WorldWideScience

Sample records for quantum chemical approach

  1. Approaching Chemical Accuracy with Quantum Monte Carlo

    CERN Document Server

    Petruzielo, F R; Umrigar, C J

    2012-01-01

    A quantum Monte Carlo study of the atomization energies for the G2 set of molecules is presented. Basis size dependence of diffusion Monte Carlo atomization energies is studied with a single determinant Slater-Jastrow trial wavefunction formed from Hartree-Fock orbitals. With the largest basis set, the mean absolute deviation from experimental atomization energies for the G2 set is 3.0 kcal/mol. Optimizing the orbitals within variational Monte Carlo improves the agreement between diffusion Monte Carlo and experiment, reducing the mean absolute deviation to 2.1 kcal/mol. Moving beyond a single determinant Slater-Jastrow trial wavefunction, diffusion Monte Carlo with a small complete active space Slater-Jastrow trial wavefunction results in near chemical accuracy. In this case, the mean absolute deviation from experimental atomization energies is 1.2 kcal/mol. It is shown from calculations on systems containing phosphorus that the accuracy can be further improved by employing a larger active space.

  2. Approaching Chemical Accuracy with Quantum Monte Carlo

    OpenAIRE

    Petruzielo, Frank R.; Toulouse, Julien; Umrigar, C. J.

    2012-01-01

    International audience; A quantum Monte Carlo study of the atomization energies for the G2 set of molecules is presented. Basis size dependence of diffusion Monte Carlo atomization energies is studied with a single determinant Slater-Jastrow trial wavefunction formed from Hartree-Fock orbitals. With the largest basis set, the mean absolute deviation from experimental atomization energies for the G2 set is 3.0 kcal/mol. Optimizing the orbitals within variational Monte Carlo improves the agreem...

  3. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    Science.gov (United States)

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-12

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  4. Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions

    Science.gov (United States)

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-01-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism. PMID:25387603

  5. A quantum informational approach for dissecting chemical reactions

    CERN Document Server

    Duperrouzel, Corinne; Boguslawski, Katharina; Barcza, Gergerly; Legeza, Örs; Ayers, Paul W

    2014-01-01

    We present a conceptionally different approach to dissect bond-formation processes in metal-driven catalysis using concepts from quantum information theory. Our method uses the entanglement and correlation among molecular orbitals to analyze changes in electronic structure that accompany chemical processes. As a proof-of-principle example, the evolution of nickel-ethene bond-formation is dissected which allows us to monitor the interplay of back-bonding and $\\pi$-donation along the reaction coordinate. Furthermore, the reaction pathway of nickel-ethene complexation is analyzed using quantum chemistry methods revealing the presence of a transition state. Our study supports the crucial role of metal-to-ligand back-donation in the bond-forming process of nickel-ethene.

  6. Predicting allergic contact dermatitis: a hierarchical structure activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors

    Science.gov (United States)

    Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.

    2008-06-01

    A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.

  7. Fragment quantum chemical approach to geometry optimization and vibrational spectrum calculation of proteins.

    Science.gov (United States)

    Liu, Jinfeng; Zhang, John Z H; He, Xiao

    2016-01-21

    Geometry optimization and vibrational spectra (infrared and Raman spectra) calculations of proteins are carried out by a quantum chemical approach using the EE-GMFCC (electrostatically embedded generalized molecular fractionation with conjugate caps) method (J. Phys. Chem. A, 2013, 117, 7149). The first and second derivatives of the EE-GMFCC energy are derived and employed in geometry optimization and vibrational frequency calculations for several test systems, including a polypeptide ((GLY)6), an α-helix (AKA), a β-sheet (Trpzip2) and ubiquitin (76 residues with 1231 atoms). Comparison of the present results with those obtained from full system QM (quantum mechanical) calculations shows that the EE-GMFCC approach can give accurate molecular geometries, vibrational frequencies and vibrational intensities. The EE-GMFCC method is also employed to simulate the amide I vibration of proteins, which has been widely used for the analysis of peptide and protein structures, and the results are in good agreement with the experimental observations.

  8. A generalized quantum chemical approach for elastic and inelastic electron transports in molecular electronics devices

    Science.gov (United States)

    Jiang, Jun; Kula, Mathias; Luo, Yi

    2006-01-01

    A generalized quantum chemical approach for electron transport in molecular devices is developed. It allows one to treat devices where the metal electrodes and the molecule are either chemically or physically bonded on equal footing. An extension to include the vibration motions of the molecule has also been implemented which has produced the inelastic electron-tunneling spectroscopy of molecular electronics devices with unprecedented accuracy. Important information about the structure of the molecule and of metal-molecule contacts that are not accessible in the experiment are revealed. The calculated current-voltage (I-V) characteristics of different molecular devices, including benzene-1,4-dithiolate, octanemonothiolate [H(CH2)8S], and octanedithiolate [S(CH2)8S] bonded to gold electrodes, are in very good agreement with experimental measurements.

  9. Quantum-chemical approach to defect formation processes in non-metallic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kotomin, E.A.; Shluger, A.L. (Latvijskij Gosudarstvennyj Univ., Riga (USSR))

    1989-01-01

    Results of the quantum-chemical simulation of the formation of structural and radiation defects are reviewed, using ice, silicon, and silicon dioxide as examples. The relationship between the structural elements of these crystals and the structural defects is analysed. Models of the main defects, their optical characteristics, and the activation energy of their migration are discussed. The relationship between the characteristics obtained by quantum-chemical calculations and the parameters of the macroscopic kinetics of the processes induced by defects in dielectric crystals is considered. (author).

  10. Chemical Reactivity Dynamics and Quantum Chaos in Highly Excited Hydrogen Atoms in an External Field: A Quantum Potential Approach

    Directory of Open Access Journals (Sweden)

    B. Maiti

    2002-04-01

    Full Text Available Abstract: Dynamical behavior of chemical reactivity indices like electronegativity, hardness, polarizability, electrophilicity and nucleophilicity indices is studied within a quantum fluid density functional framework for the interactions of a hydrogen atom in its ground electronic state (n = 1 and an excited electronic state (n = 20 with monochromatic and bichromatic laser pulses. Time dependent analogues of various electronic structure principles like the principles of electronegativity equalization, maximum hardness, minimum polarizability and maximum entropy have been found to be operative. Insights into the variation of intensities of the generated higher order harmonics on the color of the external laser field are obtained. The quantum signature of chaos in hydrogen atom has been studied using a quantum theory of motion and quantum fluid dynamics. A hydrogen atom in the electronic ground state (n = 1 and in an excited electronic state ( n = 20 behaves differently when placed in external oscillating monochromatic and bichromatic electric fields. Temporal evolutions of Shannon entropy, quantum Lyapunov exponent and Kolmogorov – Sinai entropy defined in terms of the distance between two initially close Bohmian trajectories for these two cases show marked differences. It appears that a larger uncertainty product and a smaller hardness value signal a chaotic behavior.

  11. Quantum Entanglement and Chemical Reactivity.

    Science.gov (United States)

    Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S

    2015-11-10

    The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.

  12. Spectroscopic and chemical reactivity analysis of D-Myo-Inositol using quantum chemical approach and its experimental verification

    Indian Academy of Sciences (India)

    DEVENDRA P MISHRA; ANCHAL SRIVASTAVA; R K SHUKLA

    2017-07-01

    This paper describes the spectroscopic ($_{1}\\rm{H}$ and $_{13}\\rm{C NMR}$, FT-IR and UV–Visible), chemical, nonlinear optical and thermodynamic properties of D-Myo-Inositol using quantum chemical technique and its experimental verification. The structural parameters of the compound are determined from the optimized geometry by B3LYP method with $6-311++G(d,p)$ basis set. It was found that the optimized parameters thus obtained are almost in agreement with the experimental ones. A detailed interpretation of the infrared spectra of D-Myo-Inositol is also reported in the present work. After optimization, the proton and carbon NMR chemical shifts of the studied compound are calculated using GIAO and 6-311++G(d,p) basis set. The search of organic materials with improved charge transfer properties requires precise quantum chemical calculations of space-charge density distribution, state and transition dipole moments and HOMO–LUMO states. The nature of the transitions in the observed UV–Visible spectrum of the compound has been studied by the time-dependent density functional theory (TD-DFT). The global reactivity descriptors like chemical potential, electronegativity, hardness, softness and electrophilicity index, have been calculated using DFT. The thermodynamic calculation related to the title compound was also performed at $B3LYP/6-311++G(d,p)$ level of theory. The standard statistical thermodynamic functions like heat capacity at constant pressure, entropy and enthalpy change were obtained from the theoretical harmonic frequencies of the optimized molecule. It is observed that the values of heat capacity, entropy and enthalpy increase with increase intemperature from 100 to 1000 K, which is attributed to the enhancement of molecular vibration with the increase in temperature.

  13. Spectroscopic and chemical reactivity analysis of D-Myo-Inositol using quantum chemical approach and its experimental verification

    Science.gov (United States)

    Mishra, Devendra P.; Srivastava, Anchal; Shukla, R. K.

    2017-07-01

    This paper describes the spectroscopic (^1H and ^{13}C NMR, FT-IR and UV-Visible), chemical, nonlinear optical and thermodynamic properties of D-Myo-Inositol using quantum chemical technique and its experimental verification. The structural parameters of the compound are determined from the optimized geometry by B3LYP method with 6 {-}311{+}{+}G(d,p) basis set. It was found that the optimized parameters thus obtained are almost in agreement with the experimental ones. A detailed interpretation of the infrared spectra of D-Myo-Inositol is also reported in the present work. After optimization, the proton and carbon NMR chemical shifts of the studied compound are calculated using GIAO and 6 {-}311{+}{+}G(d,p) basis set. The search of organic materials with improved charge transfer properties requires precise quantum chemical calculations of space-charge density distribution, state and transition dipole moments and HOMO-LUMO states. The nature of the transitions in the observed UV-Visible spectrum of the compound has been studied by the time-dependent density functional theory (TD-DFT). The global reactivity descriptors like chemical potential, electronegativity, hardness, softness and electrophilicity index, have been calculated using DFT. The thermodynamic calculation related to the title compound was also performed at B3LYP/ 6 {-}311{+}{+}G(d,p) level of theory. The standard statistical thermodynamic functions like heat capacity at constant pressure, entropy and enthalpy change were obtained from the theoretical harmonic frequencies of the optimized molecule. It is observed that the values of heat capacity, entropy and enthalpy increase with increase in temperature from 100 to 1000 K, which is attributed to the enhancement of molecular vibration with the increase in temperature.

  14. Thermal and magnetic properties and vibrational analysis of 4-(dimethylamino) pyridine: a quantum chemical approach.

    Science.gov (United States)

    Balachandran, V; Rajeswari, S; Lalitha, S

    2014-04-24

    The FT-IR and FT-Raman spectra of 4-(dimethylamino) pyridine (4DMAP) have been recorded in the region 4000-500 cm(-1)and 3500-100 cm(-1). Quantum chemical calculations of energy, geometry and vibrational wavenumbers of 4DMAP were carried out by using ab initio HF and density functional theory (DFT/B3LYP) with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The harmonic vibrational wavenumbers were calculated and the scaled wavenumbers have been compared with the experimental FT-IR and FT-Raman spectra. The quantum chemical parameters have been computed from the HOMO-LUMO energy values. Temperature dependence thermodynamic parameters and magnetic properties of the title compound have been analyzed. Using NBO analysis the stability of the molecule arising from hyper-conjugative interactions, charge delocalization has been analyzed. The first-order hyper-polarizability (β) values of the title molecule were computed by B3LYP method. Finally the theoretically spectrograms for FT-IR and FT-Raman spectra of the title molecule have been constructed which show good agreement with recorded spectra.

  15. Characterization of citrate capped gold nanoparticle-quercetin complex: Experimental and quantum chemical approach

    Science.gov (United States)

    Pal, Rajat; Panigrahi, Swati; Bhattacharyya, Dhananjay; Chakraborti, Abhay Sankar

    2013-08-01

    Quercetin and several other bioflavonoids possess antioxidant property. These biomolecules can reduce the diabetic complications, but metabolize very easily in the body. Nanoparticle-mediated delivery of a flavonoid may further increase its efficacy. Gold nanoparticle is used by different groups as vehicle for drug delivery, as it is least toxic to human body. Prior to search for the enhanced efficacy, the gold nanoparticle-flavonoid complex should be prepared and well characterized. In this article, we report the interaction of gold nanoparticle with quercetin. The interaction is confirmed by different biophysical techniques, such as Scanning Electron Microscope (SEM), Circular Dichroism (CD), Fourier-Transform InfraRed (FT-IR) spectroscopy and Thermal Gravimetric Analysis (TGA) and cross checked by quantum chemical calculations. These studies indicate that gold clusters are covered by citrate groups, which are hydrogen bonded to the quercetin molecules in the complex. We have also provided evidences how capping is important in stabilizing the gold nanoparticle and further enhances its interaction with other molecules, such as drugs. Our finding also suggests that gold nanoparticle-quercetin complex can pass through the membranes of human red blood cells.

  16. Characterization and intramolecular bonding patterns of busulfan: Experimental and quantum chemical approach

    Science.gov (United States)

    Karthick, T.; Tandon, Poonam; Singh, Swapnil; Agarwal, Parag; Srivastava, Anubha

    2017-02-01

    The investigations of structural conformers, molecular interactions and vibrational characterization of pharmaceutical drug are helpful to understand their behaviour. In the present work, the 2D potential energy surface (PES) scan has been performed on the dihedral angles C6sbnd O4sbnd S1sbnd C5 and C25sbnd S22sbnd O19sbnd C16 to find the stable conformers of busulfan. In order to show the effects of long range interactions, the structures on the global minima of PES scan have been further optimized by B3LYP/6-311 ++G(d,p) method with and without empirical dispersion functional in Gaussian 09W package. The presence of n → σ* and σ → σ* interactions which lead to stability of the molecule have been predicted by natural bond orbital analysis. The strong and weak hydrogen bonds between the functional groups of busulfan were analyzed using quantum topological atoms in molecules analysis. In order to study the long-range forces, such as van der Waals interactions, steric effect in busulfan, the reduced density gradient as well as isosurface defining these interactions has been plotted using Multiwfn software. The spectroscopic characterization on the solid phase of busulfan has been studied by experimental FT-IR and FT-Raman spectra. From the 13C and 1H NMR spectra, the chemical shifts of individual C and H atoms of busulfan have been predicted. The maximum absorption wavelengths corresponding to the electronic transitions between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of busulfan have been found by UV-vis spectrum.

  17. Fe-doped SnO2: A Quantum-chemical Approach

    Directory of Open Access Journals (Sweden)

    A. Stashans

    2015-06-01

    Full Text Available We report first-principles results obtained on Fe impurity incorporation into the SnO2 material. Different impurity concentrations have been taken into consideration when computing structural, electronic and magnetic properties of the material. DFT + U methodology within the GGA approach applied to a 96-atom supercell allowed us to establish the equilibrium geometry of the system, which consists of six defect-nearest oxygens shifting towards the Fe impurity. Antiparallel magnetic alignment between the electrons of the Fe 3d and impurity-neighbouring O 2p atomic orbitals forming the FeO6 complex has been found.

  18. Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2:DFT study.

    Science.gov (United States)

    Hansen, Niels; Kerber, Torsten; Sauer, Joachim; Bell, Alexis T; Keil, Frerich J

    2010-08-25

    The alkylation of benzene by ethene over H-ZSM-5 is analyzed by means of a hybrid MP2:DFT scheme. Density functional calculations applying periodic boundary conditions (PBE functional) are combined with MP2 energy calculations on a series of cluster models of increasing size which allows extrapolation to the periodic MP2 limit. Basis set truncation errors are estimated by extrapolation of the MP2 energy to the complete basis set limit. Contributions from higher-order correlation effects are accounted for by CCSD(T) coupled cluster calculations. The sum of all contributions provides the "final estimates" for adsorption energies and energy barriers. Dispersion contributes significantly to the potential energy surface. As a result, the MP2:DFT potential energy profile is shifted downward compared to the PBE profile. More importantly, this shift is not the same for reactants and transition structures due to different self-interaction correction errors. The final enthalpies for ethene, benzene, and ethylbenzene adsorption on the Brønsted acid site at 298 K are -46, -78, and -110 kJ/mol, respectively. The intrinsic enthalpy barriers at 653 K are 117 and 119/94 kJ/mol for the one- and two-step alkylation, respectively. Intrinsic rate coefficients calculated by means of transition state theory are converted to apparent Arrhenius parameters by means of the multicomponent adsorption equilibrium. The simulated apparent activation energy (66 kJ/mol) agrees with experimental data (58-76 kJ/mol) within the uncertainty limit of the calculations. Adsorption energies obtained by adding a damped dispersion term to the PBE energies (PBE+D), agree within +/-7 kJ/mol, with the "final estimates", except for physisorption (pi-complex formation) and chemisorption of ethene (ethoxide formation) for which the PBE+D energies are 12.4 and 26.0 kJ/mol, respectively larger than the "final estimates". For intrinsic energy barriers, the PBE+D approach does not improve pure PBE results.

  19. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry

    OpenAIRE

    Rappoport, Dmitrij; Galvin, Cooper J.; Zubarev, Dmitry; Aspuru-Guzik, Alan

    2014-01-01

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reacti...

  20. Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach.

    Science.gov (United States)

    Yurenko, Yevgen P; Novotný, Jan; Sklenář, Vladimir; Marek, Radek

    2014-02-07

    The study aimed to cast light on the structure and internal energetics of guanine- and xanthine-based model DNA quadruplexes and the physico-chemical nature of the non-covalent interactions involved. Several independent approaches were used for this purpose: DFT-D3 calculations, Quantum Theory of Atoms in Molecules, Natural Bond Orbital Analysis, Energy Decomposition Analysis, Compliance Constant Theory, and Non-Covalent Interaction Analysis. The results point to an excellent degree of structural and energetic compatibility between the two types of model quadruplexes. This fact stems from both the structural features (close values of van der Waals volumes, pore radii, geometrical parameters of the H-bonds) and the energetic characteristics (comparable values of the energies of formation). It was established that hydrogen bonding makes the greatest (∼50%) contribution to the internal stability of the DNA quadruplexes, whereas the aromatic base stacking and ion coordination terms are commensurable and account for the rest. Energy decomposition analysis performed for guanine (Gua) and xanthine (Xan) quartets B4 and higher-order structures consisting of two or three stacked quartets indicates that whereas Gua structures benefit from a high degree of H-bond cooperativity, Xan models are characterized by a more favorable and cooperative π-π stacking. The results of electron density topological analysis show that Na(+)/K(+) ion coordination deeply affects the network of non-covalent interactions in Gua models due to the change in the twist angle between the stacked tetrads. For Xan models, ion coordination makes tetrads in stacks more planar without changing the twist angle. Therefore, the presence of the ion seems to be essential for the formation of planar stacks in Xan-based DNA quadruplexes. Detailed study of the nature of ion-base coordination suggests that this interaction has a partially covalent character and cannot be considered as purely electrostatic

  1. Quantum chemical approach for condensed-phase thermochemistry (II): Applications to formation and combustion reactions of liquid organic molecules

    Science.gov (United States)

    Ishikawa, Atsushi; Nakai, Hiromi

    2015-03-01

    The harmonic solvation model (HSM), which was recently developed for evaluating condensed-phase thermodynamics by quantum chemical calculations (Nakai and Ishikawa, 2014), was applied to formation and combustion reactions of simple organic molecules. The conventional ideal gas model (IGM) considerably overestimated the entropies of the liquid molecules. The HSM could significantly improve this overestimation; mean absolute deviations for the Gibbs energies of the formation and combustion reactions were (49.6, 26.7) for the IGM and (9.7, 5.4) for the HSM in kJ/mol.

  2. Improving the accuracy of low level quantum chemical calculation for absorption energies: the genetic algorithm and neural network approach.

    Science.gov (United States)

    Gao, Ting; Shi, Li-Li; Li, Hai-Bin; Zhao, Shan-Shan; Li, Hui; Sun, Shi-Ling; Su, Zhong-Min; Lu, Ying-Hua

    2009-07-07

    The combination of genetic algorithm and back-propagation neural network correction approaches (GABP) has successfully improved the calculation accuracy of absorption energies. In this paper, the absorption energies of 160 organic molecules are corrected to test this method. Firstly, the GABP1 is introduced to determine the quantitative relationship between the experimental results and calculations obtained by using quantum chemical methods. After GABP1 correction, the root-mean-square (RMS) deviations of the calculated absorption energies reduce from 0.32, 0.95 and 0.46 eV to 0.14, 0.19 and 0.18 eV for B3LYP/6-31G(d), B3LYP/STO-3G and ZINDO methods, respectively. The corrected results of B3LYP/6-31G(d)-GABP1 are in good agreement with experimental results. Then, the GABP2 is introduced to determine the quantitative relationship between the results of B3LYP/6-31G(d)-GABP1 method and calculations of the low accuracy methods (B3LYP/STO-3G and ZINDO). After GABP2 correction, the RMS deviations of the calculated absorption energies reduce to 0.20 and 0.19 eV for B3LYP/STO-3G and ZINDO methods, respectively. The results show that the RMS deviations after GABP1 and GABP2 correction are similar for B3LYP/STO-3G and ZINDO methods. Thus, the B3LYP/6-31G(d)-GABP1 is a better method to predict absorption energies and can be used as the approximation of experimental results where the experimental results are unknown or uncertain by experimental method. This method may be used for predicting absorption energies of larger organic molecules that are unavailable by experimental methods and by high-accuracy theoretical methods with larger basis sets. The performance of this method was demonstrated by application to the absorption energy of the aldehyde carbazole precursor.

  3. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    Science.gov (United States)

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  4. Analysis of {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of cysteine and cystine residues in proteins: a quantum chemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Osvaldo A.; Villegas, Myriam E.; Vila, Jorge A. [Universidad Nacional de San Luis, Instituto de Matematica Aplicada San Luis (Argentina); Scheraga, Harold A., E-mail: has5@cornell.ed [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)

    2010-03-15

    Cysteines possess a unique property among the 20 naturally occurring amino acids: it can be present in proteins in either the reduced or oxidized form, and can regulate the activity of some proteins. Consequently, to augment our previous treatment of the other types of residues, the {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of 837 cysteines in disulfide-bonded cystine from a set of seven non-redundant proteins, determined by X-ray crystallography and NMR spectroscopy, were computed at the DFT level of theory. Our results indicate that the errors between observed and computed {sup 13}C{sup {alpha}} chemical shifts of such oxidized cysteines can be attributed to several effects such as: (a) the quality of the NMR-determined models, as evaluated by the conformational-average (ca) rmsd value; (b) the existence of high B-factor or crystal-packing effects for the X-ray-determined structures; (c) the dynamics of the disulfide bonds in solution; and (d) the differences in the experimental conditions under which the observed {sup 13}C{sup {alpha}} chemical shifts and the protein models were determined by either X-ray crystallography or NMR-spectroscopy. These quantum-chemical-based calculations indicate the existence of two, almost non-overlapped, basins for the oxidized and reduced -SH {sup 13}C{sup {beta}}, but not for the {sup 13}C{sup {alpha}}, chemical shifts, in good agreement with the observation of 375 {sup 13}C{sup {alpha}} and 337 {sup 13}C{sup {beta}} resonances from 132 proteins by Sharma and Rajarathnam (2000). Overall, our results indicate that explicit consideration of the disulfide bonds is a necessary condition for an accurate prediction of {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of cysteines in cystines.

  5. Application of a simple quantum chemical approach to ligand fragment scoring for Trypanosoma brucei pteridine reductase 1 inhibition

    Science.gov (United States)

    Jedwabny, Wiktoria; Panecka-Hofman, Joanna; Dyguda-Kazimierowicz, Edyta; Wade, Rebecca C.; Sokalski, W. Andrzej

    2017-08-01

    There is a need for improved and generally applicable scoring functions for fragment-based approaches to ligand design. Here, we evaluate the performance of a computationally efficient model for inhibitory activity estimation, which is composed only of multipole electrostatic energy and dispersion energy terms that approximate long-range ab initio quantum mechanical interaction energies. We find that computed energies correlate well with inhibitory activity for a compound series with varying substituents targeting two subpockets of the binding site of Trypanosoma brucei pteridine reductase 1. For one subpocket, we find that the model is more predictive for inhibitory activity than the ab initio interaction energy calculated at the MP2 level. Furthermore, the model is found to outperform a commonly used empirical scoring method. Finally, we show that the results for the two subpockets can be combined, which suggests that this simple nonempirical scoring function could be applied in fragment-based drug design.

  6. Quantum Plasmas An Hydrodynamic Approach

    CERN Document Server

    Haas, Fernando

    2011-01-01

    This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of...

  7. Selective catalytic reduction of NO by NH3 on Cu-faujasite catalysts: an experimental and quantum chemical approach.

    Science.gov (United States)

    Delahay, Gérard; Villagomez, Enrique Ayala; Ducere, Jean-Marie; Berthomieu, Dorothée; Goursot, Annick; Coq, Bernard

    2002-08-16

    The selective catalytic reduction (SCR) of NO by NH3 in the presence of O2 on Cu-faujasite (Cu-FAU) has been studied. Substitution of some Cu2+ with H+ and Na+ cations, compensating for the negative charge of the zeolite framework, forms the various CuHNa-FAU studied. The amount of Cu was held constant and the proportion of H+ and Na+ varied in the sample. The substitution of Na+ for H+ increases sharply the SCR rate by lowering the temperature of reaction by about 150 K. It is proposed that the rate increase mainly comes from an unhindered migration of Cu from hidden to active sites and a modification of the redox properties of Cu species. The former was demonstrated by diffuse reflectance IR spectroscopy of adsorbed CO. The change in redox properties was demonstrated by a faster oxidation of Cu+ to Cu2+ (rate-determining step). Quantum chemical calculations on model clusters of CuHNa-FAU indicate that the faster rate of oxidation can be explained by a higher lability of protons in the absence of Na, which can be then removed from the catalyst more easily to yield H2O during the oxidation process.

  8. Structural and spectroscopic studies of water-alkaline earth ion micro clusters: an alternate approach using genetic algorithm in conjunction with quantum chemical methods

    Science.gov (United States)

    Ganguly Neogi, S.; Chaudhury, P.

    2014-08-01

    We present an approach of using a stochastic optimization technique namely genetic algorithm in association with quantum chemical methods to first elucidate structure and then infrared spectroscopy and thermochemistry of water-alkaline earth metal ion clusters. We show that an initial determination of structure using stochastic techniques and following it up with quantum chemical calculation can lead to much faster convergence to high quality structures for these systems. Infrared spectroscopic, thermochemical calculations and natural population analysis based charges on the central metal ions are done to further ascertain the correctness of the structures using our technique. We have done a comparative study with a pure density functional theory calculation and have shown that even for very poor starting guess geometries genetic algorithm in conjunction with density functional theory indeed converges to global structure while pure density functional theory can encounter problems in certain situations to arrive at global geometry. We have also discussed usefulness of Unimodal Normal distribution crossover for handling situation with real coded variables.

  9. Quantum Theory of Fast Chemical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Light, John C

    2007-07-30

    The aims of the research under this grant were to develop a theoretical understanding and predictive abiility for a variety of processes occurring in the gas phase. These included bimolecular chemical exchange reactions, photodissociation, predissociation resonances, unimolecular reactions and recombination reactions. In general we assumed a knowledge, from quantum chemistry, of the interactions of the atoms and molecular fragments involved. Our focus was primarily on the accurate (quantum) dynamics of small molecular systems. This has been important for many reactions related to combustion and atmospheric chemistry involving light atom transfer reactions and, for example, resonances in dissociation and recombination reactions. The rates of such reactions, as functions of temperature, internal states, and radiation (light), are fundamental for generating models of overall combustion processes. A number of new approaches to these problems were developed inclluding the use of discrete variable representations (DVR's) for evaluating rate constants with the flux-flux correlation approach, finite range approaches to exact quantum scattering calculations, energy selected basis representations, transition state wave packet approaches and improved semiclassical approaches. These (and others) were applied to a number of reactive systems and molecular systems of interest including (many years ago) the isotopic H + H2 exchange reactions, the H2 + OH (and H + H2O) systems, Ozone resonances, van der Waals molecule reactions, etc. A total of 7 graduate students, and 5 post-doctoral Research Associates were supported, at least in part, under this grant and seven papers were published with a total of 10 external collaborators. The majority of the 36 publications under this grant were supported entirely by DOE.

  10. Modern Approach to Quantum Mechanics

    Science.gov (United States)

    Townsend, John S.

    Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics lets professors expose their undergraduates to the excitement and insight of Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical, and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new: Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems gives students something new and interesting while providing elegant but straightforward examples of the essential structure of quantum mechanics. When wave mechanics is introduced later, students perceive it correctly as only one aspect of quantum mechanics and not the core of the subject. Praised for its pedagogical brilliance, clear writing, and careful explanations, this book is destined to become a landmark text.

  11. Quantum dynamics of fast chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Light, J.C. [Univ. of Chicago, IL (United States)

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  12. Quantum-chemical insights from deep tensor neural networks

    Science.gov (United States)

    Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre

    2017-01-01

    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol-1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.

  13. Classical approach in quantum physics

    CERN Document Server

    Solov'ev, Evgeni A

    2010-01-01

    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom recently discovered with the help of Poincar$\\acute{\\mathrm{e}}$ section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treating as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semicla...

  14. Quantum Chemical Strain Analysis For Mechanochemical Processes.

    Science.gov (United States)

    Stauch, Tim; Dreuw, Andreas

    2017-03-24

    The use of mechanical force to initiate a chemical reaction is an efficient alternative to the conventional sources of activation energy, i.e., heat, light, and electricity. Applications of mechanochemistry in academic and industrial laboratories are diverse, ranging from chemical syntheses in ball mills and ultrasound baths to direct activation of covalent bonds using an atomic force microscope. The vectorial nature of force is advantageous because specific covalent bonds can be preconditioned for rupture by selective stretching. However, the influence of mechanical force on single molecules is still not understood at a fundamental level, which limits the applicability of mechanochemistry. As a result, many chemists still resort to rules of thumb when it comes to conducting mechanochemical syntheses. In this Account, we show that comprehension of mechanochemistry at the molecular level can be tremendously advanced by quantum chemistry, in particular by using quantum chemical force analysis tools. One such tool is the JEDI (Judgement of Energy DIstribution) analysis, which provides a convenient approach to analyze the distribution of strain energy in a mechanically deformed molecule. Based on the harmonic approximation, the strain energy contribution is calculated for each bond length, bond angle and dihedral angle, thus providing a comprehensive picture of how force affects molecules. This Account examines the theoretical foundations of quantum chemical force analysis and provides a critical overview of the performance of the JEDI analysis in various mechanochemical applications. We explain in detail how this analysis tool is to be used to identify the "force-bearing scaffold" of a distorted molecule, which allows both the rationalization and the optimization of diverse mechanochemical processes. More precisely, we show that the inclusion of every bond, bending and torsion of a molecule allows a particularly insightful discussion of the distribution of mechanical

  15. Quantum chemical studies of estrogenic compounds

    Science.gov (United States)

    Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...

  16. Direct Approach to Quantum Tunneling

    Science.gov (United States)

    Andreassen, Anders; Farhi, David; Frost, William; Schwartz, Matthew D.

    2016-12-01

    The decay rates of quasistable states in quantum field theories are usually calculated using instanton methods. Standard derivations of these methods rely in a crucial way upon deformations and analytic continuations of the physical potential and on the saddle-point approximation. While the resulting procedure can be checked against other semiclassical approaches in some one-dimensional cases, it is challenging to trace the role of the relevant physical scales, and any intuitive handle on the precision of the approximations involved is at best obscure. In this Letter, we use a physical definition of the tunneling probability to derive a formula for the decay rate in both quantum mechanics and quantum field theory directly from the Minkowski path integral, without reference to unphysical deformations of the potential. There are numerous benefits to this approach, from nonperturbative applications to precision calculations and aesthetic simplicity.

  17. Retrocausality in Quantum Phenomena and Chemical Evolution

    Directory of Open Access Journals (Sweden)

    Koichiro Matsuno

    2016-10-01

    Full Text Available The interplay between retrocausality and the time-reversal symmetry of the dynamical law of quantum mechanics underscores the significance of the measurement dynamics with the use of indivisible and discrete quantum particles to be mediated. One example of empirical evidence demonstrating the significance of retrocausality going along with time-reversal symmetry is seen in the operation of a reaction cycle to be expected in chemical evolution. A reaction cycle can hold itself when the causative operation of the cycle remains robust, even when facing frequent retrocausal interventions of a quantum-mechanical origin. Quantum mechanics in and of itself has potential in raising a reaction cycle in the prebiotic phase of chemical evolution, even without any help of artefactual scaffoldings of an external origin.

  18. Sensitive chemical compass assisted by quantum criticality

    Science.gov (United States)

    Cai, C. Y.; Ai, Qing; Quan, H. T.; Sun, C. P.

    2012-02-01

    A radical-pair-based chemical reaction might be used by birds for navigation via the geomagnetic direction. The inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could respond to a weak magnetic field and be sensitive to the direction of such a field; this then results in different photopigments to be sensed by the avian eyes. Here, we propose a quantum bionic setup, inspired by the avian compass, as an ultrasensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of detection of weak magnetic fields.

  19. Sensitive Chemical Compass Assisted by Quantum Criticality

    CERN Document Server

    Cai, C Y; Quan, H T; Sun, C P

    2011-01-01

    The radical-pair-based chemical reaction could be used by birds for the navigation via the geomagnetic direction. An inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could response to the weak magnetic field and be sensitive to the direction of such a field and then results in different photopigments in the avian eyes to be sensed. Here, we propose a quantum bionic setup for the ultra-sensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via the recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of the detection of the weak magnetic field.

  20. Interpreting quantum theory a therapeutic approach

    CERN Document Server

    Friederich, Simon

    2014-01-01

    Is it possible to approach quantum theory in a 'therapeutic' vein that sees its foundational problems as arising from mistaken conceptual presuppositions? The book explores the prospects for this project and, in doing so, discusses such fascinating issues as the nature of quantum states, explanation in quantum theory, and 'quantum non-locality'.

  1. Interpreting quantum theory a therapeutic approach

    CERN Document Server

    Friederich, S

    2014-01-01

    Is it possible to approach quantum theory in a 'therapeutic' vein that sees its foundational problems as arising from mistaken conceptual presuppositions? The book explores the prospects for this project and, in doing so, discusses such fascinating issues as the nature of quantum states, explanation in quantum theory, and 'quantum non-locality'.

  2. Alternative algebraic approaches in quantum chemistry

    Science.gov (United States)

    Mezey, Paul G.

    2015-01-01

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

  3. Algorithmic approach to quantum physics

    CERN Document Server

    Ozhigov, Y

    2004-01-01

    Algorithmic approach is based on the assumption that any quantum evolution of many particle system can be simulated on a classical computer with the polynomial time and memory cost. Algorithms play the central role here but not the analysis, and a simulation gives a "film" which visualizes many particle quantum dynamics and is demonstrated to a user of the model. Restrictions following from the algorithm theory are considered on a level of fundamental physical laws. Born rule for the calculation of quantum probability as well as the decoherence is derived from the existence of a nonzero minimal value of amplitude module - a grain of amplitude. The limitation on the classical computational resources gives the unified description of quantum dynamics that is not divided to the unitary dynamics and measurements and does not depend on the existence of observer. It is proposed the description of states based on the nesting of particles in each other that permits to account the effects of all levels in the same mode...

  4. SOME QUANTUM CHEMICAL STUDY ON THE STRUCTURAL ...

    African Journals Online (AJOL)

    Preferred Customer

    Formula. Formula weight. (gmol-1) ... Quantum chemical calculations (Density Functional Theory, B3LYP/6-31G (d)) were used to purposed the ... correlation functional [B3LYP/6-31G(d)]) calculations were done by using Gaussian 03 program ...

  5. Local approach to quantum entanglement

    Science.gov (United States)

    Ho-Chih, Lin

    Quantum entanglement is the key property that makes quantum information theory different from its classical counterpart and is also a valuable physical resource with massive potential for technological applications. However, our understanding of entanglement is still far from com plete despite intense research activities. Like other physical resources, the first step towards exploiting them fully is to know how to quantify. There are many reasons to focus on the en tanglement of continuous-variable states since the underlying degrees of freedom of physical systems carrying quantum information are frequently continuous, rather than discrete. Much of the effort has been concentrated on Gaussian states, because these are common as the ground or thermal states of optical modes. Within this framework, many interesting topics have been stud ied and some significant progress made. Nevertheless, non-Gaussian states are also extremely important this is especially so in condensed-phase systems, where harmonic behaviour in any degree of freedom is likely to be only an approximation. So far, there is little knowledge about the quantification of entanglement in non-Gaussian states. This thesis aims to contribute to the active field of research in quantum entanglement by introducing a new approach to the analysis of entanglement, especially in continuous-variable states, and shows that it leads to the first systematic quantification of the (local) entanglement in arbitrary bipartite non-Gaussian states. By applying this local approach, many new insights can be gained. Notably, local entanglements of systems with smooth wavefunctions are fully characterised by the derived simple expressions, provided the wavefunction is known. The local (logarithmic) negativity of any two-mode mixed states can be directly computed from the closed-form formulae given. For multi-mode mixed states, this approach provides a scheme that permits much simpler numerical computation for quantifying

  6. Quantum-Chemical Insights from Deep Tensor Neural Networks

    CERN Document Server

    Schütt, Kristof T; Chmiela, Stefan; Müller, Klaus R; Tkatchenko, Alexandre

    2016-01-01

    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text, and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks (DTNN), which leads to size-extensive and uniformly accurate (1 kcal/mol) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the DTNN model reveals a classification of aromatic rings with respect to their stability -- a useful property that is not contained as such in the training dataset. Further applications of DTNN for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies...

  7. The genesis of the quantum theory of the chemical bond

    CERN Document Server

    Esposito, S

    2013-01-01

    An historical overview is given of the relevant steps that allowed the genesis of the quantum theory of the chemical bond, starting from the appearance of the new quantum mechanics and following later developments till approximately 1931. General ideas and some important details are discussed concerning molecular spectroscopy, as well as quantum computations for simple molecular systems performed within perturbative and variational approaches, for which the Born-Oppenheimer method provided a quantitative theory accounting for rotational, vibrational and electronic states. The novel concepts introduced by the Heitler-London theory, complemented by those underlying the method of the molecular orbitals, are critically analyzed along with some of their relevant applications. Further improvements in the understanding of the nature of the chemical bond are also considered, including the ideas of one-electron and three-electron bonds introduced by Pauling, as well as the generalizations of the Heitler-London theory ...

  8. Quantum-chemical insights from deep tensor neural networks

    Science.gov (United States)

    Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan; Müller, Klaus R.; Tkatchenko, Alexandre

    2017-01-01

    Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol−1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems. PMID:28067221

  9. Theoretical study on aquation reaction of cis-platin complex: RISM-SCF-SEDD, a hybrid approach of accurate quantum chemical method and statistical mechanics.

    Science.gov (United States)

    Yokogawa, Daisuke; Ono, Kohei; Sato, Hirofumi; Sakaki, Shigeyoshi

    2011-11-14

    The ligand exchange process of cis-platin in aqueous solution was studied using RISM-SCF-SEDD (reference interaction site model-self-consistent field with spatial electron density distribution) method, a hybrid approach of quantum chemistry and statistical mechanics. The analytical nature of RISM theory enables us to compute accurate reaction free energy in aqueous solution based on CCSD(T), together with the microscopic solvation structure around the complex. We found that the solvation effect is indispensable to promote the dissociation of the chloride anion from the complex.

  10. Charge transfer, chemical potentials, and the nature of functional groups: answers from quantum chemical topology.

    Science.gov (United States)

    Pendás, A Martín; Francisco, E; Blanco, M A

    2007-01-01

    We analyze the response of a quantum group within a molecule to charge transfer by using the interacting quantum atoms approach (IQA), an energy partitioning scheme within the quantum theory of atoms in molecules (QTAM). It is shown that this response lies at the core of the concept of the functional group. The manipulation of fractional electron populations is carried out by using distribution functions for the electron number within the quantum basins. Several test systems are studied to show that similar chemical potential groups are characterized by similar energetic behavior upon interaction with other groups. The origin of the empirical additivity rules for group energies in simple hydrocarbons is also investigated. It turns out to rest on the independent saturation of both the self-energies and the interaction energies of the groups as the size of the chain increases. We also show that our results are compatible with the standard group energies of the QTAM.

  11. Random Matrix theory approach to Quantum mechanics

    OpenAIRE

    Chaitanya, K. V. S. Shiv

    2015-01-01

    In this paper, we give random matrix theory approach to the quantum mechanics using the quantum Hamilton-Jacobi formalism. We show that the bound state problems in quantum mechanics are analogous to solving Gaussian unitary ensemble of random matrix theory. This study helps in identify the potential appear in the joint probability distribution function in the random matrix theory as a super potential. This approach allows to extend the random matrix theory to the newly discovered exceptional ...

  12. Majorana, Pauling and the quantum theory of the chemical bond

    CERN Document Server

    Esposito, S

    2013-01-01

    We discuss in detail very little known results obtained by Majorana as early as 1931, regarding the quantum theory of the chemical bond in homopolar molecules, based on the key concept of exchange interaction. After a brief historical overview of the quantum homopolar valence theory, we address the intriguing issues of the formation of the helium molecular ion, He2+, and of the accurate description of the hydrogen molecule, H2. For the first case, the group theory-inspired approach used by Majorana is contrasted with that more known followed by Pauling (and published few months after that of Majorana), while for the second case we focus on his proposal concerning the possible existence of ionic structures in homopolar compounds, just as in the hydrogen molecule. The novelty and relevance of Majorana's results in the modern research on molecular and chemical physics is emphasized as well.

  13. Approaches to measuring entanglement in chemical magnetometers.

    Science.gov (United States)

    Tiersch, M; Guerreschi, G G; Clausen, J; Briegel, H J

    2014-01-01

    Chemical magnetometers are radical pair systems such as solutions of pyrene and N,N-dimethylaniline (Py-DMA) that show magnetic field effects in their spin dynamics and their fluorescence. We investigate the existence and decay of quantum entanglement in free geminate Py-DMA radical pairs and discuss how entanglement can be assessed in these systems. We provide an entanglement witness and propose possible observables for experimentally estimating entanglement in radical pair systems with isotropic hyperfine couplings. As an application, we analyze how the field dependence of the entanglement lifetime in Py-DMA could in principle be used for magnetometry and illustrate the propagation of measurement errors in this approach.

  14. A Hybrid Architecture Approach for Quantum Algorithms

    Directory of Open Access Journals (Sweden)

    Mohammad R.S. Aghaei

    2009-01-01

    Full Text Available Problem statement: In this study, a general plan of hybrid architecture for quantum algorithms is proposed. Approach: Analysis of the quantum algorithms shows that these algorithms were hybrid with two parts. First, the relationship of classical and quantum parts of the hybrid algorithms was extracted. Then a general plan of hybrid structure was designed. Results: This plan was illustrated the hybrid architecture and the relationship of classical and quantum parts of the algorithms. This general plan was used to increase implementation performance of quantum algorithms. Conclusion/Recommendations: Moreover, simulation results of quantum algorithms on the hybrid architecture proved that quantum algorithms can be implemented on the general plan as well.

  15. Quantum Matter-Photonics Framework: Analyses of Chemical Conversion Processes

    CERN Document Server

    Tapia, O

    2014-01-01

    A quantum Matter-Photonics framework is adapted to help scrutinize chemical reaction mechanisms and used to explore a process mapped from chemical tree topological model. The chemical concept of bond knitting/breaking is reformulated via partitioned base sets leading to an abstract and general quantum presentation. Pivotal roles are assigned to entanglement, coherence,de-coherence and Feshbach resonance quantum states that permit apprehend gating states in conversion processes. A view from above in the state energy eigenvalue ladder, belonging to full system spectra complement the standard view from ground state. A full quantum physical view supporting chemical change obtains.

  16. Quantum chemical treatments of metal clusters.

    Science.gov (United States)

    Weigend, Florian; Ahlrichs, Reinhart

    2010-03-28

    This work focuses on finding and rationalizing the building principles of clusters with approximately 300 atoms of different types of metals: main group elements (Al, Sn), alkaline earth metals (Mg), transition metals (Pd) and clusters consisting of two different elements (Ir and Pt). Two tools are inevitable for this purpose: (i) quantum chemical methods that are able to treat a given cluster with both sufficient accuracy and efficiency and (ii) algorithms that are able to systematically scan the (3n-6)-dimensional potential surface of an n-atomic cluster for promising isomers. Currently, the only quantum chemical method that can be applied to metal clusters is density functional theory (DFT). Other methods either do not account for the multi-reference character of metal clusters or are too expensive and thus can be applied only to clusters of very few atoms, which usually is not sufficient for studying the building principles. The accuracy of DFT is not known a priori, but extrapolations to bulk values from calculated series of data show satisfying agreement with experimental data. For scans of the potential surface, simulated annealing techniques or genetic algorithms were used for the smaller clusters (approx. 20-30 atoms), and for the larger clusters considerations were restricted to selected packings and shapes. For the mixed-metallic clusters, perturbation theory turned out to be efficient and successful for finding the most promising distributions of the two atom types at the different sites.

  17. Chemical compass for avian magnetoreception as a quantum coherent device

    CERN Document Server

    Cai, Jianming

    2013-01-01

    It is known that more than 50 species use the Earth's magnetic field for orientation and navigation. Intensive studies particularly behavior experiments with birds provide support for a chemical compass based on magnetically sensitive free radical reactions as a source of this sense. However, the fundamental question of whether and how quantum coherence plays an essential role in such a chemical compass model of avian magnetoreception yet remains controversial. Here, we show that the essence of the chemical compass model can be understood in analogy to a quantum interferometer exploiting quantum coherence. Within the framework of quantum metrology, we quantify quantum coherence and demonstrate that it is a resource for chemical magnetoreception. Our results allow us to understand and predict how various factors can affect the performance of a chemical compass from the unique perspective of quantum coherence assisted metrology. This represents a crucial step to affirm avian magnetoreception as an example of qu...

  18. Synthesis, spectral analysis and quantum chemical studies on molecular geometry of (2E,6E)-2,6-bis(2-chlorobenzylidene)cyclohexanone: Experimental and theoretical approaches

    Science.gov (United States)

    Verma, Anil Kumar; Bishnoi, Abha; Fatma, Shaheen

    2016-07-01

    (2E,6E)-2,6-bis(2-chlorobenzylidene) cyclohexanone was synthesized and characterized by proton and carbon nuclear magnetic resonance, infrared, ultraviolet-visible, mass spectral analysis and X-ray crystallography techniques. Quantum Chemical calculations were done using Becke3-Lee-Yang-Parr with 6-31, 6-311, 6-311 + and 6-311++G (d, p) as basis sets and CAM-B3LYP with 6-31G(d,p) as the basis set. A good correlation between calculated and experimental spectroscopic data has been accomplished. Ultraviolet-Visible spectrum of the molecule was recorded in the region 200-500 nm and the electronic properties and composition were obtained using Time Dependent Density Functional Theory method. X-ray parameters (bonds, bond angles and torsion angles), Electric dipole moment, Mulliken atomic charges, polarizability and first static hyperpolarizability values have been calculated. Hyperconjugative interactions were studied with the help of natural bond orbital analysis. The thermodynamic properties of the compound were calculated at different temperatures.

  19. Algebraic-statistical approach to quantum mechanics

    CERN Document Server

    Slavnov, D A

    2001-01-01

    It is proposed the scheme of quantum mechanics, in which a Hilbert space and the linear operators are not primary elements of the theory. Instead of it certain variant of the algebraic approach is considered. The elements of noncommutative algebra (observables) and the nonlinear functionals on this algebra (physical states) are used as the primary constituents. The functionals associate with results of a particular measurement. It is suggested to consider certain ensembles of the physical states as quantum states of the standart quantum mechanics. It is shown that in such scheme the mathematical formalism of the standart quantum mechanics can be reproduced completely.

  20. A modern approach to quantum mechanics

    CERN Document Server

    Townsend, John S

    2012-01-01

    Using an innovative approach that students find both accessible and exciting, A Modern Approach to Quantum Mechanics, Second Edition lays out the foundations of quantum mechanics through the physics of intrinsic spin. Written to serve as the primary textbook for an upper-division course in quantum mechanics, Townsend's text gives professors and students a refreshing alternative to the old style of teaching, by allowing the basic physics of spin systems to drive the introduction of concepts such as Dirac notation, operators, eigenstates and eigenvalues, time evolution in quantum mechanics, and entanglement. Chapters 6 through 10 cover the more traditional subjects in wave mechanics-the Schrodinger equation in position space, the harmonic oscillator, orbital angular momentum, and central potentials-but they are motivated by the foundations developed in the earlier chapters. Students using this text will perceive wave mechanics as an important aspect of quantum mechanics, but not necessarily the core of the subj...

  1. Wavelet Scattering Regression of Quantum Chemical Energies

    CERN Document Server

    Hirn, Matthew; Poilvert, Nicolas

    2016-01-01

    We introduce multiscale invariant dictionaries to estimate quantum chemical energies of organic molecules, from training databases. Molecular energies are invariant to isometric atomic displacements, and are Lipschitz continuous to molecular deformations. Similarly to density functional theory (DFT), the molecule is represented by an electronic density function. A multiscale invariant dictionary is calculated with wavelet scattering invariants. It cascades a first wavelet transform which separates scales, with a second wavelet transform which computes interactions across scales. Sparse scattering regressions give state of the art results over two databases of organic planar molecules. On these databases, the regression error is of the order of the error produced by DFT codes, but at a fraction of the computational cost.

  2. The quantum Hall effects: Philosophical approach

    Science.gov (United States)

    Lederer, P.

    2015-05-01

    The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.

  3. Chemical Reactivity as Described by Quantum Chemical Methods

    Directory of Open Access Journals (Sweden)

    F. De Proft

    2002-04-01

    Full Text Available Abstract: Density Functional Theory is situated within the evolution of Quantum Chemistry as a facilitator of computations and a provider of new, chemical insights. The importance of the latter branch of DFT, conceptual DFT is highlighted following Parr's dictum "to calculate a molecule is not to understand it". An overview is given of the most important reactivity descriptors and the principles they are couched in. Examples are given on the evolution of the structure-property-wave function triangle which can be considered as the central paradigm of molecular quantum chemistry to (for many purposes a structure-property-density triangle. Both kinetic as well as thermodynamic aspects can be included when further linking reactivity to the property vertex. In the field of organic chemistry, the ab initio calculation of functional group properties and their use in studies on acidity and basicity is discussed together with the use of DFT descriptors to study the kinetics of SN2 reactions and the regioselectivity in Diels Alder reactions. Similarity in reactivity is illustrated via a study on peptide isosteres. In the field of inorganic chemistry non empirical studies of adsorption of small molecules in zeolite cages are discussed providing Henry constants and separation constants, the latter in remarkable good agreement with experiments. Possible refinements in a conceptual DFT context are presented. Finally an example from biochemistry is discussed : the influence of point mutations on the catalytic activity of subtilisin.

  4. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach.

    Science.gov (United States)

    Vysotsky, Yuri B; Fomina, Elena S; Belyaeva, Elena A; Fainerman, Valentin B; Vollhardt, Dieter

    2013-02-14

    In the framework of the quantum chemical semiempirical PM3 method thermodynamic and structural parameters of the formation and clusterization of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K at the water/alkane vapor C(n)H(2n+2), (n(CH(3)) = 6-16) interface were calculated. The dependencies of enthalpy, entropy and Gibbs' energy of clusterization per one monomer molecule of 2D films on the alkyl chain length of corresponding alcohols and alkanes, the molar fraction of alkanes in the monolayers and the immersion degree of alcohol molecules into the water phase were shown to be linear or stepwise. The threshold of spontaneous clusterization of aliphatic alcohols at the water/alkane vapor interface was 10-11 carbon atoms at 298 K which is in line with experimental data at the air/water interface. It is shown that the presence of alkane vapor does not influence the process of alcohol monolayer formation. The structure of these monolayers is analogous to those obtained at the air/water interface in agreement with experimental data. The inclusion of alkane molecules into the amphiphilic monolayer at the water/alkane vapor interface is possible for amphiphiles with the spontaneous clusterization threshold at the air/water interface (n(s)(0)) of at least 16 methylene units in the alkyl chain, and it does not depend on the molar fraction of alkanes in the corresponding monolayer. The inclusion of alkanes from the vapor phase into the amphiphilic monolayer also requires that the difference between the alkyl chain lengths of alcohols and alkanes is not larger than n(s)(0) - 15 and n(s)(0) - 14 for the 2D film 1 and 2D film 2, respectively.

  5. Quantum chemical approach in the description of the amphiphile clusterization at the air/liquid and liquid/liquid interfaces with phase nature accounting. I. Aliphatic normal alcohols at the air/water interface.

    Science.gov (United States)

    Vysotsky, Yuri B; Belyaeva, Elena A; Kartashynska, Elena S; Fainerman, Valentine B; Smirnova, Natalia A

    2015-02-19

    A new model based on the quantum chemical approach is proposed to describe structural and thermodynamic parameters of clusterization for substituted alkanes at the air/liquid and liquid/liquid interfaces. The new model by the authors, unlike the previous one, proposes an explicit account of the liquid phase (phases) influence on the parameters of monomers, clusters and monolayers of substituted alkanes at the regarded interface. The calculations were carried out in the frameworks of the quantum chemical semiempirical PM3 method (Mopac 2012), using the COSMO procedure. The new model was tested in the calculations of the clusterization parameters of fatty alcohols under the standard conditions at the air/water interface. The enthalpy, Gibbs' energy and absolute entropy of formation for alcohol monomers alongside with clusterization parameters for the cluster series including the monolayer at air/water interface were calculated. In our calculations the sinkage of monomers, molecules in clusters and monolayers was varied from 1 up to 5 methylene groups. Thermodynamic parameters calculated using the proposed model for the alcohol monolayers are in a good agreement with the corresponding experimental data. However, the proposed model cannot define the most energetically preferable immersion of the monolayer molecules in the water phase.

  6. Quantum approach to Bertrand duopoly

    Science.gov (United States)

    Fraçkiewicz, Piotr; Sładkowski, Jan

    2016-09-01

    The aim of the paper is to study the Bertrand duopoly example in the quantum domain. We use two ways to write the game in terms of quantum theory. The first one adapts the Li-Du-Massar scheme for the Cournot duopoly. The second one is a simplified model that exploits a two qubit entangled state. In both cases, we focus on finding Nash equilibria in the resulting games. Our analysis allows us to take another look at the classic model of Bertrand.

  7. Quantum-State Controlled Chemical Reactions of Ultracold KRb Molecules

    CERN Document Server

    Ospelkaus, S; Wang, D; de Miranda, M H G; Neyenhuis, B; Quéméner, G; Julienne, P S; Bohn, J L; Jin, D S; Ye, J

    2009-01-01

    How does a chemical reaction proceed at ultralow temperatures? Can simple quantum mechanical rules such as quantum statistics, single scattering partial waves, and quantum threshold laws provide a clear understanding for the molecular reactivity under a vanishing collision energy? Starting with an optically trapped near quantum degenerate gas of polar $^{40}$K$^{87}$Rb molecules prepared in their absolute ground state, we report experimental evidence for exothermic atom-exchange chemical reactions. When these fermionic molecules are prepared in a single quantum state at a temperature of a few hundreds of nanoKelvins, we observe p-wave-dominated quantum threshold collisions arising from tunneling through an angular momentum barrier followed by a near-unity probability short-range chemical reaction. When these molecules are prepared in two different internal states or when molecules and atoms are brought together, the reaction rates are enhanced by a factor of 10 to 100 due to s-wave scattering, which does not ...

  8. Quantum approach to classical statistical mechanics.

    Science.gov (United States)

    Somma, R D; Batista, C D; Ortiz, G

    2007-07-20

    We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.

  9. Numerical approach of the quantum circuit theory

    Science.gov (United States)

    Silva, J. J. B.; Duarte-Filho, G. C.; Almeida, F. A. G.

    2017-03-01

    In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency for a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.

  10. Numerical approach of the quantum circuit theory

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.J.B., E-mail: jaedsonfisica@hotmail.com; Duarte-Filho, G.C.; Almeida, F.A.G.

    2017-03-15

    In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency for a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.

  11. Quantum theory of chemical reaction rates

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.H. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Chemical Sciences Div.

    1994-10-01

    If one wishes to describe a chemical reaction at the most detailed level possible, i.e., its state-to-state differential scattering cross section, then it is necessary to solve the Schroedinger equation to obtain the S-matrix as a function of total energy E and total angular momentum J, in terms of which the cross sections can be calculated as given by equation (1) in the paper. All other physically observable attributes of the reaction can be derived from the cross sections. Often, in fact, one is primarily interested in the least detailed quantity which characterizes the reaction, namely its thermal rate constant, which is obtained by integrating Eq. (1) over all scattering angles, summing over all product quantum states, and Boltzmann-averaging over all initial quantum states of reactants. With the proper weighting factors, all of these averages are conveniently contained in the cumulative reaction probability (CRP), which is defined by equation (2) and in terms of which the thermal rate constant is given by equation (3). Thus, having carried out a full state-to-state scattering calculation to obtain the S-matrix, one can obtain the CRP from Eq. (2), and then rate constant from Eq. (3), but this seems like ``overkill``; i.e., if one only wants the rate constant, it would clearly be desirable to have a theory that allows one to calculate it, or the CRP, more directly than via Eq. (2), yet also correctly, i.e., without inherent approximations. Such a theory is the subject of this paper.

  12. Contextual approach to quantum formalism

    CERN Document Server

    Khrennikov, Andrei

    2009-01-01

    The aim of this book is to show that the probabilistic formalisms of classical statistical mechanics and quantum mechanics can be unified on the basis of a general contextual probabilistic model. By taking into account the dependence of (classical) probabilities on contexts (i.e. complexes of physical conditions), one can reproduce all distinct features of quantum probabilities such as the interference of probabilities and the violation of Bell’s inequality. Moreover, by starting with a formula for the interference of probabilities (which generalizes the well known classical formula of total probability), one can construct the representation of contextual probabilities by complex probability amplitudes or, in the abstract formalism, by normalized vectors of the complex Hilbert space or its hyperbolic generalization. Thus the Hilbert space representation of probabilities can be naturally derived from classical probabilistic assumptions. An important chapter of the book critically reviews known no-go theorems...

  13. Quantum Lie theory a multilinear approach

    CERN Document Server

    Kharchenko, Vladislav

    2015-01-01

    This is an introduction to the mathematics behind the phrase “quantum Lie algebra”. The numerous attempts over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary “quantum” Lie bracket have not been widely accepted. In this book, an alternative approach is developed that includes multivariable operations. Among the problems discussed are the following: a PBW-type theorem; quantum deformations of Kac--Moody algebras; generic and symmetric quantum Lie operations; the Nichols algebras; the Gurevich--Manin  Lie algebras;  and Shestakov--Umirbaev  operations for the Lie theory of nonassociative products.  Opening with an introduction for beginners and continuing as a textbook for graduate students in physics and mathematics, the book can also be used as a reference by more advanced readers. With the exception of the introductory chapter, the content of this monograph has not previously appeared in book form.

  14. New Approach to Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Sze Kui Ng

    2008-04-01

    Full Text Available It is shown that a photon with a specific frequency can be identified with the Dirac magnetic monopole. When a Dirac-Wilson line forms a Dirac-Wilson loop, it is a photon. This loop model of photon is exactly solvable. From the winding numbers of this loop-form of photon, we derive the quantization properties of energy and electric charge. A new QED theory is presented that is free of ultravioletdivergences. The Dirac-Wilson line is as the quantum photon propagator of the new QED theory from which we can derive known QED effects such as the anomalous magnetic moment and the Lamb shift. The one-loop computation of these effects is simpler and is more accurate than that in the conventional QED theory. Furthermore, from the new QED theory, we have derived a new QED effect. A new formulation of the Bethe-Salpeter (BS equation solves the difficulties of the BS equation and gives a modified ground state of the positronium. By the mentioned new QED effect and by the new formulation of the BS equation, a term in the orthopositronium decay rate that is missing in the conventional QED is found, resolving the orthopositronium lifetime puzzle completely. It is also shown that the graviton can be constructed from the photon, yielding a theory of quantum gravity that unifies gravitation and electromagnetism.

  15. New Approach to Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Sze Kui Ng

    2008-04-01

    Full Text Available It is shown that a photon with a specific frequency can be identified with the Dirac mag- netic monopole. When a Dirac-Wilson line forms a Dirac-Wilson loop, it is a photon. This loop model of photon is exactly solvable. From the winding numbers of this loop- form of photon, we derive the quantization properties of energy and electric charge. A new QED theory is presented that is free of ultraviolet divergences. The Dirac-Wilson line is as the quantum photon propagator of the new QED theory from which we can derive known QED e ects such as the anomalous magnetic moment and the Lamb shift. The one-loop computation of these e ects is simpler and is more accurate than that in the conventional QED theory. Furthermore, from the new QED theory, we have derived a new QED e ect. A new formulation of the Bethe-Salpeter (BS equation solves the di culties of the BS equation and gives a modified ground state of the positronium. By the mentioned new QED e ect and by the new formulation of the BS equation, a term in the orthopositronium decay rate that is missing in the conventional QED is found, resolving the orthopositronium lifetime puzzle completely. It is also shown that the graviton can be constructed from the photon, yielding a theory of quantum gravity that unifies gravitation and electromagnetism.

  16. Towards Lagrangian approach to quantum computations

    CERN Document Server

    Vlasov, A Yu

    2003-01-01

    In this work is discussed possibility and actuality of Lagrangian approach to quantum computations. Finite-dimensional Hilbert spaces used in this area provide some challenge for such consideration. The model discussed here can be considered as an analogue of Weyl quantization of field theory via path integral in L. D. Faddeev's approach. Weyl quantization is possible to use also in finite-dimensional case, and some formulas may be simply rewritten with change of integrals to finite sums. On the other hand, there are specific difficulties relevant to finite case. This work has some allusions with phase space models of quantum computations developed last time by different authors.

  17. Quantum-chemical studies on porphyrins, fullerenes and carbon nanostructures

    CERN Document Server

    Loboda, Oleksandr

    2014-01-01

    ​This book presents theoretical studies of electronic structure, optical and spectroscopic properties of a number of compounds. It presents new, faster calculation methods for applications in quantum-chemical theory of electronic structures.

  18. USI/Chemplex/Quantum Chemical Co. Outfall Study, 1987

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment samples collected in 1987 from the Quantum Chemical Corporation outfall on the Upper Mississippi River detected 14 polycyclic aromatic hydrocarbons (PAH's)....

  19. A direct approach to quantum tunneling

    CERN Document Server

    Andreassen, Anders; Frost, William; Schwartz, Matthew D

    2016-01-01

    The decay rates of quasistable states in quantum field theories are usually calculated using instanton methods. Standard derivations of these methods rely in a crucial way upon deformations and analytic continuations of the physical potential, and on the saddle point approximation. While the resulting procedure can be checked against other semi-classical approaches in some one-dimensional cases, it is challenging to trace the role of the relevant physical scales, and any intuitive handle on the precision of the approximations involved are at best obscure. In this paper, we use a physical definition of the tunneling probability to derive a formula for the decay rate in both quantum mechanics and quantum field theory directly from the Minkowski path integral, without reference to unphysical deformations of the potential. There are numerous benefits to this approach, from non-perturbative applications to precision calculations and aesthetic simplicity.

  20. Quantum mechanics new approaches to selected topics

    CERN Document Server

    Lipkin, Harry J

    2007-01-01

    Acclaimed as ""excellent"" (Nature) and ""very original and refreshing"" (Physics Today), this collection of self-contained studies is geared toward advanced undergraduates and graduate students. Its broad selection of topics includes the Mössbauer effect, many-body quantum mechanics, scattering theory, Feynman diagrams, and relativistic quantum mechanics.Author Harry J. Lipkin, a well-known teacher at Israel's Weizmann Institute, takes an unusual approach by introducing many interesting physical problems and mathematical techniques at a much earlier point than in conventional texts. This meth

  1. Finite quantum electrodynamics the causal approach

    CERN Document Server

    Scharf, Günter

    2014-01-01

    In this classic text for advanced undergraduates and graduate students of physics, author Günter Scharf carefully analyzes the role of causality in quantum electrodynamics. His approach offers full proofs and detailed calculations of scattering processes in a mathematically rigorous manner. This third edition contains Scharf's revisions and corrections plus a brief new Epilogue on gauge invariance of quantum electrodynamics to all orders. The book begins with Dirac's theory, followed by the quantum theory of free fields and causal perturbation theory, a powerful method that avoids ultraviolet divergences and solves the infrared problem by means of the adiabatic limit. Successive chapters explore properties of the S-matrix — such as renormalizability, gauge invariance, and unitarity — the renormalization group, and interactive fields. Additional topics include electromagnetic couplings and the extension of the methods to non-abelian gauge theories. Each chapter is supplemented with problems, and four appe...

  2. Quantum cryptography approaching the classical limit.

    Science.gov (United States)

    Weedbrook, Christian; Pirandola, Stefano; Lloyd, Seth; Ralph, Timothy C

    2010-09-10

    We consider the security of continuous-variable quantum cryptography as we approach the classical limit, i.e., when the unknown preparation noise at the sender's station becomes significantly noisy or thermal (even by as much as 10(4) times greater than the variance of the vacuum mode). We show that, provided the channel transmission losses do not exceed 50%, the security of quantum cryptography is not dependent on the channel transmission, and is therefore incredibly robust against significant amounts of excess preparation noise. We extend these results to consider for the first time quantum cryptography at wavelengths considerably longer than optical and find that regions of security still exist all the way down to the microwave.

  3. Quantum canonical ensemble: A projection operator approach

    Science.gov (United States)

    Magnus, Wim; Lemmens, Lucien; Brosens, Fons

    2017-09-01

    Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.

  4. Novel Quantum Monte Carlo Approaches for Quantum Liquids

    Science.gov (United States)

    Rubenstein, Brenda M.

    the eventual hope is to apply this algorithm to the exploration of yet unidentified high-pressure, low-temperature phases of hydrogen, I employ this algorithm to determine whether or not quantum hard spheres can form a low-temperature bcc solid if exchange is not taken into account. In the final chapter of this thesis, I use Path Integral Monte Carlo once again to explore whether glassy para-hydrogen exhibits superfluidity. Physicists have long searched for ways to coax hydrogen into becoming a superfluid. I present evidence that, while glassy hydrogen does not crystallize at the temperatures at which hydrogen might become a superfluid, it nevertheless does not exhibit superfluidity. This is because the average binding energy per p-H2 molecule poses a severe barrier to exchange regardless of whether the system is crystalline. All in all, this work extends the reach of Quantum Monte Carlo methods to new systems and brings the power of existing methods to bear on new problems. Portions of this work have been published in Rubenstein, PRE (2010) and Rubenstein, PRA (2012) [167;169]. Other papers not discussed here published during my Ph.D. include Rubenstein, BPJ (2008) and Rubenstein, PRL (2012) [166;168]. The work in Chapters 6 and 7 is currently unpublished. [166] Brenda M. Rubenstein, Ivan Coluzza, and Mark A. Miller. Controlling the folding and substrate-binding of proteins using polymer brushes. Physical Review Letters, 108(20):208104, May 2012. [167] Brenda M. Rubenstein, J.E. Gubernatis, and J.D. Doll. Comparative monte carlo efficiency by monte carlo analysis. Physical Review E, 82(3):036701, September 2010. [168] Brenda M. Rubenstein and Laura J. Kaufman. The role of extracellular matrix in glioma invasion: A cellular potts model approach. Biophysical Journal, 95(12):5661-- 5680, December 2008. [169] Brenda M. Rubenstein, Shiwei Zhang, and David R. Reichman. Finite-temperature auxiliary-field quantum monte carlo for bose-fermi mixtures. Physical Review A, 86

  5. Approaches to quantum gravity. Loop quantum gravity, spinfoams and topos approach

    Energy Technology Data Exchange (ETDEWEB)

    Flori, Cecilia

    2010-07-23

    One of the main challenges in theoretical physics over the last five decades has been to reconcile quantum mechanics with general relativity into a theory of quantum gravity. However, such a theory has been proved to be hard to attain due to i) conceptual difficulties present in both the component theories (General Relativity (GR) and Quantum Theory); ii) lack of experimental evidence, since the regimes at which quantum gravity is expected to be applicable are far beyond the range of conceivable experiments. Despite these difficulties, various approaches for a theory of Quantum Gravity have been developed. In this thesis we focus on two such approaches: Loop Quantum Gravity and the Topos theoretic approach. The choice fell on these approaches because, although they both reject the Copenhagen interpretation of quantum theory, their underpinning philosophical approach to formulating a quantum theory of gravity are radically different. In particular LQG is a rather conservative scheme, inheriting all the formalism of both GR and Quantum Theory, as it tries to bring to its logical extreme consequences the possibility of combining the two. On the other hand, the Topos approach involves the idea that a radical change of perspective is needed in order to solve the problem of quantum gravity, especially in regard to the fundamental concepts of 'space' and 'time'. Given the partial successes of both approaches, the hope is that it might be possible to find a common ground in which each approach can enrich the other. This thesis is divided in two parts: in the first part we analyse LQG, paying particular attention to the semiclassical properties of the volume operator. Such an operator plays a pivotal role in defining the dynamics of the theory, thus testing its semiclassical limit is of uttermost importance. We then proceed to analyse spin foam models (SFM), which are an attempt at a covariant or path integral formulation of canonical Loop Quantum

  6. Numerical approach for unstructured quantum key distribution

    Science.gov (United States)

    Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert

    2016-05-01

    Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study `unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown.

  7. Quantum Monte Carlo approaches for correlated systems

    CERN Document Server

    Becca, Federico

    2017-01-01

    Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...

  8. A Global Optimization Approach to Quantum Mechanics

    OpenAIRE

    Huang, Xiaofei

    2006-01-01

    This paper presents a global optimization approach to quantum mechanics, which describes the most fundamental dynamics of the universe. It suggests that the wave-like behavior of (sub)atomic particles could be the critical characteristic of a global optimization method deployed by nature so that (sub)atomic systems can find their ground states corresponding to the global minimum of some energy function associated with the system. The classic time-independent Schrodinger equation is shown to b...

  9. Semiconductor Quantum Dots in Chemical Sensors and Biosensors

    OpenAIRE

    Nikos Chaniotakis; Frasco, Manuela F.

    2009-01-01

    Quantum dots are nanometre-scale semiconductor crystals with unique optical properties that are advantageous for the development of novel chemical sensors and biosensors. The surface chemistry of luminescent quantum dots has encouraged the development of multiple probes based on linked recognition molecules such as peptides, nucleic acids or small-molecule ligands. This review overviews the design of sensitive and selective nanoprobes, ranging from the type of target molecules to the optical ...

  10. Advanced quantum communications an engineering approach

    CERN Document Server

    Imre, Sandor

    2012-01-01

    The book provides an overview of the most advanced quantum informational geometric techniques, which can help quantum communication theorists analyze quantum channels, such as security or additivity properties. Each section addresses an area of major research of quantum information theory and quantum communication networks. The authors present the fundamental theoretical results of quantum information theory, while also presenting the details of advanced quantum ccommunication protocols with clear mathematical and information theoretical background. This book bridges the gap between quantum ph

  11. Semiconductor Quantum Dots in Chemical Sensors and Biosensors

    Directory of Open Access Journals (Sweden)

    Nikos Chaniotakis

    2009-09-01

    Full Text Available Quantum dots are nanometre-scale semiconductor crystals with unique optical properties that are advantageous for the development of novel chemical sensors and biosensors. The surface chemistry of luminescent quantum dots has encouraged the development of multiple probes based on linked recognition molecules such as peptides, nucleic acids or small-molecule ligands. This review overviews the design of sensitive and selective nanoprobes, ranging from the type of target molecules to the optical transduction scheme. Representative examples of quantum dot-based optical sensors from this fast-moving field have been selected and are discussed towards the most promising directions for future research.

  12. Quantum Information Processing and Quantum Error Correction An Engineering Approach

    CERN Document Server

    Djordjevic, Ivan

    2012-01-01

    Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer

  13. A new quantum chemical approach to the magnetic properties of oligonuclear transition-metal complexes: application to a model for the tetranuclear manganese cluster of photosystem II.

    Science.gov (United States)

    Pantazis, Dimitrios A; Orio, Maylis; Petrenko, Taras; Zein, Samir; Bill, Eckhard; Lubitz, Wolfgang; Messinger, Johannes; Neese, Frank

    2009-01-01

    The reliable correlation of structural features and magnetic or spectroscopic properties of oligonuclear transition-metal complexes is a critical requirement both for research into innovative magnetic materials and for elucidating the structure and function of many metalloenzymes. We have developed a novel method that for the first time enables the extraction of hyperfine coupling constants (HFCs) from broken-symmetry density functional theory (BS-DFT) calculations on clusters. Using the geometry-optimized tetranuclear manganese complex [Mn(4)O(6)(bpy)(6)](4+/3+) as a model, we first examine in detail the calculation of exchange coupling constants J through the BS-DFT approach. Complications arising from the indeterminacy of experimentally fitted J constants are identified and analyzed. It is found that only the energy levels derived from Hamiltonian diagonalization are a physically meaningful basis for comparing theory and experiment. Subsequently, the proposed theoretical scheme is applied to the calculation of (55)Mn HFCs of the Mn(III,IV,IV,IV) state of the complex, which is similar to the S(2) state of the oxygen-evolving complex (OEC) in photosystem II of oxygenic photosynthesis. The new approach performs reliably and accurately, and yields calculated HFCs that can be directly compared with experimental data. Finally, we carefully examine the dependence of HFC on the J value and draw attention to the sensitivity of the calculated values to the exchange coupling parameters. The proposed strategy extends naturally to hetero-oligonuclear clusters of arbitrary shape and nuclearity, and hence is of general validity and usefulness in the study of magnetic metal clusters. The successful application of the new approach presented here is a first step in the effort to establish correlations between the available spectroscopic information and the structural features of complex metalloenzymes like OEC.

  14. Dominance of quantum over classical correlations: entropic and geometric approach

    OpenAIRE

    Walczak, Zbigniew; Wintrowicz, Iwona; Zakrzewska, Katarzyna

    2013-01-01

    Recently, it has been shown that there exist quantum states for which quantum correlations dominate over classical correlations. Inspired by this observation, we investigate the problem of quantum correlations dominance for two-qubit Bell diagonal states in the Ollivier--Zurek paradigm, using both entropic and geometric approach to quantification of classical and quantum correlations. In particular, we estimate numerically the amount of two-qubit Bell diagonal states for which quantum correla...

  15. Molecular structure and vibrational spectroscopic analysis of an antiplatelet drug; clopidogrel hydrogen sulphate (form 2) - A combined experimental and quantum chemical approach

    Science.gov (United States)

    Srivastava, Anubha; Mishra, Soni; Tandon, Poonam; Patel, Sarasvatkumar; Ayala, A. P.; Bansal, A. K.; Siesler, H. W.

    2010-02-01

    Clopidogrel hydrogen sulphate which belongs to a class of medicine called antiplatelet drugs. Chemically it is methyl (+)-(S)-α-(2-chlorophenyl)-4,5,6,7-tetrahydrothieno [3,2- c] pyridine-5-acetate hydrogen sulphate having the empirical formula C 16H 17ClNO 2S.HSO 4 and molecular mass 321.82 g/mol. The present study is confined to vibrational spectroscopy of the polymorph identified as form 2 of the clopidogrel hydrogen sulphate. The vibrational analysis of clopidogrel hydrogen sulphate salt (form 2) considering separately the two counterions has been performed. We also report a theoretical and experimental study of the molecular conformation and vibrational dynamics of the independent moieties of the clopidogrel hydrogen sulphate salt. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by ab initio Hartree-Fock and density functional theory employing B3LYP with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The calculated wavenumbers after a proper scaling show a very good agreement with the observed values. A complete vibrational assignment is provided for the observed Raman and infrared spectra of clopidogrel hydrogen sulphate form 2.

  16. Quantum gravitation the Feynman path integral approach

    CERN Document Server

    Hamber, Herbert W

    2009-01-01

    The book covers the theory of Quantum Gravitation from the point of view of Feynman path integrals. These provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. The path integral method is suitable for both perturbative as well as non-perturbative studies, and is known to already provide a framework of choice for the theoretical investigation of non-abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman’s formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The ren...

  17. Galoisian Approach to Supersymmetric Quantum Mechanics

    CERN Document Server

    Acosta-Humanez, Primitivo B

    2009-01-01

    This thesis is concerning to the Differential Galois Theory point of view of the Supersymmetric Quantum Mechanics. The main object considered here is the non-relativistic stationary Schr\\"odinger equation, specially the integrable cases in the sense of the Picard-Vessiot theory and the main algorithmic tools used here are the Kovacic algorithm and the \\emph{algebrization method} to obtain linear differential equations with rational coefficients. We analyze the Darboux transformations, Crum iterations and supersymmetric quantum mechanics with their \\emph{algebrized} versions from a Galoisian approach. Applying the algebrization method and the Kovacic's algorithm we obtain the ground state, the set of eigenvalues, eigenfunctions, the differential Galois groups and eigenrings of some Schr\\"odinger equation with potentials such as exactly solvable and shape invariant potentials. Finally, we introduce one methodology to find exactly solvable potentials: to construct other potentials, we apply the algebrization alg...

  18. A Quantum Mechanical Approach to Nuclear Rotations

    Science.gov (United States)

    Zettili, Nouredine

    2014-09-01

    We deal with the study of collective motion within the context of a quantum mechanical method - the nuclear Born-Oppenheirmer (NBO) method. We focus in particular on a quantum mechanical approach to nuclear rotations. As an illustration, we utilize the NBO method to study non-spherical, permanently deformed nuclei; in particular, we study nuclei that are axially-symmetric and even, but with non-closed shells. We also focus on a quantum mechanical derivation of formal expressions for the energy and for the moment of inertia. Using trial functions in which the intrinsic structure is described by a mean-field approximation, we then show that the NBO formalism yields the Thouless-Valantin formula for the moment of inertia and that this moment of inertia increases with angular momentum, in agreement with experimental data. We show that the NBO formalism is well equipped to describe low-lying as well as high lying rotational states. Additionally, we establish a connection between the NBO method and the self-consistent Cranking (SCC) model. We deal with the study of collective motion within the context of a quantum mechanical method - the nuclear Born-Oppenheirmer (NBO) method. We focus in particular on a quantum mechanical approach to nuclear rotations. As an illustration, we utilize the NBO method to study non-spherical, permanently deformed nuclei; in particular, we study nuclei that are axially-symmetric and even, but with non-closed shells. We also focus on a quantum mechanical derivation of formal expressions for the energy and for the moment of inertia. Using trial functions in which the intrinsic structure is described by a mean-field approximation, we then show that the NBO formalism yields the Thouless-Valantin formula for the moment of inertia and that this moment of inertia increases with angular momentum, in agreement with experimental data. We show that the NBO formalism is well equipped to describe low-lying as well as high lying rotational states

  19. Effective Hamiltonian approach to periodically perturbed quantum optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, I. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon, 47460 Lagos de Moreno, Jal. (Mexico)]. E-mail: isa@culagos.udg.mx; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410 Guadalajara, Jal. (Mexico)]. E-mail: klimov@cencar.udg.mx; Saavedra, C. [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)]. E-mail: csaaved@udec.cl

    2006-02-20

    We apply the method of Lie-type transformations to Floquet Hamiltonians for periodically perturbed quantum systems. Some typical examples of driven quantum systems are considered in the framework of this approach and corresponding effective time dependent Hamiltonians are found.

  20. Chemical application of diffusion quantum Monte Carlo

    Science.gov (United States)

    Reynolds, P. J.; Lester, W. A., Jr.

    1983-10-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. As an example the singlet-triplet splitting of the energy of the methylene molecule CH2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on our VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX is discussed. Since CH2 has only eight electrons, most of the loops in this application are fairly short. The longest inner loops run over the set of atomic basis functions. The CPU time dependence obtained versus the number of basis functions is discussed and compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures. Finally, preliminary work on restructuring the algorithm to compute the separate Monte Carlo realizations in parallel is discussed.

  1. Quantum Ensemble Classification: A Sampling-Based Learning Control Approach.

    Science.gov (United States)

    Chen, Chunlin; Dong, Daoyi; Qi, Bo; Petersen, Ian R; Rabitz, Herschel

    2017-06-01

    Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.

  2. Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies

    CERN Document Server

    Mühlbach, Adrian H; Reiher, Markus

    2015-01-01

    The inherently high computational cost of iterative self-consistent-field (SCF) methods proves to be a critical issue delaying visual and haptic feedback in real-time quantum chemistry. In this work, we introduce two schemes for SCF acceleration. They provide a guess for the initial density matrix of the SCF procedure generated by extrapolation techniques. SCF optimizations then converge in fewer iterations, which decreases the execution time of the SCF optimization procedure. To benchmark the proposed propagation schemes, we developed a test bed for performing quantum chemical calculations on sequences of molecular structures mimicking real-time quantum chemical explorations. Explorations of a set of six model reactions employing the semi-empirical methods PM6 and DFTB3 in this testing environment showed that the proposed propagation schemes achieved speedups of up to thirty percent as a consequence of a reduced number of SCF iterations.

  3. Remote Chemical Sensing Using Quantum Cascade Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Warren W.; Schultz, John F.

    2003-01-30

    Spectroscopic chemical sensing research at Pacific Northwest National Laboratory (PNNL) is focused on developing advanced sensors for detecting the production of nuclear, chemical, or biological weapons; use of chemical weapons; or the presence of explosives, firearms, narcotics, or other contraband of significance to homeland security in airports, cargo terminals, public buildings, or other sensitive locations. For most of these missions, the signature chemicals are expected to occur in very low concentrations, and in mixture with ambient air or airborne waste streams that contain large numbers of other species that may interfere with spectroscopic detection, or be mistaken for signatures of illicit activity. PNNL’s emphasis is therefore on developing remote and sampling sensors with extreme sensitivity, and resistance to interferents, or selectivity. PNNL’s research activities include: 1. Identification of signature chemicals and quantification of their spectral characteristics, 2. Identification and development of laser and other technologies that enable breakthroughs in sensitivity and selectivity, 3. Development of promising sensing techniques through experimentation and modeling the physical phenomenology and practical engineering limitations affecting their performance, and 4. Development and testing of data collection methods and analysis algorithms. Close coordination of all aspects of the research is important to ensure that all parts are focused on productive avenues of investigation. Close coordination of experimental development and numerical modeling is particularly important because the theoretical component provides understanding and predictive capability, while the experiments validate calculations and ensure that all phenomena and engineering limitations are considered.

  4. Dynamical mean-field theory from a quantum chemical perspective.

    Science.gov (United States)

    Zgid, Dominika; Chan, Garnet Kin-Lic

    2011-03-07

    We investigate the dynamical mean-field theory (DMFT) from a quantum chemical perspective. Dynamical mean-field theory offers a formalism to extend quantum chemical methods for finite systems to infinite periodic problems within a local correlation approximation. In addition, quantum chemical techniques can be used to construct new ab initio Hamiltonians and impurity solvers for DMFT. Here, we explore some ways in which these things may be achieved. First, we present an informal overview of dynamical mean-field theory to connect to quantum chemical language. Next, we describe an implementation of dynamical mean-field theory where we start from an ab initio Hartree-Fock Hamiltonian that avoids double counting issues present in many applications of DMFT. We then explore the use of the configuration interaction hierarchy in DMFT as an approximate solver for the impurity problem. We also investigate some numerical issues of convergence within DMFT. Our studies are carried out in the context of the cubic hydrogen model, a simple but challenging test for correlation methods. Finally, we finish with some conclusions for future directions.

  5. Quantum chemical investigation of mechanisms of silane oxidation

    DEFF Research Database (Denmark)

    Mader, Mary M.; Norrby, Per-Ola

    2001-01-01

    Several mechanisms for the peroxide oxidation of organosilanes to alcohols are compared by quantum chemical calculations, including solvation with the PCM method. Without doubt, the reaction proceeds via anionic, pentacoordinate silicate species, but a profound difference is found between in vacuo...

  6. The Spin Foam Approach to Quantum Gravity

    CERN Document Server

    Perez, Alejandro

    2012-01-01

    This article reviews the present status of the spin foam approach to the quantization of gravity. Special attention is payed to the pedagogical presentation of the recently introduced new models for four dimensional quantum gravity. The models are motivated by a suitable implementation of the path integral quantization of the Plebanski formulation of gravity on a simplicial regularization. The article also includes a self-contained treatment of the 2+1 gravity. The simple nature of the latter provides the basis and a perspective for the analysis of both conceptual and technical issues that remain open in four dimensions.

  7. Hybrid Quantum-Classical Approach to Quantum Optimal Control.

    Science.gov (United States)

    Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu

    2017-04-14

    A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.

  8. A chemical approach to understanding oxide surfaces

    Science.gov (United States)

    Enterkin, James A.; Becerra-Toledo, Andres E.; Poeppelmeier, Kenneth R.; Marks, Laurence D.

    2012-02-01

    Chemical bonding has often been ignored in favor of physics based energetic considerations in attempts to understand the structure, stability, and reactivity of oxide surfaces. Herein, we analyze the chemical bonding in published structures of the SrTiO3, MgO, and NiO surfaces using bond valence sum (BVS) analysis. These simple chemical bonding theories compare favorably with far more complex quantum mechanical calculations in assessing surface structure stability. Further, the coordination and bonding of surface structures explains the observed stability in a readily comprehensible manner. Finally, we demonstrate how simple chemical bonding models accurately predict the adsorption of foreign species onto surfaces, and how such models can be used to predict changes in surface structures.

  9. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch [ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Dolfi, Michele, E-mail: dolfim@phys.ethz.ch; Troyer, Matthias, E-mail: troyer@phys.ethz.ch [ETH Zürich, Institute of Theoretical Physics, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2015-12-28

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.

  10. Asymmetric chemical reactions by polarized quantum beams

    Science.gov (United States)

    Takahashi, Jun-Ichi; Kobayashi, Kensei

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bio-organic compounds (L-amino acid and D-sugar dominant) is nominated as "Cosmic Scenario"; a chiral impulse from asymmetric excitation sources in space triggered asymmetric reactions on the surfaces of such space materials as meteorites or interstellar dusts prior to the existence of terrestrial life. 1) Effective asymmetric excitation sources in space are proposed as polarized quantum beams, such as circularly polarized light and spin polarized electrons. Circularly polarized light is emitted as synchrotron radiation from tightly captured electrons by intense magnetic field around neutron stars. In this case, either left-or right-handed polarized light can be observed depending on the direction of observation. On the other hand, spin polarized electrons is emitted as beta-ray in beta decay from radioactive nuclei or neutron fireballs in supernova explosion. 2) The spin of beta-ray electrons is longitudinally polarized due to parity non-conservation in the weak interaction. The helicity (the the projection of the spin onto the direction of kinetic momentum) of beta-ray electrons is universally negative (left-handed). For the purpose of verifying the asymmetric structure emergence in bio-organic compounds by polarized quantum beams, we are now carrying out laboratory simulations using circularly polarized light from synchrotron radiation facility or spin polarized electron beam from beta-ray radiation source. 3,4) The target samples are solid film or aqueous solution of racemic amino acids. 1) K.Kobayashi, K.Kaneko, J.Takahashi, Y.Takano, in Astrobiology: from simple molecules to primitive life; Ed. V.Basiuk; American Scientific Publisher: Valencia, 2008. 2) G.A.Gusev, T.Saito, V.A.Tsarev, A.V.Uryson, Origins Life Evol. Biosphere. 37, 259 (2007). 3) J.Takahashi, H.Shinojima, M.Seyama, Y.Ueno, T.Kaneko, K.Kobayashi, H.Mita, M.Adachi, M.Hosaka, M.Katoh, Int. J. Mol. Sci. 10, 3044

  11. A group theoretic approach to quantum information

    CERN Document Server

    Hayashi, Masahito

    2017-01-01

    This textbook is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solu...

  12. Use of ab initio quantum chemical methods in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.

  13. Quantum control and entanglement in a chemical compass

    CERN Document Server

    Cai, Jianming; Briegel, Hans J

    2009-01-01

    The radical pair mechanism is one of the two main hypotheses to explain the navigability of animals in weak magnetic fields, enabling e.g. birds to see the Earth's magnetic field. We show how quantum control can be used to either enhance or reduce the performance of such a chemical compass, providing a route to further test this hypothesis experimentally. We investigate the dynamics of quantum entanglement in this model, and demonstrate intriguing connections between radical-pair entanglement and the magnetic field sensitivity of the compass. The nature of the nuclear-spin environment plays an essential role for the observed effects.

  14. Reactivity of Tourmaline by Quantum Chemical Calculations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    ZnAb initio calculations on reactivity of tourmaline were performed using both Gaussian and density function theory discrete variation method (DFT-DVM). The HF, B3LYP methods and basis sets STO-3G(3d,3p),6-31G(3d,3p) and 6-311++G(3df,3pd) were used in the calculations. The experimental results show energy value obtained from B3LYP and 6-31++1G(3df,3pd) basis sets is more accurate than those from other methods. The highest occupied molecular orbital (HOMO) of the tourmaline cluster mainly consists of O atom of hydroxyl group with relative higher energy level, suggesting that chemical bond between those of electron acceptor and this site may readily form, indicating the higher reactivity of hydroxyl group. The lowest unoccupied molecular orbital (LUMO) of the tourmaline cluster are dominantly composed of Si, O of tetrahedron and Na with relative lower energy level, suggesting that these atoms may tend to form chemical bond with those of electron donor. The results also prove that the O atoms of the tourmaline cluster have stronger reactivity than other atoms.

  15. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gray, S.K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  16. The Global Approach to Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)

    2003-12-12

    Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the

  17. The decoupling approach to quantum information theory

    CERN Document Server

    Dupuis, Frédéric

    2010-01-01

    Quantum information theory studies the fundamental limits that physical laws impose on information processing tasks such as data compression and data transmission on noisy channels. This thesis presents general techniques that allow one to solve many fundamental problems of quantum information theory in a unified framework. The central theorem of this thesis proves the existence of a protocol that transmits quantum data that is partially known to the receiver through a single use of an arbitrary noisy quantum channel. In addition to the intrinsic interest of this problem, this theorem has as immediate corollaries several central theorems of quantum information theory. The following chapters use this theorem to prove the existence of new protocols for two other types of quantum channels, namely quantum broadcast channels and quantum channels with side information at the transmitter. These protocols also involve sending quantum information partially known by the receiver with a single use of the channel, and ha...

  18. Quantum chemical calculations of glycine glutaric acid

    Science.gov (United States)

    Arioǧlu, ćaǧla; Tamer, Ömer; Avci, Davut; Atalay, Yusuf

    2017-02-01

    Density functional theory (DFT) calculations of glycine glutaric acid were performed by using B3LYP levels with 6-311++G(d,p) basis set. The theoretical structural parameters such as bond lengths and bond angles are in a good agreement with the experimental values of the title compound. HOMO and LUMO energies were calculated, and the obtained energy gap shows that charge transfer occurs in the title compound. Vibrational frequencies were calculated and compare with experimental ones. 3D molecular surfaces of the title compound were simulated using the same level and basis set. Finally, the 13C and 1H NMR chemical shift values were calculated by the application of the gauge independent atomic orbital (GIAO) method.

  19. Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards Large-Scale Industrial Production for Energy Applications.

    Science.gov (United States)

    Hu, Michael Z; Zhu, Ting

    2015-12-01

    This paper reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.

  20. The Global Approach to Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Fulling, S A [Texas A and M University (United States)

    2006-05-21

    Parts I and II develop the basic classical and quantum kinematics of fields and other dynamical systems. The presentation is conducted in the utmost generality, allowing for dynamical quantities that may be anticommuting (supernumbers) and theories subject to the most general possible gauge symmetry. The basic ingredients are action functionals and the Peierls bracket, a manifestly covariant replacement for the Poisson bracket and equal-time commutation relations. For DeWitt the logical progression is Peierls bracket {yields} Schwinger action principle {yields} Feynman functional integral although he points out that the historical development was in the opposite order. It must be pointed out that the Peierls-Schwinger-DeWitt approach, despite some advantages over initial-value formulations, has some troubles of its own. In particular, it has never completely escaped from the arena of scattering theory, the paradigm of conventional particle physics. One is naturally led to study matrix elements between an 'in-vacuum' and an 'out-vacuum' though such concepts are murky in situations, such as big bangs and black holes, where the ambient geometry is not asymptotically static in the far past and future. The newest material in the treatise appears in two chapters in part II devoted to the interpretation of quantum theory, incorporating some unpublished work of David Deutsch on the meaning of probability in physics. Parts III through V apply the formalism in depth to successively more difficult classes of systems: quantum mechanics, linear (free) fields, and interacting fields. DeWitt's characteristic tools of effective actions, heat kernels, and ghost fields are developed. Chapters 26 and 31 outline new approaches developed in collaboration with DeWitt's recent students C Molina-Paris and C Y Wang, respectively. The most of parts VI and VII consist of special topics, such as anomalies, particle creation by external fields, Unruh acceleration

  1. Chemical accuracy from quantum Monte Carlo for the benzene dimer

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk [Department of Earth Science and Thomas Young Centre, University College London, London WC1E 6BT (United Kingdom); Cohen, R. E. [London Centre for Nanotechnology, University College London, London WC1E 6BT, United Kingdom and Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015 (United States)

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  2. Quantum-chemical studies of metal oxides for photoelectrochemical applications

    Science.gov (United States)

    Persson, P.; Bergström, R.; Ojamäe, L.; Lunell, S.

    A review of recent research, as well as new results, are presented on transition metal oxide clusters, surfaces, and crystals. Quantum-chemical calculations of clusters of first row transition metal oxides have been made to evaluate the accuracy of ab initio and density functional calculations. Adsorbates on metal oxide surfaces have been studied with both ab initio and semi-empirical methods, and results are presented for the bonding and electronic interactions of large organic adsorbates, e.g. aromatic molecules, on Ti02 and ZnO. Defects and intercalation, notably of H, Li, and Na in Ti02 have been investigated theoretically. Comparisons with experiments are made throughout to validate the calculations. Finally, the role of quantum-chemical calculations in the study of metal oxide based photoelectrochemical devices, such as dyesensitized solar cells and electrochromic displays. is discussed.

  3. Semiclassical approach to universality in quantum chaos

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Sebastian [Cavendish Laboratory, University of Cambridge, Cambridge CB30HE (United Kingdom); Altland, Alexander [Institut fuer Theoretische Physik, Zuelpicher Str 77, 50937 Koeln (Germany); Braun, Peter [Fachbereich Physik, Universitaet Duisburg-Essen, 47048 Duisburg (Germany); Institute of Physics, Saint-Petersburg University, 198504 Saint-Petersburg (Russian Federation); Haake, Fritz; Heusler, Stefan [Fachbereich Physik, Universitaet Duisburg-Essen, 47048 Duisburg (Germany)

    2007-07-01

    According to the so-called Bohigas-Giannoni-Schmit conjecture the quantum spectra of classically chaotic systems display universal fluctuations. We explain this universality using periodic-orbit theory. To do so, we work with a generating function whose semiclassical limit is determined by quadruplets of sets of periodic orbits. We show that the interference between the contributions of these orbits gives rise to universal spectral correlations, agreeing with the predictions of random-matrix theory. In contrast to previous work the present approach yields both the non-oscillatory and the oscillatory parts of the universal spectral correlator. In particular, a semiclassical understanding of (the different possible degrees of) level repulsion is thus reached.

  4. Superlogic manifolds and geometric approach to quantum logic

    Science.gov (United States)

    da Costa, Newton; Kouneiher, Joseph

    2016-10-01

    The main purpose of this paper is to present a new approach to logic or what we will call superlogic. This approach constitutes a new way of looking at the connection between quantum mechanics and logic. It is a geometrization of the quantum logic. Note that this superlogic is not distributive reflecting a good propriety to describe quantum mechanics, non-commutative spaces and contains a nilpotent element.

  5. Interpreting Quantum Theory : A Therapeutic Approach

    NARCIS (Netherlands)

    Friederich, Simon

    2014-01-01

    Debates about the foundations of quantum theory usually circle around two main challenges: the so-called 'measurement problem' and a claimed tension between quantum theory and relativity theory that arises from the phenomena labelled 'quantum non-locality'. This work explores the possibility of a 't

  6. Interpreting Quantum Theory : A Therapeutic Approach

    NARCIS (Netherlands)

    Friederich, Simon

    2014-01-01

    Debates about the foundations of quantum theory usually circle around two main challenges: the so-called 'measurement problem' and a claimed tension between quantum theory and relativity theory that arises from the phenomena labelled 'quantum non-locality'. This work explores the possibility of a 't

  7. Quantum-chemical calculations of dye-sensitized semiconductor nanocrystals

    Science.gov (United States)

    Persson, P.; Lundqvist, M. J.; Nilsing, M.; van Duin, A. C. T.; Goddard, W. A., III

    2006-08-01

    Quantum chemical calculations providing detailed information of dye-sensitized semiconductor nanocrystals are presented. The calculations are used to elucidate both structural and electronic properties of photoelectrochemical devices, such as environmentally friendly Dye-Sensitized Solar Cells (DSSCs), at the molecular level. Quantum chemical calculations have recently been performed on both organic and organometallic dye molecules attached to titanium dioxide (TiO II) nanocrystals via different anchor and spacer groups. Strategies to make accurate quantum chemical calculations, e.g. at the DFT level of theory, on increasingly realistic models of such dye-sensitized semiconductor interfaces are presented. The ability of different anchor and spacer groups to act as mediators of ultrafast photo-induced electron injection from the dye molecules into the semiconductor nanocrystals is, in particular, discussed in terms of calculated electronic coupling strengths, and direct comparisons with experimental information are made whenever possible. Progress in the development of multi-scale simulation techniques using so called reactive force fields is illustrated for dye-sensitized solar cell systems.

  8. Perturbative approach to Markovian open quantum systems.

    Science.gov (United States)

    Li, Andy C Y; Petruccione, F; Koch, Jens

    2014-05-08

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.

  9. Quantum regime of a free-electron laser: relativistic approach

    Science.gov (United States)

    Kling, Peter; Sauerbrey, Roland; Preiss, Paul; Giese, Enno; Endrich, Rainer; Schleich, Wolfgang P.

    2017-01-01

    In the quantum regime of the free-electron laser, the dynamics of the electrons is not governed by continuous trajectories but by discrete jumps in momentum. In this article, we rederive the two crucial conditions to enter this quantum regime: (1) a large quantum mechanical recoil of the electron caused by the scattering with the laser and the wiggler field and (2) a small energy spread of the electron beam. In contrast to our recent approach based on nonrelativistic quantum mechanics in a co-moving frame of reference, we now pursue a model in the laboratory frame employing relativistic quantum electrodynamics.

  10. Rational design and characterization of high-efficiency planar A–π–D–π–A type electron donors in small molecule organic solar cells: A quantum chemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongmei [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou 730070, Gansu (China); Department of Chemistry, Baoji College of Arts. and Sci., Baoji 721013, Shaanxi (China); Ding, Weilu [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou 730070, Gansu (China); Geng, Zhiyuan, E-mail: zhiyuangeng@126.com [Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-environment-related Polymer Materials, Ministry of Education, Northwest Normal University, Lanzhou 730070, Gansu (China); Wang, Li; Geng, Yun; Su, Zhongmin [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Yu, Hailing [College of Resources and Environmental Science, Jinlin Agricultural University, Changchun 130118 (China)

    2014-06-01

    Taking the reported donor DR3TBDT as reference, a series of A–π–D–π–A type donor molecules involving different planar donor cores were designed and investigated by using density functional theory (DFT)/time-dependent DFT methods. Preliminary calculations on geometries, energy levels and spectrum properties show that four of the designed molecules (4, 5, 12 and 13) could become potential donor replacements of DR3TBDT due to their good planarity, larger light harvesting efficiencies and similar exciton migration capability. Additionally, several factors influencing on short-circuit current density (J{sub sc}) were analyzed by in-depth quantum chemical investigations on the transition density matrix, charge transfer indexes, exciton binding energy and Gibbs free energy loss in charge dissociation process. Comparative analyses demonstrate that 4 with indaceno[1,2-b:5,6-b′]dithiophene donor core has more significant electron transfer character and favorable exciton dissociation capability for enhancing the J{sub sc}, and would be potentially promising donor material in organic solar cells. - Graphical abstract: Display Omitted - Highlights: • A series of A–π–D–π–A type donors with different donor core for OSC were designed. • The relationship between donor properties and device performance is explored by DFT. • An In-depth quantum chemical investigation on the affecting factors on J{sub sc}. • The efficiency of new donor 4 may surpass the reported donor DR3TBDT.

  11. Quantum scaling in many-body systems an approach to quantum phase transitions

    CERN Document Server

    Continentino, Mucio

    2017-01-01

    Quantum phase transitions are strongly relevant in a number of fields, ranging from condensed matter to cold atom physics and quantum field theory. This book, now in its second edition, approaches the problem of quantum phase transitions from a new and unifying perspective. Topics addressed include the concepts of scale and time invariance and their significance for quantum criticality, as well as brand new chapters on superfluid and superconductor quantum critical points, and quantum first order transitions. The renormalisation group in real and momentum space is also established as the proper language to describe the behaviour of systems close to a quantum phase transition. These phenomena introduce a number of theoretical challenges which are of major importance for driving new experiments. Being strongly motivated and oriented towards understanding experimental results, this is an excellent text for graduates, as well as theorists, experimentalists and those with an interest in quantum criticality.

  12. Nonperturbative approach to relativistic quantum communication channels

    Science.gov (United States)

    Landulfo, André G. S.

    2016-05-01

    We investigate the transmission of both classical and quantum information between two arbitrary observers in globally hyperbolic spacetimes using a quantum field as a communication channel. The field is supposed to be in some arbitrary quasifree state and no choice of representation of its canonical commutation relations is made. Both sender and receiver possess some localized two-level quantum system with which they can interact with the quantum field to prepare the input and receive the output of the channel, respectively. The interaction between the two-level systems and the quantum field is such that one can trace out the field degrees of freedom exactly and thus obtain the quantum channel in a nonperturbative way. We end the paper determining the unassisted as well as the entanglement-assisted classical and quantum channel capacities.

  13. Spectroscopic and quantum chemical analysis of Isonicotinic acid methyl ester

    Science.gov (United States)

    Shoba, D.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-02-01

    In this present study, an organic compound Isonicotinic acid methyl ester (INAME) was structurally characterized by FTIR, FT-Raman, and NMR and UV spectroscopy. The optimized geometrical parameters and energies of all different and possible conformers of INAME are obtained from Density Functional Theory (DFT) by B3LYP/6-311++G(d,p) method. There are three conformers (SI, SII-1, and SII-2) for this molecule (ground state). The most stable conformer of INAME is SI conformer. The molecular geometry and vibrational frequencies of INAME in the ground state have been calculated by using HF and density functional method (B3LYP) 6-311++G (d,p) basis set. Detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The computed vibrational frequencies were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and first hyper polarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results show that the INAME molecule may have microscopic nonlinear optical (NLO) behavior with non zero values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method.

  14. Polynomial-time quantum algorithm for the simulation of chemical dynamics.

    Science.gov (United States)

    Kassal, Ivan; Jordan, Stephen P; Love, Peter J; Mohseni, Masoud; Aspuru-Guzik, Alán

    2008-12-02

    The computational cost of exact methods for quantum simulation using classical computers grows exponentially with system size. As a consequence, these techniques can be applied only to small systems. By contrast, we demonstrate that quantum computers could exactly simulate chemical reactions in polynomial time. Our algorithm uses the split-operator approach and explicitly simulates all electron-nuclear and interelectronic interactions in quadratic time. Surprisingly, this treatment is not only more accurate than the Born-Oppenheimer approximation but faster and more efficient as well, for all reactions with more than about four atoms. This is the case even though the entire electronic wave function is propagated on a grid with appropriately short time steps. Although the preparation and measurement of arbitrary states on a quantum computer is inefficient, here we demonstrate how to prepare states of chemical interest efficiently. We also show how to efficiently obtain chemically relevant observables, such as state-to-state transition probabilities and thermal reaction rates. Quantum computers using these techniques could outperform current classical computers with 100 qubits.

  15. Hidden Statistics Approach to Quantum Simulations

    Science.gov (United States)

    Zak, Michail

    2010-01-01

    Recent advances in quantum information theory have inspired an explosion of interest in new quantum algorithms for solving hard computational (quantum and non-quantum) problems. The basic principle of quantum computation is that the quantum properties can be used to represent structure data, and that quantum mechanisms can be devised and built to perform operations with this data. Three basic non-classical properties of quantum mechanics superposition, entanglement, and direct-product decomposability were main reasons for optimism about capabilities of quantum computers that promised simultaneous processing of large massifs of highly correlated data. Unfortunately, these advantages of quantum mechanics came with a high price. One major problem is keeping the components of the computer in a coherent state, as the slightest interaction with the external world would cause the system to decohere. That is why the hardware implementation of a quantum computer is still unsolved. The basic idea of this work is to create a new kind of dynamical system that would preserve the main three properties of quantum physics superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. In other words, such a system would reinforce the advantages and minimize limitations of both quantum and classical aspects. Based upon a concept of hidden statistics, a new kind of dynamical system for simulation of Schroedinger equation is proposed. The system represents a modified Madelung version of Schroedinger equation. It preserves superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for simulating quantum systems. The model includes a transitional component of quantum potential (that has been overlooked in previous treatment of the Madelung equation). The role of the

  16. Hybrid Quantum-Classical Approach to Correlated Materials

    Science.gov (United States)

    Bauer, Bela; Wecker, Dave; Millis, Andrew J.; Hastings, Matthew B.; Troyer, Matthias

    2016-07-01

    Recent improvements in the control of quantum systems make it seem feasible to finally build a quantum computer within a decade. While it has been shown that such a quantum computer can in principle solve certain small electronic structure problems and idealized model Hamiltonians, the highly relevant problem of directly solving a complex correlated material appears to require a prohibitive amount of resources. Here, we show that by using a hybrid quantum-classical algorithm that incorporates the power of a small quantum computer into a framework of classical embedding algorithms, the electronic structure of complex correlated materials can be efficiently tackled using a quantum computer. In our approach, the quantum computer solves a small effective quantum impurity problem that is self-consistently determined via a feedback loop between the quantum and classical computation. Use of a quantum computer enables much larger and more accurate simulations than with any known classical algorithm, and will allow many open questions in quantum materials to be resolved once a small quantum computer with around 100 logical qubits becomes available.

  17. Geometry of a Quantized Spacetime: The Quantum Potential Approach

    Science.gov (United States)

    Mirza, Babur M.

    2014-03-01

    Quantum dynamics in a curved spacetime can be studied using a modified Lagrangian approach directly in terms of the spacetime variables [Mirza, B.M., Quantum Dynamics in Black Hole Spacetimes, IC-MSQUARE 2012]. Here we investigate the converse problem of determining the nature of the background spacetime when quantum dynamics of a test particle is known. We employ the quantum potential formalism here to obtain the modifications introduced by the quantum effects to the background spacetime. This leads to a novel geometry for the spacetime in which a test particle modifies the spacetime via interaction through the quantum potential. We present here the case of a Gaussian wave packet, and a localized quantum soliton, representing the test particle, and determine the corresponding geometries that emerge.

  18. Chemical biology approaches for studying posttranslational modifications.

    Science.gov (United States)

    Yang, Aerin; Cho, Kyukwang; Park, Hee-Sung

    2017-09-13

    Posttranslational modification (PTM) is a key mechanism for regulating diverse protein functions, and thus critically affects many essential biological processes. Critical for systematic study of the effects of PTMs is the ability to obtain recombinant proteins with defined and homogenous modifications. To this end, various synthetic and chemical biology approaches, including genetic code expansion and protein chemical modification methods, have been developed. These methods have proven effective for generating site-specific authentic modifications or structural mimics, and have demonstrated their value for in vitro and in vivo functional studies of diverse PTMs. This review will discuss recent advances in chemical biology strategies and their application to various PTM studies.

  19. The decoupling approach to quantum information theory

    Science.gov (United States)

    Dupuis, Frédéric

    2010-04-01

    Quantum information theory studies the fundamental limits that physical laws impose on information processing tasks such as data compression and data transmission on noisy channels. This thesis presents general techniques that allow one to solve many fundamental problems of quantum information theory in a unified framework. The central theorem of this thesis proves the existence of a protocol that transmits quantum data that is partially known to the receiver through a single use of an arbitrary noisy quantum channel. In addition to the intrinsic interest of this problem, this theorem has as immediate corollaries several central theorems of quantum information theory. The following chapters use this theorem to prove the existence of new protocols for two other types of quantum channels, namely quantum broadcast channels and quantum channels with side information at the transmitter. These protocols also involve sending quantum information partially known by the receiver with a single use of the channel, and have as corollaries entanglement-assisted and unassisted asymptotic coding theorems. The entanglement-assisted asymptotic versions can, in both cases, be considered as quantum versions of the best coding theorems known for the classical versions of these problems. The last chapter deals with a purely quantum phenomenon called locking. We demonstrate that it is possible to encode a classical message into a quantum state such that, by removing a subsystem of logarithmic size with respect to its total size, no measurement can have significant correlations with the message. The message is therefore "locked" by a logarithmic-size key. This thesis presents the first locking protocol for which the success criterion is that the trace distance between the joint distribution of the message and the measurement result and the product of their marginals be sufficiently small.

  20. Quantum Interaction Approach in Cognition, Artificial Intelligence and Robotics

    CERN Document Server

    Aerts, Diederik; Sozzo, Sandro

    2011-01-01

    The mathematical formalism of quantum mechanics has been successfully employed in the last years to model situations in which the use of classical structures gives rise to problematical situations, and where typically quantum effects, such as 'contextuality' and 'entanglement', have been recognized. This 'Quantum Interaction Approach' is briefly reviewed in this paper focusing, in particular, on the quantum models that have been elaborated to describe how concepts combine in cognitive science, and on the ensuing identification of a quantum structure in human thought. We point out that these results provide interesting insights toward the development of a unified theory for meaning and knowledge formalization and representation. Then, we analyze the technological aspects and implications of our approach, and a particular attention is devoted to the connections with symbolic artificial intelligence, quantum computation and robotics.

  1. Quantum chemical modeling of uranyl adsorption on mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kremleva, A.; Krueger, S.; Roesch, N. [Dept. Chemie and Catalysis Research Center, Technische Univ. Muenchen, Garching (Germany)

    2010-07-01

    We overview quantum mechanical simulations that model the adsorption of actinide ions at solvated mineral surfaces. Pertinent examples illustrate the status of this emerging field of computational chemistry. In particular, we describe our own studies on uranyl adsorption on kaolinite. Already the few available results, from applications of density functional methods to cluster models or periodic slab models, show that such calculations are a useful complement to experimental investigations. Detailed information at the atomic level from accurate electronic structure calculations on well defined model systems helps to refine current interpretations of the chemical nature of uranyl adsorption species and to discover new features of these interface systems. Results from quantum mechanical simulations also provide a valuable reference for future experimental investigations. (orig.)

  2. Experimental and quantum chemical studies on corrosion inhibition performance of fluconazole in hydrochloric acid solution

    Indian Academy of Sciences (India)

    P Malekmohammadi Nouri; M M Attar

    2015-04-01

    The corrosion inhibition effect of fluconazole (FLU) was investigated on steel in 1 M hydrochloric acid solution. Weight loss measurements and atomic force microscope analysis were utilized to investigate the corrosion inhibition properties and film formation behaviour of FLU. Quantum chemical approach was also used to calculate some electronic properties of the molecule in neutral and protonated form in order to find any correlation between the inhibition effect and molecular structure of FLU molecule. The results showed that FLU can act as a good corrosion inhibitor for steel in hydrochloric acid solution at different temperatures and it can inhibit steel corrosion up to 95%. The adsorption followed the Langmuir isotherm and the thermodynamic parameters were also determined and discussed. Quantum chemical studies showed that in adsorption process of FLU molecules, nitrogen and oxygen atoms and benzene ring act as active centres.

  3. Quantum renormalization group approach to quantum coherence and multipartite entanglement in an XXZ spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2017-01-30

    We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.

  4. Quantum teleportation and entanglement. A hybrid approach to optical quantum information procesing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Tokyo Univ. (Japan). Dept. of Applied Physics; Loock, Peter van [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Optik

    2011-07-01

    Unique in that it is jointly written by an experimentalist and a theorist, this monograph presents universal quantum computation based on quantum teleportation as an elementary subroutine and multi-party entanglement as a universal resource. Optical approaches to measurement-based quantum computation are also described, including schemes for quantum error correction, with most of the experiments carried out by the authors themselves. Ranging from the theoretical background to the details of the experimental realization, the book describes results and advances in the field, backed by numerous illustrations of the authors' experimental setups. Aimed at researchers, physicists, and graduate and PhD students in physics, theoretical quantum optics, quantum mechanics, and quantum information. (orig.)

  5. A decoupling approach to the quantum capacity

    CERN Document Server

    Hayden, P; Yard, J; Winter, A; Hayden, Patrick; Horodecki, Michal; Yard, Jon; Winter, Andreas

    2007-01-01

    We give a proof that the coherent information is an achievable rate for the transmission of quantum information through a noisy quantum channel. Our method is to select coding subspaces according to the unitarily invariant measure and then show that provided those subspaces are sufficiently small, any data contained within them will with high probability be decoupled from the noisy channel's environment.

  6. The Bondons: The Quantum Particles of the Chemical Bond

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2010-10-01

    Full Text Available By employing the combined Bohmian quantum formalism with the U(1 and SU(2 gauge transformations of the non-relativistic wave-function and the relativistic spinor, within the Schrödinger and Dirac quantum pictures of electron motions, the existence of the chemical field is revealed along the associate bondon particle  characterized by its mass (mΒ, velocity (vΒ, charge (eΒ, and life-time (tΒ. This is quantized either in ground or excited states of the chemical bond in terms of reduced Planck constant ħ, the bond energy Ebond and length Xbond, respectively. The mass-velocity-charge-time quaternion properties of bondons’ particles were used in discussing various paradigmatic types of chemical bond towards assessing their covalent, multiple bonding, metallic and ionic features. The bondonic picture was completed by discussing the relativistic charge and life-time (the actual zitterbewegung problem, i.e., showing that the bondon equals the benchmark electronic charge through moving with almost light velocity. It carries negligible, although non-zero, mass in special bonding conditions and towards observable femtosecond life-time as the bonding length increases in the nanosystems and bonding energy decreases according with the bonding length-energy relationship Ebond[kcal/mol]*Xbond[A]=182019, providing this way the predictive framework in which the particle may be observed. Finally, its role in establishing the virtual states in Raman scattering was also established.

  7. Towards scalable quantum communication and computation: Novel approaches and realizations

    Science.gov (United States)

    Jiang, Liang

    Quantum information science involves exploration of fundamental laws of quantum mechanics for information processing tasks. This thesis presents several new approaches towards scalable quantum information processing. First, we consider a hybrid approach to scalable quantum computation, based on an optically connected network of few-qubit quantum registers. Specifically, we develop a novel scheme for scalable quantum computation that is robust against various imperfections. To justify that nitrogen-vacancy (NV) color centers in diamond can be a promising realization of the few-qubit quantum register, we show how to isolate a few proximal nuclear spins from the rest of the environment and use them for the quantum register. We also demonstrate experimentally that the nuclear spin coherence is only weakly perturbed under optical illumination, which allows us to implement quantum logical operations that use the nuclear spins to assist the repetitive-readout of the electronic spin. Using this technique, we demonstrate more than two-fold improvement in signal-to-noise ratio. Apart from direct application to enhance the sensitivity of the NV-based nano-magnetometer, this experiment represents an important step towards the realization of robust quantum information processors using electronic and nuclear spin qubits. We then study realizations of quantum repeaters for long distance quantum communication. Specifically, we develop an efficient scheme for quantum repeaters based on atomic ensembles. We use dynamic programming to optimize various quantum repeater protocols. In addition, we propose a new protocol of quantum repeater with encoding, which efficiently uses local resources (about 100 qubits) to identify and correct errors, to achieve fast one-way quantum communication over long distances. Finally, we explore quantum systems with topological order. Such systems can exhibit remarkable phenomena such as quasiparticles with anyonic statistics and have been proposed as

  8. Quantum mechanics meets cognitive science: explanatory vs descriptive approaches

    NARCIS (Netherlands)

    Blutner, R.

    2010-01-01

    We reflect on several aspects of the general claim that a quantum-like approach to Cognitive Science is advantageous over classical approaches. The classical approaches refer to the symbolic approaches including models using a classical (Kolmogorov) probability calculus. The general claim seems to

  9. Quantum Chemical Study on Reaction of Acetaldehyde with Hydroxyl Radical

    Institute of Scientific and Technical Information of China (English)

    LI,Ming(李明); ZHANG,Jin-Sheng(张金生); SHEN,Wei(申伟); MENG,Qing-Xi(孟庆喜)

    2004-01-01

    The reaction of acetaldehyde with hydroxyl radical was studied by means of quantum chemical methods. The geometries for all the stationary points on the potential energy surfaces were optimized fully, respectively, at the G3MP2, G3, and MP2/6-311++G(d,p) levels. Single-point energies of all the species were calculated at the QCISD/6-311 + +G(d,p) level. The mechanism of the reaction studied was confirmed. The predicted product is acetyl radical that is in agreement with the experiment.

  10. Quantum theory of chemical reactions in the presence of electromagnetic fields

    CERN Document Server

    Tscherbul, T V

    2008-01-01

    We present a theory for rigorous quantum scattering calculations of probabilities for chemical reactions of atoms with diatomic molecules in the presence of an external electric field. The approach is based on the fully uncoupled basis set representation of the total wave function in the space-fixed coordinate frame, the Fock-Delves hyperspherical coordinates and adiabatic partitioning of the total Hamiltonian of the reactive system. The adiabatic channel wave functions are expanded in basis sets of hyperangular functions corresponding to different reaction arrangements and the interactions with external fields are included in each chemical arrangement separately. We apply the theory to examine the effects of electric fields on the chemical reactions of LiF molecules with H atoms and HF molecules with Li atoms at low temperatures and show that electric fields may enhance the probability of chemical reactions and modify reactive scattering resonances by coupling the rotational states of the reactants. Our prel...

  11. Concept of chemical bond and aromaticity based on quantum information theory

    CERN Document Server

    Szilvási, T; Legeza, Ö

    2015-01-01

    Quantum information theory (QIT) emerged in physics as standard technique to extract relevant information from quantum systems. It has already contributed to the development of novel fields like quantum computing, quantum cryptography, and quantum complexity. This arises the question what information is stored according to QIT in molecules which are inherently quantum systems as well. Rigorous analysis of the central quantities of QIT on systematic series of molecules offered the introduction of the concept of chemical bond and aromaticity directly from physical principles and notions. We identify covalent bond, donor-acceptor dative bond, multiple bond, charge-shift bond, and aromaticity indicating unified picture of fundamental chemical models from ab initio.

  12. Excess entropy production in quantum system: Quantum master equation approach

    OpenAIRE

    Nakajima, Satoshi; Tokura, Yasuhiro

    2016-01-01

    For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess...

  13. Surveying Instructors' Attitudes and Approaches to Teaching Quantum Mechanics

    CERN Document Server

    Siddiqui, Shabnam

    2016-01-01

    Understanding instructor attitudes and approaches to teaching quantum mechanics can be helpful in developing research-based learning tools. Here we discuss the findings from a survey in which 13 instructors reflected on issues related to quantum mechanics teaching. Topics included opinions about the goals of a quantum mechanics course, general challenges in teaching the subject, student preparation for the course, comparison between their own learning of quantum mechanics vs. how they teach it and the extent to which contemporary topics are incorporated into the syllabus.

  14. Discrete Approaches to Quantum Gravity in Four Dimensions

    Directory of Open Access Journals (Sweden)

    Loll Renate

    1998-01-01

    Full Text Available The construction of a consistent theory of quantum gravity is a problem in theoretical physics that has so far defied all attempts at resolution. One ansatz to try to obtain a non-trivial quantum theory proceeds via a discretization of space-time and the Einstein action. I review here three major areas of research: gauge-theoretic approaches, both in a path-integral and a Hamiltonian formulation; quantum Regge calculus; and the method of dynamical triangulations, confining attention to work that is strictly four-dimensional, strictly discrete, and strictly quantum in nature.

  15. Protein structure refinement using a quantum mechanics-based chemical shielding predictor.

    Science.gov (United States)

    Bratholm, Lars A; Jensen, Jan H

    2017-03-01

    The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor of a protein backbone and CB chemical shifts (ProCS15, PeerJ, 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic chemical shielding values (ProCS15) can be used to refine protein structures using Markov Chain Monte Carlo (MCMC) simulations, relating the chemical shielding values to the experimental chemical shifts probabilistically. Two kinds of MCMC structural refinement simulations were performed using force field geometry optimized X-ray structures as starting points: simulated annealing of the starting structure and constant temperature MCMC simulation followed by simulated annealing of a representative ensemble structure. Annealing of the CHARMM structure changes the CA-RMSD by an average of 0.4 Å but lowers the chemical shift RMSD by 1.0 and 0.7 ppm for CA and N. Conformational averaging has a relatively small effect (0.1-0.2 ppm) on the overall agreement with carbon chemical shifts but lowers the error for nitrogen chemical shifts by 0.4 ppm. If an amino acid specific offset is included the ProCS15 predicted chemical shifts have RMSD values relative to experiments that are comparable to popular empirical chemical shift predictors. The annealed representative ensemble structures differ in CA-RMSD relative to the initial structures by an average of 2.0 Å, with >2.0 Å difference for six proteins. In four of the cases, the largest structural differences arise in structurally flexible regions of the protein as determined by NMR, and in the remaining two cases, the large structural

  16. Chemical Reactions Using a Non-Equilibrium Wigner Function Approach

    Directory of Open Access Journals (Sweden)

    Ramón F. Álvarez-Estrada

    2016-10-01

    Full Text Available A three-dimensional model of binary chemical reactions is studied. We consider an ab initio quantum two-particle system subjected to an attractive interaction potential and to a heat bath at thermal equilibrium at absolute temperature T > 0 . Under the sole action of the attraction potential, the two particles can either be bound or unbound to each other. While at T = 0 , there is no transition between both states, such a transition is possible when T > 0 (due to the heat bath and plays a key role as k B T approaches the magnitude of the attractive potential. We focus on a quantum regime, typical of chemical reactions, such that: (a the thermal wavelength is shorter than the range of the attractive potential (lower limit on T and (b ( 3 / 2 k B T does not exceed the magnitude of the attractive potential (upper limit on T. In this regime, we extend several methods previously applied to analyze the time duration of DNA thermal denaturation. The two-particle system is then described by a non-equilibrium Wigner function. Under Assumptions (a and (b, and for sufficiently long times, defined by a characteristic time scale D that is subsequently estimated, the general dissipationless non-equilibrium equation for the Wigner function is approximated by a Smoluchowski-like equation displaying dissipation and quantum effects. A comparison with the standard chemical kinetic equations is made. The time τ required for the two particles to transition from the bound state to unbound configurations is studied by means of the mean first passage time formalism. An approximate formula for τ, in terms of D and exhibiting the Arrhenius exponential factor, is obtained. Recombination processes are also briefly studied within our framework and compared with previous well-known methods.

  17. Bose-Hubbard Hamiltonian: Quantum chaos approach

    Science.gov (United States)

    Kolovsky, Andrey R.

    2016-03-01

    We discuss applications of the theory of quantum chaos to one of the paradigm models of many-body quantum physics — the Bose-Hubbard (BH) model, which describes, in particular, interacting ultracold Bose atoms in an optical lattice. After preliminary, pure quantum analysis of the system we introduce the classical counterpart of the BH model and the governing semiclassical equations of motion. We analyze these equations for the problem of Bloch oscillations (BOs) of cold atoms where a number of experimental results are available. The paper is written for nonexperts and can be viewed as an introduction to the field.

  18. Transmission coefficients for chemical reactions with multiple states: role of quantum decoherence.

    Science.gov (United States)

    de la Lande, Aurélien; Řezáč, Jan; Lévy, Bernard; Sanders, Barry C; Salahub, Dennis R

    2011-03-23

    Transition-state theory (TST) is a widely accepted paradigm for rationalizing the kinetics of chemical reactions involving one potential energy surface (PES). Multiple PES reaction rate constants can also be estimated within semiclassical approaches provided the hopping probability between the quantum states is taken into account when determining the transmission coefficient. In the Marcus theory of electron transfer, this hopping probability was historically calculated with models such as Landau-Zener theory. Although the hopping probability is intimately related to the question of the transition from the fully quantum to the semiclassical description, this issue is not adequately handled in physicochemical models commonly in use. In particular, quantum nuclear effects such as decoherence or dephasing are not present in the rate constant expressions. Retaining the convenient semiclassical picture, we include these effects through the introduction of a phenomenological quantum decoherence function. A simple modification to the usual TST rate constant expression is proposed: in addition to the electronic coupling, a characteristic decoherence time τ(dec) now also appears as a key parameter of the rate constant. This new parameter captures the idea that molecular systems, although intrinsically obeying quantum mechanical laws, behave semiclassically after a finite but nonzero amount of time (τ(dec)). This new degree of freedom allows a fresh look at the underlying physics of chemical reactions involving more than one quantum state. The ability of the proposed formula to describe the main physical lines of the phenomenon is confirmed by comparison with results obtained from density functional theory molecular dynamics simulations for a triplet to singlet transition within a copper dioxygen adduct relevant to the question of dioxygen activation by copper monooxygenases.

  19. Spectroscopic and quantum chemical calculation study on 2-ethoxythiazole molecule

    Science.gov (United States)

    Avcı, Davut; Dede, Bülent; Bahçeli, Semiha; Varkal, Döndü

    2017-06-01

    In this study, the 2-ethoxythiazole molecule (C5H7NSO) which is a member of the five-membered heterocyles with one nitrogen atom group has been investigated by using the experimental UV-vis (in three different solvents) and FT-IR spectral results as well as some magnetic properties. Furthermore, the calculated molecular geometric parameters, vibrational wavenumbers, HOMO-LUMO energies, 1H and 13C NMR chemical shift values and natural bond orbitals (NBO) of the title molecule have been calculated at the B3LYP and HSEH1PBE levels of theory with the 6-311++G(d,p) basis set. The spectral results obtained from the quantum chemical calculations are in good agreement with the experimental results.

  20. A quantum approach to homomorphic encryption

    Science.gov (United States)

    Tan, Si-Hui; Kettlewell, Joshua A.; Ouyang, Yingkai; Chen, Lin; Fitzsimons, Joseph F.

    2016-09-01

    Encryption schemes often derive their power from the properties of the underlying algebra on the symbols used. Inspired by group theoretic tools, we use the centralizer of a subgroup of operations to present a private-key quantum homomorphic encryption scheme that enables a broad class of quantum computation on encrypted data. The quantum data is encoded on bosons of distinct species in distinct spatial modes, and the quantum computations are manipulations of these bosons in a manner independent of their species. A particular instance of our encoding hides up to a constant fraction of the information encrypted. This fraction can be made arbitrarily close to unity with overhead scaling only polynomially in the message length. This highlights the potential of our protocol to hide a non-trivial amount of information, and is suggestive of a large class of encodings that might yield better security.

  1. The hard problem a quantum approach

    CERN Document Server

    Stapp, Henry P

    1995-01-01

    Contents 1. Introduction: Philosophical Setting. 2. Quantum Model of the Mind/Brain. 3. Person and Self. 4. Meeting Baars's Criteria for Consciousness. 5. Qualia. 6. Free-Will. Prepared for a special issue of the Journal of Consciousness Studies.

  2. A quantum approach to homomorphic encryption.

    Science.gov (United States)

    Tan, Si-Hui; Kettlewell, Joshua A; Ouyang, Yingkai; Chen, Lin; Fitzsimons, Joseph F

    2016-09-23

    Encryption schemes often derive their power from the properties of the underlying algebra on the symbols used. Inspired by group theoretic tools, we use the centralizer of a subgroup of operations to present a private-key quantum homomorphic encryption scheme that enables a broad class of quantum computation on encrypted data. The quantum data is encoded on bosons of distinct species in distinct spatial modes, and the quantum computations are manipulations of these bosons in a manner independent of their species. A particular instance of our encoding hides up to a constant fraction of the information encrypted. This fraction can be made arbitrarily close to unity with overhead scaling only polynomially in the message length. This highlights the potential of our protocol to hide a non-trivial amount of information, and is suggestive of a large class of encodings that might yield better security.

  3. The quantum measurement approach to particle oscillations

    CERN Document Server

    Anastopoulos, C

    2010-01-01

    The LSND and MiniBoone seeming anomalies in neutrino oscillations are usually attributed to physics beyond the Standard model. It is, however, possible that they may be an artefact of the theoretical treatment of particle oscillations that ignores fine points of quantum measurement theory relevant to the experiments. In this paper, we construct a rigorous measurement-theoretic framework for the description of particle oscillations, employing no assumptions extrinsic to quantum theory. The formalism leads to a non-standard oscillation formula; at low energy it predicts an `anomalous' oscillation wavelength, while at high energy it differs from the standard expression by a factor of 2. The key novelties in the formalism are the treatment of a particle's time of arrival at the detector as a genuine quantum observable, the theoretical precision in the definition of quantum probabilities, and the detailed modeling of the measurement process. The article also contains an extensive critical review of existing theore...

  4. Life and Quantum Biology, an Interdisciplinary Approach

    CERN Document Server

    Driessen, Alfred

    2011-01-01

    The rapidly increasing interest in the quantum properties of living matter stimulates a discussion of the fundamental properties of life as well as quantum mechanics. In this discussion often concepts are used that originate in philosophy. In the present work a classic philosophical tradition based on Aristotle and Aquinas is employed which surprisingly is able to make important aspects in science intelligible. Especially one could mention the unity in living objects and the occurrence of qualitative changes in quantum mechanics. It is recommended that scientists and philosophers have a strong interaction that enriches both. Scientists could redirect their investigation, as paradigm shifts like the one originating from quantum mechanics give new insight about the relation between the system en the components. Whereas philosophers could use scientific results as a consistency check for the philosophical framework for understanding reality.

  5. Approach to Quantum Kramers' Equation and Barrier Crossing Dynamics

    CERN Document Server

    Banerjee, Dhruba; Banik, S K; Ray, D S; Banerjee, Dhruba; Bag, Bidhan Chandra; Banik, Suman Kumar; Ray, Deb Shankar

    2002-01-01

    We have presented a simple approach to quantum theory of Brownian motion and barrier crossing dynamics. Based on an initial coherent state representation of bath oscillators and an equilibrium canonical distribution of quantum mechanical mean values of their co-ordinates and momenta we have derived a $c$-number generalized quantum Langevin equation. The approach allows us to implement the method of classical non-Markovian Brownian motion to realize an exact generalized non-Markovian quantum Kramers' equation. The equation is valid for arbitrary temperature and friction. We have solved this equation in the spatial diffusion-limited regime to derive quantum Kramers' rate of barrier crossing and analyze its variation as a function of temperature and friction. While almost all the earlier theories rest on quasi-probability distribution functions (like Wigner function) and path integral methods, the present work is based on {\\it true probability distribution functions} and is independent of path integral technique...

  6. Chemical accuracy from quantum Monte Carlo for the Benzene Dimer

    CERN Document Server

    Azadi, Sam

    2015-01-01

    We report an accurate study of interactions between Benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory (DFT) using different van der Waals (vdW) functionals. In our QMC calculations, we use accurate correlated trial wave functions including three-body Jastrow factors, and backflow transformations. We consider two benzene molecules in the parallel displaced (PD) geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the CCSD(T)/CBS limit is -2.65(2) kcal/mol [E. Miliordos et al, J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, compar...

  7. From quantum chemical formation free energies to evaporation rates

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2012-01-01

    Full Text Available Atmospheric new particle formation is an important source of atmospheric aerosols. Large efforts have been made during the past few years to identify which molecules are behind this phenomenon, but the actual birth mechanism of the particles is not yet well known. Quantum chemical calculations have proven to be a powerful tool to gain new insights into the very first steps of particle formation. In the present study we use formation free energies calculated by quantum chemical methods to estimate the evaporation rates of species from sulfuric acid clusters containing ammonia or dimethylamine. We have found that dimethylamine forms much more stable clusters with sulphuric acid than ammonia does. On the other hand, the existence of a very deep local minimum for clusters with two sulfuric acid molecules and two dimethylamine molecules hinders their growth to larger clusters. These results indicate that other compounds may be needed to make clusters grow to larger sizes (containing more than three sulfuric acid molecules.

  8. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    Science.gov (United States)

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported.

  9. Chemical Approaches to Nuclear Receptors in Metabolism

    Science.gov (United States)

    Margolis, Ronald N.; Moore, David D.; Willson, Timothy M.; Guy, R. Kip

    2017-01-01

    The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) sponsored a workshop, “Chemical Approaches to Nuclear Receptors and Metabolism,” in April 2009 to explore how chemical and molecular biology and physiology can be exploited to further our understanding of nuclear receptor structure, function, and role in disease. Signaling cascades involving nuclear receptors are more complex and interrelated than once thought. Nuclear receptors continue to be attractive targets for drug discovery. The overall goal of this workshop was to identify gaps in our understanding of the complexity of ligand activities and begin to address them by (i) increasing the collaboration of investigators from different disciplines, (ii) developing a better understanding of chemical modulation of nuclear receptor action, and (iii) identifying opportunities and roadblocks in the path of translating basic research to discovery of new therapeutics. PMID:19654413

  10. Engineering electrical properties of graphene: chemical approaches

    Science.gov (United States)

    Kim, Yong-Jin; Kim, Yuna; Novoselov, Konstantin; Hong, Byung Hee

    2015-12-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed.

  11. The Quantum Jump Approach to Dissipative Dynamics in Quantum Optics

    CERN Document Server

    Plenio, M B

    1998-01-01

    Dissipation, the irreversible loss of energy and coherence, from a microsystem, is the result of coupling to a much larger macrosystem (or reservoir) which is so large that one has no chance of keeping track of all of its degrees of freedom. The microsystem evolution is then described by tracing over the reservoir states, resulting in an irreversible decay as excitation leaks out of the initially excited microsystems into the outer reservoir environment. Earlier treatments of this dissipation described an ensemble of microsystems using density matrices, either in Schroedinger picture with Master equations, or in Heisenberg picture with Langevin equations. The development of experimental techniques to study single quantum systems (for example single trapped ions, or cavity radiation field modes) has stimulated the construction of theoretical methods to describe individual realizations conditioned on a particular observation record of the decay channel, in the environment. These methods, variously described as ...

  12. Walking in the woods with quantum chemistry--applications of quantum chemical calculations in natural products research.

    Science.gov (United States)

    Tantillo, Dean J

    2013-08-01

    This Highlight describes applications of quantum chemical calculations to problems in natural products chemistry, including the elucidation of natural product structures (distinguishing between constitutional isomers, distinguishing between diastereomers, and assigning absolute configuration) and determination of reasonable mechanisms for their formation.

  13. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.

    Science.gov (United States)

    Ramakrishnan, Raghunathan; Dral, Pavlo O; Rupp, Matthias; von Lilienfeld, O Anatole

    2015-05-12

    Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k isomers of C7H10O2 we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semiempirical quantum chemistry and machine learning models trained on 1 and 10% of 134k organic molecules, to reproduce enthalpies of all remaining molecules at density functional theory level of accuracy.

  14. Big Data meets Quantum Chemistry Approximations: The $\\Delta$-Machine Learning Approach

    CERN Document Server

    Ramakrishnan, Raghunathan; Rupp, Matthias; von Lilienfeld, O Anatole

    2015-01-01

    Chemically accurate and comprehensive studies of the virtual space of all possible molecules are severely limited by the computational cost of quantum chemistry. We introduce a composite strategy that adds machine learning corrections to computationally inexpensive approximate legacy quantum methods. After training, highly accurate predictions of enthalpies, free energies, entropies, and electron correlation energies are possible, for significantly larger molecular sets than used for training. For thermochemical properties of up to 16k constitutional isomers of C$_7$H$_{10}$O$_2$ we present numerical evidence that chemical accuracy can be reached. We also predict electron correlation energy in post Hartree-Fock methods, at the computational cost of Hartree-Fock, and we establish a qualitative relationship between molecular entropy and electron correlation. The transferability of our approach is demonstrated, using semi-empirical quantum chemistry and machine learning models trained on 1 and 10\\% of 134k organ...

  15. Radiation and quantum chemical studies of chalcone derivatives.

    Science.gov (United States)

    Gaikwad, P; Priyadarsini, K I; Naumov, S; Rao, B S M

    2010-08-05

    The reactions of oxidizing radicals ((*)OH, Br(2)(*-), and SO(4)(*-)) with -OH-, -CH(3)-, or -NH(2)-substituted indole chalcones and hydroxy benzenoid chalcones were studied by radiation and quantum chemical methods. The (*)OH radical was found to react by addition at diffusion-controlled rates (k = 1.1-1.7 x 10(10) dm(3) mol(-1) s(-1)), but Br(2)(*-) radical reacted by 2 orders of magnitude lower. Quantum chemical calculations at the B3LYP/6-31+G(d,p) level of theory have shown that the (C2-OH)(*), (C11-OH)(*), and (C10-OH)(*) adducts of the indole chalcones and the (C7-OH)(*) and (C8-OH)(*) adducts of the hydroxy benzenoid chalcones are more stable with DeltaH = -39 to -28 kcal mol(-1) and DeltaG = -32 to -19 kcal mol(-1). This suggests that (*)OH addition to the alpha,beta-unsaturated bond is a major reaction channel in both types of chalcones and is barrierless. The stability and lack of dehydration of the (*)OH adducts arise from two factors: strong frontier orbital interaction due to the low energy gap between interacting orbitals and the negligible Coulombic repulsion due to small absolute values of Mulliken charges. The transient absorption spectrum measured in the (*)OH radical reaction with all the indole chalcone derivatives exhibited a maximum at 390 nm, which is in excellent agreement with the computed value (394 nm). The formation of three phenolic products under steady-state radiolysis is in line with the three stable (*)OH adducts predicted by theory. Independent of the substituent, identical spectra (lambda(max) = 330-360 and approximately 580 nm) were obtained on one-electron oxidation of the three indole chalcones. MO calculations predict the deprotonation from the -NH group is more efficient than from the substituent due to the larger electron density on the N1 atom forming the chalcone indolyl radical. Its reduction potential was determined to be 0.56 V from the ABTS(*-)/ABTS(2-) couple. In benzenoid chalcones, the (*)OH adduct spectrum is

  16. Characterization of heterocyclic rings through quantum chemical topology.

    Science.gov (United States)

    Griffiths, Mark Z; Popelier, Paul L A

    2013-07-22

    Five-membered rings are found in a myriad of molecules important in a wide range of areas such as catalysis, nutrition, and drug and agrochemical design. Systematic insight into their largely unexplored chemical space benefits from first principle calculations presented here. This study comprehensively investigates a grand total of 764 different rings, all geometry optimized at the B3LYP/6-311+G(2d,p) level, from the perspective of Quantum Chemical Topology (QCT). For the first time, a 3D space of local topological properties was introduced, in order to characterize rings compactly. This space is called RCP space, after the so-called ring critical point. This space is analogous to BCP space, named after the bond critical point, which compactly and successfully characterizes a chemical bond. The relative positions of the rings in RCP space are determined by the nature of the ring scaffold, such as the heteroatoms within the ring or the number of π-bonds. The summed atomic QCT charges of the five ring atoms revealed five features (number and type of heteroatom, number of π-bonds, substituent and substitution site) that dictate a ring's net charge. Each feature independently contributes toward a ring's net charge. Each substituent has its own distinct and systematic effect on the ring's net charge, irrespective of the ring scaffold. Therefore, this work proves the possibility of designing a ring with specific properties by fine-tuning it through manipulation of these five features.

  17. Quantum measurement corrections to chemically induced dynamic nuclear polarization

    CERN Document Server

    Kominis, I K

    2013-01-01

    Chemically induced dynamic nuclear polarization has emerged as a universal signature of spin order in photosynthetic reaction centers. Such polarization, significantly enhanced above thermal equilibrium, is known to result from the nuclear spin sorting inherent in the radical pair mechanism underlying long-lived charge-separated states in photosynthetic reaction centers. We will here show that the recently understood fundamental quantum dynamics of radical-ion-pair reactions open up a new and completely unexpected venue towards obtaining CIDNP signals. The fundamental decoherence mechanism inherent in the recombination process of radical pairs is shown to produce nuclear spin polarizations on the order of $10^4$ times or more higher than thermal equilibrium values at low fields relevant to natural photosynthesis in earth's magnetic field. This opens up the possibility of a fundamentally new exploration of the biological significance of high nuclear polarizations in photosynthesis.

  18. Quantum chemical study on asymmetric catalysis reduction of imine

    Institute of Scientific and Technical Information of China (English)

    LI; Ming; (李明); TIAN; Anmin; (田安民)

    2003-01-01

    The quantum chemical method is employed to study the enantioselective reduction of imine with borane catalyzed by chiral oxazaborolidine. All the structures are optimized completely at the B3LYP/6-31G(d) level. The catalysis property of oxazaborolidine is notable. The reduction goes mainly through the formations of the catalyst-borane adduct, the catalyst-borane-imine adduct, and the catalyst-amidoborane adduct and the dissociation of the catalyst-amidoborane adduct with the regeneration of the catalyst. The controlling step for the reduction is the dissociation of the catalyst-amidoborane adduct. The main reduced product predicted theoretically is (R )-sec- ondary amine, which is in agreement with the experiment.

  19. Quantum Chemical Study on the Corrosion Inhibition of Some Oxadiazoles

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2015-01-01

    Full Text Available Quantum chemical calculations based on DFT method were performed on three nitrogen-bearing heterocyclic compounds used as corrosion inhibitors for the mild steel in acid media to determine the relationship between the molecular structure of inhibitors and inhibition efficiency. The structural parameters, such as energy and distribution of highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO, the charge distribution of the studied inhibitors, the absolute electronegativity (χ values, and the fraction of electrons (ΔN transfer from inhibitors to mild steel were also calculated and correlated with inhibition efficiencies. The results showed that the inhibition efficiency of inhibitors increased with the increase in energy of HOMO and decrease in energy gap of frontier molecular orbital, and the areas containing N and O atoms are most possible sites for bonding the steel surface by donating electrons to the mild steel.

  20. Chemically mediated quantum criticality in NbFe2.

    Science.gov (United States)

    Alam, Aftab; Johnson, D D

    2011-11-11

    Laves-phase Nb(1+c)Fe(2-c) is a rare itinerant intermetallic compound exhibiting magnetic quantum criticality at c(cr)∼1.5%Nb excess; its origin, and how alloying mediates it, remains an enigma. For NbFe(2), we show that an unconventional band critical point above the Fermi level E(F) explains most observations and that chemical alloying mediates access to this unconventional band critical point by an increase in E(F) with decreasing electrons (increasing %Nb), counter to rigid-band concepts. We calculate that E(F) enters the unconventional band critical point region for c(cr) > 1.5%Nb and by 1.74%Nb there is no Nb site-occupation preference between symmetry-distinct Fe sites, i.e., no electron-hopping disorder, making resistivity near constant as observed. At larger Nb (Fe) excess, the ferromagnetic Stoner criterion is satisfied.

  1. Chemical potential and compressibility of quantum Hall bilayer excitons,.

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Brian

    2016-02-25

    I consider a system of two parallel quantum Hall layers with total filling factor 0 or 1. When the distance between the layers is small enough, electrons and holes in opposite layers can form inter-layer excitons, which have a finite effective mass and interact via a dipole-dipole potential. I present results for the chemical potential u of the resulting bosonic system as a function of the exciton concentration n and the interlayer separation d. I show that both u and the interlayer capacitance have an unusual nonmonotonic dependence on d, owing to the interplay between an increasing dipole moment and an increasing effective mass with increasing d. Finally, I discuss the transition between the superfluid and Wigner crystal phases, which is shown to occur at d x n-1/10. Results are derived first via simple intuitive arguments, and then verified with more careful analytic derivations and numeric calculations.

  2. The many roles of quantum chemical predictions in synthetic organic chemistry.

    Science.gov (United States)

    Nguyen, Quynh Nhu N; Tantillo, Dean J

    2014-03-01

    This account discusses representative case studies for various applications of quantum chemical calculations in synthetic organic chemistry. These include confirmation of target structures, methodology development, and catalyst design. These examples demonstrate how predictions from quantum chemical calculations can be utilized to streamline synthetic efforts.

  3. Pilot-wave approaches to quantum field theory

    CERN Document Server

    Struyve, Ward

    2011-01-01

    The purpose of this paper is to present an overview of recent work on pilot-wave approaches to quantum field theory. In such approaches, systems are not only described by their wave function, as in standard quantum theory, but also by some additional variables. In the non-relativistic pilot-wave theory of de Broglie and Bohm those variables are particle positions. In the context of quantum field theory, there are two natural choices, namely particle positions and fields. The incorporation of those variables makes it possible to provide an objective description of nature in which rather ambiguous notions such as `measurement' and `observer' play no fundamental role. As such, the theory is free of the conceptual difficulties, such as the measurement problem, that plague standard quantum theory.

  4. Scattering matrix approach to non-stationary quantum transport

    CERN Document Server

    Moskalets, Michael V

    2012-01-01

    The aim of this book is to introduce the basic elements of the scattering matrix approach to transport phenomena in dynamical quantum systems of non-interacting electrons. This approach admits a physically clear and transparent description of transport processes in dynamical mesoscopic systems promising basic elements of solid-state devices for quantum information processing. One of the key effects, the quantum pump effect, is considered in detail. In addition, the theory for a recently implemented new dynamical source - injecting electrons with time delay much larger than the electron coherence time - is offered. This theory provides a simple description of quantum circuits with such a single-particle source and shows in an unambiguous way that the tunability inherent to the dynamical systems leads to a number of unexpected but fundamental effects.

  5. Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ananth, Nandini [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method to obtain energy eigenvalues accurately for complex

  6. Hybrid-system approach to fault-tolerant quantum communication

    Science.gov (United States)

    Stephens, Ashley M.; Huang, Jingjing; Nemoto, Kae; Munro, William J.

    2013-05-01

    We present a layered hybrid-system approach to quantum communication that involves the distribution of a topological cluster state throughout a quantum network. Photon loss and other errors are suppressed by optical multiplexing and entanglement purification. The scheme is scalable to large distances, achieving an end-to-end rate of 1 kHz with around 50 qubits per node. We suggest a potentially suitable implementation of an individual node composed of erbium spins (single atom or ensemble) coupled via flux qubits to a microwave resonator, allowing for deterministic local gates, stable quantum memories, and emission of photons in the telecom regime.

  7. Quantum Machine and SR Approach: a Unified Model

    CERN Document Server

    Garola, C; Sozzo, S; Garola, Claudio; Pykacz, Jaroslav; Sozzo, Sandro

    2005-01-01

    The Geneva-Brussels approach to quantum mechanics (QM) and the semantic realism (SR) nonstandard interpretation of QM exhibit some common features and some deep conceptual differences. We discuss in this paper two elementary models provided in the two approaches as intuitive supports to general reasonings and as a proof of consistency of general assumptions, and show that Aerts' quantum machine can be embodied into a macroscopic version of the microscopic SR model, overcoming the seeming incompatibility between the two models. This result provides some hints for the construction of a unified perspective in which the two approaches can be properly placed.

  8. Elements of a new approach to time in Quantum Mechanics

    OpenAIRE

    Dias, Eduardo O.; Parisio, Fernando

    2015-01-01

    In this work we present a re-evaluation of the concept of time in non-relativistic quantum theory. We suggest a formalism in which time is changed into the status of an operator, and where expectation values of observables and the state of a quantum system are reworked. This approach leads us to an additional concept, given by a temporal probability distribution associated with the actual measurement of an observable.

  9. Review of the N-quantum Approach to Bound States

    CERN Document Server

    Greenberg, O W

    2010-01-01

    We describe a method of solving quantum field theories using operator techniques based on the expansion of interacting fields in terms of asymptotic fields. For bound states, we introduce an asymptotic field for each (stable) bound state. We choose the nonrelativistic hydrogen atom as an example to illustrate the method. Future work will apply this N-quantum approach to relativistic theories that include bound states in motion.

  10. Chemical approaches to studying stem cell biology

    Institute of Scientific and Technical Information of China (English)

    Wenlin Li; Kai Jiang; Wanguo Wei; Yan Shi; Sheng Ding

    2013-01-01

    Stem cells,including both pluripotent stem cells and multipotent somatic stem cells,hold great potential for interrogating the mechanisms of tissue development,homeostasis and pathology,and for treating numerous devastating diseases.Establishment of in vitro platforms to faithfully maintain and precisely manipulate stem cell fates is essential to understand the basic mechanisms of stem cell biology,and to translate stem cells into regenerative medicine.Chemical approaches have recently provided a number of small molecules that can be used to control cell selfrenewal,lineage differentiation,reprogramming and regeneration.These chemical modulators have been proven to be versatile tools for probing stem cell biology and manipulating cell fates toward desired outcomes.Ultimately,this strategy is promising to be a new frontier for drug development aimed at endogenous stem cell modulation.

  11. A Theoretic Approach to SU(4) Kondo Effect in Carbon Nanotube Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    ZHU Rui

    2006-01-01

    We propose a mean Geld approach to the transport properties of carbon nanotube quantum dots. Quantum interaction between spin and orbital pseudo-spin degrees of freedom results in an SU(4) Kondo effect at low temperatures. By calculating the chemical potentials and the tunnelling strengths, and hence the spectral functions for different coupling constants and applied magnetic fields, we find that this exotic Kondo effect manifests as a four-peak splitting in the non-linear conductance when an axial magnetic field is applied.

  12. A lattice approach to spinorial quantum gravity

    Science.gov (United States)

    Renteln, Paul; Smolin, Lee

    1989-01-01

    A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.

  13. Grid-based methods for biochemical ab initio quantum chemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, M.E.; Nelson, J.S.; Mori, E. [and others

    1997-01-01

    A initio quantum chemical methods are seeing increased application in a large variety of real-world problems including biomedical applications ranging from drug design to the understanding of environmental mutagens. The vast majority of these quantum chemical methods are {open_quotes}spectral{close_quotes}, that is they describe the charge distribution around the nuclear framework in terms of a fixed analytic basis set. Despite the additional complexity they bring, methods involving grid representations of the electron or solvent charge can provide more efficient schemes for evaluating spectral operators, inexpensive methods for calculating electron correlation, and methods for treating the electrostatic energy of salvation in polar solvents. The advantage of mixed or {open_quotes}pseudospectral{close_quotes} methods is that they allow individual non-linear operators in the partial differential equations, such as coulomb operators, to be calculated in the most appropriate regime. Moreover, these molecular grids can be used to integrate empirical functionals of the electron density. These so-called density functional methods (DFT) are an extremely promising alternative to conventional post-Hartree Fock quantum chemical methods. The introduction of a grid at the molecular solvent-accessible surface allows a very sophisticated treatment of a polarizable continuum solvent model (PCM). Where most PCM approaches use a truncated expansion of the solute`s electric multipole expansion, e.g. net charge (Born model) or dipole moment (Onsager model), such a grid-based boundary-element method (BEM) yields a nearly exact treatment of the solute`s electric field. This report describes the use of both DFT and BEM methods in several biomedical chemical applications.

  14. Spectroscopic, quantum chemical calculation and molecular docking of dipfluzine

    Science.gov (United States)

    Srivastava, Karnica; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Wang, Jing

    2016-12-01

    Molecular structure and vibrational analysis of dipfluzine (C27H29FN2O) were presented using FT-IR and FT-Raman spectroscopy and quantum chemical calculations. The theoretical ground state geometry and electronic structure of dipfluzine are optimized by the DFT/B3LYP/6-311++G (d,p) method and compared with those of the crystal data. The 1D potential energy scan was performed by varying the dihedral angle using B3LYP functional at 6-31G(d,p) level of theory and thus the most stable conformer of the compound were determined. Molecular electrostatic potential surface (MEPS), frontier orbital analysis and electronic reactivity descriptor were used to predict the chemical reactivity of molecule. Energies of intra- and inter-molecular hydrogen bonds in molecule and their electronic aspects were investigated by natural bond orbital (NBO). To find out the anti-apoptotic activity of the title compound molecular docking studies have been performed against protein Fas.

  15. An introduction to quantum chemical methods applied to drug design.

    Science.gov (United States)

    Stenta, Marco; Dal Peraro, Matteo

    2011-06-01

    The advent of molecular medicine allowed identifying the malfunctioning of subcellular processes as the source of many diseases. Since then, drugs are not only discovered, but actually designed to fulfill a precise task. Modern computational techniques, based on molecular modeling, play a relevant role both in target identification and drug lead development. By flanking and integrating standard experimental techniques, modeling has proven itself as a powerful tool across the drug design process. The success of computational methods depends on a balance between cost (computation time) and accuracy. Thus, the integration of innovative theories and more powerful hardware architectures allows molecular modeling to be used as a reliable tool for rationalizing the results of experiments and accelerating the development of new drug design strategies. We present an overview of the most common quantum chemistry computational approaches, providing for each one a general theoretical introduction to highlight limitations and strong points. We then discuss recent developments in software and hardware resources, which have allowed state-of-the-art of computational quantum chemistry to be applied to drug development.

  16. Quantum information processing in phase space: A modular variables approach

    Science.gov (United States)

    Ketterer, A.; Keller, A.; Walborn, S. P.; Coudreau, T.; Milman, P.

    2016-08-01

    Binary quantum information can be fault-tolerantly encoded in states defined in infinite-dimensional Hilbert spaces. Such states define a computational basis, and permit a perfect equivalence between continuous and discrete universal operations. The drawback of this encoding is that the corresponding logical states are unphysical, meaning infinitely localized in phase space. We use the modular variables formalism to show that, in a number of protocols relevant for quantum information and for the realization of fundamental tests of quantum mechanics, it is possible to loosen the requirements on the logical subspace without jeopardizing their usefulness or their successful implementation. Such protocols involve measurements of appropriately chosen modular variables that permit the readout of the encoded discrete quantum information from the corresponding logical states. Finally, we demonstrate the experimental feasibility of our approach by applying it to the transverse degrees of freedom of single photons.

  17. Computational approach for calculating bound states in quantum field theory

    Science.gov (United States)

    Lv, Q. Z.; Norris, S.; Brennan, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-09-01

    We propose a nonperturbative approach to calculate bound-state energies and wave functions for quantum field theoretical models. It is based on the direct diagonalization of the corresponding quantum field theoretical Hamiltonian in an effectively discretized and truncated Hilbert space. We illustrate this approach for a Yukawa-like interaction between fermions and bosons in one spatial dimension and show where it agrees with the traditional method based on the potential picture and where it deviates due to recoil and radiative corrections. This method permits us also to obtain some insight into the spatial characteristics of the distribution of the fermions in the ground state, such as the bremsstrahlung-induced widening.

  18. pK(a) prediction from "Quantum Chemical Topology" descriptors.

    Science.gov (United States)

    Harding, A P; Wedge, D C; Popelier, P L A

    2009-08-01

    Knowing the pK(a) of a compound gives insight into many properties relevant to many industries, in particular the pharmaceutical industry during drug development processes. In light of this, we have used the theory of Quantum Chemical Topology (QCT), to provide ab initio descriptors that are able to accurately predict pK(a) values for 228 carboxylic acids. This Quantum Topological Molecular Similarity (QTMS) study involved the comparison of 5 increasingly more expensive levels of theory to conclude that HF/6-31G(d) and B3LYP/6-311+G(2d,p) provided an accurate representation of the compounds studies. We created global and subset models for the carboxylic acids using Partial Least Square (PLS), Support Vector Machines (SVM), and Radial Basis Function Neural Networks (RBFNN). The models were extensively validated using 4-, 7-, and 10-fold cross-validation, with the validation sets selected based on systematic and random sampling. HF/6-31G(d) in conjunction with SVM provided the best statistics when taking into account the large increase in CPU time required to optimize the geometries at the B3LYP/6-311+G(2d,p) level. The SVM models provided an average q(2) value of 0.886 and an RMSE value of 0.293 for all the carboxylic acids, a q(2) of 0.825 and RMSE of 0.378 for the ortho-substituted acids, a q(2) of 0.923 and RMSE of 0.112 for the para- and meta-substituted acids, and a q(2) of 0.906 and RMSE of 0.268 for the aliphatic acids. Our method compares favorably to ACD/Laboratories, VCCLAB, SPARC, and ChemAxon's pK(a) prediction software based of the RMSE calculated by the leave-one-out method.

  19. The quantum dynamics of electronically nonadiabatic chemical reactions

    Science.gov (United States)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally

  20. Chemical physics: Quantum control of light-induced reactions

    Science.gov (United States)

    Chandler, David W.

    2016-07-01

    An investigation of how ultracold molecules are broken apart by light reveals surprising, previously unobserved quantum effects. The work opens up avenues of research in quantum optics. See Letter p.122

  1. On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fayet, Guillaume [Laboratoire d' Electrochimie et Chimie Analytique, CNRS UMR-7575, Ecole Nationale Superieure de Chimie de Paris, 11 rue P. et M. Curie, 75231 Paris Cedex 05 (France); Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte (France); Rotureau, Patricia, E-mail: patricia.rotureau@ineris.fr [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte (France); Joubert, Laurent; Adamo, Carlo [Laboratoire d' Electrochimie et Chimie Analytique, CNRS UMR-7575, Ecole Nationale Superieure de Chimie de Paris, 11 rue P. et M. Curie, 75231 Paris Cedex 05 (France)

    2009-11-15

    This work presents a new approach to predict thermal stability of nitroaromatic compounds based on quantum chemical calculations and on quantitative structure-property relationship (QSPR) methods. The data set consists of 22 nitroaromatic compounds of known decomposition enthalpy (taken as a macroscopic property related to explosibility) obtained from differential scanning calorimetry. Geometric, electronic and energetic descriptors have been selected and computed using density functional theory (DFT) calculation to describe the 22 molecules. First approach consisted in looking at their linear correlations with the experimental decomposition enthalpy. Molecular weight, electrophilicity index, electron affinity and oxygen balance appeared as the most correlated descriptors (respectively R{sup 2} = 0.76, 0.75, 0.71 and 0.64). Then multilinear regression was computed with these descriptors. The obtained model is a six-parameter equation containing descriptors all issued from quantum chemical calculations. The prediction is satisfactory with a correlation coefficient R{sup 2} of 0.91 and a predictivity coefficient R{sub cv}{sup 2} of 0.84 using a cross validation method.

  2. Towards Quantum Simulation of Chemical Dynamics with Prethreshold Superconducting Qubits

    CERN Document Server

    Stancil, P C; Cook, A; Sornborger, A T; Geller, M R

    2016-01-01

    The single excitation subspace (SES) method for universal quantum simulation is investigated for a number of diatomic molecular collision complexes. Assuming a system of $n$ tunably-coupled, and fully-connected superconducting qubits, computations are performed in the $n$-dimensional SES which maps directly to an $n$-channel collision problem within a diabatic molecular wave function representation. Here we outline the approach on a classical computer to solve the time-dependent Schr\\"odinger equation in an $n$-dimensional molecular basis - the so-called semiclassical molecular-orbital close-coupling (SCMOCC) method - and extend the treatment beyond the straight-line, constant-velocity approximation which is restricted to large kinetic energies ($\\gtrsim 0.1$ keV/u). We explore various multichannel potential averaging schemes and an Ehrenfest symmetrization approach to allow for the application of the SCMOCC method to much lower collision energies (approaching 1 eV/u). In addition, a computational efficiency ...

  3. Boolean approach to dichotomic quantum measurement theories

    Science.gov (United States)

    Nagata, K.; Nakamura, T.; Batle, J.; Abdalla, S.; Farouk, A.

    2017-02-01

    Recently, a new measurement theory based on truth values was proposed by Nagata and Nakamura [Int. J. Theor. Phys. 55, 3616 (2016)], that is, a theory where the results of measurements are either 0 or 1. The standard measurement theory accepts a hidden variable model for a single Pauli observable. Hence, we can introduce a classical probability space for the measurement theory in this particular case. Additionally, we discuss in the present contribution the fact that projective measurement theories (the results of which are either +1 or -1) imply the Bell, Kochen, and Specker (BKS) paradox for a single Pauli observable. To justify our assertion, we present the BKS theorem in almost all the two-dimensional states by using a projective measurement theory. As an example, we present the BKS theorem in two-dimensions with white noise. Our discussion provides new insight into the quantum measurement problem by using this measurement theory based on the truth values.

  4. Exact quantum defect theory approach for lithium in magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Xu Jia-Kun; Chen Hai-Qing; Liu Hong-Ping

    2013-01-01

    We calculate the diamagnetic spectrum of lithium at highly excited states up to the positive energy range using the exact quantum defect theory approach.The concerned excitation is one-photon transition from the ground state 2s to the highly excited states np with π and σ polarizations respectively.Lithium has a small quantum defect value 0.05 for the np states,and its diamagnetic spectrum is very similar to that of hydrogen in the energy range approaching the ionization limit.However,a careful calculation shows that the spectrum has a significant discrepancy with that of hydrogen when the energy is lower than-70 cm-1.The effect of the quantum defect is also discussed for the Stark spectrum.It is found that the σ transition to the np states in an electric field has a similar behavior to that of hydrogen due to zero interaction with channel ns.

  5. [Study of quantum-pharmacological chemical characteristics of quercetin].

    Science.gov (United States)

    Zahorodnyĭ, M I

    2007-01-01

    It was established in the previous studies that quercetin prevented the development and caused faster regression of ulcers, petechia and anabroses in rats, which were induced by diclofenac taking. In the group of patients taking diclofenac together with quercetin, the ulcers and dyspeptic events were less found. The application of quercetin normalizes the function and metabolism of cartilage tissue of rabbits with an experimental osteoarthrosis and in patients with osteoartrosis. Quantum-chemical properties of molecule quercetin were studied using the methods of molecular mechanics MM+ and ab initio 6-31G*, and also semiempirical method. The following indices were investigated: distance between atoms (A), the distribution of electronic density of only external valency electrons, distribution of electrostatic potential; common energy of the exertion of molecule (kkal/mmol); binding energy (kkal/mmol); electron energy (kkal/mmol); energy of nucleus-nucleus interaction (kkal/mmol); formation heat (kkal/mmol); atomic charge (eB); value of the dipole moment of molecule (D); localization and energy of highest occupied orbital (HOMO) and the lowest unoccupied (LUMO) molecular orbital (eB) of quercetin miolecule; the value of absolute rigidity of chemical structure of bioflavonoid. It was shown, that bioflavonoid quercetin belongs to mild reagents, has nucleophilic properties, can react with alkaline, unsaturated and aromatic compounds,. Polar substitutes in the quercetine molecule influence on the distribution of superficial valency electrons and localization of HOMO and LUMO. The energy value of quercetin LUMO enables us to refer quercetine to the reducing agent and it is illustrated by antioxidant properties of this medicine.

  6. Protein structure refinement using a quantum mechanics-based chemical shielding predictor

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Jensen, Jan Halborg

    2017-01-01

    The accurate prediction of protein chemical shifts using a quantum mechanics (QM)-based method has been the subject of intense research for more than 20 years but so far empirical methods for chemical shift prediction have proven more accurate. In this paper we show that a QM-based predictor...... of a protein backbone and CB chemical shifts (ProCS15, PeerJ, 2016, 3, e1344) is of comparable accuracy to empirical chemical shift predictors after chemical shift-based structural refinement that removes small structural errors. We present a method by which quantum chemistry based predictions of isotropic...

  7. Periodic quantum chemical studies on anhydrous and hydrated acid clinoptilolite.

    Science.gov (United States)

    Valdiviés Cruz, Karell; Lam, Anabel; Zicovich-Wilson, Claudio M

    2014-08-07

    Periodic quantum chemistry methods as implemented in the crystal09 code were considered to study acid clinoptilolite (HEU framework type), both anhydrous and hydrated. The most probable location of acid sites and water molecules together with other structural details has been the object of particular attention. Calculations were performed at hybrid and pristine DFT levels of theory with a VDZP quality basis set in order to compare performances. It arises that PBE0 provides the best agreement with experimental data as concerns structural features and the most stable Al distribution in the framework. The role of the water molecule distribution in the stability of the systems, the most probable structure that they induce in the material, and their eventual influence on further chemical modification processes, such as dealumination, are discussed in detail. Results show that, apart from the usually considered interactions of water molecules with the zeolite framework, that is, a H-bond with Brönsted acid sites and coordination with framework Al as Lewis ones, it is necessary to consider cooperation of other weaker effects so as to fully understand the hydration effect in this kind of materials.

  8. Quantum chemical studies of photochromic properties of benzoxazine compound

    Energy Technology Data Exchange (ETDEWEB)

    Toliautas, Stepas, E-mail: stepas.toliautas@ff.stud.vu.lt [Department of Theoretical Physics, Vilnius University, Sauletekio 9-III, LT-10222 Vilnius (Lithuania); Sulskus, Juozas, E-mail: juozas.sulskus@ff.vu.lt [Department of Theoretical Physics, Vilnius University, Sauletekio 9-III, LT-10222 Vilnius (Lithuania); Valkunas, Leonas, E-mail: leonas.valkunas@ff.vu.lt [Department of Theoretical Physics, Vilnius University, Sauletekio 9-III, LT-10222 Vilnius (Lithuania); Institute of Physics, Center for Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius (Lithuania); Vengris, Mikas, E-mail: mikas.vengris@ff.vu.lt [Department of Quantum Electronics, Vilnius University, Sauletekio 9-III, LT-10222 Vilnius (Lithuania)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Photochromic indolo-benzoxazine compound is studied. Black-Right-Pointing-Pointer Advanced LC-TDDFT and GMC-QDPT methods are used for excited state calculations. Black-Right-Pointing-Pointer Oxazine ring opens upon UV light excitation. Black-Right-Pointing-Pointer Fragments of the compound assume structures similar to the ions of separate molecules. Black-Right-Pointing-Pointer Multiple pathways of the photo-induced reaction are expected. -- Abstract: Molecular electronic structure of ground and excited states of a photochromic indolo[2,1-b][1,3]benzoxazine compound incorporating closed-ring system, which opens upon UV light excitation, was studied using various quantum chemical methods. Three local minima of the ground electronic state potential energy surface and related transition states were identified along the path of rotation of 4-nitrophenol group. Additionally, three local minima of the excited electronic states were located. The evaluated transition energy barriers between local ground-state minima nearest to the initial structure of the investigated molecule are less than 2 k{sub B}T, making open structures likely to revert to the initial structure by thermalization. Results obtained using ab initio GMC-QDPT method were explored and compared to the widely used TD-DFT and semi-empiric ZINDO methods.

  9. Tuning the Emission Energy of Chemically Doped Graphene Quantum Dots

    Directory of Open Access Journals (Sweden)

    Noor-Ul-Ain

    2016-11-01

    Full Text Available Tuning the emission energy of graphene quantum dots (GQDs and understanding the reason of tunability is essential for the GOD function in optoelectronic devices. Besides material-based challenges, the way to realize chemical doping and band gap tuning also pose a serious challenge. In this study, we tuned the emission energy of GQDs by substitutional doping using chlorine, nitrogen, boron, sodium, and potassium dopants in solution form. Photoluminescence data obtained from (Cl- and N-doped GQDs and (B-, Na-, and K-doped GQDs, respectively exhibited red- and blue-shift with respect to the photoluminescence of the undoped GQDs. X-ray photoemission spectroscopy (XPS revealed that oxygen functional groups were attached to GQDs. We qualitatively correlate red-shift of the photoluminescence with the oxygen functional groups using literature references which demonstrates that more oxygen containing groups leads to the formation of more defect states and is the reason of observed red-shift of luminescence in GQDs. Further on, time resolved photoluminescence measurements of Cl- and N-GQDs demonstrated that Cl substitution in GQDs has effective role in radiative transition whereas in N-GQDs leads to photoluminescence (PL quenching with non-radiative transition to ground state. Presumably oxidation or reduction processes cause a change of effective size and the bandgap.

  10. Quantum chemical studies on the reactivity of oxazole derivatives

    Science.gov (United States)

    Hosseinzadeh, Behzad; Eskandari, Khalil; Zarandi, Maryam; Asli, Reza

    2016-11-01

    The quantum chemical study of the reactivity of a series of oxazole derivatives substituted at 2, 4, and 5 positions was performed using B3LYP/6-311++G( d, p) and MP2/6-311++G( d, p) levels of theory. Different substituents have been applied to cover a wide range of electronic effects. On the basis of Fukui functions, oxazole derivatives in the gas phase are found to be suitable nucleophilic sites. For the most of studied substituents, it was observed that the calculated Fukui function f k - values at the N-position are small in case of electron-withdrawing substituents, resulting a preferred N-position for hard reactions. In contrast, large f k - values in case of electron-donating groups show a preferred N-position for soft reactions. These two local reactivity descriptors predicted the reactivity of the electron-rich oxazoles sequence to be 2-substituted oxazoles > 5-substituted oxazoles > 4-substituted oxazoles, where due to resonance effect, the reactivity toward electrophilic attack at the pyridine nitrogen atom is enhanced by electron donor substituents.

  11. Efficient wave-function matching approach for quantum transport calculations

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Petersen, Dan Erik;

    2009-01-01

    The wave-function matching (WFM) technique has recently been developed for the calculation of electronic transport in quantum two-probe systems. In terms of efficiency it is comparable to the widely used Green's function approach. The WFM formalism presented so far requires the evaluation of all ...

  12. New results in the quantum statistical approach to parton distributions

    CERN Document Server

    Soffer, Jacques; Bourrely, Claude

    2014-01-01

    We will describe the quantum statistical approach to parton distributions allowing to obtain simultaneously the unpolarized distributions and the helicity distributions. We will present some recent results, in particular related to the nucleon spin structure in QCD. Future measurements are challenging to check the validity of this novel physical framework.

  13. Quantum and Classical Approaches in Graphene and Topological Insulators

    DEFF Research Database (Denmark)

    Posvyanskiy, Vladimir

    mechanical study, this approach can give simple and pictorial explanation of the topological edge states. In our work we find the semiclassical orbits for the samples of different geometries and also discuss the influence of the quantum effects, the Berry phase, on the semiclassical electron dynamics....... Finally, we try to find the semiclassical mechanism responsible for topological protection of the edge states....

  14. On a full Monte Carlo approach to quantum mechanics

    Science.gov (United States)

    Sellier, J. M.; Dimov, I.

    2016-12-01

    The Monte Carlo approach to numerical problems has shown to be remarkably efficient in performing very large computational tasks since it is an embarrassingly parallel technique. Additionally, Monte Carlo methods are well known to keep performance and accuracy with the increase of dimensionality of a given problem, a rather counterintuitive peculiarity not shared by any known deterministic method. Motivated by these very peculiar and desirable computational features, in this work we depict a full Monte Carlo approach to the problem of simulating single- and many-body quantum systems by means of signed particles. In particular we introduce a stochastic technique, based on the strategy known as importance sampling, for the computation of the Wigner kernel which, so far, has represented the main bottleneck of this method (it is equivalent to the calculation of a multi-dimensional integral, a problem in which complexity is known to grow exponentially with the dimensions of the problem). The introduction of this stochastic technique for the kernel is twofold: firstly it reduces the complexity of a quantum many-body simulation from non-linear to linear, secondly it introduces an embarassingly parallel approach to this very demanding problem. To conclude, we perform concise but indicative numerical experiments which clearly illustrate how a full Monte Carlo approach to many-body quantum systems is not only possible but also advantageous. This paves the way towards practical time-dependent, first-principle simulations of relatively large quantum systems by means of affordable computational resources.

  15. Chemical Compass Model for Avian Magnetoreception as a Quantum Coherent Device

    Science.gov (United States)

    Cai, Jianming; Plenio, Martin B.

    2013-12-01

    It is known that more than 50 species use the Earth’s magnetic field for orientation and navigation. Intensive studies, particularly behavior experiments with birds, provide support for a chemical compass based on magnetically sensitive free radical reactions as a source of this sense. However, the fundamental question of how quantum coherence plays an essential role in such a chemical compass model of avian magnetoreception yet remains controversial. Here, we show that the essence of the chemical compass model can be understood in analogy to a quantum interferometer exploiting global quantum coherence rather than any subsystem coherence. Within the framework of quantum metrology, we quantify global quantum coherence and correlate it with the function of chemical magnetoreception. Our results allow us to understand and predict how various factors can affect the performance of a chemical compass from the unique perspective of quantum coherence assisted metrology. This represents a crucial step to affirm a direct connection between quantum coherence and the function of a chemical compass.

  16. Matrix Operator Approach to Quantum Evolution Operator and Geometric Phase

    CERN Document Server

    Kim, Sang Pyo; Soh, Kwang Sup

    2012-01-01

    The Moody-Shapere-Wilczek's adiabatic effective Hamiltonian and Lagrangian method is developed further into the matrix effective Hamiltonian (MEH) and Lagrangian (MEL) approach to a parameter-dependent quantum system. The matrix operator approach formulated in the product integral (PI) provides not only a method to find wave function efficiently in the MEH approach but also higher order corrections to the effective action systematically in the MEL approach, a la the Magnus expansion and the Kubo's cumulant expansion. A coupled quantum system of a light particle of harmonic oscillator is worked out, and as a by-product a new kind of gauge potential (Berry's connection) is found even for nondegenerate case (real eigenfunctions). Moreover, in the PI formulation the holonomy of the induced gauge potential is related to the Schlesinger's exact formula for the gauge field tensor. A superadiabatic expansion is also constructed and a generalized Dykhne formula, depending on the contour integrals of homotopy class of ...

  17. Block-adaptive quantum mechanics: an adaptive divide-and-conquer approach to interactive quantum chemistry.

    Science.gov (United States)

    Bosson, Maël; Grudinin, Sergei; Redon, Stephane

    2013-03-05

    We present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. Although quantum chemistry models are known to be computationally demanding, we achieve interactive rates by focusing computational resources on the most active parts of the system. BAQM is based on a divide-and-conquer technique and constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction to the neighboring local minima. By applying our approach to the nonself-consistent Atom Superposition and Electron Delocalization Molecular Orbital theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer.

  18. Numerical approaches to complex quantum, semiclassical and classical systems

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Gerald

    2008-11-03

    In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and

  19. Quantum transport under ac drive from the leads: A Redfield quantum master equation approach

    Science.gov (United States)

    Purkayastha, Archak; Dubi, Yonatan

    2017-08-01

    Evaluating the time-dependent dynamics of driven open quantum systems is relevant for a theoretical description of many systems, including molecular junctions, quantum dots, cavity-QED experiments, cold atoms experiments, and more. Here, we formulate a rigorous microscopic theory of an out-of-equilibrium open quantum system of noninteracting particles on a lattice weakly coupled bilinearly to multiple baths and driven by periodically varying thermodynamic parameters like temperature and chemical potential of the bath. The particles can be either bosonic or fermionic and the lattice can be of any dimension and geometry. Based on the Redfield quantum master equation under Born-Markov approximation, we derive a linear differential equation for an equal time two point correlation matrix, sometimes also called a single-particle density matrix, from which various physical observables, for example, current, can be calculated. Various interesting physical effects, such as resonance, can be directly read off from the equations. Thus, our theory is quite general and gives quite transparent and easy-to-calculate results. We validate our theory by comparing with exact numerical simulations. We apply our method to a generic open quantum system, namely, a double quantum dot coupled to leads with modulating chemical potentials. The two most important experimentally relevant insights from this are as follows: (i) Time-dependent measurements of current for symmetric oscillating voltages (with zero instantaneous voltage bias) can point to the degree of asymmetry in the system-bath coupling and (ii) under certain conditions time-dependent currents can exceed time-averaged currents by several orders of magnitude, and can therefore be detected even when the average current is below the measurement threshold.

  20. General approaches in ensemble quantum computing

    Indian Academy of Sciences (India)

    V Vimalan; N Chandrakumar

    2008-01-01

    We have developed methodology for NMR quantum computing focusing on enhancing the efficiency of initialization, of logic gate implementation and of readout. Our general strategy involves the application of rotating frame pulse sequences to prepare pseudopure states and to perform logic operations. We demonstrate experimentally our methodology for both homonuclear and heteronuclear spin ensembles. On model two-spin systems, the initialization time of one of our sequences is three-fourths (in the heteronuclear case) or one-fourth (in the homonuclear case), of the typical pulsed free precession sequences, attaining the same initialization efficiency. We have implemented the logical SWAP operation in homonuclear AMX spin systems using selective isotropic mixing, reducing the duration taken to a third compared to the standard re-focused INEPT-type sequence. We introduce the 1D version for readout of the rotating frame SWAP operation, in an attempt to reduce readout time. We further demonstrate the Hadamard mode of 1D SWAP, which offers 2N-fold reduction in experiment time for a system with -working bits, attaining the same sensitivity as the standard 1D version.

  1. Quantization and Quantum-Like Phenomena: A Number Amplitude Approach

    Science.gov (United States)

    Robinson, T. R.; Haven, E.

    2015-12-01

    Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.

  2. Quantum tomography of arbitrary spin states of particles: root approach

    Science.gov (United States)

    Bogdanov, Yu. I.

    2006-05-01

    A method of quantum tomography of arbitrary spin particle states is developed on the basis of the root approach. It is shown that the set of mutually complementary distributions of angular momentum projections can be naturally described by a set of basis functions based on the Kravchuk polynomials. The set of Kravchuk basis functions leads to a multiparametric statistical distribution that generalizes the binomial distribution. In order to analyze a statistical inverse problem of quantum mechanics, we investigated the likelihood equation and the statistical properties of the obtained estimates. The conclusions of the analytical researches are approved by the results of numerical calculations.

  3. Algebraic approach to quantum gravity II: noncommutative spacetime

    CERN Document Server

    Majid, S

    2006-01-01

    We provide a self-contained introduction to the quantum group approach to noncommutative geometry as the next-to-classical effective geometry that might be expected from any successful quantum gravity theory. We focus particularly on a thorough account of the bicrossproduct model noncommutative spacetimes of the form [t,x_i]=i \\lambda x_i and the correct formulation of predictions for it including a variable speed of light. We also study global issues in the Poincar\\'e group in the model with the 2D case as illustration. We show that any off-shell momentum can be boosted to infinite negative energy by a finite Lorentz transformaton.

  4. Quantum propagator approach to heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bao, J.D. [Beijing Univ., BJ (China). Dept. of Physics; Boiley, D.; Bao, J.D. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    2002-07-01

    The real-time path integral propagator approach is used to study the fusion probability of massive nuclei including quantum effect. An analytical expression of the probability to pass over barrier of an inverted harmonic potential is obtained, in which both height and curvature of the barrier are controlled by the neck degree of freedom. The fusion probability of three systems in central collision as a function of the center of mass energy are calculated and compared to experimental results. It is shown that the quantum fluctuation enhances the fusion probability at low energies, and the neck fluctuation makes the slope of the fusion probability curve become flatter. (author)

  5. Perspective: Found in translation: Quantum chemical tools for grasping non-covalent interactions

    Science.gov (United States)

    Pastorczak, Ewa; Corminboeuf, Clémence

    2017-03-01

    Today's quantum chemistry methods are extremely powerful but rely upon complex quantities such as the massively multidimensional wavefunction or even the simpler electron density. Consequently, chemical insight and a chemist's intuition are often lost in this complexity leaving the results obtained difficult to rationalize. To handle this overabundance of information, computational chemists have developed tools and methodologies that assist in composing a more intuitive picture that permits better understanding of the intricacies of chemical behavior. In particular, the fundamental comprehension of phenomena governed by non-covalent interactions is not easily achieved in terms of either the total wavefunction or the total electron density, but can be accomplished using more informative quantities. This perspective provides an overview of these tools and methods that have been specifically developed or used to analyze, identify, quantify, and visualize non-covalent interactions. These include the quantitative energy decomposition analysis schemes and the more qualitative class of approaches such as the Non-covalent Interaction index, the Density Overlap Region Indicator, or quantum theory of atoms in molecules. Aside from the enhanced knowledge gained from these schemes, their strengths, limitations, as well as a roadmap for expanding their capabilities are emphasized.

  6. Quantum chemical study of the isomerization of 24-methylenecycloartanol, a potential marker of olive oil refining.

    Science.gov (United States)

    Wedler, Henry B; Pemberton, Ryan P; Lounnas, Valère; Vriend, Gert; Tantillo, Dean J; Wang, Selina C

    2015-05-01

    Quantum chemical calculations on the isomerization of 24-methylenecycloartanol are described. An energetically viable mechanism, with a rate-determining protonation step, is proposed. This rearrangement may find applicability in tests for determining if an olive oil has been refined.

  7. Predicting partitioning of volatile organic compounds from air into plant cuticular matrix by quantum chemical descriptors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a new model is developed to predict the partitioning of some volatile organic compounds between the plant cuticular matrix and air.

  8. Quantum chemical study of the isomerization of 24-methylenecycloartanol, a potential marker of olive oil refining

    NARCIS (Netherlands)

    Wedler, H.B.; Pemberton, R.P.; Lounnas, V.; Vriend, G.; Tantillo, D.J.; Wang, S.C.

    2015-01-01

    Quantum chemical calculations on the isomerization of 24-methylenecycloartanol are described. An energetically viable mechanism, with a rate-determining protonation step, is proposed. This rearrangement may find applicability in tests for determining if an olive oil has been refined.

  9. Uncertainty quantification for quantum chemical models of complex reaction networks.

    Science.gov (United States)

    Proppe, Jonny; Husch, Tamara; Simm, Gregor N; Reiher, Markus

    2016-12-22

    For the quantitative understanding of complex chemical reaction mechanisms, it is, in general, necessary to accurately determine the corresponding free energy surface and to solve the resulting continuous-time reaction rate equations for a continuous state space. For a general (complex) reaction network, it is computationally hard to fulfill these two requirements. However, it is possible to approximately address these challenges in a physically consistent way. On the one hand, it may be sufficient to consider approximate free energies if a reliable uncertainty measure can be provided. On the other hand, a highly resolved time evolution may not be necessary to still determine quantitative fluxes in a reaction network if one is interested in specific time scales. In this paper, we present discrete-time kinetic simulations in discrete state space taking free energy uncertainties into account. The method builds upon thermo-chemical data obtained from electronic structure calculations in a condensed-phase model. Our kinetic approach supports the analysis of general reaction networks spanning multiple time scales, which is here demonstrated for the example of the formose reaction. An important application of our approach is the detection of regions in a reaction network which require further investigation, given the uncertainties introduced by both approximate electronic structure methods and kinetic models. Such cases can then be studied in greater detail with more sophisticated first-principles calculations and kinetic simulations.

  10. Quantum Trajectory Approach to Molecular Dynamics Simulation with Surface Hopping

    CERN Document Server

    Feng, Wei; Li, Xin-Qi; Fang, Weihai

    2012-01-01

    The powerful molecular dynamics (MD) simulation is basically based on a picture that the atoms experience classical-like trajectories under the exertion of classical force field determined by the quantum mechanically solved electronic state. In this work we propose a quantum trajectory approach to the MD simulation with surface hopping, from an insight that an effective "observation" is actually implied in theMDsimulation through tracking the forces experienced, just like checking the meter's result in the quantum measurement process. This treatment can build the nonadiabatic surface hopping on a dynamical foundation, instead of the usual artificial and conceptually inconsistent hopping algorithms. The effects and advantages of the proposed scheme are preliminarily illustrated by a two-surface model system.

  11. Computer science approach to quantum control

    Energy Technology Data Exchange (ETDEWEB)

    Janzing, D.

    2006-07-01

    Whereas it is obvious that every computation process is a physical process it has hardly been recognized that many complex physical processes bear similarities to computation processes. This is in particular true for the control of physical systems on the nanoscopic level: usually the system can only be accessed via a rather limited set of elementary control operations and for many purposes only a concatenation of a large number of these basic operations will implement the desired process. This concatenation is in many cases quite similar to building complex programs from elementary steps and principles for designing algorithm may thus be a paradigm for designing control processes. For instance, one can decrease the temperature of one part of a molecule by transferring its heat to the remaining part where it is then dissipated to the environment. But the implementation of such a process involves a complex sequence of electromagnetic pulses. This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. We show that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer. Likewise, the implementation of a heat engine on the nanoscale requires to process the heat in a way that is similar to information processing and it can be shown that heat engines with maximal efficiency would be powerful computers, too. In the same way as problems in computer science can be classified by complexity classes we can also classify control problems according to their complexity. Moreover, we directly relate these complexity classes for control problems to the classes in computer science. Unifying notions of complexity in computer science and physics has therefore two aspects: on the one hand, computer science methods help to analyze the complexity of physical processes. On the other hand, reasonable

  12. Quantum-Mechanical Definition of Atoms and Chemical Bonds in Molecules

    Science.gov (United States)

    2015-01-01

    AFRL-RQ-ED-TR-2014-0025 Quantum-Mechanical Definition of Atoms and Chemical Bonds in Molecules P.W. Langhoff J.D. Mills J.A...manufacture, use, or sell any patented invention that may relate to them. Qualified requestors may obtain copies of this report from the Defense...DATES COVERED (From - To) 15 Oct 2013 - 15 Oct 2014 4. TITLE AND SUBTITLE Quantum-Mechanical Definition of Atoms and Chemical Bonds in Molecules

  13. Quantum chemical analysis of potential anti-Parkinson agents

    Indian Academy of Sciences (India)

    Nima Razzaghi-Asl; Sara Shahabipour; Ahmad Ebadi; Azam Bagheri

    2015-07-01

    Monoamine oxidases (MAOs) are amine oxidoreductase falvoenzymes that belong to the integral proteins of the outer mitochondrial membrane. MAO exists in two distinct isoforms; MAO-A and MAO-B. Inhibition of MAO-A and MAO-B is important for developing antidepressant and antiparkinson agents, respectively. In the light of the above explanations, detailed structure binding relationship studies on the intermolecular binding components of MAO-B complexes may unravel the way toward developing novel anti-Parkinson agents. In the present contribution, intermolecular binding pattern for a series of experimentally validated 3-arylcoumarin MAO-B inhibitors (1–9) have been elucidated via molecular docking and density functional theory (DFT) calculations. Intermolecular binding energy components could not be analyzed by docking and due to this limitation, quantum mechanical (QM) calculations including functional B3LYP in association with split valence basis set (Def2-SVP) were applied to estimate the ligand-residue binding energies in the MAO-B active site. Moreover; results were interpreted in terms of calculated polarization effects that were induced by individual amino acids of the MAO-B active site. The results of the present study provide an approach to pharmacophore-based modification within the 3-arylcoumarin scaffold for potent MAO-B inhibitors.

  14. A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells

    KAUST Repository

    Risko, Chad

    2011-03-15

    The recent and rapid enhancement in power conversion efficiencies of organic-based, bulk heterojunction solar cells has been a consequence of both improved materials design and better understanding of the underlying physical processes involved in photocurrent generation. In this Perspective, we first present an overview of the application of quantum-chemical techniques to study the intrinsic material properties and molecular- and nano-scale processes involved in device operation. In the second part, these quantum-chemical tools are applied to an oligomer-based study on a collection of donor-acceptor copolymers that have been used in the highest-efficiency solar cell devices reported to date. The quantum-chemical results are found to be in good agreement with the empirical data related to the electronic and optical properties. In particular, they provide insight into the natures of the electronic excitations responsible for the near-infrared/visible absorption profiles, as well as into the energetics of the low-lying singlet and triplet states. These results lead to a better understanding of the inherent differences among the materials, and highlight the usefulness of quantum chemistry as an instrument for material design. Importantly, the results also point to the need to continue the development of integrated, multi scale modeling approaches to provide a thorough understanding of the materials properties. © The Royal Society of Chemistry 2011.

  15. Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states.

    Science.gov (United States)

    Bonet-Luz, Esther; Tronci, Cesare

    2016-05-01

    The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical observables are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest's theorem is shown to be Lie-Poisson for a semidirect-product Lie group, named the Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie-Poisson structure associated with another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models that have previously appeared in the chemical physics literature.

  16. Quantum anharmonic oscillator: The airy function approach

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia); University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); AlFaify, S. [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia)

    2014-05-15

    New and simple numerical method is being reported to solve anharmonic oscillator problems. The method is setup to approach the real potential V(x) of the anharmonic oscillator system as a piecewise linear potential u(x) and to solve the Schrödinger equation of the system using the Airy function. Then, solutions continuity conditions lead to the energy quantification condition, and consequently, the energy eigenvalues. For testing purpose, the method was applied on the sextic and octic oscillators systems. The proposed method is found to be realistic, computationally simple, and having high degrees of accuracy. In addition, it can be applied to any form of potential. The results obtained by the proposed method were seen closely agreeing with results reached by other complicated methods.

  17. An effective Hamiltonian approach to quantum random walk

    Science.gov (United States)

    Sarkar, Debajyoti; Paul, Niladri; Bhattacharya, Kaushik; Ghosh, Tarun Kanti

    2017-03-01

    In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamiltonians are generators of time translations. Then an attempt has been made to generalize the techniques to higher dimensions. We find that the Hamiltonian can be written as the sum of a Weyl Hamiltonian and a Dirac comb potential. The time evolution operator obtained from this prescribed Hamiltonian is in complete agreement with that of the standard approach. But in higher dimension we find that the time evolution operator is additive, instead of being multiplicative (see Chandrashekar, Sci. Rep. 3, 2829 (18)). We showed that in the case of two-step walk, the time evolution operator effectively can have multiplicative form. In the case of a square lattice, quantum walk has been studied computationally for different coins and the results for both the additive and the multiplicative approaches have been compared. Using the graphene Hamiltonian, the walk has been studied on a graphene lattice and we conclude the preference of additive approach over the multiplicative one.

  18. An effective Hamiltonian approach to quantum random walk

    Indian Academy of Sciences (India)

    DEBAJYOTI SARKAR; NILADRI PAUL; KAUSHIK BHATTACHARYA; TARUN KANTI GHOSH

    2017-03-01

    In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamiltoniansare generators of time translations. Then an attempt has been made to generalize the techniques to higher dimensions. We find that the Hamiltonian can be written as the sum of a Weyl Hamiltonian and a Dirac comb potential. The time evolution operator obtained from this prescribed Hamiltonian is in complete agreement with that of the standard approach. But in higher dimension we find that the time evolution operator is additive, instead of being multiplicative (see Chandrashekar, $\\it{Sci. Rep}$. 3, 2829 (2013)). We showed that in the case of two-step walk, the time evolution operator effectively can have multiplicative form. In the case of a square lattice, quantum walk has been studied computationally for different coins and the results for both the additive and the multiplicative approaches have been compared. Using the graphene Hamiltonian, the walk has been studied on a graphene lattice and we conclude the preference of additive approach over the multiplicative one.

  19. Effective approach to non-relativistic quantum mechanics

    CERN Document Server

    Jacobs, David M

    2015-01-01

    Boundary conditions on non-relativistic wavefunctions are generally not completely constrained by the basic precepts of quantum mechanics, so understanding the set of possible self-adjoint extensions of the Hamiltonian is required. For real physical systems, non-trivial self-adjoint extensions have been used to model contact potentials when those interactions are expected a priori. However, they must be incorporated into the effective description of any quantum mechanical system in order to capture possible short-distance physics that does not decouple in the low energy limit. Here, an approach is described wherein an artificial boundary is inserted at an intermediate scale on which boundary conditions may encode short-distance effects that are hidden behind the boundary. Using this approach, an analysis is performed of the free particle, harmonic oscillator, and Coulomb potential in three dimensions. Requiring measurable quantities, such as spectra and cross sections, to be independent of this artificial bou...

  20. Quantum chemical studies of trace gas adsorption on ice nanoparticles

    Science.gov (United States)

    Schrems, Otto; Ignatov, Stanislav K.; Gadzhiev, Oleg B.; Masunov, Artem E.

    2013-04-01

    We have investigated the interaction of atmospheric trace gases with crystalline water ice particles of nanoscale size by modern quantum chemical methods. Small ice particles which can be formed in different altitudes play an important role in chemistry and physics of the Earth atmosphere. Knowledge about the uptake and incorporation of atmospheric trace gases in ice particles as well as their interactions with water molecules is very important for the understanding of processes at the air/ice interface. The interaction of the atmospheric trace gases with atmospheric ice nanoparticles is also an important issue for the development of modern physicochemical models. Usually, the interactions between trace gases and small particles considered theoretically apply small-size model complexes or the surface models representing only fragments of the ideal surface. Ice particles consisting of 48, 72, 216 and 270 water molecules with a distorted structure of hexagonal water ice Ih were studied using the new SCC-DFTBA method combining well the advantages of the DFT theory and semiempirical methods of quantum chemistry. The largest clusters correspond to the minimal nanoparticle size which are considered to be crystalline as determined experimentally. The clusters up to (H2O)72 were studied at the B3LYP/6-31++G(d,p) and B3LYP/6-311++G(2d,2p) levels. The larger clusters were studied using DFTBA and DFTB+ methods. Several adsorption complexes for the (H2O)270 water ice cluster were optimized at the RI-BLYP/6-31+G(d) theory level to verify the DFTB+ results. Trace gas molecules were coordinated on different sites of the nanoparticles corresponding to different ice Ih crystal planes: (0001), (10-10), (11-20). As atmospheric trace gases we have chosen CO, CO2, HCO*, HCOH*, HCHO, HCOOH and (HCO)2. which are the possible products and intermediates of the UV photolysis of organic molecules such as HCHCHO adsorbed on the ice surface. The structures of the corresponding coordination

  1. Ultrasonic photoacoustic spectroscopy of trace hazardous chemicals using quantum cascade laser

    Science.gov (United States)

    Kumar, Deepak; Ghai, Devinder Pal; Soni, R. K.

    2016-12-01

    We report an ultrasonic sensor based on open-cell photoacoustic spectroscopy method for the detection of explosive agents in traces. Experimentally, we recorded photoacoustic spectra of traces of hazardous explosives and molecules. Tunable mid-infrared quantum cascade lasers in the wavelength range 7.0-8.8 μm lying in the molecular fingerprint region are used as optical source. Samples of Pentaerylthirol Tetranitrate (PETN), Tetranitro-triazacyclohexane (RDX), Dinitrotoluene, p-Nitrobenzoic acid and other chemicals like Ibuprofen having quantity 1.0 mg were detected using a custom made photoacoustic cells in both open and closed configurations. The explosive traces were swiped using paper from contaminated surface and detected. Finite element mesh based simulation of photoacoustic cell is carried out for optimization of geometry at ultrasonic frequency (40 kHz). A point sensor based on above approach will be very effective for forensic applications and suspicious material screening.

  2. Unitary approach to the quantum forced harmonic oscillator

    OpenAIRE

    2014-01-01

    In this paper we introduce an alternative approach to studying the evolution of a quantum harmonic oscillator subject to an arbitrary time dependent force. With the purpose of finding the evolution operator, certain unitary transformations are applied successively to Schr\\"odinger's equation reducing it to its simplest form. Therefore, instead of solving the original Schr\\"odinger's partial differential equation in time and space the problem is replaced by a system of ordinary differential eq...

  3. Tunneling through molecules and quantum dots: master-equation approaches

    OpenAIRE

    Timm, Carsten

    2008-01-01

    An important class of approaches to the description of electronic transport through molecules and quantum dots is based on the master equation. We discuss various formalisms for deriving a master equation and their interrelations. It is shown that the master equations derived by Wangsness, Bloch, and Redfield and by Koenig et al. are equivalent. The roles of the large-reservoir and Markov approximations are clarified. The Markov approximation is traced back to nonzero bias voltage and tempera...

  4. A quantum chemical based toxicity study of estimated reduction potential and hydrophobicity in series of nitroaromatic compounds.

    Science.gov (United States)

    Gooch, A; Sizochenko, N; Sviatenko, L; Gorb, L; Leszczynski, J

    2017-02-01

    Nitroaromatic compounds and the products of their degradation are toxic to bacteria, cells and animals. Various studies have been carried out to better understand the mechanism of toxicity of aromatic nitrocompounds and their relationship to humans and the environment. Recent data relate cytotoxicity of nitroaromatic compounds to their single- or two-electron enzymatic reduction. However, mechanisms of animal toxicity could be more complex. This work investigates the estimated reduction and oxidation potentials of 34 nitroaromatic compounds using quantum chemical approaches. All geometries were optimized with density functional theory (DFT) using the solvation model based on density (SMD) and polarizable continuum model (PCM) solvent model protocols. Quantitative structure-activity/property (QSAR/QSPR) models were developed using descriptors obtained from quantum chemical optimizations as well as the DRAGON software program. The QSAR/QSPR equations developed consist of two to four descriptors. Correlations have been identified between electron affinity (ELUMO) and hydrophobicity (log P).

  5. Chemical accuracy from quantum Monte Carlo for the Benzene Dimer

    OpenAIRE

    Azadi, Sam; Cohen, R. E

    2015-01-01

    We report an accurate study of interactions between Benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory (DFT) using different van der Waals (vdW) functionals. In our QMC calculations, we use accurate correlated trial wave functions including three-body Jastrow factors, and backflow transformations. We consider two benzene molecules in the parallel displaced (PD) geometry, and fin...

  6. An approximate approach to quantum mechanical study of biomacromolecules

    Science.gov (United States)

    Chen, Xihua

    method/basis-set levels of the quantum chemical calculation on the MFCC-downhill simplex optimization are also discussed. Finally, the MFCC-downhill simplex method is tested, as a general multiatomic case study, on a molecular system of cyclo-AAGAGG·H 2O to optimize the binding structure of water molecule to the fixed cyclohexapeptide. The MFCC-downhill simplex optimization results in good agreement with the crystal structure. The MFCC-downhill simplex method should be applicable to optimize the structures of ligands that bind to biomacromolecules such as proteins and DNAs. In Chapter 4, we propose a new approximate method for efficient calculation of biomacromolecular electronic properties, using a Density Matrix (DM) scheme which is integrated with the MFCC approach. In this MFCC-DM method, a biomacro-molecule such as a protein is partitioned by an MFCC scheme into properly capped fragments and concaps whose density matrices are calculated by conventional ab initio methods. These sub-system density matrices are then assembled to construct the full system density matrix which is finally employed to calculate the electronic energy, dipole moment, electronic density, electrostatic potential, etc., of the protein using Hartree-Fock or Density Functional Theory methods. By this MFCC-DM method, the self-consistent field (SCF) procedure for solving the full Hamiltonian problem is circumvented. Two implementations of this approach, MFCC-SDM and MFCC-GDM, are discussed. Systematic numerical studies are carried out on a series of extended polyglycines CH3CO-(GLY) n-NHCH3 (n=3-25) and excellent results are obtained. In Chapter 5, we present an improvement of MFCC-DM method and introduce a pairwise interaction correction (PIC) with which the MFCC-DM method is applicable to study a real-world protein with short-range structural complexity such as hydrogen bonding and close contact. In this MFCC-DM-PIC method, a protein molecule is partitioned into properly capped fragments and

  7. Nonrelativistic Fermions in Magnetic Fields a Quantum Field Theory Approach

    CERN Document Server

    Espinosa, Olivier R; Lepe, S; Méndez, F

    2001-01-01

    The statistical mechanics of nonrelativistic fermions in a constant magnetic field is considered from the quantum field theory point of view. The fermionic determinant is computed using a general procedure that contains all possible regularizations. The nonrelativistic grand-potential can be expressed in terms polylogarithm functions, whereas the partition function in 2+1 dimensions and vanishing chemical potential can be compactly written in terms of the Dedekind eta function. The strong and weak magnetic fields limits are easily studied in the latter case by using the duality properties of the Dedekind function.

  8. DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 2-benzothiazole acetonitrile

    Science.gov (United States)

    Arjunan, V.; Thillai Govindaraja, S.; Jose, Sujin P.; Mohan, S.

    2014-07-01

    The Fourier transform infrared and FT-Raman spectra of 2-benzothiazole acetonitrile (BTAN) have been recorded in the range 4000-450 and 4000-100 cm-1 respectively. The conformational analysis of the compound has been carried out to obtain the stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers derived theoretically by B3LYP gradient calculations employing the standard 6-31G**, high level 6-311++G** and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The 1H (400 MHz; CDCl3) and 13C (100 MHz; CDCl3) nuclear magnetic resonance (NMR) spectra are also recorded. The electronic properties, the energies of the highest occupied and lowest unoccupied molecular orbitals are measured by DFT approach. The kinetic stability of the molecule has been determined from the frontier molecular orbital energy gap. The charges of the atoms and the structure-chemical reactivity relations of the compound are determined by its chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods. The non-linear optical properties of the compound have been discussed by measuring the polarisability and hyperpolarisability tensors.

  9. Quantum limit for avian magnetoreception: How sensitive can a chemical compass be?

    CERN Document Server

    Cai, Jianming; Plenio, Martin B

    2011-01-01

    The chemical compass model, based on radical pair reactions, is a fascinating idea to explain avian magnetoreception. At present, questions concerning the key ingredients responsible for the high sensitivity of a chemical compass and the possible role of quantum coherence and decoherence remain unsolved. Here, we investigate the optimized hyperfine coupling for a chemical compass in order to achieve the best magnetic field sensitivity. We demonstrate that its magnetic sensitivity limit can be further extended by simple quantum control and may benefit from additional decoherence. The present results also provide routes towards the design a biomimetic weak magnetic field sensor.

  10. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, Maaike C. [Physical Chemistry and Molecular Thermodynamics, Department of Chemical Technology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands); Process Equipment, Department of Process and Energy, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands)], E-mail: maaike.kroon@gmail.com; Buijs, Wim [Catalysis Engineering, Department of Chemical Technology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands); Peters, Cor J. [Physical Chemistry and Molecular Thermodynamics, Department of Chemical Technology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands); Witkamp, Geert-Jan [Process Equipment, Department of Process and Energy, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands)], E-mail: G.J.Witkamp@3me.tudelft.nl

    2007-12-15

    The long-term thermal stability of ionic liquids is of utmost importance for their industrial application. Although the thermal decomposition temperatures of various ionic liquids have been measured previously, experimental data on the thermal decomposition mechanisms and kinetics are scarce. It is desirable to develop quantitative chemical tools that can predict thermal decomposition mechanisms and temperatures (kinetics) of ionic liquids. In this work ab initio quantum chemical calculations (DFT-B3LYP) have been used to predict thermal decomposition mechanisms, temperatures and the activation energies of the thermal breakdown reactions. These quantum chemical calculations proved to be an excellent method to predict the thermal stability of various ionic liquids.

  11. Protein Structure Validation and Refinement Using Chemical Shifts Derived from Quantum Mechanics

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen

    to within 3 A. Furthermore, a fast quantum mechanics based chemical shift predictor was developed together with methodology for using chemical shifts in structure simulations. The developed predictor was used for renement of several protein structures and for reducing the computational cost of quantum...... mechanics / molecular mechanics (QM/MM) computations of chemical shieldings. Several improvements to the predictor is ongoing, where among other things, kernel based machine learning techniques have successfully been used to improve the quantum mechanical level of theory used in the predictions....... experimental data in the form of chemical shifts, as well as distance restraints obtained either experimentally or from sequence co-evolution. Of notable results, One of the determined structures, aKMT, was not solved experimentally at the time, but was found to match the recently published X-ray structure...

  12. The quantum normal form approach to reactive scattering : The cumulative reaction probability for collinear exchange reactions

    NARCIS (Netherlands)

    Goussev, Arseni; Schubert, Roman; Waalkens, Holger; Wiggins, Stephen

    2009-01-01

    The quantum normal form approach to quantum transition state theory is used to compute the cumulative reaction probability for collinear exchange reactions. It is shown that for heavy-atom systems such as the nitrogen-exchange reaction, the quantum normal form approach gives excellent results and

  13. AIScore chemically diverse empirical scoring function employing quantum chemical binding energies of hydrogen-bonded complexes.

    Science.gov (United States)

    Raub, Stephan; Steffen, Andreas; Kämper, Andreas; Marian, Christel M

    2008-07-01

    In this work we report on a novel scoring function that is based on the LUDI model and focuses on the prediction of binding affinities. AIScore extends the original FlexX scoring function using a chemically diverse set of hydrogen-bonded interactions derived from extensive quantum chemical ab initio calculations. Furthermore, we introduce an algorithmic extension for the treatment of multifurcated hydrogen bonds (XFurcate). Charged and resonance-assisted hydrogen bond energies and hydrophobic interactions as well as a scaling factor for implicit solvation were fitted to experimental data. To this end, we assembled a set of 101 protein-ligand complexes with known experimental binding affinities. Tightly bound water molecules in the active site were considered to be an integral part of the binding pocket. Compared to the original FlexX scoring function, AIScore significantly improves the prediction of the binding free energies of the complexes in their native crystal structures. In combination with XFurcate, AIScore yields a Pearson correlation coefficient of R P = 0.87 on the training set. In a validation run on the PDBbind test set we achieved an R P value of 0.46 for 799 attractively scored complexes, compared to a value of R P = 0.17 and 739 bound complexes obtained with the FlexX original scoring function. The redocking capability of AIScore, on the other hand, does not fully reach the good performance of the original FlexX scoring function. This finding suggests that AIScore should rather be used for postscoring in combination with the standard FlexX incremental ligand construction scheme.

  14. Chemical bonding in TiSb(2) and VSb(2): a quantum chemical and experimental study.

    Science.gov (United States)

    Armbrüster, Marc; Schnelle, Walter; Schwarz, Ulrich; Grin, Yuri

    2007-08-06

    The chemical bonding in the isostructural intermetallic compounds TiSb2 and VSb2, crystallizing in the CuAl2 type, was investigated by means of quantum chemical calculations, particularly the electron localization function (ELF), as well as by Raman spectroscopy, Hall effect and conductivity measurements on oriented single crystals, and high-pressure X-ray powder diffraction. The homogeneity ranges of the compounds were determined by powder X-ray diffraction, WDXS, and DSC measurements. TiSb2 exhibits no significant homogeneity range, while VSb2 shows a small homogeneity range of approximately 0.3 at. %. According to the ELF calculations, the Sb atoms form dumbbells via a two-center two-electron bond, while the T atoms (T = Ti, V) build up chains along the crystallographic c-axis. Both building units are connected by covalent T-Sb-T three-center bonds, thus forming a three-dimensional network. The strength of the bonds involving Sb was determined by fitting a force constant model to the vibrational mode frequencies observed by polarized Raman measurements on oriented single crystals. The resulting bond order of the Sb2 dumbbells is 1, while the strength of the three-center bonds resembles a bond order of 1.5. The weak pressure dependence of the c/a ratio confirms the slightly different bonding picture in TiSb2 compared to that in CuAl2. Electrical transport measurements show the presence of free charge carriers, as well as a metal-like temperature dependence of the electrical resistivity.

  15. Optimization Approaches for Designing Quantum Reversible Arithmetic Logic Unit

    Science.gov (United States)

    Haghparast, Majid; Bolhassani, Ali

    2016-03-01

    Reversible logic is emerging as a promising alternative for applications in low-power design and quantum computation in recent years due to its ability to reduce power dissipation, which is an important research area in low power VLSI and ULSI designs. Many important contributions have been made in the literatures towards the reversible implementations of arithmetic and logical structures; however, there have not been many efforts directed towards efficient approaches for designing reversible Arithmetic Logic Unit (ALU). In this study, three efficient approaches are presented and their implementations in the design of reversible ALUs are demonstrated. Three new designs of reversible one-digit arithmetic logic unit for quantum arithmetic has been presented in this article. This paper provides explicit construction of reversible ALU effecting basic arithmetic operations with respect to the minimization of cost metrics. The architectures of the designs have been proposed in which each block is realized using elementary quantum logic gates. Then, reversible implementations of the proposed designs are analyzed and evaluated. The results demonstrate that the proposed designs are cost-effective compared with the existing counterparts. All the scales are in the NANO-metric area.

  16. Novel Approaches To Numerical Solutions Of Quantum Field Theories

    CERN Document Server

    Petrov, D

    2005-01-01

    Two new approaches to numerically solving Quantum Field Theories are presented. The Source Galerkin technique is a direct approach to determining the generating functional of a theory by solving the Schwinger-Dyson equations. The properties of the Source Galerkin technique are tested by using it to determine the phase structure of the Ultralocal &phis;4 theory. A framework for applying this approach to solving O( N) Nonlinear Sigma model is constructed. The Sinc Function approximation is a highly efficient method of numerically evaluating Feynman diagrams. In the present dissertation the Sinc Function approximation is applied to fermionic fields. The Sinc expanded versions of fermion and photon propagators are derived. The accuracy of this approximation is tested by a direct comparison of the Sinc expanded propagators with exact propagators and by performing several sample calculations of one loop QED diagrams. An analysis of computational properties of the Sinc Function approach is presented.

  17. Semiclassical approach to discrete symmetries in quantum chaos

    CERN Document Server

    Joyner, Chris; Sieber, Martin

    2012-01-01

    We use semiclassical methods to evaluate the spectral two-point correlation function of quantum chaotic systems with discrete geometrical symmetries. The energy spectra of these systems can be divided into subspectra that are associated to irreducible representations of the corresponding symmetry group. We show that for (spinless) time reversal invariant systems the statistics inside these subspectra depend on the type of irreducible representation. For real representations the spectral statistics agree with those of the Gaussian Orthogonal Ensemble (GOE) of Random Matrix Theory (RMT), whereas complex representations correspond to the Gaussian Unitary Ensemble (GUE). For systems without time reversal invariance all subspectra show GUE statistics. There are no correlations between non-degenerate subspectra. Our techniques generalize recent developments in the semiclassical approach to quantum chaos allowing one to obtain full agreement with the two-point correlation function predicted by RMT, including oscilla...

  18. Quantum and Classical Approaches in Graphene and Topological Insulators

    DEFF Research Database (Denmark)

    Posvyanskiy, Vladimir

    the spectrum of these exotic “spin-1” excitations and confirm that they indeed can exist in graphene-based materials in the presence of the Coulomb interactions. In the second part of our work 2D topological insulators are examined from the perspective of the semiclassical theory. In spite of quantum...... mechanical study, this approach can give simple and pictorial explanation of the topological edge states. In our work we find the semiclassical orbits for the samples of different geometries and also discuss the influence of the quantum effects, the Berry phase, on the semiclassical electron dynamics......Graphene and topological insulators are novel materials which have recently attracted a lot of attention. Due to their peculiar fundamental properties a number of new and yet unknown effects arise in these materials. One of such examples are triplet excitations, magnons, which may be observed...

  19. How Random Is Quantum Randomness? An Experimental Approach

    CERN Document Server

    Calude, Cristian S; Dumitrescu, Monica; Svozil, Karl

    2009-01-01

    Our aim is to experimentally study the possibility of distinguishing between quantum sources of randomness--recently proved to be theoretically incomputable--and some well-known computable sources of pseudo-randomness. Incomputability is a necessary, but not sufficient "symptom" of "true randomness". We base our experimental approach on algorithmic information theory which provides characterizations of algorithmic random sequences in terms of the degrees of incompressibility of their finite prefixes. Algorithmic random sequences are incomputable, but the converse implication is false. We have performed tests of randomness on pseudo-random strings (finite sequences) of length $2^{32}$ generated with software (Mathematica, Maple), which are cyclic (so, strongly computable), the bits of $\\pi$, which is computable, but not cyclic, and strings produced by quantum measurements (with the commercial device Quantis and by the Vienna IQOQI group). Our empirical tests indicate quantitative differences, some statisticall...

  20. Chemical and instrumental approaches to cheese analysis.

    Science.gov (United States)

    Subramanian, Anand; Rodriguez-Saona, Luis

    2010-01-01

    Overcoming the complexity of cheese matrix to reliably analyze cheese composition, flavor, and ripening changes has been a challenge. Several sample isolation or fractionation methods, chemical and enzymatic assays, and instrumental methods have been developed over the decades. While some of the methods are well established standard methods, some still need to be researched and improved. This chapter reviews the chemical and instrumental methods available to determine cheese composition and monitor biochemical events (e.g., glycolysis, lipolysis, and proteolysis) during cheese ripening that lead to the formation of cheese flavor. Chemical and enzymatic methods available for analysis of cheese composition (fat, protein, lactose, salt, nitrogen content, moisture, etc.) are presented. Electrophoretic, chromatographic, and spectroscopic techniques are also reviewed in the light of their application to monitor cheese ripening and flavor compounds. Novel instrumental methods based on Fourier-transform infrared spectroscopy that are currently being researched and applied to cheese analysis are introduced.

  1. Protein engineering approaches to chemical biotechnology.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  2. Valence atom with bohmian quantum potential: the golden ratio approach

    Directory of Open Access Journals (Sweden)

    Putz Mihai V

    2012-11-01

    Full Text Available Abstract Background The alternative quantum mechanical description of total energy given by Bohmian theory was merged with the concept of the golden ratio and its appearance as the Heisenberg imbalance to provide a new density-based description of the valence atomic state and reactivity charge with the aim of clarifying their features with respect to the so-called DFT ground state and critical charge, respectively. Results The results, based on the so-called double variational algorithm for chemical spaces of reactivity, are fundamental and, among other issues regarding chemical bonding, solve the existing paradox of using a cubic parabola to describe a quadratic charge dependency. Conclusions Overall, the paper provides a qualitative-quantitative explanation of chemical reactivity based on more than half of an electronic pair in bonding, and provide new, more realistic values for the so-called “universal” electronegativity and chemical hardness of atomic systems engaged in reactivity (analogous to the atoms-in-molecules framework.

  3. Gradient Bundle Analysis: A Full Topological Approach to Chemical Bonding

    CERN Document Server

    Morgenstern, Amanda

    2016-01-01

    The "chemical bond" is a central concept in molecular sciences, but there is no consensus as to what a bond actually is. Therefore, a variety of bonding models have been developed, each defining the structure of molecules in a different manner with the goal of explaining and predicting chemical properties. This thesis describes the initial development of gradient bundle analysis (GBA), a chemical bonding model that creates a high resolution picture of chemical interactions within the charge density framework. GBA is based on concepts from the quantum theory of atoms in molecules (QTAIM), but uses a more complete picture of the topology and geometry of the electron charge density to understand and predict bonding interactions. Gradient bundles are defined as volumes bounded by zero-flux surfaces (ZFSs) in the gradient of the charge density with well-defined energies. The structure of gradient bundles provides an avenue for detecting the locations of valence electrons, which correspond to reactive regions in a ...

  4. A semiclassical hybrid approach to many particle quantum dynamics

    Science.gov (United States)

    Grossmann, Frank

    2006-07-01

    We analytically derive a correlated approach for a mixed semiclassical many particle dynamics, treating a fraction of the degrees of freedom by the multitrajectory semiclassical initial value method of Herman and Kluk [Chem. Phys. 91, 27 (1984)] while approximately treating the dynamics of the remaining degrees of freedom with fixed initial phase space variables, analogously to the thawed Gaussian wave packet dynamics of Heller [J. Chem. Phys. 62, 1544 (1975)]. A first application of this hybrid approach to the well studied Secrest-Johnson [J. Chem. Phys. 45, 4556 (1966)] model of atom-diatomic collisions is promising. Results close to the quantum ones for correlation functions as well as scattering probabilities could be gained with considerably reduced numerical effort as compared to the full semiclassical Herman-Kluk approach. Furthermore, the harmonic nature of the different degrees of freedom can be determined a posteriori by comparing results with and without the additional approximation.

  5. Out-of-equilibrium open quantum systems: A comparison of approximate quantum master equation approaches with exact results

    Science.gov (United States)

    Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas

    2016-06-01

    We present the Born-Markov approximated Redfield quantum master equation (RQME) description for an open system of noninteracting particles (bosons or fermions) on an arbitrary lattice of N sites in any dimension and weakly connected to multiple reservoirs at different temperatures and chemical potentials. The RQME can be reduced to the Lindblad equation, of various forms, by making further approximations. By studying the N =2 case, we show that RQME gives results which agree with exact analytical results for steady-state properties and with exact numerics for time-dependent properties over a wide range of parameters. In comparison, the Lindblad equations have a limited domain of validity in nonequilibrium. We conclude that it is indeed justified to use microscopically derived full RQME to go beyond the limitations of Lindblad equations in out-of-equilibrium systems. We also derive closed-form analytical results for out-of-equilibrium time dynamics of two-point correlation functions. These results explicitly show the approach to steady state and thermalization. These results are experimentally relevant for cold atoms, cavity QED, and far-from-equilibrium quantum dot experiments.

  6. Scattering approach to quantum transport and many body effects

    Science.gov (United States)

    Pichard, Jean-Louis; Freyn, Axel

    2010-12-01

    We review a series of works discussing how the scattering approach to quantum transport developed by Landauer and Buttiker for one body elastic scatterers can be extended to the case where electron-electron interactions act inside the scattering region and give rise to many body scattering. Firstly, we give an exact numerical result showing that at zero temperature a many body scatterer behaves as an effective one body scatterer, with an interaction dependent transmission. Secondly, we underline that this effective scatterer depends on the presence of external scatterers put in its vicinity. The implications of this non local scattering are illustrated studying the conductance of a quantum point contact where electrons interact with a scanning gate microscope. Thirdly, using the numerical renormalization group developed by Wilson for the Kondo problem, we study a double dot spinless model with an inter-dot interaction U and inter-dot hopping td, coupled to leads by hopping terms tc. We show that the quantum conductance as a function of td is given by a universal function, independently of the values of U and tc, if one measures td in units of a characteristic scale τ(U,tc). Mapping the double dot system without spin onto a single dot Anderson model with spin and magnetic field, we show that τ(U,tc) = 2TK, where TK is the Kondo temperature of the Anderson model.

  7. A quantum-like approach to the stock market

    Science.gov (United States)

    Aerts, Diederik; D'Hooghe, Bart; Sozzo, Sandro

    2012-03-01

    Modern approaches to stock pricing in quantitative finance are typically founded on the Black-Scholes model and the underlying random walk hypothesis. Empirical data indicate that this hypothesis works well in stable situations but, in abrupt transitions such as during an economical crisis, the random walk model fails and alternative descriptions are needed. For this reason, several proposals have been recently forwarded which are based on the formalism of quantum mechanics. In this paper we apply the SCoP formalism, elaborated to provide an operational foundation of quantum mechanics, to the stock market. We argue that a stock market is an intrinsically contextual system where agents' decisions globally influence the market system and stocks prices, determining a nonclassical behavior. More specifically, we maintain that a given stock does not generally have a definite value, e.g., a price, but its value is actualized as a consequence of the contextual interactions in the trading process. This contextual influence is responsible of the non-Kolmogorovian quantumlike behavior of the market at a statistical level. Then, we propose a sphere model within our hidden measurement formalism that describes a buying/selling process of a stock and shows that it is intuitively reasonable to assume that the stock has not a definite price until it is traded. This result is relevant in our opinion since it provides a theoretical support to the use of quantum models in finance.

  8. Cellular biosensing: chemical and genetic approaches.

    Science.gov (United States)

    Haruyama, Tetsuya

    2006-05-24

    Biosensors have been developed to determine the concentration of specific compounds in situ. They are already widely employed as a practical technology in the clinical and healthcare fields. Recently, another concept of biosensing has been receiving attention: biosensing for the evaluation of molecular potency. The development of this novel concept has been supported by the development of related technologies, as such as molecular design, molecular biology (genetic engineering) and cellular/tissular engineering. This review is addresses this new concept of biosensing and its application to the evaluation of the potency of chemicals in biological systems, in the field of cellular/tissular engineering. Cellular biosensing may provide information on both pharmaceutical and chemical safety, and on drug efficacy in vitro as a screening tool.

  9. The Spin-Foam Approach to Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Alejandro Perez

    2013-02-01

    Full Text Available This article reviews the present status of the spin-foam approach to the quantization of gravity. Special attention is payed to the pedagogical presentation of the recently-introduced new models for four-dimensional quantum gravity. The models are motivated by a suitable implementation of the path integral quantization of the Plebanski formulation of gravity on a simplicial regularization. The article also includes a self contained treatment of 2+1 gravity. The simple nature of the latter provides the basis and a perspective for the analysis of both conceptual and technical issues that remain open in four dimensions.

  10. A general intermolecular force field based on tight-binding quantum chemical calculations

    Science.gov (United States)

    Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas

    2017-10-01

    A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.

  11. Beyond Quantum Fields: A Classical Fields Approach to QED

    Directory of Open Access Journals (Sweden)

    Chafin C.

    2015-07-01

    Full Text Available A classical field theory is introduced that is defined on a tower of dimensionally in- creasing spaces and is argued to be equivalent to QED. The domain of dependence is discussed to show how an equal times picture of the many coordinate space gives QED results as part of a well posed initial value formalism. Identical particle symmetries are not, a priori, required but when introduced are clearly propagated. This construc- tion uses only classical fields to provide some explanation for why quantum fields and canonical commutation results have been successful. Some old and essential questions regarding causality of propagators are resolved. The problem of resummation, gener- ally forbidden for conditionally convergent series, is dis cussed from the standpoint of particular truncations of the infinite tower of functions an d a two step adiabatic turn on for scattering. As a result of this approach it is shown that the photon inherits its quantization ~ ω from the free lagrangian of the Dirac electrons despite the fact that the free electromagnetic lagrangian has no ~ in it. This provides a possible explanation for the canonical commutation relations for quantum operators , [ ˆ P , ˆ Q ] = i ~ , without ever needing to invoke such a quantum postulate. The form of the equal times conservation laws in this many particle field theory suggests a simplification of the radiation reaction process for fields that allows QED to arise from a sum of path integrals in the various particle time coordinates. A novel method of unifying this theory with gravity, but that has no obvious quantum field theoretic computational scheme , is introduced.

  12. Protein Structure Validation and Refinement Using Chemical Shifts Derived from Quantum Mechanics

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen

    In this thesis, my work involving dierent aspects of protein structure determination by computer modeling is presented. Determination of several protein's native fold were carried out with Markov chain Monte Carlo simulations in the PHAISTOS protein structure simulation framework, utilizing...... to within 3 A. Furthermore, a fast quantum mechanics based chemical shift predictor was developed together with methodology for using chemical shifts in structure simulations. The developed predictor was used for renement of several protein structures and for reducing the computational cost of quantum...

  13. Quantum chemical study on the corrosion inhibition property of some heterocyclic azole derivatives

    Directory of Open Access Journals (Sweden)

    N. Anusuya

    2015-09-01

    Full Text Available Quantum chemical calculations based on density functional theory (DFT method were performed on heterocyclic azole derivatives as corrosion inhibitors for mild steel in acid media to investigate the relationship between molecular structure of the inhibitors and the corresponding inhibition efficiencies (%. Quantum chemical parameters most relevant to their potential action as corrosion inhibitors have been calculated in the non-protonated and protonated forms in aqueous phase for comparison. Results obtained in this study indicate thatin acidic media, both the protonated and non-protonated forms of the azoles represent the better actual experimental situation.

  14. Wet chemical synthesis of quantum dots for medical applications

    Science.gov (United States)

    Cepeda-Pérez, E. I.; López-Luke, T.; Pérez-Mayen, L.; Hidalgo, Alberto; de la Rosa, E.; Torres-Castro, Alejandro; Ceja-Fdez, Andrea; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana L.

    2015-07-01

    In recent years the use of nanoparticles in medical applications has boomed. This is because the various applications that provide these materials like drug delivery, cancer cell diagnostics and therapeutics [1-5]. Biomedical applications of Quantum Dots (QDs) are focused on molecular imaging and biological sensing due to its optical properties. The size of QDs can be continuously tuned from 2 to 10 nm in diameter, which, after polymer encapsulation, generally increases to 5 - 20 nm diminishing the toxicity. The QDs prepared in our lab have a diameter between 2 to 7 nm. Particles smaller than 5 nm can interact with the cells [2]. Some of the characteristics that distinguish QDs from the commonly used fluorophores are wider range of emission, narrow and more sharply defined emission peak, brighter emission and a higher signal to noise ratio compared with organic dyes [6]. In this paper we will show our progress in the study of the interaction of quantum dots in live cells for image and Raman spectroscopy applications. We will also show the results of the interaction of quantum dots with genomic DNA for diagnostic purposes.

  15. The choice of time in quantum cosmology: two different approaches to Kantowski-Sachs quantum universe

    CERN Document Server

    Alvarenga, F G; Freitas, R C; Gonçalves, S V B

    2015-01-01

    In this paper we study the quantum Kantowski-Sachs model and we solve the Wheeler-DeWitt equation in minisuperspace to obtain the wave function of the corresponding universe. The perfect fluid is described by the Schutz's canonical formalism, which allows to attribute dynamical degrees of freedom to matter. The time is introduced phenomenologically using the fluid's degrees of freedom. In particular, we adopt a stiff matter fluid. The Kantowski-Sachs model is also presented with the introduction of so-called geometric time. Finally, the agreement between the results is analyzed and the possibility of equivalence between the two approaches is discussed.

  16. Contravariant vs Covariant Quantum Logic: A Comparison of Two Topos-Theoretic Approaches to Quantum Theory

    CERN Document Server

    Wolters, Sander A M

    2010-01-01

    The aim of this paper is to compare the two topos-theoretic approaches to quantum mechanics that may be found in the literature to date. The first approach, which we will call the contravariant approach, was proposed by Isham and Butterfield, and was later extended by Doering and Isham. The second approach, which we will call the covariant approach, was developed by Heunen, Landsman and Spitters. Motivated by coarse-graining and the Kochen-Specker theorem, the contravariant approach uses the topos of presheaves on a specific context category, defined as the poset of commutative von Neumann subalgebras of some given von Neumann algebra. The intuitionistic logic of this approach is presented by the (complete) Heyting algebra of closed open subobjects of the so-called spectral presheaf. We demonstrate that in a natural way, this Heyting algebra defines a locale, internal to the given presheaf topos. This locale is not regular, which is connected to undesirable properties of the Heyting negation. In the covariant...

  17. Quantum mechanical model for the anticarcinogenic effect of extremely-low-frequency electromagnetic fields on early chemical hepatocarcinogenesis

    Science.gov (United States)

    Godina-Nava, Juan José; Torres-Vega, Gabino; López-Riquelme, Germán Octavio; López-Sandoval, Eduardo; Samana, Arturo Rodolfo; García Velasco, Fermín; Hernández-Aguilar, Claudia; Domínguez-Pacheco, Arturo

    2017-02-01

    Using the conventional Haberkorn approach, it is evaluated the recombination of the radical pair (RP) singlet spin state to study theoretically the cytoprotective effect of an extremely-low-frequency electromagnetic field (ELF-EMF) on early stages of hepatic cancer chemically induced in rats. The proposal is that ELF-EMF modulates the interconversion rate of singlet and triplet spin states of the RP populations modifying the products from the metabolization of carcinogens. Previously, we found that the daily treatment with ELF-EMF 120 Hz inhibited the number and area of preneoplastic lesions in chemical carcinogenesis. The singlet spin population is evaluated diagonalizing the spin density matrix through the Lanczos method in a radical pair mechanism (RPM). Using four values of the interchange energy, we have studied the variations over the singlet population. The low magnetic field effect as a test of the influence over the enzymatic chemical reaction is evaluated calculating the quantum yield. Through a bootstrap technique the range is found for the singlet decay rate for the process. Applying the quantum measurements concept, we addressed the impact toward hepatic cells. The result contributes to improving our understanding of the chemical carcinogenesis process affected by charged particles that damage the DNA.

  18. Simulating Quantum Chemical Dynamics with Improved Superconducting Qubits

    Science.gov (United States)

    Megrant, Anthony E.

    A quantum computer will potentially solve far-reaching problems which are currently intractable on any classical computer. Many technological obstacles have prevented the realization of a quantum computer, the main obstacle being decoherence, which is the loss of quantum information. Decoherence arises from the undesired interaction between qubits and their environment. Isolated qubits have better coherence but are more difficult to control. Superconducting qubits are a promising platform since their macroscopic size allows for easy control and coupling to other qubits. While the coherence of superconducting qubits has substantially improved over the past two decades, further improvements in coherence are required. We have repeatedly and reliably increased the coherence times of superconducting qubits. Currently decoherence in these devices is dominated by coupling to material defects. These defects are present in the dielectrics used to fabricate these devices or introduced during fabrication. Using simpler resonators as a testbed, we individually isolate, characterize, and then improve each step of the more complicated fabrication of superconducting qubits. We increased the quality factor of resonators by a factor of four by first identifying the surfaces and interfaces as a major source of loss and then by optimizing the substrate preparation. Furthermore, we measure and subsequently mitigate additional defect loss, which is dependent on the position of ground plane holes used to limit the loss from magnetic vortices. Implementing these improvements led to an increase of our qubit coherence times by more than an order of magnitude. The progress made in coherence while maintaining a high degree of connectivity and controllability has been directly used in more complex circuits. One such device is a fully connected three qubit ring with both tunable qubit frequencies and adjustable qubit-qubit couplings. The considerable level of control allows us to generate the

  19. Heisenberg picture approach to the stability of quantum Markov systems

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yu, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Miao, Zibo, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au [Research School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Amini, Hadis, E-mail: nhamini@stanford.edu [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States); Gough, John, E-mail: jug@aber.ac.uk [Institute of Mathematics and Physics, Aberystwyth University, SY23 3BZ Wales (United Kingdom); Ugrinovskii, Valery, E-mail: v.ugrinovskii@gmail.com [School of Engineering and Information Technology, University of New South Wales at ADFA, Canberra, ACT 2600 (Australia); James, Matthew R., E-mail: matthew.james@anu.edu.au [ARC Centre for Quantum Computation and Communication Technology, Research School of Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2014-06-15

    Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.

  20. Heisenberg picture approach to the stability of quantum Markov systems

    Science.gov (United States)

    Pan, Yu; Amini, Hadis; Miao, Zibo; Gough, John; Ugrinovskii, Valery; James, Matthew R.

    2014-06-01

    Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.

  1. GaussDal: An open source database management system for quantum chemical computations

    Science.gov (United States)

    Alsberg, Bjørn K.; Bjerke, Håvard; Navestad, Gunn M.; Åstrand, Per-Olof

    2005-09-01

    An open source software system called GaussDal for management of results from quantum chemical computations is presented. Chemical data contained in output files from different quantum chemical programs are automatically extracted and incorporated into a relational database (PostgreSQL). The Structural Query Language (SQL) is used to extract combinations of chemical properties (e.g., molecules, orbitals, thermo-chemical properties, basis sets etc.) into data tables for further data analysis, processing and visualization. This type of data management is particularly suited for projects involving a large number of molecules. In the current version of GaussDal, parsers for Gaussian and Dalton output files are supported, however future versions may also include parsers for other quantum chemical programs. For visualization and analysis of generated data tables from GaussDal we have used the locally developed open source software SciCraft. Program summaryTitle of program: GaussDal Catalogue identifier: ADVT Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVT Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers: Any Operating system under which the system has been tested: Linux Programming language used: Python Memory required to execute with typical data: 256 MB No. of bits in word: 32 or 64 No. of processors used: 1 Has the code been vectorized or parallelized?: No No. of lines in distributed program, including test data, etc: 543 531 No. of bytes in distribution program, including test data, etc: 7 718 121 Distribution format: tar.gzip file Nature of physical problem: Handling of large amounts of data from quantum chemistry computations. Method of solution: Use of SQL based database and quantum chemistry software specific parsers. Restriction on the complexity of the problem: Program is currently limited to Gaussian and Dalton output, but expandable to other formats. Generates subsets of multiple data tables from

  2. Heisenberg Picture Approach to the Stability of Quantum Markov Systems

    OpenAIRE

    Pan, Yu; Amini, Hadis; Miao, Zibo; Gough, John; Ugrinovskii, Valery; James, Matthew R.

    2014-01-01

    Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this...

  3. Halogen bonded supramolecular capsules: a challenging test case for quantum chemical methods.

    Science.gov (United States)

    Sure, Rebecca; Grimme, Stefan

    2016-08-02

    Recently, Diederich et al. synthesized the first supramolecular capsule with a well-defined four-point halogen bonding interaction [Angew. Chem., Int. Ed., 2015, 54, 12339]. This interesting system comprising about 400 atoms represents a challenging test case for accurate quantum chemical methods. We investigate it with our new density functional based composite method for structures and noncovalent interactions (PBEh-3c) as well as our standard protocol for supramolecular thermochemistry and give predictions for chemical modifications to improve the binding strength.

  4. Quantum cascade laser: Applications in chemical detection and environmental monitoring

    Directory of Open Access Journals (Sweden)

    Radovanović Jelena

    2009-01-01

    Full Text Available In this paper we consider the structural parameter optimization of the active region of a GaAs-based quantum cascade laser in order to maximize the optical gain of the laser at the characteristic wavelengths, which are best suited for detection of pollutant gasses, such as SO2, HNO3, CH4, and NH3, in the ambient air by means of direct absorption. The procedure relies on applying elaborate tools for global optimization, such as the genetic algorithm. One of the important goals is to extend the applicability of a single active region design to the detection of several compounds absorbing at close wave-lengths, and this is achieved by introducing a strong external magnetic field perpendicularly to the epitaxial layers. The field causes two-dimensional continuous energy subbands to split into the series of discrete Landau levels. Since the arrangement of Landau levels depends strongly on the magnitude of the magnetic field, this enables one to control the population inversion in the active region, and hence the optical gain. Furthermore, strong effects of band non-parabolicity result in subtle changes of the lasing wavelength at magnetic fields which maximize the gain, thus providing a path for fine-tuning of the output radiation properties and changing the target compound for detection. The numerical results are presented for quantum cascade laser structures designed to emit at specified wavelengths in the mid-infrared part of the spectrum.

  5. Understanding chemically processed solar cells based on quantum dots.

    Science.gov (United States)

    Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke

    2017-01-01

    Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum.

  6. Understanding chemically processed solar cells based on quantum dots

    Science.gov (United States)

    Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke

    2017-01-01

    Abstract Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum. PMID:28567179

  7. Physico-chemical mechanism for the vapors sensitivity of photoluminescent InP quantum dots

    Science.gov (United States)

    Prosposito, P.; De Angelis, R.; De Matteis, F.; Hatami, F.; Masselink, W. T.; Zhang, H.; Casalboni, M.

    2016-03-01

    InP/InGaP surface quantum dots are interesting materials for optical chemical sensors since they present an intense emission at room temperature, whose intensity changes rapidly and reversibly depending on the composition of the environmental atmosphere. We present here their emission properties by time resolved photoluminescence spectroscopy investigation and we discuss the physico-chemical mechanism behind their sensitivity to the surrounding atmosphere. Photoluminescence transients in inert atmosphere (N2) and in solvent vapours of methanol, clorophorm, acetone and water were measured. The presence of vapors of clorophorm, acetone and water showed a very weak effect on the transient times, while an increase of up to 15% of the decay time was observed for methanol vapour exposure. On the basis of the vapor molecule nature (polarity, proticity, steric hindrance, etc.) and of the interaction of the vapor molecules with the quantum dots surface a sensing mechanism involving quantum dots non-radiative surface states is proposed.

  8. Carbamate Stabilities of Sterically Hindered Amines from Quantum Chemical Methods: Relevance ofr CO2 Capture

    NARCIS (Netherlands)

    Gangarapu, S.; Marcelis, A.T.M.; Zuilhof, H.

    2013-01-01

    The influence of electronic and steric effects on the stabilities of carbamates formed from the reaction of CO2 with a wide range of alkanolamines was investigated by quantum chemical methods. For the calculations, B3LYP, M11-L, MP2, and spin-component-scaled MP2 (SCS-MP2) methods were used, coupled

  9. Copper (II) diamino acid complexes: Quantum chemical computations regarding diastereomeric effects on the energy of complexation

    NARCIS (Netherlands)

    Zuilhof, H.; Morokuma, K.

    2003-01-01

    Quantum chemical calculations were used to rationalize the observed enantiodifferentiation in the complexation of alpha-amino acids to chiral Cu(II) complexes. Apart from Cu(II)-pi interactions and steric repulsions between the anchoring cholesteryl-Glu moiety and an aromatic amino acid R group, hyd

  10. Carbamate Stabilities of Sterically Hindered Amines from Quantum Chemical Methods: Relevance ofr CO2 Capture

    NARCIS (Netherlands)

    Gangarapu, S.; Marcelis, A.T.M.; Zuilhof, H.

    2013-01-01

    The influence of electronic and steric effects on the stabilities of carbamates formed from the reaction of CO2 with a wide range of alkanolamines was investigated by quantum chemical methods. For the calculations, B3LYP, M11-L, MP2, and spin-component-scaled MP2 (SCS-MP2) methods were used, coupled

  11. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...

  12. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    Science.gov (United States)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  13. Position-dependent mass quantum Hamiltonians: general approach and duality

    Science.gov (United States)

    Rego-Monteiro, M. A.; Rodrigues, Ligia M. C. S.; Curado, E. M. F.

    2016-03-01

    We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article.

  14. An Adynamical, Graphical Approach to Quantum Gravity and Unification

    Science.gov (United States)

    Stuckey, W. M.; Silberstein, Michael; McDevitt, Timothy

    We use graphical field gradients in an adynamical, background independent fashion to propose a new approach to quantum gravity (QG) and unification. Our proposed reconciliation of general relativity (GR) and quantum field theory (QFT) is based on a modification of their graphical instantiations, i.e. Regge calculus and lattice gauge theory (LGT), respectively, which we assume are fundamental to their continuum counterparts. Accordingly, the fundamental structure is a graphical amalgam of space, time, and sources (in parlance of QFT) called a "space-time source element". These are fundamental elements of space, time, and sources, not source elements in space and time. The transition amplitude for a space-time source element is computed using a path integral with discrete graphical action. The action for a space-time source element is constructed from a difference matrix K and source vector J on the graph, as in lattice gauge theory. K is constructed from graphical field gradients so that it contains a non-trivial null space and J is then restricted to the row space of K, so that it is divergence-free and represents a conserved exchange of energy-momentum. This construct of K and J represents an adynamical global constraint (AGC) between sources, the space-time metric, and the energy-momentum content of the element, rather than a dynamical law for time-evolved entities. In this view, one manifestation of quantum gravity becomes evident when, for example, a single space-time source element spans adjoining simplices of the Regge calculus graph. Thus, energy conservation for the space-time source element includes contributions to the deficit angles between simplices. This idea is used to correct proper distance in the Einstein-de Sitter (EdS) cosmology model yielding a fit of the Union2 Compilation supernova data that matches ΛCDM without having to invoke accelerating expansion or dark energy. A similar modification to LGT results in an adynamical account of quantum

  15. Locally Compact Quantum Groups. A von Neumann Algebra Approach

    Science.gov (United States)

    Van Daele, Alfons

    2014-08-01

    In this paper, we give an alternative approach to the theory of locally compact quantum groups, as developed by Kustermans and Vaes. We start with a von Neumann algebra and a comultiplication on this von Neumann algebra. We assume that there exist faithful left and right Haar weights. Then we develop the theory within this von Neumann algebra setting. In [Math. Scand. 92 (2003), 68-92] locally compact quantum groups are also studied in the von Neumann algebraic context. This approach is independent of the original C^*-algebraic approach in the sense that the earlier results are not used. However, this paper is not really independent because for many proofs, the reader is referred to the original paper where the C^*-version is developed. In this paper, we give a completely self-contained approach. Moreover, at various points, we do things differently. We have a different treatment of the antipode. It is similar to the original treatment in [Ann. Sci. & #201;cole Norm. Sup. (4) 33 (2000), 837-934]. But together with the fact that we work in the von Neumann algebra framework, it allows us to use an idea from [Rev. Roumaine Math. Pures Appl. 21 (1976), 1411-1449] to obtain the uniqueness of the Haar weights in an early stage. We take advantage of this fact when deriving the other main results in the theory. We also give a slightly different approach to duality. Finally, we collect, in a systematic way, several important formulas. In an appendix, we indicate very briefly how the C^*-approach and the von Neumann algebra approach eventually yield the same objects. The passage from the von Neumann algebra setting to the C^*-algebra setting is more or less standard. For the other direction, we use a new method. It is based on the observation that the Haar weights on the C^*-algebra extend to weights on the double dual with central support and that all these supports are the same. Of course, we get the von Neumann algebra by cutting down the double dual with this unique

  16. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts.

    Science.gov (United States)

    Knizia, Gerald

    2013-11-12

    Modern quantum chemistry can make quantitative predictions on an immense array of chemical systems. However, the interpretation of those predictions is often complicated by the complex wave function expansions used. Here we show that an exceptionally simple algebraic construction allows for defining atomic core and valence orbitals, polarized by the molecular environment, which can exactly represent self-consistent field wave functions. This construction provides an unbiased and direct connection between quantum chemistry and empirical chemical concepts, and can be used, for example, to calculate the nature of bonding in molecules, in chemical terms, from first principles. In particular, we find consistency with electronegativities (χ), C 1s core-level shifts, resonance substituent parameters (σR), Lewis structures, and oxidation states of transition-metal complexes.

  17. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...... QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift...

  18. Information dynamics and open systems classical and quantum approach

    CERN Document Server

    Ingarden, R S; Ohya, M

    1997-01-01

    This book aims to present an information-theoretical approach to thermodynamics and its generalisations On the one hand, it generalises the concept of `information thermodynamics' to that of `information dynamics' in order to stress applications outside thermal phenomena On the other hand, it is a synthesis of the dynamics of state change and the theory of complexity, which provide a common framework to treat both physical and nonphysical systems together Both classical and quantum systems are discussed, and two appendices are included to explain principal definitions and some important aspects of the theory of Hilbert spaces and operator algebras The concept of higher-order temperatures is explained and applied to biological and linguistic systems The theory of open systems is presented in a new, much more general form Audience This volume is intended mainly for theoretical and mathematical physicists, but also for mathematicians, experimental physicists, physical chemists, theoretical biologists, communicat...

  19. Sub-barrier capture with quantum diffusion approach

    Directory of Open Access Journals (Sweden)

    Scheid W.

    2011-10-01

    Full Text Available With the quantum diffusion approach the behavior of capture cross sections and mean-square angular momenta of captured systems are revealed in the reactions with deformed and spherical nuclei at sub-barrier energies. With decreasing bombarding energy under the barrier the external turning point of the nucleus-nucleus potential leaves the region of short-range nuclear interaction and action of friction. Because of this change of the regime of interaction, an unexpected enhancement of the capture cross section is found at bombarding energies far below the Coulomb barrier. This effect is shown its worth in the dependence of mean-square angular momentum on the bombarding energy. From the comparison of calculated capture cross sections and experimental capture or fusion cross sections the importance of quasifission near the entrance channel is demonstrated for the actinidebased reactions and reactions with medium-heavy nuclei at extreme sub-barrier energies.

  20. Fault-tolerant quantum computation -- a dynamical systems approach

    CERN Document Server

    Fern, J; Simic, S; Sastry, S; Fern, Jesse; Kempe, Julia; Simic, Slobodan; Sastry, Shankar

    2004-01-01

    We apply a dynamical systems approach to concatenation of quantum error correcting codes, extending and generalizing the results of Rahn et al. [8] to both diagonal and nondiagonal channels. Our point of view is global: instead of focusing on particular types of noise channels, we study the geometry of the coding map as a discrete-time dynamical system on the entire space of noise channels. In the case of diagonal channels, we show that any code with distance at least three corrects (in the infinite concatenation limit) an open set of errors. For CSS codes, we give a more precise characterization of that set. We show how to incorporate noise in the gates, thus completing the framework. We derive some general bounds for noise channels, which allows us to analyze several codes in detail.

  1. On the no-signaling approach to quantum nonlocality

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, J. M., E-mail: manolo@ifisica.uaslp.mx; Urías, Jesús, E-mail: jurias@ifisica.uaslp.mx [Instituto de Física, UASLP, San Luis Potosí, San Luis Potosí (Mexico)

    2015-03-15

    The no-signaling approach to nonlocality deals with separable and inseparable multiparty correlations in the same set of probability states without conflicting causality. The set of half-spaces describing the polytope of no-signaling probability states that are admitted by the most general class of Bell scenarios is formulated in full detail. An algorithm for determining the skeleton that solves the no-signaling description is developed upon a new strategy that is partially pivoting and partially incremental. The algorithm is formulated rigorously and its implementation is shown to be effective to deal with the highly degenerate no-signaling descriptions. Several applications of the algorithm as a tool for the study of quantum nonlocality are mentioned. Applied to a large set of bipartite Bell scenarios, we found that the corresponding no-signaling polytopes have a striking high degeneracy that grows up exponentially with the size of the Bell scenario.

  2. Renormalization group approach to scalar quantum electrodynamics on de Sitter

    CERN Document Server

    González, Francisco Fabián

    2016-01-01

    We consider the quantum loop effects in scalar electrodynamics on de Sitter space by making use of the functional renormalization group approach. We first integrate out the photon field, which can be done exactly to leading (zeroth) order in the gradients of the scalar field, thereby making this method suitable for investigating the dynamics of the infrared sector of the theory. Assuming that the scalar remains light we then apply the functional renormalization group methods to the resulting effective scalar theory and focus on investigating the effective potential, which is the leading order contribution in the gradient expansion of the effective action. We find symmetry restoration at a critical renormalization scale $\\kappa=\\kappa_{\\rm cr}$ much below the Hubble scale $H$. When compared with the results of Serreau and Guilleux [arXiv:1306.3846 [hep-th], arXiv:1506.06183 [hep-th

  3. Ambitwistor Strings: Worldsheet Approaches to perturbative Quantum Field Theories

    CERN Document Server

    Geyer, Yvonne

    2016-01-01

    Tree-level scattering amplitudes in massless theories not only exhibit a simplicity entirely unexpected from Feynman diagrams, but also an underlying structure remarkably reminiscent of worldsheet theory correlators. These features can be explained by ambitwistor strings - two-dimensional chiral conformal field theories in an auxiliary target space, the complexified phase space of null geodesics. The aim of this thesis is to explore the ambitwistor string approach to understand these structures in amplitudes, and thereby provide a new angle on quantum field theories. The first part of the thesis provides a user-friendly introduction to ambitwistor strings, as well as a condensed overview over the literature and some novel results. Emphasising the study of tree-level amplitudes, we then explore the wide-ranging impact of ambitwistor strings for an extensive family of massless theories, and discuss the duality between asymptotic symmetries and the low energy behaviour of a theory from the point of view of the w...

  4. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.

  5. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols.

    Science.gov (United States)

    Frka, Sanja; Šala, Martin; Kroflič, Ana; Huš, Matej; Čusak, Alen; Grgić, Irena

    2016-06-01

    Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care.

  6. The perturbed universe in the deformed algebra approach of Loop Quantum Cosmology

    CERN Document Server

    Grain, J

    2016-01-01

    Loop quantum cosmology is a tentative approach to model the universe down to the Planck era where quantum gravity settings are needed. The quantization of the universe as a dynamical space-time is inspired by Loop Quantum Gravity ideas. In addition, loop quantum cosmology could bridge contact with astronomical observations, and thus potentially investigate quantum cosmology modellings in the light of observations. To do so however, modelling both the background evolution and its perturbations is needed. The latter describe cosmic inhomogeneities that are the main cosmological observables. In this context, we present the so-called deformed algebra approach implementing the quantum corrections to the perturbed universe at an effective level by taking great care of gauge issues. We particularly highlight that in this framework, the algebra of hypersurface deformation receives quantum corrections, and we discuss their meaning. The primordial power spectra of scalar and tensor inhomogeneities are then presented, a...

  7. Effect of the Titanium Nanoparticle on the Quantum Chemical Characterization of the Liquid Sodium Nanofluid.

    Science.gov (United States)

    Suzuki, Ai; Bonnaud, Patrick; Williams, Mark C; Selvam, Parasuraman; Aoki, Nobutoshi; Miyano, Masayuki; Miyamoto, Akira; Saito, Jun-ichi; Ara, Kuniaki

    2016-04-14

    Suspension state of a titanium nanoparticle in the liquid sodium was quantum chemically characterized by comparing physical characteristics, viz., electronic state, viscosity, and surface tension, with those of liquid sodium. The exterior titanium atoms on the topmost facet of the nanoparticle were found to constitute a stable Na-Ti layer, and the Brownian motion of a titanium nanoparticle could be seen in tandem with the surrounding sodium atoms. An electrochemical gradient due to the differences in electronegativity of both titanium and sodium causes electron flow from liquid sodium atoms to a titanium nanoparticle, Ti + Na → Ti(δ-) + Na(δ+), making the exothermic reaction possible. In other words, the titanium nanoparticle takes a role as electron-reservoir by withdrawing free electrons from sodium atoms and makes liquid sodium electropositive. The remaining electrons in the liquid sodium still make Na-Na bonds and become more stabilized. With increasing size of the titanium nanoparticle, the deeper electrostatic potential, the steeper electric field, and the larger Debye atmosphere are created in the electric double layer shell. Owing to electropositive sodium-to-sodium electrostatic repulsion between the external shells, naked titanium nanoparticles cannot approach each other, thus preventing the agglomeration.

  8. Effects of alkyl side chains on properties of aliphatic amino acids probed using quantum chemical calculations.

    Science.gov (United States)

    Ganesan, Aravindhan; Wang, Feng; Brunger, Michael; Prince, Kevin

    2011-09-01

    Effects of alkyl side chains (R-) on the electronic structural properties of aliphatic amino acids are investigated using quantum mechanical approaches. The carbon (C 1s) binding energy spectra of the aliphatic amino acids are derived from the C 1s spectrum of glycine (the parent spectrum) by the addition of spectral peaks, depending on the alkyl side chains, appearing in the lower energy region IP aliphatic amino acids owing to perturbations depending on the size and structure of the alkyl chains. The pattern of the N 1s and O 1s spectra in glycine is retained in the spectra of the other amino acids with small shifts to lower energy, again depending on the alkyl side chain. The Hirshfeld charge analyses confirm the observations. The alkyl effects on the valence binding energy spectra of the amino acids are concentrated in the middle valence energy region of 12-16 eV, and hence this energy region of 12-16 eV is considered as the `fingerprint' of the alkyl side chains. Selected valence orbitals, either inside or outside of the alkyl fingerprint region, are presented using both density distributions and orbital momentum distributions, in order to understand the chemical bonding of the amino acids. It is also observed that the HOMO-LUMO energy gaps of the aliphatic amino acids are reduced with the growth of the alkyl side chain.

  9. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis.

    Science.gov (United States)

    Mao, Lisong; Wang, Yanli; Liu, Yuemin; Hu, Xiche

    2004-02-20

    Adenosine 5'-triphosphate (ATP) plays an essential role in all forms of life. Molecular recognition of ATP in proteins is a subject of great importance for understanding enzymatic mechanism and for drug design. We have carried out a large-scale data mining of the Protein Data Bank (PDB) to analyze molecular determinants for recognition of the adenine moiety of ATP by proteins. Non-bonded intermolecular interactions (hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) between adenine base and surrounding residues in its binding pockets are systematically analyzed for 68 non-redundant, high-resolution crystal structures of adenylate-binding proteins. In addition to confirming the importance of the widely known hydrogen bonding, we found out that cation-pi interactions between adenine base and positively charged residues (Lys and Arg) and pi-pi stacking interactions between adenine base and surrounding aromatic residues (Phe, Tyr, Trp) are also crucial for adenine binding in proteins. On average, there exist 2.7 hydrogen bonding interactions, 1.0 pi-pi stacking interactions, and 0.8 cation-pi interactions in each adenylate-binding protein complex. Furthermore, a high-level quantum chemical analysis was performed to analyze contributions of each of the three forms of intermolecular interactions (i.e. hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) to the overall binding force of the adenine moiety of ATP in proteins. Intermolecular interaction energies for representative configurations of intermolecular complexes were analyzed using the supermolecular approach at the MP2/6-311 + G* level, which resulted in substantial interaction strengths for all the three forms of intermolecular interactions. This work represents a timely undertaking at a historical moment when a large number of X-ray crystallographic structures of proteins with bound ATP ligands have become available, and when high-level quantum chemical analysis of

  10. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  11. Quantum confinement of lead titanate nanocrystals by wet chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kaviyarasu, K., E-mail: kaviyarasuloyolacollege@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Manikandan, E., E-mail: maniphysics@gmail.com [Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital, Bharath University, Chrompet, Chennai, Tamil Nadu (India); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Maaza, M., E-mail: likmaaz@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa)

    2015-11-15

    Lead Titanate (PbTiO{sub 3)} is a category of the practical semiconductor metal oxides, which is widely applied in various scientific and industrial fields because of its catalytic, optical, and electrical properties. PbTiO{sub 3} nanocrystalline materials have attracted a wide attention due to their unique properties. PbTiO{sub 3} nanocrystals were investigated by X-ray diffraction (XRD) to identify the PbTiO{sub 3} nanocrystals were composed a tetragonal structure. The diameter of a single sphere was around 20 nm and the diameter reached up to 3 μm. The chemical composition of the samples and the valence states of elements were determined by X-ray photoelectron spectroscopy (XPS) in detail. - Highlights: • Single crystalline NSs of PbTiO{sub 3} fabricated by wet chemical method. • PbTiO{sub 3} NSs were uniform and continuous along the long axis. • Tetragonal perovskite structure with the diameter 20 nm and length 3 μm. • XPS spectrum was fitted with Lorentzian function respectively. • The size of the images is also 10 μm × 10 μm.

  12. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    Science.gov (United States)

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations.

  13. The Bohmian Approach to the Problems of Cosmological Quantum Fluctuations

    CERN Document Server

    Goldstein, Sheldon; Tumulka, Roderich

    2015-01-01

    There are two kinds of quantum fluctuations relevant to cosmology that we focus on in this article: those that form the seeds for structure formation in the early universe and those giving rise to Boltzmann brains in the late universe. First, structure formation requires slight inhomogeneities in the density of matter in the early universe, which then get amplified by the effect of gravity, leading to clumping of matter into stars and galaxies. According to inflation theory, quantum fluctuations form the seeds of these inhomogeneities. However, these quantum fluctuations are described by a quantum state which is homogeneous and isotropic, and this raises a problem, connected to the foundations of quantum theory, as the unitary evolution alone cannot break the symmetry of the quantum state. Second, Boltzmann brains are random agglomerates of particles that, by extreme coincidence, form functioning brains. Unlikely as these coincidences are, they seem to be predicted to occur in a quantum universe as vacuum flu...

  14. A non-perturbative approach to relativistic quantum communication channels

    CERN Document Server

    Landulfo, Andre G S

    2016-01-01

    We investigate the transmission of both classical and quantum information between two arbitrary observers in globally hyperbolic spacetimes using a quantum field as a communication channel. The field is supposed to be in some arbitrary quasifree state and no choice of representation of its canonical commutation relations is made. Both sender and receiver posses some localized two-level quantum system with which they can interact with the quantum field to prepare the input and receive the output of the channel, respectively. The interaction between the two-level systems and the quantum field is such that one can trace out the field degrees of freedom exactly and thus obtain the quantum channel in a non-perturbative way. We end the paper determining the unassisted as well as the entanglement-assisted classical and quantum channel capacities.

  15. Integrating exposure into chemical alternatives assessment using a qualitative approach

    DEFF Research Database (Denmark)

    Greggs, Bill; Arnold, Scott; Burns, Thomas J.;

    2016-01-01

    could trigger a higher-tiered, more quantitative exposure assessment on the alternatives being considered. This talk will demonstrate an approach for including chemical- and product-related exposure information in a qualitative AA comparison. Starting from existing hazard AAs, a series of four chemical...... Sustainable Chemical Alternatives Technical Committee, which consists of scientists from academia, industry, government, and NGOs, has developed a qualitative comparative exposure approach. Conducting such a comparison can screen for alternatives that are expected to have a higher exposure potential, which......-product application scenarios were examined to test the concept, to understand the effort required, and to determine the value of exposure data in AA decision-making. The group has developed a classification approach for ingredient and product parameters to support comparisons between alternatives as well...

  16. Integrating exposure into chemical alternatives assessment using a qualitative approach

    DEFF Research Database (Denmark)

    Greggs, Bill; Arnold, Scott; Burns, T. E.

    2016-01-01

    Sustainable Chemical Alternatives Technical Committee, which consists of scientists from academia, industry, government, and NGOs, has developed a qualitative comparative exposure approach. Conducting such a comparison can screen for alternatives that are expected to have a higher human or environmental...... in a qualitative AA comparison. Starting from existing hazard AAs, a series of three chemical-product application scenarios were examined to test the concept, to understand the effort required, and to determine the value of exposure data in AA decision- making. The group has developed a classification approach...... exposure potential, which could trigger a higher-tiered, more quantitative exposure assessment on the alternatives being considered, minimizing the likelihood of regrettable substitution. This talk will demonstrate an approach for including chemical- and product-related exposure information...

  17. Communication: Ro-vibrational control of chemical reactivity in H+CH₄→ H₂+CH₃: full-dimensional quantum dynamics calculations and a sudden model.

    Science.gov (United States)

    Welsch, Ralph; Manthe, Uwe

    2014-08-07

    The mode-selective chemistry of the title reaction is studied by full-dimensional quantum dynamics simulation on an accurate ab initio potential energy surface for vanishing total angular momentum. Using a rigorous transition state based approach and multi-configurational time-dependent Hartree wave packet propagation, initial state-selected reaction probabilities for many ro-vibrational states of methane are calculated. The theoretical results are compared with experimental trends seen in reactions of methane. An intuitive interpretation of the ro-vibrational control of the chemical reactivity provided by a sudden model based on the quantum transition state concept is discussed.

  18. Combined spectroscopic and quantum chemical studies of ezetimibe

    Science.gov (United States)

    Prajapati, Preeti; Pandey, Jaya; Shimpi, Manishkumar R.; Srivastava, Anubha; Tandon, Poonam; Velaga, Sitaram P.; Sinha, Kirti

    2016-12-01

    Ezetimibe (EZT) is a hypocholesterolemic agent used for the treatment of elevated blood cholesterol levels as it lowers the blood cholesterol by blocking the absorption of cholesterol in intestine. Study aims to combine experimental and computational methods to provide insights into the structural and vibrational spectroscopic properties of EZT which is important for explaining drug substance physical and biological properties. Computational study on molecular properties of ezetimibe is presented using density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set. A detailed vibrational assignment has been done for the observed IR and Raman spectra of EZT. In addition to the conformational study, hydrogen bonding and molecular docking studies have been also performed. For conformational studies, the double well potential energy curves have been plotted for the rotation around the six flexible bonds of the molecule. UV absorption spectrum was examined in methanol solvent and compared with calculated one in solvent environment (IEF-PCM) using TD-DFT/6-31G basis set. HOMO-LUMO energy gap of both the conformers have also been calculated in order to predict its chemical reactivity and stability. The stability of the molecule was also examined by means of natural bond analysis (NBO) analysis. To account for the chemical reactivity and site selectivity of the molecules, molecular electrostatic potential (MEPS) map has been plotted. The combination of experimental and calculated results provide an insight into the structural and vibrational spectroscopic properties of EZT. In order to give an insight for the biological activity of EZT, molecular docking of EZT with protein NPC1L1 has been done.

  19. Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals.

    Science.gov (United States)

    Keith, John A; Carter, Emily A

    2012-09-11

    Sensibly modeling (photo)electrocatalytic reactions involving proton and electron transfer with computational quantum chemistry requires accurate descriptions of protonated, deprotonated, and radical species in solution. Procedures to do this are generally nontrivial, especially in cases that involve radical anions that are unstable in the gas phase. Recently, pyridinium and the corresponding reduced neutral radical have been postulated as key catalysts in the reduction of CO2 to methanol. To assess practical methodologies to describe the acid/base chemistry of these species, we employed density functional theory (DFT) in tandem with implicit solvation models to calculate acidity constants for 22 substituted pyridinium cations and their corresponding pyridinyl radicals in water solvent. We first benchmarked our calculations against experimental pyridinium deprotonation energies in both gas and aqueous phases. DFT with hybrid exchange-correlation functionals provide chemical accuracy for gas-phase data and allow absolute prediction of experimental pKas with unsigned errors under 1 pKa unit. The accuracy of this economical pKa calculation approach was further verified by benchmarking against highly accurate (but very expensive) CCSD(T)-F12 calculations. We compare the relative importance and sensitivity of these energies to selection of solvation model, solvation energy definitions, implicit solvation cavity definition, basis sets, electron densities, model geometries, and mixed implicit/explicit models. After determining the most accurate model to reproduce experimentally-known pKas from first principles, we apply the same approach to predict pKas for radical pyridinyl species that have been proposed relevant under electrochemical conditions. This work provides considerable insight into the pitfalls using continuum solvation models, particularly when used for radical species.

  20. Facile synthesis of corticosteroids prodrugs from isolated hydrocortisone acetate and their quantum chemical calculations

    Science.gov (United States)

    Sethi, Arun; Singh, Ranvijay Pratap; Prakash, Rohit; Amandeep

    2017-02-01

    In the present research paper corticosteroids prodrugs of hydrocortisone acetate (1) have been synthesized, which was isolated from the flowers of Allamanda Violacea. The hydrocortisone acetate (1) was hydrolyzed to hydrocortisone (2) which was subsequently converted to prednisolone (3). Both the hydrocortisone (1) and prednisolone (2) underwent Steglich esterification with naproxen and Ibuprofen yielding compounds 11, 17 dihydroxy-21-(2-(6-methoxynaphthalene-2yl) propionoxy)-pregn-4-ene-3, 20-dione (4), 11, 17-dihydroxy-21-(2-(4-isobutylphenyl) propionoxy)-pregn-4-ene-3, 20-dione (5), 21-(2-(6-methoxynaphthalene-2-yl) propionoxy) 11,17-di-hydroxy-3,20-diketo-pregn-1,4-diene (6) and 11,17-di-hydroxy-3,20-diketo-pregn-1,4-diene-21-yl-2-(4-isobutylphenyl) propanoate (7). The synthesized compounds have been characterized with the help of spectroscopic techniques like 1H, 13C NMR, FT-IR spectroscopy and mass spectrometry. Density functional theory (DFT) with B3LYP functional and 6-31G (d, p) basis set has been used for the Quantum chemical calculations. The electronic properties such as frontier orbitals and band gap energies were calculated by TD-DFT approach. Intramolecular interactions have been identified by AIM (Atoms in Molecule) approach and vibrational wavenumbers have been calculated using DFT method. The reactivity and reactive site within the synthesized prodrugs have been examined with the help of reactivity descriptors. Dipole moment, polarizability and first static hyperpolarizability have been calculated to get a better insight of the properties of synthesized prodrugs. The molecular electrostatic potential (MEP) surface analysis has also been carried out.

  1. Quantum Isostere Database: a web-based tool using quantum chemical topology to predict bioisosteric replacements for drug design.

    Science.gov (United States)

    Devereux, Mike; Popelier, Paul L A; McLay, Iain M

    2009-06-01

    This paper introduces the 'Quantum Isostere Database' (QID), a Web-based tool designed to find bioisosteric fragment replacements for lead optimization using stored ab initio data. A wide range of original geometric, electronic, and calculated physical properties are stored for each fragment. Physical descriptors with clear meaning are chosen, such as distribution of electrostatic potential energy values across a fragment surface and geometric parameters to describe fragment conformation and shape from ab initio structures. Further fundamental physical properties are linked to broader chemical characteristics relevant to biological activity, such as H-bond donor and acceptor strengths. Additional properties with less easily interpretable links to biological activity are also stored to allow future development of QSAR/QSPR models for quantities such as pK(a) and solubility. Conformational dependence of the ab initio descriptors is explicitly dealt with by storing properties for a variety of low-energy conformers of each fragment. Capping groups are used in ab initio calculations to represent different chemical environments, based on background research into transferability of electronic descriptors [J. Comput. Chem. 2009, 30, 1300-1318]. The resulting database has a Web interface that allows medicinal chemists to enter a query fragment, select important chemical features, and retrieve a list of suggested replacements with similar chemical characteristics. Examples of known bioisosteric replacements correctly identified by the QID tool are given.

  2. A decision analytic approach to exposure-based chemical prioritization.

    Directory of Open Access Journals (Sweden)

    Jade Mitchell

    Full Text Available The manufacture of novel synthetic chemicals has increased in volume and variety, but often the environmental and health risks are not fully understood in terms of toxicity and, in particular, exposure. While efforts to assess risks have generally been effective when sufficient data are available, the hazard and exposure data necessary to assess risks adequately are unavailable for the vast majority of chemicals in commerce. The US Environmental Protection Agency has initiated the ExpoCast Program to develop tools for rapid chemical evaluation based on potential for exposure. In this context, a model is presented in which chemicals are evaluated based on inherent chemical properties and behaviorally-based usage characteristics over the chemical's life cycle. These criteria are assessed and integrated within a decision analytic framework, facilitating rapid assessment and prioritization for future targeted testing and systems modeling. A case study outlines the prioritization process using 51 chemicals. The results show a preliminary relative ranking of chemicals based on exposure potential. The strength of this approach is the ability to integrate relevant statistical and mechanistic data with expert judgment, allowing for an initial tier assessment that can further inform targeted testing and risk management strategies.

  3. Chemical genetics approaches for selective intervention in epigenetics.

    Science.gov (United States)

    Runcie, Andrew C; Chan, Kwok-Ho; Zengerle, Michael; Ciulli, Alessio

    2016-08-01

    Chemical genetics is the use of biologically active small molecules (chemical probes) to investigate the functions of gene products, through the modulation of protein activity. Recent years have seen significant progress in the application of chemical genetics to study epigenetics, following the development of new chemical probes, a growing appreciation of the role of epigenetics in disease and a recognition of the need and utility of high-quality, cell-active chemical probes. In this review, we single out the bromodomain reader domains as a prime example of both the success, and challenges facing chemical genetics. The difficulty in generating single-target selectivity has long been a thorn in the side of chemical genetics, however, recent developments in advanced forms of chemical genetics promise to bypass this, and other, limitations. The 'bump-and-hole' approach has now been used to probe - for the first time - the BET bromodomain subfamily with single-target selectivity and may be applicable to other epigenetic domains. Meanwhile, PROTAC compounds have been shown to be significantly more efficacious than standard domain inhibitors, and have the potential to enhance target selectivity.

  4. Chemical Exchange Saturation Transfer (CEST) Agents: Quantum Chemistry and MRI.

    Science.gov (United States)

    Li, Jikun; Feng, Xinxin; Zhu, Wei; Oskolkov, Nikita; Zhou, Tianhui; Kim, Boo Kyung; Baig, Noman; McMahon, Michael T; Oldfield, Eric

    2016-01-04

    Diamagnetic chemical exchange saturation transfer (CEST) contrast agents offer an alternative to Gd(3+) -based contrast agents for MRI. They are characterized by containing protons that can rapidly exchange with water and it is advantageous to have these protons resonate in a spectral window that is far removed from water. Herein, we report the first results of DFT calculations of the (1) H nuclear magnetic shieldings in 41 CEST agents, finding that the experimental shifts can be well predicted (R(2) =0.882). We tested a subset of compounds with the best MRI properties for toxicity and for activity as uncouplers, then obtained mice kidney CEST MRI images for three of the most promising leads finding 16 (2,4-dihydroxybenzoic acid) to be one of the most promising CEST MRI contrast agents to date. Overall, the results are of interest since they show that (1) H NMR shifts for CEST agents-charged species-can be well predicted, and that several leads have low toxicity and yield good in vivo MR images.

  5. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    CERN Document Server

    Zhang, Yiteng; Kais, Sabre

    2015-01-01

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on (1) the hyperfine interaction involving electron spins and neighboring nuclear spins and (2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects o...

  6. Quantum Chemical Mass Spectrometry: Verification and Extension of the Mobile Proton Model for Histidine

    Science.gov (United States)

    Cautereels, Julie; Blockhuys, Frank

    2017-06-01

    The quantum chemical mass spectrometry for materials science (QCMS2) method is used to verify the proposed mechanism for proton transfer - the Mobile Proton Model (MPM) - by histidine for ten XHS tripeptides, based on quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. The fragmentations of the different intermediate structures in the MPM mechanism are studied within the QCMS2 framework, and the energetics of the proposed mechanism itself and those of the fragmentations of the intermediate structures are compared, leading to the computational confirmation of the MPM. In addition, the calculations suggest that the mechanism should be extended from considering only the formation of five-membered ring intermediates to include larger-ring intermediates.

  7. Quantum theory from first principles an informational approach

    CERN Document Server

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-01-01

    Quantum theory is the soul of theoretical physics. It is not just a theory of specific physical systems, but rather a new framework with universal applicability. This book shows how we can reconstruct the theory from six information-theoretical principles, by rebuilding the quantum rules from the bottom up. Step by step, the reader will learn how to master the counterintuitive aspects of the quantum world, and how to efficiently reconstruct quantum information protocols from first principles. Using intuitive graphical notation to represent equations, and with shorter and more efficient derivations, the theory can be understood and assimilated with exceptional ease. Offering a radically new perspective on the field, the book contains an efficient course of quantum theory and quantum information for undergraduates. The book is aimed at researchers, professionals, and students in physics, computer science and philosophy, as well as the curious outsider seeking a deeper understanding of the theory.

  8. The consistent histories approach to loop quantum cosmology

    CERN Document Server

    Craig, David A

    2016-01-01

    We review the application of the consistent (or decoherent) histories formulation of quantum theory to canonical loop quantum cosmology. Conventional quantum theory relies crucially on "measurements" to convert unrealized quantum potentialities into physical outcomes that can be assigned probabilities. In the early universe and other physical contexts in which there are no observers or measuring apparatus (or indeed, in any closed quantum system), what criteria determine which alternative outcomes may be realized and what their probabilities are? In the consistent histories formulation it is the vanishing of interference between the branch wave functions describing alternative histories -- as determined by the system's decoherence functional -- that determines which alternatives may be assigned probabilities. We describe the consistent histories formulation and how it may be applied to canonical loop quantum cosmology, describing in detail the application to homogeneous and isotropic cosmological models with ...

  9. A geometric approach to quantum control in projective hilbert spaces

    Science.gov (United States)

    Pastorello, Davide

    2017-02-01

    A quantum theory in a finite-dimensional Hilbert space can be formulated as a proper geometric Hamiltonian theory as explained in [2, 3, 7, 9]. From this point of view a quantum system can be described within a classical-like framework where quantum dynamics is represented by a Hamiltonian flow in the phase space given by a projective Hilbert space. This paper is devoted to investigating how the notion of an accessibility algebra from classical control theory can be applied within the geometric Hamiltonian formulation of quantum mechanics to study controllability of a quantum system. A new characterization of quantum controllability in terms of Killing vector fields w.r.t. the Fubini-Study metric on projective space is also discussed.

  10. Approach to Equilibrium for Quantum Systems with Continuous Spectrum

    Science.gov (United States)

    Laura, Roberto

    Considering quantum states as functionals acting on observables to give their mean values, it is possible to deal with quantum systems with continuous spectrum, generalizing the concept of trace. Generalized observables and states are defined for a quantum oscillator linearly coupled to a scalar field, and the analytic expression for time evolution is obtained. The "final" state (t → ∞) is presented as a weak limit. Finite and infinite number of exited modes of the field are considered.

  11. Potential energy function from differential cross-section data: An inverse quantum scattering theory approach

    Science.gov (United States)

    Lemes, N. H. T.; Borges, E.; Sousa, R. V.; Braga, J. P.

    Important physical and chemical information can be extracted from scattering experiments data. This kind of problem is usually ill-posed in the sense that one of the three conditions, existence, uniqueness, and continuity, is not satisfied. For example, the inversion of intermolecular potential functions from scattering data, such as experimental cross section, is an ill-posed problem which can be modeled as a Fredholm integral equation. In this work, an inversion method based on recursive neural networks is proposed to solve this inverse quantum scattering problem within the Born approximation. As physical example, the repulsive component of the potential function for the interaction Ar-Ar is obtained from differential cross-section data. The sensitivity of the potential energy function to be inverted, in relation to the differential cross-section data, is also analyzed. The present approach is simple, general, and numerically stable.

  12. Green wet chemical route to synthesize capped CdSe quantum dots

    Indian Academy of Sciences (India)

    A Oudhia; P Bichpuria

    2014-02-01

    In the present work, we report green synthesis of tartaric acid (TA) and triethanolamine (TEA) capped cadmium selenide quantum dots (CdSe QDs) employing chemical bath deposition (CBD) method. The mechanism of capping using non-toxic binary capping agents is also discussed. Stable QDs of various sizes were obtained by varying pH of the bath. The structural, morphological and spectroscopic characterization of the as-prepared samples by XRD, SEM, optical absorption and photoluminescence (PL) is also reported.

  13. Studies on tautomerism in tetrazole: comparison of Hartree Fock and density functional theory quantum chemical methods

    Science.gov (United States)

    Mazurek, A. P.; Sadlej-Sosnowska, N.

    2000-11-01

    A comparison of the ab initio quantum chemical methods: Hartree-Fock (HF) and hybrid density functional theory (DFT)/B3LYP for the treatment of tautomeric equilibria both in the gas phase and in the solution is made. The solvent effects were investigated in terms of the self-consistent reaction field (SCRF). Ionization potentials (IP), calculated by DFT/B3LYP, are also compared with those calculated previously within the HF frame.

  14. The quantum-chemical determination of group contributions to the thermodynamic properties of organophosphorus compounds

    Science.gov (United States)

    Dorofeeva, O. V.; Ryzhova, O. N.; Moiseeva, N. F.

    2008-06-01

    The enthalpies of formation, entropies, and heat capacities of 95 organophosphorus derivatives calculated by nonempirical quantum-chemical methods were used to develop the additive method for estimating the thermodynamic properties of these compounds. 86 group contribution values were obtained for estimating the thermodynamic properties of diverse organic derivatives of phosphorus in the oxidation states 3 and 5 (three-and four-coordinate phosphorus atoms).

  15. Stabilization of Quantum Information A Unified Dynamical-Algebraic Approach

    CERN Document Server

    Zanardi, P

    2002-01-01

    The notion of symmetry is shown to be at the heart of all error correction/avoidance strategies for preserving quantum coherence of an open quantum system S e.g., a quantum computer. The existence of a non-trivial group of symmetries of the dynamical algebra of S provides state-space sectors immune to decoherence. Such noiseless sectors, that can be viewed as a noncommutative version of the pointer basis, are shown to support universal quantum computation and to be robust against perturbations. When the required symmetry is not present one can generate it artificially resorting to active symmetrization procedures.

  16. Direct approach to quantum extensions of Fisher information

    Institute of Scientific and Technical Information of China (English)

    CHEN Ping; LUO Shunlong

    2007-01-01

    By manipulating classical Fisher information and employing various derivatives of density operators, and using entirely intuitive and direct methods, we introduce two families of quantum extensions of Fisher information that include those defined via the symmetric logarithmic derivative, via the right logarithmic derivative, via the Bogoliubov-Kubo-Mori derivative, as well as via the derivative in terms of commutators, as special cases. Some fundamental properties of these quantum extensions of Fisher information are investigated, a multi-parameter quantum Cramér-Rao inequality is established, and applications to characterizing quantum uncertainty are illustrated.

  17. Quantum mechanical approaches to in silico enzyme characterization and drug design

    Energy Technology Data Exchange (ETDEWEB)

    Nilmeier, J P; Fattebert, J L; Jacobson, M P; Kalyanaraman, C

    2012-01-17

    substrate specificity. That is, we bring the power of quantum mechanics to bear on the problem of annotating enzyme function, which is a novel approach. Although it has been clear to us at the Jacobson group for some time that enzyme specificity may be encoded in transition states, rather than simply substrate recognition, the main limitation has always been computational expense. Using a hierarchy of different methods, they can reduce the list of plausible substrates of an enzyme to a small number in most cases, but even identifying the transition states for a dozen plausible substrates requires significant computational effort, beyond what is practical using standard QM/MM methods. For this project, they have chosen two enzyme superfamilies which they have used as 'model systems' for functional assignment. The enolase superfamily is a large group of {alpha}-{beta} barrel enzymes with highly diverse substrates and chemical transformations. Despite decades of work, over a third of the superfamily remains unassigned, which means that the remaining cases are by definition difficult to assign. They have focused on acid sugar dehydratases, and have considerable expertise on the matter. They are also interested in the isoprenoid synthase superfamily, which is of central interest to the synthetic biology community, because these enzymes are used by nature to create complex rare natural products of medicinal value. the most notable example of this is the artemisinin, an antimalarial compound that is found in trace amounts in the wormwod root. From the standpoint of enzyme function assignment, these enzymes are intriguing because they use a small number of chemically simple substrates to generate, potentially, tens of thousands of different products. Hence, substrate binding specificity is only a small part of the challenge; the key is determining how the enzyme directs the carbocation chemistry to specific products. These more complex modeling approaches clearly require

  18. Human exposure assessment: Approaches for chemicals (REACH) and biocides (BPD)

    NARCIS (Netherlands)

    Hemmen, J.J. van; Gerritsen-Ebben, R.

    2008-01-01

    The approaches that are indicated in the various guidance documents for the assessment of human exposure for chemicals and biocides are summarised. This reflects the TNsG (Technical notes for Guidance) version 2: human exposure assessment for biocidal products (1) under the BPD (Biocidal Products Di

  19. A computational approach to chemical etiologies of diabetes

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Brunak, Søren; Grandjean, Philippe

    2013-01-01

    , and perfluorooctanoic acid. For these substances we integrated disease and pathway annotations on top of protein interactions to reveal possible pathogenetic pathways that deserve empirical testing. The approach is general and can address other public health concerns in addition to identifying diabetogenic chemicals...

  20. Prediction of Radical Scavenging Activities of Anthocyanins Applying Adaptive Neuro-Fuzzy Inference System (ANFIS with Quantum Chemical Descriptors

    Directory of Open Access Journals (Sweden)

    Changho Jhin

    2014-08-01

    Full Text Available Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A and electronegativity (χ of flavylium cation, and ionization potential (I of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.

  1. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  2. Illustrating the quantum approach with an Earth magnetic field MRI

    Science.gov (United States)

    Pars Benli, Kami; Dillmann, Baudouin; Louelh, Ryma; Poirier-Quinot, Marie; Darrasse, Luc

    2015-05-01

    Teaching imaging of magnetic resonance (MR) today is still as challenging as it has always been, because it requires admitting that we cannot express fundamental questions of quantum mechanics with straightforward language or without using extensive theory. Here we allow students to face a real MR setup based on the Earth's magnetic field. We address the applied side of teaching MR using a device that is affordable and that proves to be sufficiently robust, at universities in Orsay, France, and San Sebastian, Spain, in experimental practicals at undergraduate and graduate levels. We specifically present some of the advantages of low field for measuring R2 relaxation rates, reaching a power of separation of 1.5 μmol on Mn(II) ions between two water bottles each of half a liter. Finally we propose key approaches for the lecturers to adopt when they are asked to pass from theoretical knowledge to teachable knowhow. The outcomes are fast calibration and the MR acquisition protocols, demonstrating the reproducibility of energy transfer during the saturation pulses, and the quantitative nature of MR, with water protons and a helium-3 sample.

  3. Elementary Particles and the Causet Approach to Discrete Quantum Gravity

    CERN Document Server

    Gudder, Stan

    2014-01-01

    In a previous paper, the author introduced a covariant causet ($c$-causet) approach to discrete quantum gravity. A $c$-causet is a finite partially ordered set that is invariant under labeling. The invariant labeling of a $c$-causet $x$ enables us to uniquely specify $x$ by a sequence $\\brac{s_j(x)}$, $j=0,1,2,\\ldots$, of positive integers called a shell sequence of $x$. A $c$-causet $x$ describes the microscopic structure of a possible universe at a particular time step. In general, $x$ represents one of many universes in a multiverse and $x$ grows by a single element at each time step. Since early stages of a universe were probably composed of elementary particles, we propose that elementary particles can be described by simple $c$-causets. Although we do not have a rigorous theory for such a description, we present our guess as to how it might appear. The shell sequence can be applied to find theoretical masses of particles and these seem to approximately agree with known masses. We point out that the caus...

  4. Semi-classical approach to quantum black holes

    CERN Document Server

    Spallucci, Euro

    2014-01-01

    In this Chapter we would like to review a "~phenomenological~" approach taking into account the most fundamental feature of string theory or, more in general, of quantum gravity, whatever its origin, which is the existence of a minimal length in the space-time fabric. This length is generally identified with the Planck length, or the string length, but it could be also much longer down to the TeV region. A simple and effective way to keep track of the effects the minimal length in black hole geometries is to solve the Einstein equations with an energy momentum tensor describing non point-like matter. The immediate consequence is the absence of any curvature singularity. Where textbook solutions of the Einstein equations loose any physical meaning because of infinite tidal forces, we find a de Sitter vacuum core of high, but finite, energy density and pressure. An additional improvement regards the final stage of the black hole evaporation leading to a vanishing Hawking temperature even in the neutral, non-rot...

  5. On kaonic deuterium. Quantum field theoretic and relativistic covariant approach

    CERN Document Server

    Ivanov, A N; Faber, M; Fuhrmann, H; Ivanova, V A; Marton, J; Troitskaya, N I; Zmeskal, J

    2004-01-01

    We study kaonic deuterium, the bound K^-d state A_{K d}. Within a quantum field theoretic and relativistic covariant approach we derive the energy level displacement of the ground state of kaonic deuterium in terms of the amplitude of K^-d scattering for arbitrary relative momenta. Near threshold our formula reduces to the well-known DGBT formula. The S-wave amplitude of K^-d scattering near threshold is defined by the resonances Lambda(1405), Sigma(1750) and a smooth elastic background, and the inelastic channels K^- d -> NY and K^- d -> NY pion, with Y = Sigma^{+/-}, Sigma^0 and Lambda^0, where the final-state interactions play an important role. The Ericson-Weise formula for the S-wave scattering length of K^-d scattering is derived. The total width of the energy level of the ground state of kaonic deuterium is estimated using the theoretical predictions of the partial widths of the two-body decays A_{Kd} -> NY and experimental data on the rates of the NY-pair production in the reactions K^-d -> NY. We obt...

  6. On kaonic hydrogen. Quantum field theoretic and relativistic covariant approach

    CERN Document Server

    Ivanov, A N; Faber, M; Marton, J; Troitskaya, N I; Zmeskal, J

    2003-01-01

    We study kaonic hydrogen, the bound K^-p state A_(Kp). Within a quantum field theoretic and relativistic covariant approach we derive the energy level displacement of the ground state of kaonic hydrogen in terms of the amplitude of K^-p scattering for arbitrary energies. The amplitude of low-energy K^-p scattering near threshold is defined by the contributions of three resonances Lambda(1405), Lambda(1800) and Sigma^0(1750) and a smooth elastic background. The amplitudes of inelastic channels of low-energy K^-p scattering fit experimental data on near threshold behaviour of the cross sections and the experimental data by the DEAR Collaboration. We use the soft-pion technique (leading order in Chiral Perturbation Theory) for the calculate of the partial width of the radiative decay of pionic hydrogen A_(pi p) -> n + gamma and the Panofsky ratio. The theoretical prediction for the Panofsky ratio agrees well with experimental data. We apply the soft-kaon technique (leading order in Chiral Perturbation Theory) to...

  7. On kaonic hydrogen. Quantum field theoretic and relativistic covariant approach

    Science.gov (United States)

    Ivanov, A. N.; Cargnelli, M.; Faber, M.; Marton, J.; Troitskaya, N. I.; Zmeskal, J.

    2004-07-01

    We study kaonic hydrogen, the bound K - p state A K p . Within a quantum field theoretic and relativistic covariant approach we derive the energy level displacement of the ground state of kaonic hydrogen in terms of the amplitude of K - p scattering for arbitrary relative momenta. The amplitude of low-energy K - p scattering near threshold is defined by the contributions of three resonances Λ(1405), Λ(1800) and Σ^0(1750) and a smooth elastic background. The amplitudes of inelastic channels of low-energy K - p scattering fit experimental data on the near-threshold behaviour of the cross-sections and the experimental data by the DEAR Collaboration. We use the soft-pion technique (leading order in Chiral Perturbation Theory) for the calculation of the partial width of the radiative decay of pionic hydrogen A_{π p} to n + γ and the Panofsky ratio. The theoretical prediction for the Panofsky ratio agrees well with experimental data. We apply the soft-kaon technique (leading order in Chiral Perturbation Theory) to the calculation of the partial widths of radiative decays of kaonic hydrogen A_{Kp} to Λ^0 + γ and A_{K p} to Σ^0 + γ. We show that the contribution of these decays to the width of the energy level of the ground state of kaonic hydrogen is less than 1%.

  8. Simulation of quantum computation : A deterministic event-based approach

    NARCIS (Netherlands)

    Michielsen, K; De Raedt, K; De Raedt, H

    2005-01-01

    We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and

  9. Functional Approach to Quantum Decoherence and the Classical Final Limit

    CERN Document Server

    Castagnino, M A; Castagnino, Mario; Laura, Roberto

    2000-01-01

    For a wide set of quantum systems it is demonstrated that the quantum regime can be considered as the transient phase while the final classical statistical regime is a permanent state. A basis where exact matrix decoherence appears for these final states is found. The relation with the decoherence of histories formalism is studied. A set of final intrinsically consistent histories is found.

  10. An example of the decoherence approach to quantum dissipative chaos

    CERN Document Server

    Brun, T A

    1995-01-01

    Quantum chaos---the study of quantized nonintegrable Hamiltonian systems---is an extremely well-developed and sophisticated field. By contrast, very little work has been done in looking at quantum versions of systems which classically exhibit {\\it dissipative} chaos. Using the decoherence formalism of Gell-Mann and Hartle, I find a quantum mechanical analog of one such system, the forced damped Duffing oscillator. I demonstrate the classical limit of the system, and discuss its decoherent histories. I show that using decoherent histories, one can define not only the quantum map of an entire density operator, but can find an analog to the Poincar\\'e map of the individual trajectory. Finally, I argue the usefulness of this model as an example of quantum dissipative chaos, as well as of a practical application of the decoherence formalism to an interesting problem.

  11. A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics

    Science.gov (United States)

    Pujol, O.; Perez, J. P.

    2007-01-01

    The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…

  12. A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics

    Science.gov (United States)

    Pujol, O.; Perez, J. P.

    2007-01-01

    The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…

  13. A quantum BRST anti-BRST approach to classical integrable systems

    CERN Document Server

    Chesterman, M; Chesterman, Michael; Silka, Marcelo B.

    2004-01-01

    We reformulate the conditions of Liouville integrability in the language of Gozzi et al.'s quantum BRST anti-BRST description of classical mechanics. The Das-Okubo geometrical Lax equation is particularly suited to this approach. We find that the Lax pair and inverse scattering wavefunction appear naturally in certain sectors of the quantum theory.

  14. A Comprehensive Approach for Pectin Chemical and Functional Characterization

    DEFF Research Database (Denmark)

    de Sousa, António Felipe Gomes Teixeira

    In this work, a comprehensive approach for the chemical and functional analysis of pectin was used in order to relate the different extraction conditions used to the polymer structure and the final functional (mainly gelling) properties. A wide range of methods were utilized including chemical...... and chromatographic characterization methods (HPAEC and HPSEC), rheological measurements of elasticity, and biological epitopes detection using carbohydrate microarrays. The end product of this study is expected to contribute to the knowledge of pectin polymeric conformation and structure-function properties as well...

  15. Rhorix: An interface between quantum chemical topology and the 3D graphics program blender.

    Science.gov (United States)

    Mills, Matthew J L; Sale, Kenneth L; Simmons, Blake A; Popelier, Paul L A

    2017-08-31

    Chemical research is assisted by the creation of visual representations that map concepts (such as atoms and bonds) to 3D objects. These concepts are rooted in chemical theory that predates routine solution of the Schrödinger equation for systems of interesting size. The method of Quantum Chemical Topology (QCT) provides an alternative, parameter-free means to understand chemical phenomena directly from quantum mechanical principles. Representation of the topological elements of QCT has lagged behind the best tools available. Here, we describe a general abstraction (and corresponding file format) that permits the definition of mappings between topological objects and their 3D representations. Possible mappings are discussed and a canonical example is suggested, which has been implemented as a Python "Add-On" named Rhorix for the state-of-the-art 3D modeling program Blender. This allows chemists to use modern drawing tools and artists to access QCT data in a familiar context. A number of examples are discussed. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  16. The consistent histories approach to loop quantum cosmology

    Science.gov (United States)

    Craig, David A.

    2016-06-01

    We review the application of the consistent (or decoherent) histories formulation of quantum theory to canonical loop quantum cosmology. Conventional quantum theory relies crucially on “measurements” to convert unrealized quantum potentialities into physical outcomes that can be assigned probabilities. In the early universe and other physical contexts in which there are no observers or measuring apparatus (or indeed, in any closed quantum system), what criteria determine which alternative outcomes may be realized and what their probabilities are? In the consistent histories formulation it is the vanishing of interference between the branch wave functions describing alternative histories — as determined by the system’s decoherence functional — that determines which alternatives may be assigned probabilities. We describe the consistent histories formulation and how it may be applied to canonical loop quantum cosmology, describing in detail the application to homogeneous and isotropic cosmological models with scalar matter. We show how the theory may be used to make definite physical predictions in the absence of “observers”. As an application, we demonstrate how the theory predicts that loop quantum models “bounce” from large volume to large volume, while conventional “Wheeler-DeWitt”-quantized universes are invariably singular. We also briefly indicate the relation to other work.

  17. A novel quantum-inspired immune clonal algorithm with the evolutionary game approach

    Institute of Scientific and Technical Information of China (English)

    Qiuyi Wu; Licheng Jiao; Yangyang Li; Xiaozheng Deng

    2009-01-01

    The quantum-inspired immune clonal algorithm (QICA) is a rising intelligence algorithm. Based on evolutionary game theory and QICA, a quantum-inspired immune algorithm embedded with evolutionary game (EGQICA) is proposed to solve combination optimi-zation problems. In this paper, we map the quantum antibody's finding the optimal solution to player's pursuing maximum utility by choosing strategies in evolutionary games. Replicator dynamics is used to model the behavior of the quantum antibody and the memory mechanism is also introduced in this work. Experimental results indicate that the proposed approach maintains a good diversity and achieves superior performance.

  18. Nonadiabatic molecular dynamics simulation: An approach based on quantum measurement picture

    Directory of Open Access Journals (Sweden)

    Wei Feng

    2014-07-01

    Full Text Available Mixed-quantum-classical molecular dynamics simulation implies an effective quantum measurement on the electronic states by the classical motion of atoms. Based on this insight, we propose a quantum trajectory mean-field approach for nonadiabatic molecular dynamics simulations. The new protocol provides a natural interface between the separate quantum and classical treatments, without invoking artificial surface hopping algorithm. Moreover, it also bridges two widely adopted nonadiabatic dynamics methods, the Ehrenfest mean-field theory and the trajectory surface-hopping method. Excellent agreement with the exact results is illustrated with representative model systems, including the challenging ones for traditional methods.

  19. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ahuactzin-Pérez, Miriam [Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I) (Mexico); Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala (Mexico); Tlecuitl-Beristain, Saúl; García-Dávila, Jorge [Universidad Politécnica de Tlaxcala, San Pedro Xalcatzinco, Tepeyanco, Tlaxcala CP 90180 (Mexico); González-Pérez, Manuel [Universidad Popular Autónoma del Estado de Puebla, Puebla CP 72410 (Mexico); Gutiérrez-Ruíz, María Concepción [Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, D.F (Mexico); Sánchez, Carmen, E-mail: sanher6@hotmail.com [Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala CP. 90062 (Mexico)

    2016-10-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (X{sub max}), biodegradation constant of DEHP (k), half-life (t{sub 1/2}) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000 mg/L). The greatest μ and the largest X{sub max} occurred in media supplemented with 1000 mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000 mg/L) within 60 h of growth. The k and t{sub 1/2} were 0.024 h{sup −1} and 28 h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC–MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. - Highlights: • F. culmorum degraded 95% of DEHP (1000 mg/L) within 60 h. • Removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. • DEHP was fully metabolized by F. culmorum, with butanediol as the final product. • A DEHP biodegradation pathway was proposed using on quantum chemical modeling.

  20. Alternative Approach to Noncommutative Quantum Mechanics on a Curved Space

    CERN Document Server

    Nakamura, M

    2015-01-01

    Starting with the first-order singular Lagrangian containing the redundant variables, the noncommutative quantum mechanics on a curved space is investigated by the constraint star-product quantization formalism of the projection operator method. Imposing the additional constraints to eliminate the reduntant degrees of freedom, the noncommutative quantum system with noncommutativity among the coordinates on the curved space is exactly constructed. Then, it is shown that the resultant Hamiltonian contains the quantum corrections in the exact form. We further discuss the additional constraints to realize the noncommutativities both of coordinates and momenta on the curved space.

  1. On the critical temperatures of superconductors: a quantum gravity approach

    CERN Document Server

    Gregori, Andrea

    2010-01-01

    We consider superconductivity in the light of the quantum gravity theoretical framework introduced in [1]. In this framework, the degree of quantum delocalization depends on the geometry of the energy distribution along space. This results in a dependence of the critical temperature characterizing the transition to the superconducting phase on the complexity of the structure of a superconductor. We consider concrete examples, ranging from low to high temperature superconductors, and discuss how the critical temperature can be predicted once the quantum gravity effects are taken into account.

  2. Phase space picture of quantum mechanics group theoretical approach

    CERN Document Server

    Kim, Y S

    1991-01-01

    This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schrödinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects.

  3. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiteng [Purdue Univ., West Lafayette, IN (United States); Kais, Sabre [Purdue Univ., West Lafayette, IN (United States); Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  4. A Bayesian approach to compatibility, improvement, and pooling of quantum states

    CERN Document Server

    Leifer, M S

    2011-01-01

    In approaches to quantum theory in which the quantum state is regarded as a representation of knowledge, information, or belief, two agents can assign different states to the same quantum system. This raises two questions: when are such state assignments compatible? and how should the state assignments of different agents be reconciled? In this paper, we address these questions from the perspective of the recently developed conditional states formalism for quantum theory [arXiv:1107.5849]. Specifically, we derive a compatibility criterion proposed by Brun, Finkelstein and Mermin from the requirement that, upon acquiring data, agents should update their states using a quantum generalization of Bayesian conditioning. We provide two alternative arguments for this criterion, based on the objective and subjective Bayesian interpretations of probability theory. We then apply the same methodology to the problem of quantum state improvement, i.e. how to update your state when you learn someone else's state assignment...

  5. The TSCA interagency testing committee`s approaches to screening and scoring chemicals and chemical groups: 1977-1983

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.D. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    This paper describes the TSCA interagency testing committee`s (ITC) approaches to screening and scoring chemicals and chemical groups between 1977 and 1983. During this time the ITC conducted five scoring exercises to select chemicals and chemical groups for detailed review and to determine which of these chemicals and chemical groups should be added to the TSCA Section 4(e) Priority Testing List. 29 refs., 1 fig., 2 tabs.

  6. Statistical approach to quantum field theory an introduction

    CERN Document Server

    Wipf, Andreas

    2013-01-01

    Over the past few decades the powerful methods of statistical physics and Euclidean quantum field theory have moved closer together, with common tools based on the use of path integrals. The interpretation of Euclidean field theories as particular systems of statistical physics has opened up new avenues for understanding strongly coupled quantum systems or quantum field theories at zero or finite temperatures. Accordingly, the first chapters of this book contain a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics. The resulting high-dimensional integrals can be estimated with the help of Monte Carlo simulations based on Markov processes. The most commonly used algorithms are presented in detail so as to prepare the reader for the use of high-performance computers as an “experimental” tool for this burgeoning field of theoretical physics. Several chapters are then devoted to an introduction to simple lattice field theories and a variety of spin systems w...

  7. Quantum Transport: The Link between Standard Approaches in Superlattices

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka

    1998-01-01

    Theories describing electrical transport in semiconductor superlattices can essentially be divided in three disjoint categories: (i) transport in a miniband; (ii) hopping between Wannier-Stark ladders; and (iii) sequential tunneling. We present a quantum transport model, based on nonequilibrium...

  8. Holonomy, quantum mechanics and the signal-tuned Gabor approach to the striate cortex

    Science.gov (United States)

    Torreão, José R. A.

    2016-02-01

    It has been suggested that an appeal to holographic and quantum properties will be ultimately required for the understanding of higher brain functions. On the other hand, successful quantum-like approaches to cognitive and behavioral processes bear witness to the usefulness of quantum prescriptions as applied to the analysis of complex non-quantum systems. Here, we show that the signal-tuned Gabor approach for modeling cortical neurons, although not based on quantum assumptions, also admits a quantum-like interpretation. Recently, the equation of motion for the signal-tuned complex cell response has been derived and proven equivalent to the Schrödinger equation for a dissipative quantum system whose solutions come under two guises: as plane-wave and Airy-packet responses. By interpreting the squared magnitude of the plane-wave solution as a probability density, in accordance with the quantum mechanics prescription, we arrive at a Poisson spiking probability — a common model of neuronal response — while spike propagation can be described by the Airy-packet solution. The signal-tuned approach is also proven consistent with holonomic brain theories, as it is based on Gabor functions which provide a holographic representation of the cell’s input, in the sense that any restricted subset of these functions still allows stimulus reconstruction.

  9. On the critical temperatures of superconductors: a quantum gravity approach

    OpenAIRE

    Gregori, Andrea

    2010-01-01

    We consider superconductivity in the light of the quantum gravity theoretical framework introduced in [1]. In this framework, the degree of quantum delocalization depends on the geometry of the energy distribution along space. This results in a dependence of the critical temperature characterizing the transition to the superconducting phase on the complexity of the structure of a superconductor. We consider concrete examples, ranging from low to high temperature superconductors, and discuss h...

  10. The Bohmian Approach to the Problems of Cosmological Quantum Fluctuations

    OpenAIRE

    Goldstein, Sheldon; Struyve, Ward; Tumulka, Roderich

    2015-01-01

    There are two kinds of quantum fluctuations relevant to cosmology that we focus on in this article: those that form the seeds for structure formation in the early universe and those giving rise to Boltzmann brains in the late universe. First, structure formation requires slight inhomogeneities in the density of matter in the early universe, which then get amplified by the effect of gravity, leading to clumping of matter into stars and galaxies. According to inflation theory, quantum fluctuati...

  11. An in fiber experimental approach to photonic quantum digital signatures that does not require quantum memory

    Science.gov (United States)

    Collins, Robert J.; Donaldon, Ross J.; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J.; Andersson, Erika; Jeffers, John; Buller, Gerald S.

    2014-10-01

    Classical digital signatures are commonly used in e-mail, electronic financial transactions and other forms of electronic communications to ensure that messages have not been tampered with in transit, and that messages are transferrable. The security of commonly used classical digital signature schemes relies on the computational difficulty of inverting certain mathematical functions. However, at present, there are no such one-way functions which have been proven to be hard to invert. With enough computational resources certain implementations of classical public key cryptosystems can be, and have been, broken with current technology. It is nevertheless possible to construct information-theoretically secure signature schemes, including quantum digital signature schemes. Quantum signature schemes can be made information theoretically secure based on the laws of quantum mechanics, while classical comparable protocols require additional resources such as secret communication and a trusted authority. Early demonstrations of quantum digital signatures required quantum memory, rendering them impractical at present. Our present implementation is based on a protocol that does not require quantum memory. It also uses the new technique of unambiguous quantum state elimination, Here we report experimental results for a test-bed system, recorded with a variety of different operating parameters, along with a discussion of aspects of the system security.

  12. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    Science.gov (United States)

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  13. Optimization of process parameter for synthesis of silicon quantum dots using low pressure chemical vapour deposition

    Indian Academy of Sciences (India)

    Dipika Barbadikar; Rashmi Gautam; Sanjay Sahare; Rajendra Patrikar; Jatin Bhatt

    2013-06-01

    Si quantum dots-based structures are studied recently for performance enhancement in electronic devices. This paper presents an attempt to get high density quantum dots (QDs) by low pressure chemical vapour deposition (LPCVD) on SiO2 substrate. Surface treatment, annealing and rapid thermal processing (RTP) are performed to study their effect on size and density of QDs. The samples are also studied using Fourier transformation infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and photoluminescence study (PL). The influence of Si–OH bonds formed due to surface treatment on the density of QDs is discussed. Present study also discusses the influence of surface treatment and annealing on QD formation.

  14. A chemically driven quantum phase transition in a two-molecule Kondo system

    Science.gov (United States)

    Esat, Taner; Lechtenberg, Benedikt; Deilmann, Thorsten; Wagner, Christian; Krüger, Peter; Temirov, Ruslan; Rohlfing, Michael; Anders, Frithjof B.; Tautz, F. Stefan

    2016-09-01

    The magnetic properties of nanostructures that consist of a small number of atoms or molecules are typically determined by magnetic exchange interactions. Here, we show that non-magnetic, chemical interactions can have a similarly decisive effect if spin-moment-carrying orbitals extend in space and therefore allow the direct coupling of magnetic properties to wavefunction overlap and the formation of bonding and antibonding orbitals. We demonstrate this for a dimer of metal-molecule complexes on the Au(111) surface. A changing wavefunction overlap between the two monomers drives the surface-adsorbed dimer through a quantum phase transition from an underscreened triplet to a singlet ground state, with one configuration being located extremely close to a quantum critical point.

  15. Electronic structure of alloxan and its dimers: QM/QD simulations and quantum chemical topology analysis.

    Science.gov (United States)

    Allehyani, Basmah H; Elroby, Shaaban A; Aziz, Saadalluh G; Hilal, Rifaat H

    2015-01-01

    This study aims to identify the origin of the extra stability of alloxan, a biologically active pyrimidine. To achieve this goal, detailed DFT computations and quantum dynamics simulations have been performed to establish the most stable conformation and the global minimum structure on the alloxan potential energy surface. The effects of the solvent, basis set, and DFT method have been examined to validate the theoretical model adopted throughout the work. Two non-covalent intermolecular dimers of alloxan, the H-bonded and dipolar dimers, have been investigated at the ωB97X-D and M06-2X levels of theory using the triple zeta 6-311++G** to establish their relative stability. Quantum chemical topology features and natural bond orbital analysis (NBO) have been performed to identify and characterize the forces that govern the structures and underlie the extra stability of alloxan.

  16. Bound States and Band Structure - a Unified Treatment through the Quantum Hamilton - Jacobi Approach

    CERN Document Server

    Ranjani, S S; Panigrahi, P K

    2005-01-01

    We analyze the Scarf potential, which exhibits both discrete energy bound states and energy bands, through the quantum Hamilton-Jacobi approach. The singularity structure and the boundary conditions in the above approach, naturally isolate the bound and periodic states, once the problem is mapped to the zero energy sector of another quasi-exactly solvable quantum problem. The energy eigenvalues are obtained without having to solve for the corresponding eigenfunctions explicitly. We also demonstrate how to find the eigenfunctions through this method.

  17. Electron-lattice energy exchange in metal nanoparticles. Quantum-kinetic and classical approaches

    OpenAIRE

    Tomchuk, Petro; Bilotsky, Yevgen

    2014-01-01

    We obtained the electron-lattice energy transfer constant in metal nanoparticles (MN), in quantum-mechanical and classical approach using the deformation potential Bardeen-Shockley and found the changes of the electron-lattice energy exchange (due to the finite size MN) in the quantum kinetic approach caused by the discrete phonon spectrum. The condition when the discrete phonon spectrum could be observed via the electron-phonon energy exchange has been obtained. It was shown that the classic...

  18. Quantum grow--a quantum dynamics sampling approach for growing potential energy surfaces and nonadiabatic couplings.

    Science.gov (United States)

    Godsi, Oded; Collins, Michael A; Peskin, Uri

    2010-03-28

    A quantum sampling algorithm for the interpolation of diabatic potential energy matrices by the Grow method is introduced. The new procedure benefits from penetration of the wave packet into classically forbidden regions, and the accurate quantum mechanical description of nonadiabatic transitions. The increased complexity associated with running quantum dynamics is reduced by using approximate low order expansions of the nuclear wave function within a Multi-configuration time-dependent Hartree scheme during the Grow process. The sampling algorithm is formulated and applied for three representative test cases, demonstrating the recovery of analytic potentials by the interpolated ones, and the convergence of a dynamic observable.

  19. [DIFFERENT APPROACHES FOR CHEMICAL RISK ASSESSMENT IN LABORATORIES].

    Science.gov (United States)

    Caporossi, Lidia; Papaleo, Bruno; Capanna, Silvia; Calicchia, Sara; Marcellini, Laura; De Rosa, Mariangela; Castellano, Paola

    2015-01-01

    The aim of this study was to compare the different approaches used for chemical risk assessment, in relation to the perception of riskfor operators, in some research laboratories of a hospital in Rome. All information regarding the chemicals used for the application of three algorithmic models for chemical risk assessment ("Movarisch", "Inforisk", "Archimede") were collected. An environmental and biological monitoring and a study on the combined exposure to multiple chemicals using the World Health Organization proposed steps were carried out. A questionnaire was prepared for the identification of risk perception. An estimation of chemical risk with algorithms was compared with data from monitoring: findings showed that estimated risk was higher than those identified with airborne or urine concentrations, always under their limit values. The study of multiple exposure showed a possible cumulative risk, in some cases, but the conditions of use (volume and time) often bring to a reduced one. The perception of risk attributed to the monitored hazardous substances showed a correct perception in all laboratories and for all workers, with regard to the substances manipulated.

  20. Electron interaction and spin effects in quantum wires, quantum dots and quantum point contacts: a first-principles mean-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Zozoulenko, I V; Ihnatsenka, S [Solid State Electronics, Department of Science and Technology (ITN), Linkoeping University, 60174 Norrkoeping (Sweden)

    2008-04-23

    We have developed a mean-field first-principles approach for studying electronic and transport properties of low dimensional lateral structures in the integer quantum Hall regime. The electron interactions and spin effects are included within the spin density functional theory in the local density approximation where the conductance, the density, the effective potentials and the band structure are calculated on the basis of the Green's function technique. In this paper we present a systematic review of the major results obtained on the energetics, spin polarization, effective g factor, magnetosubband and edge state structure of split-gate and cleaved-edge overgrown quantum wires as well as on the conductance of quantum point contacts (QPCs) and open quantum dots. In particular, we discuss how the spin-resolved subband structure, the current densities, the confining potentials, as well as the spin polarization of the electron and current densities in quantum wires and antidots evolve when an applied magnetic field varies. We also discuss the role of the electron interaction and spin effects in the conductance of open systems focusing our attention on the 0.7 conductance anomaly in the QPCs. Special emphasis is given to the effect of the electron interaction on the conductance oscillations and their statistics in open quantum dots as well as to interpretation of the related experiments on the ultralow temperature saturation of the coherence time in open dots.

  1. Generalized quantitative approach to nanoscale Raman spectroscopy: Scaled quantum-mechanical treatment of three-dimensional phonon confinement

    CERN Document Server

    Korepanov, Vitaly I

    2016-01-01

    Raman spectroscopy provides a well-established tool for studying crystalline/molecular systems with well-defined selection rules based on crystalline/molecular symmetries. However, its application to nanoscale matter is hindered by the lack of such well-defined selection rules. Here, we couple the phonon confinement model with a scaled quantum-chemical calculation to construct a universal and physically consistent basis for nanoscale Raman spectroscopy. Unlike the commonly used one-dimensional dispersion approach, we take into account the confinement along all three dimensions of the k-space. We apply it to diamond nanoparticles of sub-50nm size, a system with pronounced anisotropy of dispersion for which three-dimensional dispersion approach is requisite. The approach excellently reproduces size-sensitive spectral features, including the peak position, bandwidth and asymmetry of the sp3 C-C Raman band. This fundamental approach can be easily generalized to other nanocrystalline solids to hopefully contribute...

  2. Spectral Approach to Chaos and Quantum-Classical Correspondence in Quantum Mapas

    CERN Document Server

    García-Mata, I; Garcia-Mata, Ignacio; Saraceno, Marcos

    2005-01-01

    Correspondence in quantum chaotic systems is lost in short time scales. Introducing some noise we study the spectrum of the resulting coarse grained propagaor of density matrices. Some differen methods to compute the spectrum are reviewed. Moreover, the relationship between the eigenvalues of the coarse-grained superoperator and the classical Ruelle-Pollicott resonances is remarked. As a concequence, classical decay rates in quantum time dependent quantities appear.

  3. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  4. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  5. Network-Forming Nanoclusters in Binary As-S/Se Glasses: From Ab Initio Quantum Chemical Modeling to Experimental Evidences

    Science.gov (United States)

    Hyla, M.

    2017-01-01

    Network-forming As2(S/Se)m nanoclusters are employed to recognize expected variations in a vicinity of some remarkable compositions in binary As-Se/S glassy systems accepted as signatures of optimally constrained intermediate topological phases in earlier temperature-modulated differential scanning calorimetry experiments. The ab initio quantum chemical calculations performed using the cation-interlinking network cluster approach show similar oscillating character in tendency to local chemical decomposition but obvious step-like behavior in preference to global phase separation on boundary chemical compounds (pure chalcogen and stoichiometric arsenic chalcogenides). The onsets of stability are defined for chalcogen-rich glasses, these being connected with As2Se5 ( Z = 2.29) and As2S6 ( Z = 2.25) nanoclusters for As-Se and As-S glasses, respectively. The physical aging effects result preferentially from global phase separation in As-S glass system due to high localization of covalent bonding and local demixing on neighboring As2Sem+1 and As2Sem-1 nanoclusters in As-Se system. These nanoclusters well explain the lower limits of reversibility windows in temperature-modulated differential scanning calorimetry, but they cannot be accepted as signatures of topological phase transitions in respect to the rigidity theory.

  6. Relation of Certain Quantum Chemical Parameters to Lubrication Behavior of Solid Oxides

    Directory of Open Access Journals (Sweden)

    Yuansheng Jin

    2005-08-01

    Full Text Available Abstract: It is well-documented that certain oxides (such as Re2O7, B2O3, MoO3, V2O5, etc. can provide friction coefficients of 0.1-0.3 to sliding surfaces at elevated temperatures and thus they are often referred to as lubricious oxides in the tribology literature. In a recently proposed crystal chemical model, Erdemir was able to establish a close correlation between the reported friction coefficients of such oxides and their ionic potentials [1]. In the present paper, we expand on this original concept and explore the relevance of two other quantum chemical parameters, electronegativity and chemical hardness, to the lubricity of solid oxides. These parameters have already been used by scientists to explain the nature of tribochemical interactions between various oil additives and sliding surfaces. It is conceivable that electronegativity and chemical hardness may also be strongly related to the extent of adhesive interactions and shear rheology of solid oxides and hence to their lubricity. The new results have confirmed that electronegativity, like ionic potential, is indeed a valid quantum chemistry parameter that can be used in predicting the lubrication behavior of solid oxides. Generally, the higher the electronegativity of the solid oxides is, the lower the friction coefficients will be. However, chemical hardness did not yield a similar trend. In light of these new findings, we propose some guidelines for the formulation of novel oxide or alloy systems that can lead to the formation of lubricious oxides at elevated temperatures. The findings of this study may pave the way for designer-based tribosystems in general and smart tribochemical systems in particular in future tribological applications such as dry machining.

  7. Monitoring the Interaction of Two Heterocyclic Compounds on Carbon Steel by Electrochemical Polarization, Noise, and Quantum Chemical Studies

    Directory of Open Access Journals (Sweden)

    Vinod P. Raphael

    2016-01-01

    Full Text Available A heterocyclic phenylhydrazone 2-[(E-(2-phenylhydrazinylidenemethyl]pyridine (P2APH and its reduced form 2-[(2-phenylhydrazinylmethyl]pyridine (RP2APH were synthesized, characterized, and subjected to corrosion inhibition investigation on carbon steel (CS in 1 M HCl using gravimetric, polarization, electrochemical noise, quantum chemical, and surface studies. P2APH showed more inhibition capacity than RP2PPH. But RP2PPH was very stable in acid medium and showed pronounced corrosion inhibition efficacy for days. Energy of HOMO and LUMO, their difference, number of electrons transferred, electronegativity, chemical hardness, and so forth were evaluated by quantum chemical studies. Agreeable correlation was observed between the results of quantum chemical calculations and other corrosion monitoring techniques.

  8. Quantum chemical prediction of vibrational spectra of large molecular systems with radical or metallic electronic structure

    Science.gov (United States)

    Nishimoto, Yoshio; Irle, Stephan

    2017-01-01

    Quantum chemical simulation of infrared (IR) and Raman spectra for molecules with open-shell, radical, or multiradical electronic structure represents a major challenge. We report analytic second-order geometrical derivatives of the Mermin free energy for the second-order self-consistent-charge density-functional tight-binding (DFTB2) method with fractional occupation numbers (FONs). This new method is applied to the evaluation of Nsbnd O radical stretching modes in various open-shell molecules and to the prediction of the evolution of IR and Raman spectra of graphene nanoribbons with increasing molecular size.

  9. Quantum-chemical study of electronically excited states of protolytic forms of vanillic acid

    Science.gov (United States)

    Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Y.

    2015-12-01

    The paper describes an analysis of possible ways of deactivation of electronically excited states of 4-hydroxy- 3-methoxy-benzoic acid (vanillic acid) and its protolytic forms with the use of quantum-chemical methods INDO/S (intermediate neglect of differential overlap with a spectroscopic parameterization) and MEP (molecular electrostatic potential). The ratio of radiative and non-radiative deactivation channels of the electronic excitation energy is established. The rate constants of photophysical processes (internal and intercombination conversions) occurring after the absorption of light in these forms are evaluated.

  10. Electronic absorption spectra and nonlinear optical properties of CO2 molecular aggregates: A quantum chemical study

    Indian Academy of Sciences (India)

    Tarun K Mandal; Sudipta Dutta; Swapan K Pati

    2009-09-01

    We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in oligomers because of the intermolecular interactions. The resulting dipole moments reflect in the electronic excitation spectra of the molecular assemblies. The observation of significant nonlinear optical properties suggests the potential application of the dense carbon dioxide phases in opto-electronic devices.

  11. Prediction of Henry's law constants of triazine derived herbicides from quantum chemical continuum solvation models.

    Science.gov (United States)

    Delgado, Eduardo J; Alderete, Joel B

    2003-01-01

    The Henry's law constants (H) for triazine derived herbicides are calculated using quantum chemical solvation models, SM2, SM3, PCM-DFT, and CPCM-DFT, and their performances are discussed. The results show considerable differences in performance among the different levels of theory. The values of H calculated by the semiempirical methods agree much better with the experimental values than those obtained at the DFT level. The differences are discussed in terms of the different contributions, electrostatic and no-electrostatic, to Gibbs free energy of solvation. In addition, the Henry's law constants of some triazine derived herbicides whose values have not been reported earlier are predicted as well.

  12. Synthesis and quantum chemical studies of metalloorganics for electro-optical studies

    Science.gov (United States)

    Deepthi, S.; Jha, A.; Kumar, Ch. Ravi Shankar

    2017-07-01

    The dynamic nature of molecular materials are functional due to their nonlinear optical properties. Nonlinearity arising due to intermolecular interactions as self assembling phenomena between organic and metallic nanoparticles is of interest. The insight of this phenomena is attributed both by experimental and quantum chemical studies. Vibration studies performed by FTIR reveal intermolecular bonding forming metalloorganic POMZ with PAA and zinc oxide. These wave numbers were in agreement with theoretical studies performed by Gaussian 03v software package with B3LYP/6-31G basis set. Nonlinear optical properties such as energy difference, dipole moment, electronegativity, electrophylicity index and polarizability were attributed for electrical and optical properties of the material.

  13. Formation and thermodynamics of gaseous germanium and tin vanadates: a mass spectrometric and quantum chemical study.

    Science.gov (United States)

    Shugurov, S M; Panin, A I; Lopatin, S I; Emelyanova, K A

    2015-06-07

    The stabilities of gaseous germanium and tin vanadates were confirmed by high temperature mass spectrometry, and its structures were determined by quantum chemical calculations. A number of gas-phase reactions involving these gaseous salts were studied. On the basis of the equilibrium constants, the standard formation enthalpies of gaseous GeV2O6 (-1520 ± 42 kJ mol(-1)) and SnV2O6 (-1520 ± 43 kJ mol(-1)) were determined at a temperature of 298 K.

  14. Quantum thermal transport through anharmonic systems: A self-consistent approach

    Science.gov (United States)

    He, Dahai; Thingna, Juzar; Wang, Jian-Sheng; Li, Baowen

    2016-10-01

    We propose a feasible and effective approach to study quantum thermal transport through anharmonic systems. The main idea is to obtain an effective harmonic Hamiltonian for the anharmonic system by applying the self-consistent phonon theory. By using the effective harmonic Hamiltonian, we study thermal transport within the framework of the nonequilibrium Green's function method using the celebrated Caroli formula. We corroborate our quantum self-consistent approach by using the quantum master equation that can deal with anharmonicity exactly, but is limited to the weak system-bath coupling regime. Finally, in order to demonstrate its strength, we apply the quantum self-consistent approach to study thermal rectification in a weakly coupled two-segment anharmonic system.

  15. Experimental study of quantum simulation for quantum chemistry with a nuclear magnetic resonance simulator.

    Science.gov (United States)

    Lu, Dawei; Xu, Nanyang; Xu, Boruo; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-10-13

    Quantum computers have been proved to be able to mimic quantum systems efficiently in polynomial time. Quantum chemistry problems, such as static molecular energy calculations and dynamical chemical reaction simulations, become very intractable on classical computers with scaling up of the system. Therefore, quantum simulation is a feasible and effective approach to tackle quantum chemistry problems. Proof-of-principle experiments have been implemented on the calculation of the hydrogen molecular energies and one-dimensional chemical isomerization reaction dynamics using nuclear magnetic resonance systems. We conclude that quantum simulation will surpass classical computers for quantum chemistry in the near future.

  16. Chimera: A hybrid approach to numerical loop quantum cosmology

    CERN Document Server

    Diener, Peter; Singh, Parampreet

    2013-01-01

    The existence of a quantum bounce in isotropic spacetimes is a key result in loop quantum cosmology (LQC), which has been demonstrated to arise in all the models studied so far. In most of the models, the bounce has been studied using numerical simulations involving states which are sharply peaked and which bounce at volumes much larger than the Planck volume. An important issue is to confirm the existence of the bounce for states which have a wide spread, or which bounce closer to the Planck volume. Numerical simulations with such states demand large computational domains, making them very expensive and practically infeasible with the techniques which have been implemented so far. To overcome these difficulties, we present an efficient hybrid numerical scheme using the property that at the small spacetime curvature, the quantum Hamiltonian constraint in LQC, which is a difference equation with uniform discretization in volume, can be approximated by a Wheeler-DeWitt differential equation. By carefully choosi...

  17. Lyapunov exponent in quantum mechanics A phase-space approach

    CERN Document Server

    Man'ko, V I

    2000-01-01

    Using the symplectic tomography map, both for the probability distributionsin classical phase space and for the Wigner functions of its quantumcounterpart, we discuss a notion of Lyapunov exponent for quantum dynamics.Because the marginal distributions, obtained by the tomography map, are alwayswell defined probabilities, the correspondence between classical and quantumnotions is very clear. Then we also obtain the corresponding expressions inHilbert space. Some examples are worked out. Classical and quantum exponentsare seen to coincide for local and non-local time-dependent quadraticpotentials. For non-quadratic potentials classical and quantum exponents aredifferent and some insight is obtained on the taming effect of quantummechanics on classical chaos. A detailed analysis is made for the standard map.Providing an unambiguous extension of the notion of Lyapunov exponent toquantum mechnics, the method that is developed is also computationallyefficient in obtaining analytical results for the Lyapunov expone...

  18. A Quantum Query Expansion Approach for Session Search

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-04-01

    Full Text Available Recently, Quantum Theory (QT has been employed to advance the theory of Information Retrieval (IR. Various analogies between QT and IR have been established. Among them, a typical one is applying the idea of photon polarization in IR tasks, e.g., for document ranking and query expansion. In this paper, we aim to further extend this work by constructing a new superposed state of each document in the information need space, based on which we can incorporate the quantum interference idea in query expansion. We then apply the new quantum query expansion model to session search, which is a typical Web search task. Empirical evaluation on the large-scale Clueweb12 dataset has shown that the proposed model is effective in the session search tasks, demonstrating the potential of developing novel and effective IR models based on intuitions and formalisms of QT.

  19. Quantum Chaos on Hyperbolic Manifolds A New Approach to Cosmology

    CERN Document Server

    Tomaschitz, R

    1992-01-01

    We consider classical and quantum motion on multiply connected hyperbolic spaces, which appear as space-like slices in Robertson-Walker cosmologies. The topological structure of these manifolds creates on the one hand bounded chaotic trajectories, and on the other hand quantal bound states whose wave functions can be reconstructed from the chaotic geodesics. We obtain an exact relation between a probabilistic quantum mechanical wave field and the corresponding classical system, which is likewise probabilistic because of the instabilities of the trajectories with respect to the initial conditions. The central part in this reconstruction is played by the fractal limit set of the covering group of the manifold. This limit set determines the bounded chaotic trajectories on the manifold. Its Hausdorff measure and dimension determine the wave function of the quantum mechanical bound state for geodesic motion. We investigate relativistic scalar wave fields in de Sitter cosmologies, coupled to the curvature scalar of...

  20. A decoupling approach to classical data transmission over quantum channels

    DEFF Research Database (Denmark)

    Dupont-Dupuis, Fréderic; Szehr, Oleg; Tomamichel, Marco

    2014-01-01

    Most coding theorems in quantum Shannon theory can be proven using the decoupling technique. To send data through a channel, one guarantees that the environment gets no information about it. Uhlmann's theorem then ensures that the receiver must be able to decode. While a wide range of problems can...... be solved this way, one of the most basic coding problems remains impervious to a direct application of this method, sending classical information through a quantum channel. We will show that this problem can, in fact, be solved using decoupling ideas, specifically by proving a dequantizing theorem, which...

  1. Quantum Cosmological Approach to 2d Dilaton Gravity

    CERN Document Server

    Navarro-Salas, J

    1994-01-01

    We study the canonical quantization of the induced 2d-gravity and the pure gravity CGHS-model on a closed spatial section. The Wheeler-DeWitt equations are solved in (spatially homogeneous) choices of the internal time variable and the space of solutions is properly truncated to provide the physical Hilbert space. We establish the quantum equivalence of both models and relate the results with the covariant phase-space quantization. We also discuss the relation between the quantum wavefunctions and the classical space-time solutions and propose the wave function representing the ground state.

  2. Entropy of Black Holes: A Quantum Algebraic Approach

    Directory of Open Access Journals (Sweden)

    G. Vitiello

    2003-02-01

    Full Text Available Abstract: In this paper we apply to a class of static and time-independent geometries the recently developed formalism of deformed algebras of quantum fields in curved backgrounds. In particular we derive: i some non-trivial features of the entanglement of the quantum vacuum, such as the robustness against interaction with the environment; ii the thermal properties and the entropy of black holes for space-times with a unique event horizon, such as Schwarzschild, de Sitter and Rindler space-times.

  3. Quantum spins and quasiperiodicity: a real space renormalization group approach.

    Science.gov (United States)

    Jagannathan, A

    2004-01-30

    We study the antiferromagnetic spin-1/2 Heisenberg model on a two-dimensional bipartite quasiperiodic structure, the octagonal tiling, the aperiodic equivalent of the square lattice for periodic systems. An approximate block spin renormalization scheme is described for this problem. The ground state energy and local staggered magnetizations for this system are calculated and compared with the results of a recent quantum Monte Carlo calculation for the tiling. It is conjectured that the ground state energy is exactly equal to that of the quantum antiferromagnet on the square lattice.

  4. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    CERN Document Server

    Christensen, Anders S; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to refine protein structures to this...

  5. Particle production and chemical freezeout from the hybrid UrQMD approach at NICA energies

    CERN Document Server

    Tawfik, Abdel Nasser; Shalaby, Asmaa G; Hanafy, Mahmoud; Sorin, Alexander; Rogachevsky, Oleg; Scheinast, Werner

    2016-01-01

    The energy dependence of various particle ratios is calculated within the Ultra-Relativistic Quantum Molecular Dynamics approach and compared with the hadron resonance gas (HRG) model and measurements from various experiments, including RHIC-BES, SPS and AGS. It is found that the UrQMD particle ratios agree well with the experimental results at the RHIC-BES energies. Thus, we have utilized UrQMD in simulating particle ratios at other beam energies down to 3 GeV, which will be accessed at NICA and FAIR future facilities. We observe that the particle ratios for crossover and first-order phase transition, implemented in the hybrid UrQMD v3.4, are nearly indistinguishable, especially at low energies (at large baryon chemical potentials or high density).

  6. Particle production and chemical freezeout from the hybrid UrQMD approach at NICA energies

    Energy Technology Data Exchange (ETDEWEB)

    Nasser Tawfik, Abdel [Modern University for Technology and Information (MTI), Egyptian Center for Theoretical Physics (ECTP), Cairo (Egypt); World Laboratory for Cosmology and Particle Physics (WLCAPP), Cairo (Egypt); Abou-Salem, Loutfy I. [Benha University, Physics Department, Faculty of Science, Benha (Egypt); Shalaby, Asmaa G.; Hanafy, Mahmoud [World Laboratory for Cosmology and Particle Physics (WLCAPP), Cairo (Egypt); Benha University, Physics Department, Faculty of Science, Benha (Egypt); Sorin, Alexander [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, Moscow region (Russian Federation); Joint Institute for Nuclear Research, Veksler and Baldin Laboratory of High Energy Physics, Dubna, Moscow region (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation); Dubna International University, Dubna (Russian Federation); Rogachevsky, Oleg; Scheinast, Werner [Joint Institute for Nuclear Research, Veksler and Baldin Laboratory of High Energy Physics, Dubna, Moscow region (Russian Federation)

    2016-10-15

    The energy dependence of various particle ratios is calculated within the Ultra-relativistic Quantum Molecular Dynamics approach and compared with the hadron resonance gas (HRG) model and measurements from various experiments, including RHIC-BES, SPS and AGS. It is found that the UrQMD particle ratios agree well with the experimental results at the RHIC-BES energies. Thus, we have utilized UrQMD in simulating particle ratios at other beam energies down to 3GeV, which will be accessed at NICA and FAIR future facilities. We observe that the particle ratios for crossover and first-order phase transition, implemented in the hybrid UrQMD v3.4, are nearly indistinguishable, especially at low energies (at large baryon chemical potentials or high density). (orig.)

  7. Role of quantum dots nanoparticles in the chemical treatment of colored wastewater: Catalysts or additional pollutants

    Institute of Scientific and Technical Information of China (English)

    Hrvoje Kusic; Danuta Leszczynska; Natalija Koprivanac; Igor Peternel

    2011-01-01

    The objective of the study was to investigate the presence and the activity of quantum dots nanoparficles in colored wastewaters.The special interest is devoted to the investigation of their role in the typical treatment of water or wastewater,studying their influence on the effectiveness of applied treatments methods.The standard chemical processes for water treatment and disinfection (direct UV photolysis and direct ozonation) were applied for the degradation of colored organic pollutant,reactive azo dye,in the presence/absence of CdSe/ZnS core-shells quantum dots.The obtained results indicated that investigated nanoparticles inhibit the overall efficiency of applied processes,especially in the case of direct UV photolysis,although catalytic effect might be expected in part due to the semiconductor nature of quantum dots.Such results lead to a conclusion that CdSe/ZnS nanoparticles behave as additional pollutants in the system.They should be removed from the system prior the treatment,because their presence could decrease the efficiency,i.e.,prolong the time of treatment and correspondingly increase the costs of the treatment process.

  8. The nature of resonance-assisted hydrogen bonds: a quantum chemical topology perspective.

    Science.gov (United States)

    Guevara-Vela, José Manuel; Romero-Montalvo, Eduardo; Costales, Aurora; Pendás, Ángel Martín; Rocha-Rinza, Tomás

    2016-10-14

    Resonance Assisted Hydrogen Bonds (RAHBs) are particularly strong H-Bonds (HBs) which are relevant in several fields of chemistry. The traditional explanation for the occurrence of these HBs is built on mesomeric structures evocative of electron delocalisation in the system. Nonetheless, there are several theoretical studies which have found no evidence of such electron delocalisation. We considered the origin of RAHBs by employing Quantum Chemical Topology tools, more specifically, the Quantum Theory of Atoms in Molecules (QTAIM) and the Interacting Quantum Atoms energy partition. Our results indicate that the π-conjugated bonds allow for a larger adjustment of electron density throughout the H-bonded system as compared with non-conjugated carbonyl molecules. This rearrangement of charge distribution is a response to the electric field due to the H atom involved in the hydrogen bonding of the considered compounds. As opposed to the usual description of RAHB interactions, these HBs lead to a larger electron localisation in the system, and concomitantly to larger QTAIM charges which in turn lead to stronger electrostatic, polarization and charge transfer components of the interaction. Overall, the results presented here offer a new perspective on the cause of strengthening of these important interactions.

  9. One-qubit quantum gates in a circular graphene quantum dot: genetic algorithm approach.

    Science.gov (United States)

    Amparán, Gibrán; Rojas, Fernando; Pérez-Garrido, Antonio

    2013-05-16

    The aim of this work was to design and control, using genetic algorithm (GA) for parameter optimization, one-charge-qubit quantum logic gates σx, σy, and σz, using two bound states as a qubit space, of circular graphene quantum dots in a homogeneous magnetic field. The method employed for the proposed gate implementation is through the quantum dynamic control of the qubit subspace with an oscillating electric field and an onsite (inside the quantum dot) gate voltage pulse with amplitude and time width modulation which introduce relative phases and transitions between states. Our results show that we can obtain values of fitness or gate fidelity close to 1, avoiding the leakage probability to higher states. The system evolution, for the gate operation, is presented with the dynamics of the probability density, as well as a visualization of the current of the pseudospin, characteristic of a graphene structure. Therefore, we conclude that is possible to use the states of the graphene quantum dot (selecting the dot size and magnetic field) to design and control the qubit subspace, with these two time-dependent interactions, to obtain the optimal parameters for a good gate fidelity using GA.

  10. One-qubit quantum gates in a circular graphene quantum dot: genetic algorithm approach

    Science.gov (United States)

    Amparán, Gibrán; Rojas, Fernando; Pérez-Garrido, Antonio

    2013-05-01

    The aim of this work was to design and control, using genetic algorithm (GA) for parameter optimization, one-charge-qubit quantum logic gates σ x, σ y, and σ z, using two bound states as a qubit space, of circular graphene quantum dots in a homogeneous magnetic field. The method employed for the proposed gate implementation is through the quantum dynamic control of the qubit subspace with an oscillating electric field and an onsite (inside the quantum dot) gate voltage pulse with amplitude and time width modulation which introduce relative phases and transitions between states. Our results show that we can obtain values of fitness or gate fidelity close to 1, avoiding the leakage probability to higher states. The system evolution, for the gate operation, is presented with the dynamics of the probability density, as well as a visualization of the current of the pseudospin, characteristic of a graphene structure. Therefore, we conclude that is possible to use the states of the graphene quantum dot (selecting the dot size and magnetic field) to design and control the qubit subspace, with these two time-dependent interactions, to obtain the optimal parameters for a good gate fidelity using GA.

  11. Quantum chemical studies of some rhodanine azosulpha drugs as corrosion inhibitors for mild steel in acidic medium

    Science.gov (United States)

    Ebenso, Eno E.; Arslan, Taner; Kandemirli, Fatma; Caner, Necmettin; Love, Ian

    The density functional theory (DFT) at the B3LYP/6-31G (d,p) and B3LYP/6-311G(d,p) basis set levels and ab initio calculations using the HF/6-31G (d,p) and HF/6-311G(d,p) methods were performed on four rhodanine azosulpha drugs (namely 5-sulfadiazineazo-3-phenyl-2-thioxo-4-thiazolidinone, 5- sulfamethazineazo-3-phenyl-2-thioxo-4-thiazolidinone, 5-sulfadimethoxineazo-3-phenyl-2-thioxo- 4-thiazolidinone, and 5-sulfamethoxazoleazo-3-phenyl-2-thioxo-4-thiazolidinone) used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between the molecular structure of the rhodanine azosulpha drugs and inhibition efficiency(%IE). The quantum chemical parameters/descriptors, namely, EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), the energy difference (ΔE) between EHOMO and ELUMO, dipole moment (μ), electron affinity (A), ionization potential (I), the absolute electronegativity (X), absolute hardness (η), softness (σ), polarizability (α), the Mulliken charges, and the fraction of electrons (ΔN) transfer from inhibitors to iron, were calculated and correlated with the experimental %IE. Quantitative structure activity relationship (QSAR) approach has been used, and a composite index of some quantum chemical parameters/descriptors was performed to characterize the inhibition performance of the studied molecules. The results showed that the inhibition efficiency (%IE) of the rhodanine azo sulfa drugs studied was closely related to some of the quantum chemical parameters/descriptors but with varying degrees of correlation coefficient (R2). The %IE also increased with the increase in EHOMO and decrease in EHOMO-ELUMO; and the areas containing N atoms are the most possible sites for bonding to the metal iron surface by donating electrons to the metal. The HOMO orbitals consist of 61.73-63.04% double bonded S atom (7(S)), and most of the rest are concentrated on the rhodanine group; so, the

  12. FragIt: A Tool to Prepare Input Files for Fragment Based Quantum Chemical Calculations

    CERN Document Server

    Steinmann, Casper; Hansen, Anne S; Jensen, Jan H

    2012-01-01

    Near linear scaling fragment based quantum chemical calculations are becoming increasingly popular for treating large systems with high accuracy and is an active field of research. However, it remains difficult to set up these calculations without expert knowledge. To facilitate the use of such methods, software tools need to be available for support, setup and lower the barrier of entry for usage by non-experts. We present a fragmentation methodology and accompanying tools called FragIt to help setup these calculations. It uses the SMARTS language to find chemically appropriate substructures in structures and is used to prepare input files for the fragment molecular orbital method in the GAMESS program package. We present patterns of fragmentation for proteins and polysaccharides, specifically D-galactopyranose for use in cyclodextrins.

  13. Quantum chemical analysis for the formation of glycine in the interstellar medium

    Institute of Scientific and Technical Information of China (English)

    Amresh Singh; Shivani; Alka Misra; Poonam Tandon

    2013-01-01

    Glycine (C2H5NO2) was the first amino acid to be detected in space by the stardust space probe in Comet Wild2,and is used by living organisms to make proteins.We discuss three different reaction paths for the formation of glycine in interstellar space from some simpler molecules detected in the interstellar medium.The possibility of the formation of glycine in interstellar space is considered by radicalradical and radical-molecule interaction schemes using quantum chemical calculations with density functional theory at the B3LYP/6-31G (d,p) level.In the chemical pathways we discuss,a few reactions are found to be totally exothermic and barrierless while others are endothermic with a very small reaction barrier,thus giving rise to a high probability of forming glycine in interstellar space.

  14. Quantum-chemical examination of interaction of cytostatic-fluorouracil with deoxyribonucleic acids

    Science.gov (United States)

    Yuldasheva, Gulnara; Zhidomirov, Georgii M.

    Within the framework of semiempirical method of quantum chemical PM3, the possibility of formation of paired stack structures under interaction of fluorouracil with pyrimidine and purine nitrogenous bases of nucleotides has been examined. Possible mechanism of transformation of 2-deoxyuridine-5-monophosphate into metabolite-5-fluorin-2-deoxyuridine-5-monophosphate has been given. The calculations that were made allow to suppose that biotransformation of 5-FU in 5-fluorin-2-deoxyuridine-5-monophosphate, most likely, is carried out not in free nucleotides, but in the structure of DNA in two nucleotide triplets UUC and UGU, including the case when directly two nucleotides of deoxyuridine monophosphate, are transformed into 5-fluorin-2-deoxyuridine-5-monophosphate. Cytostatic ability of 5-FU is increased by its capacity to be selectively embedded into nucleotide triplets creating new chemical compounds that violate matrix RNA formation and accordingly violate protein synthesis.0

  15. Approaches to Chemical and Biochemical Information and Signal Processing

    Science.gov (United States)

    Privman, Vladimir

    2012-02-01

    We outline models and approaches for error control required to prevent buildup of noise when ``gates'' and other ``network elements'' based on (bio)chemical reaction processes are utilized to realize stable, scalable networks for information and signal processing. We also survey challenges and possible future research. [4pt] [1] Control of Noise in Chemical and Biochemical Information Processing, V. Privman, Israel J. Chem. 51, 118-131 (2010).[0pt] [2] Biochemical Filter with Sigmoidal Response: Increasing the Complexity of Biomolecular Logic, V. Privman, J. Halamek, M. A. Arugula, D. Melnikov, V. Bocharova and E. Katz, J. Phys. Chem. B 114, 14103-14109 (2010).[0pt] [3] Towards Biosensing Strategies Based on Biochemical Logic Systems, E. Katz, V. Privman and J. Wang, in: Proc. Conf. ICQNM 2010 (IEEE Comp. Soc. Conf. Publ. Serv., Los Alamitos, California, 2010), pages 1-9.

  16. Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems

    Science.gov (United States)

    Werner, A. H.; Jaschke, D.; Silvi, P.; Kliesch, M.; Calarco, T.; Eisert, J.; Montangero, S.

    2016-06-01

    Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies.

  17. A decoupling approach to classical data transmission over quantum channels

    DEFF Research Database (Denmark)

    Dupont-Dupuis, Fréderic; Szehr, Oleg; Tomamichel, Marco

    2014-01-01

    Most coding theorems in quantum Shannon theory can be proven using the decoupling technique. To send data through a channel, one guarantees that the environment gets no information about it. Uhlmann's theorem then ensures that the receiver must be able to decode. While a wide range of problems ca...

  18. An Introduction to Quantum Entanglement: a Geometric Approach

    CERN Document Server

    Zyczkowski, K; Zyczkowski, Karol; Bengtsson, Ingemar

    2006-01-01

    We present a concise introduction to quantum entanglement. Concentrating on bipartite systems we review the separability criteria and measures of entanglement. We focus our attention on geometry of the sets of separable and maximally entangled states. We treat in detail the two-qubit system and emphasise in what respect this case is a special one.

  19. Test-state approach to the quantum search problem

    Science.gov (United States)

    Sehrawat, Arun; Nguyen, Le Huy; Englert, Berthold-Georg

    2011-05-01

    The search for “a quantum needle in a quantum haystack” is a metaphor for the problem of finding out which one of a permissible set of unitary mappings—the oracles—is implemented by a given black box. Grover’s algorithm solves this problem with quadratic speedup as compared with the analogous search for “a classical needle in a classical haystack.” Since the outcome of Grover’s algorithm is probabilistic—it gives the correct answer with high probability, not with certainty—the answer requires verification. For this purpose we introduce specific test states, one for each oracle. These test states can also be used to realize “a classical search for the quantum needle” which is deterministic—it always gives a definite answer after a finite number of steps—and 3.41 times as fast as the purely classical search. Since the test-state search and Grover’s algorithm look for the same quantum needle, the average number of oracle queries of the test-state search is the classical benchmark for Grover’s algorithm.

  20. Test-State Approach to the Quantum Search Problem

    CERN Document Server

    Sehrawat, Arun; Englert, Berthold-Georg

    2011-01-01

    The search for "a quantum needle in a quantum haystack" is a metaphor for the problem of finding out which one of a permissible set of unitary mappings---the oracles---is implemented by a given black box. Grover's algorithm solves this problem with quadratic speed-up as compared with the analogous search for "a classical needle in a classical haystack." Since the outcome of Grover's algorithm is probabilistic---it gives the correct answer with high probability, not with certainty---the answer requires verification. For this purpose we introduce specific test states, one for each oracle. These test states can also be used to realize "a classical search for the quantum needle" which is deterministic---it always gives a definite answer after a finite number of steps---and faster by a factor of 3.41 than the purely classical search. Since the test-state search and Grover's algorithm look for the same quantum needle, the average number of oracle queries of the test-state search is the classical benchmark for Grove...

  1. Quantum Chemical-Based Protocol for the Rational Design of Covalent Inhibitors.

    Science.gov (United States)

    Schirmeister, Tanja; Kesselring, Jochen; Jung, Sascha; Schneider, Thomas H; Weickert, Anastasia; Becker, Johannes; Lee, Wook; Bamberger, Denise; Wich, Peter R; Distler, Ute; Tenzer, Stefan; Johé, Patrick; Hellmich, Ute A; Engels, Bernd

    2016-07-13

    We propose a structure-based protocol for the development of customized covalent inhibitors. Starting from a known inhibitor, in the first and second steps appropriate substituents of the warhead are selected on the basis of quantum mechanical (QM) computations and hybrid approaches combining QM with molecular mechanics (QM/MM). In the third step the recognition unit is optimized using docking approaches for the noncovalent complex. These predictions are finally verified by QM/MM or molecular dynamic simulations. The applicability of our approach is successfully demonstrated by the design of reversible covalent vinylsulfone-based inhibitors for rhodesain. The examples show that our approach is sufficiently accurate to identify compounds with the desired properties but also to exclude nonpromising ones.

  2. Unified approach to study quantum properties of primordial black holes, wormholes and of quantum cosmology

    CERN Document Server

    Nojiri, S; Odintsov, S D

    1999-01-01

    We review the anomaly induced effective action for dilaton coupled spinors and scalars in large N and s-wave approximation. It may be applied to study the following fundamental problems: construction of quantum corrected black holes (BHs), inducing of primordial wormholes in the early Universe (this effect is confirmed) and the solution of initial singularity problem. The recently discovered anti-evaporation of multiple horizon BHs is discussed. The existance of such primordial BHs may be interpreted as SUSY manifestation. Quantum corrections to BHs thermodynamics maybe also discussed within such scheme.

  3. Reduction of Nitroaromatic Compounds on the Surface of Metallic Iron: Quantum Chemical Study

    Directory of Open Access Journals (Sweden)

    Jerzy Leszczynski

    2002-07-01

    Full Text Available Abstract: The initial reduction steps of nitroaromatic compounds on the surface of metallic iron have been studied theoretically using nitrobenzene (NB as a representative of nitroaromatic compounds. The quantum chemical cluster approximation within the semiempirical Neglect of Diatomic Differential Overlap for Metal Compounds method was applied to model the Fe(110 crystallographic surface, taken as a representative reactive surface for granular iron. This surface was modeled as a 39-atom two-layer metal cluster with rigid geometry. The associative and dissociative adsorption of nitrobenzene was considered. Based on our quantum chemical analysis, we suggest that the direct electron donation from the metal surface into the π* orbital of NB is a decisive factor responsible for subsequent transformation of the nitro group. Molecularly adsorbed NB interacts with metal iron exclusively through nitro moiety oxygens which occupy tri-coordinated positions on surface The charge transfer from metal to NB of approximately 2 atomic units destablizes the nitro group. As a result, the first dissociation of the N-O bond goes through a relatively low activation barrier. The adsorbed nitrosobenzene is predicted to be a stable surface species, though still quiet labile.

  4. Quantum chemical study of a derivative of 3-substituted dithiocarbamic flavanone

    Science.gov (United States)

    Gosav, Steluta; Paduraru, Nicoleta; Maftei, Dan; Birsa, Mihail Lucian; Praisler, Mirela

    2017-02-01

    The aim of this work is to characterize a quite novel 3-dithiocarbamic flavonoid by vibrational spectroscopy in conjunction with Density Functional Theory (DFT) calculations. Quantum mechanics calculations of energies, geometries and vibrational wavenumbers in the ground state were carried out by using hybrid functional B3LYP with 6-311G(d,p) as basis set. The results indicate a remarkable agreement between the calculated molecular geometries, as well as vibrational frequencies, and the corresponding experimental data. In addition, a complete assignment of all the absorption bands present in the vibrational spectrum has been performed. In order to assess its chemical potential, quantum molecular descriptors characterizing the interactions between the 3-dithiocarbamic flavonoid and its biological receptors have been computed. The frontier molecular orbitals and the HOMO-LUMO energy gap have been used in order to explain the way in which the new molecule can interact with other species and to characterize its molecular chemical stability/reactivity. The molecular electrostatic potential (MEP) map, computed in order to identify the sites of the studied flavonoid that are most likely to interact with electrophilic and nucleophilic species, is discussed.

  5. Coherent chemical kinetics as quantum walks. I. Reaction operators for radical pairs.

    Science.gov (United States)

    Chia, A; Tan, K C; Pawela, Ł; Kurzyński, P; Paterek, T; Kaszlikowski, D

    2016-03-01

    Classical chemical kinetics uses rate-equation models to describe how a reaction proceeds in time. Such models are sufficient for describing state transitions in a reaction where coherences between different states do not arise, in other words, a reaction that contains only incoherent transitions. A prominent example of a reaction containing coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction operator that determines the radical-pair state as a function of intermediate transition rates. We argue that the well-known concept of quantum walks from quantum information theory is a natural and apt framework for describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair reaction. Our reaction operator predicts the same recombination dephasing rate as the conventional Haberkorn model, which is consistent with recent experiments [K. Maeda et al., J. Chem. Phys. 139, 234309 (2013)], in contrast to previous work by Jones and Hore [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. The standard radical-pair reaction has conventionally been described by either a normalized density operator incorporating both the radical pair and reaction products or a trace-decreasing density operator that considers only the radical pair. We demonstrate a density operator that is both normalized and refers only to radical-pair states. Generalizations to include additional dephasing processes and an arbitrary number of sites are also discussed.

  6. Adsorption and quantum chemical studies on the inhibition potentials of some thiosemicarbazides for the corrosion of mild steel in acidic medium.

    Science.gov (United States)

    Ebenso, Eno E; Isabirye, David A; Eddy, Nnabuk O

    2010-06-15

    Three thiosemicarbazides, namely 2-(2-aminophenyl)-N phenylhydrazinecarbothioamide (AP4PT), N,2-diphenylhydrazinecarbothioamide (D4PT) and 2-(2-hydroxyphenyl)-N-phenyl hydrazinecarbothioamide (HP4PT), were investigated as corrosion inhibitors for mild steel in H(2)SO(4) solution using gravimetric and gasometric methods. The results revealed that they all inhibit corrosion and their % inhibition efficiencies (%IE) follow the order: AP4PT > HP4PT > D4PT. The %IE obtained from the gravimetric and gasometric experiments were in good agreement. The thermodynamic parameters obtained support a physical adsorption mechanism and the adsorption followed the Langmuir adsorption isotherm. Some quantum chemical parameters were calculated using different methods and correlated with the experimental %IE. Quantitative structure activity relationship (QSAR) approach was used on a composite index of some quantum chemical parameters to characterize the inhibition performance of the studied molecules. The results showed that the %IE were closely related to some of the quantum chemical parameters, but with varying degrees. The calculated/theoretical %IE of the molecules were found to be close to their experimental %IE. The local reactivity has been studied through the Fukui and condensed softness indices in order to predict both the reactive centers and to know the possible sites of nucleophilic and electrophilic attacks.

  7. Quantum chemical study on the mechanism of enantioselective reduction of prochiral ketones catalyzed by oxazaborolidines

    Institute of Scientific and Technical Information of China (English)

    LI; Ming

    2001-01-01

    [1]Corey, E. J., Bakshi, R. K., Shibata, S., Highly enantioselective borane reduction ketones catalyzed by chiral oxazaborolidines, J. Am. Chem. Soc., 1987, 109:5551-5553.[2]Wallbaum, S., Martens, J., Asymmetric syntheses with chiral oxazaborolidines, Tetrahedron Asymmetry, 1992, 3: 1475-1504.[3]Deloux, L., Srebnik, M., Asymmetric borane-catalyzed reactions, Chem. Rev., 1993, 93: 763-784.[4]Togni, A., Venanzi, L. M., Nitrogen donors in organometallic chemistry and in homogeneous catalysis, Angew Chem. Int. Ed. Engl., 1994, 33: 497-562.[5]Ager, D. J., Prakash, I., Schaad, D. R., 1,2-amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis, Chem. Rev., 1996, 96: 835-875.[6]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 4. On the hydride transfer in ketone complexes of borane adducts of oxazaborolidines and regeneration of catalyst, Tetrahedron Asymmetry, 1991, 2:1133-1155.[7]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 8. On the conformational freedom of the ketone of ketone-borane complexes of oxazaborolidines used as catalysts in the enantioselective reduction of ketones, Tetrahedron Asymmetry. 1992, 3: 1563-1572.[8]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 7. On the effects controlling the coordination of borane to chiral oxazaborolidines used as catalysts in the enantioselective reduction of ketones, Tetrahedron Asymmetry,1992, 3: 1441-1453.[9]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 12. On the influence of the nature of the ring system on binding in ketone-borane complexes of chiral oxazaborolidines used as catalysts in the enantioselective reduction of ketones. Tetrahedron Asymmetry, 1993, 4: 1597-1602.[10]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 19. Strain and stability-oxazadiboretanes potentially involved in the enantioselective reduction of ketones promoted

  8. An operational approach to spacetime symmetries: Lorentz transformations from quantum communication

    CERN Document Server

    Hoehn, Philipp A

    2015-01-01

    In most approaches to fundamental physics, spacetime symmetries are postulated a priori and then explicitly implemented in the theory. This includes Lorentz covariance in quantum field theory and diffeomorphism invariance in quantum gravity, which are seen as fundamental principles to which the final theory has to be adjusted. In this paper, we suggest within a much simpler setting that this kind of reasoning can actually be reversed, by taking an operational approach inspired by quantum information theory. We consider observers in distant laboratories, with local physics described by the laws of abstract quantum theory, and without presupposing a particular spacetime structure. We ask what information-theoretic effort the observers have to spend to synchronize their descriptions of local physics. If there are "enough" observables that can be measured jointly on different types of systems, we show that the observers' descriptions are related by an element of the Lorentz group O^+(3,1), together with a global ...

  9. Spin First vs. Position First instructional approaches to teaching introductory quantum mechanics

    Science.gov (United States)

    Sadaghiani, Homeyra

    2017-01-01

    As part of ongoing research in teaching and learning quantum mechanics, we are investigating student learning of basic introductory quantum concepts in two different paradigms. In one paradigm, students are introduced to the postulates of quantum mechanics by discrete bases of Spin-half (Spin First) before being introduced to Schrödinger's equation. In the second paradigm, continuous bases of position probability wave functions (Position First) are the context within which students first encounter quantum mechanical phenomena. In this paper, we compare student learning of basic introductory quantum ideas in two sections of a sophomore level modern physics course at Cal Poly Pomona that were taught using these two approaches by means of their performances on a research-based concept posttest. Based on our results, the students who were taught using Spin First outperformed their peers in Position First group with average score of 53 +/- 3% vs. 34 +/- 5% in Quantum Mechanics Concept Assessment (QMCA), suggesting that the Spin First approach might improve some aspects of student learning of quantum mechanics. NSF 1626482.

  10. COMPARATIVE ANALYSIS OF QUANTUM EFFECTS IN NANOSCALE MULTIGATE MOSFETS USING VARIATIONAL APPROACH

    Directory of Open Access Journals (Sweden)

    V. PALANICHAMY

    2015-02-01

    Full Text Available In this work, the performance of multiple-gate SOI MOSFETs is analysed using variational approach including quantum effects. An analytical model is derived to accounting the quantum effects at the silicon (Si/silicon dioxide (SiO2 interface. A general procedure is used for calculating the quantum inversion charge density. Using this inversion charge density, the drain current is obtained. Our model results are compared with the simulation results and its shows very good agreement. Our results highlighted that cylindrical surrounding gate MOSFET is a good candidate to obtain the high drain current compared with other two devices.

  11. Nonadiabatic molecular dynamics simulation: An approach based on quantum measurement picture

    CERN Document Server

    Feng, Wei; Li, Xin-Qi; Fang, Weihai; Yan, YiJing

    2013-01-01

    Mixed-quantum-classical molecular dynamics simulation implies an effective measurement on the electronic states owing to continuously tracking the atomic forces.Based on this insight, we propose a quantum trajectory mean-field approach for nonadiabatic molecular dynamics simulations. The new protocol provides a natural interface between the separate quantum and classical treatments, without invoking artificial surface hopping algorithm. Moreover, it also bridges two widely adopted nonadiabatic dynamics methods, the Ehrenfest mean-field theory and the trajectory surface-hopping method. Excellent agreement with the exact results is illustrated with representative model systems, including the challenging ones for traditional methods.

  12. A New Approach of Quantum Mechanics for Neutron Single-Slit Diffraction

    Institute of Scientific and Technical Information of China (English)

    WU Xiang-Yao; YANG Jing-Hai; LIU Xiao-Jing; WANG Li; LIU Bing; FAN Xi-Hui; GUO Yi-Qing

    2007-01-01

    Phenomena of electron, neutron, atomic and molecular diffraction have been studied in many experiments, and these experiments are explained by many theoretical works. We study neutron single-slit diffraction with a quantum mechanical approach. It is found that the obvious diffraction patterns can be obtained when the singleslit width a is in the range of 3λ~ 60λ. We also find a new quantum effect of the thickness of single-slit which can make a large impact on the diffraction pattern. The new quantum effect predicted in our work can be tested by the neutron single-slit diffraction experiment.

  13. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling.

    Science.gov (United States)

    Ahuactzin-Pérez, Miriam; Tlecuitl-Beristain, Saúl; García-Dávila, Jorge; González-Pérez, Manuel; Gutiérrez-Ruíz, María Concepción; Sánchez, Carmen

    2016-10-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (Xmax), biodegradation constant of DEHP (k), half-life (t1/2) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000mg/L). The greatest μ and the largest Xmax occurred in media supplemented with 1000mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000mg/L) within 60h of growth. The k and t1/2 were 0.024h(-1) and 28h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC-MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP.

  14. Dynamics of open quantum spin systems : An assessment of the quantum master equation approach

    NARCIS (Netherlands)

    Zhao, P.; De Raedt, H.; Miyashita, S.; Jin, F.; Michielsen, K.

    2016-01-01

    Data of the numerical solution of the time-dependent Schrodinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtainin

  15. Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach

    Science.gov (United States)

    Borrelli, Raffaele; Gelin, Maxim F.

    2016-12-01

    Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.

  16. The quantum approach to human reasoning does explain the belief-bias effect

    CERN Document Server

    Vol, E D

    2013-01-01

    Based on the ideas of quantum physics and dual-process theory of human reasoning that takes into account two primary mechanisms of reasoning : 1) deductive rational thinking and 2) intuitive heuristic judgment, we proposed the "quantum" approach to practical human logic that allows one to specify the most distinctive peculiarities in activity of two reasoning systems mentioned above and in addition to describe phenomenologically well-established experimentally belief-bias effect.

  17. D-Wave's Approach to Quantum Computing: 1000-qubits and Counting!

    CERN Document Server

    CERN. Geneva

    2017-01-01

    In this talk I will describe D-Wave's approach to quantum computing, including the system architecture of our 1000-qubit D-Wave 2X, its programming model, and performance benchmarks. Furthermore, I will describe how the native optimization and sampling capabilities of the quantum processor can be exploited to tackle problems in a variety of fields including medicine, machine learning, physics, and computational finance.

  18. Inverse Quantum Chemistry: Concepts and Strategies for Rational Compound Design

    CERN Document Server

    Weymuth, Thomas

    2014-01-01

    The rational design of molecules and materials is becoming more and more important. With the advent of powerful computer systems and sophisticated algorithms, quantum chemistry plays an important role in rational design. While traditional quantum chemical approaches predict the properties of a predefined molecular structure, the goal of inverse quantum chemistry is to find a structure featuring one or more desired properties. Herein, we review inverse quantum chemical approaches proposed so far and discuss their advantages as well as their weaknesses.

  19. Rapidity-dependent chemical potentials in a statistical approach

    Science.gov (United States)

    Broniowski, Wojciech; Biedroń, Bartłomiej

    2008-04-01

    We present a single-freeze-out model with thermal and geometric parameters dependent on the position within the fireball and use it to describe the rapidity distribution and transverse-momentum spectra of pions, kaons, protons and antiprotons measured at RHIC at \\sqrt{s_NN}=200\\,\\, GeV by BRAHMS. THERMINATOR is used to perform the necessary simulation, which includes all resonance decays. The result of the fit to the data is the expected growth of the baryon and strange chemical potentials with the spatial rapidity αpar. The value of the baryon chemical potential at αpar ~ 3 is about 200 MeV, i.e. it lies in the range of the highest SPS energies. The chosen geometry of the fireball has a decreasing transverse size as the magnitude of αpar is increased, which also corresponds to decreasing transverse flow. The strange chemical potential obtained from the fit to the K+/K- ratio is such that the local strangeness density in the fireball is compatible with zero. The resulting rapidity distribution of net protons are described qualitatively within the statistical approach. As a result of our study, the knowledge of the 'topography' of the fireball is acquired, allowing for other analyses and predictions. Research supported by the Polish Ministry of Education and Science, grants N202 034 32/0918 and 2 P03B 02828.

  20. AMAZON RAINFOREST COSMETICS: CHEMICAL APPROACH FOR QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    Mariko Funasaki

    2016-02-01

    Full Text Available The market for natural cosmetics featuring ingredients derived from Amazon natural resources is growing worldwide. However, there is neither enough scientific basis nor quality control of these ingredients. This paper is an account of the chemical constituents and their biological activities of fourteen Amazonian species used in cosmetic industry, including açaí (Euterpe oleracea, andiroba (Carapa guianensis, bacuri (Platonia insignis, Brazil nut (Bertholletia excelsa, buriti (Mauritia vinifera or M. flexuosa, cumaru (Dipteryx odorata, cupuaçu (Theobroma grandiflorum, guarana (Paullinia cupana, mulateiro (Calycophyllum spruceanum, murumuru (Astrocaryum murumuru, patawa (Oenocarpus bataua or Jessenia bataua, pracaxi (Pentaclethra macroloba, rosewood (Aniba rosaeodora, and ucuuba (Virola sebifera. Based on the reviewed articles, we selected chemical markers for the quality control purpose and evaluated analytical methods. Even though chromatographic and spectroscopic methods are major analytical techniques in the studies of these species, molecular approaches will also be important as used in food and medicine traceability. Only a little phytochemical study is available about most of the Amazonian species and some species such as açaí and andiroba have many reports on chemical constituents, but studies on biological activities of isolated compounds and sampling with geographical variation are limited.

  1. Marine derived polysaccharides for biomedical applications: chemical modification approaches.

    Science.gov (United States)

    d'Ayala, Giovanna Gomez; Malinconico, Mario; Laurienzo, Paola

    2008-09-03

    Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp) and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol) copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  2. Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches

    Directory of Open Access Journals (Sweden)

    Paola Laurienzo

    2008-09-01

    Full Text Available Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  3. Improved performance of nanowire-quantum-dot-polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials.

    Science.gov (United States)

    Nadarajah, A; Smith, T; Könenkamp, R

    2012-12-07

    We report a nanowire-quantum-dot-polymer solar cell consisting of a chemically treated CdSe quantum dot film deposited on n-type ZnO nanowires. The electron and hole collecting contacts are a fluorine-doped tin-oxide/zinc oxide layer and a P3HT/Au layer. This device architecture allows for enhanced light absorption and an efficient collection of photogenerated carriers. A detailed analysis of the chemical treatment of the quantum dots, their deposition, and the necessary annealing processes are discussed. We find that the surface treatment of CdSe quantum dots with pyridine, and the use of 1,2-ethanedithiol (EDT) ligands, critically improves the device performance. Annealing at 380 °C for 2 h is found to cause a structural conversion of the CdSe from its initial isolated quantum dot arrangement into a polycrystalline film with excellent surface conformality, thereby resulting in a further enhancement of device performance. Moreover, long-term annealing of 24 h leads to additional increases in device efficiency. Our best conversion efficiency reached for this type of cell is 3.4% under 85 mW cm(-2) illumination.

  4. Photon reflection by a quantum mirror: a wave function approach

    CERN Document Server

    Corrêa, Raul

    2016-01-01

    We derive from first principles the momentum exchange between a photon and a quantum mirror upon reflection, by considering the boundary conditions imposed by the mirror surface on the photon wave equation. We show that the system generally ends up in an entangled state, unless the mirror position uncertainty is much smaller than the photon wavelength, when the mirror behaves classically. Our treatment leads us directly to the conclusion that the photon momentum has the known value hk/2{\\pi}. This implies that when the mirror is immersed in a dielectric medium the photon radiation pressure is proportional to the medium refractive index n. Our work thus contributes to the longstanding Abraham-Minkowski debate about the momentum of light in a medium. We interpret the result by associating the Minkowski momentum (which is proportional to n) with the canonical momentum of light, which appears naturally in quantum formulations.

  5. Approaching the standard quantum limit of mechanical torque sensing

    Science.gov (United States)

    Kim, P. H.; Hauer, B. D.; Doolin, C.; Souris, F.; Davis, J. P.

    2016-10-01

    Reducing the moment of inertia improves the sensitivity of a mechanically based torque sensor, the parallel of reducing the mass of a force sensor, yet the correspondingly small displacements can be difficult to measure. To resolve this, we incorporate cavity optomechanics, which involves co-localizing an optical and mechanical resonance. With the resulting enhanced readout, cavity-optomechanical torque sensors are now limited only by thermal noise. Further progress requires thermalizing such sensors to low temperatures, where sensitivity limitations are instead imposed by quantum noise. Here, by cooling a cavity-optomechanical torque sensor to 25 mK, we demonstrate a torque sensitivity of 2.9 yNm/. At just over a factor of ten above its quantum-limited sensitivity, such cryogenic optomechanical torque sensors will enable both static and dynamic measurements of integrated samples at the level of a few hundred spins.

  6. A measure theoretical approach to quantum stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Waldenfels, Wilhelm von

    2014-04-01

    Authored by a leading researcher in the field. Self-contained presentation of the subject matter. Examines a number of worked examples in detail. This monograph takes as starting point that abstract quantum stochastic processes can be understood as a quantum field theory in one space and in one time coordinate. As a result it is appropriate to represent operators as power series of creation and annihilation operators in normal-ordered form, which can be achieved using classical measure theory. Considering in detail four basic examples (e.g. a two-level atom coupled to a heat bath of oscillators), in each case the Hamiltonian of the associated one-parameter strongly continuous group is determined and the spectral decomposition is explicitly calculated in the form of generalized eigen-vectors. Advanced topics include the theory of the Hudson-Parthasarathy equation and the amplified oscillator problem. To that end, a chapter on white noise calculus has also been included.

  7. Group Theoretical Approach for Controlled Quantum Mechanical Systems

    Science.gov (United States)

    2007-11-06

    evolution equation with Hamiltonians which may possess discrete , continuous, and mixed spectrum. For such a quantum system, the Hamiltonian operator...study of classical linear and nonlinear systems, which proves to be very useful in understanding the design problems such as disturbance decoupling...developed by Kunita can then be implemented to establish controllability conditions for the original time-dependent Schrodinger control problem. The end

  8. An operational approach to spacetime symmetries: Lorentz transformations from quantum communication

    Science.gov (United States)

    Höhn, Philipp A.; Müller, Markus P.

    2016-06-01

    In most approaches to fundamental physics, spacetime symmetries are postulated a priori and then explicitly implemented in the theory. This includes Lorentz covariance in quantum field theory and diffeomorphism invariance in quantum gravity, which are seen as fundamental principles to which the final theory has to be adjusted. In this paper, we suggest, within a much simpler setting, that this kind of reasoning can actually be reversed, by taking an operational approach inspired by quantum information theory. We consider observers in distinct laboratories, with local physics described by the laws of abstract quantum theory, and without presupposing a particular spacetime structure. We ask what information-theoretic effort the observers have to spend to synchronize their descriptions of local physics. If there are ‘enough’ observables that can be measured universally on several different quantum systems, we show that the observers’ descriptions are related by an element of the orthochronous Lorentz group {{{O}}}+(3,1), together with a global scaling factor. Not only does this operational approach predict the Lorentz transformations, but it also accurately describes the behavior of relativistic Stern-Gerlach devices in the WKB approximation, and it correctly predicts that quantum systems carry Lorentz group representations of different spin. This result thus hints at a novel information-theoretic perspective on spacetime.

  9. New approach to energy transfer and quantum correlations in a molecular dimer

    Science.gov (United States)

    Saberi, M.; Bagheri Harouni, M.; Roknizadeh, R.; Latifi, H.

    2016-09-01

    The dynamics of single-excitation energy transfer in a molecular dimer interacting with a phonon bath is studied. Although there are exact numerical solutions for this system, we propose an approach that provides exact analytical results with few electronic degrees of freedom. This approach is based on considering the phonon subsystem in the coherent state representation. Applying this approach, the long-lived coherence time is evaluated in the weak and strong coupling regimes. Moreover, by calculating the quantum entanglement and global quantum discord, the time evolution of quantum correlations is examined. The effects of two parameters, electronic coupling strength and bath temperature, on the energy transfer and quantum correlations are studied. It is shown, in agreement with previous results, that the long-lived coherence time in the weak coupling regime is longer than in the strong coupling regime. Also, the increasing bath temperature gives rise to faster delocalization of energy transfer. Furthermore, it is illustrated that the bath temperature has a significant effect on the quantum entanglement with respect to the global quantum discord.

  10. Modified stochastic variational approach to non-Hermitian quantum systems

    Science.gov (United States)

    Kraft, Daniel; Plessas, Willibald

    2016-08-01

    The stochastic variational method has proven to be a very efficient and accurate tool to calculate especially bound states of quantum-mechanical few-body systems. It relies on the Rayleigh-Ritz variational principle for minimizing real eigenenergies of Hermitian Hamiltonians. From molecular to atomic, nuclear, and particle physics there is actually a great demand of describing also resonant states to a high degree of reliance. This is especially true with regard to hadron resonances, which have to be treated in a relativistic framework. So far standard methods of dealing with quantum chromodynamics have not yet succeeded in describing hadron resonances in a realistic manner. Resonant states can be handled by non-Hermitian quantum Hamiltonians. These states correspond to poles in the lower half of the unphysical sheet of the complex energy plane and are therefore intimately connected with complex eigenvalues. Consequently the Rayleigh-Ritz variational principle cannot be employed in the usual manner. We have studied alternative selection principles for the choice of test functions to treat resonances along the stochastic variational method. We have found that a stationarity principle for the complex energy eigenvalues provides a viable method for selecting test functions for resonant states in a constructive manner. We discuss several variants thereof and exemplify their practical efficiencies.

  11. A Practical Top-down Approach to Quantum Circuit Synthesis

    CERN Document Server

    Shende, V V; Markov, I L

    2004-01-01

    Operators acting on a collection of two-level quantum-mechanical systems can be represented by quantum circuits. In this work we develop a decomposition of such unitary operators which reveals their top-down structure and can be implemented numerically with well-known primitives. It leads to simultaneous improvements by a factor of two over (i) the best known n-qubit circuit synthesis algorithms for large n, and (ii) the best known three-qubit circuits. In the worst case, our algorithm NQ produces circuits that differ from known lower bounds by approximately a factor of two. Thus, the required number of quantum controlled-not's (i.e. two-qubit interactions) is only half of the number of real degrees of freedom (4^n-1) of a generic unitary operator. This is desirable since CNOTs are typically slower and more error-prone than one-qubit rotations, and they may in addition may require physically coupling distant two-level systems.

  12. A Surface Chemistry Approach to Enhancing Colloidal Quantum Dot Solids for Photovoltaics

    Science.gov (United States)

    Carey, Graham Hamilton

    Colloidal quantum dot (CQD) photovoltaic devices have improved rapidly over the past decade of research. By taking advantage of the quantum confinement effect, solar cells constructed using films of infrared-bandgap nanoparticles are able to capture previously untapped ranges of the solar energy spectrum. Additionally, films are fabricated using simple, cheap, reproducible solution processing techniques, enabling the creation of low-cost, flexible photovoltaic devices. A key factor limiting the creation of high efficiency CQD solar cells is the short charge carrier diffusion length in films. Driven by a combination of limited carrier mobility, poor nanoparticle surface passivation, and the presence of unexamined electrically active impurities throughout the film, the poor diffusion length limits the active layer thickness in CQD solar cells, leading to lower-than-desired light absorption, and curtailing the photocurrent generated by such devices. This thesis seeks to address poor diffusion length by addressing each of the limiting factors in turn. Electrical transport in quantum dot solids is examined in the context of improved quantum dot packing; methods are developed to improve packing by using actively densifying components, or by dramatically lowering the volume change required between quantum dots in solution and in solid state. Quantum dot surface passivation is improved by introducing a crucial secondary, small halide ligand source, and by surveying the impact of the processing environment on the final quality of the quantum dot surface. A heretofore unidentified impurity present in quantum dot solids is identified, characterized, and chemically eliminated. Finally, lessons learned through these experiments are combined into a single, novel materials system, leading to quantum dot devices with a significantly improved diffusion length (enhanced from 70 to 230 nm). This enabled thick, high current density (30 mA cm -2, compared to typical values in the 20

  13. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    Science.gov (United States)

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  14. New insights into the tropospheric oxidation of isoprene: combining field measurements, laboratory studies, chemical modelling and quantum theory.

    Science.gov (United States)

    Whalley, Lisa; Stone, Daniel; Heard, Dwayne

    2014-01-01

    In this chapter we discuss some of the recent work directed at further understanding the chemistry of our atmosphere in regions of low NO x , such as forests, where there are considerable emissions of biogenic volatile organic compounds, for example reactive hydrocarbons such as isoprene. Recent field measurements have revealed some surprising results, for example that OH concentrations are measured to be considerably higher than can be understood using current chemical mechanisms. It has also not proven possible to reconcile field measurements of other species, such as oxygenated VOCs, or emission fluxes of isoprene, using current mechanisms. Several complementary approaches have been brought to bear on formulating a solution to this problem, namely field studies using state-of-the-art instrumentation, chamber studies to isolate sub-sections of the chemistry, laboratory studies to measure rate coefficients, product branching ratios and photochemical yields, the development of ever more detailed chemical mechanisms, and high quality ab initio quantum theory to calculate the energy landscape for relevant reactions and to enable the rates of formation of products and intermediates for previously unknown and unstudied reactions to be predicted. The last few years have seen significant activity in this area, with several contrasting postulates put forward to explain the experimental findings, and here we attempt to synthesise the evidence and ideas.

  15. Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Cristina I.C.; Frigerio, Christian [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal); Santos, Joao L.M., E-mail: joaolms@ff.up.pt [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal); Lima, Jose L.F.C. [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal)

    2011-08-12

    Highlights: {yields} A novel flow method for the determination of chemical oxygen demand is proposed. {yields} CdTe nanocrystals are irradiated with UV light to generate strong oxidizing species. {yields} Reactive species promote a fast catalytic degradation of organic matter. {yields} Luminol is used as a chemiluminescence probe for indirect COD assessment. {yields} A single interface flow system was implemented to automate the assays. - Abstract: A novel flow method for the determination of chemical oxygen demand (COD) is proposed in this work. It relies on the combination of a fully automated single interface flow system, an on-line UV photocatalytic unit and quantum dot (QD) nanotechnology. The developed approach takes advantage of CdTe nanocrystals capacity to generate strong oxidizing species upon irradiation with UV light, which fostered a fast catalytic degradation of the organic compounds. Luminol was used as a chemiluminescence (CL) probe for indirect COD assessment, since it is easily oxidized by the QD generated species yielding a strong CL emission that is quenched in the presence of the organic matter. The proposed methodology allowed the determination of COD concentrations between 1 and 35 mg L{sup -1}, with good precision (R.S.D. < 1.1%, n = 3) and a sampling frequency of about 33 h{sup -1}. The procedure was applied to the determination of COD in wastewater certified reference materials and the obtained results showed an excellent agreement with the certified values.

  16. Quantum chemical study of the inhibition of the corrosion of mild steel in H2SO4 by some antibiotics.

    Science.gov (United States)

    Eddy, Nnabuk O; Ibok, Udo J; Ebenso, Eno E; El Nemr, Ahmed; El Ashry, El Sayed H

    2009-09-01

    The inhibition efficiency of some antibiotics against mild steel corrosion was studied using weight loss and quantum chemical techniques. Values of inhibition efficiency obtained from weight loss measurements correlated strongly with theoretical values obtained through semi empirical calculations. High correlation coefficients were also obtained between inhibition efficiency of the antibiotics and some quantum chemical parameters, including frontier orbital (E (HOMO) and E (LUMO)), dipole moment, log P, TNC and LSER parameters (critical volume and dipolar-polarisability factor), which indicated that these parameters affect the inhibition efficiency of the compounds. It was also found that quantitative structure activity relation can be used to adequately predict the inhibition effectiveness of these compounds.

  17. Vibrational and scaled quantum chemical study of O,O-dimethyl S-methylcarbamoylmethyl phosphorodithioate, dimethoate

    Science.gov (United States)

    Fleming, Guillermo Diaz; Celis, Freddy; Aracena, Andrés; Campos-Vallette, Marcelo; Aliaga, Alvaro E.; Koch, Rainer

    2012-04-01

    Infrared and Raman spectra of O,O-dimethyl S-methylcarbamoylmethylphosphorodithioate, dimethoate, have been recorded. Density functional theory, DFT, with the B3LYP functional was used for the optimization of the ground state geometry and simulation of the infrared and Raman spectra of this molecule. Calculated geometrical parameters fit very well with the experimental ones. Based on the recorded data, the DFT results and a normal coordinate analysis based on a scaled quantum mechanical (SQM) force field approach, a complete vibrational assignment was made for the first time.

  18. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  19. Quantum Computing for Quantum Chemistry

    Science.gov (United States)

    2010-09-01

    This three-year project consisted on the development and application of quantum computer algorithms for chemical applications. In particular, we developed algorithms for chemical reaction dynamics, electronic structure and protein folding. The first quantum computing for

  20. Dynamics of open quantum spin systems: An assessment of the quantum master equation approach.

    Science.gov (United States)

    Zhao, P; De Raedt, H; Miyashita, S; Jin, F; Michielsen, K

    2016-08-01

    Data of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-1/2 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of which agree very well with the solution of the time-dependent Schrödinger equation.

  1. A Deterministic Projector Configuration Interaction Approach for the Ground State of Quantum Many-Body Systems.

    Science.gov (United States)

    Zhang, Tianyuan; Evangelista, Francesco A

    2016-09-13

    In this work we propose a novel approach to solve the Schrödinger equation which combines projection onto the ground state with a path-filtering truncation scheme. The resulting projector configuration interaction (PCI) approach realizes a deterministic version of the full configuration interaction quantum Monte Carlo (FCIQMC) method [Booth, G. H.; Thom, A. J. W.; Alavi, A. J. Chem. Phys. 2009, 131, 054106]. To improve upon the linearized imaginary-time propagator, we develop an optimal projector scheme based on an exponential Chebyshev expansion in the limit of an infinite imaginary time step. After writing the exact projector as a path integral in determinant space, we introduce a path filtering procedure that truncates the size of the determinantal basis and approximates the Hamiltonian. The path filtering procedure is controlled by one real threshold that determines the accuracy of the PCI energy and is not biased toward any determinant. Therefore, the PCI approach can equally well describe static and dynamic electron correlation effects. This point is illustrated in benchmark computations on N2 at both equilibrium and stretched geometries. In both cases, the PCI achieves chemical accuracy with wave functions that contain less than 0.5% determinants of full CI space. We also report computations on the ground state of C2 with up to quaduple-ζ basis sets and wave functions as large as 200 million determinants, which allow a direct comparison of the PCI, FCIQMC, and density matrix renormalization group (DMRG) methods. The size of the PCI wave function grows modestly with the number of unoccupied orbitals, and its accuracy may be tuned to match that of FCIQMC and DMRG.

  2. Contrasting grading approaches in introductory physics and quantum mechanics: The case of graduate teaching assistants

    Science.gov (United States)

    Marshman, Emily; Sayer, Ryan; Henderson, Charles; Singh, Chandralekha

    2017-06-01

    At large research universities, physics graduate teaching assistants (TAs) are often responsible for grading in courses at all levels. However, few studies have focused on TAs' grading practices in introductory and advanced physics courses. This study was designed to investigate whether physics graduate TAs grade students in introductory physics and quantum mechanics using different criteria and if so, why they may be inclined to do so. To investigate possible discrepancies in TAs' grading approaches in courses at different levels, we implemented a sequence of instructional activities in a TA professional development course that asked TAs to grade student solutions of introductory physics and upper-level quantum mechanics problems and explain why, if at all, their grading approaches were different or similar in the two contexts. We analyzed the differences in TAs' grading approaches in the two contexts and discuss the reasons they provided for the differences in their grading approaches in introductory physics and quantum mechanics in individual interviews, class discussions, and written responses. We find that a majority of the TAs graded solutions to quantum mechanics problems differently than solutions to introductory physics problems. In quantum mechanics, the TAs focused more on physics concepts and reasoning and penalized students for not showing evidence of understanding. The findings of the study have implications for TA professional development programs, e.g., the importance of helping TAs think about the difficulty of a problem from an introductory students' perspective and reflecting on the benefits of formative assessment.

  3. Quantum computation with prethreshold superconducting qubits: Single-excitation subspace approach

    CERN Document Server

    Galiautdinov, Andrei

    2011-01-01

    We describe an alternative approach to quantum computation that is ideally suited for today's sub-threshold-fidelity qubits, and which can be applied to a family of hardware models that includes superconducting qubits with tunable coupling. In this approach, the computation on an n-qubit processor is carried out in the n-dimensional single-excitation subspace (SES) of the full 2^n-dimensional Hilbert space. Because any real Hamiltonian can be directly generated in the SES [E. J. Pritchett et al., arXiv:1008.0701], high-dimensional unitary operations can be carried out in a single step, bypassing the need to decompose into single- and two-qubit gates. Although technically nonscalable and unsuitable for applications (including Shor's) requiring enormous Hilbert spaces, this approach would make practical a first-generation quantum computer capable of achieving significant quantum speedup.

  4. Functional renormalization group approach to the singlet-triplet transition in quantum dots.

    Science.gov (United States)

    Magnusson, E B; Hasselmann, N; Shelykh, I A

    2012-09-12

    We present a functional renormalization group approach to the zero bias transport properties of a quantum dot with two different orbitals and in the presence of Hund's coupling. Tuning the energy separation of the orbital states, the quantum dot can be driven through a singlet-triplet transition. Our approach, based on the approach by Karrasch et al (2006 Phys. Rev. B 73 235337), which we apply to spin-dependent interactions, recovers the key characteristics of the quantum dot transport properties with very little numerical effort. We present results on the conductance in the vicinity of the transition and compare our results both with previous numerical renormalization group results and with predictions of the perturbative renormalization group.

  5. A Defense of the Paraconsistent Approach to Quantum Superpositions (Answer to Arenhart and Krause)

    CERN Document Server

    de Ronde, Christian

    2014-01-01

    In (da Costa and de Ronde, 2014), Newton da Costa together with the author of this paper argued in favor of the possibility to consider quantum superpositions in terms of a paraconsistent approach. We claimed that, even though most interpretations of quantum mechanics attempt to escape contradictions, there are many hints that indicate it could be worth while to engage in a research of this kind. Recently, Arenhart and Krause (2014) have raised several arguments against this approach. In the present paper we attempt to answer the main questions presented by Arenhart and Krause. We will argue, firstly, that the obstacles presented by them are based on a specific metaphysical stance, which we will characterize in terms of what we call the Orthodox Line of Research (OLR). Secondly, that this is not necessarily the only possible line, and that a different one, namely, a Constructive Metaphysical Line of Research (CMLR) provides a different perspective in which the Paraconsistent Approach to Quantum Superpositions...

  6. A quantum annealing approach for fault detection and diagnosis of graph-based systems

    Science.gov (United States)

    Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.

    2015-02-01

    Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.

  7. Quantum Trajectory-Electronic Structure Approach for Exploring Nuclear Effects in the Dynamics of Nanomaterials.

    Science.gov (United States)

    Garashchuk, Sophya; Jakowski, Jacek; Wang, Lei; Sumpter, Bobby G

    2013-12-10

    A massively parallel, direct quantum molecular dynamics method is described. The method combines a quantum trajectory (QT) representation of the nuclear wave function discretized into an ensemble of trajectories with an electronic structure (ES) description of electrons, namely using the density functional tight binding (DFTB) theory. Quantum nuclear effects are included into the dynamics of the nuclei via quantum corrections to the classical forces. To reduce computational cost and increase numerical accuracy, the quantum corrections to dynamics resulting from localization of the nuclear wave function are computed approximately and included into selected degrees of freedom representing light particles where the quantum effects are expected to be the most pronounced. A massively parallel implementation, based on the message passing interface allows for efficient simulations of ensembles of thousands of trajectories at once. The QTES-DFTB dynamics approach is employed to study the role of quantum nuclear effects on the interaction of hydrogen with a model graphene sheet, revealing that neglect of nuclear effects can lead to an overestimation of adsorption.

  8. Wigner distributions for finite dimensional quantum systems: An algebraic approach

    Indian Academy of Sciences (India)

    S Chaturvedi; E Ercolessi; G Marmo; G Morandi; N Mukunbda; R Simon

    2005-12-01

    We discuss questions pertaining to the definition of `momentum', `momentum space', `phase space' and `Wigner distributions'; for finite dimensional quantum systems. For such systems, where traditional concepts of `momenta' established for continuum situations offer little help, we propose a physically reasonable and mathematically tangible definition and use it for the purpose of setting up Wigner distributions in a purely algebraic manner. It is found that the point of view adopted here is limited to odd dimensional systems only. The mathematical reasons which force this situation are examined in detail.

  9. Quantum time delay in chaotic scattering: a semiclassical approach

    Energy Technology Data Exchange (ETDEWEB)

    Vallejos, R.O.; Ozorio de Almeida, A.M. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil); Lewenkopf, C.H. [Instituto de Fisica, UERJ, Rio de Janeiro (Brazil)

    1998-05-29

    We study the universal fluctuations of the Wigner-Smith time delay for systems which exhibit chaotic dynamics in their classical limit. We present a new derivation of the semiclassical relation of the quantum time delay to properties of the set of trapped periodic orbits in the repeller. As an application, we calculate the energy correlator in the crossover regime between preserved and fully broken time reversal symmetry. We discuss the range of validity of our results and compare them with the predictions of random matrix theories. (author)

  10. Loss tolerant one-way quantum computation -- a horticultural approach

    CERN Document Server

    Varnava, M; Rudolph, T; Varnava, Michael; Browne, Daniel E.; Rudolph, Terry

    2005-01-01

    We introduce a scheme for fault tolerantly dealing with losses in cluster state computation that can tolerate up to 50% qubit loss. This is achieved passively - no coherent measurements or coherent correction is required. We then use this procedure within a specific linear optical quantum computation proposal to show that: (i) given perfect sources, detector inefficiencies of up to 50% can be tolerated and (ii) given perfect detectors, the purity of the photon source (overlap of the photonic wavefunction with the desired single mode) need only be greater than 66.6% for efficient computation to be possible.

  11. Standoff detection of turbulent chemical mixture plumes using a swept external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C. [Pacific Northwest National Laboratory, Richland, Washington; Brumfield, Brian E. [Pacific Northwest National Laboratory, Richland, Washington

    2017-08-21

    We demonstrate standoff detection of turbulent mixed-chemical plumes using a broadly-tunable external cavity quantum cascade laser (ECQCL). The ECQCL was directed through plumes of mixed methanol/ethanol vapor to a partially-reflective surface located 10 m away. The reflected power was measured as the ECQCL was swept over its tuning range of 930-1065 cm-1 (9.4-10.8 µm) at rates up to 200 Hz. Analysis of the transmission spectra though the plume was performed to determine chemical concentrations with time resolution of 0.005 s. Comparison of multiple spectral sweep rates of 2 Hz, 20 Hz, and 200 Hz shows that higher sweep rates reduce effects of atmospheric and source turbulence, resulting in lower detection noise and more accurate measurement of the rapidly-changing chemical concentrations. Detection sensitivities of 0.13 ppm*m for MeOH and 1.2 ppm*m for EtOH are demonstrated for a 200 Hz spectral sweep rate, normalized to 1 s detection time.

  12. Structure activity studies of an analgesic drug tapentadol hydrochloride by spectroscopic and quantum chemical methods

    Science.gov (United States)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-11-01

    Tapentadol is a novel opioid pain reliever drug with a dual mechanism of action, having potency between morphine and tramadol. Quantum chemical calculations have been carried out for tapentadol hydrochloride (TAP.Cl) to determine the properties. The geometry is optimised and the structural properties of the compound were determined from the optimised geometry by B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVDZ basis sets. FT-IR and FT-Raman spectra are recorded in the solid phase in the region of 4000-400 and 4000-100 cm-1, respectively. Frontier molecular orbital energies, LUMO-HOMO energy gap, ionisation potential, electron affinity, electronegativity, hardness and chemical potential are also calculated. The stability of the molecule arising from hyperconjugative interactions and charge delocalisation has been analysed using NBO analysis. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule are analysed.

  13. Quantum propagation of electronic excitations in macromolecules: A computationally efficient multiscale approach

    Science.gov (United States)

    Schneider, E.; a Beccara, S.; Mascherpa, F.; Faccioli, P.

    2016-07-01

    We introduce a theoretical approach to study the quantum-dissipative dynamics of electronic excitations in macromolecules, which enables to perform calculations in large systems and cover long-time intervals. All the parameters of the underlying microscopic Hamiltonian are obtained from ab initio electronic structure calculations, ensuring chemical detail. In the short-time regime, the theory is solvable using a diagrammatic perturbation theory, enabling analytic insight. To compute the time evolution of the density matrix at intermediate times, typically ≲ps , we develop a Monte Carlo algorithm free from any sign or phase problem, hence computationally efficient. Finally, the dynamics in the long-time and large-distance limit can be studied combining the microscopic calculations with renormalization group techniques to define a rigorous low-resolution effective theory. We benchmark our Monte Carlo algorithm against the results obtained in perturbation theory and using a semiclassical nonperturbative scheme. Then, we apply it to compute the intrachain charge mobility in a realistic conjugated polymer.

  14. Quantum harmonic Brownian motion in a general environment: A modified phase-space approach

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, L. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1993-06-23

    After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented.

  15. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.

    Science.gov (United States)

    Payton, John L; Morton, Seth M; Moore, Justin E; Jensen, Lasse

    2014-01-21

    Surface-enhanced Raman scattering (SERS) is a technique that has broad implications for biological and chemical sensing applications by providing the ability to simultaneously detect and identify a single molecule. The Raman scattering of molecules adsorbed on metal nanoparticles can be enhanced by many orders of magnitude. These enhancements stem from a twofold mechanism: an electromagnetic mechanism (EM), which is due to the enhanced local field near the metal surface, and a chemical mechanism (CM), which is due to the adsorbate specific interactions between the metal surface and the molecules. The local field near the metal surface can be significantly enhanced due to the plasmon excitation, and therefore chemists generally accept that the EM provides the majority of the enhancements. While classical electrodynamics simulations can accurately simulate the local electric field around metal nanoparticles, they offer few insights into the spectral changes that occur in SERS. First-principles simulations can directly predict the Raman spectrum but are limited to small metal clusters and therefore are often used for understanding the CM. Thus, there is a need for developing new methods that bridge the electrodynamics simulations of the metal nanoparticle and the first-principles simulations of the molecule to facilitate direct simulations of SERS spectra. In this Account, we discuss our recent work on developing a hybrid atomistic electrodynamics-quantum mechanical approach to simulate SERS. This hybrid method is called the discrete interaction model/quantum mechanics (DIM/QM) method and consists of an atomistic electrodynamics model of the metal nanoparticle and a time-dependent density functional theory (TDDFT) description of the molecule. In contrast to most previous work, the DIM/QM method enables us to retain a detailed atomistic structure of the nanoparticle and provides a natural bridge between the electronic structure methods and the macroscopic

  16. A quantum chemical study from a molecular perspective: ionization and electron attachment energies for species often used to fabricate single-molecule junctions

    CERN Document Server

    Baldea, Ioan

    2015-01-01

    The accurate determination of the lowest electron attachment ($EA$) and ionization ($IP$) energies for molecules embedded in molecular junctions is important for correctly estimating, \\emph{e.g.}, the magnitude of the currents ($I$) or the biases ($V$) where an $I-V$-curve exhibits a significant non-Ohmic behavior. Benchmark calculations for the lowest electron attachment and ionization energies of several typical molecules utilized to fabricate single-molecule junctions characterized by n-type conduction (4,4'-bipyridine, 1,4-dicyanobenzene, and 4,4'-dicyano-1,1'-biphenyl) and p-type conduction (benzenedithiol, biphenyldithiol, hexanemonothiol, and hexanedithiol] based on the EOM-CCSD (equation-of-motion coupled-cluster singles and doubles) state-of-the-art method of quantum chemistry are presented. They indicate significant differences from the results obtained within current approaches to molecular transport. The present study emphasizes that, in addition to a reliable quantum chemical method, basis sets m...

  17. Unified approach to topological quantum computation with anyons: From qubit encoding to Toffoli gate

    Science.gov (United States)

    Xu, Haitan; Taylor, J. M.

    2011-07-01

    Topological quantum computation may provide a robust approach for encoding and manipulating information utilizing the topological properties of anyonic quasiparticle excitations. We develop an efficient means to map between dense and sparse representations of quantum information (qubits) and a simple construction of multiqubit gates, for all anyon models from Chern-Simons-Witten SU(2)k theory that support universal quantum computation by braiding (k⩾3,k≠4). In the process, we show how the constructions of topological quantum memory and gates for k=2,4 connect naturally to those for k⩾3,k≠4, unifying these concepts in a simple framework. Furthermore, we illustrate potential extensions of these ideas to other anyon models outside of Chern-Simons-Witten field theory.

  18. Experimental and Quantum-Chemical Study of Electronically Excited States of Protolytic Isovanillin Species

    Science.gov (United States)

    Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Yu.

    2014-05-01

    Methods of electronic spectroscopy and quantum chemistry are used to compare protolytic vanillin and isovanillin species. Three protolytic species: anion, cation, and neutral are distinguished in the ground state of the examined molecules. Vanillin and isovanillin in the ground state in water possess identical spectral characteristics: line positions and intensities in the absorption spectra coincide. Minima of the electrostatic potential demonstrate that the deepest isomer minimum is observed on the carbonyl oxygen atom. However, investigations of the fluorescence spectra show that the radiative properties of isomers differ. An analysis of results of quantum-chemical calculations demonstrate that the long-wavelength ππ* transition in the vanillin absorption spectra is formed due to electron charge transfer from the phenol part of the molecule to oxygen atoms of the methoxy and carbonyl groups, and in the isovanillin absorption spectra, it is formed only on the oxygen atom of the methoxy group. The presence of hydroxyl and carbonyl groups in the structure of the examined molecules leads to the fact that isovanillin in the ground S0 state, the same as vanillin, possesses acidic properties, whereas in the excited S1 state, they possess basic properties. A comparison of the рKа values of aqueous solutions demonstrates that vanillin possesses stronger acidic and basic properties in comparison with isovanillin.

  19. Antioxidative effect of schisanhenol on human low density lipoprotein and its quantum chemical calculation

    Institute of Scientific and Technical Information of China (English)

    Ling-hong YU; Geng-tao LIU; You-min SUN; Hong-yu ZHANG

    2004-01-01

    AIM: To investigate the effect of schisanhenol (Sal) on copper ion-induced oxidative modulation of human low density lipoprotein (LDL). METHODS: The antioxidative activity of eight schisandrins (DCL) on microsome lipid peroxidation induced by Vit C/NADPH system was first observed, and then, the effect of Sal on Cu2+-induced human LDL oxidation was studied. The generation of malondialdehyde (MDA), lipofuscin, reactive oxygen species (ROS), consumption of α-tocopherol as well as electrophoretic mobility of LDL were determined as criteria of LDL oxidation. Finally, the quantum chemical method was used to calculate the theoretical parameters of eight DCL for elucidating the difference of their antioxidant ability. RESULTS: Sal was shown to be the most active one among eight schizandrins in inhibiting microsome lipid oxidation induced by Vit C/NADPH. Sal 100, 50, and 10 μrnol/L inhibited production of MDA, lipofuscin and ROS as well as the consumption of α-tocopherol in Cu2+-induced oxidation of human LDL in a dose-dependent manner. Sal also reduced electrophoretic mobility of the oxidized human LDL. Further study of quantum chemistry found that Sal was the strongest one among eight DCL to scavenge O-2, R·, RO·, and ROO· radicals. CONCLUSION: Sal has antioxidative effect on human LDL oxidation.The mechanism of Sal against LDL oxidation may be through scavenging free radicals.

  20. Bridging organometallics and quantum chemical topology: Understanding electronic relocalisation during palladium-catalyzed reductive elimination.

    Science.gov (United States)

    de Courcy, Benoit; Derat, Etienne; Piquemal, Jean-Philip

    2015-06-05

    This article proposes to bridge two fields, namely organometallics and quantum chemical topology. To do so, Palladium-catalyzed reductive elimination is studied. Such reaction is a classical elementary step in organometallic chemistry, where the directionality of electrons delocalization is not well understood. New computational evidences highlighting the accepted mechanism are proposed following a strategy coupling quantum theory of atoms in molecules and electron localization function topological analyses and enabling an extended quantification of donated/back-donated electrons fluxes along reaction paths going beyond the usual Dewar-Chatt-Duncanson model. Indeed, if the ligands coordination mode (phosphine, carbene) is commonly described as dative, it appears that ligands lone pairs stay centered on ligands as electrons are shared between metal and ligand with strong delocalization toward the latter. Overall, through strong trans effects coming from the carbon involved in the reductive elimination, palladium delocalizes its valence electrons not only toward phosphines but interestingly also toward the carbene. As back-donation increases during reductive elimination, one of the reaction key components is the palladium ligands ability to accept electrons. The rationalization of such electronic phenomena gives new directions for the design of palladium-catalyzed systems.

  1. A Recurrence Relation Approach to Higher Order Quantum Superintegrability

    Directory of Open Access Journals (Sweden)

    Ernie G. Kalnins

    2011-03-01

    Full Text Available We develop our method to prove quantum superintegrability of an integrable 2D system, based on recurrence relations obeyed by the eigenfunctions of the system with respect to separable coordinates. We show that the method provides rigorous proofs of superintegrability and explicit constructions of higher order generators for the symmetry algebra. We apply the method to 5 families of systems, each depending on a parameter k, including most notably the caged anisotropic oscillator, the Tremblay, Turbiner and Winternitz system and a deformed Kepler-Coulomb system, and we give proofs of quantum superintegrability for all rational values of k, new for 4 of these systems. In addition, we show that the explicit information supplied by the special function recurrence relations allows us to prove, for the first time in 4 cases, that the symmetry algebra generated by our lowest order symmetries closes and to determine the associated structure equations of the algebras for each k. We have no proof that our generating symmetries are of lowest possible order, but we have no counterexamples, and we are confident we can can always find any missing generators from our raising and lowering operator recurrences. We also get for free, one variable models of the action of the symmetry algebra in terms of difference operators. We describe how the Stäckel transform acts and show that it preserves the structure equations.

  2. A new approach to quantum gravity a summary

    CERN Document Server

    Bell, S B M; Díaz, B M; Bell, Sarah B. M.; Cullerne, John P.; Diaz, Bernard M.

    2000-01-01

    Quantum Electrodynamics (QED) has been so successful a theory that it is taken as a model for the production of further quantum theories. However, when the prescription for quantising electromagnetic interactions that so successfully resulted in QED is applied to General Relativity the theory obtained is not renormalizable. We derive a different method of quantising classical electromagnetism which also results in QED. We call the method the versatile method. We then apply the versatile method to General Relativity, in particular the Einstein equation which equates a geometrical description derivable from the metric to the energy-momentum-stress tensor, or as we shall call it the matter tensor of the matter field. The method can be applied provided that there is always a reference frame, which may differ with location and time, where the matter tensor can be reduced to a mass density with the other elements zero. We call such matter tensors simple. This restriction means that the tensor can be put into one to...

  3. Path integral approach to the quantum fidelity amplitude.

    Science.gov (United States)

    Vaníček, Jiří; Cohen, Doron

    2016-06-13

    The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called 'dephasing representation,' circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact. © 2016 The Authors.

  4. Criticality in Two-Dimensional Quantum Systems: Tensor Network Approach

    CERN Document Server

    Ran, Shi-Ju; Li, Wei; Lewenstein, Maciej; Su, Gang

    2016-01-01

    Determination and characterization of criticality in two-dimensional (2D) quantum many-body systems belong to the most important challenges and problems of quantum physics. In this paper we propose an efficient scheme to solve this problem by utilizing the infinite projected entangled pair state (iPEPS), and tensor network (TN) representations. We show that the criticality of a 2D state is faithfully reproduced by the ground state (dubbed as boundary state) of a one-dimensional effective Hamiltonian constructed from its iPEPS representation. We demonstrate that for a critical state the correlation length and the entanglement spectrum of the boundary state are essentially different from those of a gapped iPEPS. This provides a solid indicator that allows to identify the criticality of the 2D state. Our scheme is verified on the resonating valence bond (RVB) states on kagom\\'e and square lattices, where the boundary state of the honeycomb RVB is found to be described by a $c=1$ conformal field theory. We apply ...

  5. Low temperature regulated growth of PbS quantum dots by wet chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hitanshu, E-mail: hitanshuminhas@gmail.com; Barman, P. B.; Singh, Ragini Raj [Department of Physics and Materials Science, Jaypee University of Information Technology, Waknaghat, Solan-173234, H.P. (India); Bind, Umesh Chandra [Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2015-08-28

    Narrow size distribution with regulated synthesis of lead sulfide (PbS) quantum dots (QDs) was achieved through wet chemical method. Different concentrations of 2-mercaptoethanol (capping agent) were used for tailoring the QDs size. Transmission electron microscopy and X-ray diffraction studies revealed that the QDs have mean diameters between 6 to 15 nm. The optical absorption spectra were compared to the predictions of a theoretical model for the electronic structure. The theory agrees well with experiment for QDs larger than 7 nm, but for smaller dots there is some deviation from the theoretical predictions. Consequently, the produced particles are having monodispersity, good water solubility, stability and may be good arguments to be biologically compatible due to the use of 2-mercaptoethanol.

  6. A quantum chemical study on hydrogen radical reactions with methane and silane

    Science.gov (United States)

    Sato, Kota; Kojima, Kuniharu; Kawasaki, Masashi; Matsuzaki, Yoshio; Hirano, Tsuneo; Nakano, Masatake; Koinuma, Hideomi

    1989-03-01

    A quantum chemical study on the reaction of CH4 , CF4 , SiH4 , and SiF4 with a hydrogen radical is performed on the basis of an ab initio molecular orbital calculation to predict the photochemical reactivity of methane, silane, and their analogues. The transition state geometry of the reactions is determined by employing a 3-21G basis set. The total energies of reactant molecules at the initial, transition, and final states are calculated by employing a 6-31G** basis set. The exponential parts of the rate constants of these reactions determined from these energies on the basis of the transition state theory are in good agreement with the experimentally obtained relative rates of the reaction. The present calculation was consistent with the experimental results of photochemical reactions for methane and silane derivatives.

  7. Microwave, High-Resolution Infrared, and Quantum Chemical Investigations of CHBrF2

    DEFF Research Database (Denmark)

    Cazzoli, Gabriele; Cludi, Lino; Puzzarini, Cristina

    2011-01-01

    analysis by high-level quantum chemical calculations at the coupled-cluster level. In this context, the importance of relativistic effects, which are of the order of 6.5% and included in the present work using second-order direct perturbation theory, needs to be emphasized for accurate predictions......A combined microwave, infrared, and computational investigation of CHBrF2 is reported. For the vibrational ground state, measurements in the millimeter- and sub-millimeter-wave regions for (CHBrF2)-Br-79 and (CHBrF2)-Br-81 provided rotational and centrifugal-distortion constants up to the sextic...... terms as well as the hyperfine parameters (quadrupole-coupling and spin-rotation interaction constants) of the bromine nucleus. The determination of the latter was made possible by recording of spectra at sub-Doppler resolution, achieved by means of the Lamb-dip technique, and supporting the spectra...

  8. III-nitride quantum cascade detector grown by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yu, E-mail: yusong@princeton.edu; Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540 (United States); Bhat, Rajaram; Zah, Chung-En [Corning Incorporated, Corning, New York 14831 (United States)

    2014-11-03

    Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1−x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4 μm, with a peak responsivity of up to ∼100 μA/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140 K.

  9. Semiempirical Quantum Chemical Calculations Accelerated on a Hybrid Multicore CPU-GPU Computing Platform.

    Science.gov (United States)

    Wu, Xin; Koslowski, Axel; Thiel, Walter

    2012-07-10

    In this work, we demonstrate that semiempirical quantum chemical calculations can be accelerated significantly by leveraging the graphics processing unit (GPU) as a coprocessor on a hybrid multicore CPU-GPU computing platform. Semiempirical calculations using the MNDO, AM1, PM3, OM1, OM2, and OM3 model Hamiltonians were systematically profiled for three types of test systems (fullerenes, water clusters, and solvated crambin) to identify the most time-consuming sections of the code. The corresponding routines were ported to the GPU and optimized employing both existing library functions and a GPU kernel that carries out a sequence of noniterative Jacobi transformations during pseudodiagonalization. The overall computation times for single-point energy calculations and geometry optimizations of large molecules were reduced by one order of magnitude for all methods, as compared to runs on a single CPU core.

  10. Complementing high-throughput X-ray powder diffraction data with quantum-chemical calculations

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; van de Streek, Jacco; Rantanen, Jukka

    2012-01-01

    High-throughput crystallisation and characterisation platforms provide an efficient means to carry out solid-form screening during the pre-formulation phase. To determine the crystal structures of identified new solid phases, however, usually requires independent crystallisation trials to produce...... single crystals or bulk samples of sufficient quantity to carry out high-quality X-ray diffraction measurements. This process could be made more efficient by a robust procedure for crystal structure determination directly from high-throughput X-ray powder diffraction (XRPD) data. Quantum......-chemical calculations based on dispersion-corrected density functional theory (DFT-D) have now become feasible for typical small organic molecules used as active pharmaceutical ingredients. We demonstrate how these calculations can be applied to complement high-throughput XRPD data by determining the crystal structure...

  11. Robust large-gap quantum spin Hall insulators in chemically decorated arsenene films

    Science.gov (United States)

    Wang, Dongchao; Chen, Li; Shi, Changmin; Wang, Xiaoli; Cui, Guangliang; Zhang, Pinhua; Chen, Yeqing

    2016-03-01

    Based on first-principles calculations, we propose one new category of two-dimensional topological insulators (2D TIs) in chemically functionalized (-CH3 and -OH) arsenene films. The results show that the surface decorated arsenene (AsCH3 and AsOH) films are intrinsic 2D TIs with sizeable bulk gap. The bulk energy gaps are 0.184 eV, and 0.304 eV in AsCH3 and AsOH films, respectively. Such large bulk gaps make them suitable to realize quantum spin Hall effect in an experimentally accessible temperature regime. Topologically helical edge states in these systems are desirable for dissipationless transport. Moreover, we find that the topological properties in these systems are robust against mechanical deformation by exerting biaxial strain. These novel 2D TIs with large bulk gaps are potential candidate in future electronic devices with ultralow dissipation.

  12. Intramolecular hydrogen bonding in myricetin and myricitrin. Quantum chemical calculations and vibrational spectroscopy

    Science.gov (United States)

    Vojta, Danijela; Dominković, Katarina; Miljanić, Snežana; Spanget-Larsen, Jens

    2017-03-01

    The molecular structures of myricetin (3,3‧,4‧,5,5‧,7-hexahydroxyflavone; MCE) and myricitrin (myricetin 3-O-rhamnoside; MCI) are investigated by quantum chemical calculations (B3LYP/6-311G**). Two preferred molecular rotamers of MCI are predicted, corresponding to different conformations of the O-rhamnoside subunit. The rotamers are characterized by different hydrogen bonded cross-links between the hydroxy groups of the rhamnoside substituent and the parent MCE moiety. The predicted OH stretching frequencies are compared with vibrational spectra of MCE and MCI recorded for the sake of this investigation (IR and Raman). In addition, a reassignment of the Cdbnd O stretching bands is suggested.

  13. Low temperature regulated growth of PbS quantum dots by wet chemical method

    Science.gov (United States)

    Kumar, Hitanshu; Bind, Umesh Chandra; Barman, P. B.; Singh, Ragini Raj

    2015-08-01

    Narrow size distribution with regulated synthesis of lead sulfide (PbS) quantum dots (QDs) was achieved through wet chemical method. Different concentrations of 2-mercaptoethanol (capping agent) were used for tailoring the QDs size. Transmission electron microscopy and X-ray diffraction studies revealed that the QDs have mean diameters between 6 to 15 nm. The optical absorption spectra were compared to the predictions of a theoretical model for the electronic structure. The theory agrees well with experiment for QDs larger than 7 nm, but for smaller dots there is some deviation from the theoretical predictions. Consequently, the produced particles are having monodispersity, good water solubility, stability and may be good arguments to be biologically compatible due to the use of 2-mercaptoethanol.

  14. Carbamate stabilities of sterically hindered amines from quantum chemical methods: relevance for CO2 capture.

    Science.gov (United States)

    Gangarapu, Satesh; Marcelis, Antonius T M; Zuilhof, Han

    2013-12-02

    The influence of electronic and steric effects on the stabilities of carbamates formed from the reaction of CO2 with a wide range of alkanolamines was investigated by quantum chemical methods. For the calculations, B3LYP, M11-L, MP2, and spin-component-scaled MP2 (SCS-MP2) methods were used, coupled with SMD and SM8 solvation models. A reduction in carbamate stability leads to an increased CO2 absorption capacity of the amine and a reduction of the energy required for solvent regeneration. Important factors for the reduction of the carbamate stability were an increase in steric hindrance around the nitrogen atom, charge on the N atom and intramolecular hydrogen bond strength. The present study indicates that secondary ethanolamines with sterically hindering groups near the N atom show significant potential as candidates for industrial CO2-capture solvents.

  15. Chemical Abstracts Service approach to management of large data bases.

    Science.gov (United States)

    Huffenberger, M A; Wigington, R L

    1975-02-01

    When information handling is "the business," as it is at Chemical Abstract Service (CAS), the total organization must be involved in information management. Since 1967, when, as a result of long-range planning efforts, CAS adopted a "data-base approach" to management of both the processing system and the distribution of information files, CAS has been grappling with the problems of managing large collections of information in computer-based systems. This paper describes what has been done at CAS in the management of large files and what we see as necessary, as a result of our experience, to improve and complete the information management system that is the foundation of our production processes.

  16. Bioactives from fruit processing wastes: Green approaches to valuable chemicals.

    Science.gov (United States)

    Banerjee, Jhumur; Singh, Ramkrishna; Vijayaraghavan, R; MacFarlane, Douglas; Patti, Antonio F; Arora, Amit

    2017-06-15

    Fruit processing industries contribute more than 0.5billion tonnes of waste worldwide. The global availability of this feedstock and its untapped potential has encouraged researchers to perform detailed studies on value-addition potential of fruit processing waste (FPW). Compared to general food or other biomass derived waste, FPW are found to be selective and concentrated in nature. The peels, pomace and seed fractions of FPW could potentially be a good feedstock for recovery of bioactive compounds such as pectin, lipids, flavonoids, dietary fibres etc. A novel bio-refinery approach would aim to produce a wider range of valuable chemicals from FPW. The wastes from majority of the extraction processes may further be used as renewable sources for production of biofuels. The literature on value addition to fruit derived waste is diverse. This paper presents a review of fruit waste derived bioactives. The financial challenges encountered in existing methods are also discussed.

  17. Chemical reaction network approaches to Biochemical Systems Theory.

    Science.gov (United States)

    Arceo, Carlene Perpetua P; Jose, Editha C; Marin-Sanguino, Alberto; Mendoza, Eduardo R

    2015-11-01

    This paper provides a framework to represent a Biochemical Systems Theory (BST) model (in either GMA or S-system form) as a chemical reaction network with power law kinetics. Using this representation, some basic properties and the application of recent results of Chemical Reaction Network Theory regarding steady states of such systems are shown. In particular, Injectivity Theory, including network concordance [36] and the Jacobian Determinant Criterion [43], a "Lifting Theorem" for steady states [26] and the comprehensive results of Müller and Regensburger [31] on complex balanced equilibria are discussed. A partial extension of a recent Emulation Theorem of Cardelli for mass action systems [3] is derived for a subclass of power law kinetic systems. However, it is also shown that the GMA and S-system models of human purine metabolism [10] do not display the reactant-determined kinetics assumed by Müller and Regensburger and hence only a subset of BST models can be handled with their approach. Moreover, since the reaction networks underlying many BST models are not weakly reversible, results for non-complex balanced equilibria are also needed.

  18. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  19. Structure and vibrational spectrum of 2-methylallyl radical. Nonempirical quantum chemical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, V.G.; Volkova, V.V.; Gusel' nikov, L.E.; Ziegler, U.; Zimmermann, G.; Ondurshka, B.; Nametkin, N.S.

    1987-04-01

    In the study of the role of allyl type radicals in the pyrolysis of hydrocarbons it is of interest to investigate the conditions of formation, structure, and reactivity of 2-methylallyl radical (C/sub 4/H/sub 7//sup ./). The authors performed theoretical assignment of the bands, which were observed in the lattice spectra of the pyrolysis products, to the vibrations of the C/sub 4/H/sub 7//sup ./ radical by means of calculation of the frequencies and shapes of the normal vibrations. Since the necessary geometrical parameters and force coefficients of C/sub 4/H/sub 7//sup ./ are not known, they determined them by means of nonempirical quantum chemical calculation. The quantum chemical calculation of C/sub 4/H/sub 7//sup ./ was performed by means of the unrestricted Hartree-Fock method using STO-4G (geometry optimization taking into account the characteristics of calculation of radicals in minimal bases and calculation of the force coefficients by means of numerical differentiation) and 4-31G bases (electron density distribution) by means of GAUSSIAN-70 program. For comparison of the energy and electron density distribution they performed calculations also for the 2-methylallyl cation C/sub 4/H/sub 7//sup ./. From the calculation of the difference of the total energies of C/sub 4/H/sub 7//sup ./ and C/sub 4/H/sub 7//sup ./ in the 4-31G basis was 7.4 eV, which is comparable to the ionization energy of the 2-methylallyl radical, 7.95 eV.

  20. Dissociative electron transfer in polychlorinated aromatics. Reduction potentials from convolution analysis and quantum chemical calculations.

    Science.gov (United States)

    Romańczyk, Piotr P; Rotko, Grzegorz; Kurek, Stefan S

    2016-08-10

    Formal potentials of the first reduction leading to dechlorination in dimethylformamide were obtained from convolution analysis of voltammetric data and confirmed by quantum chemical calculations for a series of polychlorinated benzenes: hexachlorobenzene (-2.02 V vs. Fc(+)/Fc), pentachloroanisole (-2.14 V), and 2,4-dichlorophenoxy- and 2,4,5-trichlorophenoxyacetic acids (-2.35 V and -2.34 V, respectively). The key parameters required to calculate the reduction potential, electron affinity and/or C-Cl bond dissociation energy, were computed at both DFT-D and CCSD(T)-F12 levels. Comparison of the obtained gas-phase energies and redox potentials with experiment enabled us to verify the relative energetics and the performance of various implicit solvent models. Good agreement with the experiment was achieved for redox potentials computed at the DFT-D level, but only for the stepwise mechanism owing to the error compensation. For the concerted electron transfer/C-Cl bond cleavage process, the application of a high level coupled cluster method is required. Quantum chemical calculations have also demonstrated the significant role of the π*ring and σ*C-Cl orbital mixing. It brings about the stabilisation of the non-planar, C2v-symmetric C6Cl6˙(-) radical anion, explains the experimentally observed low energy barrier and the transfer coefficient close to 0.5 for C6Cl5OCH3 in an electron transfer process followed by immediate C-Cl bond cleavage in solution, and an increase in the probability of dechlorination of di- and trichlorophenoxyacetic acids due to substantial population of the vibrational excited states corresponding to the out-of-plane C-Cl bending at ambient temperatures.