the software life cycle is necessary is considered. Concepts of verification, software verification planning, and some verification methodologies for products generated throughout the software life cycle are then discussed

  2. The design of verification regimes

    International Nuclear Information System (INIS)

    Gallagher, N.W.

    1991-01-01

    Verification of a nuclear agreement requires more than knowledge of relevant technologies and institutional arrangements. It also demands thorough understanding of the nature of verification and the politics of verification design. Arms control efforts have been stymied in the past because key players agreed to verification in principle, only to disagree radically over verification in practice. In this chapter, it is shown that the success and stability of arms control endeavors can be undermined by verification designs which promote unilateral rather than cooperative approaches to security, and which may reduce, rather than enhance, the security of both sides. Drawing on logical analysis and practical lessons from previous superpower verification experience, this chapter summarizes the logic and politics of verification and suggests implications for South Asia. The discussion begins by determining what properties all forms of verification have in common, regardless of the participants or the substance and form of their agreement. Viewing verification as the political process of making decisions regarding the occurrence of cooperation points to four critical components: (1) determination of principles, (2) information gathering, (3) analysis and (4) projection. It is shown that verification arrangements differ primarily in regards to how effectively and by whom these four stages are carried out

  3. POSSIBLE NATURE OF THE RADIATION-INDUCED SIGNAL IN NAILS: HIGH-FIELD EPR, CONFIRMING CHEMICAL SYNTHESIS, AND QUANTUM CHEMICAL CALCULATIONS

    Science.gov (United States)

    Tipikin, Dmitriy S.; Swarts, Steven G.; Sidabras, Jason W.; Trompier, François; Swartz, Harold M.

    2016-01-01

    Exposure of finger- and toe-nails to ionizing radiation generates an Electron Paramagnetic Resonance (EPR) signal whose intensity is dose dependent and stable at room temperature for several days. The dependency of the radiation-induced signal (RIS) on the received dose may be used as the basis for retrospective dosimetry of an individual's fortuitous exposure to ionizing radiation. Two radiation-induced signals, a quasi-stable (RIS2) and stable signal (RIS5), have been identified in nails irradiated up to a dose of 50 Gy. Using X-band EPR, both RIS signals exhibit a singlet line shape with a line width around 1.0 mT and an apparent g-value of 2.0044. In this work, we seek information on the exact chemical nature of the radiation-induced free radicals underlying the signal. This knowledge may provide insights into the reason for the discrepancy in the stabilities of the two RIS signals and help develop strategies for stabilizing the radicals in nails or devising methods for restoring the radicals after decay. In this work an analysis of high field (94 GHz and 240 GHz) EPR spectra of the RIS using quantum chemical calculations, the oxidation–reduction properties and the pH dependence of the signal intensities are used to show that spectroscopic and chemical properties of the RIS are consistent with a semiquinone-type radical underlying the RIS. It has been suggested that semiquinone radicals formed on trace amounts of melanin in nails are the basis for the RIS signals. However, based on the quantum chemical calculations and chemical properties of the RIS, it is likely that the radicals underlying this signal are generated from the radiolysis of L-3,4-dihydroxyphenylalanine (DOPA) amino acids in the keratin proteins. These DOPA amino acids are likely formed from the exogenous oxidation of tyrosine in keratin by the oxygen from the air prior to irradiation. We show that these DOPA amino acids can work as radical traps, capturing the highly reactive and unstable

  4. Applied research of quantum information based on linear optics

    International Nuclear Information System (INIS)

    Xu, Xiao-Ye

    2016-01-01

    This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.

  5. Applied research of quantum information based on linear optics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao-Ye

    2016-08-01

    This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.

  6. Improved verification methods for safeguards verifications at enrichment plants

    International Nuclear Information System (INIS)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D.

    2009-01-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF 6 cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  7. Improved verification methods for safeguards verifications at enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D. [Department of Safeguards, International Atomic Energy Agency, Wagramer Strasse 5, A1400 Vienna (Austria)

    2009-07-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF{sub 6} cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  8. Organics Verification Study for Sinclair and Dyes Inlets, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

    2006-09-28

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the

  9. 15 CFR 710.1 - Definitions of terms used in the Chemical Weapons Convention Regulations (CWCR).

    Science.gov (United States)

    2010-01-01

    ... to on-site verification pursuant to Articles IV, V, and VI of the Convention. Host Team. Means the U... relatively self-contained area, structure or building containing one or more units with auxiliary and..., including carrying out the verification measures delineated in the CWC. Toxic Chemical. Means any chemical...

  10. Molecular quantum electrodynamics

    CERN Document Server

    Craig, D P

    1998-01-01

    This systematic introduction to quantum electrodynamics focuses on the interaction of radiation with outer electrons and nuclei of atoms and molecules, answering the long-standing need of chemists and physicists for a comprehensive text on this highly specialized subject.Geared toward postgraduate students in the chemical sciences who require an understanding of quantum electrodynamics as applied to the interpretation of optical experiments on atoms and molecules, the text offers a detailed explanation of the quantum theory of electromagnetic radiation and its interaction with matter. It feat

  11. Toward prethreshold gate-based quantum simulation of chemical dynamics: using potential energy surfaces to simulate few-channel molecular collisions

    Science.gov (United States)

    Sornborger, Andrew T.; Stancil, Phillip; Geller, Michael R.

    2018-05-01

    One of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputed potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born-Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈ 10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3-8 channels and circuit depths < 1000.

  12. Physics Verification Overview

    Energy Technology Data Exchange (ETDEWEB)

    Doebling, Scott William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-12

    The purpose of the verification project is to establish, through rigorous convergence analysis, that each ASC computational physics code correctly implements a set of physics models and algorithms (code verification); Evaluate and analyze the uncertainties of code outputs associated with the choice of temporal and spatial discretization (solution or calculation verification); and Develop and maintain the capability to expand and update these analyses on demand. This presentation describes project milestones.

  13. Device independence for two-party cryptography and position verification with memoryless devices

    Science.gov (United States)

    Ribeiro, Jérémy; Thinh, Le Phuc; Kaniewski, Jedrzej; Helsen, Jonas; Wehner, Stephanie

    2018-06-01

    Quantum communication has demonstrated its usefulness for quantum cryptography far beyond quantum key distribution. One domain is two-party cryptography, whose goal is to allow two parties who may not trust each other to solve joint tasks. Another interesting application is position-based cryptography whose goal is to use the geographical location of an entity as its only identifying credential. Unfortunately, security of these protocols is not possible against an all powerful adversary. However, if we impose some realistic physical constraints on the adversary, there exist protocols for which security can be proven, but these so far relied on the knowledge of the quantum operations performed during the protocols. In this work we improve the device-independent security proofs of Kaniewski and Wehner [New J. Phys. 18, 055004 (2016), 10.1088/1367-2630/18/5/055004] for two-party cryptography (with memoryless devices) and we add a security proof for device-independent position verification (also memoryless devices) under different physical constraints on the adversary. We assess the quality of the devices by observing a Bell violation, and, as for Kaniewski and Wehner [New J. Phys. 18, 055004 (2016), 10.1088/1367-2630/18/5/055004], security can be attained for any violation of the Clauser-Holt-Shimony-Horne inequality.

  14. Consistent Quantum Histories: Towards a Universal Language of Physics

    International Nuclear Information System (INIS)

    Grygiel, W.P.

    2007-01-01

    The consistent histories interpretation of quantum mechanics is a reformulation of the standard Copenhagen interpretation that aims at incorporating quantum probabilities as part of the axiomatic foundations of the theory. It is not only supposed to equip quantum mechanics with clear criteria of its own experimental verification but, first and foremost, to alleviate one of the stumbling blocks of the theory - the measurement problem. Since the consistent histories interpretation operates with a series of quantum events integrated into one quantum history, the measurement problem is naturally absorbed as one of the events that build up a history. The interpretation rests upon the two following assumptions, proposed already by J. von Neumann: (1) both the microscopic and macroscopic regimes are subject to the same set of quantum laws and (2) a projector operator that is assigned to each event within a history permits to transcribe the history into a set of propositions that relate the entire course of quantum events. Based on this, a universal language of physics is expected to emerge that will bring the quantum apparatus back to common sense propositional logic. The basic philosophical issue raised this study is whether one should justify quantum mechanics by means of what emerges from it, that is, the properties of the macroscopic world, or use the axioms of quantum mechanics to demonstrate the mechanisms how the macroscopic world comes about from the quantum regime. (author)

  15. Probing the quantumness of channels with mixed states

    International Nuclear Information System (INIS)

    Haeseler, Hauke; Luetkenhaus, Norbert

    2009-01-01

    We present an alternative approach to the derivation of benchmarks for quantum channels, such as memory or teleportation channels. Using the concept of effective entanglement and the verification thereof, a testing procedure is derived which demands very few experimental resources. The procedure is generalized by allowing for mixed test states. By constructing optimized measure and reprepare channels, the benchmarks are found to be very tight in the considered experimental regimes.

  16. A general intermolecular force field based on tight-binding quantum chemical calculations

    Science.gov (United States)

    Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas

    2017-10-01

    A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.

  17. Quantum speed limits in open system dynamics

    OpenAIRE

    del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F.

    2012-01-01

    Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive and trace preserving (CPT) evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the ...

  18. On the origin of the gauche effect. A quantum chemical study of 1,2-difluoroethane

    Science.gov (United States)

    Engkvist, O.; Karlström, G.; Widmark, P.-O.

    1997-01-01

    The conformational equilibrium of 1,2-difluoroethane has been investigated using ab initio quantum chemical calculations at the SCF, MP2 and CCSD(T) levels, with ANO basis sets. The relative stability of the gauche-conformation of 1,2-difluoroethane is found to be a consequence of the nodal structure of the singly occupied orbital in the CFH 2 radical. It is also shown that the nodal structure of the singly occupied orbitals in the CFH biradical can explain the stability of the cis conformation of 1,2-difluoroethene.

  19. Time-Resolved Quantum Cascade Laser Absorption Spectroscopy of Pulsed Plasma Assisted Chemical Vapor Deposition Processes Containing BCl3

    Science.gov (United States)

    Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen

    2011-08-01

    In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.

  20. Test-state approach to the quantum search problem

    International Nuclear Information System (INIS)

    Sehrawat, Arun; Nguyen, Le Huy; Englert, Berthold-Georg

    2011-01-01

    The search for 'a quantum needle in a quantum haystack' is a metaphor for the problem of finding out which one of a permissible set of unitary mappings - the oracles - is implemented by a given black box. Grover's algorithm solves this problem with quadratic speedup as compared with the analogous search for 'a classical needle in a classical haystack'. Since the outcome of Grover's algorithm is probabilistic - it gives the correct answer with high probability, not with certainty - the answer requires verification. For this purpose we introduce specific test states, one for each oracle. These test states can also be used to realize 'a classical search for the quantum needle' which is deterministic - it always gives a definite answer after a finite number of steps - and 3.41 times as fast as the purely classical search. Since the test-state search and Grover's algorithm look for the same quantum needle, the average number of oracle queries of the test-state search is the classical benchmark for Grover's algorithm.

  1. Network-based Arbitrated Quantum Signature Scheme with Graph State

    Science.gov (United States)

    Ma, Hongling; Li, Fei; Mao, Ningyi; Wang, Yijun; Guo, Ying

    2017-08-01

    Implementing an arbitrated quantum signature(QAS) through complex networks is an interesting cryptography technology in the literature. In this paper, we propose an arbitrated quantum signature for the multi-user-involved networks, whose topological structures are established by the encoded graph state. The determinative transmission of the shared keys, is enabled by the appropriate stabilizers performed on the graph state. The implementation of this scheme depends on the deterministic distribution of the multi-user-shared graph state on which the encoded message can be processed in signing and verifying phases. There are four parties involved, the signatory Alice, the verifier Bob, the arbitrator Trent and Dealer who assists the legal participants in the signature generation and verification. The security is guaranteed by the entanglement of the encoded graph state which is cooperatively prepared by legal participants in complex quantum networks.

  2. FMCT verification: Case studies

    International Nuclear Information System (INIS)

    Hui Zhang

    2001-01-01

    Full text: How to manage the trade-off between the need for transparency and the concern about the disclosure of sensitive information would be a key issue during the negotiations of FMCT verification provision. This paper will explore the general concerns on FMCT verification; and demonstrate what verification measures might be applied to those reprocessing and enrichment plants. A primary goal of an FMCT will be to have the five declared nuclear weapon states and the three that operate unsafeguarded nuclear facilities become parties. One focus in negotiating the FMCT will be verification. Appropriate verification measures should be applied in each case. Most importantly, FMCT verification would focus, in the first instance, on these states' fissile material production facilities. After the FMCT enters into force, all these facilities should be declared. Some would continue operating to produce civil nuclear power or to produce fissile material for non- explosive military uses. The verification measures necessary for these operating facilities would be essentially IAEA safeguards, as currently being applied to non-nuclear weapon states under the NPT. However, some production facilities would be declared and shut down. Thus, one important task of the FMCT verifications will be to confirm the status of these closed facilities. As case studies, this paper will focus on the verification of those shutdown facilities. The FMCT verification system for former military facilities would have to differ in some ways from traditional IAEA safeguards. For example, there could be concerns about the potential loss of sensitive information at these facilities or at collocated facilities. Eventually, some safeguards measures such as environmental sampling might be seen as too intrusive. Thus, effective but less intrusive verification measures may be needed. Some sensitive nuclear facilities would be subject for the first time to international inspections, which could raise concerns

  3. Inspector measurement verification activities

    International Nuclear Information System (INIS)

    George, R.S.; Crouch, R.

    e most difficult and complex activity facing a safeguards inspector involves the verification of measurements and the performance of the measurement system. Remeasurement is the key to measurement verification activities. Remeasurerements using the facility's measurement system provide the bulk of the data needed for determining the performance of the measurement system. Remeasurements by reference laboratories are also important for evaluation of the measurement system and determination of systematic errors. The use of these measurement verification activities in conjunction with accepted inventory verification practices provides a better basis for accepting or rejecting an inventory. (U.S.)

  4. Distribution of electron density and internal rotation in phospha-alkenes according to data from quantum-chemical calculations by the MNDO method

    International Nuclear Information System (INIS)

    Boldeskul, I.E.; Pen'kovskii, V.V.; Povolotskii, M.I.

    1988-01-01

    A quantum-chemical investigation of the characteristics of the phosphorus-carbon bond and the internal rotation around it in phospha-alkenes has been carried out in the MNDO approximation. The results of the calculation have been compared with experimental dynamic 1 H NMR data

  5. Verification and disarmament

    Energy Technology Data Exchange (ETDEWEB)

    Blix, H. [IAEA, Vienna (Austria)

    1998-07-01

    The main features are described of the IAEA safeguards verification system that non-nuclear weapon states parties of the NPT are obliged to accept. Verification activities/problems in Iraq and North Korea are discussed.

  6. Verification and disarmament

    International Nuclear Information System (INIS)

    Blix, H.

    1998-01-01

    The main features are described of the IAEA safeguards verification system that non-nuclear weapon states parties of the NPT are obliged to accept. Verification activities/problems in Iraq and North Korea are discussed

  7. Vibrational, electronic and quantum chemical studies of 1,2,4-benzenetricarboxylic-1,2-anhydride.

    Science.gov (United States)

    Arjunan, V; Raj, Arushma; Subramanian, S; Mohan, S

    2013-06-01

    The FTIR and FT-Raman spectra of 1,2,4-benzenetricarboxylic-1,2-anhydride (BTCA) have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. The complete vibrational assignments and analysis of BTCA have been performed. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP, MP2, B3PW91) method using 6-311++G(**), 6-31G(**) and cc-pVTZ basis sets. The structural parameters, energies, thermodynamic parameters, vibrational frequencies and the NBO charges of BTCA were determined by the DFT method. The (1)H and (13)C isotropic chemical shifts (δ ppm) of BTCA with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. The delocalization energies of different types of interactions were determined. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. POSSIBLE NATURE OF THE RADIATION-INDUCED SIGNAL IN NAILS: HIGH-FIELD EPR, CONFIRMING CHEMICAL SYNTHESIS, AND QUANTUM CHEMICAL CALCULATIONS.

    Science.gov (United States)

    Tipikin, Dmitriy S; Swarts, Steven G; Sidabras, Jason W; Trompier, François; Swartz, Harold M

    2016-12-01

    Exposure of finger- and toe-nails to ionizing radiation generates an Electron Paramagnetic Resonance (EPR) signal whose intensity is dose dependent and stable at room temperature for several days. The dependency of the radiation-induced signal (RIS) on the received dose may be used as the basis for retrospective dosimetry of an individual's fortuitous exposure to ionizing radiation. Two radiation-induced signals, a quasi-stable (RIS2) and stable signal (RIS5), have been identified in nails irradiated up to a dose of 50 Gy. Using X-band EPR, both RIS signals exhibit a singlet line shape with a line width around 1.0 mT and an apparent g-value of 2.0044. In this work, we seek information on the exact chemical nature of the radiation-induced free radicals underlying the signal. This knowledge may provide insights into the reason for the discrepancy in the stabilities of the two RIS signals and help develop strategies for stabilizing the radicals in nails or devising methods for restoring the radicals after decay. In this work an analysis of high field (94 GHz and 240 GHz) EPR spectra of the RIS using quantum chemical calculations, the oxidation-reduction properties and the pH dependence of the signal intensities are used to show that spectroscopic and chemical properties of the RIS are consistent with a semiquinone-type radical underlying the RIS. It has been suggested that semiquinone radicals formed on trace amounts of melanin in nails are the basis for the RIS signals. However, based on the quantum chemical calculations and chemical properties of the RIS, it is likely that the radicals underlying this signal are generated from the radiolysis of L-3,4-dihydroxyphenylalanine (DOPA) amino acids in the keratin proteins. These DOPA amino acids are likely formed from the exogenous oxidation of tyrosine in keratin by the oxygen from the air prior to irradiation. We show that these DOPA amino acids can work as radical traps, capturing the highly reactive and unstable sulfur

  9. Dependence of the extraction capacity of neutral bidentate organophosphorus compounds on their structure: a quantum chemical study

    International Nuclear Information System (INIS)

    Sudarushkin, S.K.; Morgalyuk, V.P.; Tananaev, I.G.; Gribov, L.A.; Myasoedov, B.F.

    2006-01-01

    Correlations between the extraction capacities and molecular structures of organic phosphorus compounds (reagents for extraction of transplutonium elements from spent nuclear fuel) were studied using a quantum chemical approach. The results of calculations are in qualitative agreement with experimental data. The approach proposed can be used for analysis of the extraction properties of all classes of organic phosphorus compounds and also for prediction of the most efficient organic phosphorus extractants with preset properties [ru

  10. A Formal Verification Method of Function Block Diagram

    International Nuclear Information System (INIS)

    Koh, Kwang Yong; Seong, Poong Hyun; Jee, Eun Kyoung; Jeon, Seung Jae; Park, Gee Yong; Kwon, Kee Choon

    2007-01-01

    Programmable Logic Controller (PLC), an industrial computer specialized for real-time applications, is widely used in diverse control systems in chemical processing plants, nuclear power plants or traffic control systems. As a PLC is often used to implement safety, critical embedded software, rigorous safety demonstration of PLC code is necessary. Function block diagram (FBD) is a standard application programming language for the PLC and currently being used in the development of a fully-digitalized reactor protection system (RPS), which is called the IDiPS, under the KNICS project. Therefore, verification issue of FBD programs is a pressing problem, and hence is of great importance. In this paper, we propose a formal verification method of FBD programs; we defined FBD programs formally in compliance with IEC 61131-3, and then translate the programs into Verilog model, and finally the model is verified using a model checker SMV. To demonstrate the feasibility and effective of this approach, we applied it to IDiPS which currently being developed under KNICS project. The remainder of this paper is organized as follows. Section 2 briefly describes Verilog and Cadence SMV. In Section 3, we introduce FBD2V which is a tool implemented to support the proposed FBD verification framework. A summary and conclusion are provided in Section 4

  11. The effects of a stress field and chemical diffusion on electronic behaviour in InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Zhang Xu; Wang Chongyu

    2006-01-01

    The effects of a stress field and chemical diffusion on electronic behaviour in self-assembled InAs/GaAs quantum dots (QD) are investigated by using first-principle calculations. We find that a potential well appears in a QD without a lattice misfit and chemical diffusion, and both stress field and Ga chemical diffusion can induce the formation of a potential barrier, which strongly affects the electronic behaviour within the QD. The stress field can localize electrons to the base of the QD. And associated with Ga diffusion, the stress field will induce an inverted electronic alignment. The electronic behaviour in the QD without a stress field does not present the confined or localized characteristics caused by a lattice misfit, atomic size and Ga diffusion. This study provides useful information for modulating electronic behaviour by introducing a stress field and chemical diffusion

  12. A theoretical quantum chemical study of alanine formation in interstellar medium

    Science.gov (United States)

    Shivani; Pandey, Parmanad; Misra, Alka; Tandon, Poonam

    2017-08-01

    The interstellar medium, the vast space between the stars, is a rich reservoir of molecular material ranging from simple diatomic molecules to more complex, astrobiologically important molecules such as amino acids, nucleobases, and other organic species. Radical-radical and radical-neutral interaction schemes are very important for the formation of comparatively complex molecules in low temperature chemistry. An attempt has been made to explore the possibility of formation of complex organic molecules in interstellar medium, through detected interstellar molecules like CH3CN and HCOOH. The gas phase reactions are theoretically studied using quantum chemical techniques. We used the density functional theory (DFT) at the B3LYP/6-311G( d, p) level. The reaction energies, potential barrier and optimized structures of all the geometries, involved in the reaction path, has been discussed. We report the potential energy surfaces for the reactions considered in this work.

  13. Chemically functionalized ZnS quantum dots as new optical nanosensor of herbicides

    Science.gov (United States)

    Masteri-Farahani, M.; Mahdavi, S.; Khanmohammadi, H.

    2018-03-01

    Surface chemical functionalization of ZnS quantum dots (ZnS-QDs) with cysteamine hydrochloride resulted in the preparation of an optical nanosensor for detection of herbicides. Characterization of the functionalized ZnS-QDs was performed with physicochemical methods such as x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive x-ray (EDX) analysis, ultraviolet-visible (UV–vis) and photoluminescence (PL) spectroscopies. The optical band gap of the functionalized ZnS-QDs was determined by using Tauc plot as 4.1 eV. Addition of various herbicides resulted in the linearly fluorescence quenching of the functionalized ZnS-QDs according to the Stern-Volmer equation. The functionalized ZnS-QDs can be used as simple, rapid, and inexpensive nanosensor for practical detection and measurement of various herbicides.

  14. Dark-red-emitting CdTe0.5Se0.5/Cd0.5Zn0.5S quantum dots: Effect of chemicals on properties

    International Nuclear Information System (INIS)

    Yang, Ping; Zhang, Aiyu; Li, Xiaoyu; Liu, Ning; Zhang, Yulan; Zhang, Ruili

    2013-01-01

    CdTe 0.5 Se 0.5 /Cd 0.5 Zn 0.5 S core/shell quantum dots (QDs) with a tunable photoluminescence (PL) range from yellow to dark red (up to a PL peak wavelength of 683 nm) were fabricated using various reaction systems. The core/shell QDs created in the reaction solution of trioctylamine (TOA) and oleic acid (OA) at 300 °C exhibited narrow PL spectra and a related low PL efficiency (38%). In contrast, the core/shell QDs prepared in the solution of 1-octadecene (ODE) and hexadecylamine (HDA) at 200 °C revealed a high PL efficiency (70%) and broad PL spectra. This phenomenon is ascribed that the precursor of Cd, reaction temperature, solvents, and ligands affected the formation process of the shell. The slow growth rate of the shell in the solution of ODE and HDA made QDs with a high PL efficiency. Metal acetate salts without reaction with HDA led to the core/shell QDs with a broad size distribution. - Graphical abstract: CdTe 0.5 Se 0.5 /Cd 0.5 Zn 0.5 S quantum dots (QDs) with tunable photoluminescence, high PL efficiency, and high stability through organic synthesis, in which chemicals affected the properties of the QDs. Display Omitted - Highlights: • CdTe 0.5 Se 0.5 /Cd 0.5 Zn 0.5 S quantum dots created via organic synthesis. • Chemicals affected the properties of the quantum dots. • The quantum dots revealed high photoluminescence efficiency and stability. • The quantum dots with tunable photoluminescence in a range from yellow to dark red. • The QDs are utilizable for various applications such as biological labeling

  15. Microscopic origin of the fast blue-green luminescence of chemically synthesized non-oxidized silicon quantum dots.

    Science.gov (United States)

    Dohnalová, Kateřina; Fučíková, Anna; Umesh, Chinnaswamy P; Humpolíčková, Jana; Paulusse, Jos M J; Valenta, Jan; Zuilhof, Han; Hof, Martin; Gregorkiewicz, Tom

    2012-10-22

    The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL from alkyl-terminated Si-QDs of 2-3 nm size, prepared by wet chemical synthesis is reported. Results obtained on the ensemble and those from the single nano-object level are compared, and they provide conclusive evidence that efficient and tunable emission arises due to radiative recombination of electron-hole pairs confined in the Si-QDs. This understanding paves the way towards applications of chemical synthesis for the development of Si-QDs with tunable sizes and bandgaps. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. HDL to verification logic translator

    Science.gov (United States)

    Gambles, J. W.; Windley, P. J.

    1992-01-01

    The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.

  17. Gas chromatography-mass spectrometric studies of O-alkyl O-2-(N,N-dialkylamino) ethyl alkylphosphonites(phosphonates) for chemical weapons convention verification.

    Science.gov (United States)

    Saeidian, Hamid; Babri, Mehran; Ramezani, Atefeh; Ashrafi, Davood; Sarabadani, Mansour; Naseri, Mohammad Taghi

    2013-01-01

    The electron ionization (EI) mass spectra of a series of O-alkyl O-2-(N,N-dialkylaminolethyl alkylphosphonites(phosphonates), which are precursors of nerve agents, were studied for Chemical Weapons Convention (CWC) verification. General El fragmentation pathways were constructed and discussed. Proposed fragment structures were confirmed through analyzing fragment ions of deuterated analogs and density functional theory (DFT) calculations. The observed fragment ions are due to different fragmentation pathways such as hydrogen and McLafferty+1 rearrangements, alkene, amine and alkoxy elimination by alpha- or beta-cleavage process. Fragment ions distinctly allow unequivocal identification of the interested compounds including those of isomeric compounds. The presence and abundance of fragment ions were found to depend on the size and structure of the alkyl group attached to nitrogen, phosphorus and oxygen atoms.

  18. The molecular structure of 4-methylpyridine-N-oxide: Gas-phase electron diffraction and quantum chemical calculations

    Science.gov (United States)

    Belova, Natalya V.; Girichev, Georgiy V.; Kotova, Vitaliya E.; Korolkova, Kseniya A.; Trang, Nguyen Hoang

    2018-03-01

    The molecular structure of 4-methylpiridine-N-oxide, 4-MePyO, has been studied by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both, quantum chemistry and GED analyses resulted in CS molecular symmetry with the planar pyridine ring. Obtained molecular parameters confirm the hyperconjugation in the pyridine ring and the sp2 hybridization concept of the nitrogen and carbon atoms in the ring. The experimental geometric parameters are in a good agreement with the parameters for non-substituted N-oxide and reproduced very closely by DFT calculations. The presence of the electron-donating CH3 substituent in 4-MePyO leads to a decrease of the ipso-angle and to an increase of r(N→O) in comparison with the non-substituted PyO. Electron density distribution analysis has been performed in terms of natural bond orbitals (NBO) scheme. The nature of the semipolar N→O bond is discussed.

  19. Position-based quantum cryptography over untrusted networks

    International Nuclear Information System (INIS)

    Nadeem, Muhammad

    2014-01-01

    In this article, we propose quantum position verification (QPV) schemes where all the channels are untrusted except the position of the prover and distant reference stations of verifiers. We review and analyze the existing QPV schemes containing some pre-shared data between the prover and verifiers. Most of these schemes are based on non-cryptographic assumptions, i.e. quantum/classical channels between the verifiers are secure. It seems impractical in an environment fully controlled by adversaries and would lead to security compromise in practical implementations. However, our proposed formula for QPV is more robust, secure and according to the standard assumptions of cryptography. Furthermore, once the position of the prover is verified, our schemes establish secret keys in parallel and can be used for authentication and secret communication between the prover and verifiers. (paper)

  20. Solar Cells Using Quantum Funnels

    KAUST Repository

    Kramer, Illan J.

    2011-09-14

    Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems. © 2011 American Chemical Society.

  1. Quantum Metropolis sampling.

    Science.gov (United States)

    Temme, K; Osborne, T J; Vollbrecht, K G; Poulin, D; Verstraete, F

    2011-03-03

    The original motivation to build a quantum computer came from Feynman, who imagined a machine capable of simulating generic quantum mechanical systems--a task that is believed to be intractable for classical computers. Such a machine could have far-reaching applications in the simulation of many-body quantum physics in condensed-matter, chemical and high-energy systems. Part of Feynman's challenge was met by Lloyd, who showed how to approximately decompose the time evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibbs states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that has basically acquired a monopoly on the simulation of interacting particles. Here we demonstrate how to implement a quantum version of the Metropolis algorithm. This algorithm permits sampling directly from the eigenstates of the Hamiltonian, and thus evades the sign problem present in classical simulations. A small-scale implementation of this algorithm should be achievable with today's technology.

  2. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors.

    Science.gov (United States)

    Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana

    2013-10-30

    In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

  3. Redefining Planck Mass: Unlocking the Fundamental Quantum of the Universe

    Science.gov (United States)

    Laubenstein, John

    2008-04-01

    The large value of the Planck Mass relative to the quantum scale raises unanswered questions as to the source of mass itself. While we wait for experimental verification of the elusive Higgs boson, it may be worth recognizing that Planck Mass is not the result of rigorous mathematics -- but rather derived from an intuitive manipulation of physical constants. Recent findings reported by IWPD suggest a quantum scale Planck Mass as small as 10 (-73) kg. At this scale, the Planck Mass joins Planck Length and Time as a truly fundamental quantum entity. This presentation will provide evidence supporting the fundamental quantum nature of a dramatically smaller Planck Mass while discussing the impact of this finding on both the quantum and cosmic scale. A quantum scale Planck Mass will require an accelerating expansion of the universe at an age of 14.2 billion years. No initial conditions are imposed at the earliest Planck Time of 10 (-44) s allowing the universe to evolve as a background free field propagating at the speed of light with a local degree of freedom. This model provides the basis for a quantum theory of gravity and provides a conceptual pathway for the unification of GR and QM.

  4. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement

    Science.gov (United States)

    Pan; Bouwmeester; Daniell; Weinfurter; Zeilinger

    2000-02-03

    Bell's theorem states that certain statistical correlations predicted by quantum physics for measurements on two-particle systems cannot be understood within a realistic picture based on local properties of each individual particle-even if the two particles are separated by large distances. Einstein, Podolsky and Rosen first recognized the fundamental significance of these quantum correlations (termed 'entanglement' by Schrodinger) and the two-particle quantum predictions have found ever-increasing experimental support. A more striking conflict between quantum mechanical and local realistic predictions (for perfect correlations) has been discovered; but experimental verification has been difficult, as it requires entanglement between at least three particles. Here we report experimental confirmation of this conflict, using our recently developed method to observe three-photon entanglement, or 'Greenberger-Horne-Zeilinger' (GHZ) states. The results of three specific experiments, involving measurements of polarization correlations between three photons, lead to predictions for a fourth experiment; quantum physical predictions are mutually contradictory with expectations based on local realism. We find the results of the fourth experiment to be in agreement with the quantum prediction and in striking conflict with local realism.

  5. Experimental verification of electrostatic boundary conditions in gate-patterned quantum devices

    Science.gov (United States)

    Hou, H.; Chung, Y.; Rughoobur, G.; Hsiao, T. K.; Nasir, A.; Flewitt, A. J.; Griffiths, J. P.; Farrer, I.; Ritchie, D. A.; Ford, C. J. B.

    2018-06-01

    In a model of a gate-patterned quantum device, it is important to choose the correct electrostatic boundary conditions (BCs) in order to match experiment. In this study, we model gated-patterned devices in doped and undoped GaAs heterostructures for a variety of BCs. The best match is obtained for an unconstrained surface between the gates, with a dielectric region above it and a frozen layer of surface charge, together with a very deep back boundary. Experimentally, we find a  ∼0.2 V offset in pinch-off characteristics of 1D channels in a doped heterostructure before and after etching off a ZnO overlayer, as predicted by the model. Also, we observe a clear quantised current driven by a surface acoustic wave through a lateral induced n-i-n junction in an undoped heterostructure. In the model, the ability to pump electrons in this type of device is highly sensitive to the back BC. Using the improved boundary conditions, it is straightforward to model quantum devices quite accurately using standard software.

  6. Second quantized approach to quantum chemistry

    International Nuclear Information System (INIS)

    Surjan, P.R.

    1989-01-01

    The subject of this book is the application of the second quantized approach to quantum chemistry. Second quantization is an alternative tool for dealing with many-electron theory. The vast majority of quantum chemical problems are more easily treated using second quantization as a language. This book offers a simple and pedagogical presentation of the theory and some applications. The reader is not supposed to be trained in higher mathematics, though familiarity with elementary quantum mechanics and quantum chemistry is assumed. Besides the basic formalism and standard illustrative applications, some recent topics of quantum chemistry are reviewed in some detail. This book bridges the gap between sophisticated quantum theory and practical quantum chemistry. (orig.)

  7. Quantum theory, deformation and integrability

    CERN Document Server

    Carroll, R

    2000-01-01

    About four years ago a prominent string theorist was quoted as saying that it might be possible to understand quantum mechanics by the year 2000. Sometimes new mathematical developments make such understanding appear possible and even close, but on the other hand, increasing lack of experimental verification make it seem to be further distant. In any event one seems to arrive at new revolutions in physics and mathematics every year. This book hopes to convey some of the excitment of this period, but will adopt a relatively pedestrian approach designed to illuminate the relations between qua

  8. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  9. Focus on Quantum Cryptography

    International Nuclear Information System (INIS)

    Kwiat, Paul G.

    2002-01-01

    implemented a totally new protocol, using polarization-entangled photons, which in some circumstances can tolerate higher error rates than the traditional one of Bennett and Brassard; moreover, the use of entanglement provides a means of 'automatic source verification'. Finally, looking to the future, Elliott gives a provocative view of how these technologies may be merged into network operation, and Shapiro describes a method to combine a novel source of entangled photons with a means to transfer the photons' quantum state to trapped-atom quantum memories. If realized, these systems could presage the world's first quantum network. (author)

  10. Effects of quantum entropy on bag constant

    International Nuclear Information System (INIS)

    Miller, D.E.; Tawfik, A.

    2012-01-01

    The effects of quantum entropy on the bag constant are studied at low temperatures and for small chemical potentials. The inclusion of the quantum entropy of the quarks in the equation of state provides the hadronic bag with an additional heat which causes a decrease in the effective latent heat inside the bag. We have considered two types of baryonic bags, Δ and Ω - . In both cases we have found that the bag constant without the quantum entropy almost does not change with temperature and quark chemical potential. The contribution from the quantum entropy to the equation of state clearly decreases the value of the bag constant. Furthermore, we construct states densities for quarks using the 'Thomas Fermi model' and take into consideration a thermal potential for the interaction. (author)

  11. Quantum chemical approach for condensed-phase thermochemistry (V): Development of rigid-body type harmonic solvation model

    Science.gov (United States)

    Tarumi, Moto; Nakai, Hiromi

    2018-05-01

    This letter proposes an approximate treatment of the harmonic solvation model (HSM) assuming the solute to be a rigid body (RB-HSM). The HSM method can appropriately estimate the Gibbs free energy for condensed phases even where an ideal gas model used by standard quantum chemical programs fails. The RB-HSM method eliminates calculations for intra-molecular vibrations in order to reduce the computational costs. Numerical assessments indicated that the RB-HSM method can evaluate entropies and internal energies with the same accuracy as the HSM method but with lower calculation costs.

  12. Photocatalytic oxidation dynamics of acetone on TiO2: tight-binding quantum chemical molecular dynamics study

    International Nuclear Information System (INIS)

    Lv Chen; Wang Xiaojing; Agalya, Govindasamy; Koyama, Michihisa; Kubo, Momoji; Miyamoto, Akira

    2005-01-01

    The clarification of the excited states dynamics on TiO 2 surface is important subject for the design of the highly active photocatalysts. In the present study, we applied our novel tight-binding quantum chemical molecular dynamics method to the investigation on the photocatalytic oxidation dynamics of acetone by photogenerated OH radicals on the hydrated anatase TiO 2 surface. The elucidated photocatalytic reaction mechanism strongly supports the previous experimental proposal and finally the effectiveness of our new approach for the clarification of the photocatalytic reaction dynamics employing the large simulation model was confirmed

  13. Micromechanical measurement of beating patterns in the quantum oscillatory chemical potential of InGaAs quantum wells due to spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Florian, E-mail: Florian.Herzog@ph.tum.de; Wilde, Marc A., E-mail: mwilde@ph.tum.de [Lehrstuhl für Physik funktionaler Schichtsysteme, Physik Department, Technische Universität München, James-Franck-Strasse 1, D-85748 Garching b. München (Germany); Heyn, Christian [Institut für Nanostruktur- und Festkörperphysik, Universität Hamburg, Jungiusstr. 11, D-20355 Hamburg (Germany); Hardtdegen, Hilde; Schäpers, Thomas [Peter Grünberg Institut (PGI-9) and JARA-FIT Jülich-Aachen Research Alliance, Forschungszentrum Jülich, D-52425 Jülich (Germany); Grundler, Dirk [Lehrstuhl für Physik funktionaler Schichtsysteme, Physik Department, Technische Universität München, James-Franck-Strasse 1, D-85748 Garching b. München (Germany); Laboratory of Nanoscale Magnetic Materials and Magnonics (LMGN), Institute of Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2015-08-31

    The quantum oscillatory magnetization M(B) and chemical potential μ(B) of a two-dimensional (2D) electron system provide important and complementary information about its ground state energy at low temperature T. We developed a technique that provides both quantities in the same cool-down process via a decoupled static operation and resonant excitation of a micromechanical cantilever. On InGaAs/InP heterostructures, we observed beating patterns in both M(B) and μ(B) attributed to spin-orbit interaction. A significantly enhanced sensitivity in μ enabled us to extract Rashba and Dresselhaus parameters with high accuracy. The technique is powerful for detailed investigations on the electronic properties of 2D materials.

  14. Arms control verification costs: the need for a comparative analysis

    International Nuclear Information System (INIS)

    MacLean, G.; Fergusson, J.

    1998-01-01

    The end of the Cold War era has presented practitioners and analysts of international non-proliferation, arms control and disarmament (NACD) the opportunity to focus more intently on the range and scope of NACD treaties and their verification. Aside from obvious favorable and well-publicized developments in the field of nuclear non-proliferation, progress also has been made in a wide variety of arenas, ranging from chemical and biological weapons, fissile material, conventional forces, ballistic missiles, to anti-personnel landmines. Indeed, breaking from the constraints imposed by the Cold War United States-Soviet adversarial zero-sum relationship that impeded the progress of arms control, particularly on a multilateral level, the post Cold War period has witnessed significant developments in NACD commitments, initiatives, and implementation. The goals of this project - in its final iteration - will be fourfold. First, it will lead to the creation of a costing analysis model adjustable for uses in several current and future arms control verification tasks. Second, the project will identify data accumulated in the cost categories outlined in Table 1 in each of the five cases. By comparing costs to overall effectiveness, the application of the model will demonstrate desirability in each of the cases (see Chart 1). Third, the project will identify and scrutinize 'political costs' as well as real expenditures and investment in the verification regimes (see Chart 2). And, finally, the project will offer some analysis on the relationship between national and multilateral forms of arms control verification, as well as the applicability of multilateralism as an effective tool in the verification of international non-proliferation, arms control, and disarmament agreements. (author)

  15. Likelihood-ratio-based biometric verification

    NARCIS (Netherlands)

    Bazen, A.M.; Veldhuis, Raymond N.J.

    2002-01-01

    This paper presents results on optimal similarity measures for biometric verification based on fixed-length feature vectors. First, we show that the verification of a single user is equivalent to the detection problem, which implies that for single-user verification the likelihood ratio is optimal.

  16. Likelihood Ratio-Based Biometric Verification

    NARCIS (Netherlands)

    Bazen, A.M.; Veldhuis, Raymond N.J.

    The paper presents results on optimal similarity measures for biometric verification based on fixed-length feature vectors. First, we show that the verification of a single user is equivalent to the detection problem, which implies that, for single-user verification, the likelihood ratio is optimal.

  17. Independent Verification Survey Report for the Operable Unit-1 Landfill Miamisburg Closure Project, Miamisburg, OH

    International Nuclear Information System (INIS)

    Weaver, P.

    2008-01-01

    The objectives of the independent verification survey were to confirm that remedial actions have been effective in meeting established release criteria and that documentation accurately and adequately describes the current radiological and chemical conditions of the MCP site

  18. Quantum chemical estimation of sorption/desorption of H{sub 2} and H{sub 2}O (gas) at the plasma-wall interface

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, Shinya; Tsushima, Satoru; Tanaka, Masataka; Umemura, Yasuhiro [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    By using MOPAC Code, we estimated the charge density of SiO{sub 2}-Al{sub 2}O{sub 3}-SiO{sub 2} metal oxide. We could find that the such quantum chemical calculation is a fruitful tool for understanding the plasma-wall interactions from the microscopic point of view. (author)

  19. An Identity-Based Anti-Quantum Privacy-Preserving Blind Authentication in Wireless Sensor Networks.

    Science.gov (United States)

    Zhu, Hongfei; Tan, Yu-An; Zhu, Liehuang; Wang, Xianmin; Zhang, Quanxin; Li, Yuanzhang

    2018-05-22

    With the development of wireless sensor networks, IoT devices are crucial for the Smart City; these devices change people's lives such as e-payment and e-voting systems. However, in these two systems, the state-of-art authentication protocols based on traditional number theory cannot defeat a quantum computer attack. In order to protect user privacy and guarantee trustworthy of big data, we propose a new identity-based blind signature scheme based on number theorem research unit lattice, this scheme mainly uses a rejection sampling theorem instead of constructing a trapdoor. Meanwhile, this scheme does not depend on complex public key infrastructure and can resist quantum computer attack. Then we design an e-payment protocol using the proposed scheme. Furthermore, we prove our scheme is secure in the random oracle, and satisfies confidentiality, integrity, and non-repudiation. Finally, we demonstrate that the proposed scheme outperforms the other traditional existing identity-based blind signature schemes in signing speed and verification speed, outperforms the other lattice-based blind signature in signing speed, verification speed, and signing secret key size.

  20. An Identity-Based Anti-Quantum Privacy-Preserving Blind Authentication in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hongfei Zhu

    2018-05-01

    Full Text Available With the development of wireless sensor networks, IoT devices are crucial for the Smart City; these devices change people’s lives such as e-payment and e-voting systems. However, in these two systems, the state-of-art authentication protocols based on traditional number theory cannot defeat a quantum computer attack. In order to protect user privacy and guarantee trustworthy of big data, we propose a new identity-based blind signature scheme based on number theorem research unit lattice, this scheme mainly uses a rejection sampling theorem instead of constructing a trapdoor. Meanwhile, this scheme does not depend on complex public key infrastructure and can resist quantum computer attack. Then we design an e-payment protocol using the proposed scheme. Furthermore, we prove our scheme is secure in the random oracle, and satisfies confidentiality, integrity, and non-repudiation. Finally, we demonstrate that the proposed scheme outperforms the other traditional existing identity-based blind signature schemes in signing speed and verification speed, outperforms the other lattice-based blind signature in signing speed, verification speed, and signing secret key size.

  1. Rigidity of quantum steering and one-sided device-independent verifiable quantum computation

    International Nuclear Information System (INIS)

    Gheorghiu, Alexandru; Wallden, Petros; Kashefi, Elham

    2017-01-01

    The relationship between correlations and entanglement has played a major role in understanding quantum theory since the work of Einstein et al (1935 Phys. Rev. 47 777–80). Tsirelson proved that Bell states, shared among two parties, when measured suitably, achieve the maximum non-local correlations allowed by quantum mechanics (Cirel’son 1980 Lett. Math. Phys. 4 93–100). Conversely, Reichardt et al showed that observing the maximal correlation value over a sequence of repeated measurements, implies that the underlying quantum state is close to a tensor product of maximally entangled states and, moreover, that it is measured according to an ideal strategy (Reichardt et al 2013 Nature 496 456–60). However, this strong rigidity result comes at a high price, requiring a large number of entangled pairs to be tested. In this paper, we present a significant improvement in terms of the overhead by instead considering quantum steering where the device of the one side is trusted. We first demonstrate a robust one-sided device-independent version of self-testing, which characterises the shared state and measurement operators of two parties up to a certain bound. We show that this bound is optimal up to constant factors and we generalise the results for the most general attacks. This leads us to a rigidity theorem for maximal steering correlations. As a key application we give a one-sided device-independent protocol for verifiable delegated quantum computation, and compare it to other existing protocols, to highlight the cost of trust assumptions. Finally, we show that under reasonable assumptions, the states shared in order to run a certain type of verification protocol must be unitarily equivalent to perfect Bell states. (paper)

  2. Feshbach shape resonance for high Tc pairing in superlattices of quantum stripes and quantum wells

    Directory of Open Access Journals (Sweden)

    A Bianconi

    2006-09-01

    Full Text Available   The Feshbach shape resonances in the interband pairing in superconducting superlattices of quantum wells or quantum stripes is shown to provide the mechanism for high Tc superconductivity. This mechanism provides the Tc amplification driven by the architecture of material: superlattices of quantum wells (intercalated graphite or diborides and superlattices of quantum stripes (doped high Tc cuprate perovskites where the chemical potential is tuned to a Van Hove-Lifshitz singularity (vHs in the electronic energy spectrum of the superlattice associated with the change of the Fermi surface dimensionality in one of the subbands.

  3. Quantum probability ranking principle for ligand-based virtual screening

    Science.gov (United States)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  4. Quantum probability ranking principle for ligand-based virtual screening.

    Science.gov (United States)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  5. Scalable Techniques for Formal Verification

    CERN Document Server

    Ray, Sandip

    2010-01-01

    This book presents state-of-the-art approaches to formal verification techniques to seamlessly integrate different formal verification methods within a single logical foundation. It should benefit researchers and practitioners looking to get a broad overview of the spectrum of formal verification techniques, as well as approaches to combining such techniques within a single framework. Coverage includes a range of case studies showing how such combination is fruitful in developing a scalable verification methodology for industrial designs. This book outlines both theoretical and practical issue

  6. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions

    Science.gov (United States)

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-01

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, 13C and 1H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data.

  7. Real-Time Verification of a High-Dose-Rate Iridium 192 Source Position Using a Modified C-Arm Fluoroscope

    Energy Technology Data Exchange (ETDEWEB)

    Nose, Takayuki, E-mail: nose-takayuki@nms.ac.jp [Department of Radiation Oncology, Nippon Medical School Tamanagayama Hospital, Tama (Japan); Chatani, Masashi [Department of Radiation Oncology, Osaka Rosai Hospital, Sakai (Japan); Otani, Yuki [Department of Radiology, Kaizuka City Hospital, Kaizuka (Japan); Teshima, Teruki [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Kumita, Shinichirou [Department of Radiology, Nippon Medical School Hospital, Tokyo (Japan)

    2017-03-15

    Purpose: High-dose-rate (HDR) brachytherapy misdeliveries can occur at any institution, and they can cause disastrous results. Even a patient's death has been reported. Misdeliveries could be avoided with real-time verification methods. In 1996, we developed a modified C-arm fluoroscopic verification of an HDR Iridium 192 source position prevent these misdeliveries. This method provided excellent image quality sufficient to detect errors, and it has been in clinical use at our institutions for 20 years. The purpose of the current study is to introduce the mechanisms and validity of our straightforward C-arm fluoroscopic verification method. Methods and Materials: Conventional X-ray fluoroscopic images are degraded by spurious signals and quantum noise from Iridium 192 photons, which make source verification impractical. To improve image quality, we quadrupled the C-arm fluoroscopic X-ray dose per pulse. The pulse rate was reduced by a factor of 4 to keep the average exposure compliant with Japanese medical regulations. The images were then displayed with quarter-frame rates. Results: Sufficient quality was obtained to enable observation of the source position relative to both the applicators and the anatomy. With this method, 2 errors were detected among 2031 treatment sessions for 370 patients within a 6-year period. Conclusions: With the use of a modified C-arm fluoroscopic verification method, treatment errors that were otherwise overlooked were detected in real time. This method should be given consideration for widespread use.

  8. An evaluation of the management system verification pilot at Hanford

    International Nuclear Information System (INIS)

    Briggs, C.R.; Ramonas, L.; Westendorf, W.

    1998-01-01

    The Chemical Management System (CMS), currently under development at Hanford, was used as the ''test program'' for pilot testing the value added aspects of the Chemical Manufacturers Association's (CMA) Management Systems Verification (MSV) process. The MSV process, which was developed by CMA's member chemical companies specifically as a tool to assist in the continuous improvement of environment, safety and health (ESH) performance, represents a commercial sector ''best practice'' for evaluating ESH management systems. The primary purpose of Hanford's MSV Pilot was to evaluate the applicability and utility of the MSV process in the Department of Energy (DOE) environment. However, because the Integrated Safety Management System (ISMS) is the framework for ESH management at Hanford and at all DOE sites, the pilot specifically considered the MSV process in the context of a possible future adjunct to Integrated Safety Management System Verification (ISMSV) efforts at Hanford and elsewhere within the DOE complex. The pilot involved the conduct of two-hour interviews with four separate panels of individuals with functional responsibilities related to the CMS including the Department of Energy Richland Operations (DOE-RL), Fluor Daniel Hanford (FDH) and FDH's major subcontractors (MSCS). A semi-structured interview process was employed by the team of three ''verifiers'' who directed open-ended questions to the panels regarding the development, integration and effectiveness of management systems necessary to ensure the sustainability of the CMS effort. An ''MSV Pilot Effectiveness Survey'' also was completed by each panel participant immediately following the interview

  9. Neutron interferometric tests of quantum mechanics

    International Nuclear Information System (INIS)

    Rauch, H.

    1986-01-01

    Since the invention of perfect crystal neutron interferometry this technique has become an important tool in the realization of many textbook experiments in quantum mechanics. Widely separated coherent beams of thermal neutrons are produced and superposed by dynamical Bragg diffraction from a properly shaped perfect crystal. The observed interference patterns show the characteristic coherence properties of matter waves which are influenced by the individual particle and by the properties of the experimental device. The verification of the 4π-periodicity of spinor wavefunctions and the realization of the spin-superposition experiment on a macroscopic scale has become feasible by this technique. A new kind of a quantum beat effect with an energy sensitivity of 2.7 x 20 19 eV has been observed in a double coil resonance experiment. The influence of gravity and of the Earth's rotation on the wavefunction become visible at a level of an elementary particle with non-zero mass. All the results are in agreement with the formulation of quantum mechanics but, nevertheless, they stimulate discussion about its interpretation. The particle-wave dualism becomes obvious on a macroscopic scale and with a beam of massive particles. (author)

  10. Quantum contextual phenomena observed in single-neutron interferometer experiments

    International Nuclear Information System (INIS)

    Hasegawa, Yuji; Rauch, Helmut

    2006-01-01

    Neutron optical experiments are presented, which exhibit quantum contextual phenomena. Entanglement is achieved not between particles, but between degrees of freedom, in this case, for a single-particle. Appropriate combinations of the direction of spin analysis and the position of the phase shifter allow an experimental verification of the violation of a Bell-like inequality. Our experiments manifest the fact that manipulation of the wavefunction in one Hilbert space influences the result of the measurement in the other Hilbert space: manipulation without touch! Next, we report another experiment which exhibits other peculiarity of quantum contextuality, e.g., originally intended to show a Kochen-Specker-like phenomenon. We have introduced inequalities for quantitative analysis of the experiments. The value obtained in the experiments clearly showed violations of prediction by non-contextual theory. Finally, we have accomplished a tomographic determination of entangled quantum state in single-neutrons. There, characteristics of the Bell-sate are confirmed: four poles for the real part of the density matrix are clearly seen

  11. Chemical sensitivity of InP/In0.48Ga0.52P surface quantum dots studied by time-resolved photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    De Angelis, Roberta; Casalboni, Mauro; De Matteis, Fabio; Hatami, Fariba; Masselink, William T.; Zhang, Hong; Prosposito, Paolo

    2015-01-01

    InP/InGaP surface quantum dots represent an attractive material for optical chemical sensors since they show a remarkable near infra-red emission at room temperature, whose intensity increases rapidly and reversibly depending on the composition of the environmental atmosphere. We show here their emission properties by time resolved photoluminescence spectroscopy investigation. Photoluminescence transients with and without chemical solvent vapours (methanol, clorophorm, acetone and water) were fitted with a 3-exponential decay law with times of about 0.5 ns, 2 ns and 7 ns. The measurements revealed a weak effect on clorophorm, acetone and water, while the initial decay time of InP surface quantum dots increases (up to 15%) upon methanol vapour exposure, indicating that the organic molecules efficiently saturate QD non-radiative surface states. - Highlights: • InP SQDs emission depends on the presence of solvent vapours in the atmosphere. • TR photoluminescence transients were fitted with a 3-exponential decay law. • The initial decay time increases (up to 15%) upon methanol vapour exposure. • Organic molecules efficiently saturate QD non-radiative surface states.

  12. Quantum chemistry in environmental pesticide risk assessment.

    Science.gov (United States)

    Villaverde, Juan J; López-Goti, Carmen; Alcamí, Manuel; Lamsabhi, Al Mokhtar; Alonso-Prados, José L; Sandín-España, Pilar

    2017-11-01

    The scientific community and regulatory bodies worldwide, currently promote the development of non-experimental tests that produce reliable data for pesticide risk assessment. The use of standard quantum chemistry methods could allow the development of tools to perform a first screening of compounds to be considered for the experimental studies, improving the risk assessment. This fact results in a better distribution of resources and in better planning, allowing a more exhaustive study of the pesticides and their metabolic products. The current paper explores the potential of quantum chemistry in modelling toxicity and environmental behaviour of pesticides and their by-products by using electronic descriptors obtained computationally. Quantum chemistry has potential to estimate the physico-chemical properties of pesticides, including certain chemical reaction mechanisms and their degradation pathways, allowing modelling of the environmental behaviour of both pesticides and their by-products. In this sense, theoretical methods can contribute to performing a more focused risk assessment of pesticides used in the market, and may lead to higher quality and safer agricultural products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. On the exact spectra of two electrons confined by two-dimensional quantum dots

    International Nuclear Information System (INIS)

    Soldatov, A.V.; Bogolubov Jr, N.N.

    2005-12-01

    Applicability of the method of intermediate problems to investigation of the energy spectrum and eigenstates of a two- electron two-dimensional quantum dot (QD) formed by a parabolic confining potential is discussed. It is argued that the method of intermediate problems, which provides convergent improvable lower bound estimates for eigenvalues of linear half-bound Hermitian operators in Hilbert space, can be fused with the classical Rayleigh-Ritz variational method and stochastic variational method thus providing an efficient tool of verification of the results obtained so far by various analytical and numerical methods being of current usage for studies of quantum dot models. (author)

  14. QSAR analysis of salicylamide isosteres with the use of quantum chemical molecular descriptors.

    Science.gov (United States)

    Dolezal, R; Van Damme, S; Bultinck, P; Waisser, K

    2009-02-01

    Quantitative relationships between the molecular structure and the biological activity of 49 isosteric salicylamide derivatives as potential antituberculotics with a new mechanism of action against three Mycobacterial strains were investigated. The molecular structures were represented by quantum chemical B3LYP/6-31G( *) based molecular descriptors. A resulting set of 220 molecular descriptors, including especially electronic properties, was statistically analyzed using multiple linear regression, resulting in acceptable and robust QSAR models. The best QSAR model was found for Mycobacterium tuberculosis (r(2)=0.92; q(2)=0.89), and somewhat less good QSAR models were found for Mycobacterium avium (r(2)=0.84; q(2)=0.78) and Mycobacterium kansasii (r(2)=0.80; q(2)=0.56). All QSAR models were cross-validated using the leave-10-out procedure.

  15. Can self-verification strivings fully transcend the self-other barrier? Seeking verification of ingroup identities.

    Science.gov (United States)

    Gómez, Angel; Seyle, D Conor; Huici, Carmen; Swann, William B

    2009-12-01

    Recent research has demonstrated self-verification strivings in groups, such that people strive to verify collective identities, which are personal self-views (e.g., "sensitive") associated with group membership (e.g., "women"). Such demonstrations stop short of showing that the desire for self-verification can fully transcend the self-other barrier, as in people working to verify ingroup identities (e.g., "Americans are loud") even when such identities are not self-descriptive ("I am quiet and unassuming"). Five studies focus on such ingroup verification strivings. Results indicate that people prefer to interact with individuals who verify their ingroup identities over those who enhance these identities (Experiments 1-5). Strivings for ingroup identity verification were independent of the extent to which the identities were self-descriptive but were stronger among participants who were highly invested in their ingroup identities, as reflected in high certainty of these identities (Experiments 1-4) and high identification with the group (Experiments 1-5). In addition, whereas past demonstrations of self-verification strivings have been limited to efforts to verify the content of identities (Experiments 1 to 3), the findings also show that they strive to verify the valence of their identities (i.e., the extent to which the identities are valued; Experiments 4 and 5). Self-verification strivings, rather than self-enhancement strivings, appeared to motivate participants' strivings for ingroup identity verification. Links to collective self-verification strivings and social identity theory are discussed.

  16. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  17. Scalable Quantum Simulation of Molecular Energies

    Directory of Open Access Journals (Sweden)

    P. J. J. O’Malley

    2016-07-01

    Full Text Available We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Second, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors. This error tolerance inspires hope that variational quantum simulations of classically intractable molecules may be viable in the near future.

  18. Chemical-Based Formulation Design: Virtual Experimentation

    DEFF Research Database (Denmark)

    Conte, Elisa; Gani, Rafiqul

    This paper presents a software, the virtual Product-Process Design laboratory (virtual PPD-lab) and the virtual experimental scenarios for design/verification of consumer oriented liquid formulated products where the software can be used. For example, the software can be employed for the design......, the additives and/or their mixtures (formulations). Therefore, the experimental resources can focus on a few candidate product formulations to find the best product. The virtual PPD-lab allows various options for experimentations related to design and/or verification of the product. For example, the selection...... design, model adaptation). All of the above helps to perform virtual experiments by blending chemicals together and observing their predicted behaviour. The paper will highlight the application of the virtual PPD-lab in the design and/or verification of different consumer products (paint formulation...

  19. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    Science.gov (United States)

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  20. Utterance Verification for Text-Dependent Speaker Recognition

    DEFF Research Database (Denmark)

    Kinnunen, Tomi; Sahidullah, Md; Kukanov, Ivan

    2016-01-01

    Text-dependent automatic speaker verification naturally calls for the simultaneous verification of speaker identity and spoken content. These two tasks can be achieved with automatic speaker verification (ASV) and utterance verification (UV) technologies. While both have been addressed previously...

  1. The inhibition effect of Azure A on mild steel in 1 M HCl. A complete study: Adsorption, temperature, duration and quantum chemical aspects

    International Nuclear Information System (INIS)

    Özkır, Demet; Kayakırılmaz, Kadriye; Bayol, Emel; Gürten, A. Ali; Kandemirli, Fatma

    2012-01-01

    Highlights: ► Azure A molecule is found to be a good inhibitor for mild steel in HCl solution. ► SEM results clearly indicate that a protective film formation occurred on the mild steel surface. ► The long term corrosion tests are cleared that the Azure A has effectively protected the mild steel in HCl solution. ► The quantum chemical measurements were cleared the reactive sites and charges of atoms in the molecule. - Abstract: In this study, inhibition effect of Azure A on mild steel in 1.0 M HCl were evaluated by using electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), and potentiodynamic polarization and scanning electron microscope (SEM) methods. These studies were carried out at different concentrations, temperatures and durations. The inhibitor molecules were chemisorbed on electrode surface according to the Langmuir adsorption isotherm. The quantum chemical calculations were employed to give further insight into the inhibition mechanism of Azure A.

  2. Exploring the Structure of a DNA Hairpin with the Help of NMR Spin-Spin Coupling Constants: An Experimental and Quantum Chemical Investigation

    Czech Academy of Sciences Publication Activity Database

    Sychrovský, Vladimír; Vacek, Jaroslav; Hobza, Pavel; Žídek, L.; Sklenář, V.; Cremer, D.

    2002-01-01

    Roč. 106, - (2002), s. 10242-10250 ISSN 1089-5639 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : DNA * help of NMR spin-spin coupling constants * quantum chemical investigation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.765, year: 2002

  3. Guidelines Manual: Post Accident Procedures for Chemicals and Propellants.

    Science.gov (United States)

    1983-01-01

    verification cloud. On the other hand, the risks of materials on-scene. Also, a diaper - associated with evacuation of the sive IR instrument and portable...of direction, cloud cover and solar the 28 chemicals and propellants in this radiation level; study. The Chemical Hazard Slide Rule Is relatively easy

  4. Unconditionally secure commitment in position-based quantum cryptography.

    Science.gov (United States)

    Nadeem, Muhammad

    2014-10-27

    A new commitment scheme based on position-verification and non-local quantum correlations is presented here for the first time in literature. The only credential for unconditional security is the position of committer and non-local correlations generated; neither receiver has any pre-shared data with the committer nor does receiver require trusted and authenticated quantum/classical channels between him and the committer. In the proposed scheme, receiver trusts the commitment only if the scheme itself verifies position of the committer and validates her commitment through non-local quantum correlations in a single round. The position-based commitment scheme bounds committer to reveal valid commitment within allocated time and guarantees that the receiver will not be able to get information about commitment unless committer reveals. The scheme works for the commitment of both bits and qubits and is equally secure against committer/receiver as well as against any third party who may have interests in destroying the commitment. Our proposed scheme is unconditionally secure in general and evades Mayers and Lo-Chau attacks in particular.

  5. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    Science.gov (United States)

    Hwang, Eunhee; Hwang, Hee Min; Shin, Yonghun; Yoon, Yeoheung; Lee, Hanleem; Yang, Junghee; Bak, Sora; Lee, Hyoyoung

    2016-12-01

    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates.

  6. Synthesis, vibrational and quantum chemical investigations of hydrogen bonded complex betaine dihydrogen selenite

    Science.gov (United States)

    Arjunan, V.; Marchewka, Mariusz K.; Kalaivani, M.

    2012-10-01

    The molecular complex of betaine with selenious acid namely, betaine dihydrogen selenite (C5H13NO5Se, BDHSe) was synthesised by the reaction of betaine and SeO2 in a 1:1:1 solution of isopropanol, methanol and water. Crystals were grown from this solution by cooling to 253 K for few days. The complex was formed without accompanying proton transfer from selenious acid molecule to betaine. The complete vibrational assignments and analysis of BDHSe have been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G∗∗, 6-31G∗∗, cc-pVDZ and 3-21G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of BDHSe were determined by the DFT method. The 1H and 13C isotropic chemical shifts (δ ppm) of BDHSe with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. SHG experiment was carried out using Kurtz-Perry powder technique. The efficiency of second harmonic generation for BDHSe was estimated relatively to KDP: deff = 0.97 deff (KDP).

  7. A Practitioners Perspective on Verification

    Science.gov (United States)

    Steenburgh, R. A.

    2017-12-01

    NOAAs Space Weather Prediction Center offers a wide range of products and services to meet the needs of an equally wide range of customers. A robust verification program is essential to the informed use of model guidance and other tools by both forecasters and end users alike. In this talk, we present current SWPC practices and results, and examine emerging requirements and potential approaches to satisfy them. We explore the varying verification needs of forecasters and end users, as well as the role of subjective and objective verification. Finally, we describe a vehicle used in the meteorological community to unify approaches to model verification and facilitate intercomparison.

  8. The quantum phase-transitions of water

    Science.gov (United States)

    Fillaux, François

    2017-08-01

    It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.

  9. Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2012-01-01

    Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH − (H 2 O) n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH − (H 2 O) n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.

  10. Elucidating reaction mechanisms on quantum computers

    Science.gov (United States)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-01-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources. PMID:28674011

  11. Elucidating reaction mechanisms on quantum computers

    Science.gov (United States)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-07-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  12. Elucidating reaction mechanisms on quantum computers.

    Science.gov (United States)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias

    2017-07-18

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  13. Example of material accounting and verification of reprocessing input

    International Nuclear Information System (INIS)

    Koch, L.; Schoof, S.

    1981-01-01

    An example is described in this paper of material accounting at the reprocessing input point. Knowledge of the fuel history and chemical analyses of the spent fuel permitted concepts to be tested which have been developed for the determination of the input by the operator and for its verification by nuclear material safeguards with the intention of detecting a protracted as well as an abrupt diversion. Accuracies obtained for a material balance of a PWR fuel reprocessing campaign are given. 6 refs

  14. Semiempirical Quantum Chemical Calculations Accelerated on a Hybrid Multicore CPU-GPU Computing Platform.

    Science.gov (United States)

    Wu, Xin; Koslowski, Axel; Thiel, Walter

    2012-07-10

    In this work, we demonstrate that semiempirical quantum chemical calculations can be accelerated significantly by leveraging the graphics processing unit (GPU) as a coprocessor on a hybrid multicore CPU-GPU computing platform. Semiempirical calculations using the MNDO, AM1, PM3, OM1, OM2, and OM3 model Hamiltonians were systematically profiled for three types of test systems (fullerenes, water clusters, and solvated crambin) to identify the most time-consuming sections of the code. The corresponding routines were ported to the GPU and optimized employing both existing library functions and a GPU kernel that carries out a sequence of noniterative Jacobi transformations during pseudodiagonalization. The overall computation times for single-point energy calculations and geometry optimizations of large molecules were reduced by one order of magnitude for all methods, as compared to runs on a single CPU core.

  15. Quantum speed limits in open system dynamics.

    Science.gov (United States)

    del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F

    2013-02-01

    Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.

  16. Silicon Oxysulfide, OSiS: Rotational Spectrum, Quantum-Chemical Calculations, and Equilibrium Structure.

    Science.gov (United States)

    Thorwirth, Sven; Mück, Leonie Anna; Gauss, Jürgen; Tamassia, Filippo; Lattanzi, Valerio; McCarthy, Michael C

    2011-06-02

    Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 Å and rSi-S = 1.9133 Å) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected finding is explained by the partial charges calculated for OSiS via a natural population analysis. The results suggest that electrostatic effects rather than multiple bonding are the key factors in determining bonding in this triatomic molecule. The data presented provide the spectroscopic information needed for radio astronomical searches for OSiS.

  17. FragIt: a tool to prepare input files for fragment based quantum chemical calculations.

    Directory of Open Access Journals (Sweden)

    Casper Steinmann

    Full Text Available Near linear scaling fragment based quantum chemical calculations are becoming increasingly popular for treating large systems with high accuracy and is an active field of research. However, it remains difficult to set up these calculations without expert knowledge. To facilitate the use of such methods, software tools need to be available to support these methods and help to set up reasonable input files which will lower the barrier of entry for usage by non-experts. Previous tools relies on specific annotations in structure files for automatic and successful fragmentation such as residues in PDB files. We present a general fragmentation methodology and accompanying tools called FragIt to help setup these calculations. FragIt uses the SMARTS language to locate chemically appropriate fragments in large structures and is applicable to fragmentation of any molecular system given suitable SMARTS patterns. We present SMARTS patterns of fragmentation for proteins, DNA and polysaccharides, specifically for D-galactopyranose for use in cyclodextrins. FragIt is used to prepare input files for the Fragment Molecular Orbital method in the GAMESS program package, but can be extended to other computational methods easily.

  18. Molecular structure, vibrational analysis (IR and Raman) and quantum chemical investigations of 1-aminoisoquinoline

    Science.gov (United States)

    Sivaprakash, S.; Prakash, S.; Mohan, S.; Jose, Sujin P.

    2017-12-01

    Quantum chemical calculations of energy and geometrical parameters of 1-aminoisoquinoline [1-AIQ] were carried out by using DFT/B3LYP method using 6-311G (d,p), 6-311G++(d,p) and cc-pVTZ basis sets. The vibrational wavenumbers were computed for the energetically most stable, optimized geometry. The vibrational assignments were performed on the basis of potential energy distribution (PED) using VEDA program. The NBO analysis was done to investigate the intra molecular charge transfer of the molecule. The frontier molecular orbital (FMO) analysis was carried out and the chemical reactivity descriptors of the molecule were studied. The Mulliken charge analysis, molecular electrostatic potential (MEP), HOMO-LUMO energy gap and the related properties were also investigated at B3LYP level. The absorption spectrum of the molecule was studied from UV-Visible analysis by using time-dependent density functional theory (TD-DFT). Fourier Transform Infrared spectrum (FT-IR) and Raman spectrum of 1-AIQ compound were analyzed and recorded in the range 4000-400 cm-1 and 3500-100 cm-1 respectively. The experimentally determined wavenumbers were compared with those calculated theoretically and they complement each other.

  19. Nuclear disarmament verification

    International Nuclear Information System (INIS)

    DeVolpi, A.

    1993-01-01

    Arms control treaties, unilateral actions, and cooperative activities -- reflecting the defusing of East-West tensions -- are causing nuclear weapons to be disarmed and dismantled worldwide. In order to provide for future reductions and to build confidence in the permanency of this disarmament, verification procedures and technologies would play an important role. This paper outlines arms-control objectives, treaty organization, and actions that could be undertaken. For the purposes of this Workshop on Verification, nuclear disarmament has been divided into five topical subareas: Converting nuclear-weapons production complexes, Eliminating and monitoring nuclear-weapons delivery systems, Disabling and destroying nuclear warheads, Demilitarizing or non-military utilization of special nuclear materials, and Inhibiting nuclear arms in non-nuclear-weapons states. This paper concludes with an overview of potential methods for verification

  20. Verification Account Management System (VAMS)

    Data.gov (United States)

    Social Security Administration — The Verification Account Management System (VAMS) is the centralized location for maintaining SSA's verification and data exchange accounts. VAMS account management...

  1. Low Temperature Synthesis of CdSe Quantum Dots with Amine Derivative and Their Chemical Kinetics

    Science.gov (United States)

    Seongmi Hwang,; Youngmin Choi,; Sunho Jeong,; Hakyun Jung,; Chang Gyoun Kim,; Teak-Mo Chung,; Beyong-Hwan Ryu,

    2010-05-01

    The chemical kinetics of growing CdSe nanocrystals was studied in order to investigate the effects of amine capping agents on the size of resulting quantum dots (QDs). CdSe QDs were prepared in phenyl ether, and the amine ligand dependence of QD size was determined. The results show that the size of CdSe nanocrystals can be regulated by controlling reaction rate, with smaller QDs being formed in slower processes. The results of photoluminescence (PL) studies show that the emission wavelengths of the QDs well correlate with particle size. This simple process for forming different-sized QDs, which uses a cheap solvent and various capping agents, has the potential for preparing CdSe nanocrystals more economically.

  2. Core–shell quantum dots: Properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, D., E-mail: vasudevand@rediffmail.com [Electrodics and electrocatalysis division, CSIR-CECRI, Karaikudi 630006 (India); Gaddam, Rohit Ranganathan [Amity Institute of Nanotechnology, Amity University, Noida 201301 (India); Trinchi, Adrian; Cole, Ivan [CSIRO Materials Science and Engineering, Clayton South MDC, 3169 (Australia)

    2015-07-05

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis.

  3. Core–shell quantum dots: Properties and applications

    International Nuclear Information System (INIS)

    Vasudevan, D.; Gaddam, Rohit Ranganathan; Trinchi, Adrian; Cole, Ivan

    2015-01-01

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis

  4. Particularities of Verification Processes for Distributed Informatics Applications

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2013-01-01

    Full Text Available This paper presents distributed informatics applications and characteristics of their development cycle. It defines the concept of verification and there are identified the differences from software testing. Particularities of the software testing and software verification processes are described. The verification steps and necessary conditions are presented and there are established influence factors of quality verification. Software optimality verification is analyzed and some metrics are defined for the verification process.

  5. Nuclear test ban verification

    International Nuclear Information System (INIS)

    Chun, Kin-Yip

    1991-07-01

    This report describes verification and its rationale, the basic tasks of seismic verification, the physical basis for earthquake/explosion source discrimination and explosion yield determination, the technical problems pertaining to seismic monitoring of underground nuclear tests, the basic problem-solving strategy deployed by the forensic seismology resarch team at the University of Toronto, and the scientific significance of the team's research. The research carried out at the Univeristy of Toronto has two components: teleseismic verification using P wave recordings from the Yellowknife Seismic Array (YKA), and regional (close-in) verification using high-frequency L g and P n recordings from the Eastern Canada Telemetered Network. Major differences have been found in P was attenuation among the propagation paths connecting the YKA listening post with seven active nuclear explosion testing areas in the world. Significant revisions have been made to previously published P wave attenuation results, leading to more interpretable nuclear explosion source functions. (11 refs., 12 figs.)

  6. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions

    Directory of Open Access Journals (Sweden)

    Masego Dibetsoe

    2015-08-01

    Full Text Available The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1, 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine (Pc2, 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3 and 29H,31H-phthalocyanine (Pc4, and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1, 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2 and 2,3-naphthalocyanine (nP3 were investigated on the corrosion of aluminium (Al in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR. Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I− ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR

  7. Ferritin-Templated Quantum-Dots for Quantum Logic Gates

    Science.gov (United States)

    Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.

    2005-01-01

    Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.

  8. Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience

    Science.gov (United States)

    Pathak, Smita

    Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to

  9. Ab initio quantum chemical calculation as a tool of evaluating diamagnetic susceptibility of magnetically levitating substances

    International Nuclear Information System (INIS)

    Fujiwara, Y; Tanimoto, Y

    2009-01-01

    On magnetic force evaluation necessary for magnetically levitated diamagnetic substances, isotropic diamagnetic susceptibility estimation by the ab initio quantum chemical calculation using Gaussian03W was verified for more than 300 molecules in a viewpoint of the accuracy in the absolute value and the calculation level affording good cost performance. From comparison, the method of B3PW91 / 6-311+G(d,p) was found to give the adequate absolute value by the relation of (observed) = (1.03 ± 0.005) x (calculated) - (1.22 ± 0.60) x 10 -6 in a unit of cm 3 mol -1 and good cost performance.

  10. Ab initio quantum chemical calculation as a tool of evaluating diamagnetic susceptibility of magnetically levitating substances

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Tanimoto, Y [Faculty of Pharmacy, Osaka Ohtani University, Nishikiorikita, Tondabayashi 584-8540 (Japan)], E-mail: fuji0710@sci.hiroshima-u.ac.jp

    2009-03-01

    On magnetic force evaluation necessary for magnetically levitated diamagnetic substances, isotropic diamagnetic susceptibility estimation by the ab initio quantum chemical calculation using Gaussian03W was verified for more than 300 molecules in a viewpoint of the accuracy in the absolute value and the calculation level affording good cost performance. From comparison, the method of B3PW91 / 6-311+G(d,p) was found to give the adequate absolute value by the relation of (observed) = (1.03 {+-} 0.005) x (calculated) - (1.22 {+-} 0.60) x 10{sup -6} in a unit of cm{sup 3} mol{sup -1} and good cost performance.

  11. Role of the chemical bonding for the time-dependent electron transport through an interacting quantum dot

    KAUST Repository

    Goker, Ali

    2011-06-01

    A combination of ab initio and many-body calculations is utilized to determine the effects of the bonding in Au electrodes on the time dependent current through a quantum dot suddenly shifted into the Kondo regime by a gate voltage. For an asymmetrically coupled system the instantaneous conductance exhibits fluctuations. The frequencies of the fluctuations turn out to be proportional to the energetic separation between the dominating peaks in the density of states and the Fermi level. The chemical bonding in the electrodes, thus, drastically alters the transient current, which can be accessed by ultrafast pump-probe techniques. © 2011 Elsevier B.V. All rights reserved.

  12. Role of the chemical bonding for the time-dependent electron transport through an interacting quantum dot

    KAUST Repository

    Goker, Ali; Zhu, Zhiyong; Manchon, Aurelien; Schwingenschlö gl, Udo

    2011-01-01

    A combination of ab initio and many-body calculations is utilized to determine the effects of the bonding in Au electrodes on the time dependent current through a quantum dot suddenly shifted into the Kondo regime by a gate voltage. For an asymmetrically coupled system the instantaneous conductance exhibits fluctuations. The frequencies of the fluctuations turn out to be proportional to the energetic separation between the dominating peaks in the density of states and the Fermi level. The chemical bonding in the electrodes, thus, drastically alters the transient current, which can be accessed by ultrafast pump-probe techniques. © 2011 Elsevier B.V. All rights reserved.

  13. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Experimental and computational studies on the photophysics of 4-chlorosalicylic acid. Black-Right-Pointing-Pointer Spectroscopically established ESIPT reaction substantiated by theoretical calculation. Black-Right-Pointing-Pointer Quantum chemical treatment of IMHB unveils strength, nature and directional nature. Black-Right-Pointing-Pointer Superiority of quantum chemical treatment of H-bond over geometric criteria. Black-Right-Pointing-Pointer Role of H-bond as a modulator of aromaticity. -- Abstract: The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S{sub 1}-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  14. On Macroscopic Quantum Phenomena in Biomolecules and Cells: From Levinthal to Hopfield

    Directory of Open Access Journals (Sweden)

    Dejan Raković

    2014-01-01

    Full Text Available In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semiclassically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well.

  15. A Quantum Multi-Proxy Weak Blind Signature Scheme Based on Entanglement Swapping

    Science.gov (United States)

    Yan, LiLi; Chang, Yan; Zhang, ShiBin; Han, GuiHua; Sheng, ZhiWei

    2017-02-01

    In this paper, we present a multi-proxy weak blind signature scheme based on quantum entanglement swapping of Bell states. In the scheme, proxy signers can finish the signature instead of original singer with his/her authority. It can be applied to the electronic voting system, electronic paying system, etc. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. It could guarantee not only the unconditionally security but also the anonymity of the message owner. The security analysis shows the scheme satisfies the security features of multi-proxy weak signature, singers cannot disavowal his/her signature while the signature cannot be forged by others, and the message owner can be traced.

  16. Tuning the Emission Energy of Chemically Doped Graphene Quantum Dots

    Directory of Open Access Journals (Sweden)

    Noor-Ul-Ain

    2016-11-01

    Full Text Available Tuning the emission energy of graphene quantum dots (GQDs and understanding the reason of tunability is essential for the GOD function in optoelectronic devices. Besides material-based challenges, the way to realize chemical doping and band gap tuning also pose a serious challenge. In this study, we tuned the emission energy of GQDs by substitutional doping using chlorine, nitrogen, boron, sodium, and potassium dopants in solution form. Photoluminescence data obtained from (Cl- and N-doped GQDs and (B-, Na-, and K-doped GQDs, respectively exhibited red- and blue-shift with respect to the photoluminescence of the undoped GQDs. X-ray photoemission spectroscopy (XPS revealed that oxygen functional groups were attached to GQDs. We qualitatively correlate red-shift of the photoluminescence with the oxygen functional groups using literature references which demonstrates that more oxygen containing groups leads to the formation of more defect states and is the reason of observed red-shift of luminescence in GQDs. Further on, time resolved photoluminescence measurements of Cl- and N-GQDs demonstrated that Cl substitution in GQDs has effective role in radiative transition whereas in N-GQDs leads to photoluminescence (PL quenching with non-radiative transition to ground state. Presumably oxidation or reduction processes cause a change of effective size and the bandgap.

  17. Java bytecode verification via static single assignment form

    DEFF Research Database (Denmark)

    Gal, Andreas; Probst, Christian W.; Franz, Michael

    2008-01-01

    Java Virtual Machines (JVMs) traditionally perform bytecode verification by way of an iterative data-flow analysis. Bytecode verification is necessary to ensure type safety because temporary variables in the JVM are not statically typed. We present an alternative verification mechanism that trans......Java Virtual Machines (JVMs) traditionally perform bytecode verification by way of an iterative data-flow analysis. Bytecode verification is necessary to ensure type safety because temporary variables in the JVM are not statically typed. We present an alternative verification mechanism...

  18. Conformational analysis, spectroscopic, structure-activity relations and quantum chemical simulation studies of 4-(trifluoromethyl)benzylamine

    Science.gov (United States)

    Arjunan, V.; Devi, L.; Mohan, S.

    2018-05-01

    The FT-IR and FT-Raman spectra of 4-trifluoromethylbenzylamine (TFMBA) have been recorded in the range 4000-450 and 4000-100 cm-1 respectively. The conformational analysis of the compound has been carried out to attain stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers obtained theoretically from the B3LYP gradient calculations employing the standard high level 6-311++G** and cc-pVTZ basis sets for the optimised geometry of the compound. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The 1H (400 MHz; CDCl3) and 13C (100 MHz; CDCl3) nuclear magnetic resonance (NMR) spectra were also recorded. The electronic properties, highest occupied molecular orbital and lowest unoccupied molecular orbital energies are measured by DFT approach. The charges of the atoms by natural bond orbital (NBO) analysis are determined by B3LYP/cc-pVTZ method. The structure-chemical reactivity relations of the compound are determined through chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods.

  19. Relational description of the measurement process in quantum field theory

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Porto, Rafael A.

    2002-01-01

    We have recently introduced a realistic, covariant, interpretation for the reduction process in relativistic quantum mechanics. The basic problem for a covariant description is the dependence of the states on the frame within which collapse takes place. A suitable use of the causal structure of the devices involved in the measurement process allowed us to introduce a covariant notion for the collapse of quantum states. However, a fully consistent description in the relativistic domain requires the extension of the interpretation to quantum fields. The extension is far from straightforward. Besides the obvious difficulty of dealing with the infinite degrees of freedom of the field theory, one has to analyse the restrictions imposed by causality concerning the allowed operations in a measurement process. In this paper we address these issues. We shall show that, in the case of partial causally connected measurements, our description allows us to include a wider class of causal operations than the one resulting from the standard way of computing conditional probabilities. This alternative description could be experimentally tested. A verification of this proposal would give stronger support to the realistic interpretations of the states in quantum mechanics. (author)

  20. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    Science.gov (United States)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  1. Computational quantum chemistry website

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage

  2. Formal verification of algorithms for critical systems

    Science.gov (United States)

    Rushby, John M.; Von Henke, Friedrich

    1993-01-01

    We describe our experience with formal, machine-checked verification of algorithms for critical applications, concentrating on a Byzantine fault-tolerant algorithm for synchronizing the clocks in the replicated computers of a digital flight control system. First, we explain the problems encountered in unsynchronized systems and the necessity, and criticality, of fault-tolerant synchronization. We give an overview of one such algorithm, and of the arguments for its correctness. Next, we describe a verification of the algorithm that we performed using our EHDM system for formal specification and verification. We indicate the errors we found in the published analysis of the algorithm, and other benefits that we derived from the verification. Based on our experience, we derive some key requirements for a formal specification and verification system adequate to the task of verifying algorithms of the type considered. Finally, we summarize our conclusions regarding the benefits of formal verification in this domain, and the capabilities required of verification systems in order to realize those benefits.

  3. Quantum chemical analysis of the electronic structure and Moessbauer spectra parameters for low spin cyanide- and pyridine-hemichromes

    International Nuclear Information System (INIS)

    Khleskov, V.I.; Kolpakov, E.V.; Smirnov, A.B.

    1992-01-01

    The work contains results of quantum-chemical calculations of electronic structure and Moessbauer spectra parameters for low spin S=1/2 hexa-coordinated ferri-porphyrin complexes with cyanide (CN) and pyridine (Py) as axial ligands. Theoretical results made it possible to explain experimentally observed regularity of anomalous quadrupole splitting decrease after substitution of Py-ligands by CN. Comparison of theoretical and experimental data indicated that 2 E g must be the ground state of investigated hemichromes. In this state unpaired electron symmetrically occupies d π -orbitals of Fe-ion. (orig.)

  4. Combined friction force microscopy and quantum chemical investigation of the tribotronic response at the propylammonium nitrate-graphite interface.

    Science.gov (United States)

    Li, H; Atkin, R; Page, A J

    2015-06-28

    The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.

  5. Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires

    Science.gov (United States)

    Gao, Faming

    2011-05-01

    A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems.

  6. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Quantum Dynamical Resonances in Ch

  7. A Syntactic-Semantic Approach to Incremental Verification

    OpenAIRE

    Bianculli, Domenico; Filieri, Antonio; Ghezzi, Carlo; Mandrioli, Dino

    2013-01-01

    Software verification of evolving systems is challenging mainstream methodologies and tools. Formal verification techniques often conflict with the time constraints imposed by change management practices for evolving systems. Since changes in these systems are often local to restricted parts, an incremental verification approach could be beneficial. This paper introduces SiDECAR, a general framework for the definition of verification procedures, which are made incremental by the framework...

  8. Verification and validation benchmarks.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of

  9. Verification of Ceramic Structures

    Science.gov (United States)

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  10. Preface: Special Topic on Nuclear Quantum Effects.

    Science.gov (United States)

    Tuckerman, Mark; Ceperley, David

    2018-03-14

    Although the observable universe strictly obeys the laws of quantum mechanics, in many instances, a classical description that either ignores quantum effects entirely or accounts for them at a very crude level is sufficient to describe a wide variety of phenomena. However, when this approximation breaks down, as is often the case for processes involving light nuclei, a full quantum treatment becomes indispensable. This Special Topic in The Journal of Chemical Physics showcases recent advances in our understanding of nuclear quantum effects in condensed phases as well as novel algorithmic developments and applications that have enhanced the capability to study these effects.

  11. Preface: Special Topic on Nuclear Quantum Effects

    Science.gov (United States)

    Tuckerman, Mark; Ceperley, David

    2018-03-01

    Although the observable universe strictly obeys the laws of quantum mechanics, in many instances, a classical description that either ignores quantum effects entirely or accounts for them at a very crude level is sufficient to describe a wide variety of phenomena. However, when this approximation breaks down, as is often the case for processes involving light nuclei, a full quantum treatment becomes indispensable. This Special Topic in The Journal of Chemical Physics showcases recent advances in our understanding of nuclear quantum effects in condensed phases as well as novel algorithmic developments and applications that have enhanced the capability to study these effects.

  12. Optical properties of quantum-dot-doped liquid scintillators

    International Nuclear Information System (INIS)

    Aberle, C; Winslow, L; Li, J J; Weiss, S

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO

  13. Is flow verification necessary

    International Nuclear Information System (INIS)

    Beetle, T.M.

    1986-01-01

    Safeguards test statistics are used in an attempt to detect diversion of special nuclear material. Under assumptions concerning possible manipulation (falsification) of safeguards accounting data, the effects on the statistics due to diversion and data manipulation are described algebraically. A comprehensive set of statistics that is capable of detecting any diversion of material is defined in terms of the algebraic properties of the effects. When the assumptions exclude collusion between persons in two material balance areas, then three sets of accounting statistics are shown to be comprehensive. Two of the sets contain widely known accountancy statistics. One of them does not require physical flow verification - comparisons of operator and inspector data for receipts and shipments. The third set contains a single statistic which does not require physical flow verification. In addition to not requiring technically difficult and expensive flow verification, this single statistic has several advantages over other comprehensive sets of statistics. This algebraic approach as an alternative to flow verification for safeguards accountancy is discussed in this paper

  14. Procedure generation and verification

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    The Department of Energy has used Artificial Intelligence of ''AI'' concepts to develop two powerful new computer-based techniques to enhance safety in nuclear applications. The Procedure Generation System, and the Procedure Verification System, can be adapted to other commercial applications, such as a manufacturing plant. The Procedure Generation System can create a procedure to deal with the off-normal condition. The operator can then take correct actions on the system in minimal time. The Verification System evaluates the logic of the Procedure Generator's conclusions. This evaluation uses logic techniques totally independent of the Procedure Generator. The rapid, accurate generation and verification of corrective procedures can greatly reduce the human error, possible in a complex (stressful/high stress) situation

  15. A Scalable Approach for Hardware Semiformal Verification

    OpenAIRE

    Grimm, Tomas; Lettnin, Djones; Hübner, Michael

    2018-01-01

    The current verification flow of complex systems uses different engines synergistically: virtual prototyping, formal verification, simulation, emulation and FPGA prototyping. However, none is able to verify a complete architecture. Furthermore, hybrid approaches aiming at complete verification use techniques that lower the overall complexity by increasing the abstraction level. This work focuses on the verification of complex systems at the RT level to handle the hardware peculiarities. Our r...

  16. Wet chemical synthesis of quantum confined nanostructured tin oxide thin films by successive ionic layer adsorption and reaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Murali, K.V., E-mail: kvmuralikv@gmail.com [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala 671314 (India); Ragina, A.J. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala 671314 (India); Preetha, K.C. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Sree Narayana College, Kannur, Kerala 670007 (India); Deepa, K.; Remadevi, T.L. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Pazhassi Raja N.S.S. College, Mattannur, Kerala 670702 (India)

    2013-09-01

    Graphical abstract: - Highlights: • Quantum confined SnO{sub 2} thin films were synthesized at 80 °C by SILAR technique. • Film formation mechanism is discussed. • Films with snow like crystallite morphology offer high specific surface area. • The blue-shifted value of band gap confirmed the quantum confinement effect. • Present synthesis has advantages – low cost, low temperature and green friendly. - Abstract: Quantum confined nanostructured SnO{sub 2} thin films were synthesized at 353 K using ammonium chloride (NH{sub 4}Cl) and other chemicals by successive ionic layer adsorption and reaction technique. Film formation mechanism is discussed. Structural, morphological, optical and electrical properties were investigated and compared with the as-grown and annealed films fabricated without NH{sub 4}Cl solution. SnO{sub 2} films were polycrystalline with crystallites of tetragonal structure with grain sizes lie in the 5–8 nm range. Films with snow like crystallite morphology offer high specific surface area. The blue-shifted value of band gap of as-grown films confirmed the quantum confinement effect of grains. Refractive index of the films lies in the 2.1–2.3 range. Films prepared with NH{sub 4}Cl exhibit relatively lower resistivity of the order of 10{sup 0}–10{sup −1} Ω cm. The present synthesis has advantages such as low cost, low temperature and green friendly, which yields small particle size, large surface–volume ratio, and high crystallinity SnO{sub 2} films.

  17. The Chemical Weapons Convention -- Legal issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The Chemical Weapons Convention (CWC) offers a unique challenge to the US system of constitutional law. Its promise of eliminating what is the most purely genocidal type of weapon from the world`s arsenals as well as of destroying the facilities for producing these weapons, brings with it a set of novel legal issues. The reservations about the CWC expressed by US business people are rooted in concern about safeguarding confidential business information and protecting the constitutional right to privacy. The chief worry is that international verification inspectors will misuse their power to enter commercial property and that trade secrets or other private information will be compromised as a result. It has been charged that the Convention is probably unconstitutional. The author categorically disagrees with that view and is aware of no scholarly writing that supports it. The purpose of this presentation is to show that CWC verification activities can be implemented in the US consistently with the traditional constitutional regard for commercial and individual privacy. First, he very briefly reviews the types of verification inspections that the CWC permits, as well as some of its specific privacy protections. Second, he explains how the Fourth Amendment right to privacy works in the context of CWC verification inspections. Finally, he reviews how verification inspections can be integrated into these constitutional requirements in the SU through a federal implementing statute.

  18. Experiments on quantum frequency conversion of photons

    International Nuclear Information System (INIS)

    Ramelow, S.

    2011-01-01

    Coherently converting photons between different states offers intriguing new possibilities and applications in quantum optical experiments. In this thesis three experiments on this theme are presented. The first experiment demonstrates the quantum frequency conversion of polarization entangled photons. Coherent frequency conversion of single photons offers an elegant solution for the often difficult trade-off of choosing the optimal photon wavelength, e.g. regarding optimal transmission and storage of photons in quantum memory based quantum networks. In our experiments, we verify the successful entanglement conversion by violating a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and fully characterised our close to unity fidelity entanglement transfer using quantum state- and process tomography. Our implementation is robust and flexible, making it a practical building block for future quantum technologies.The second part of the thesis introduces a deterministic scheme for photonic quantum information processing. While single photons offer many advantages for quantum information technologies, key unresolved challenges are scalable on-demand single photon sources; deterministic two-photon interactions; and near 100%-efficient detection. All these can be solved with a single versatile process - a novel four-wave mixing process that we introduce here as a special case of the more general scheme of coherent photon conversion (CPC). It can provide valuable photonic quantum processing tools, from scalably creating single- and multi-photon states to implementing deterministic entangling gates and high-efficiency detection. Notably, this would enable scalable photonic quantum computing. Using photonic crystal fibres, we experimentally demonstrate a nonlinear process suited for coherent photon conversion. We observe correlated photon-pair production at the predicted wavelengths and experimentally characterise the enhancement of the interaction strength by varying the pump

  19. Survey on Offline Finger Print Verification System

    NARCIS (Netherlands)

    Suman, R.; Kaur, R.

    2012-01-01

    The fingerprint verification, means where "verification" implies a user matching a fingerprint against a single fingerprint associated with the identity that the user claims. Biometrics can be classified into two types Behavioral (signature verification, keystroke dynamics, etc.) And Physiological

  20. Quantum chemical analysis of potential anti-Parkinson agents

    Indian Academy of Sciences (India)

    Intermolecular binding energy components could not be analyzed by docking and due to this limitation, quantum mechanical (QM) calculations including functional B3LYP in association with split valence basis set (Def2-SVP) were applied to estimate the ligand-residue binding energies in the MAO-B active site. Moreover ...

  1. Modular verification of chemical reaction network encodings via serializability analysis

    Science.gov (United States)

    Lakin, Matthew R.; Stefanovic, Darko; Phillips, Andrew

    2015-01-01

    Chemical reaction networks are a powerful means of specifying the intended behaviour of synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction network, may be compiled into a lower-level encoding, which can be directly implemented in wet chemistry and may itself be expressed as a chemical reaction network. Here we present conditions under which a lower-level encoding correctly emulates the sequential dynamics of a high-level chemical reaction network. We require that encodings are transactional, such that their execution is divided by a “commit reaction” that irreversibly separates the reactant-consuming phase of the encoding from the product-generating phase. We also impose restrictions on the sharing of species between reaction encodings, based on a notion of “extra tolerance”, which defines species that may be shared between encodings without enabling unwanted reactions. Our notion of correctness is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our correctness properties then we can infer that the global dynamics of the system are correct. This allows us to infer correctness of any system constructed using verified encodings. As an example, we show how this approach may be used to verify two- and four-domain DNA strand displacement encodings of chemical reaction networks, and we generalize our result to the limit where the populations of helper species are unlimited. PMID:27325906

  2. In-core Instrument Subcritical Verification (INCISV) - Core Design Verification Method - 358

    International Nuclear Information System (INIS)

    Prible, M.C.; Heibel, M.D.; Conner, S.L.; Sebastiani, P.J.; Kistler, D.P.

    2010-01-01

    According to the standard on reload startup physics testing, ANSI/ANS 19.6.1, a plant must verify that the constructed core behaves sufficiently close to the designed core to confirm that the various safety analyses bound the actual behavior of the plant. A large portion of this verification must occur before the reactor operates at power. The INCISV Core Design Verification Method uses the unique characteristics of a Westinghouse Electric Company fixed in-core self powered detector design to perform core design verification after a core reload before power operation. A Vanadium self powered detector that spans the length of the active fuel region is capable of confirming the required core characteristics prior to power ascension; reactivity balance, shutdown margin, temperature coefficient and power distribution. Using a detector element that spans the length of the active fuel region inside the core provides a signal of total integrated flux. Measuring the integrated flux distributions and changes at various rodded conditions and plant temperatures, and comparing them to predicted flux levels, validates all core necessary core design characteristics. INCISV eliminates the dependence on various corrections and assumptions between the ex-core detectors and the core for traditional physics testing programs. This program also eliminates the need for special rod maneuvers which are infrequently performed by plant operators during typical core design verification testing and allows for safer startup activities. (authors)

  3. Quantum chemical modeling of enzymatic reactions: the case of histone lysine methyltransferase.

    Science.gov (United States)

    Georgieva, Polina; Himo, Fahmi

    2010-06-01

    Quantum chemical cluster models of enzyme active sites are today an important and powerful tool in the study of various aspects of enzymatic reactivity. This methodology has been applied to a wide spectrum of reactions and many important mechanistic problems have been solved. Herein, we report a systematic study of the reaction mechanism of the histone lysine methyltransferase (HKMT) SET7/9 enzyme, which catalyzes the methylation of the N-terminal histone tail of the chromatin structure. In this study, HKMT SET7/9 serves as a representative case to examine the modeling approach for the important class of methyl transfer enzymes. Active site models of different sizes are used to evaluate the methodology. In particular, the dependence of the calculated energies on the model size, the influence of the dielectric medium, and the particular choice of the dielectric constant are discussed. In addition, we examine the validity of some technical aspects, such as geometry optimization in solvent or with a large basis set, and the use of different density functional methods. Copyright 2010 Wiley Periodicals, Inc.

  4. In Vivo Anti-Leukemia, Quantum Chemical Calculations and ADMET Investigations of Some Quaternary and Isothiouronium Surfactants

    Directory of Open Access Journals (Sweden)

    Ahmed A. El-Henawy

    2013-04-01

    Full Text Available Anti-leukemia screening of previously prepared isothiouronium and quaternary salts was performed, and some salts exhibited promising activity as anticancer agents. Quantum chemical calculations were utilized to explore the electronic structure and stability of these compounds. Computational studies have been carried out at the PM3 semiempirical molecular orbitals level, to establish the HOMO-LUMO, IP and ESP mapping of these compounds. The ADMET properties were also studied to gain a clear view of the potential oral bioavailability of these compounds. The surface properties calculated included critical micelle concentration (CMC, maximum surface excess (Γmax, minimum surface area (Amin, free energy of micellization (ΔGomic and adsorption (ΔGoads.

  5. An FT-Raman, FT-IR, and Quantum Chemical Investigation of Stanozolol and Oxandrolone

    Directory of Open Access Journals (Sweden)

    Tibebe Lemma

    2017-12-01

    Full Text Available We have studied the Fourier Transform Infrared (FT-IR and the Fourier transform Raman (FT-Raman spectra of stanozolol and oxandrolone, and we have performed quantum chemical calculations based on the density functional theory (DFT with a B3LYP/6-31G (d, p level of theory. The FT-IR and FT-Raman spectra were collected in a solid phase. The consistency between the calculated and experimental FT-IR and FT-Raman data indicates that the B3LYP/6-31G (d, p can generate reliable geometry and related properties of the title compounds. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compounds, which show agreement with the observed spectra.

  6. Monitoring/Verification using DMS: TATP Example 8422

    International Nuclear Information System (INIS)

    Stephan Weeks; Kevin Kyle

    2008-01-01

    Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operations management systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a 'smart dust' sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the use of explosives or chemical and biological weapons in terrorist activities. Two peroxide-based liquid explosives, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD), are synthesized from common chemicals such as hydrogen peroxide, acetone, sulfuric acid, ammonia, and citric acid (Figure 1). Recipes can be readily found on the Internet by anyone seeking to generate sufficient quantities of these highly explosive chemicals to cause considerable collateral damage. Detection of TATP and HMTD by advanced sensing systems can provide the early warning necessary to prevent terror plots from coming to fruition. DMS is currently one of the foremost emerging technologies for the separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. DMS separates and identifies ions at ambient pressures by utilizing the non-linear dependence of an ion's mobility on the radio frequency (rf) electric field strength. GC is widely considered to be one of the leading analytical methods for the separation of chemical species in complex mixtures. Advances in the technique have led to the development of low-thermal-mass fast GC columns. These columns are capable of

  7. Dark-red-emitting CdTe{sub 0.5}Se{sub 0.5}/Cd{sub 0.5}Zn{sub 0.5}S quantum dots: Effect of chemicals on properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping, E-mail: mse_yangp@ujn.edu.cn; Zhang, Aiyu; Li, Xiaoyu; Liu, Ning; Zhang, Yulan; Zhang, Ruili

    2013-08-15

    CdTe{sub 0.5}Se{sub 0.5}/Cd{sub 0.5}Zn{sub 0.5}S core/shell quantum dots (QDs) with a tunable photoluminescence (PL) range from yellow to dark red (up to a PL peak wavelength of 683 nm) were fabricated using various reaction systems. The core/shell QDs created in the reaction solution of trioctylamine (TOA) and oleic acid (OA) at 300 °C exhibited narrow PL spectra and a related low PL efficiency (38%). In contrast, the core/shell QDs prepared in the solution of 1-octadecene (ODE) and hexadecylamine (HDA) at 200 °C revealed a high PL efficiency (70%) and broad PL spectra. This phenomenon is ascribed that the precursor of Cd, reaction temperature, solvents, and ligands affected the formation process of the shell. The slow growth rate of the shell in the solution of ODE and HDA made QDs with a high PL efficiency. Metal acetate salts without reaction with HDA led to the core/shell QDs with a broad size distribution. - Graphical abstract: CdTe{sub 0.5}Se{sub 0.5}/Cd{sub 0.5}Zn{sub 0.5}S quantum dots (QDs) with tunable photoluminescence, high PL efficiency, and high stability through organic synthesis, in which chemicals affected the properties of the QDs. Display Omitted - Highlights: • CdTe{sub 0.5}Se{sub 0.5}/Cd{sub 0.5}Zn{sub 0.5}S quantum dots created via organic synthesis. • Chemicals affected the properties of the quantum dots. • The quantum dots revealed high photoluminescence efficiency and stability. • The quantum dots with tunable photoluminescence in a range from yellow to dark red. • The QDs are utilizable for various applications such as biological labeling.

  8. Numerical Verification Of Equilibrium Chemistry

    International Nuclear Information System (INIS)

    Piro, Markus; Lewis, Brent; Thompson, William T.; Simunovic, Srdjan; Besmann, Theodore M.

    2010-01-01

    A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.

  9. Dosimetric accuracy of Kodak EDR2 film for IMRT verifications.

    Science.gov (United States)

    Childress, Nathan L; Salehpour, Mohammad; Dong, Lei; Bloch, Charles; White, R Allen; Rosen, Isaac I

    2005-02-01

    Patient-specific intensity-modulated radiotherapy (IMRT) verifications require an accurate two-dimensional dosimeter that is not labor-intensive. We assessed the precision and reproducibility of film calibrations over time, measured the elemental composition of the film, measured the intermittency effect, and measured the dosimetric accuracy and reproducibility of calibrated Kodak EDR2 film for single-beam verifications in a solid water phantom and for full-plan verifications in a Rexolite phantom. Repeated measurements of the film sensitometric curve in a single experiment yielded overall uncertainties in dose of 2.1% local and 0.8% relative to 300 cGy. 547 film calibrations over an 18-month period, exposed to a range of doses from 0 to a maximum of 240 MU or 360 MU and using 6 MV or 18 MV energies, had optical density (OD) standard deviations that were 7%-15% of their average values. This indicates that daily film calibrations are essential when EDR2 film is used to obtain absolute dose results. An elemental analysis of EDR2 film revealed that it contains 60% as much silver and 20% as much bromine as Kodak XV2 film. EDR2 film also has an unusual 1.69:1 silver:halide molar ratio, compared with the XV2 film's 1.02:1 ratio, which may affect its chemical reactions. To test EDR2's intermittency effect, the OD generated by a single 300 MU exposure was compared to the ODs generated by exposing the film 1 MU, 2 MU, and 4 MU at a time to a total of 300 MU. An ion chamber recorded the relative dose of all intermittency measurements to account for machine output variations. Using small MU bursts to expose the film resulted in delivery times of 4 to 14 minutes and lowered the film's OD by approximately 2% for both 6 and 18 MV beams. This effect may result in EDR2 film underestimating absolute doses for patient verifications that require long delivery times. After using a calibration to convert EDR2 film's OD to dose values, film measurements agreed within 2% relative

  10. Molecular dynamics and quantum chemical calculation studies on 4,4-dimethyl-3-thiosemicarbazide as corrosion inhibitor in 2.5 M H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Musa, Ahmed Y., E-mail: ahmed.musa@ymail.com [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia); Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Takriff, Mohd Sobri [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia)

    2011-09-15

    Highlights: {yields} This work deals with a study of chemical additives for corrosion inhibition of mild steel in acidic conditions. {yields} The effects of the additive 4,4-dimethyl-3-thiosemicarbazide (DTS) on mild steel were studied by means of electrochemical techniques. {yields} Quantum chemical calculations and molecular dynamic model were performed to characterize the inhibition mechanism. {yields} The calculations provided information that helps in the analysis/interpretation of the experimental work. - Abstract: The inhibition of mild steel corrosion in a 2.5 M H{sub 2}SO{sub 4} solution by 4,4-dimethyl-3-thiosemicarbazide (DTS) was studied at 30 deg. C using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Quantum chemical parameters were calculated for DTS using PM3-SCF method. The molecular dynamic method was performed to simulate the adsorption of the DTS molecules on Fe surface. Results showed that DTS performed excellent as inhibitor for mild steel corrosion in a 2.5 M H{sub 2}SO{sub 4} solution and indicated that the inhibition efficiencies increase with the concentration of inhibitor. Theoretical results indicated that DTS could adsorb on the mild steel surface firmly through heteroatoms.

  11. Fingerprint verification prediction model in hand dermatitis.

    Science.gov (United States)

    Lee, Chew K; Chang, Choong C; Johor, Asmah; Othman, Puwira; Baba, Roshidah

    2015-07-01

    Hand dermatitis associated fingerprint changes is a significant problem and affects fingerprint verification processes. This study was done to develop a clinically useful prediction model for fingerprint verification in patients with hand dermatitis. A case-control study involving 100 patients with hand dermatitis. All patients verified their thumbprints against their identity card. Registered fingerprints were randomized into a model derivation and model validation group. Predictive model was derived using multiple logistic regression. Validation was done using the goodness-of-fit test. The fingerprint verification prediction model consists of a major criterion (fingerprint dystrophy area of ≥ 25%) and two minor criteria (long horizontal lines and long vertical lines). The presence of the major criterion predicts it will almost always fail verification, while presence of both minor criteria and presence of one minor criterion predict high and low risk of fingerprint verification failure, respectively. When none of the criteria are met, the fingerprint almost always passes the verification. The area under the receiver operating characteristic curve was 0.937, and the goodness-of-fit test showed agreement between the observed and expected number (P = 0.26). The derived fingerprint verification failure prediction model is validated and highly discriminatory in predicting risk of fingerprint verification in patients with hand dermatitis. © 2014 The International Society of Dermatology.

  12. In situ electron-beam polymerization stabilized quantum dot micelles.

    Science.gov (United States)

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  13. Comprehensive predictions of target proteins based on protein-chemical interaction using virtual screening and experimental verifications.

    Science.gov (United States)

    Kobayashi, Hiroki; Harada, Hiroko; Nakamura, Masaomi; Futamura, Yushi; Ito, Akihiro; Yoshida, Minoru; Iemura, Shun-Ichiro; Shin-Ya, Kazuo; Doi, Takayuki; Takahashi, Takashi; Natsume, Tohru; Imoto, Masaya; Sakakibara, Yasubumi

    2012-04-05

    Identification of the target proteins of bioactive compounds is critical for elucidating the mode of action; however, target identification has been difficult in general, mostly due to the low sensitivity of detection using affinity chromatography followed by CBB staining and MS/MS analysis. We applied our protocol of predicting target proteins combining in silico screening and experimental verification for incednine, which inhibits the anti-apoptotic function of Bcl-xL by an unknown mechanism. One hundred eighty-two target protein candidates were computationally predicted to bind to incednine by the statistical prediction method, and the predictions were verified by in vitro binding of incednine to seven proteins, whose expression can be confirmed in our cell system.As a result, 40% accuracy of the computational predictions was achieved successfully, and we newly found 3 incednine-binding proteins. This study revealed that our proposed protocol of predicting target protein combining in silico screening and experimental verification is useful, and provides new insight into a strategy for identifying target proteins of small molecules.

  14. Comprehensive predictions of target proteins based on protein-chemical interaction using virtual screening and experimental verifications

    Directory of Open Access Journals (Sweden)

    Kobayashi Hiroki

    2012-04-01

    Full Text Available Abstract Background Identification of the target proteins of bioactive compounds is critical for elucidating the mode of action; however, target identification has been difficult in general, mostly due to the low sensitivity of detection using affinity chromatography followed by CBB staining and MS/MS analysis. Results We applied our protocol of predicting target proteins combining in silico screening and experimental verification for incednine, which inhibits the anti-apoptotic function of Bcl-xL by an unknown mechanism. One hundred eighty-two target protein candidates were computationally predicted to bind to incednine by the statistical prediction method, and the predictions were verified by in vitro binding of incednine to seven proteins, whose expression can be confirmed in our cell system. As a result, 40% accuracy of the computational predictions was achieved successfully, and we newly found 3 incednine-binding proteins. Conclusions This study revealed that our proposed protocol of predicting target protein combining in silico screening and experimental verification is useful, and provides new insight into a strategy for identifying target proteins of small molecules.

  15. Quantum key distribution with a single photon from a squeezed coherent state

    International Nuclear Information System (INIS)

    Matsuoka, Masahiro; Hirano, Takuya

    2003-01-01

    Squeezing of the coherent state by optical parametric amplifier is shown to efficiently produce single-photon states with reduced multiphoton probabilities compared with the weak coherent light. It can be a better source for a longer-distance quantum key distribution and also for other quantum optical experiments. The necessary condition for a secure quantum key distribution given by Brassard et al. is analyzed as functions of the coherent-state amplitude and squeeze parameter. Similarly, the rate of the gained secure bits G after error correction and privacy amplification given by Luetkenhaus is calculated. Compared with the weak coherent light, it is found that G is about ten times larger and its high level continues on about two times longer distance. By improvement of the detector efficiency it is shown that the distance extends further. Measurement of the intensity correlation function and the relation to photon antibunching are discussed for the experimental verification of the single-photon generation

  16. Quantum mechanics a comprehensive text for chemistry

    CERN Document Server

    Arora, Kishor

    2010-01-01

    This book contains 14 chapters. The text includes the inadequacy of classical mechanics and covers basic and fundamental concepts of quantum mechanics including concepts of transitional, vibration rotation and electronic energies, introduction to concepts of angular momenta, approximatemethods and their application concepts related to electron spin, symmetery concepts and quantum mechanics and ultimately the book features the theories of chemical bonding and use of softwares in quantum mechanics. the text of the book is presented in a lucid manner with ample examples and illustrations wherever

  17. Alternative algebraic approaches in quantum chemistry

    International Nuclear Information System (INIS)

    Mezey, Paul G.

    2015-01-01

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed

  18. Alternative algebraic approaches in quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mezey, Paul G., E-mail: paul.mezey@gmail.com [Canada Research Chair in Scientific Modeling and Simulation, Department of Chemistry and Department of Physics and Physical Oceanography, Memorial University of Newfoundland, 283 Prince Philip Drive, St. John' s, NL A1B 3X7 (Canada)

    2015-01-22

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

  19. Biomonitoring of exposure to chemical warfare agents

    NARCIS (Netherlands)

    Noort, D.; Schans, M.J. van der; Benschop, H.P.

    2006-01-01

    An overview is presented of the major methods that are presently available for biomonitoring of exposure to chemical warfare agents, i.e., nerve agents and sulfur mustard. These methods can be applied for a variety of purposes such as diagnosis and dosimetry of exposure of casualties, verification

  20. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  1. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  2. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William L.; Trucano, Timothy G.

    2008-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  3. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    Science.gov (United States)

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  4. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2009-11-01

    Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.

  5. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    Science.gov (United States)

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  6. Results of the radiological verification survey of the partial remediation at 90 Avenue C, Lodi, New Jersey (LJ079V)

    International Nuclear Information System (INIS)

    Foley, R.D.; Johnson, C.A.

    1994-02-01

    The property at 90 Avenue C, Lodi, New Jersey is one of the vicinity properties of the former Maywood Chemical Works, Maywood, New Jersey designated for remedial action by the US Department of Energy (DOE). In July 1991, Bechtel National, Inc. performed a partial remedial action on this property. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey in July, 1991 at this site. The purpose of the verification survey was to ensure the effectiveness of remedial actions performed within FUSRAP and to confirm the site's compliance with DOE guidelines. The radiological survey included surface gamma scans indoors and outdoors, ground-level beta-gamma measurements, and systematic and biased soil and material sampling. Results of the verification survey demonstrated that all radiological measurements on the portions of the property that had been remediated were within DOE guidelines. However, there still remains a portion of the property to be remediated that is not covered by this verification survey

  7. Cavity quantum electrodynamics studies with site-controlled InGaAs quantum dots integrated into high quality microcavities

    DEFF Research Database (Denmark)

    Reitzenstein, S.; Schneider, C.; Albert, F.

    2011-01-01

    Semiconductor quantum dots (QDs) are fascinating nanoscopic structures for photonics and future quantum information technology. However, the random position of self-organized QDs inhibits a deterministic coupling in devices relying on cavity quantum electrodynamics (cQED) effects which complicates......, e.g., the large scale fabrication of quantum light sources. As a result, large efforts focus on the growth and the device integration of site-controlled QDs. We present the growth of low density arrays of site-controlled In(Ga)As QDs where shallow etched nanoholes act as nucleation sites...... linewidth, the oscillator strength and the quantum efficiency. A stacked growth of strain coupled SCQDs forming on wet chemically etched nanoholes provide the smallest linewidth with an average value of 210 μeV. Using time resolved photoluminescence studies on samples with a varying thickness of the capping...

  8. Quantitative analysis of patient-specific dosimetric IMRT verification

    International Nuclear Information System (INIS)

    Budgell, G J; Perrin, B A; Mott, J H L; Fairfoul, J; Mackay, R I

    2005-01-01

    Patient-specific dosimetric verification methods for IMRT treatments are variable, time-consuming and frequently qualitative, preventing evidence-based reduction in the amount of verification performed. This paper addresses some of these issues by applying a quantitative analysis parameter to the dosimetric verification procedure. Film measurements in different planes were acquired for a series of ten IMRT prostate patients, analysed using the quantitative parameter, and compared to determine the most suitable verification plane. Film and ion chamber verification results for 61 patients were analysed to determine long-term accuracy, reproducibility and stability of the planning and delivery system. The reproducibility of the measurement and analysis system was also studied. The results show that verification results are strongly dependent on the plane chosen, with the coronal plane particularly insensitive to delivery error. Unexpectedly, no correlation could be found between the levels of error in different verification planes. Longer term verification results showed consistent patterns which suggest that the amount of patient-specific verification can be safely reduced, provided proper caution is exercised: an evidence-based model for such reduction is proposed. It is concluded that dose/distance to agreement (e.g., 3%/3 mm) should be used as a criterion of acceptability. Quantitative parameters calculated for a given criterion of acceptability should be adopted in conjunction with displays that show where discrepancies occur. Planning and delivery systems which cannot meet the required standards of accuracy, reproducibility and stability to reduce verification will not be accepted by the radiotherapy community

  9. Quantum diffusion of light interstitials in metals

    International Nuclear Information System (INIS)

    McMullen, T.; Bergersen, B.

    1978-01-01

    A quantum theory of diffusion of self-trapped light interstitials in metals is presented. The theory encompasses both coherent and incoherent tunneling, but the approximation used neglects the dependence of the interstitial transfer matrix element on the vibrational state of the crystal. The coherent tunneling contribution is estimated by fitting the incoherent diffusion rate to experimental data for hydrogen and muon diffusion. It is predicted that coherent diffusion should be dominant below approximately 80 K for H in Nb and below approximately 190 K for μ + in Cu. Experimental verifications of these predictions would require high purity strain free samples and low concentrations of the diffusing species. (author)

  10. Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts

    Directory of Open Access Journals (Sweden)

    Simone Di Micco

    2013-12-01

    Full Text Available In this paper the stereostructural investigation of two new oxygenated polyketides, plakilactones G and H, isolated from the marine sponge Plakinastrella mamillaris collected at Fiji Islands, is reported. The stereostructural studies began on plakilactone H by applying an integrated approach of the NOE-based protocol and quantum mechanical calculations of 13C chemical shifts. In particular, plakilactone H was used as a template to extend the application of NMR-derived interproton distances to a highly flexible molecular system with simultaneous assignment of four non-contiguous stereocenters. Chemical derivatization and quantum mechanical calculations of 13C on plakilactone G along with a plausible biogenetic interconversion between plakilactone G and plakilactone H allowed us to determine the absolute configuration in this two new oxygenated polyketides.

  11. Post-silicon and runtime verification for modern processors

    CERN Document Server

    Wagner, Ilya

    2010-01-01

    The purpose of this book is to survey the state of the art and evolving directions in post-silicon and runtime verification. The authors start by giving an overview of the state of the art in verification, particularly current post-silicon methodologies in use in the industry, both for the domain of processor pipeline design and for memory subsystems. They then dive into the presentation of several new post-silicon verification solutions aimed at boosting the verification coverage of modern processors, dedicating several chapters to this topic. The presentation of runtime verification solution

  12. Quantum chemical calculations in the structural analysis of phloretin

    Science.gov (United States)

    Gómez-Zavaglia, Andrea

    2009-07-01

    In this work, a conformational search on the molecule of phloretin [2',4',6'-Trihydroxy-3-(4-hydroxyphenyl)-propiophenone] has been performed. The molecule of phloretin has eight dihedral angles, four of them taking part in the carbon backbone and the other four, related with the orientation of the hydroxyl groups. A systematic search involving a random variation of the dihedral angles has been used to generate input structures for the quantum chemical calculations. Calculations at the DFT(B3LYP)/6-311++G(d,p) level of theory permitted the identification of 58 local minima belonging to the C 1 symmetry point group. The molecular structures of the conformers have been analyzed using hierarchical cluster analysis. This method allowed us to group conformers according to their similarities, and thus, to correlate the conformers' stability with structural parameters. The dendrogram obtained from the hierarchical cluster analysis depicted two main clusters. Cluster I included all the conformers with relative energies lower than 25 kJ mol -1 and cluster II, the remaining conformers. The possibility of forming intramolecular hydrogen bonds resulted the main factor contributing for the stability. Accordingly, all conformers depicting intramolecular H-bonds belong to cluster I. These conformations are clearly favored when the carbon backbone is as planar as possible. The values of the νC dbnd O and νOH vibrational modes were compared among all the conformers of phloretin. The redshifts associated with intramolecular H-bonds were correlated with the H-bonds distances and energies.

  13. BCS gap equations in the quantum limit

    International Nuclear Information System (INIS)

    Norman, M.R.

    1991-01-01

    It was shown that in the quantum limit where only one Landau level is occupied,Tc diverges with increasing H.It was also indcated that Tc is unaffected impurities or by a nonzero g factor, in contrast to what was indicated in Ref. 2.The authors result is due to an assumption that the DOS about a Debye width of the chemical potential is constant. This approximation is questionable sice chemical potential decrease rapidly as H increases.Here Tc is calculated as a function of H in the quantum limit for an appropriate set of parameters to understand how impurities and nonzero g factor affect the result

  14. Control of quantum phenomena: past, present and future

    International Nuclear Information System (INIS)

    Brif, Constantin; Chakrabarti, Raj; Rabitz, Herschel

    2010-01-01

    Quantum control is concerned with active manipulation of physical and chemical processes on the atomic and molecular scale. This work presents a perspective of progress in the field of control over quantum phenomena, tracing the evolution of theoretical concepts and experimental methods from early developments to the most recent advances. Among numerous theoretical insights and technological improvements that produced the present state-of-the-art in quantum control, there have been several breakthroughs of foremost importance. On the technology side, the current experimental successes would be impossible without the development of intense femtosecond laser sources and pulse shapers. On the theory side, the two most critical insights were (i) realizing that ultrafast atomic and molecular dynamics can be controlled via manipulation of quantum interferences and (ii) understanding that optimally shaped ultrafast laser pulses are the most effective means for producing the desired quantum interference patterns in the controlled system. Finally, these theoretical and experimental advances were brought together by the crucial concept of adaptive feedback control (AFC), which is a laboratory procedure employing measurement-driven, closed-loop optimization to identify the best shapes of femtosecond laser control pulses for steering quantum dynamics towards the desired objective. Optimization in AFC experiments is guided by a learning algorithm, with stochastic methods proving to be especially effective. AFC of quantum phenomena has found numerous applications in many areas of the physical and chemical sciences, and this paper reviews the extensive experiments. Other subjects discussed include quantum optimal control theory, quantum control landscapes, the role of theoretical control designs in experimental realizations and real-time quantum feedback control. The paper concludes with a perspective of open research directions that are likely to attract significant attention in

  15. Quantum mechanical properties of graphene nano-flakes and quantum dots.

    Science.gov (United States)

    Shi, Hongqing; Barnard, Amanda S; Snook, Ian K

    2012-11-07

    In recent years considerable attention has been given to methods for modifying and controlling the electronic and quantum mechanical properties of graphene quantum dots. However, as these types of properties are indirect consequences of the wavefunction of the material, a more efficient way of determining properties may be to engineer the wavefunction directly. One way of doing this may be via deliberate structural modifications, such as producing graphene nanostructures with specific sizes and shapes. In this paper we use quantum mechanical simulations to determine whether the wavefunction, quantified via the distribution of the highest occupied molecular orbital, has a direct and reliable relationship to the physical structure, and whether structural modifications can be useful for wavefunction engineering. We find that the wavefunction of small molecular graphene structures can be different from those of larger nanoscale counterparts, and the distribution of the highest occupied molecular orbital is strongly affected by the geometric shape (but only weakly by edge and corner terminations). This indicates that both size and shape may be more useful parameters in determining quantum mechanical and electronic properties, which should then be reasonably robust against variations in the chemical passivation or functionalisation around the circumference.

  16. A high frequency test bench for rapid single-flux-quantum circuits

    International Nuclear Information System (INIS)

    Engseth, H; Intiso, S; Rafique, M R; Tolkacheva, E; Kidiyarova-Shevchenko, A

    2006-01-01

    We have designed and experimentally verified a test bench for high frequency testing of rapid single-flux-quantum (RSFQ) circuits. This test bench uses an external tunable clock signal that is stable in amplitude, phase and frequency. The high frequency external clock reads out the clock pattern stored in a long shift register. The clock pattern is consequently shifted out at high speed and split to feed both the circuit under test and an additional shift register in the test bench for later verification at low speed. This method can be employed for reliable high speed verification of RSFQ circuit operation, with use of only low speed read-out electronics. The test bench consists of 158 Josephson junctions and the occupied area is 3300 x 660 μm 2 . It was experimentally verified up to 33 GHz with ± 21.7% margins on the global bias supply current

  17. Handbook of computational quantum chemistry

    CERN Document Server

    Cook, David B

    2005-01-01

    Quantum chemistry forms the basis of molecular modeling, a tool widely used to obtain important chemical information and visual images of molecular systems. Recent advances in computing have resulted in considerable developments in molecular modeling, and these developments have led to significant achievements in the design and synthesis of drugs and catalysts. This comprehensive text provides upper-level undergraduates and graduate students with an introduction to the implementation of quantum ideas in molecular modeling, exploring practical applications alongside theoretical explanations.Wri

  18. Studies of quantum dots in the quantum Hall regime

    Science.gov (United States)

    Goldmann, Eyal

    We present two studies of quantum dots in the quantum Hall regime. In the first study, presented in Chapter 3, we investigate the edge reconstruction phenomenon believed to occur when the quantum dot filling fraction is n≲1 . Our approach involves the examination of large dots (≤40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wavefunctions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction. In the second study, presented in Chapter 4, we investigate quantum dots in the fractional quantum Hall regime using a Hartree formulation of composite fermion theory. We find that under appropriate conditions, the chemical potential of the dots oscillates periodically with B due to the transfer of composite fermions between quasi-Landau bands. This effect is analogous the addition spectrum oscillations which occur in quantum dots in the integer quantum Hall regime. Period f0 oscillations are found in sharply confined dots with filling factors nu = 2/5 and nu = 2/3. Period 3 f0 oscillations are found in a parabolically confined nu = 2/5 dot. More generally, we argue that the oscillation period of dots with band pinning should vary continuously with B, whereas the period of dots without band pinning is f0 .

  19. The Evolution and Revival Structure of Localized Quantum Wave Packets

    OpenAIRE

    Bluhm, Robert; Kostelecky, Alan; Porter, James

    1995-01-01

    Localized quantum wave packets can be produced in a variety of physical systems and are the subject of much current research in atomic, molecular, chemical, and condensed-matter physics. They are particularly well suited for studying the classical limit of a quantum-mechanical system. The motion of a localized quantum wave packet initially follows the corresponding classical motion. However, in most cases the quantum wave packet spreads and undergoes a series of collapses and revivals. We pre...

  20. Coherent control of diamond defects for quantum information science and quantum sensing

    Science.gov (United States)

    Maurer, Peter

    . This opens the door for the engineering of nano-scaled chemical reactions to the study of temperature dependent biological processes. Finally, a novel technique is introduced that facilitates optical spin detection with nanoscale resolution based on an optical far-field technique; by combining this with a 'quantum Zeno' like effect coherent manipulation of nominally identical spins at a nanoscale is achieved.

  1. Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well

    Directory of Open Access Journals (Sweden)

    H. J. Huang

    2015-11-01

    Full Text Available The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC, or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.

  2. Molecular Structure of Phenytoin: NMR, UV-Vis and Quantum Chemical Calculations

    Directory of Open Access Journals (Sweden)

    Raluca Luchian

    2015-12-01

    Full Text Available Due to the presence of the carbonyl and imide groups in the structure of 5,5-diphenylhydantoin (DPH, the possibility for this compound to be involved in hydrogen bonding intermolecular interactions is obvious. Even though such interactions are presumably responsible for the mechanism of action of this drug, however, to the best of our knowledge, the self-hydrogen bonding interactions between the DPH monomers have not been addressed till now. Furthermore, studies reporting on the spectroscopic characteristics of this molecule are scarcely reported in the literature. Here we report on the possible dimers of DPH, investigated by quantum chemical calculations at B3LYP/6-31+G(2d,2p level of theory. Twelve unique DPH dimers were structurally optimized in gas-phase, as well as in ethanol and DMSO and then were used to compute the population-averaged UV-Vis and NMR spectra using Boltzmann statistics. UV-Vis and NMR techniques were employed to assess experimentally the spectroscopical response of this compound. DFT calculations are also used to investigate the structural transformations between the solid and liquid phase, as well as for describing the electronic transitions and for the assignment of NMR spectra of DPH.

  3. Advancements in the Field of Quantum Dots

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.

    2012-08-01

    Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.

  4. RESRAD-BUILD verification

    International Nuclear Information System (INIS)

    Kamboj, S.; Yu, C.; Biwer, B. M.; Klett, T.

    2002-01-01

    The results generated by the RESRAD-BUILD code (version 3.0) were verified with hand or spreadsheet calculations using equations given in the RESRAD-BUILD manual for different pathways. For verification purposes, different radionuclides--H-3, C-14, Na-22, Al-26, Cl-36, Mn-54, Co-60, Au-195, Ra-226, Ra-228, Th-228, and U-238--were chosen to test all pathways and models. Tritium, Ra-226, and Th-228 were chosen because of the special tritium and radon models in the RESRAD-BUILD code. Other radionuclides were selected to represent a spectrum of radiation types and energies. Verification of the RESRAD-BUILD code was conducted with an initial check of all the input parameters for correctness against their original source documents. Verification of the calculations was performed external to the RESRAD-BUILD code with Microsoft Excel to verify all the major portions of the code. In some cases, RESRAD-BUILD results were compared with those of external codes, such as MCNP (Monte Carlo N-particle) and RESRAD. The verification was conducted on a step-by-step basis and used different test cases as templates. The following types of calculations were investigated: (1) source injection rate, (2) air concentration in the room, (3) air particulate deposition, (4) radon pathway model, (5) tritium model for volume source, (6) external exposure model, (7) different pathway doses, and (8) time dependence of dose. Some minor errors were identified in version 3.0; these errors have been corrected in later versions of the code. Some possible improvements in the code were also identified

  5. Diversion of the melanin synthetic pathway by dopamine product scavengers: A quantum chemical modeling of the reaction mechanisms

    Directory of Open Access Journals (Sweden)

    T. B. Demissie

    2017-01-01

    Full Text Available We report the stability and reactivity of the oxidation products as well as L-cysteine and N-acetylcysteine adducts of dopamine studied using quantum chemical calculations. The overall reactions studied were subdivided into four reaction channels. The first reaction channel is the oxidation of dopamine to form dopaminoquinone. The second reaction channel leads to melanin formation through subsequent reactions. The third and fourth reaction channels are reactions leading to the formation of dopaminoquinone adducts which are aimed to divert the synthesis of melanin. The results indicate that L-cysteine and N-acetylcysteine undergo chemical reactions mainly at C5 position of dopaminoquinone. The analyses of the thermodynamic energies indicate that L-cysteine and N-acetylcysteine covalently bind to dopaminoquinone by competing with the internal cyclization reaction of dopaminoquinone which leads to the synthesis of melanin. The analysis of the results, based on the reaction free energies, is also supported by the investigation of the natural bond orbitals of the reactants and products.

  6. An introduction to some mathematical aspects of scattering theory in models of quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.

    1974-01-01

    An elementary introduction is given to some results, problems and methods of the recent study of scattering in models developed in connection with constructive quantum field theory. A deliberate effort has been made to be understandable also for mathematicians having some notions of non-relativistic quantum mechanics but no specific previous knowledge of quantum field theory. The Fock space, the free fields and the free Hamiltonian are introduced and the singular perturbation problem posed by local relativistic interaction is discussed. Scattering theory is first discussed for the simplified cases of space cut-off interactions and of translation invariant interactions with persistent vacuum. The Wightman-Haag-Ruelle axiomatic framework is given as a guide for the construction of models with local, relativistic interactions and of the corresponding scattering theory. The verification of the axioms is carried through in a class of models with local relativistic interactions in two-dimensional space-time. (Auth.)

  7. On-line high-performance liquid chromatography-ultraviolet-nuclear magnetic resonance method of the markers of nerve agents for verification of the Chemical Weapons Convention.

    Science.gov (United States)

    Mazumder, Avik; Gupta, Hemendra K; Garg, Prabhat; Jain, Rajeev; Dubey, Devendra K

    2009-07-03

    This paper details an on-flow liquid chromatography-ultraviolet-nuclear magnetic resonance (LC-UV-NMR) method for the retrospective detection and identification of alkyl alkylphosphonic acids (AAPAs) and alkylphosphonic acids (APAs), the markers of the toxic nerve agents for verification of the Chemical Weapons Convention (CWC). Initially, the LC-UV-NMR parameters were optimized for benzyl derivatives of the APAs and AAPAs. The optimized parameters include stationary phase C(18), mobile phase methanol:water 78:22 (v/v), UV detection at 268nm and (1)H NMR acquisition conditions. The protocol described herein allowed the detection of analytes through acquisition of high quality NMR spectra from the aqueous solution of the APAs and AAPAs with high concentrations of interfering background chemicals which have been removed by preceding sample preparation. The reported standard deviation for the quantification is related to the UV detector which showed relative standard deviations (RSDs) for quantification within +/-1.1%, while lower limit of detection upto 16mug (in mug absolute) for the NMR detector. Finally the developed LC-UV-NMR method was applied to identify the APAs and AAPAs in real water samples, consequent to solid phase extraction and derivatization. The method is fast (total experiment time approximately 2h), sensitive, rugged and efficient.

  8. Comparison of sugar molecule decomposition through glucose and fructose: a high-level quantum chemical study.

    Energy Technology Data Exchange (ETDEWEB)

    Assary, R. S.; Curtiss, L. A. (Center for Nanoscale Materials); ( MSD); (Northwestern Univ.)

    2012-02-01

    Efficient chemical conversion of biomass is essential to produce sustainable energy and industrial chemicals. Industrial level conversion of glucose to useful chemicals, such as furfural, hydroxymethylfurfural, and levulinic acid, is a major step in the biomass conversion but is difficult because of the formation of undesired products and side reactions. To understand the molecular level reaction mechanisms involved in the decomposition of glucose and fructose, we have carried out high-level quantum chemical calculations [Gaussian-4 (G4) theory]. Selective 1,2-dehydration, keto-enol tautomerization, isomerization, retro-aldol condensation, and hydride shifts of glucose and fructose molecules were investigated. Detailed kinetic and thermodynamic analyses indicate that, for acyclic glucose and fructose molecules, the dehydration and isomerization require larger activation barriers compared to the retro-aldol reaction at 298 K in neutral medium. The retro-aldol reaction results in the formation of C2 and C4 species from glucose and C3 species from fructose. The formation of the most stable C3 species, dihydroxyacetone from fructose, is thermodynamically downhill. The 1,3-hydride shift leads to the cleavage of the C-C bond in the acyclic species; however, the enthalpy of activation is significantly higher (50-55 kcal/mol) than that of the retro-aldol reaction (38 kcal/mol) mainly because of the sterically hindered distorted four-membered transition state compared to the hexa-membered transition state in the retro-aldol reaction. Both tautomerization and dehydration are catalyzed by a water molecule in aqueous medium; however, water has little effect on the retro-aldol reaction. Isomerization of glucose to fructose and glyceraldehyde to dihydroxyacetone proceeds through hydride shifts that require an activation enthalpy of about 40 kcal/mol at 298 K in water medium. This investigation maps out accurate energetics of the decomposition of glucose and fructose molecules

  9. Approximate quantum chemical methods for modelling carbohydrate conformation and aromatic interactions: β-cyclodextrin and its adsorption on a single-layer graphene sheet.

    Science.gov (United States)

    Jaiyong, Panichakorn; Bryce, Richard A

    2017-06-14

    Noncovalent functionalization of graphene by carbohydrates such as β-cyclodextrin (βCD) has the potential to improve graphene dispersibility and its use in biomedical applications. Here we explore the ability of approximate quantum chemical methods to accurately model βCD conformation and its interaction with graphene. We find that DFTB3, SCC-DFTB and PM3CARB-1 methods provide the best agreement with density functional theory (DFT) in calculation of relative energetics of gas-phase βCD conformers; however, the remaining NDDO-based approaches we considered underestimate the stability of the trans,gauche vicinal diol conformation. This diol orientation, corresponding to a clockwise hydrogen bonding arrangement in the glucosyl residue of βCD, is present in the lowest energy βCD conformer. Consequently, for adsorption on graphene of clockwise or counterclockwise hydrogen bonded forms of βCD, calculated with respect to this unbound conformer, the DFTB3 method provides closer agreement with DFT values than PM7 and PM6-DH2 approaches. These findings suggest approximate quantum chemical methods as potentially useful tools to guide the design of carbohydrate-graphene interactions, but also highlights the specific challenge to NDDO-based methods in capturing the relative energetics of carbohydrate hydrogen bond networks.

  10. Spent fuel verification options for final repository safeguards in Finland. A study on verification methods, their feasibility and safety aspects

    International Nuclear Information System (INIS)

    Hautamaeki, J.; Tiitta, A.

    2000-12-01

    The verification possibilities of the spent fuel assemblies from the Olkiluoto and Loviisa NPPs and the fuel rods from the research reactor of VTT are contemplated in this report. The spent fuel assemblies have to be verified at the partial defect level before the final disposal into the geologic repository. The rods from the research reactor may be verified at the gross defect level. Developing a measurement system for partial defect verification is a complicated and time-consuming task. The Passive High Energy Gamma Emission Tomography and the Fork Detector combined with Gamma Spectrometry are the most potential measurement principles to be developed for this purpose. The whole verification process has to be planned to be as slick as possible. An early start in the planning of the verification and developing the measurement devices is important in order to enable a smooth integration of the verification measurements into the conditioning and disposal process. The IAEA and Euratom have not yet concluded the safeguards criteria for the final disposal. E.g. criteria connected to the selection of the best place to perform the verification. Measurements have not yet been concluded. Options for the verification places have been considered in this report. One option for a verification measurement place is the intermediate storage. The other option is the encapsulation plant. Crucial viewpoints are such as which one offers the best practical possibilities to perform the measurements effectively and which would be the better place in the safeguards point of view. Verification measurements may be needed both in the intermediate storages and in the encapsulation plant. In this report also the integrity of the fuel assemblies after wet intermediate storage period is assessed, because the assemblies have to stand the handling operations of the verification measurements. (orig.)

  11. Electroluminescence of colloidal ZnSe quantum dots

    International Nuclear Information System (INIS)

    Dey, S.C.; Nath, S.S.

    2011-01-01

    The article reports a green chemical synthesis of colloidal ZnSe quantum dots at a moderate temperature. The prepared colloid sample is characterised by UV-vis absorption spectroscopy and transmission electron microscopy. UV-vis spectroscopy reveals as-expected blue-shift with strong absorption edge at 400 nm and micrographs show a non-uniform size distribution of ZnSe quantum dots in the range 1-4 nm. Further, photoluminescence and electroluminescence spectroscopies are carried out to study optical emission. Each of the spectroscopies reveals two emission peaks, indicating band-to-band transition and defect related transition. From the luminescence studies, it can be inferred that the recombination of electrons and holes resulting from interband transition causes violet emission and the recombination of a photon generated hole with a charged state of Zn-vacancy gives blue emission. Meanwhile electroluminescence study suggests the application of ZnSe quantum dots as an efficient light emitting device with the advantage of colour tuning (violet-blue-violet). - Highlights: → Synthesis of ZnSe quantum dots by a green chemical route. → Characterisation: UV-vis absorption spectroscopy and transmission electron microscopy. → Analysis of UV-vis absorption spectrum and transmission electron micrographs. → Study of electro-optical properties by photoluminescence and electroluminescence. → Conclusion: ZnSe quantum dots can be used as LED with dual colour emission.

  12. Secure and Robust Transmission and Verification of Unknown Quantum States in Minkowski Space

    Science.gov (United States)

    Kent, Adrian; Massar, Serge; Silman, Jonathan

    2014-01-01

    An important class of cryptographic applications of relativistic quantum information work as follows. B generates a random qudit and supplies it to A at point P. A is supposed to transmit it at near light speed c to to one of a number of possible pairwise spacelike separated points Q1, …, Qn. A's transmission is supposed to be secure, in the sense that B cannot tell in advance which Qj will be chosen. This poses significant practical challenges, since secure reliable long-range transmission of quantum data at speeds near to c is presently not easy. Here we propose different techniques to overcome these diffculties. We introduce protocols that allow secure long-range implementations even when both parties control only widely separated laboratories of small size. In particular we introduce a protocol in which A needs send the qudit only over a short distance, and securely transmits classical information (for instance using a one time pad) over the remaining distance. We further show that by using parallel implementations of the protocols security can be maintained in the presence of moderate amounts of losses and errors. PMID:24469425

  13. DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 2-benzothiazole acetonitrile.

    Science.gov (United States)

    Arjunan, V; Thillai Govindaraja, S; Jose, Sujin P; Mohan, S

    2014-07-15

    The Fourier transform infrared and FT-Raman spectra of 2-benzothiazole acetonitrile (BTAN) have been recorded in the range 4000-450 and 4000-100 cm(-1) respectively. The conformational analysis of the compound has been carried out to obtain the stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers derived theoretically by B3LYP gradient calculations employing the standard 6-31G(**), high level 6-311++G(**) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The (1)H (400 MHz; CDCl3) and (13)C (100 MHz;CDCl3) nuclear magnetic resonance (NMR) spectra are also recorded. The electronic properties, the energies of the highest occupied and lowest unoccupied molecular orbitals are measured by DFT approach. The kinetic stability of the molecule has been determined from the frontier molecular orbital energy gap. The charges of the atoms and the structure-chemical reactivity relations of the compound are determined by its chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods. The non-linear optical properties of the compound have been discussed by measuring the polarisability and hyperpolarisability tensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence.

    Science.gov (United States)

    Liu, Fei; Jang, Min-Ho; Ha, Hyun Dong; Kim, Je-Hyung; Cho, Yong-Hoon; Seo, Tae Seok

    2013-07-19

    Pristine graphene quantum dots and graphene oxide quantum dots are synthesized by chemical exfoliation from the graphite nanoparticles with high uniformity in terms of shape (circle), size (less than 4 nm), and thickness (monolayer). The origin of the blue and green photoluminescence of GQDs and GOQDs is attributed to intrinsic and extrinsic energy states, respectively. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Verification of safety critical software

    International Nuclear Information System (INIS)

    Son, Ki Chang; Chun, Chong Son; Lee, Byeong Joo; Lee, Soon Sung; Lee, Byung Chai

    1996-01-01

    To assure quality of safety critical software, software should be developed in accordance with software development procedures and rigorous software verification and validation should be performed. Software verification is the formal act of reviewing, testing of checking, and documenting whether software components comply with the specified requirements for a particular stage of the development phase[1]. New software verification methodology was developed and was applied to the Shutdown System No. 1 and 2 (SDS1,2) for Wolsung 2,3 and 4 nuclear power plants by Korea Atomic Energy Research Institute(KAERI) and Atomic Energy of Canada Limited(AECL) in order to satisfy new regulation requirements of Atomic Energy Control Boars(AECB). Software verification methodology applied to SDS1 for Wolsung 2,3 and 4 project will be described in this paper. Some errors were found by this methodology during the software development for SDS1 and were corrected by software designer. Outputs from Wolsung 2,3 and 4 project have demonstrated that the use of this methodology results in a high quality, cost-effective product. 15 refs., 6 figs. (author)

  16. Future of monitoring and verification

    International Nuclear Information System (INIS)

    Wagenmakers, H.

    1991-01-01

    The organized verification entrusted to IAEA for the implementation of the NPT, of the Treaty of Tlatelolco and of the Treaty of Rarotonga, reaches reasonable standards. The current dispute with the Democratic People's Republic of Korea about the conclusion of a safeguards agreement with IAEA, by its exceptional nature, underscores rather than undermines the positive judgement to be passed on IAEA's overall performance. The additional task given to the Director General of IAEA under Security Council resolution 687 (1991) regarding Iraq's nuclear-weapons-usable material is particularly challenging. For the purposes of this paper, verification is defined as the process for establishing whether the States parties are complying with an agreement. In the final stage verification may lead into consideration of how to respond to non-compliance. Monitoring is perceived as the first level in the verification system. It is one generic form of collecting information on objects, activities or events and it involves a variety of instruments ranging from communications satellites to television cameras or human inspectors. Monitoring may also be used as a confidence-building measure

  17. Applications of Atomic Systems in Quantum Simulation, Quantum Computation and Topological Phases of Matter

    Science.gov (United States)

    Wang, Shengtao

    and simulation. Trapped atomic ions are one of the leading platforms to build a scalable, universal quantum computer. The common one-dimensional setup, however, greatly limits the system's scalability. By solving the critical problem of micromotion, we propose a two-dimensional architecture for scalable trapped-ion quantum computation. Hamiltonian tomography for many-body quantum systems is essential for benchmarking quantum computation and simulation. By employing dynamical decoupling, we propose a scalable scheme for full Hamiltonian tomography. The required number of measurements increases only polynomially with the system size, in contrast to an exponential scaling in common methods. Finally, we work toward the goal of demonstrating quantum supremacy. A number of sampling tasks, such as the boson sampling problem, have been proposed to be classically intractable under mild assumptions. An intermediate quantum computer can efficiently solve the sampling problem, but the correct operation of the device is not known to be classically verifiable. Toward practical verification, we present an experimental friendly scheme to extract useful and robust information from the quantum boson samplers based on coarse-grained measurements. In a separate study, we introduce a new model built from translation-invariant Ising-interacting spins. This model possesses several advantageous properties, catalyzing the ultimate experimental demonstration of quantum supremacy.

  18. Overcoming correlation fluctuations in two-photon interference experiments with differently bright and independently blinking remote quantum emitters

    Science.gov (United States)

    Weber, Jonas H.; Kettler, Jan; Vural, Hüseyin; Müller, Markus; Maisch, Julian; Jetter, Michael; Portalupi, Simone L.; Michler, Peter

    2018-05-01

    As a fundamental building block for quantum computation and communication protocols, the correct verification of the two-photon interference (TPI) contrast between two independent quantum light sources is of utmost importance. Here, we experimentally demonstrate how frequently present blinking dynamics and changes in emitter brightness critically affect the Hong-Ou-Mandel-type (HOM) correlation histograms of remote TPI experiments measured via the commonly utilized setup configuration. We further exploit this qualitative and quantitative explanation of the observed correlation dynamics to establish an alternative interferometer configuration, which is overcoming the discussed temporal fluctuations, giving rise to an error-free determination of the remote TPI visibility. We prove full knowledge of the obtained correlation by reproducing the measured correlation statistics via Monte Carlo simulations. As an exemplary system, we make use of two pairs of remote semiconductor quantum dots; however, the same conclusions apply for TPI experiments with flying qubits from any kind of remote solid-state quantum emitters.

  19. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. PRASAD V BHARATAM. Articles written in Journal of Chemical Sciences. Volume 128 Issue 10 October 2016 pp 1607-1614 Regular Article. Carbene→N⁺ Coordination Bonds in Drugs: A Quantum Chemical Study · DEEPIKA KATHURIA MINHAJUL ARFEEN APOORVA A ...

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. MINHAJUL ARFEEN. Articles written in Journal of Chemical Sciences. Volume 128 Issue 10 October 2016 pp 1607-1614 Regular Article. Carbene→N⁺ Coordination Bonds in Drugs: A Quantum Chemical Study · DEEPIKA KATHURIA MINHAJUL ARFEEN APOORVA A ...

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. APOORVA A BANKAR. Articles written in Journal of Chemical Sciences. Volume 128 Issue 10 October 2016 pp 1607-1614 Regular Article. Carbene→N⁺ Coordination Bonds in Drugs: A Quantum Chemical Study · DEEPIKA KATHURIA MINHAJUL ARFEEN APOORVA A ...

  2. Large-scale computing with Quantum Espresso

    International Nuclear Information System (INIS)

    Giannozzi, P.; Cavazzoni, C.

    2009-01-01

    This paper gives a short introduction to Quantum Espresso: a distribution of software for atomistic simulations in condensed-matter physics, chemical physics, materials science, and to its usage in large-scale parallel computing.

  3. Concepts for inventory verification in critical facilities

    International Nuclear Information System (INIS)

    Cobb, D.D.; Sapir, J.L.; Kern, E.A.; Dietz, R.J.

    1978-12-01

    Materials measurement and inventory verification concepts for safeguarding large critical facilities are presented. Inspection strategies and methods for applying international safeguards to such facilities are proposed. The conceptual approach to routine inventory verification includes frequent visits to the facility by one inspector, and the use of seals and nondestructive assay (NDA) measurements to verify the portion of the inventory maintained in vault storage. Periodic verification of the reactor inventory is accomplished by sampling and NDA measurement of in-core fuel elements combined with measurements of integral reactivity and related reactor parameters that are sensitive to the total fissile inventory. A combination of statistical sampling and NDA verification with measurements of reactor parameters is more effective than either technique used by itself. Special procedures for assessment and verification for abnormal safeguards conditions are also considered. When the inspection strategies and inventory verification methods are combined with strict containment and surveillance methods, they provide a high degree of assurance that any clandestine attempt to divert a significant quantity of fissile material from a critical facility inventory will be detected. Field testing of specific hardware systems and procedures to determine their sensitivity, reliability, and operational acceptability is recommended. 50 figures, 21 tables

  4. Verification and Examination Management of Complex Systems

    Directory of Open Access Journals (Sweden)

    Stian Ruud

    2014-10-01

    Full Text Available As ship systems become more complex, with an increasing number of safety-critical functions, many interconnected subsystems, tight integration to other systems, and a large amount of potential failure modes, several industry parties have identified the need for improved methods for managing the verification and examination efforts of such complex systems. Such needs are even more prominent now that the marine and offshore industries are targeting more activities and operations in the Arctic environment. In this paper, a set of requirements and a method for verification and examination management are proposed for allocating examination efforts to selected subsystems. The method is based on a definition of a verification risk function for a given system topology and given requirements. The marginal verification risks for the subsystems may then be evaluated, so that examination efforts for the subsystem can be allocated. Two cases of requirements and systems are used to demonstrate the proposed method. The method establishes a systematic relationship between the verification loss, the logic system topology, verification method performance, examination stop criterion, the required examination effort, and a proposed sequence of examinations to reach the examination stop criterion.

  5. Energetics and stability of azulene: From experimental thermochemistry to high-level quantum chemical calculations

    International Nuclear Information System (INIS)

    Sousa, Clara C.S.; Matos, M. Agostinha R.; Morais, Victor M.F.

    2014-01-01

    Highlights: • Experimental standard molar enthalpy of formation, sublimation azulene. • Mini-bomb combustion calorimetry, sublimation Calvet microcalorimetry. • High level composite ab initio calculations. • Computational estimate of the enthalpy of formation of azulene. • Discussion of stability and aromaticity of azulene. - Abstract: The standard (p 0 = 0.1 MPa) molar enthalpy of formation for crystalline azulene was derived from the standard molar enthalpy of combustion, in oxygen, at T = 298.15 K, measured in a mini-bomb combustion calorimeter (aneroid isoperibol calorimeter) and the standard molar enthalpy of sublimation, at T = 298.15 K, measured by Calvet microcalorimetry. From these experiments, the standard molar enthalpy of formation of azulene in the gaseous phase at T = 298.15 K was calculated. In addition, very accurate quantum chemical calculations at the G3 and G4 composite levels of calculation were conducted in order to corroborate our experimental findings and further clarify and establish the definitive standard enthalpy of formation of this interesting non-benzenoid hydrocarbon

  6. Monitoring and verification R and D

    International Nuclear Information System (INIS)

    Pilat, Joseph F.; Budlong-Sylvester, Kory W.; Fearey, Bryan L.

    2011-01-01

    The 2010 Nuclear Posture Review (NPR) report outlined the Administration's approach to promoting the agenda put forward by President Obama in Prague on April 5, 2009. The NPR calls for a national monitoring and verification R and D program to meet future challenges arising from the Administration's nonproliferation, arms control and disarmament agenda. Verification of a follow-on to New START could have to address warheads and possibly components along with delivery capabilities. Deeper cuts and disarmament would need to address all of these elements along with nuclear weapon testing, nuclear material and weapon production facilities, virtual capabilities from old weapon and existing energy programs and undeclared capabilities. We only know how to address some elements of these challenges today, and the requirements may be more rigorous in the context of deeper cuts as well as disarmament. Moreover, there is a critical need for multiple options to sensitive problems and to address other challenges. There will be other verification challenges in a world of deeper cuts and disarmament, some of which we are already facing. At some point, if the reductions process is progressing, uncertainties about past nuclear materials and weapons production will have to be addressed. IAEA safeguards will need to continue to evolve to meet current and future challenges, and to take advantage of new technologies and approaches. Transparency/verification of nuclear and dual-use exports will also have to be addressed, and there will be a need to make nonproliferation measures more watertight and transparent. In this context, and recognizing we will face all of these challenges even if disarmament is not achieved, this paper will explore possible agreements and arrangements; verification challenges; gaps in monitoring and verification technologies and approaches; and the R and D required to address these gaps and other monitoring and verification challenges.

  7. Using of Quantum Dots in Biology and Medicine.

    Science.gov (United States)

    Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina

    2018-01-01

    Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.

  8. A quantum chemical analysis of Zn and Sb doping and co-doping in SnO2

    Directory of Open Access Journals (Sweden)

    Luis Villamagua

    2017-10-01

    Full Text Available This work presents a quantum chemical study of Zn and Sb doping and co-doping in SnO2 carried out by a DFT+U method. The analysis has been developed by introducing three different modifications in the otherwise pure SnO2 system. In the first place, an oxygen vacancy was introduced within the crystal. Following, such a system was doped (separately by Zn or Sb impurities. Finally, the best energetic positions for both Zn and Sb atoms were simultaneously introduced within the lattice. Results of the simulations show that the confined charge that appeared due to the introduction of the oxygen vacancy interacts with the dopants atoms, being this interaction mostly responsible of the observed effects, i.e., EG shrinkage, F-centers formations, and magnetic momentum rise.

  9. Evaluation of the catalytic mechanism of AICAR transformylase by pH-dependent kinetics, mutagenesis, and quantum chemical calculations.

    Science.gov (United States)

    Shim, J H; Wall, M; Benkovic, S J; Díaz, N; Suárez, D; Merz, K M

    2001-05-23

    The catalytic mechanism of 5-aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase) is evaluated with pH dependent kinetics, site-directed mutagenesis, and quantum chemical calculations. The chemistry step, represented by the burst rates, was not pH-dependent, which is consistent with our proposed mechanism that the 4-carboxamide of AICAR assists proton shuttling. Quantum chemical calculations on a model system of 5-amino-4-carboxamide imidazole (AICA) and formamide using the B3LYP/6-31G level of theory confirmed that the 4-carboxamide participated in the proton-shuttling mechanism. The result also indicated that the amide-assisted mechanism is concerted such that the proton transfers from the 5-amino group to the formamide are simultaneous with nucleophilic attack by the 5-amino group. Because the process does not lead to a kinetically stable intermediate, the intramolecular proton transfer from the 5-amino group through the 4-carboxamide to the formamide proceeds in the same transition state. Interestingly, the calculations predicted that protonation of the N3 of the imidazole of AICA would reduce the energy barrier significantly. However, the pK(a) of the imidazole of AICAR was determined to be 3.23 +/- 0.01 by NMR titration, and AICAR is likely to bind to the enzyme with its imidazole in the free base form. An alternative pathway was suggested by modeling Lys266 to have a hydrogen-bonding interaction with the N3 of the imidazole of AICAR. Lys266 has been implicated in catalysis based on mutagenesis studies and the recent X-ray structure of AICAR Tfase. The quantum chemical calculations on a model system that contains AICA complexed with CH3NH3+ as a mimic of the Lys residue confirmed that such an interaction lowered the activation energy of the reaction and likewise implicated the 4-carboxamide. To experimentally verify this hypothesis, we prepared the K266R mutant and found that its kcat is reduced by 150-fold from that of the wild type

  10. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  11. Face Verification for Mobile Personal Devices

    NARCIS (Netherlands)

    Tao, Q.

    2009-01-01

    In this thesis, we presented a detailed study of the face verification problem on the mobile device, covering every component of the system. The study includes face detection, registration, normalization, and verification. Furthermore, the information fusion problem is studied to verify face

  12. Gender Verification of Female Olympic Athletes.

    Science.gov (United States)

    Dickinson, Barry D.; Genel, Myron; Robinowitz, Carolyn B.; Turner, Patricia L.; Woods, Gary L.

    2002-01-01

    Gender verification of female athletes has long been criticized by geneticists, endocrinologists, and others in the medical community. Recently, the International Olympic Committee's Athletic Commission called for discontinuation of mandatory laboratory-based gender verification of female athletes. This article discusses normal sexual…

  13. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective.

    Science.gov (United States)

    Giansante, Carlo; Infante, Ivan

    2017-10-19

    Surface traps are ubiquitous to nanoscopic semiconductor materials. Understanding their atomistic origin and manipulating them chemically have capital importance to design defect-free colloidal quantum dots and make a leap forward in the development of efficient optoelectronic devices. Recent advances in computing power established computational chemistry as a powerful tool to describe accurately complex chemical species and nowadays it became conceivable to model colloidal quantum dots with realistic sizes and shapes. In this Perspective, we combine the knowledge gathered in recent experimental findings with the computation of quantum dot electronic structures. We analyze three different systems: namely, CdSe, PbS, and CsPbI 3 as benchmark semiconductor nanocrystals showing how different types of trap states can form at their surface. In addition, we suggest experimental healing of such traps according to their chemical origin and nanocrystal composition.

  14. Towards Implementation of a Generalized Architecture for High-Level Quantum Programming Language

    Science.gov (United States)

    Ameen, El-Mahdy M.; Ali, Hesham A.; Salem, Mofreh M.; Badawy, Mahmoud

    2017-08-01

    This paper investigates a novel architecture to the problem of quantum computer programming. A generalized architecture for a high-level quantum programming language has been proposed. Therefore, the programming evolution from the complicated quantum-based programming to the high-level quantum independent programming will be achieved. The proposed architecture receives the high-level source code and, automatically transforms it into the equivalent quantum representation. This architecture involves two layers which are the programmer layer and the compilation layer. These layers have been implemented in the state of the art of three main stages; pre-classification, classification, and post-classification stages respectively. The basic building block of each stage has been divided into subsequent phases. Each phase has been implemented to perform the required transformations from one representation to another. A verification process was exposed using a case study to investigate the ability of the compiler to perform all transformation processes. Experimental results showed that the efficacy of the proposed compiler achieves a correspondence correlation coefficient about R ≈ 1 between outputs and the targets. Also, an obvious achievement has been utilized with respect to the consumed time in the optimization process compared to other techniques. In the online optimization process, the consumed time has increased exponentially against the amount of accuracy needed. However, in the proposed offline optimization process has increased gradually.

  15. Improvement and verification of fast-reactor safety-analysis techniques. Final report

    International Nuclear Information System (INIS)

    Barker, D.H.

    1981-12-01

    The work involved on this project took place between March 1, 1975 and December 31, 1981. The work resulted in two PhD and one Masters Theses. Part I was the Verification and Applicability Studies for the VENUS-II LMFBR Disassembly Code. These tests showed that the VENUS-II code closely predicted the energy release in all three tests chosen for analysis. Part II involved the chemical simulation of pool dispersion in the transition phase of an HCDA. Part III involved the reaction of an internally heated fluid and the vessel walls

  16. Reload core safety verification

    International Nuclear Information System (INIS)

    Svetlik, M.; Minarcin, M.

    2003-01-01

    This paper presents a brief look at the process of reload core safety evaluation and verification in Slovak Republic. It gives an overview of experimental verification of selected nuclear parameters in the course of physics testing during reactor start-up. The comparison of IAEA recommendations and testing procedures at Slovak and European nuclear power plants of similar design is included. An introduction of two level criteria for evaluation of tests represents an effort to formulate the relation between safety evaluation and measured values (Authors)

  17. Computational Quantum Mechanics for Materials Engineers The EMTO Method and Applications

    CERN Document Server

    Vitos, L

    2007-01-01

    Traditionally, new materials have been developed by empirically correlating their chemical composition, and the manufacturing processes used to form them, with their properties. Until recently, metallurgists have not used quantum theory for practical purposes. However, the development of modern density functional methods means that today, computational quantum mechanics can help engineers to identify and develop novel materials. Computational Quantum Mechanics for Materials Engineers describes new approaches to the modelling of disordered alloys that combine the most efficient quantum-level th

  18. Validation of Embedded System Verification Models

    NARCIS (Netherlands)

    Marincic, J.; Mader, Angelika H.; Wieringa, Roelf J.

    The result of a model-based requirements verification shows that the model of a system satisfies (or not) formalised system requirements. The verification result is correct only if the model represents the system adequately. No matter what modelling technique we use, what precedes the model

  19. On Verification Modelling of Embedded Systems

    NARCIS (Netherlands)

    Brinksma, Hendrik; Mader, Angelika H.

    Computer-aided verification of embedded systems hinges on the availability of good verification models of the systems at hand. Such models must be much simpler than full design models or specifications to be of practical value, because of the unavoidable combinatorial complexities in the

  20. Molecular interactions in ethyl acetate-chlorobenzene binary solution: Dielectric, spectroscopic studies and quantum chemical calculations

    Science.gov (United States)

    Karthick, N. K.; Kumbharkhane, A. C.; Joshi, Y. S.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-05-01

    Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) Csbnd H ⋯ Odbnd C (EA), (EA) methylene Csbnd H ⋯ π electrons (CBZ) and (EA) methyl Csbnd H ⋯ Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (εE) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association.

  1. Compositional verification of real-time systems using Ecdar

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel

    2012-01-01

    We present a specification theory for timed systems implemented in the Ecdar tool. We illustrate the operations of the specification theory on a running example, showing the models and verification checks. To demonstrate the power of the compositional verification, we perform an in depth case study...... of a leader election protocol; Modeling it in Ecdar as Timed input/output automata Specifications and performing both monolithic and compositional verification of two interesting properties on it. We compare the execution time of the compositional to the classical verification showing a huge difference...

  2. Computing protein infrared spectroscopy with quantum chemistry.

    Science.gov (United States)

    Besley, Nicholas A

    2007-12-15

    Quantum chemistry is a field of science that has undergone unprecedented advances in the last 50 years. From the pioneering work of Boys in the 1950s, quantum chemistry has evolved from being regarded as a specialized and esoteric discipline to a widely used tool that underpins much of the current research in chemistry today. This achievement was recognized with the award of the 1998 Nobel Prize in Chemistry to John Pople and Walter Kohn. As the new millennium unfolds, quantum chemistry stands at the forefront of an exciting new era. Quantitative calculations on systems of the magnitude of proteins are becoming a realistic possibility, an achievement that would have been unimaginable to the early pioneers of quantum chemistry. In this article we will describe ongoing work towards this goal, focusing on the calculation of protein infrared amide bands directly with quantum chemical methods.

  3. Fabrication of coupled graphene–nanotube quantum devices

    International Nuclear Information System (INIS)

    Engels, S; Weber, P; Terrés, B; Dauber, J; Volk, C; Wichmann, U; Stampfer, C; Meyer, C; Trellenkamp, S

    2013-01-01

    We report on the fabrication and characterization of all-carbon hybrid quantum devices based on graphene and single-walled carbon nanotubes. We discuss both carbon nanotube quantum dot devices with graphene charge detectors and nanotube quantum dots with graphene leads. The devices are fabricated by chemical vapor deposition growth of carbon nanotubes and subsequent structuring of mechanically exfoliated graphene. We study the detection of individual charging events in the carbon nanotube quantum dot by a nearby graphene nanoribbon and show that they lead to changes of up to 20% of the conductance maxima in the graphene nanoribbon, acting as a well performing charge detector. Moreover, we discuss an electrically coupled graphene–nanotube junction, which exhibits a tunneling barrier with tunneling rates in the low GHz regime. This allows us to observe Coulomb blockade on a carbon nanotube quantum dot with graphene source and drain leads. (paper)

  4. Implementation of the chemical PbLi/water reaction in the SIMMER code

    Energy Technology Data Exchange (ETDEWEB)

    Eboli, Marica, E-mail: marica.eboli@for.unipi.it [DICI—University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa (Italy); Forgione, Nicola [DICI—University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa (Italy); Del Nevo, Alessandro [ENEA FSN-ING-PAN, CR Brasimone, 40032 Camugnano, BO (Italy)

    2016-11-01

    Highlights: • Updated predictive capabilities of SIMMER-III code. • Verification of the implemented PbLi/Water chemical reactions. • Identification of code capabilities in modelling phenomena relevant to safety. • Validation against BLAST Test No. 5 experimental data successfully completed. • Need for new experimental campaign in support of code validation on LIFUS5/Mod3. - Abstract: The availability of a qualified system code for the deterministic safety analysis of the in-box LOCA postulated accident is of primary importance. Considering the renewed interest for the WCLL breeding blanket, such code shall be multi-phase, shall manage the thermodynamic interaction among the fluids, and shall include the exothermic chemical reaction between lithium-lead and water, generating oxides and hydrogen. The paper presents the implementation of the chemical correlations in SIMMER-III code, the verification of the code model in simple geometries and the first validation activity based on BLAST Test N°5 experimental data.

  5. Strongly correlated quantum transport out-of-equilibrium

    Science.gov (United States)

    Dutt, Prasenjit

    The revolutionary advances in nanotechnology and nanofabrication have facilitated the precise control and manipulation of mesoscopic systems where quantum effects are pronounced. Quantum devices with tunable gates have made it possible to access regimes far beyond the purview of linear response theory. In particular, the influence of strong voltage and thermal biases has led to the observation of novel phenomena where the non-equilibrium characteristics of the system are of paramount importance. We study transport through quantum-impurity systems in the regime of strong correlations and determine the effects of large temperature and potential gradients on its many-body physics. In Part I of this thesis we focus on the steady-state dynamics of the system, a commonly encountered experimental scenario. For a system consisting of several leads composed of non-interacting electrons, each individually coupled to a quantum impurity with interactions and maintained at different chemical potentials, we reformulate the system in terms of an effective-equilibrium density matrix. This density matrix has a simple Boltzmann-like form in terms of the system's Lippmann-Schwinger (scattering) operators. We elaborate the conditions for this description to be valid based on the microscopic Hamiltonian of the system. We then prove the equivalence of physical observables computed using this formulation with corresponding expressions in the Schwinger-Keldysh approach and provide a dictionary between Green's functions in either scheme. An imaginary-time functional integral framework to compute finite temperature Green's functions is proposed and used to develop a novel perturbative expansion in the interaction strength which is exact in all other system parameters. We use these tools to study the fate of the Abrikosov-Suhl regime on the Kondo-correlated quantum dot due to the effects of bias and external magnetic fields. Next, we expand the domain of this formalism to additionally

  6. A Model for Collaborative Runtime Verification

    NARCIS (Netherlands)

    Testerink, Bas; Bulling, Nils; Dastani, Mehdi

    2015-01-01

    Runtime verification concerns checking whether a system execution satisfies a given property. In this paper we propose a model for collaborative runtime verification where a network of local monitors collaborates in order to verify properties of the system. A local monitor has only a local view on

  7. HDM/PASCAL Verification System User's Manual

    Science.gov (United States)

    Hare, D.

    1983-01-01

    The HDM/Pascal verification system is a tool for proving the correctness of programs written in PASCAL and specified in the Hierarchical Development Methodology (HDM). This document assumes an understanding of PASCAL, HDM, program verification, and the STP system. The steps toward verification which this tool provides are parsing programs and specifications, checking the static semantics, and generating verification conditions. Some support functions are provided such as maintaining a data base, status management, and editing. The system runs under the TOPS-20 and TENEX operating systems and is written in INTERLISP. However, no knowledge is assumed of these operating systems or of INTERLISP. The system requires three executable files, HDMVCG, PARSE, and STP. Optionally, the editor EMACS should be on the system in order for the editor to work. The file HDMVCG is invoked to run the system. The files PARSE and STP are used as lower forks to perform the functions of parsing and proving.

  8. Self-verification and contextualized self-views.

    Science.gov (United States)

    Chen, Serena; English, Tammy; Peng, Kaiping

    2006-07-01

    Whereas most self-verification research has focused on people's desire to verify their global self-conceptions, the present studies examined self-verification with regard to contextualized selfviews-views of the self in particular situations and relationships. It was hypothesized that individuals whose core self-conceptions include contextualized self-views should seek to verify these self-views. In Study 1, the more individuals defined the self in dialectical terms, the more their judgments were biased in favor of verifying over nonverifying feedback about a negative, situation-specific self-view. In Study 2, consistent with research on gender differences in the importance of relationships to the self-concept, women but not men showed a similar bias toward feedback about a negative, relationship-specific self-view, a pattern not seen for global self-views. Together, the results support the notion that self-verification occurs for core self-conceptions, whatever form(s) they may take. Individual differences in self-verification and the nature of selfhood and authenticity are discussed.

  9. Verification of RESRAD-build computer code, version 3.1

    International Nuclear Information System (INIS)

    2003-01-01

    RESRAD-BUILD is a computer model for analyzing the radiological doses resulting from the remediation and occupancy of buildings contaminated with radioactive material. It is part of a family of codes that includes RESRAD, RESRAD-CHEM, RESRAD-RECYCLE, RESRAD-BASELINE, and RESRAD-ECORISK. The RESRAD-BUILD models were developed and codified by Argonne National Laboratory (ANL); version 1.5 of the code and the user's manual were publicly released in 1994. The original version of the code was written for the Microsoft DOS operating system. However, subsequent versions of the code were written for the Microsoft Windows operating system. The purpose of the present verification task (which includes validation as defined in the standard) is to provide an independent review of the latest version of RESRAD-BUILD under the guidance provided by ANSI/ANS-10.4 for verification and validation of existing computer programs. This approach consists of a posteriori V and V review which takes advantage of available program development products as well as user experience. The purpose, as specified in ANSI/ANS-10.4, is to determine whether the program produces valid responses when used to analyze problems within a specific domain of applications, and to document the level of verification. The culmination of these efforts is the production of this formal Verification Report. The first step in performing the verification of an existing program was the preparation of a Verification Review Plan. The review plan consisted of identifying: Reason(s) why a posteriori verification is to be performed; Scope and objectives for the level of verification selected; Development products to be used for the review; Availability and use of user experience; and Actions to be taken to supplement missing or unavailable development products. The purpose, scope and objectives for the level of verification selected are described in this section of the Verification Report. The development products that were used

  10. Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language

    OpenAIRE

    Blaha, Stephen

    2002-01-01

    We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.

  11. Solving the scalability issue in quantum-based refinement: Q|R#1.

    Science.gov (United States)

    Zheng, Min; Moriarty, Nigel W; Xu, Yanting; Reimers, Jeffrey R; Afonine, Pavel V; Waller, Mark P

    2017-12-01

    Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as n m , where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.

  12. Quantum walks, quantum gates, and quantum computers

    International Nuclear Information System (INIS)

    Hines, Andrew P.; Stamp, P. C. E.

    2007-01-01

    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included

  13. Quantum and classical dynamics in biologically inspired systems

    International Nuclear Information System (INIS)

    Guerreschi, G.

    2012-01-01

    entanglement. According to one of the main hypotheses, radical pair reactions constitute the underlying physical mechanism to explain the ability of certain species of birds to orient in the geomagnetic field. In fact, the chemical equilibrium of radical pair reactions is strongly affected by an external magnetic fi eld through its influence on the dynamical evolution of two electron spins. We characterize the entanglement between these two electron spins, and apply simple quantum control protocols to modify the dependence of the chemical yield on the magnetic field. When the chemical reaction happens in solution, the classical diffusion of the reaction partners in the solvent has to be taken into account. To control this stochastic motion, we propose to link the radicals via a photoswitchable molecule which allows us to modify the separation of the radicals and, consequently, the reaction kinetics. An immediate application to chemical magnetometry is also discussed. (author)

  14. Decontamination and management of human remains following incidents of hazardous chemical release.

    Science.gov (United States)

    Hauschild, Veronique D; Watson, Annetta; Bock, Robert

    2012-01-01

    To provide specific guidance and resources for systematic and orderly decontamination of human remains resulting from a chemical terrorist attack or accidental chemical release. A detailed review and health-based decision criteria protocol is summarized. Protocol basis and logic are derived from analyses of compound-specific toxicological data and chemical/physical characteristics. Guidance is suitable for civilian or military settings where human remains potentially contaminated with hazardous chemicals may be present, such as sites of transportation accidents, terrorist operations, or medical examiner processing points. Guidance is developed from data-characterizing controlled experiments with laboratory animals, fabrics, and materiel. Logic and specific procedures for decontamination and management of remains, protection of mortuary affairs personnel, and decision criteria to determine when remains are sufficiently decontaminated are presented. Established procedures as well as existing materiel and available equipment for decontamination and verification provide reasonable means to mitigate chemical hazards from chemically exposed remains. Unique scenarios such as those involving supralethal concentrations of certain liquid chemical warfare agents may prove difficult to decontaminate but can be resolved in a timely manner by application of the characterized systematic approaches. Decision criteria and protocols to "clear" decontaminated remains for transport and processing are also provided. Once appropriate decontamination and verification have been accomplished, normal procedures for management of remains and release can be followed.

  15. Report on Stage 1 of project CHEMVAL/MIRAGE: verification of speciation models

    International Nuclear Information System (INIS)

    Read, D.; Broyd, T.W.

    1989-01-01

    This report describes the results of CHEMVAL Stage 1, an international chemical model verification exercise involving the active participation of 14 organisations within the CEC countries, Sweden, Switzerland and Finland. Five case systems were studied, namely, cement, clay, sandstone, granite and limestone. Overall, good agreement was obtained even for conceptually difficult geochemical simulations. Reasons for divergence in results have been explored and recommendations are made at the appropriate stages for enhancement of the thermodynamic database. A listing of the preliminary CHEMVAL Project Database is provided. (author)

  16. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    International Nuclear Information System (INIS)

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg

    2015-01-01

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound

  17. A Verification Logic for GOAL Agents

    Science.gov (United States)

    Hindriks, K. V.

    Although there has been a growing body of literature on verification of agents programs, it has been difficult to design a verification logic for agent programs that fully characterizes such programs and to connect agent programs to agent theory. The challenge is to define an agent programming language that defines a computational framework but also allows for a logical characterization useful for verification. The agent programming language GOAL has been originally designed to connect agent programming to agent theory and we present additional results here that GOAL agents can be fully represented by a logical theory. GOAL agents can thus be said to execute the corresponding logical theory.

  18. Ferrocene-based diradicals of imino nitroxide, nitronyl nitroxide and verdazyl, and their cations are possible SMM: A quantum chemical study

    Science.gov (United States)

    Pal, Arun K.; Datta, Sambhu N.

    2017-05-01

    Six diradicals designed from imino nitroxide, verdazyl and nitronyl nitroxide monoradicals coupled via the ferrocene moiety and six corresponding triradical cations are quantum chemically investigated. The transoid conformation is employed for considerations of general stability. All biradicals are found as very weakly and antiferromagnetically coupled. This agrees with experiment. The cations have strong antiferromagnetic spin-coupling. The charge and spin population distributions, spin alternation pattern, and the disjoint nature of SOMOs can be used to explain the nature and extent of magnetic interaction. Calculated EPR characteristics identify the neutral species as well as their cations as possible single molecule magnets.

  19. Wavelength tuning of InAs quantum dots grown on InP (100) by chemical-beam epitaxy

    International Nuclear Information System (INIS)

    Gong, Q.; Noetzel, R.; Veldhoven, P.J. van; Eijkemans, T.J.; Wolter, J.H.

    2004-01-01

    We report on an effective way to continuously tune the emission wavelength of InAs quantum dots (QDs) grown on InP (100) by chemical-beam epitaxy. The InAs QD layer is embedded in a GaInAsP layer lattice matched to InP. With an ultrathin GaAs layer inserted between the InAs QD layer and the GaInAsP buffer, the peak wavelength from the InAs QDs can be continuously tuned from above 1.6 μm down to 1.5 μm at room temperature. The major role of the thin GaAs layer is to greatly suppress the As/P exchange during the deposition of InAs and subsequent growth interruption under arsenic flux, as well as to consume the segregated surface In layer floating on the GaInAsP buffer layer

  20. Secure optical verification using dual phase-only correlation

    International Nuclear Information System (INIS)

    Liu, Wei; Liu, Shutian; Zhang, Yan; Xie, Zhenwei; Liu, Zhengjun

    2015-01-01

    We introduce a security-enhanced optical verification system using dual phase-only correlation based on a novel correlation algorithm. By employing a nonlinear encoding, the inherent locks of the verification system are obtained in real-valued random distributions, and the identity keys assigned to authorized users are designed as pure phases. The verification process is implemented in two-step correlation, so only authorized identity keys can output the discriminate auto-correlation and cross-correlation signals that satisfy the reset threshold values. Compared with the traditional phase-only-correlation-based verification systems, a higher security level against counterfeiting and collisions are obtained, which is demonstrated by cryptanalysis using known attacks, such as the known-plaintext attack and the chosen-plaintext attack. Optical experiments as well as necessary numerical simulations are carried out to support the proposed verification method. (paper)

  1. A Quantum Theory of Magnetism

    Directory of Open Access Journals (Sweden)

    Gift S.

    2009-01-01

    Full Text Available In this paper, a new Quantum Theory of Magnetic Interaction is proposed. This is done under a relaxation of the requirement of covariance for Lorentz Boost Transformations. A modified form of local gauge invariance in which fermion field phase is allowed to vary with each space point but not each time point, leads to the introduction of a new compensatory field different from the electromagnetic field associated with the photon. This new field is coupled to the magnetic flux of the fermions and has quanta called magnatons, which are massless spin 1 particles. The associated equation of motion yields the Poisson equation for magnetostatic potentials. The magnatons mediate the magnetic interaction between magnetic dipoles including magnets and provide plausi- ble explanations for the Pauli exclusion principle, Chemical Reactivity and Chemical Bonds. This new interaction has been confirmed by numerical experiments. It estab- lishes magnetism as a force entirely separate from the electromagnetic interaction and converts all of classical magnetism into a quantum theory.

  2. TRU waste certification and TRUPACT-2 payload verification

    International Nuclear Information System (INIS)

    Hunter, E.K.; Johnson, J.E.

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) established a policy that requires each waste shipper to verify that all waste shipments meet the requirements of the Waste Acceptance Criteria (WAC) prior to being shipped. This verification provides assurance that transuranic (TRU) wastes meet the criteria while still retained in a facility where discrepancies can be immediately corrected. Each Department of Energy (DOE) TRU waste facility planning to ship waste to the Waste Isolation Pilot Plant (WIPP) is required to develop and implement a specific program including Quality Assurance (QA) provisions to verify that waste is in full compliance with WIPP's WAC. This program is audited by a composite DOE and contractor audit team prior to granting the facility permission to certify waste. During interaction with the Nuclear Regulatory Commission (NRC) on payload verification for shipping in TRUPACT-II, a similar system was established by DOE. The TRUPACT-II Safety Analysis Report (SAR) contains the technical requirements and physical and chemical limits that payloads must meet (like the WAC). All shippers must plan and implement a payload control program including independent QA provisions. A similar composite audit team will conduct preshipment audits, frequent subsequent audits, and operations inspections to verify that all TRU waste shipments in TRUPACT-II meet the requirements of the Certificate of Compliance issued by the NRC which invokes the SAR requirements. 1 fig

  3. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    Science.gov (United States)

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  4. Verification of DRAGON: the NXT tracking module

    International Nuclear Information System (INIS)

    Zkiek, A.; Marleau, G.

    2007-01-01

    The version of DRAGON-IST that has been verified for the calculation of the incremental cross sections associated with CANDU reactivity devices is version 3.04Bb that was released in 2001. Since then, various improvements were implemented in the code including the NXT: module that can track assemblies of clusters in 2-D and 3-D geometries. Here we will discuss the verification plan for the NXT: module of DRAGON, illustrate the verification procedure we selected and present our verification results. (author)

  5. Study on the identification method of chemical warfare agents with spectroscopy of neutron induced γ rays

    International Nuclear Information System (INIS)

    Liu Boxue; Li Yun; Li Xiangbao

    1996-01-01

    The paper briefly describes some non-destructive verification technologies of chemical warfare agents in-site, and some application of neutron induced gamma ray analysis, such as multi-elements analysis of coal, hidden explosive detection and identification of chemical agents. It also describes some problems in developing the portable isotopic neutron spectroscopy for non-destructive evaluation of chemical warfare agents

  6. Technical challenges for dismantlement verification

    International Nuclear Information System (INIS)

    Olinger, C.T.; Stanbro, W.D.; Johnston, R.G.; Nakhleh, C.W.; Dreicer, J.S.

    1997-01-01

    In preparation for future nuclear arms reduction treaties, including any potential successor treaties to START I and II, the authors have been examining possible methods for bilateral warhead dismantlement verification. Warhead dismantlement verification raises significant challenges in the political, legal, and technical arenas. This discussion will focus on the technical issues raised by warhead arms controls. Technical complications arise from several sources. These will be discussed under the headings of warhead authentication, chain-of-custody, dismantlement verification, non-nuclear component tracking, component monitoring, and irreversibility. The authors will discuss possible technical options to address these challenges as applied to a generic dismantlement and disposition process, in the process identifying limitations and vulnerabilities. They expect that these considerations will play a large role in any future arms reduction effort and, therefore, should be addressed in a timely fashion

  7. Safety Verification for Probabilistic Hybrid Systems

    DEFF Research Database (Denmark)

    Zhang, Lijun; She, Zhikun; Ratschan, Stefan

    2010-01-01

    The interplay of random phenomena and continuous real-time control deserves increased attention for instance in wireless sensing and control applications. Safety verification for such systems thus needs to consider probabilistic variations of systems with hybrid dynamics. In safety verification o...... on a number of case studies, tackled using a prototypical implementation....

  8. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices

    NARCIS (Netherlands)

    Walravens, Willem; De Roo, Jonathan; Drijvers, Emile; Ten Brinck, Stephanie; Solano, Eduardo; Dendooven, Jolien; Detavernier, Christophe; Infante, Ivan; Hens, Zeger

    2016-01-01

    Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to

  9. SSN Verification Service

    Data.gov (United States)

    Social Security Administration — The SSN Verification Service is used by Java applications to execute the GUVERF02 service using the WebSphere/CICS Interface. It accepts several input data fields...

  10. Detailed solvent, structural, quantum chemical study and antimicrobial activity of isatin Schiff base

    Science.gov (United States)

    Brkić, Dominik R.; Božić, Aleksandra R.; Marinković, Aleksandar D.; Milčić, Miloš K.; Prlainović, Nevena Ž.; Assaleh, Fathi H.; Cvijetić, Ilija N.; Nikolić, Jasmina B.; Drmanić, Saša Ž.

    2018-05-01

    The ratios of E/Z isomers of sixteen synthesized 1,3-dihydro-3-(substituted phenylimino)-2H-indol-2-one were studied using experimental and theoretical methodology. Linear solvation energy relationships (LSER) rationalized solvent influence of the solvent-solute interactions on the UV-Vis absorption maxima shifts (νmax) of both geometrical isomers using the Kamlet-Taft equation. Linear free energy relationships (LFER) in the form of single substituent parameter equation (SSP) was used to analyze substituent effect on pKa, NMR chemical shifts and νmax values. Electron charge density was obtained by the use of Quantum Theory of Atoms in Molecules, i.e. Bader's analysis. The substituent and solvent effect on intramolecular charge transfer (ICT) were interpreted with the aid of time-dependent density functional (TD-DFT) method. Additionally, the results of TD-DFT calculations quantified the efficiency of ICT from the calculated charge-transfer distance (DCT) and amount of transferred charge (QCT). The antimicrobial activity was evaluated using broth microdilution method. 3D QSAR modeling was used to demonstrate the influence of substituents effect as well as molecule geometry on antimicrobial activity.

  11. From pirazoloquinolines to annulated azulene dyes: UV-VIS spectroscopy and quantum chemical study

    International Nuclear Information System (INIS)

    Gasiorski, P.; Danel, K.S.; Matusiewicz, M.; Uchacz, T.; Kityk, A.V.

    2010-01-01

    Paper reports UV-Vis absorption and photoluminescence spectra of 6-R derivatives (R=CH 3 , O-CH 3 , C(C 6 H 5 ) 3 , C 6 H 5 -N-C 10 H 7 ) of 4-(2-chlorophenyl)-1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline, belonging to pyrazoloquinoline (PQ) family, likewise its regioisomeric products 10-R derivatives of 6-phenyl-6H-5,6,7-triazadibenzo[f,h]naphtho[3,2,1-cd]azulene representing cyclized seven-membered annulated azulene (AA) dyes. Cyclization of PQs into AAs is accompanied by a significant red shift of the first optical absorption band. This finding agrees with the results of quantum-chemical calculations performed by means of the semiempirical method PM3. As the solvent polarity rises all the dyes exhibit a blue shift of the first absorption band and a red shift of the fluorescence band. Such opposite trends in solvatochromic behavior have been reproduced within the semiempirical calculations in combination with the Lippert-Mataga dielectric polarization model. Depending on solvent polarity AA dyes emit light in the green, green-yellow or orange range of the visible spectrum what may be of interest for potential luminescent or electroluminescent applications.

  12. Enhanced Verification Test Suite for Physics Simulation Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, J R; Brock, J S; Brandon, S T; Cotrell, D L; Johnson, B; Knupp, P; Rider, W; Trucano, T; Weirs, V G

    2008-10-10

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest. This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of

  13. Smooth controllability of infinite-dimensional quantum-mechanical systems

    International Nuclear Information System (INIS)

    Wu, Re-Bing; Tarn, Tzyh-Jong; Li, Chun-Wen

    2006-01-01

    Manipulation of infinite-dimensional quantum systems is important to controlling complex quantum dynamics with many practical physical and chemical backgrounds. In this paper, a general investigation is casted to the controllability problem of quantum systems evolving on infinite-dimensional manifolds. Recognizing that such problems are related with infinite-dimensional controllability algebras, we introduce an algebraic mathematical framework to describe quantum control systems possessing such controllability algebras. Then we present the concept of smooth controllability on infinite-dimensional manifolds, and draw the main result on approximate strong smooth controllability. This is a nontrivial extension of the existing controllability results based on the analysis over finite-dimensional vector spaces to analysis over infinite-dimensional manifolds. It also opens up many interesting problems for future studies

  14. All-Quantum-Dot Infrared Light-Emitting Diodes

    KAUST Repository

    Yang, Zhenyu; Voznyy, Oleksandr; Liu, Mengxia; Yuan, Mingjian; Ip, Alexander H.; Ahmed, Osman S.; Levina, Larissa; Kinge, Sachin; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Colloidal quantum dots (CQDs) are promising candidates for infrared electroluminescent devices. To date, CQD-based light-emitting diodes (LEDs) have employed a CQD emission layer sandwiched between carrier transport

  15. CRITIC2: A program for real-space analysis of quantum chemical interactions in solids

    Science.gov (United States)

    Otero-de-la-Roza, A.; Johnson, Erin R.; Luaña, Víctor

    2014-03-01

    We present CRITIC2, a program for the analysis of quantum-mechanical atomic and molecular interactions in periodic solids. This code, a greatly improved version of the previous CRITIC program (Otero-de-la Roza et al., 2009), can: (i) find critical points of the electron density and related scalar fields such as the electron localization function (ELF), Laplacian, … (ii) integrate atomic properties in the framework of Bader’s Atoms-in-Molecules theory (QTAIM), (iii) visualize non-covalent interactions in crystals using the non-covalent interactions (NCI) index, (iv) generate relevant graphical representations including lines, planes, gradient paths, contour plots, atomic basins, … and (v) perform transformations between file formats describing scalar fields and crystal structures. CRITIC2 can interface with the output produced by a variety of electronic structure programs including WIEN2k, elk, PI, abinit, Quantum ESPRESSO, VASP, Gaussian, and, in general, any other code capable of writing the scalar field under study to a three-dimensional grid. CRITIC2 is parallelized, completely documented (including illustrative test cases) and publicly available under the GNU General Public License. Catalogue identifier: AECB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 11686949 No. of bytes in distributed program, including test data, etc.: 337020731 Distribution format: tar.gz Programming language: Fortran 77 and 90. Computer: Workstations. Operating system: Unix, GNU/Linux. Has the code been vectorized or parallelized?: Shared-memory parallelization can be used for most tasks. Classification: 7.3. Catalogue identifier of previous version: AECB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 157 Nature of problem: Analysis of quantum-chemical

  16. Lessons Learned From Microkernel Verification — Specification is the New Bottleneck

    Directory of Open Access Journals (Sweden)

    Thorsten Bormer

    2012-11-01

    Full Text Available Software verification tools have become a lot more powerful in recent years. Even verification of large, complex systems is feasible, as demonstrated in the L4.verified and Verisoft XT projects. Still, functional verification of large software systems is rare – for reasons beyond the large scale of verification effort needed due to the size alone. In this paper we report on lessons learned for verification of large software systems based on the experience gained in microkernel verification in the Verisoft XT project. We discuss a number of issues that impede widespread introduction of formal verification in the software life-cycle process.

  17. Advancing Disarmament Verification Tools: A Task for Europe?

    International Nuclear Information System (INIS)

    Göttsche, Malte; Kütt, Moritz; Neuneck, Götz; Niemeyer, Irmgard

    2015-01-01

    A number of scientific-technical activities have been carried out to establish more robust and irreversible disarmament verification schemes. Regardless of the actual path towards deeper reductions in nuclear arsenals or their total elimination in the future, disarmament verification will require new verification procedures and techniques. This paper discusses the information that would be required as a basis for building confidence in disarmament, how it could be principally verified and the role Europe could play. Various ongoing activities are presented that could be brought together to produce a more intensified research and development environment in Europe. The paper argues that if ‘effective multilateralism’ is the main goal of the European Union’s (EU) disarmament policy, EU efforts should be combined and strengthened to create a coordinated multilateral disarmament verification capacity in the EU and other European countries. The paper concludes with several recommendations that would have a significant impact on future developments. Among other things, the paper proposes a one-year review process that should include all relevant European actors. In the long run, an EU Centre for Disarmament Verification could be envisaged to optimize verification needs, technologies and procedures.

  18. The verification of DRAGON: progress and lessons learned

    International Nuclear Information System (INIS)

    Marleau, G.

    2002-01-01

    The general requirements for the verification of the legacy code DRAGON are somewhat different from those used for new codes. For example, the absence of a design manual for DRAGON makes it difficult to confirm that the each part of the code performs as required since these requirements are not explicitly spelled out for most of the DRAGON modules. In fact, this conformance of the code can only be assessed, in most cases, by making sure that the contents of the DRAGON data structures, which correspond to the output generated by a module of the code, contains the adequate information. It is also possible in some cases to use the self-verification options in DRAGON to perform additional verification or to evaluate, using an independent software, the performance of specific functions in the code. Here, we will describe the global verification process that was considered in order to bring DRAGON to an industry standard tool-set (IST) status. We will also discuss some of the lessons we learned in performing this verification and present some of the modification to DRAGON that were implemented as a consequence of this verification. (author)

  19. Quantum vacuum energy in graphs and billiards

    International Nuclear Information System (INIS)

    Kaplan, L.

    2010-01-01

    The vacuum (Casimir) energy in quantum field theory is a problem relevant both to new nanotechnology devices and to dark energy in cosmology. The crucial question is the dependence of the energy on the system geometry. Despite much progress since the first prediction of the Casimir effect in 1948 and its subsequent experimental verification in simple geometries, even the sign of the force in nontrivial situations is still a matter of controversy. Mathematically, vacuum energy fits squarely into the spectral theory of second-order self-adjoint elliptic linear differential operators. Specifically one promising approach is based on the small-t asymptotics of the cylinder kernel e -t√(H) , where H is the self-adjoint operator under study. In contrast with the well-studied heat kernel e -tH , the cylinder kernel depends in a non-local way on the geometry of the problem. We discuss some results by the Louisiana-Oklahoma-Texas collaboration on vacuum energy in model systems, including quantum graphs and two-dimensional cavities. The results may shed light on general questions, including the relationship between vacuum energy and periodic or closed classical orbits, and the contribution to vacuum energy of boundaries, edges, and corners.

  20. Simulation Environment Based on the Universal Verification Methodology

    CERN Document Server

    AUTHOR|(SzGeCERN)697338

    2017-01-01

    Universal Verification Methodology (UVM) is a standardized approach of verifying integrated circuit designs, targeting a Coverage-Driven Verification (CDV). It combines automatic test generation, self-checking testbenches, and coverage metrics to indicate progress in the design verification. The flow of the CDV differs from the traditional directed-testing approach. With the CDV, a testbench developer, by setting the verification goals, starts with an structured plan. Those goals are targeted further by a developed testbench, which generates legal stimuli and sends them to a device under test (DUT). The progress is measured by coverage monitors added to the simulation environment. In this way, the non-exercised functionality can be identified. Moreover, the additional scoreboards indicate undesired DUT behaviour. Such verification environments were developed for three recent ASIC and FPGA projects which have successfully implemented the new work-flow: (1) the CLICpix2 65 nm CMOS hybrid pixel readout ASIC desi...