A brief review on quantum bit commitment
Almeida, Álvaro J.; Loura, Ricardo; Paunković, Nikola; Silva, Nuno A.; Muga, Nelson J.; Mateus, Paulo; André, Paulo S.; Pinto, Armando N.
2014-08-01
In classical cryptography, the bit commitment scheme is one of the most important primitives. We review the state of the art of bit commitment protocols, emphasizing its main achievements and applications. Next, we present a practical quantum bit commitment scheme, whose security relies on current technological limitations, such as the lack of long-term stable quantum memories. We demonstrate the feasibility of our practical quantum bit commitment protocol and that it can be securely implemented with nowadays technology.
Quantum measurement and entanglement of spin quantum bits in diamond
Pfaff, W.
2013-01-01
This thesis presents a set of experiments that explore the possible realisation of a macroscopic quantum network based on solid-state quantum bits. Such a quantum network would allow for studying quantum mechanics on large scales (meters, or even kilometers), and can open new possibilities for
Quantum measurement and entanglement of spin quantum bits in diamond
Pfaff, W.
2013-01-01
This thesis presents a set of experiments that explore the possible realisation of a macroscopic quantum network based on solid-state quantum bits. Such a quantum network would allow for studying quantum mechanics on large scales (meters, or even kilometers), and can open new possibilities for appli
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
Oss, Stefano; Rosi, Tommaso
2015-04-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.
Why quantum bit committment and quantum coin tossing are impossible?
Lo, H K
1996-01-01
There had been well known claims of ``provably unbreakable'' quantum protocols for bit commitment and coin tossing. However, we, and independently Mayers, showed that all proposed quantum bit commitment (and coin tossing) schemes are, in principle, insecure because the sender, Alice, can always cheat successfully by using an EPR-type of attack and delaying her measurements. One might wonder if secure quantum bit commitment and coin tossing protocols exist at all. Here we prove that an EPR-type of attack by Alice will, in principle, break {\\em any} realistic quantum bit commitment and {\\em ideal} coin tossing scheme. Therefore, provided that Alice has a quantum computer and is capable of storing quantum signals for an arbitrary length of time, all those schemes are insecure. Since bit commitment and coin tossing are useful primitives for building up more sophisticated protocols such as zero-knowledge proofs, our results cast very serious doubt on the security of quantum cryptography in the so-called ``post-col...
Quantum communication based on orthogonal states enables quantum bit commitment
He, Guang Ping
2011-01-01
For more than a decade, it was believed that unconditionally secure quantum bit commitment (QBC) is impossible. But basing on a formerly proposed quantum communication scheme using orthogonal states, here we build a QBC protocol in which the density matrices of the quantum states encoding the commitment do not satisfy a crucial condition on which the impossibility proofs of QBC are based. Thus unconditional security can be achieved. Our protocol is very feasible with currently available technology. It re-opens the venue for other "post-cold-war" multi-party cryptographic protocols, e.g., unconditionally secure quantum bit string commitment and quantum strong coin tossing with an arbitrarily small bias. This result also has a strong influence on the Clifton-Bub-Halvorson theorem which suggests that quantum theory could be characterized in terms of information-theoretic constraints.
Geneva University - Superconducting flux quantum bits: fabricated quantum objects
2007-01-01
Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Lundi 29 janvier 2007 COLLOQUE DE LA SECTION DE PHYSIQUE 17 heures - Auditoire Stueckelberg Superconducting flux quantum bits: fabricated quantum objects Prof. Hans Mooij / Kavli Institute of Nanoscience, Delft University of Technology The quantum conjugate variables of a superconductor are the charge or number of Cooper pairs, and the phase of the order parameter. In circuits that contain small Josephson junctions, these quantum properties can be brought forward. In Delft we study so-called flux qubits, superconducting rings that contain three small Josephson junctions. When a magnetic flux of half a flux quantum is applied to the loop, there are two states with opposite circulating current. For suitable junction parameters, a quantum superposition of those macroscopic states is possible. Transitions can be driven with resonant microwaves. These quantum ...
Experimental bit commitment based on quantum communication and special relativity.
Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Kent, A; Gisin, N; Wehner, S; Zbinden, H
2013-11-01
Bit commitment is a fundamental cryptographic primitive in which Bob wishes to commit a secret bit to Alice. Perfectly secure bit commitment between two mistrustful parties is impossible through asynchronous exchange of quantum information. Perfect security is however possible when Alice and Bob split into several agents exchanging classical and quantum information at times and locations suitably chosen to satisfy specific relativistic constraints. Here we report on an implementation of a bit commitment protocol using quantum communication and special relativity. Our protocol is based on [A. Kent, Phys. Rev. Lett. 109, 130501 (2012)] and has the advantage that it is practically feasible with arbitrary large separations between the agents in order to maximize the commitment time. By positioning agents in Geneva and Singapore, we obtain a commitment time of 15 ms. A security analysis considering experimental imperfections and finite statistics is presented.
Why Quantum Bit Commitment And Ideal Quantum Coin Tossing Are Impossible
Lo, H K
1998-01-01
There had been well known claims of unconditionally secure quantum protocols for bit commitment. However, we, and independently Mayers, showed that all proposed quantum bit commitment schemes are, in principle, insecure because the sender, Alice, can almost always cheat successfully by using an Einstein-Podolsky-Rosen (EPR) type of attack and delaying her measurements. One might wonder if secure quantum bit commitment protocols exist at all. We answer this question by showing that the same type of attack by Alice will, in principle, break any bit commitment scheme. The cheating strategy generally requires a quantum computer. We emphasize the generality of this ``no-go theorem'': Unconditionally secure bit commitment schemes based on quantum mechanics---fully quantum, classical or quantum but with measurements---are all ruled out by this result. Since bit commitment is a useful primitive for building up more sophisticated protocols such as zero-knowledge proofs, our results cast very serious doubt on the secur...
How to Convert a Flavor of Quantum Bit Commitment
DEFF Research Database (Denmark)
Crepeau, Claude; Legare, Frédéric; Salvail, Louis
2001-01-01
In this paper we show how to convert a statistically binding but computationally concealing quantum bit commitment scheme into a computationally binding but statistically concealing QBC scheme. For a security parameter n, the construction of the statistically concealing scheme requires O(n2......) executions of the statistically binding scheme. As a consequence, statistically concealing but computationally binding quantum bit commitments can be based upon any family of quantum one-way functions. Such a construction is not known to exist in the classical world....
Unconditionally secure quantum bit commitment really is impossible
Bub, J
2001-01-01
Unconditionally secure quantum bit commitment has been shown to be impossible by Mayers (PRL 78, 3414 (1997)) and Lo and Chau (PRL 78, 3410 (1997)) but the claim is repeatedly challenged. The bit commitment theorem is reviewed here and the central conceptual point, that an 'Einstein-Podolsky-Rosen' attack or cheating strategy can always be applied, is clarified. The question of whether following such a cheating strategy can ever be disadvantageous to the cheater is considered and answered in the negative.
Encrypting Binary Bits via Quantum Cryptography
Institute of Scientific and Technical Information of China (English)
ZENGGuihua
2004-01-01
A quantum cryptographic algorithm, which may be exploited to encrypt classic information is investigated theoretically in this paper. The proposed algorithm can prevent quantum attack strategy as well as classic attack strategy. A proof-in-principle of experimental demonstration, which exploits optical fibre communication technology and photon technology, is suggested.
Theoretical Study of Quantum Bit Rate in Free-Space Quantum Cryptography
Institute of Scientific and Technical Information of China (English)
MA Jing; ZHANG Guang-Yu; TAN Li-Ying
2006-01-01
The quantum bit rate is an important operating parameter in free-space quantum key distribution. We introduce the measuring factor and the sifting factor, and present the expressions of the quantum bit rate based on the ideal single-photon sources and the single-photon sources with Poisson distribution. The quantum bit rate is studied in the numerical simulation for the laser links between a ground station and a satellite in a low earth orbit. The results show that it is feasible to implement quantum key distribution between a ground station and a satellite in a low earth orbit.
How to Convert a Flavor of Quantum Bit Commitment
DEFF Research Database (Denmark)
Crepeau, Claude; Legare, Frédéric; Salvail, Louis
2001-01-01
In this paper we show how to convert a statistically binding but computationally concealing quantum bit commitment scheme into a computationally binding but statistically concealing QBC scheme. For a security parameter n, the construction of the statistically concealing scheme requires O(n2) exec...
Permanently Secure Quantum Bit Commitment from a Temporary Computation Bound
Kent, A
1997-01-01
Alice is a private citizen whose computational resources are modest. Bob represents a large organisation at the forefront of computational and cryptological research. Bob's computational and cryptanalytic power is unknown to Alice, but Bob can confidently estimate a bound on Alice's ability to carry out a computation that would break a classical bit commitment. Alice wishes to commit a bit to Bob. She requires that he will never be able to decode it unless she chooses to reveal it, but also that if she does he will be confident that her commitment was genuine. We describe here a simple quantum bit commitment scheme which satisfies these criteria. By iterating the scheme, we obtain quantum bit commitment schemes which allow either Alice or Bob to commit bits to the other. These schemes do not contradict Mayers' and Lo and Chau's no-go results: they rely on a temporary computability bound. However, they are permanently secure against cheating by either party, provided only that Alice was not able to break Bob's...
Engineering Dissipation to Generate Entanglement Between Remote Superconducting Quantum Bits
Schwartz, Mollie Elisheva
Superconducting quantum circuits provide a promising avenue for scalable quantum computation and simulation. Their chief advantage is that, unlike physical atoms or electrons, these ''artificial atoms'' can be designed with nearly-arbitrarily large coupling to one another and to their electromagnetic environment. This strong coupling allows for fast quantum bit (qubit) operations, and for efficient readout. However, strong coupling comes at a price: a qubit that is strongly coupled to its environment is also strongly susceptible to losses and dissipation, as coherent information leaks from the quantum system under study into inaccessible ''bath'' modes. Extensive work in the field is dedicated to engineering away these losses to the extent possible, and to using error correction to undo the effects of losses that are unavoidable. This dissertation explores an alternate approach to dissipation: we study avenues by which dissipation itself can be used to generate, rather than destroy, quantum resources. We do so specifically in the context of quantum entanglement, one of the most important and most counter-intuitive aspects of quantum mechanics. Entanglement generation and stabilization is critical to most non-trivial implementations of quantum computing and quantum simulation, as it is the property that distinguishes a multi-qubit quantum system from a string of classical bits. The ability to harness dissipation to generate, purify, and stabilize entanglement is therefore highly desirable. We begin with an overview of quantum dissipation and measurement, followed by an introduction to entanglement and to the superconducting quantum information architecture. We then discuss three sets of experiments that highlight and explore the powerful uses of dissipation in quantum systems. First, we use an entangling measurement to probabilistically generate entanglement between two qubits separated by more than one meter of ordinary cable. This represents the first achievement
Experimental approximation of the Jones polynomial with one quantum bit.
Passante, G; Moussa, O; Ryan, C A; Laflamme, R
2009-12-18
We present experimental results approximating the Jones polynomial using 4 qubits in a liquid state nuclear magnetic resonance quantum information processor. This is the first experimental implementation of a complete problem for the deterministic quantum computation with one quantum bit model of quantum computation, which uses a single qubit accompanied by a register of completely random states. The Jones polynomial is a knot invariant that is important not only to knot theory, but also to statistical mechanics and quantum field theory. The implemented algorithm is a modification of the algorithm developed by Shor and Jordan suitable for implementation in NMR. These experimental results show that for the restricted case of knots whose braid representations have four strands and exactly three crossings, identifying distinct knots is possible 91% of the time.
The quantum bit from relativity of simultaneity on an interferometer
Garner, Andrew J P; Dahlsten, Oscar C O
2014-01-01
The patterns of fringes produced by an interferometer have always been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics to classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer. We show that this forbids most interference phenomena more complicated than those of standard complex quantum theory. In this sense, special relativity itself can be used to explain why physics should be described by the rules of quantum theory in this setup. Moreover, our result has con...
Building a spin quantum bit register using semiconductor nanowires.
Baugh, J; Fung, J S; Mracek, J; LaPierre, R R
2010-04-02
This paper reviews recent advances in engineering spin quantum bits (qubits) in semiconductor quantum dots and describes an approach based on top-gated semiconductor nanowire devices. Fast electrical single-spin manipulation is achievable, in principle, using the spin-orbit interaction intrinsic to III-V materials, such as InAs, in concert with AC electric fields. Combined with sub-nanosecond gate control of the nearest-neighbor exchange interaction and spin readout by spin-to-charge conversion, a fully electrical solid-state quantum processor is within reach. We outline strategies for spin manipulation, robust readout and mitigation of decoherence due to nuclear fields that, when combined in a single device, should give a viable multi-qubit testbed and a building block for larger scale quantum devices.
Bit-Serial Adder Based on Quantum Dots
Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew
2003-01-01
A proposed integrated circuit based on quantum-dot cellular automata (QCA) would function as a bit-serial adder. This circuit would serve as a prototype building block for demonstrating the feasibility of quantum-dots computing and for the further development of increasingly complex and increasingly capable quantum-dots computing circuits. QCA-based bit-serial adders would be especially useful in that they would enable the development of highly parallel and systolic processors for implementing fast Fourier, cosine, Hartley, and wavelet transforms. The proposed circuit would complement the QCA-based circuits described in "Implementing Permutation Matrices by Use of Quantum Dots" (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42 and "Compact Interconnection Networks Based on Quantum Dots" (NPO-20855), which appears elsewhere in this issue. Those articles described the limitations of very-large-scale-integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCA-based signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. To enable a meaningful description of the proposed bit-serial adder, it is necessary to further recapitulate the description of a quantum-dot cellular automation from the first-mentioned prior article: A quantum-dot cellular automaton contains four quantum dots positioned at the corners of a square cell. The cell contains two extra mobile electrons that can tunnel (in the
Autonomously stabilized entanglement between two superconducting quantum bits.
Shankar, S; Hatridge, M; Leghtas, Z; Sliwa, K M; Narla, A; Vool, U; Girvin, S M; Frunzio, L; Mirrahimi, M; Devoret, M H
2013-12-19
Quantum error correction codes are designed to protect an arbitrary state of a multi-qubit register from decoherence-induced errors, but their implementation is an outstanding challenge in the development of large-scale quantum computers. The first step is to stabilize a non-equilibrium state of a simple quantum system, such as a quantum bit (qubit) or a cavity mode, in the presence of decoherence. This has recently been accomplished using measurement-based feedback schemes. The next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved using an autonomous feedback scheme that combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have been used for qubit reset, single-qubit state stabilization, and the creation and stabilization of states of multipartite quantum systems. Unlike conventional, measurement-based schemes, the autonomous approach uses engineered dissipation to counteract decoherence, obviating the need for a complicated external feedback loop to correct errors. Instead, the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building block for quantum information processing. Such autonomous schemes, which are broadly applicable to a variety of physical systems, as demonstrated by the accompanying paper on trapped ion qubits, will be an essential tool for the implementation of quantum error correction.
Anonymous-key quantum cryptography and unconditionally secure quantum bit commitment
Yuen, H P
2000-01-01
A new cryptographic tool, anonymous quantum key technique, is introduced that leads to unconditionally secure key distribution and encryption schemes that can be readily implemented experimentally in a realistic environment. If quantum memory is available, the technique would have many features of public-key cryptography; an identification protocol that does not require a shared secret key is provided as an illustration. The possibility is also indicated for obtaining unconditionally secure quantum bit commitment protocols with this technique.
Exponential speed-up with a single bit of quantum information: Testing the quantum butterfly effect
Poulin, D; Laflamme, R; Ollivier, H; Poulin, David; Blume-Kohout, Robin; Laflamme, Raymond; Ollivier, Harold
2003-01-01
We present an efficient quantum algorithm to measure the average fidelity decay of a quantum map under perturbation using a single bit of quantum information. Our algorithm scales only as the complexity of the map under investigation, so for those maps admitting an efficient gate decomposition, it provides an exponential speed up over known classical procedures. Fidelity decay is important in the study of complex dynamical systems, where it is conjectured to be a signature of quantum chaos. Our result also illustrates the role of chaos in the process of decoherence.
Multi-bit quantum random number generation by measuring positions of arrival photons
Yan, Qiurong; Zhao, Baosheng; Liao, Qinghong; Zhou, Nanrun
2014-10-01
We report upon the realization of a novel multi-bit optical quantum random number generator by continuously measuring the arrival positions of photon emitted from a LED using MCP-based WSA photon counting imaging detector. A spatial encoding method is proposed to extract multi-bits random number from the position coordinates of each detected photon. The randomness of bits sequence relies on the intrinsic randomness of the quantum physical processes of photonic emission and subsequent photoelectric conversion. A prototype has been built and the random bit generation rate could reach 8 Mbit/s, with random bit generation efficiency of 16 bits per detected photon. FPGA implementation of Huffman coding is proposed to reduce the bias of raw extracted random bits. The random numbers passed all tests for physical random number generator.
A quantum logic gate between a solid-state quantum bit and a photon
Kim, Hyochul; Shen, Thomas C; Solomon, Glenn S; Waks, Edo; 10.1038/nphoton.2013.48
2013-01-01
Integrated quantum photonics provides a promising route towards scalable solid-state implementations of quantum networks, quantum computers, and ultra-low power opto-electronic devices. A key component for many of these applications is the photonic quantum logic gate, where the quantum state of a solid-state quantum bit (qubit) conditionally controls the state of a photonic qubit. These gates are crucial for development of robust quantum networks, non-destructive quantum measurements, and strong photon-photon interactions. Here we experimentally realize a quantum logic gate between an optical photon and a solid-state qubit. The qubit is composed of a quantum dot (QD) strongly coupled to a nano-cavity, which acts as a coherently controllable qubit system that conditionally flips the polarization of a photon on picosecond timescales, implementing a controlled-NOT (cNOT) gate. Our results represent an important step towards solid-state quantum networks and provide a versatile approach for probing QD-photon inter...
Two-bit quantum random number generator based on photon-number-resolving detection
Jian, Yi; Ren, Min; Wu, E.; Wu, Guang; Zeng, Heping
2011-07-01
Here we present a new fast two-bit quantum random number generator based on the intrinsic randomness of the quantum physical phenomenon of photon statistics of coherent light source. Two-bit random numbers were generated according to the number of detected photons in each light pulse by a photon-number-resolving detector. Poissonian photon statistics of the coherent light source guaranteed the complete randomness of the bit sequences. Multi-bit true random numbers were generated for the first time based on the multi-photon events from a coherent light source.
Quantum Noise, Bits and Jumps: Uncertainties, Decoherence, Trajectories and Filtering
Belavkin, V P
2001-01-01
It is shown that many dissipative phenomena of "old" quantum mechanics which appeared 100 years ago in the form of the statistics of quantum thermal noise and quantum spontaneous jumps, have never been explained by the "new" conservative quantum mechanics discovered 75 years ago by Heisenberg and Schroedinger. This led to numerous quantum paradoxes which are reconsidered in this paper. The development of quantum measurement theory, initiated by von Neumann, indicated a possibility for resolution of this interpretational crisis by divorcing the algebra of the dynamical generators from the algebra of the actual observables. It is shown that within this approach quantum causality can be rehabilitated in the form of a superselection rule for compatibility of past observables with the potential future. This rule, together with the self-compatibility of measurements insuring the consistency of histories, is called the nondemolition principle. The application of this causality condition in the form of the dynamical ...
Bit-oriented quantum public-key encryption based on quantum perfect encryption
Wu, Chenmiao; Yang, Li
2016-08-01
A bit-oriented quantum public-key encryption scheme is presented. We use Boolean functions as private-key and randomly changed pairs of quantum state and classical string as public-keys. Following the concept of quantum perfect encryption, we prepare the public-key with Hadamard transformation and Pauli transformation. The quantum part of public-keys is various with different classical strings. In contrast to the typical classical public-key scheme, one private-key in our scheme corresponds to an exponential number of public-keys. We investigate attack to the private-key and prove that the public-key is a totally mixed state. So the adversary cannot acquire any information about private-key from measurement of the public-key. Then, the attack to encryption is analyzed. Since the trace distance between two different ciphertexts is zero, the adversary cannot distinguish between the two ciphertext states and also obtains nothing about plaintext and private-key. Thus, we have the conclusion that the proposed scheme is information-theoretically secure under an attack of the private-key and encryption.
Room temperature single-photon detectors for high bit rate quantum key distribution
Energy Technology Data Exchange (ETDEWEB)
Comandar, L. C.; Patel, K. A. [Toshiba Research Europe Ltd., 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Engineering Department, Cambridge University, 9 J J Thomson Ave., Cambridge CB3 0FA (United Kingdom); Fröhlich, B., E-mail: bernd.frohlich@crl.toshiba.co.uk; Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J. [Toshiba Research Europe Ltd., 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Penty, R. V. [Engineering Department, Cambridge University, 9 J J Thomson Ave., Cambridge CB3 0FA (United Kingdom)
2014-01-13
We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.
Destroying a topological quantum bit by condensing Ising vortices.
Hao, Zhihao; Inglis, Stephen; Melko, Roger
2014-12-09
The imminent realization of topologically protected qubits in fabricated systems will provide not only an elementary implementation of fault-tolerant quantum computing architecture, but also an experimental vehicle for the general study of topological order. The simplest topological qubit harbours what is known as a Z2 liquid phase, which encodes information via a degeneracy depending on the system's topology. Elementary excitations of the phase are fractionally charged objects called spinons, or Ising flux vortices called visons. At zero temperature, a Z2 liquid is stable under deformations of the Hamiltonian until spinon or vison condensation induces a quantum-phase transition destroying the topological order. Here we use quantum Monte Carlo to study a vison-induced transition from a Z2 liquid to a valence-bond solid in a quantum dimer model on the kagome lattice. Our results indicate that this critical point is beyond the description of the standard Landau paradigm.
Quantum Encoder and Decoder for Secret Key Distribution with Check Bits
Directory of Open Access Journals (Sweden)
T. Godhavari
2013-12-01
Full Text Available The focus of this study is to develop a novel method of encoding the qubits and use as secret key in public key cryptography. In BB 84 protocol, 50% of the random number (generated at source is used as secret key and the remaining bits are used as “check bits”. The check bits are used to detect the presence of eve as well as the nature of quantum channels. In this protocol, random qubits are encoded using different type of polarizations like horizontal, veritical and diagonal. In the proposed quantum encoder, basic quantum gates are used to encode the random secret key along with the check bits. Quantum key distribution, (a cryptographic mechanism relies on the inherent randomness of quantum mechanics and serves as an option to replace techniques made vulnerable by quantum computing. However, it is still subject to clever forms of eavesdropping and poses a significant challenge to implementation. To study the challenges, quantum circuits are first simulated using QCAD.
Lee, Su-Yong; Lee, Hai-Woong; Lee, Jae-Weon; Bergou, Janos A
2009-01-01
Quantum key distribution schemes which employ encoding on vacuum-one-photon qubits are capable of transferring more information bits per particle than the standard schemes employing polarization or phase coding. We calculate the maximum number of classical bits per particle that can be securely transferred when the key distribution is performed with the BB84 and B92 protocols, respectively, using the vacuum-one-photon qubits. In particular, we show that for a generalized B92 protocol with the vacuum-one-photon qubits, a maximum of two bits per particle can be securely transferred. We also demonstrate the advantage brought about by performing a generalized measurement that is optimized for unambiguous discrimination of the encoded states: the parameter range where the transfer of two bits per particle can be achieved is dramatically enhanced as compared to the corresponding parameter range of projective measurements.
Optimized 4-bit Quantum Reversible Arithmetic Logic Unit
Ayyoub, Slimani; Achour, Benslama
2017-08-01
Reversible logic has received a great attention in the recent years due to its ability to reduce the power dissipation. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. The arithmetic logic unit (ALU) is an important part of central processing unit (CPU) as the execution unit. This paper presents a complete design of a new reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The proposed ALU based on a reversible low power control unit and small performance parameters full adder named double Peres gates. The presented ALU can produce the largest number (28) of arithmetic and logic functions and have the smallest number of quantum cost and delay compared with existing designs.
Colloqium: Experiments with atomic quantum bits - essential numerical tools
Singer, Kilian; Murphy, Michael; Ivanov, Peter; Ziesel, Frank; Calarco, Tommaso; Schmidt-Kaler, Ferdinand
2009-01-01
Trapped, laser-cooled atoms and ions exemplify quantum systems which can be prepared and controlled with an unmatched degree of precision. Due to the control of the motion of the particles and of the internal degrees of freedom these system present a clean quantum system which can be adequately described by a Hamiltonian. Analytic expressions are commonly derived under assumption of several proximations. To fully describe the system we present powerful numerical tools. After starting with the design of a segmented ion trap and describing the methods for the calculation of the electrical fields used for trapping the ions, we provide the reader with integrators for the trajectories of a classical particle in dynamic potentials thus visualizing the mode of operation of an ion trap. The description is complemented by a quantum mechanical treatment of the wave packet dynamics of an ion inside the trapping potential. We then delve into solving the important class of ill-conditioned inverse problems, exemplified wit...
Quantum bits and superposition of displaced Fock states of the cavity field
Energy Technology Data Exchange (ETDEWEB)
Arevalo A, L.M. [Centro de Investigaciones en Optica A.C., Prolongacion de Constitucion No. 607, Apdo. Postal 507, Aguascalientes (Mexico); Moya C, H. [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51 y 216, 72000 Puebla (Mexico)
2002-07-01
We study the effects of counter rotating terms in the interaction of quantized light with a two-level atom, by using the method of small rotations. We give an expression for the wave function of the composed system atom plus field and point out one initial wave function that generates a quantum bit of the electromagnetic field with arbitrary amplitudes. (Author)
Directory of Open Access Journals (Sweden)
Rashmi Pandey
2014-09-01
Full Text Available Quantum Dot Cellular Automata (QCA is an advanced nanotechnology that attempts to create general computational at the nano-scale by controlling the position of single electrons. Quantum dot cellular automata (QCA defines a new device architecture that permits the innovative design of digital systems. QCA technology has large potential in terms of high space density and power dissipation with the development of the faster computer with smaller size & low power consumption.QCA help us to overcome the limitations of CMOS technology. In this paper, A design 16-bit arithmetic logic unit (ALU based on the Quantum dot cellular automata (QCA is presented. The simulation result of 16 bit ALU is verified using QCA Designer tool.
Detecting relay attacks on RFID communication systems using quantum bits
Jannati, Hoda; Ardeshir-Larijani, Ebrahim
2016-08-01
RFID systems became widespread in variety of applications because of their simplicity in manufacturing and usability. In the province of critical infrastructure protection, RFID systems are usually employed to identify and track people, objects and vehicles that enter restricted areas. The most important vulnerability which is prevalent among all protocols employed in RFID systems is against relay attacks. Until now, to protect RFID systems against this kind of attack, the only approach is the utilization of distance-bounding protocols which are not applicable over low-cost devices such as RFID passive tags. This work presents a novel technique using emerging quantum technologies to detect relay attacks on RFID systems. Recently, it is demonstrated that quantum key distribution (QKD) can be implemented in a client-server scheme where client only requires an on-chip polarization rotator that may be integrated into a handheld device. Now we present our technique for a tag-reader scenario which needs similar resources as the mentioned QKD scheme. We argue that our technique requires less resources and provides lower probability of false alarm for the system, compared with distance-bounding protocols, and may pave the way to enhance the security of current RFID systems.
Detecting relay attacks on RFID communication systems using quantum bits
Jannati, Hoda; Ardeshir-Larijani, Ebrahim
2016-11-01
RFID systems became widespread in variety of applications because of their simplicity in manufacturing and usability. In the province of critical infrastructure protection, RFID systems are usually employed to identify and track people, objects and vehicles that enter restricted areas. The most important vulnerability which is prevalent among all protocols employed in RFID systems is against relay attacks. Until now, to protect RFID systems against this kind of attack, the only approach is the utilization of distance-bounding protocols which are not applicable over low-cost devices such as RFID passive tags. This work presents a novel technique using emerging quantum technologies to detect relay attacks on RFID systems. Recently, it is demonstrated that quantum key distribution (QKD) can be implemented in a client-server scheme where client only requires an on-chip polarization rotator that may be integrated into a handheld device. Now we present our technique for a tag-reader scenario which needs similar resources as the mentioned QKD scheme. We argue that our technique requires less resources and provides lower probability of false alarm for the system, compared with distance-bounding protocols, and may pave the way to enhance the security of current RFID systems.
Efficient bit sifting scheme of post-processing in quantum key distribution
Li, Qiong; Le, Dan; Wu, Xianyan; Niu, Xiamu; Guo, Hong
2015-10-01
Bit sifting is an important step in the post-processing of quantum key distribution (QKD). Its function is to sift out the undetected original keys. The communication traffic of bit sifting has essential impact on the net secure key rate of a practical QKD system. In this paper, an efficient bit sifting scheme is presented, of which the core is a lossless source coding algorithm. Both theoretical analysis and experimental results demonstrate that the performance of the scheme is approaching the Shannon limit. The proposed scheme can greatly decrease the communication traffic of the post-processing of a QKD system, which means the proposed scheme can decrease the secure key consumption for classical channel authentication and increase the net secure key rate of the QKD system, as demonstrated by analyzing the improvement on the net secure key rate. Meanwhile, some recommendations on the application of the proposed scheme to some representative practical QKD systems are also provided.
Asymptotic correctability of Bell-diagonal quantum states and maximum tolerable bit error rates
Ranade, K S; Ranade, Kedar S.; Alber, Gernot
2005-01-01
The general conditions are discussed which quantum state purification protocols have to fulfill in order to be capable of purifying Bell-diagonal qubit-pair states, provided they consist of steps that map Bell-diagonal states to Bell-diagonal states and they finally apply a suitably chosen Calderbank-Shor-Steane code to the outcome of such steps. As a main result a necessary and a sufficient condition on asymptotic correctability are presented, which relate this problem to the magnitude of a characteristic exponent governing the relation between bit and phase errors under the purification steps. These conditions allow a straightforward determination of maximum tolerable bit error rates of quantum key distribution protocols whose security analysis can be reduced to the purification of Bell-diagonal states.
Noise and measurement errors in a practical two-state quantum bit commitment protocol
Loura, Ricardo; Almeida, Álvaro J.; André, Paulo S.; Pinto, Armando N.; Mateus, Paulo; Paunković, Nikola
2014-05-01
We present a two-state practical quantum bit commitment protocol, the security of which is based on the current technological limitations, namely the nonexistence of either stable long-term quantum memories or nondemolition measurements. For an optical realization of the protocol, we model the errors, which occur due to the noise and equipment (source, fibers, and detectors) imperfections, accumulated during emission, transmission, and measurement of photons. The optical part is modeled as a combination of a depolarizing channel (white noise), unitary evolution (e.g., systematic rotation of the polarization axis of photons), and two other basis-dependent channels, namely the phase- and bit-flip channels. We analyze quantitatively the effects of noise using two common information-theoretic measures of probability distribution distinguishability: the fidelity and the relative entropy. In particular, we discuss the optimal cheating strategy and show that it is always advantageous for a cheating agent to add some amount of white noise—the particular effect not being present in standard quantum security protocols. We also analyze the protocol's security when the use of (im)perfect nondemolition measurements and noisy or bounded quantum memories is allowed. Finally, we discuss errors occurring due to a finite detector efficiency, dark counts, and imperfect single-photon sources, and we show that the effects are the same as those of standard quantum cryptography.
All-Optical Quantum Random Bit Generation from Intrinsically Binary Phase of Parametric Oscillators
Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L
2012-01-01
True random number generators (RNGs) are desirable for applications ranging from cryptogra- phy to computer simulations. Quantum phenomena prove to be attractive for physical RNGs due to their fundamental randomness and immunity to attack [1]- [5]. Optical parametric down conversion is an essential element in most quantum optical experiments including optical squeezing [9], and generation of entangled photons [10]. In an optical parametric oscillator (OPO), photons generated through spontaneous down conversion of the pump initiate the oscillation in the absence of other inputs [11, 12]. This quantum process is the dominant effect during the oscillation build-up, leading to selection of one of the two possible phase states above threshold in a degenerate OPO [13]. Building on this, we demonstrate a novel all-optical quantum RNG in which the photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We implement a synchronously pumped twin degenerate O...
Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation
Energy Technology Data Exchange (ETDEWEB)
Weis, Christoph D.
2011-10-04
Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.
Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate
Energy Technology Data Exchange (ETDEWEB)
Poyatos, J.; Cirac, J. [Departamento de Fisica Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Zoller, P. [Institut fuer Theoretisch Physik, Universitaet Innsbruck, A-6020, Innsbruck (Austria)
1997-01-01
We show how to fully characterize a quantum process in an open quantum system. We particularize the procedure to the case of a universal two-qubit gate in a quantum computer. We illustrate the method with a numerical simulation of a quantum gate in the ion trap quantum computer. {copyright} {ital 1997} {ital The American Physical Society}
Complete Characterization of a Quantum Process the Two-Bit Quantum Gate
Poyatos, J F; Zoller, P
1997-01-01
We show how to fully characterize a quantum process in an open quantum system. We particularize the procedure to the case of a universal two-qubit gate in a quantum computer. We illustrate the method with a numerical simulation of a quantum gate in the ion trap quantum computer.
Hwang, Won-Young; Su, Hong-Yi; Bae, Joonwoo
2016-01-01
We study N-dimensional measurement-device-independent quantum-key-distribution protocol where one checking state is used. Only assuming that the checking state is a superposition of other N sources, we show that the protocol is secure in zero quantum-bit-error-rate case, suggesting possibility of the protocol. The method may be applied in other quantum information processing.
Security of two-state and four-state practical quantum bit-commitment protocols
Loura, Ricardo; Arsenović, Dušan; Paunković, Nikola; Popović, Duška B.; Prvanović, Slobodan
2016-12-01
We study cheating strategies against a practical four-state quantum bit-commitment protocol [A. Danan and L. Vaidman, Quant. Info. Proc. 11, 769 (2012)], 10.1007/s11128-011-0284-4 and its two-state variant [R. Loura et al., Phys. Rev. A 89, 052336 (2014)], 10.1103/PhysRevA.89.052336 when the underlying quantum channels are noisy and the cheating party is constrained to using single-qubit measurements only. We show that simply inferring the transmitted photons' states by using the Breidbart basis, optimal for ambiguous (minimum-error) state discrimination, does not directly produce an optimal cheating strategy for this bit-commitment protocol. We introduce a strategy, based on certain postmeasurement processes and show it to have better chances at cheating than the direct approach. We also study to what extent sending forged geographical coordinates helps a dishonest party in breaking the binding security requirement. Finally, we investigate the impact of imperfect single-photon sources in the protocols. Our study shows that, in terms of the resources used, the four-state protocol is advantageous over the two-state version. The analysis performed can be straightforwardly generalized to any finite-qubit measurement, with the same qualitative results.
Security trade-offs in ancilla-free quantum bit commitment in the presence of superselection rules
Energy Technology Data Exchange (ETDEWEB)
DiVincenzo, David P; Smolin, John A; Terhal, Barbara M [IBM Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States)
2004-07-01
Security trade-offs have previously been established for one-way bit commitment. We study this trade-off in two superselection settings. We show that for an [lsquo]abelian[rsquo] superselection rule (exemplified by particle conservation), the standard trade-off between sealing and binding properties still holds. For the non-abelian case (exemplified by angular momentum conservation), the security trade-off can be more subtle, which we illustrate by showing that if the bit commitment is forced to be ancilla-free, an asymptotically secure quantum bit commitment is possible.
Security Trade-offs in Ancilla-Free Quantum Bit Commitment in the Presence of Selection Rules
Di Vincenzo, D P; Terhal, B M
2004-01-01
Security trade-offs have been established for one-way bit commitment in quant-ph/0106019. We study this trade-off in two selection settings. We show that for an `abelian' selection rule (exemplified by particle conservation) the standard trade-off between sealing and binding properties still holds. For the non-abelian case (exemplified by angular momentum conservation) the security trade-off can be more subtle, which we illustrate by showing that if the bit-commitment is forced to be ancilla-free an asymptotically secure quantum bit commitment is possible.
Implementation of a two-state quantum bit commitment protocol in optical fibers
Almeida, Á. J.; Stojanovic, A. D.; Paunković, N.; Loura, R.; Muga, N. J.; Silva, N. A.; Mateus, P.; André, P. S.; Pinto, A. N.
2016-01-01
We demonstrate experimentally the feasibility of a two-state quantum bit commitment protocol, which is both concealing and partially binding, assuming technological limitations. The security of this protocol is based on the lack of long-term stable quantum memories. We use a polarization-encoding scheme and optical fiber as a quantum channel. The measurement probability for the commitment is obtained and the optimal cheating strategy demonstrated. The average success rates for an honest player in the case where the measurements are performed using equal bases are 93.4%, when the rectilinear basis is measured, and 96.7%, when the diagonal basis is measured. The rates for the case when the measurements are performed in different bases are 52.9%, when the rectilinear basis is measured, and 55.4% when the diagonal basis is measured. The average success rates for the optimal cheating strategy are 80% and 73.8%, which are way below the success rates of an honest player. Using a strict numerical validity criterion, we show that, for these experimental values, the protocol is secure.
Design of a pipelined 8-bit-serial single-flux-quantum microprocessor with multiple ALUs
Energy Technology Data Exchange (ETDEWEB)
Tanaka, M [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kawamoto, T [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yamanashi, Y [Yokohama National University, 79-5 Tokiwa-dai, Hodogaya-ku, Yokohama 240-8501 (Japan); Kamiya, Y [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Akimoto, A [Yokohama National University, 79-5 Tokiwa-dai, Hodogaya-ku, Yokohama 240-8501 (Japan); Fujiwara, K [Yokohama National University, 79-5 Tokiwa-dai, Hodogaya-ku, Yokohama 240-8501 (Japan); Fujimaki, A [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshikawa, N [Yokohama National University, 79-5 Tokiwa-dai, Hodogaya-ku, Yokohama 240-8501 (Japan); Terai, H [National Institute of Information and Communications Technology, 588-2 Iwaoka, Nishi-ku, Kobe 651-2492 (Japan); Yorozu, S [International Superconductivity Technology Center/Superconductivity Research Laboratory, 34 Miyukigaoka, Tsukuba 305-8501 (Japan)
2006-05-15
We have designed a pipelined 8-bit-serial single-flux-quantum microprocessor with multiple ALUs, called CORE1 {beta}. In the CORE1 {beta}, two ALUs connected in cascade enable us to perform two calculations on serial data using a register-to-register instruction, to enhance the peak performance. In addition, we have introduced pipelining to boost the performance. Although the pipelining is a difficult technique that requires a complex design in the datapath, we have implemented a simplified pipeline with seven stages by using two techniques. One is the separation of clock signals for pipelining and bit processing, and the other is the introduction of new buffers driven by independent clock signals for reading and writing flexibly in order to ease the difficulty in timing design between the register file and the ALUs. According to the logic simulation, the peak performance of the designed microprocessor is estimated to be 1500 million operations per second with a power consumption of 3.3 mW. We have fabricated the CORE1 {beta} chip by using the NEC 2.5 kA cm{sup -2} niobium standard process, and confirmed the correct operations of several instructions using high-speed clocks.
Design of a pipelined 8-bit-serial single-flux-quantum microprocessor with multiple ALUs
Tanaka, M.; Kawamoto, T.; Yamanashi, Y.; Kamiya, Y.; Akimoto, A.; Fujiwara, K.; Fujimaki, A.; Yoshikawa, N.; Terai, H.; Yorozu, S.
2006-05-01
We have designed a pipelined 8-bit-serial single-flux-quantum microprocessor with multiple ALUs, called CORE1 β. In the CORE1 β, two ALUs connected in cascade enable us to perform two calculations on serial data using a register-to-register instruction, to enhance the peak performance. In addition, we have introduced pipelining to boost the performance. Although the pipelining is a difficult technique that requires a complex design in the datapath, we have implemented a simplified pipeline with seven stages by using two techniques. One is the separation of clock signals for pipelining and bit processing, and the other is the introduction of new buffers driven by independent clock signals for reading and writing flexibly in order to ease the difficulty in timing design between the register file and the ALUs. According to the logic simulation, the peak performance of the designed microprocessor is estimated to be 1500 million operations per second with a power consumption of 3.3 mW. We have fabricated the CORE1 β chip by using the NEC 2.5 kA cm-2 niobium standard process, and confirmed the correct operations of several instructions using high-speed clocks.
Tournet, J.; Gosselink, D.; Miao, G.-X.; Jaikissoon, M.; Langenberg, D.; McConkey, T. G.; Mariantoni, M.; Wasilewski, Z. R.
2016-06-01
The quest for a universal quantum computer has renewed interest in the growth of superconducting materials on semiconductor substrates. High-quality superconducting thin films will make it possible to improve the coherence time of superconducting quantum bits (qubits), i.e., to extend the time a qubit can store the amplitude and phase of a quantum state. The electrical losses in superconducting qubits highly depend on the quality of the metal layers the qubits are made from. Here, we report on the epitaxy of single-crystal Al (011) layers on GaAs (001) substrates. Layers with 110 nm thickness were deposited by means of molecular beam epitaxy at low temperature and monitored by in situ reflection high-energy electron diffraction performed simultaneously at four azimuths. The single-crystal nature of the layers was confirmed by ex situ high-resolution x-ray diffraction. Differential interference contrast and atomic force microscopy analysis of the sample’s surface revealed a featureless surface with root mean square roughness of 0.55 nm. A detailed in situ study allowed us to gain insight into the nucleation mechanisms of Al layers on GaAs, highlighting the importance of GaAs surface reconstruction in determining the final Al layer crystallographic orientation and quality. A highly uniform and stable GaAs (001)-(2× 4) reconstruction reproducibly led to a pure Al (011) phase, while an arsenic-rich GaAs (001)-(4× 4) reconstruction yielded polycrystalline films with an Al (111) dominant orientation. The near-atomic smoothness and single-crystal character of Al films on GaAs, in combination with the ability to trench GaAs substrates, could set a new standard for the fabrication of superconducting qubits.
Experimental implementation of Hogg's algorithm on a three-quantum-bit NMR quantum computer
Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Liu, Maili; Gao, Kelin
2002-04-01
Using nuclear magnetic resonance (NMR) techniques with a three-qubit sample, we have experimentally implemented the highly structured algorithm for the satisfiability problem with one variable in each clause proposed by Hogg. A simplified temporal averaging procedure was employed to prepare the three-qubit pseudopure state. The algorithm was completed with only a single evaluation of the structure of the problem and the solutions were found theoretically with probability 100%, results that outperform both unstructured quantum and the best classical search algorithms. However, about 90% of the corresponding experimental fidelities can be attributed to the imperfections of manipulations.
Indirect Controllability of Quantum Systems; A Study of Two Interacting Quantum Bits
D'Alessandro, Domenico
2012-01-01
A quantum mechanical system S is indirectly controlled when the control affects an ancillary system A and the evolution of S is modified through the interaction with A only. A study of indirect controllability gives a description of the set of states that can be obtained for S with this scheme. In this paper, we study the indirect controllability of quantum systems in the finite dimensional case. After discussing the relevant definitions, we give a general necessary condition for controllability in Lie algebraic terms. We present a detailed treatment of the case where both systems, S and A, are two-dimensional (qubits). In particular, we characterize the dynamical Lie algebra associated with S+A, extending previous results, and prove that complete controllability of S+A and an appropriate notion of indirect controllability are equivalent properties for this system. We also prove several further indirect controllability properties for the system of two qubits, and illustrate the role of the Lie algebraic analy...
Quantum gravity as a theory of quantized area bits fitting together
Sharatchandra, H S
2000-01-01
Non-Abelian Gauss law is interpreted in terms of area bits described in a local frame which fit together into closed surfaces and the Non-Abelian Stokes law in terms of length bits described in a local frame which fit together into closed loops. A new equation relating the area variables and the phase space variables (or equivalently, angular momentum variables of the lattice Yang-Mills theory and phase space variables of the continuum theory) is obtained. Canonical quantization applied to these variables implies area quantization. A complete orthonormal basis of states satisfying the Gauss constraint is obtained.It has the interpretation of quantized area bits with undefined orientations and edges but fitting together into closed surfaces.
The quantum measurement problem as a witness to "It from bit"
Srikanth, R
2006-01-01
A conceptual difficulty in the foundations of quantum mechanics is the quantum measurement problem (QMP), essentially concerned with the apparent non-unitarity of the measurement process and the classicality of macroscopic systems. In an information theoretic approach proposed by us earlier (Quantum Information Processing 2, 153, 2003), which we clarify and elaborate here, QMP is understood to signal a fundamental finite resolution of quantum states, or, equivalently, a discreteness of Hilbert space. This was motivated by the notion that physical reality is a manifestation of information stored and discrete computations performed at a deeper, sub-physical layer. This model entails that states of sufficiently complex, entangled systems will be unresolvable, or, {\\em computationally unstable}. Wavefunction collapse is postulated as an error preventive response to such computational instability. In effect, sufficiently complex systems turn classical because of the finiteness of the computational resources availa...
Izadyar, Seyed Mohsen; Razaghi, Mohammad; Hassanzadeh, Abdollah
2017-04-20
In this paper, a theoretical model for a quantum dot semiconductor optical amplifier (QDSOA) is proposed. The dynamics of carriers in ground, excited, and continuum states and wetting layer are considered in this model. The effects of the second excited state (ES2) inclusion are investigated for the first time, to the best of our knowledge, in the proposed QDSOA model. Moreover, the inhomogeneous broadening effect due to size distribution of dots, and the homogeneous broadening effect of a single dot in the gain spectrum by grouping of dots based on their optical resonant frequency, are included in the model. Furthermore, grouping of photon modes is considered in the model. It is shown that improvement of QDSOA performance is possible by considering ES2 in rate equations. Gain saturation in different injection currents is obtained for various square-shaped pulse train bit-rates. It is shown that carriers' relaxation time plays an important role in signal amplification and processing of QDSOA. The results illustrate that QDSOA can be used for high bit-rate signal processing devices (up to 450 Gbps) with negligible wave distortion and fast gain recovery.
Experimental unconditionally secure bit commitment
Liu, Yang; Cao, Yuan; Curty, Marcos; Liao, Sheng-Kai; Wang, Jian; Cui, Ke; Li, Yu-Huai; Lin, Ze-Hong; Sun, Qi-Chao; Li, Dong-Dong; Zhang, Hong-Fei; Zhao, Yong; Chen, Teng-Yun; Peng, Cheng-Zhi; Zhang, Qiang; Cabello, Adan; Pan, Jian-Wei
2014-03-01
Quantum physics allows unconditionally secure communication between parties that trust each other. However, when they do not trust each other such as in the bit commitment, quantum physics is not enough to guarantee security. Only when relativistic causality constraints combined, the unconditional secure bit commitment becomes feasible. Here we experimentally implement a quantum bit commitment with relativistic constraints that offers unconditional security. The commitment is made through quantum measurements in two quantum key distribution systems in which the results are transmitted via free-space optical communication to two agents separated with more than 20 km. Bits are successfully committed with less than 5 . 68 ×10-2 cheating probability. This provides an experimental proof of unconditional secure bit commitment and demonstrates the feasibility of relativistic quantum communication.
Takeuchi, Naoki; Suzuki, Hideo; Yoshikawa, Nobuyuki
2017-05-01
Adiabatic quantum-flux-parametron (AQFP) is an energy-efficient superconductor logic. The advantage of AQFP is that the switching energy can be reduced by lowering operation frequencies or by increasing the quality factors of Josephson junctions, while keeping the energy barrier height much larger than thermal energy. In other words, both low energy dissipation and low bit error rates (BERs) can be achieved. In this paper, we report the first measurement results of the low BERs of AQFP logic. We used a superconductor voltage driver with a stack of dc superconducting-quantum-interference-devices to amplify the logic signals of AQFP gates into mV-range voltage signals for the BER measurement. Our measurement results showed 3.3 dB and 2.6 dB operation margins, in which BERs were less than 10-20, for 1 Gbps and 2 Gbps data rates, respectively. While the observed BERs were very low, the estimated switching energy for the 1-Gbps operation was only 2 zJ or 30kBT, where kB is the Boltzmann's constant and T is the temperature. Unlike conventional non-adiabatic logic, BERs are not directly associated with switching energy in AQFP.
Extending the lifetime of a quantum bit with error correction in superconducting circuits
Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S. M.; Jiang, L.; Mirrahimi, Mazyar; Devoret, M. H.; Schoelkopf, R. J.
2016-08-01
Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The ‘break-even’ point of QEC—at which the lifetime of a qubit exceeds the lifetime of the constituents of the system—has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0>f and |1>f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.
Extending the lifetime of a quantum bit with error correction in superconducting circuits.
Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S M; Jiang, L; Mirrahimi, Mazyar; Devoret, M H; Schoelkopf, R J
2016-08-25
Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The 'break-even' point of QEC--at which the lifetime of a qubit exceeds the lifetime of the constituents of the system--has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0〉f and |1〉f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.
Institute of Scientific and Technical Information of China (English)
赵安廷; 赵黎平
2011-01-01
量子比特率是衡量一个量子密钥系统性能优劣的重要参数之一.通过研究星-地量子密钥分配系统中量子链路的持续时间,分析了量子链路持续时间内地面站天线俯仰角的变化情况,在此基础上建立了LEO星-地单光子下行链路的星-地量子比特率模型.仿真结果表明,LEO星-地单光子下行链路的星地量子比特率在每次链路的中心时刻达到极大值.星-地量子比特率能够达到实用的要求,进一步验证了星-地量子密钥分配的可行性.%Quantum bit rate is an important parameter in quantum key distribution system. Quantum link during time in a satellite-to-ground quantum key distribution system was studied, and the variation of pitch angle at facility was analyzed. Then the link model between low earth orbit and earth station was built. By numerical analyzing, it is shown that, quantum bit rate varies with the satellite's movement and in the centre of link, the quantum bit rate reaches the maximal value. The results show that quantum bit rate in an earth-based station and low earth orbit satellite QKD system can reach the practical demand and is feasible.
Bang, Jeongho; Yoo, Seokwon
2014-12-01
We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the "genetic parameter vector" of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.
Energy Technology Data Exchange (ETDEWEB)
Bang, Jeongho [Seoul National University, Seoul (Korea, Republic of); Hanyang University, Seoul (Korea, Republic of); Yoo, Seokwon [Hanyang University, Seoul (Korea, Republic of)
2014-12-15
We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the 'genetic parameter vector' of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.
采用非线性量子比特的形态滤波及其应用%Morphological Filtering Using Nonlinear Quantum Bit and Its Application
Institute of Scientific and Technical Information of China (English)
陈彦龙; 张培林; 李兵; 李胜
2015-01-01
针对数学形态学结构元素无法动态调整尺寸的问题，结合量子理论提出一种基于非线性量子比特的形态滤波方法，提升形态学的机械振动信号处理效果。分析机械信号与量子理论结合的可行性，并在此基础上构建机械振动信号的峰值波谷的量子表达形式；结合振动信号的最大值和最小值，通过数学分析提出非线性量子比特的表达式，用于表达振动信号的瞬时状态；根据振动信号邻域的关联性，分析振动信号的局部特点，建立振动信号的三量子位系统；根据机械振动信号的峰值波谷的量子表达形式，在三量子位系统的框架内，提出机械振动信号在量子概率特征下的结构元素尺寸收缩算子，并基于尺寸收缩算子实现结构元素长度的自适应调整。运用轴承故障信号进行分析，结果表明，该方法能够比传统方法更加有效地提取出故障脉冲信息。%Aiming at the problem that mathematical morphology structuring element is unable to adjust its length dynamically, a morphological filtering method using nonlinear quantum bit integrating quantum theory is presented, to enhance mechanical vibration signal processing effect of morphology. Firstly the feasibility of combination between mechanical signal and quantum theory is analyzed. Based on the analysis, the quantum expressions of crest and trough in mechanical vibration signal are presented. Then combining both maximum and minimum of vibration signal, an expression of nonlinear quantum bit is proposed after mathematical analysis, which is used to depict the instantaneous state of vibration signal. The next according to the relevance in the neighbourhood of mechanical vibration signal, a quantum system with multiple quantum bits for mechanical vibration signals is proposed after local characteristics of vibration signals are analyzed. Based on the quantum expressions of crest and trough in
Bits and q-bits as versatility measures
Directory of Open Access Journals (Sweden)
José R.C. Piqueira
2004-06-01
Full Text Available Using Shannon information theory is a common strategy to measure any kind of variability in a signal or phenomenon. Some methods were developed to adapt information entropy measures to bird song data trying to emphasize its versatility aspect. This classical approach, using the concept of bit, produces interesting results. Now, the original idea developed in this paper is to use the quantum information theory and the quantum bit (q-bit concept in order to provide a more complete vision of the experimental results.Usar a teoria da informação de Shannon é uma estratégia comum para medir todo tipo de variabilidade em um sinal ou fenômeno. Alguns métodos foram desenvolvidos para adaptar a medida de entropia informacional a dados de cantos de pássaro, tentando enfatizar seus aspectos de versatilidade. Essa abordagem clássica, usando o conceito de bit, produz resultados interessantes. Agora, a idéia original desenvolvida neste artigo é usar a teoria quântica da informação e o conceito de q-bit, com a finalidade de proporcionar uma visão mais completa dos resultados experimentais.
The Braid-Based Bit Commitment Protocol
Institute of Scientific and Technical Information of China (English)
WANG Li-cheng; CAO Zhen-fu; CAO Feng; QIAN Hai-feng
2006-01-01
With recent advances of quantum computation, new threats have closed in upon to the classical public key cryptosystems. In order to build more secure bit commitment schemes, this paper gave a survey of the new coming braid-based cryptography and then brought forward the first braid-based bit commitment protocol. The security proof manifests that the proposed protocol is computationally binding and information-theoretically hiding.Furthermore, the proposed protocol is also invulnerable to currently known quantum attacks.
Atomic physics: A milestone in quantum computing
Bartlett, Stephen D.
2016-08-01
Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63
Robust relativistic bit commitment
Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony
2016-12-01
Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.
Quantum rekenen: Quantumcomputers en qubits
Hensen, B.J.; Hanson, R.
2013-01-01
De quantum computer is een computer gebaseerd op quantum bits, kortweg qubits. Dat zijn bits die fysiek gemaakt zijn van quantum systemen, met de speciale eigenschap dat ze in een superpositie tussen twee toestanden kunnen zijn.
24-Hour Relativistic Bit Commitment
Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo
2016-09-01
Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.
Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.
1994-01-01
A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.
Unconditionally secure bit commitment by transmitting measurement outcomes.
Kent, Adrian
2012-09-28
We propose a new unconditionally secure bit commitment scheme based on Minkowski causality and the properties of quantum information. The receiving party sends a number of randomly chosen Bennett-Brassard 1984 (BB84) qubits to the committer at a given point in space-time. The committer carries out measurements in one of the two BB84 bases, depending on the committed bit value, and transmits the outcomes securely at (or near) light speed in opposite directions to remote agents. These agents unveil the bit by returning the outcomes to adjacent agents of the receiver. The protocol's security relies only on simple properties of quantum information and the impossibility of superluminal signalling.
Unconditionally Secure Bit Commitment by Transmitting Measurement Outcomes
,
2011-01-01
We propose a new unconditionally secure bit commitment scheme based on Minkowski causality and the properties of quantum information. The receiving party sends a number of randomly chosen BB84 qubits to the committer at a given point in space-time. The committer carries out measurements in one of the two BB84 bases, depending on the committed bit value, and transmits the outcomes securely at light speed in opposite directions to remote agents. These agents unveil the bit by returning the outcomes to adjacent agents of the receiver. The security proofs rely only on simple properties of quantum information and the impossibility of superluminal signalling.
Bang, Jeongho; Yoo, Seokwon
2014-01-01
We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the "genetic parameter vector" of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the ...
Quantum memory in quantum cryptography
Mor, T
1999-01-01
[Shortened abstract:] This thesis investigates the importance of quantum memory in quantum cryptography, concentrating on quantum key distribution schemes. In the hands of an eavesdropper -- a quantum memory is a powerful tool, putting in question the security of quantum cryptography; Classical privacy amplification techniques, used to prove security against less powerful eavesdroppers, might not be effective when the eavesdropper can keep quantum states for a long time. In this work we suggest a possible direction for approaching this problem. We define strong attacks of this type, and show security against them, suggesting that quantum cryptography is secure. We start with a complete analysis regarding the information about a parity bit (since parity bits are used for privacy amplification). We use the results regarding the information on parity bits to prove security against very strong eavesdropping attacks, which uses quantum memories and all classical data (including error correction codes) to attack th...
Mutual information, bit error rate and security in W\\'{o}jcik's scheme
Zhang, Z
2004-01-01
In this paper the correct calculations of the mutual information of the whole transmission, the quantum bit error rate (QBER) are presented. Mistakes of the general conclusions relative to the mutual information, the quantum bit error rate (QBER) and the security in W\\'{o}jcik's paper [Phys. Rev. Lett. {\\bf 90}, 157901(2003)] have been pointed out and corrected.
Quantum algorithmic information theory
Svozil, Karl
1995-01-01
The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port interferometer capa...
Institute of Scientific and Technical Information of China (English)
Yang Yukun; Han Tao
1995-01-01
@@ The geologic condition of Shengli Oilfield (SLOF)is complicated and the range of the rock drillability is wide. For more than 20 years,Shengli Drilling Technology Research Institute, in view of the formation conditions of SLOF,has done a lot of effort and obtained many achivements in design,manufacturing technology and field service. Up to now ,the institute has developed several ten kinds of diamond bits applicable for drilling and coring in formations from extremely soft to hard.
Two-Bit Bit Flipping Decoding of LDPC Codes
Nguyen, Dung Viet; Marcellin, Michael W
2011-01-01
In this paper, we propose a new class of bit flipping algorithms for low-density parity-check (LDPC) codes over the binary symmetric channel (BSC). Compared to the regular (parallel or serial) bit flipping algorithms, the proposed algorithms employ one additional bit at a variable node to represent its "strength." The introduction of this additional bit increases the guaranteed error correction capability by a factor of at least 2. An additional bit can also be employed at a check node to capture information which is beneficial to decoding. A framework for failure analysis of the proposed algorithms is described. These algorithms outperform the Gallager A/B algorithm and the min-sum algorithm at much lower complexity. Concatenation of two-bit bit flipping algorithms show a potential to approach the performance of belief propagation (BP) decoding in the error floor region, also at lower complexity.
Evaluation of Bit Preservation Strategies
DEFF Research Database (Denmark)
Zierau, Eld; Kejser, Ulla Bøgvad; Kulovits, Hannes
2010-01-01
This article describes a methodology which supports evaluation of bit preservation strategies for different digital materials. This includes evaluation of alternative bit preservation solution. The methodology presented uses the preservation planning tool Plato for evaluations, and a BR......-ReMS prototype to calculate measures for how well bit preservation requirements are met. Planning storage of data as part of preservation planning involves classification of data with regard to requirements on confidentiality, bit safety, available and costs. Choice of storage with such parameters is quite...... complex since e.g. more copies of data means better bit safety, but higher cost and bigger risk of breaking confidentiality. Based on a case of a bit repository offering varied bit preservation solutions, the article will present results of using the methodology to make plans and choices of alternatives...
Positional information, in bits.
Dubuis, Julien O; Tkacik, Gasper; Wieschaus, Eric F; Gregor, Thomas; Bialek, William
2013-10-08
Cells in a developing embryo have no direct way of "measuring" their physical position. Through a variety of processes, however, the expression levels of multiple genes come to be correlated with position, and these expression levels thus form a code for "positional information." We show how to measure this information, in bits, using the gap genes in the Drosophila embryo as an example. Individual genes carry nearly two bits of information, twice as much as would be expected if the expression patterns consisted only of on/off domains separated by sharp boundaries. Taken together, four gap genes carry enough information to define a cell's location with an error bar of ~1 along the anterior/posterior axis of the embryo. This precision is nearly enough for each cell to have a unique identity, which is the maximum information the system can use, and is nearly constant along the length of the embryo. We argue that this constancy is a signature of optimality in the transmission of information from primary morphogen inputs to the output of the gap gene network.
Evaluation of Bit Preservation Strategies
DEFF Research Database (Denmark)
Zierau, Eld; Kejser, Ulla Bøgvad; Kulovits, Hannes
2010-01-01
This article describes a methodology which supports evaluation of bit preservation strategies for different digital materials. This includes evaluation of alternative bit preservation solution. The methodology presented uses the preservation planning tool Plato for evaluations, and a BR...... for different digital material with different requirements for bit integrity and confidentiality. This case shows that the methodology, including the tools used, is useful for this purpose....
Seshu, Ch.
Quantum Key Distribution (QKD) uses Quantum Mechanics to guarantee secure communication. It enables two parties to produce a shared random bit string known only to them, which can be used as a key to encrypt and decrypt messages.
Griffiths, Robert B.
2007-01-01
Quantum, in contrast to classical, information theory, allows for different incompatible types (or species) of information which cannot be combined with each other. Distinguishing these incompatible types is useful in understanding the role of the two classical bits in teleportation (or one bit in one-bit teleportation), for discussing decoherence in information-theoretic terms, and for giving a proper definition, in quantum terms, of ``classical information.'' Various examples (some updating...
... it or try to play with it. These spiders will not bite you unless they feel threatened — if you leave them alone, they will leave you alone. For Teens For ... Stung Me! Hey! A Scorpion Stung Me! Hey! A Black Widow Spider Bit Me! Hey! A Brown Recluse Spider Bit ...
Quantum Samaritan's Dilemma Under Decoherence
Huang, Zhiming; Alonso-Sanz, Ramón; Situ, Haozhen
2017-03-01
We study how quantum noise affects the solution of quantum Samaritan's dilemma. Serval most common dissipative and nondissipative noise channels are considered as the model of the decoherence process. We find that the solution of quantum Samaritan's dilemma is stable under the influence of the amplitude damping, the bit flip and the bit-phase flip channel.
Zeh, H D
2002-01-01
Schroedinger's wave function shows many aspects of a state of incomplete knowledge or information ("bit"): (1) it is defined on a space of classical configurations, (2) its generic entanglement is, therefore, analogous to statistical correlations, and (3) it determines probabilites of measurement outcomes. Nonetheless, quantum superpositions (such as represented by a wave function) also define individual physical states ("it"). This conceptual dilemma may have its origin in the conventional operational foundation of physical concepts, successful in classical physics, but inappropriate in quantum theory because of the existence of mutually exclusive operations (used for the definition of concepts). In contrast, a hypothetical realism, based on concepts that are justified only by their universal and consistent applicability, favors the wave function as a description of (thus nonlocal) physical reality. The (conceptually local) classical world then appears as an illusion, facilitated by the phenomenon of decoher...
Bit Preservation: A Solved Problem?
Directory of Open Access Journals (Sweden)
David S. H. Rosenthal
2010-07-01
Full Text Available For years, discussions of digital preservation have routinely featured comments such as “bit preservation is a solved problem; the real issues are ...”. Indeed, current digital storage technologies are not just astoundingly cheap and capacious, they are astonishingly reliable. Unfortunately, these attributes drive a kind of “Parkinson’s Law” of storage, in which demands continually push beyond the capabilities of systems implementable at an affordable price. This paper is in four parts:Claims, reviewing a typical claim of storage system reliability, showing that it provides no useful information for bit preservation purposes.Theory, proposing “bit half-life” as an initial, if inadequate, measure of bit preservation performance, expressing bit preservation requirements in terms of it, and showing that the requirements being placed on bit preservation systems are so onerous that the experiments required to prove that a solution exists are not feasible.Practice, reviewing recent research into how well actual storage systems preserve bits, showing that they fail to meet the requirements by many orders of magnitude.Policy, suggesting ways of dealing with this unfortunate situation.
low bit rate video coding low bit rate video coding
African Journals Online (AJOL)
eobe
ariable length bit rate (VLBR) broadly encompasses video coding which broadly encompasses ... for motion estimation and compensation to reduce the prediction sation to reduce the ... a special interest among the video coding community ...
Di Vincenzo, D P
1997-01-01
A historical review is given of the emergence of the idea of the quantum logic gate from the theory of reversible Boolean gates. I highlight the quantum XOR or controlled NOT as the fundamental two-bit gate for quantum computation. This gate plays a central role in networks for quantum error correction.
DRILL BITS FOR HORIZONTAL WELLS
Directory of Open Access Journals (Sweden)
Paolo Macini
1996-12-01
Full Text Available This paper underlines the importance of the correct drill bit application in horizontal wells. Afler the analysis of the peculiarities of horizontal wells and drainholes drilling techniques, advantages and disadvantages of the application of both roller cone and fixed cutters drill bits have been discussed. Also, a review of the potential specific featuries useful for a correct drill bit selection in horizontal small diameter holes has been highlighted. Drill bits for these special applications, whose importance is quickly increasing nowadays, should be characterised by a design capable to deliver a good penetration rate low WOB, and, at the same time, be able to withstand high RPM without premature cutting structure failure and undergauge. Formation properties will also determine the cutting structure type and the eventual specific features for additional gauge and shoulder protection.
... Hey! A Bee Stung Me! Rashes: The Itchy Truth Hey! A Mosquito Bit Me! Contact Us Print ... The Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart. ...
... Hey! A Chigger Bit Me! Rashes: The Itchy Truth Contact Us Print Resources Send to a Friend ... The Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart. ...
... Black Widow Spider Bit Me! Rashes: The Itchy Truth Contact Us Print Resources Send to a Friend ... The Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart. ...
Optimization Approaches for Designing a Novel 4-Bit Reversible Comparator
Zhou, Ri-gui; Zhang, Man-qun; Wu, Qian; Li, Yan-cheng
2013-02-01
Reversible logic is a new rapidly developed research field in recent years, which has been receiving much attention for calculating with minimizing the energy consumption. This paper constructs a 4×4 new reversible gate called ZRQ gate to build quantum adder and subtraction. Meanwhile, a novel 1-bit reversible comparator by using the proposed ZRQC module on the basis of ZRQ gate is proposed as the minimum number of reversible gates and quantum costs. In addition, this paper presents a novel 4-bit reversible comparator based on the 1-bit reversible comparator. One of the vital important for optimizing reversible logic is to design reversible logic circuits with the minimum number of parameters. The proposed reversible comparators in this paper can obtain superiority in terms of the number of reversible gates, input constants, garbage outputs, unit delays and quantum costs compared with the existed circuits. Finally, MATLAB simulation software is used to test and verify the correctness of the proposed 4-bit reversible comparator.
String bit models for superstring
Energy Technology Data Exchange (ETDEWEB)
Bergman, O.; Thorn, C.B.
1995-12-31
The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.
Quantum computing: Efficient fault tolerance
Gottesman, Daniel
2016-12-01
Dealing with errors in a quantum computer typically requires complex programming and many additional quantum bits. A technique for controlling errors has been proposed that alleviates both of these problems.
Where the "it from bit" come from?
Foschini, Luigi
2013-01-01
In his 1989 essay, John Archibald Wheeler has tried to answer the eternal question of existence. He did it by searching for links between information, physics, and quanta. The main concept emerging from his essay is that "every physical quantity, every it, derives its ultimate significance from bits, binary yes-or-no indications". This concept has been summarized in the catchphrase "it from bit". In the Wheeler's essay, it is possible to read several times the echoes of the philosophy of Niels Bohr. The Danish physicist has pointed out how the quantum and relativistic physics - forcing us to abandon the anchor of the visual reference of common sense - have imposed a greater attention to the language. Bohr did not deny the physical reality, but recognizes that there is always need of a language no matter what a person wants to do. To put it as Carlo Sini, language is the first toolbox that man has at hands to analyze the experience. It is not a thought translated into words, because to think is to operate with...
A Holistic Approach to Bit Preservation
DEFF Research Database (Denmark)
Zierau, Eld Maj-Britt Olmütz
2011-01-01
This thesis presents three main results for a holistic approach to bit preservation, where the ultimate goal is to find the optimal bit preservation strategy for specific digital material that must be digitally preserved. Digital material consists of sequences of bits, where a bit is a binary dig...
Chuanshi Brand Tri-cone Roller Bit
Institute of Scientific and Technical Information of China (English)
Chen Xilong; Shen Zhenzhong; Yuan Xiaoyi
1997-01-01
@@ Compared with other types of bits, the tri-cone roller bit has the advantages of excellent comprehensive performance, low price, wide usage range. It is free of formation limits. The tri-cone roller bit accounts for 90% of the total bits in use. The Chengdu Mechanical Works, as a major manufacturer of petroleum mechanical products and one of the four major tri-cone roller bit factories in China,has produced 120 types of bits in seven series and 19 sizes since 1967. The bits manufactured by the factory are not only sold to the domestic oilfields, but also exported to Japan, Thailand, Indonesia, the Philippines and the Middle East.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Classification system adopted for fixed cutter bits
Energy Technology Data Exchange (ETDEWEB)
Winters, W.J.; Doiron, H.H.
1988-01-01
The drilling industry has begun adopting the 1987 International Association of Drilling Contractors' (IADC) method for classifying fixed cutter drill bits. By studying the classification codes on bit records and properly applying the new IADC fixed cutter dull grading system to recently run bits, the end-user should be able to improve the selection and usage of fixed cutter bits. Several users are developing databases for fixed cutter bits in an effort to relate field performance to some of the more prominent bit design characteristics.
Delhôtel, Jean-Michel
'Information is physical': the popular slogan (Landauer, 1991) recalls the fact that information, if it is to be stored, processed or communicated, must have a physical embodiment. Until recently, the physical systems used for representing information were all within the jurisdiction of classical laws. Since the early 1980s however, a growing band of theorists have been toying with the idea of extending such representations to the quantum realm. The computational or cryptographical advantages afforded by linear combinations of quantum states have been unveiled and quantified. Renewed interest in Hilbert space structure and properties of 'entangled' quantum systems have become cornerstones of a new discipline: 'quantum information theory' (QIT), to which we owe some of the most significant and intriguing results in mathematical physics over the last decade.
Quantum Computation Toward Quantum Gravity
Zizzi, P. A.
2001-08-01
The aim of this paper is to enlighten the emerging relevance of Quantum Information Theory in the field of Quantum Gravity. As it was suggested by J. A. Wheeler, information theory must play a relevant role in understanding the foundations of Quantum Mechanics (the "It from bit" proposal). Here we suggest that quantum information must play a relevant role in Quantum Gravity (the "It from qubit" proposal). The conjecture is that Quantum Gravity, the theory which will reconcile Quantum Mechanics with General Relativity, can be formulated in terms of quantum bits of information (qubits) stored in space at the Planck scale. This conjecture is based on the following arguments: a) The holographic principle, b) The loop quantum gravity approach and spin networks, c) Quantum geometry and black hole entropy. From the above arguments, as they stand in the literature, it follows that the edges of spin networks pierce the black hole horizon and excite curvature degrees of freedom on the surface. These excitations are micro-states of Chern-Simons theory and account of the black hole entropy which turns out to be a quarter of the area of the horizon, (in units of Planck area), in accordance with the holographic principle. Moreover, the states which dominate the counting correspond to punctures of spin j = 1/2 and one can in fact visualize each micro-state as a bit of information. The obvious generalization of this result is to consider open spin networks with edges labeled by the spin -1/ 2 representation of SU(2) in a superposed state of spin "on" and spin "down." The micro-state corresponding to such a puncture will be a pixel of area which is "on" and "off" at the same time, and it will encode a qubit of information. This picture, when applied to quantum cosmology, describes an early inflationary universe which is a discrete version of the de Sitter universe.
Simulated Quantum Computation of Molecular Energies
Aspuru-Guzik, A; Love, P J; Head-Gordon, M; Aspuru-Guzik, Al\\'an; Dutoi, Anthony D.; Love, Peter J.; Head-Gordon, Martin
2005-01-01
The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.
Reading boundless error-free bits using a single photon
Guha, Saikat; Shapiro, Jeffrey H.
2013-06-01
We address the problem of how efficiently information can be encoded into and read out reliably from a passive reflective surface that encodes classical data by modulating the amplitude and phase of incident light. We show that nature imposes no fundamental upper limit to the number of bits that can be read per expended probe photon and demonstrate the quantum-information-theoretic trade-offs between the photon efficiency (bits per photon) and the encoding efficiency (bits per pixel) of optical reading. We show that with a coherent-state (ideal laser) source, an on-off (amplitude-modulation) pixel encoding, and shot-noise-limited direct detection (an overly optimistic model for commercial CD and DVD drives), the highest photon efficiency achievable in principle is about 0.5 bits read per transmitted photon. We then show that a coherent-state probe can read unlimited bits per photon when the receiver is allowed to make joint (inseparable) measurements on the reflected light from a large block of phase-modulated memory pixels. Finally, we show an example of a spatially entangled nonclassical light probe and a receiver design—constructible using a single-photon source, beam splitters, and single-photon detectors—that can in principle read any number of error-free bits of information. The probe is a single photon prepared in a uniform coherent superposition of multiple orthogonal spatial modes, i.e., a W state. The code and joint-detection receiver complexity required by a coherent-state transmitter to achieve comparable photon efficiency performance is shown to be much higher in comparison to that required by the W-state transceiver, although this advantage rapidly disappears with increasing loss in the system.
Flexible Bit Preservation on a National Basis
DEFF Research Database (Denmark)
Jurik, Bolette; Nielsen, Anders Bo; Zierau, Eld
2012-01-01
In this paper we present the results from The Danish National Bit Repository project. The project aim was establishment of a system that can offer flexible and sustainable bit preservation solutions to Danish cultural heritage institutions. Here the bit preservation solutions must include support...... of bit safety as well as other requirements like e.g. confidentiality and availability. The Danish National Bit Repository is motivated by the need to investigate and handle bit preservation for digital cultural heritage. Digital preservation relies on the integrity of the bits which digital material...... consists of, and it is with this focus that the project was initiated. This paper summarizes the requirements for a general system to offer bit preservation to cultural heritage institutions. On this basis the paper describes the resulting flexible system which can support such requirements. The paper...
Investigating Quantum Modulation States
2016-03-01
3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE INVESTIGATING QUANTUM MODULATION STATES 5a. CONTRACT NUMBER IN-HOUSE 5b...Coherent states are the most classical of quantum states. Generation and detection of their polarization and phase modulations are well...stream cipher maps message bits onto random blocks of bits producing modulated states that are intrinsically noisy. The ciphertext so generated is
A holistic approach to bit preservation
DEFF Research Database (Denmark)
Zierau, Eld
2012-01-01
Purpose: The purpose of this paper is to point out the importance of taking a holistic approach to bit preservation when setting out to find an optimal bit preservation solution for specific digital materials. In the last decade there has been an increasing awareness that bit preservation, which ...
BIT BY BIT: A Game Simulating Natural Language Processing in Computers
Kato, Taichi; Arakawa, Chuichi
2008-01-01
BIT BY BIT is an encryption game that is designed to improve students' understanding of natural language processing in computers. Participants encode clear words into binary code using an encryption key and exchange them in the game. BIT BY BIT enables participants who do not understand the concept of binary numbers to perform the process of…
A Holistic Approach to Bit Preservation
DEFF Research Database (Denmark)
Zierau, Eld Maj-Britt Olmütz
2011-01-01
for confidentiality, availability, costs, additional to the requirements of ensuring bit safety. A few examples are: • The way that digital material is represented in files and structures has an influence on whether it is possible to interpret and use the bits at a later stage. Consequentially, the way bits represent....... • There will be requirements for the availability of the bit preserved digital material in order to meet requirements on use of the digital material, e.g. libraries often need to give fast access to preserved digital material to the public, i.e. the availability of the bit preserved material must support the use...
Single photon quantum cryptography
Beveratos, A; Gacoin, T; Villing, A; Poizat, J P; Grangier, P; Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, Andre; Poizat, Jean-Philippe; Grangier, Philippe
2002-01-01
We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy (NV) color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 9500 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.
Single photon quantum cryptography.
Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe
2002-10-28
We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.
Quantum entanglement and quantum computational algorithms
Indian Academy of Sciences (India)
Arvind
2001-02-01
The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped onto a classical optical scheme. It is only for three and more input bits that the DJ algorithm requires the implementation of entangling transformations and in these cases it is impossible to implement this algorithm classically
Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser
Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael
2010-06-01
Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.
Stability of single skyrmionic bits
Vedmedenko, Olena; Hagemeister, Julian; Romming, Niklas; von Bergmann, Kirsten; Wiesendanger, Roland
The switching between topologically distinct skyrmionic and ferromagnetic states has been proposed as a bit operation for information storage. While long lifetimes of the bits are required for data storage devices, the lifetimes of skyrmions have not been addressed so far. Here we show by means of atomistic Monte Carlo simulations that the field-dependent mean lifetimes of the skyrmionic and ferromagnetic states have a high asymmetry with respect to the critical magnetic field, at which these lifetimes are identical. According to our calculations, the main reason for the enhanced stability of skyrmions is a different field dependence of skyrmionic and ferromagnetic activation energies and a lower attempt frequency of skyrmions rather than the height of energy barriers. We use this knowledge to propose a procedure for the determination of effective material parameters and the quantification of the Monte Carlo timescale from the comparison of theoretical and experimental data. Financial support from the DFG in the framework of the SFB668 is acknowledged.
Bit threads and holographic entanglement
Freedman, Michael
2016-01-01
The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner...
DEFF Research Database (Denmark)
Sabra, Jakob Borrits
We mourn our dead, publicly and privately, online and offline. Cemeteries, web memorials and social network sites make up parts of todays intricately weaved and interrelated network of death, grief and memorialization practices [1]–[5]. Whether cut in stone or made of bits, graves, cemeteries, me...... and memorialization by discussing the publicly and privately digital and social death from a spatial, temporal, physical and digital angle. Further the paper will reflect on how to encompass shifting trends and technologies in ‘traditional’ spaces of mourning and remembrance.......We mourn our dead, publicly and privately, online and offline. Cemeteries, web memorials and social network sites make up parts of todays intricately weaved and interrelated network of death, grief and memorialization practices [1]–[5]. Whether cut in stone or made of bits, graves, cemeteries......, memorials, monuments, websites and social networking services (SNS) all are alterable, controllable and adaptive. They represent a certain rationale contrary to the emotive state of mourning (e.g. gravesites function as both spaces of internment and places of spiritual and emotional recollection). Following...
Bit Threads and Holographic Entanglement
Freedman, Michael; Headrick, Matthew
2016-11-01
The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner to the properties' information-theoretic meanings. We also briefly discuss certain technical advantages that the flows offer over minimal surfaces. In a mathematical appendix, we review the max flow-min cut theorem on networks and on Riemannian manifolds, and prove in the network case that the set of max flows varies Lipshitz continuously in the network parameters.
Quantum Adiabatic Evolution Algorithms versus Simulated Annealing
Farhi, E; Gutmann, S; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam
2002-01-01
We explain why quantum adiabatic evolution and simulated annealing perform similarly in certain examples of searching for the minimum of a cost function of n bits. In these examples each bit is treated symmetrically so the cost function depends only on the Hamming weight of the n bits. We also give two examples, closely related to these, where the similarity breaks down in that the quantum adiabatic algorithm succeeds in polynomial time whereas simulated annealing requires exponential time.
DEFF Research Database (Denmark)
Sabra, Jakob Borrits; Andersen, Hans Jørgen
The digital spheres of Information and Communication Technologies (ICT) and Social Network Services (SNS) are influencing 21st. century death. Today the dying and the bereaved attend mourning and remembrance both online and offline. Combined, the cemeteries, web memorials and social network sites...... designs'. Urns, coffins, graves, cemeteries, memorials, monuments, websites, applications and software services, whether cut in stone or made of bits, are all influenced by discourses of publics, economics, power, technology and culture. Designers, programmers, stakeholders and potential end-users often...... do not recognize the need or potential of working with or using, specific 'death-services/products', since they find little or no comfort in contemplating, working or playing around with the concept of death and its life changing consequences. Especially not while being alive and well...
Energy Technology Data Exchange (ETDEWEB)
Wu, Kesheng
2007-08-02
An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. The compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.
Stinger Enhanced Drill Bits For EGS
Energy Technology Data Exchange (ETDEWEB)
Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)
2013-04-29
The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.
Bit-coded regular expression parsing
DEFF Research Database (Denmark)
Nielsen, Lasse; Henglein, Fritz
2011-01-01
Regular expression parsing is the problem of producing a parse tree of a string for a given regular expression. We show that a compact bit representation of a parse tree can be produced efficiently, in time linear in the product of input string size and regular expression size, by simplifying...... the DFA-based parsing algorithm due to Dub ´e and Feeley to emit the bits of the bit representation without explicitly materializing the parse tree itself. We furthermore show that Frisch and Cardelli’s greedy regular expression parsing algorithm can be straightforwardly modified to produce bit codings...
Encoding M classical bits in the arrival time of dense-coded photons
Hegazy, Salem F; Obayya, Salah S A
2016-01-01
We present a scheme to encode M extra classical bits to a dense-coded pair of photons. By tuning the delay of an entangled pair of photons to one of 2^M time-bins and then applying one of the quantum dense coding protocols, a receiver equipped with a synchronized clock of reference is able to decode M bits (via classical time-bin encoding) + 2 bits (via quantum dense coding). This protocol, yet simple, does not dispense several special features of the used programmable delay apparatus to maintain the coherence of the two-photon state. While this type of time-domain encoding may be thought to be ideally of boundless photonic capacity (by increasing the number of available time-bins), errors due to the environmental noise and the imperfect devices and channel evolve with the number of time-bins.
A family of compatible single- and multimicroprocessor systems with 8-bit and 16-bit Microprocessors
Energy Technology Data Exchange (ETDEWEB)
Brzezinski, J.; Cellary, W.; Kreglewski, J.
1984-10-01
In the paper, a multimicroprocessor system for 8-bit and 16-bit microprocessors is presented. The main assumptions of the project of the presented system are discussed. Different single- and multimicroprocessor structures with 8-bit microprocessors are outlined. A detailed description of two single-board microcomputers and system aspects of different solutions are presented. Finally, an intelligent floppy disk controller is described.
Novel Parity-Preserving Designs of Reversible 4-Bit Comparator
Qi, Xue-mei; Chen, Fu-long; Wang, Hong-tao; Sun, Yun-xiang; Guo, Liang-min
2014-04-01
Reversible logic has attracted much attention in recent years especially when the calculation with minimum energy consumption is considered. This paper presents two novel approaches for designing reversible 4-bit comparator based on parity-preserving gates, which can detect any fault that affects no more than a single logic signal. In order to construct the comparator, three variable EX-OR gate (TVG), comparator gate (CPG), four variable EX-OR gate block (FVGB) and comparator gate block (CPGB) are designed, and they are parity-preserving and reversible. Their quantum equivalent implementations are also proposed. The design of two comparator circuits is completed by using existing reversible gates and the above new reversible circuits. All these comparators have been modeled and verified in Verilog hardware description language (Verilog HDL). The Quartus II simulation results indicate that their circuits' logic structures are correct. The comparative results are presented in terms of quantum cost, delay and garbage outputs.
A realizable quantum encryption algorithm for qubits
Institute of Scientific and Technical Information of China (English)
Zhou Nan-Run; Zeng Gui-Hua
2005-01-01
A realizable quantum encryption algorithm for qubits is presented by employing bit-wise quantum computation.System extension and bit-swapping are introduced into the encryption process, which makes the ciphertext space expanded greatly. The security of the proposed algorithm is analysed in detail and the schematic physical implementation is also provided. It is shown that the algorithm, which can prevent quantum attack strategy as well as classical attack strategy, is effective to protect qubits. Finally, we extend our algorithm to encrypt classical binary bits and quantum entanglements.
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
PERBANDINGAN APLIKASI MENGGUNAKAN METODE CAMELLIA 128 BIT KEY DAN 256 BIT KEY
Directory of Open Access Journals (Sweden)
Lanny Sutanto
2014-01-01
Full Text Available The rapid development of the Internet today to easily exchange data. This leads to high levels of risk in the data piracy. One of the ways to secure data is using cryptography camellia. Camellia is known as a method that has the encryption and decryption time is fast. Camellia method has three kinds of scale key is 128 bit, 192 bit, and 256 bit.This application is created using the C++ programming language and using visual studio 2010 GUI. This research compare the smallest and largest key size used on the file extension .Txt, .Doc, .Docx, .Jpg, .Mp4, .Mkv and .Flv. This application is made to comparing time and level of security in the use of 128-bit key and 256 bits. The comparison is done by comparing the results of the security value of avalanche effect 128 bit key and 256 bit key.
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1990-01-29
We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc{sup 2} in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc{sup 2} our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G{sub {pi}N}{sup 2}){sup 2} = (2m{sub N}/m{sub {pi}}){sup 2} {minus} 1. 21 refs., 1 fig.
Quantum random number generator
Stipcevic, M
2006-01-01
We report upon a novel principle for realization of a fast nondeterministic random number generator whose randomness relies on intrinsic randomness of the quantum physical processes of photonic emission in semiconductors and subsequent detection by the photoelectric effect. Timing information of detected photons is used to generate binary random digits-bits. The bit extraction method based on restartable clock theoretically eliminates both bias and autocorrelation while reaching efficiency of almost 0.5 bits per random event. A prototype has been built and statistically tested.
A holistic approach to bit preservation
DEFF Research Database (Denmark)
Zierau, Eld
2012-01-01
Purpose: The purpose of this paper is to point out the importance of taking a holistic approach to bit preservation when setting out to find an optimal bit preservation solution for specific digital materials. In the last decade there has been an increasing awareness that bit preservation, which...... preservation strategies as well as pointing to how such strategies can be evaluated. Research limitations/implications The operational results described here are still missing work to be fully operational. However, the holistic approach is in itself an important result. Furthermore, in spite...
Randomness: quantum versus classical
Khrennikov, Andrei
2015-01-01
Recent tremendous development of quantum information theory led to a number of quantum technological projects, e.g., quantum random generators. This development stimulates a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is elaboration of a consistent and commonly accepted interpretation of quantum state. Closely related problem is clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. The second part of this review is devoted to the information interpretation of quantum mechanics (QM) in the spirit of Zeilinger and Brukner (and QBism of Fuchs et al.) and physics in general (e.g., Wheeler's "it from bit") as well as digital philosophy of Chaitin (with historical coupling to ideas of Leibnitz). Finally, w...
Conversion of an 8-bit to a 16-bit Soft-core RISC Processor
Directory of Open Access Journals (Sweden)
Ahmad Jamal Salim
2013-03-01
Full Text Available The demand for 8-bit processors nowadays is still going strong despite efforts by manufacturers in producing higher end microcontroller solutions to the mass market. Low-end processor offers a simple, low-cost and fast solution especially on I/O applications development in embedded system. However, due to architectural constraint, complex calculation could not be performed efficiently on 8-bit processor. This paper presents the conversion method from an 8-bit to a 16-bit Reduced Instruction Set Computer (RISC processor in a soft-core reconfigurable platform in order to extend its capability in handling larger data sets thus enabling intensive calculations process. While the conversion expands the data bus width to 16-bit, it also maintained the simple architecture design of an 8-bit processor.The expansion also provides more room for improvement to the processor’s performance. The modified architecture is successfully simulated in CPUSim together with its new instruction set architecture (ISA. Xilinx Virtex-6 platform is utilized to execute and verified the architecture. Results show that the modified 16-bit RISC architecture only required 17% more register slice on Field Programmable Gate Array (FPGA implementation which is a slight increase compared to the original 8-bit RISC architecture. A test program containing instruction sets that handle 16-bit data are also simulated and verified. As the 16-bit architecture is described as a soft-core, further modifications could be performed in order to customize the architecture to suit any specific applications.
Quantum Boolean image denoising
Mastriani, Mario
2015-05-01
A quantum Boolean image processing methodology is presented in this work, with special emphasis in image denoising. A new approach for internal image representation is outlined together with two new interfaces: classical to quantum and quantum to classical. The new quantum Boolean image denoising called quantum Boolean mean filter works with computational basis states (CBS), exclusively. To achieve this, we first decompose the image into its three color components, i.e., red, green and blue. Then, we get the bitplanes for each color, e.g., 8 bits per pixel, i.e., 8 bitplanes per color. From now on, we will work with the bitplane corresponding to the most significant bit (MSB) of each color, exclusive manner. After a classical-to-quantum interface (which includes a classical inverter), we have a quantum Boolean version of the image within the quantum machine. This methodology allows us to avoid the problem of quantum measurement, which alters the results of the measured except in the case of CBS. Said so far is extended to quantum algorithms outside image processing too. After filtering of the inverted version of MSB (inside quantum machine), the result passes through a quantum-classical interface (which involves another classical inverter) and then proceeds to reassemble each color component and finally the ending filtered image. Finally, we discuss the more appropriate metrics for image denoising in a set of experimental results.
Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.
Tsai, Jaw-Shen
2010-01-01
Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.
FastBit: Interactively Searching Massive Data
Energy Technology Data Exchange (ETDEWEB)
Wu, Kesheng; Ahern, Sean; Bethel, E. Wes; Chen, Jacqueline; Childs, Hank; Cormier-Michel, Estelle; Geddes, Cameron; Gu, Junmin; Hagen, Hans; Hamann, Bernd; Koegler, Wendy; Lauret, Jerome; Meredith, Jeremy; Messmer, Peter; Otoo, Ekow; Perevoztchikov, Victor; Poskanzer, Arthur; Prabhat,; Rubel, Oliver; Shoshani, Arie; Sim, Alexander; Stockinger, Kurt; Weber, Gunther; Zhang, Wei-Ming
2009-06-23
As scientific instruments and computer simulations produce more and more data, the task of locating the essential information to gain insight becomes increasingly difficult. FastBit is an efficient software tool to address this challenge. In this article, we present a summary of the key underlying technologies, namely bitmap compression, encoding, and binning. Together these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster than popular database systems. To illustrate how FastBit is used in applications, we present three examples involving a high-energy physics experiment, a combustion simulation, and an accelerator simulation. In each case, FastBit significantly reduces the response time and enables interactive exploration on terabytes of data.
An optical ultrafast random bit generator
Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael
2010-01-01
The generation of random bit sequences based on non-deterministic physical mechanisms is of paramount importance for cryptography and secure communications. High data rates also require extremely fast generation rates and robustness to external perturbations. Physical generators based on stochastic noise sources have been limited in bandwidth to ~100 Mbit s-1 generation rates. We present a physical random bit generator, based on a chaotic semiconductor laser, having time-delayed self-feedback, which operates reliably at rates up to 300 Gbit s-1. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.
Bit Loading Algorithms for Cooperative OFDM Systems
Directory of Open Access Journals (Sweden)
Bo Gui
2007-12-01
Full Text Available We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.
Bit Loading Algorithms for Cooperative OFDM Systems
Directory of Open Access Journals (Sweden)
Gui Bo
2008-01-01
Full Text Available Abstract We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.
Addition on a Quantum Computer
Draper, Thomas G
2000-01-01
A new method for computing sums on a quantum computer is introduced. This technique uses the quantum Fourier transform and reduces the number of qubits necessary for addition by removing the need for temporary carry bits. This approach also allows the addition of a classical number to a quantum superposition without encoding the classical number in the quantum register. This method also allows for massive parallelization in its execution.
Neural network implementation using bit streams.
Patel, Nitish D; Nguang, Sing Kiong; Coghill, George G
2007-09-01
A new method for the parallel hardware implementation of artificial neural networks (ANNs) using digital techniques is presented. Signals are represented using uniformly weighted single-bit streams. Techniques for generating bit streams from analog or multibit inputs are also presented. This single-bit representation offers significant advantages over multibit representations since they mitigate the fan-in and fan-out issues which are typical to distributed systems. To process these bit streams using ANNs concepts, functional elements which perform summing, scaling, and squashing have been implemented. These elements are modular and have been designed such that they can be easily interconnected. Two new architectures which act as monotonically increasing differentiable nonlinear squashing functions have also been presented. Using these functional elements, a multilayer perceptron (MLP) can be easily constructed. Two examples successfully demonstrate the use of bit streams in the implementation of ANNs. Since every functional element is individually instantiated, the implementation is genuinely parallel. The results clearly show that this bit-stream technique is viable for the hardware implementation of a variety of distributed systems and for ANNs in particular.
Advanced quantum communication systems
Jeffrey, Evan Robert
Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.
Quantum teleportation between remote atomic-ensemble quantum memories
Bao, Xiao-Hui; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei
2012-01-01
Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel", quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of 100 million rubidium atoms and connected by a 150-meter optical fiber. The spinwave state of one atomic ensemble is mapped to a propagating photon, and subjected to Bell-state measurements with another single photon that is entangled with the spinwave state of the other ensemble. Two-photon detection events herald the succe...
Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou
2013-05-20
We propose an efficient protocol for optimizing the physical implementation of three-qubit quantum error correction with spatially separated quantum dot spins via virtual-photon-induced process. In the protocol, each quantum dot is trapped in an individual cavity and each two cavities are connected by an optical fiber. We propose the optimal quantum circuits and describe the physical implementation for correcting both the bit flip and phase flip errors by applying a series of one-bit unitary rotation gates and two-bit quantum iSWAP gates that are produced by the long-range interaction between two distributed quantum dot spins mediated by the vacuum fields of the fiber and cavity. The protocol opens promising perspectives for long distance quantum communication and distributed quantum computation networks.
Steganography on quantum pixel images using Shannon entropy
Laurel, Carlos Ortega; Dong, Shi-Hai; Cruz-Irisson, M.
2016-07-01
This paper presents a steganographical algorithm based on least significant bit (LSB) from the most significant bit information (MSBI) and the equivalence of a bit pixel image to a quantum pixel image, which permits to make the information communicate secretly onto quantum pixel images for its secure transmission through insecure channels. This algorithm offers higher security since it exploits the Shannon entropy for an image.
Detecting bit-flip errors in a logical qubit using stabilizer measurements.
Ristè, D; Poletto, S; Huang, M-Z; Bruno, A; Vesterinen, V; Saira, O-P; DiCarlo, L
2015-04-29
Quantum data are susceptible to decoherence induced by the environment and to errors in the hardware processing it. A future fault-tolerant quantum computer will use quantum error correction to actively protect against both. In the smallest error correction codes, the information in one logical qubit is encoded in a two-dimensional subspace of a larger Hilbert space of multiple physical qubits. For each code, a set of non-demolition multi-qubit measurements, termed stabilizers, can discretize and signal physical qubit errors without collapsing the encoded information. Here using a five-qubit superconducting processor, we realize the two parity measurements comprising the stabilizers of the three-qubit repetition code protecting one logical qubit from physical bit-flip errors. While increased physical qubit coherence times and shorter quantum error correction blocks are required to actively safeguard the quantum information, this demonstration is a critical step towards larger codes based on multiple parity measurements.
Low complexity bit loading algorithm for OFDM system
Institute of Scientific and Technical Information of China (English)
Yang Yu; Sha Xuejun; Zhang Zhonghua
2006-01-01
A new approach to loading for orthogonal frequency division multiplexing (OFDM) system is proposed, this bit-loading algorithm assigns bits to different subchannels in order to minimize the transmit energy. In the algorithm,first most bit are allocated to each subchannels according to channel condition, Shannon formula and QoS require of the user, then the residual bit are allocated to the subchannels bit by bit. In this way the algorithm is efficient while calculation is less complex. This is the first time to load bits with the scale following Shannon formula and the algorithm is of O (4N) complexity.
Locking classical correlation in quantum states
Di Vincenzo, D P; Leung, D; Smolin, J A; Terhal, B M; Vincenzo, David Di; Horodecki, Michal; Leung, Debbie; Smolin, John; Terhal, Barbara
2003-01-01
We show that there exist bipartite quantum states which contain large hidden classical correlation that can be unlocked by a disproportionately small amount of classical communication. In particular, there are $(2n+1)$-qubit states for which a one bit message doubles the optimal classical mutual information between measurement results on the subsystems, from $n/2$ bits to $n$ bits. States exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.
Quantum enigma machine: Experimentally demonstrating quantum data locking
Lum, Daniel J.; Howell, John C.; Allman, M. S.; Gerrits, Thomas; Verma, Varun B.; Nam, Sae Woo; Lupo, Cosmo; Lloyd, Seth
2016-08-01
Shannon proved in 1949 that information-theoretic-secure encryption is possible if the encryption key is used only once, is random, and is at least as long as the message itself. Notwithstanding, when information is encoded in a quantum system, the phenomenon of quantum data locking allows one to encrypt a message with a shorter key and still provide information-theoretic security. We present one of the first feasible experimental demonstrations of quantum data locking for direct communication and propose a scheme for a quantum enigma machine that encrypts 6 bits per photon (containing messages, new encryption keys, and forward error correction bits) with less than 6 bits per photon of encryption key while remaining information-theoretically secure.
A Quantum Enigma Machine: Experimentally Demonstrating Quantum Data Locking
Lum, Daniel J; Gerrits, Thomas; Lupo, Cosmo; Verma, Varun B; Lloyd, Seth; Nam, Sae Woo; Howell, John C
2016-01-01
Claude Shannon proved in 1949 that information-theoretic-secure encryption is possible if the encryption key is used only once, is random, and is at least as long as the message itself. Notwithstanding, when information is encoded in a quantum system, the phenomenon of quantum data locking allows one to encrypt a message with an exponentially shorter key and still provide information-theoretic security. We present the first feasible experimental demonstration of quantum data locking for direct communication and propose a scheme for a quantum enigma machine that encrypts 6 bits per photon (containing messages, new encryption keys, and forward error correction bits) with less than 6 bits per photon of encryption key while remaining information-theoretically secure.
Allowable Generalized Quantum Gates
Institute of Scientific and Technical Information of China (English)
LONG Gui-Lu; LIU Yang; WANG Chuan
2009-01-01
In this paper, we give the most general duality gates, or generalized quantum gates in duality quantum computers. Here we show by explicit construction that a n-bit duality quantum computer with d slits can be simulated perfectly with an ordinary quantum computer with n qubits and one auxiliary qudit. Using this model, we give the most general form of duality gates which is of the form Σ(d-1)(i=0)piUi, and the Pi's are complex numbers with module less or equal to I and constrained by |Σipi|≤1.
Ultra low bit-rate speech coding
Ramasubramanian, V
2015-01-01
"Ultra Low Bit-Rate Speech Coding" focuses on the specialized topic of speech coding at very low bit-rates of 1 Kbits/sec and less, particularly at the lower ends of this range, down to 100 bps. The authors set forth the fundamental results and trends that form the basis for such ultra low bit-rates to be viable and provide a comprehensive overview of various techniques and systems in literature to date, with particular attention to their work in the paradigm of unit-selection based segment quantization. The book is for research students, academic faculty and researchers, and industry practitioners in the areas of speech processing and speech coding.
Bit-padding information guided channel hopping
Yang, Yuli
2011-02-01
In the context of multiple-input multiple-output (MIMO) communications, we propose a bit-padding information guided channel hopping (BP-IGCH) scheme which breaks the limitation that the number of transmit antennas has to be a power of two based on the IGCH concept. The proposed scheme prescribes different bit-lengths to be mapped onto the indices of the transmit antennas and then uses padding technique to avoid error propagation. Numerical results and comparisons, on both the capacity and the bit error rate performances, are provided and show the advantage of the proposed scheme. The BP-IGCH scheme not only offers lower complexity to realize the design flexibility, but also achieves better performance. © 2011 IEEE.
Optical Implementation of Quantum Orienteering
Jeffrey, Evan R.; Altepeter, Joseph B.; Colci, Madalina; Kwiat, Paul G.
2006-04-01
We present results from an optical implementation of quantum orienteering, a protocol for communicating directions in space using quantum bits. We show how different types of measurements and encodings can be used to increase the communication efficiency. In particular, if Alice and Bob use two spin-1/2 particles for communication and employ joint measurements, they do better than is possible with local operations and classical communication. Furthermore, by using oppositely oriented spins, the achievable communication efficiency is further increased. Finally, we discuss the limitations of an optical approach: our results highlight the usually overlooked nonequivalence of different physical encodings of quantum bits.
Quantum cryptography with entangled photons
Jennewein; Simon; Weihs; Weinfurter; Zeilinger
2000-05-15
By realizing a quantum cryptography system based on polarization entangled photon pairs we establish highly secure keys, because a single photon source is approximated and the inherent randomness of quantum measurements is exploited. We implement a novel key distribution scheme using Wigner's inequality to test the security of the quantum channel, and, alternatively, realize a variant of the BB84 protocol. Our system has two completely independent users separated by 360 m, and generates raw keys at rates of 400-800 bits/s with bit error rates around 3%.
Feedback control of superconducting quantum circuits
Ristè, D.
2014-01-01
Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback contr
Autocompensating Quantum Cryptography
Bethune, D S; Bethune, Donald S.; Risk, William P.
2002-01-01
Quantum cryptographic key distribution (QKD) uses extremely faint light pulses to carry quantum information between two parties (Alice and Bob), allowing them to generate a shared, secret cryptographic key. Autocompensating QKD systems automatically and passively compensate for uncontrolled time dependent variations of the optical fiber properties by coding the information as a differential phase between orthogonally-polarized components of a light pulse sent on a round trip through the fiber, reflected at mid-course using a Faraday mirror. We have built a prototype system based on standard telecom technology that achieves a privacy-amplified bit generation rate of ~1000 bits/s over a 10-km optical fiber link. Quantum cryptography is an example of an application that, by using quantum states of individual particles to represent information, accomplishes a practical task that is impossible using classical means.
Protected Polycrystalline Diamond Compact Bits For Hard Rock Drilling
Energy Technology Data Exchange (ETDEWEB)
Robert Lee Cardenas
2000-10-31
Two bits were designed. One bit was fabricated and tested at Terra-Tek's Drilling Research Laboratory. Fabrication of the second bit was not completed due to complications in fabrication and meeting scheduled test dates at the test facility. A conical bit was tested in a Carthage Marble (compressive strength 14,500 psi) and Sierra White Granite (compressive strength 28,200 psi). During the testing, Hydraulic Horsepower, Bit Weight, Rotation Rate, were varied for the Conical Bit, a Varel Tricone Bit and Varel PDC bit. The Conical Bi did cut rock at a reasonable rate in both rocks. Beneficial effects from the near and through cutter water nozzles were not evident in the marble due to test conditions and were not conclusive in the granite due to test conditions. At atmospheric drilling, the Conical Bit's penetration rate was as good as the standard PDC bit and better than the Tricone Bit. Torque requirements for the Conical Bit were higher than that required for the Standard Bits. Spudding the conical bit into the rock required some care to avoid overloading the nose cutters. The nose design should be evaluated to improve the bit's spudding characteristics.
A Novel LSB Based Quantum Watermarking
Heidari, Shahrokh; Naseri, Mosayeb
2016-10-01
Quantum watermarking is a technique which embeds the invisible quantum signal such as the owners identification into quantum multimedia data (such as audio, video and image) for copyright protection. In this paper, using a quantum representation of digital images a new quantum watermarking protocol including quantum image scrambling based on Least Significant Bit (LSB) is proposed. In this protocol, by using m-bit embedding key K 1 and m-bit extracting key K 2 a m-pixel gray scale image is watermarked in a m-pixel carrier image by the original owner of the carrier image. For validation of the presented scheme the peak-signal-to-noise ratio (PSNR) and histogram graphs of the images are analyzed.
Linear, Constant-rounds Bit-decomposition
DEFF Research Database (Denmark)
Reistad, Tord; Toft, Tomas
2010-01-01
When performing secure multiparty computation, tasks may often be simple or difficult depending on the representation chosen. Hence, being able to switch representation efficiently may allow more efficient protocols. We present a new protocol for bit-decomposition: converting a ring element x ∈ ℤ M...
1 /N perturbations in superstring bit models
Thorn, Charles B.
2016-03-01
We develop the 1 /N expansion for stable string bit models, focusing on a model with bit creation operators carrying only transverse spinor indices a =1 ,…,s . At leading order (N =∞ ), this model produces a (discretized) light cone string with a "transverse space" of s Grassmann worldsheet fields. Higher orders in the 1 /N expansion are shown to be determined by the overlap of a single large closed chain (discretized string) with two smaller closed chains. In the models studied here, the overlap is not accompanied with operator insertions at the break/join point. Then, the requirement that the discretized overlap has a smooth continuum limit leads to the critical Grassmann "dimension" of s =24 . This "protostring," a Grassmann analog of the bosonic string, is unusual, because it has no large transverse dimensions. It is a string moving in one space dimension, and there are neither tachyons nor massless particles. The protostring, derived from our pure spinor string bit model, has 24 Grassmann dimensions, 16 of which could be bosonized to form 8 compactified bosonic dimensions, leaving 8 Grassmann dimensions—the worldsheet content of the superstring. If the transverse space of the protostring could be "decompactified," string bit models might provide an appealing and solid foundation for superstring theory.
Reinforcement Learning in BitTorrent Systems
Izhak-Ratzin, Rafit; van der Schaar, Mihaela
2010-01-01
Recent research efforts have shown that the popular BitTorrent protocol does not provide fair resource reciprocation and may allow free-riding. In this paper, we propose a BitTorrent-like protocol that replaces the peer selection mechanisms in the regular BitTorrent protocol with a novel reinforcement learning (RL) based mechanism. Due to the inherent opration of P2P systems, which involves repeated interactions among peers over a long period of time, the peers can efficiently identify free-riders as well as desirable collaborators by learning the behavior of their associated peers. Thus, it can help peers improve their download rates and discourage free-riding, while improving fairness in the system. We model the peers' interactions in the BitTorrent-like network as a repeated interaction game, where we explicitly consider the strategic behavior of the peers. A peer, which applies the RL-based mechanism, uses a partial history of the observations on associated peers' statistical reciprocal behaviors to deter...
Hey! A Mosquito Bit Me! (For Kids)
... or Too Short All About Puberty Hey! A Mosquito Bit Me! KidsHealth > For Kids > Hey! A Mosquito ... español ¡Ay! ¡Me picó un mosquito! What's a Mosquito? A mosquito (say: mus-KEE-toe) is an ...
Bit corruption correlation and autocorrelation in a stochastic binary nano-bit system
Sa-nguansin, Suchittra
2014-10-01
The corruption process of a binary nano-bit model resulting from an interaction with N stochastically-independent Brownian agents (BAs) is studied with the help of Monte-Carlo simulations and analytic continuum theory to investigate the data corruption process through the measurement of the spatial two-point correlation and the autocorrelation of bit corruption at the origin. By taking into account a more realistic correlation between bits, this work will contribute to the understanding of the soft error or the corruption of data stored in nano-scale devices.
Demonstration of a Bit-Flip Correction for Enhanced Sensitivity Measurements
Cohen, L; Istrati, D; Retzker, A; Eisenberg, H S
2016-01-01
The sensitivity of classical and quantum sensing is impaired in a noisy environment. Thus, one of the main challenges facing sensing protocols is to reduce the noise while preserving the signal. State of the art quantum sensing protocols that rely on dynamical decoupling achieve this goal under the restriction of long noise correlation times. We implement a proof of principle experiment of a protocol to recover sensitivity by using an error correction for photonic systems that does not have this restriction. The protocol uses a protected entangled qubit to correct a bit-flip error. Our results show a recovery of about 87% of the sensitivity, independent of the noise rate.
Memory cost of quantum contextuality
Kleinmann, Matthias; Portillo, José R; Larsson, Jan-Åke; Cabello, Adán
2010-01-01
The simulation of quantum effects requires certain classical resources, and quantifying them is an important step in order to understand the difference between quantum and classical physics. We investigate the minimum classical memory needed to simulate the phenomenon of state-independent quantum contextuality in sequential measurements. We derive optimal simulation strategies for several important cases and prove that two bits of classical memory do not suffice to reproduce the results of sequential measurements on a two-qubit system.
Kendon, Vivien M; Nemoto, Kae; Munro, William J
2010-08-13
We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.
Quantum algorithms for biomolecular solutions of the satisfiability problem on a quantum machine.
Chang, Weng-Long; Ren, Ting-Ting; Luo, Jun; Feng, Mang; Guo, Minyi; Weicheng Lin, Kawuu
2008-09-01
In this paper, we demonstrate that the logic computation performed by the DNA-based algorithm for solving general cases of the satisfiability problem can be implemented more efficiently by our proposed quantum algorithm on the quantum machine proposed by Deutsch. To test our theory, we carry out a three-quantum bit nuclear magnetic resonance experiment for solving the simplest satisfiability problem.
Directory of Open Access Journals (Sweden)
Arief Hendra Saptadi
2011-11-01
Full Text Available The application of timer/counter in microcontroller system had provided advantages in a way that it didn’t put the burden on CPU resources and enabled CPU to perform other tasks. With the availability of 8-bit and 16-bit timer/counter, the problem laid on the selection of the type of timer/counter being used. From the experiments performed, the minimum system of AVR ATmega8535 microcontroller had precisely counted a number using two different timers/counters, namely, Timer/Counter 0 (8 bit and Timer/Counter 1 (16 bit. The overflow condition achieved on 8-bit and 16-bit counting cycle activated OCR0 and OCR1AL registers, respectively. Output signals from port B.3 (OC0 and port D.5 (OC1A are then fed to oscilloscope and put into comparison. From the observation of output signals, it could be proven that the two different timers/counters had equal counting speed. Hence, it can be concluded that the selection of timers/counters is more likely based on the flexibility of count range, program size and execution time
Global Networks of Trade and Bits
Riccaboni, Massimo; Schiavo, Stefano
2012-01-01
Considerable efforts have been made in recent years to produce detailed topologies of the Internet. Although Internet topology data have been brought to the attention of a wide and somewhat diverse audience of scholars, so far they have been overlooked by economists. In this paper, we suggest that such data could be effectively treated as a proxy to characterize the size of the "digital economy" at country level and outsourcing: thus, we analyse the topological structure of the network of trade in digital services (trade in bits) and compare it with that of the more traditional flow of manufactured goods across countries. To perform meaningful comparisons across networks with different characteristics, we define a stochastic benchmark for the number of connections among each country-pair, based on hypergeometric distribution. Original data are thus filtered by means of different thresholds, so that we only focus on the strongest links, i.e., statistically significant links. We find that trade in bits displays...
Quantum key distribution using three basis states
Indian Academy of Sciences (India)
Subhash Kak
2000-05-01
This note presents a method of public key distribution using quantum communication of photons that simultaneously provides a high probability that the bits have not been tampered. It is a variant of the quantum method of Bennett and Brassard (BB84) where the transmission states have been decreased from 4 to 3 and the detector states have been increased from 2 to 3. Under certain assumptions regarding method of attack, it provides superior performance (in terms of the number of usable key bits) for < 18, where is the number of key bits used to verify the integrity of the process in the BB84-protocol.
Acquisition and Retaining Granular Samples via a Rotating Coring Bit
Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart
2013-01-01
This device takes advantage of the centrifugal forces that are generated when a coring bit is rotated, and a granular sample is entered into the bit while it is spinning, making it adhere to the internal wall of the bit, where it compacts itself into the wall of the bit. The bit can be specially designed to increase the effectiveness of regolith capturing while turning and penetrating the subsurface. The bit teeth can be oriented such that they direct the regolith toward the bit axis during the rotation of the bit. The bit can be designed with an internal flute that directs the regolith upward inside the bit. The use of both the teeth and flute can be implemented in the same bit. The bit can also be designed with an internal spiral into which the various particles wedge. In another implementation, the bit can be designed to collect regolith primarily from a specific depth. For that implementation, the bit can be designed such that when turning one way, the teeth guide the regolith outward of the bit and when turning in the opposite direction, the teeth will guide the regolith inward into the bit internal section. This mechanism can be implemented with or without an internal flute. The device is based on the use of a spinning coring bit (hollow interior) as a means of retaining granular sample, and the acquisition is done by inserting the bit into the subsurface of a regolith, soil, or powder. To demonstrate the concept, a commercial drill and a coring bit were used. The bit was turned and inserted into the soil that was contained in a bucket. While spinning the bit (at speeds of 600 to 700 RPM), the drill was lifted and the soil was retained inside the bit. To prove this point, the drill was turned horizontally, and the acquired soil was still inside the bit. The basic theory behind the process of retaining unconsolidated mass that can be acquired by the centrifugal forces of the bit is determined by noting that in order to stay inside the interior of the bit, the
Jianghan PDC Bits Open Good Market in Singapore
Institute of Scientific and Technical Information of China (English)
Wang Tongliang
1995-01-01
@@ The PDC bits produced by PDC Division,Jianghan Drill Bit Plant won good reputation,because of its good quality and appearance in 94 South-east Asia Offshore Petroleum Engineering Product Exhibition held by Singapore International Exhibition Center.
DEFF Research Database (Denmark)
Wu, Shengjun; Poulsen, Uffe Vestergaard; Mølmer, Klaus
2009-01-01
We consider the classical correlations that two observers can extract by measurements on a bipartite quantum state and we discuss how they are related to the quantum mutual information of the state. We show with several examples how complementarity gives rise to a gap between the quantum and the ...... in the deterministic quantum computation with one quantum bit....
2-bit Flip Mutation Elementary Fitness Landscapes
Langdon, William
2010-01-01
Genetic Programming parity is not elementary. GP parity cannot be represented as the sum of a small number of elementary landscapes. Statistics, including fitness distance correlation, of Parity's fitness landscape are calculated. Using Walsh analysis the eigen values and eigenvectors of the Laplacian of the two bit flip fitness landscape are given and a ruggedness measure for elementary landscapes is proposed. An elementary needle in a haystack (NIH) landscape is g...
Blind One-Bit Compressive Sampling
2013-01-17
notation and recalling some background from convex analysis . For the d-dimensional Euclidean space Rd, the class of all lower semicontinuous convex...compressed sensing, Applied and Computational Harmonic Analysis , 27 (2009), pp. 265 – 274. [3] P. T. Boufounos and R. G. Baraniuk, 1-bit compressive sensing...Convergence analysis of the algorithm is presented. Our approach is to obtain a sequence of optimization problems by successively approximating the ℓ0
Quantum Endpoint Detection Based on QRDA
Wang, Jian; Wang, Han; Song, Yan
2017-08-01
Speech recognition technology is widely used in many applications for man - machine interaction. To face more and more speech data, the computation of speech processing needs new approaches. The quantum computation is one of emerging computation technology and has been seen as useful computation model. So we focus on the basic operation of speech recognition processing, the voice activity detection, to present quantum endpoint detection algorithm. In order to achieve this algorithm, the n-bits quantum comparator circuit is given firstly. Then based on QRDA(Quantum Representation of Digital Audio), a quantum endpoint detection algorithm is presented. These quantum circuits could efficient process the audio data in quantum computer.
Quantum Endpoint Detection Based on QRDA
Wang, Jian; Wang, Han; Song, Yan
2017-10-01
Speech recognition technology is widely used in many applications for man - machine interaction. To face more and more speech data, the computation of speech processing needs new approaches. The quantum computation is one of emerging computation technology and has been seen as useful computation model. So we focus on the basic operation of speech recognition processing, the voice activity detection, to present quantum endpoint detection algorithm. In order to achieve this algorithm, the n-bits quantum comparator circuit is given firstly. Then based on QRDA(Quantum Representation of Digital Audio), a quantum endpoint detection algorithm is presented. These quantum circuits could efficient process the audio data in quantum computer.
Rate Control for MPEG-4 Bit Stream
Institute of Scientific and Technical Information of China (English)
王振洲; 李桂苓
2003-01-01
For a very long time video processing dealt exclusively with fixed-rate sequences of rectangular shaped images. However, interest has been recently moving toward a more flexible concept in which the subject of the processing and encoding operations is a set of visual elements organized in both time and space in a flexible and arbitrarily complex way. The moving picture experts group (MPEG-4) standard supports this concept and its verification model (VM) encoder has adopted scalable rate control (SRC) as the rate control scheme, which is based on the spatial domain and compatible with constant bit rate (CBR) and variable bit rate (VBR). In this paper,a new rate control algorithm based on the DCT domain instead of the pixel domain is presented. More-over, macroblock level rate control scheme to compute the quantization step for each macroblock has been adopted. The experimental results show that the new algorithm can achieve a much better result than the original one in both peak signal-to-noise ratio (PSNR) and the coding bits, and that the new algorithm is more flexible than test model 5 (TM5) rate control algorithm.
NSC 800, 8-bit CMOS microprocessor
Suszko, S. F.
1984-01-01
The NSC 800 is an 8-bit CMOS microprocessor manufactured by National Semiconductor Corp., Santa Clara, California. The 8-bit microprocessor chip with 40-pad pin-terminals has eight address buffers (A8-A15), eight data address -- I/O buffers (AD(sub 0)-AD(sub 7)), six interrupt controls and sixteen timing controls with a chip clock generator and an 8-bit dynamic RAM refresh circuit. The 22 internal registers have the capability of addressing 64K bytes of memory and 256 I/O devices. The chip is fabricated on N-type (100) silicon using self-aligned polysilicon gates and local oxidation process technology. The chip interconnect consists of four levels: Aluminum, Polysi 2, Polysi 1, and P(+) and N(+) diffusions. The four levels, except for contact interface, are isolated by interlevel oxide. The chip is packaged in a 40-pin dual-in-line (DIP), side brazed, hermetically sealed, ceramic package with a metal lid. The operating voltage for the device is 5 V. It is available in three operating temperature ranges: 0 to +70 C, -40 to +85 C, and -55 to +125 C. Two devices were submitted for product evaluation by F. Stott, MTS, JPL Microprocessor Specialist. The devices were pencil-marked and photographed for identification.
1/N Perturbations in Superstring Bit Models
Thorn, Charles B
2015-01-01
We develop the 1/N expansion for stable string bit models, focusing on a model with bit creation operators carrying only transverse spinor indices a=1,...,s. At leading order (1/N=0), this model produces a (discretized) lightcone string with a "transverse space' of $s$ Grassmann worldsheet fields. Higher orders in the 1/N expansion are shown to be determined by the overlap of a single large closed chain (discretized string) with two smaller closed chains. In the models studied here, the overlap is not accompanied with operator insertions at the break/join point. Then the requirement that the discretized overlap have a smooth continuum limit leads to the critical Grassmann "dimension" of s=24. This "protostring", a Grassmann analog of the bosonic string, is unusual, because it has no large transverse dimensions. It is a string moving in one space dimension and there are neither tachyons nor massless particles. The protostring, derived from our pure spinor string bit model, has 24 Grassmann dimensions, 16 of wh...
Verilog Implementation of 32-Bit CISC Processor
Directory of Open Access Journals (Sweden)
P.Kanaka Sirisha
2016-04-01
Full Text Available The Project deals with the design of the 32-Bit CISC Processor and modeling of its components using Verilog language. The Entire Processor uses 32-Bit bus to deal with all the registers and the memories. This Processor implements various arithmetic, logical, Data Transfer operations etc., using variable length instructions, which is the core property of the CISC Architecture. The Processor also supports various addressing modes to perform a 32-Bit instruction. Our Processor uses Harvard Architecture (i.e., to have a separate program and data memory and hence has different buses to negotiate with the Program Memory and Data Memory individually. This feature enhances the speed of our processor. Hence it has two different Program Counters to point to the memory locations of the Program Memory and Data Memory.Our processor has ‘Instruction Queuing’ which enables it to save the time needed to fetch the instruction and hence increases the speed of operation. ‘Interrupt Service Routine’ is provided in our Processor to make it address the Interrupts.
Quantum Data Compression of a Qubit Ensemble
Rozema, Lee A.; Mahler, Dylan H.; Hayat, Alex; Turner, Peter S.; Steinberg, Aephraim M.
2014-01-01
Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compre...
Reversible n-Bit to n-Bit Integer Haar-Like Transforms
Energy Technology Data Exchange (ETDEWEB)
Senecal, J; Duchaineau, M; Joy, K I
2003-11-03
We introduce a wavelet-like transform similar to the Haar transform, but with the properties that it packs the results into the same number of bits as the original data, and is reversible. Our method, called TLHaar, uses table lookups to replace the averaging, differencing, and bit shifting performed in a Haar IntegerWavelet Transform (IWT). TLHaar maintains the same coefficient magnitude relationships for the low- and high-pass coefficients as true Haar, but reorders them to fit into the same number of bits as the input signal, thus eliminating the sign bit that is added to the Haar IWT output coefficients. Eliminating the sign bit avoids using extra memory and speeds the transform process. We tested TLHaar on a variety of image types, and when compared to the Haar IWT TLHaar is significantly faster. For image data with lines or hard edges TLHaar coefficients compress better than those of the Haar IWT. Due to its speed TLHaar is suitable for streaming hardware implementations with fixed data sizes, such as DVI channels.
A novel bit-quad-based Euler number computing algorithm.
Yao, Bin; He, Lifeng; Kang, Shiying; Chao, Yuyan; Zhao, Xiao
2015-01-01
The Euler number of a binary image is an important topological property in computer vision and pattern recognition. This paper proposes a novel bit-quad-based Euler number computing algorithm. Based on graph theory and analysis on bit-quad patterns, our algorithm only needs to count two bit-quad patterns. Moreover, by use of the information obtained during processing the previous bit-quad, the average number of pixels to be checked for processing a bit-quad is only 1.75. Experimental results demonstrated that our method outperforms significantly conventional Euler number computing algorithms.
A novel bit-quad-based Euler number computing algorithm
Yao, Bin; He, Lifeng; Kang, Shiying; Chao, Yuyan; Xiao ZHAO
2015-01-01
The Euler number of a binary image is an important topological property in computer vision and pattern recognition. This paper proposes a novel bit-quad-based Euler number computing algorithm. Based on graph theory and analysis on bit-quad patterns, our algorithm only needs to count two bit-quad patterns. Moreover, by use of the information obtained during processing the previous bit-quad, the average number of pixels to be checked for processing a bit-quad is only 1.75. Experimental results ...
Adaptive Power and Bit Allocation in Multicarrier Systems
Institute of Scientific and Technical Information of China (English)
HUO Yong-qing; PENG Qi-cong; SHAO Huai-zong
2007-01-01
We present two adaptive power and bit allocation algorithms for multicarrier systems in a frequency selective fading environment. One algorithm allocates bit based on maximizing the channel capacity, another allocates bit based on minimizing the bit-error-rate(BER). Two algorithms allocate power based on minimizing the BER. Results show that the proposed algorithms are more effective than Fischer's algorithm at low average signal-to-noise ration (SNR). This indicates that our algorithms can achieve high spectral efficiency and high communication reliability during bad channel state. Results also denote the bit and power allocation of each algorithm and effects of the number of subcarriers on the BER performance.
Quantum computing on encrypted data.
Fisher, K A G; Broadbent, A; Shalm, L K; Yan, Z; Lavoie, J; Prevedel, R; Jennewein, T; Resch, K J
2014-01-01
The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.
Quantum computing on encrypted data
Fisher, K. A. G.; Broadbent, A.; Shalm, L. K.; Yan, Z.; Lavoie, J.; Prevedel, R.; Jennewein, T.; Resch, K. J.
2014-01-01
The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.
8 Bit RISC Processor Using Verilog HDL
Directory of Open Access Journals (Sweden)
Ramandeep Kaur
2014-03-01
Full Text Available RISC is a design philosophy to reduce the complexity of instruction set that in turn reduces the amount of space, cycle time, cost and other parameters taken into account during the implementation of the design. The advent of FPGA has enabled the complex logical systems to be implemented on FPGA. The intent of this paper is to design and implement 8 bit RISC processor using FPGA Spartan 3E tool. This processor design depends upon design specification, analysis and simulation. It takes into consideration very simple instruction set. The momentous components include Control unit, ALU, shift registers and accumulator register.
Towards quantum chemistry on a quantum computer.
Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G
2010-02-01
Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.
Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits.
Rabl, P; DeMille, D; Doyle, J M; Lukin, M D; Schoelkopf, R J; Zoller, P
2006-07-21
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
Hybrid Quantum Processors: molecular ensembles as quantum memory for solid state circuits
Rabl, P; Doyle, J M; Lukin, M D; Schölkopf, R J; Zoller, P
2006-01-01
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that for convenient trap-surface distances of a few $\\mu$m, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
unknown
1991-01-01
Abstract of NL 8902368 (A) The system converts a PCM input signal. It has a series of digital words, each K bits long at a predetermined repetition frequency converted into a PCM output signal (16) comprising a series of digital words each L bits long, where L is less than K. The system includes a
Electron Spins in Semiconductor Quantum Dots
Hanson, R.
2005-01-01
This thesis describes a series of experiments aimed at understanding and controlling the behavior of the spin degree of freedom of single electrons, confined in semiconductor quantum dots. This research work is motivated by the prospects of using the electron spin as a quantum bit (qubit), the basic
Wavelets as q-bits and q-bit states as wavelets
Steblinski, Pawel; Blachowicz, Tomasz
2009-01-01
In this short report it is argued that by the use of wavelets formalism it is possible to describe the q-bit state. The wavelet formalism address the real-valued physical signals, for example, obtained during typical physical measurements.
Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
Realization of a Quantum Scheduling Algorithm Using Nuclear Magnetic Resonance
Institute of Scientific and Technical Information of China (English)
ZHANG Jing-Fu; DENG Zhi-Wei; PAN Yan-Na; LU Zhi-Heng
2004-01-01
The quantum scheduling algorithm proposed by Grover is generalized to extend its scope of applications. The generalized algorithm proposed here is realized on a nuclear magnetic resonance quantum computer. The experimental results show that the generalized algorithm can work efficiently in the case that Grover's scheduling algorithm is completely invalid, and represent the quantum advantages when qubits replace classical bits.
Coherent manipulation of single quantum systems in the solid state
Childress, Lilian Isabel
2007-12-01
The controlled, coherent manipulation of quantum-mechanical systems is an important challenge in modern science and engineering, with significant applications in quantum information science. Solid-state quantum systems such as electronic spins, nuclear spins, and superconducting islands are among the most promising candidates for realization of quantum bits (qubits). However, in contrast to isolated atomic systems, these solid-state qubits couple to a complex environment which often results in rapid loss of coherence, and, in general, is difficult to understand. Additionally, the strong interactions which make solid-state quantum systems attractive can typically only occur between neighboring systems, leading to difficulties in coupling arbitrary pairs of quantum bits. This thesis presents experimental progress in understanding and controlling the complex environment of a solid-state quantum bit, and theoretical techniques for extending the distance over which certain quantum bits can interact coherently. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond is used to gain insight into its mesoscopic environment. Furthermore, techniques for exploiting coherent interactions between the electron spin and a subset of the environment are developed and demonstrated, leading to controlled interactions with single isolated nuclear spins. The quantum register thus formed by a coupled electron and nuclear spin provides the basis for a theoretical proposal for fault-tolerant long-distance quantum communication with minimal physical resource requirements. Finally, we consider a mechanism for long-distance coupling between quantum dots based on chip-scale cavity quantum electrodynamics.
Entanglement and Quantum Error Correction with Superconducting Qubits
Reed, Matthew
2015-03-01
Quantum information science seeks to take advantage of the properties of quantum mechanics to manipulate information in ways that are not otherwise possible. Quantum computation, for example, promises to solve certain problems in days that would take a conventional supercomputer the age of the universe to decipher. This power does not come without a cost however, as quantum bits are inherently more susceptible to errors than their classical counterparts. Fortunately, it is possible to redundantly encode information in several entangled qubits, making it robust to decoherence and control imprecision with quantum error correction. I studied one possible physical implementation for quantum computing, employing the ground and first excited quantum states of a superconducting electrical circuit as a quantum bit. These ``transmon'' qubits are dispersively coupled to a superconducting resonator used for readout, control, and qubit-qubit coupling in the cavity quantum electrodynamics (cQED) architecture. In this talk I will give an general introduction to quantum computation and the superconducting technology that seeks to achieve it before explaining some of the specific results reported in my thesis. One major component is that of the first realization of three-qubit quantum error correction in a solid state device, where we encode one logical quantum bit in three entangled physical qubits and detect and correct phase- or bit-flip errors using a three-qubit Toffoli gate. My thesis is available at arXiv:1311.6759.
Efficient Algorithms for Optimal 4-Bit Reversible Logic System Synthesis
Directory of Open Access Journals (Sweden)
Zhiqiang Li
2013-01-01
Full Text Available Owing to the exponential nature of the memory and run-time complexity, many methods can only synthesize 3-bit reversible circuits and cannot synthesize 4-bit reversible circuits well. We mainly absorb the ideas of our 3-bit synthesis algorithms based on hash table and present the efficient algorithms which can construct almost all optimal 4-bit reversible logic circuits with many types of gates and at mini-length cost based on constructing the shortest coding and the specific topological compression; thus, the lossless compression ratio of the space of n-bit circuits reaches near 2×n!. This paper presents the first work to create all 3120218828 optimal 4-bit reversible circuits with up to 8 gates for the CNT (Controlled-NOT gate, NOT gate, and Toffoli gate library, and it can quickly achieve 16 steps through specific cascading created circuits.
Optimization of Bit Plane Combination for Efficient Digital Image Watermarking
Kejgir, Sushma
2009-01-01
In view of the frequent multimedia data transfer authentication and protection of images has gained importance in todays world. In this paper we propose a new watermarking technique, based on bit plane, which enhances robustness and capacity of the watermark, as well as maintains transparency of the watermark and fidelity of the image. In the proposed technique, higher strength bit plane of digital signature watermark is embedded in to a significant bit plane of the original image. The combination of bit planes (image and watermark) selection is an important issue. Therefore, a mechanism is developed for appropriate bit plane selection. Ten different attacks are selected to test different alternatives. These attacks are given different weightings as appropriate to user requirement. A weighted correlation coefficient for retrieved watermark is estimated for each of the alternatives. Based on these estimated values optimal bit plane combination is identified for a given user requirement. The proposed method is ...
Temperature-compensated 8-bit column driver for AMLCD
Dingwall, Andrew G. F.; Lin, Mark L.
1995-06-01
An all-digital, 5 V input, 50 Mhz bandwidth, 10-bit resolution, 128- column, AMLCD column driver IC has been designed and tested. The 10-bit design can enhance display definition over 6-bit nd 8-bit column drivers. Precision is realized with on-chip, switched-capacitor DACs plus transparently auto-offset-calibrated, opamp outputs. Increased resolution permits multiple 10-bit digital gamma remappings in EPROMs over temperature. Driver IC features include externally programmable number of output column, bi-directional digital data shifting, user- defined row/column/pixel/frame inversion, power management, timing control for daisy-chained column drivers, and digital bit inversion. The architecture uses fewer reference power supplies.
Cross Institutional Cooperation on a Shared Bit Repository
DEFF Research Database (Denmark)
Zierau, Eld; Kejser, Ulla Bøgvad
2013-01-01
This paper explores how independent institutions, such as archives and libraries, can cooperate on managing a shared bit repository with bit preservation, in order to use their resources for preservation in a more cost-effective way. It uses the OAIS Reference Model to provide a framework...... for systematically analysing institutions technical and organisational requirements for a remote bit repository. Instead of viewing a bit repository simply as Archival Storage for the institutions repositories, we argue for viewing it as consisting of a subset of functions from all entities defined by the OAIS...... Reference Model. The work is motivated by and used in a current Danish feasibility study for establishing a national bit repository. The study revealed that depending on their missions and the collections they hold, the institutions have varying requirements e.g. for bit safety, accessibility...
Contract Signature Using Quantum Information
De Sousa, P B M; Ramos, Rubens Viana; Sousa, Paulo Benicio Melo de
2006-01-01
This paper describes how to perform contract signature in a fair way using quantum information. The protocol proposed permits two partners, users of a communication network, to exchange their signatures with non-repudiation. For this, we assume that there is a trustable arbitrator, responsible for the authentication of the signers and that performs a central task in a quantum teleportation protocol of the XOR function between two classical bits.
Cross Institutional Cooperation on a Shared Bit Repository
DEFF Research Database (Denmark)
Zierau, Eld; Kejser, Ulla Bøgvad
2010-01-01
for systematically analysing the technical and organizational requirements of institutions for a remote bit repository. Instead of viewing a bit repository simply as Archival Storage for the institutions’ repositories, we argue for viewing it as consisting of a subset of functions from all entities defined...... architecture and its strengths in being flexible in order to offer differentiated services with respect to, among other things, bit safety and cost. Furthermore, the challenges in formulating various aspects, such as risk requirements, are described....
Development and testing of a Mudjet-augmented PDC bit.
Energy Technology Data Exchange (ETDEWEB)
Black, Alan (TerraTek, Inc.); Chahine, Georges (DynaFlow, Inc.); Raymond, David Wayne; Matthews, Oliver (Security DBS); Grossman, James W.; Bertagnolli, Ken (US Synthetic); Vail, Michael (US Synthetic)
2006-01-01
This report describes a project to develop technology to integrate passively pulsating, cavitating nozzles within Polycrystalline Diamond Compact (PDC) bits for use with conventional rig pressures to improve the rock-cutting process in geothermal formations. The hydraulic horsepower on a conventional drill rig is significantly greater than that delivered to the rock through bit rotation. This project seeks to leverage this hydraulic resource to extend PDC bits to geothermal drilling.
Gravitational Entropy and String Bits on the Stretched Horizon
Halyo, E
2003-01-01
We show that the entropy of Schwarzschild black holes in any dimension can be described by a gas of free string bits at the stretched horizon. The number of string bits is equal to the black hole entropy and energy dependent. For an asymptotic observer the bit gas is at the Hawking temperature. We show that the same description is also valid for de Sitter space--times in any dimension.
Bit Patterned Magnetic Recording: Theory, Media Fabrication, and Recording Performance
Albrecht, Thomas R.; Arora, Hitesh; Ayanoor-Vitikkate, Vipin; Beaujour, Jean-Marc; Bedau, Daniel; Berman, David; Bogdanov, Alexei L.; Chapuis, Yves-Andre; Cushen, Julia; Dobisz, Elizabeth E.; Doerk, Gregory; Gao, He; Grobis, Michael; Gurney, Bruce; Hanson, Weldon
2015-01-01
Bit Patterned Media (BPM) for magnetic recording provide a route to densities $>1 Tb/in^2$ and circumvents many of the challenges associated with conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM uses an array of lithographically defined isolated magnetic islands, each of which stores one bit. Fabrication of BPM is viewed as the greatest challenge for its commercialization. In this article we describe a BPM fabrication method which combine...
Bit-Optimal Lempel-Ziv compression
Ferragina, Paolo; Venturini, Rossano
2008-01-01
One of the most famous and investigated lossless data-compression scheme is the one introduced by Lempel and Ziv about 40 years ago. This compression scheme is known as "dictionary-based compression" and consists of squeezing an input string by replacing some of its substrings with (shorter) codewords which are actually pointers to a dictionary of phrases built as the string is processed. Surprisingly enough, although many fundamental results are nowadays known about upper bounds on the speed and effectiveness of this compression process and references therein), ``we are not aware of any parsing scheme that achieves optimality when the LZ77-dictionary is in use under any constraint on the codewords other than being of equal length'' [N. Rajpoot and C. Sahinalp. Handbook of Lossless Data Compression, chapter Dictionary-based data compression. Academic Press, 2002. pag. 159]. Here optimality means to achieve the minimum number of bits in compressing each individual input string, without any assumption on its ge...
High bit rate germanium single photon detectors for 1310nm
Seamons, J. A.; Carroll, M. S.
2008-04-01
There is increasing interest in development of high speed, low noise and readily fieldable near infrared (NIR) single photon detectors. InGaAs/InP Avalanche photodiodes (APD) operated in Geiger mode (GM) are a leading choice for NIR due to their preeminence in optical networking. After-pulsing is, however, a primary challenge to operating InGaAs/InP single photon detectors at high frequencies1. After-pulsing is the effect of charge being released from traps that trigger false ("dark") counts. To overcome this problem, hold-off times between detection windows are used to allow the traps to discharge to suppress after-pulsing. The hold-off time represents, however, an upper limit on detection frequency that shows degradation beginning at frequencies of ~100 kHz in InGaAs/InP. Alternatively, germanium (Ge) single photon avalanche photodiodes (SPAD) have been reported to have more than an order of magnitude smaller charge trap densities than InGaAs/InP SPADs2, which allowed them to be successfully operated with passive quenching2 (i.e., no gated hold off times necessary), which is not possible with InGaAs/InP SPADs, indicating a much weaker dark count dependence on hold-off time consistent with fewer charge traps. Despite these encouraging results suggesting a possible higher operating frequency limit for Ge SPADs, little has been reported on Ge SPAD performance at high frequencies presumably because previous work with Ge SPADs has been discouraged by a strong demand to work at 1550 nm. NIR SPADs require cooling, which in the case of Ge SPADs dramatically reduces the quantum efficiency of the Ge at 1550 nm. Recently, however, advantages to working at 1310 nm have been suggested which combined with a need to increase quantum bit rates for quantum key distribution (QKD) motivates examination of Ge detectors performance at very high detection rates where InGaAs/InP does not perform as well. Presented in this paper are measurements of a commercially available Ge APD
The implementation of bit-parallelism for DNA sequence alignment
Setyorini; Kuspriyanto; Widyantoro, D. H.; Pancoro, A.
2017-05-01
Dynamic Programming (DP) remain the central algorithm of biological sequence alignment. Matching score computation is the most time-consuming process. Bit-parallelism is one of approximate string matching techniques that transform DP matrix cell unit processing into word unit (groups of cell). Bit-parallelism computate the scores column-wise. Adopting from word processing in computer system work, this technique promise reducing time in score computing process in DP matrix. In this paper, we implement bit-parallelism technique for DNA sequence alignment. Our bit-parallelism implementation have less time for score computational process but still need improvement for there construction process.
PDC (polycrystalline diamond compact) bit research at Sandia National Laboratories
Energy Technology Data Exchange (ETDEWEB)
Finger, J.T.; Glowka, D.A.
1989-06-01
From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, rather than crushing) and they have no moving parts (eliminating the problems of high-temperature lubricants, bearings, and seals.) This report is a summary description of the analytical and experimental work done by Sandia and our contractors. It describes analysis and laboratory tests of individual cutters and complete bits, as well as full-scale field tests of prototype and commercial bits. The report includes a bibliography of documents giving more detailed information on these topics. 26 refs.
A Modular Framework for Quantum-Proof Randomness Extractors
Liu, Yipeng; Guo, JianSheng; Cui, Jingyi
2016-08-01
A quantum-proof extractor is a function that is used to extract randomness from any weakly random source X in the presence of prior quantum information about X. It is known that some constructions are quantum-proof, such as Trevisan's construction. However, these extractors are generally restrictive for applications on the one-bit output construction and the weak design. Here, we give a modular framework to combine multi-bit output extractors (not only one-bit) with pseudorandom transform, and show that it is sound in the presence of quantum side information. Then combined with the theory of operator spaces, we improve previous theoretical proofs, and discuss the security of two-bit output extractor by giving a tighter bound for it.
A Modular Framework for Quantum-Proof Randomness Extractors
Liu, Yipeng; Guo, JianSheng; Cui, Jingyi
2016-12-01
A quantum-proof extractor is a function that is used to extract randomness from any weakly random source X in the presence of prior quantum information about X. It is known that some constructions are quantum-proof, such as Trevisan's construction. However, these extractors are generally restrictive for applications on the one-bit output construction and the weak design. Here, we give a modular framework to combine multi-bit output extractors (not only one-bit) with pseudorandom transform, and show that it is sound in the presence of quantum side information. Then combined with the theory of operator spaces, we improve previous theoretical proofs, and discuss the security of two-bit output extractor by giving a tighter bound for it.
Bit-string physics a finite and discrete approach to natural philosophy
Noyes, H Pierre
2001-01-01
We could be on the threshold of a scientific revolution. Quantum mechanics is based on unique, finite, and discrete events. General relativity assumes a continuous, curved space-time. Reconciling the two remains the most fundamental unsolved scientific problem left over from the last century. The papers of H Pierre Noyes collected in this volume reflect one attempt to achieve that unification by replacing the continuum with the bit-string events of computer science. Three principles are used: physics can determine whether two quantities are the same or different; measurement can tell something
LSB Based Quantum Image Steganography Algorithm
Jiang, Nan; Zhao, Na; Wang, Luo
2016-01-01
Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.
Quantum Oblivious Transfer: a secure practical implementation
Nagy, Marius; Nagy, Naya
2016-12-01
Together with bit commitment, Oblivious Transfer is a very useful cryptographic primitive with important applications, most notably in secure multiparty computations. It has been long known that secure Quantum Oblivious Transfer can be achieved from a secure implementation of Quantum Bit Commitment. Unfortunately, it is also well known that unconditionally secure Quantum Bit Commitment is impossible, so building a secure Oblivious Transfer protocol on top of Quantum Bit Commitment is ruled out. In this paper, we propose a relatively simple quantum protocol for Oblivious Transfer which does not require qubit storage, does not rely on bit commitment as a primitive and is easily implementable with current technology, if the two actors are honest. The protocol is proven to be secure against any individual measurements and entanglement-based attacks. Any cheating attempt trying to speculate collective measurements would be considerably difficult to put in practice, even in the near future. Furthermore, the number of qubits used in our scheme (embodied as photons in a physical realization of the protocol) acts as a security parameter, making it increasingly hard to cheat.
Quantum Oblivious Transfer: a secure practical implementation
Nagy, Marius; Nagy, Naya
2016-09-01
Together with bit commitment, Oblivious Transfer is a very useful cryptographic primitive with important applications, most notably in secure multiparty computations. It has been long known that secure Quantum Oblivious Transfer can be achieved from a secure implementation of Quantum Bit Commitment. Unfortunately, it is also well known that unconditionally secure Quantum Bit Commitment is impossible, so building a secure Oblivious Transfer protocol on top of Quantum Bit Commitment is ruled out. In this paper, we propose a relatively simple quantum protocol for Oblivious Transfer which does not require qubit storage, does not rely on bit commitment as a primitive and is easily implementable with current technology, if the two actors are honest. The protocol is proven to be secure against any individual measurements and entanglement-based attacks. Any cheating attempt trying to speculate collective measurements would be considerably difficult to put in practice, even in the near future. Furthermore, the number of qubits used in our scheme (embodied as photons in a physical realization of the protocol) acts as a security parameter, making it increasingly hard to cheat.
Experimental study of entanglement evolution in the presence of bit-flip and phase-shift noises
Liu, Xia; Cao, Lian-Zhen; Zhao, Jia-Qiang; Yang, Yang; Lu, Huai-Xin
2017-10-01
Because of its important role both in fundamental theory and applications in quantum information, evolution of entanglement in a quantum system under decoherence has attracted wide attention in recent years. In this paper, we experimentally generate a high-fidelity maximum entangled two-qubit state and present an experimental study of the decoherence properties of entangled pair of qubits at collective (non-collective) bit-flip and phase-shift noises. The results shown that entanglement decreasing depends on the type of the noises (collective or non-collective and bit-flip or phase-shift) and the number of qubits which are subject to the noise. When two qubits are depolarized passing through non-collective noisy channel, the decay rate is larger than that depicted for the collective noise. When two qubits passing through depolarized noisy channel, the decay rate is larger than that depicted for one qubit.
BitPredator: A Discovery Algorithm for BitTorrent Initial Seeders and Peers
Energy Technology Data Exchange (ETDEWEB)
Borges, Raymond [West Virginia University; Patton, Robert M [ORNL; Kettani, Houssain [Polytechnic University of Puerto Rico (PUPR); Masalmah, Yahya [Universidad del Turabo
2011-01-01
There is a large amount of illegal content being replicated through peer-to-peer (P2P) networks where BitTorrent is dominant; therefore, a framework to profile and police it is needed. The goal of this work is to explore the behavior of initial seeds and highly active peers to develop techniques to correctly identify them. We intend to establish a new methodology and software framework for profiling BitTorrent peers. This involves three steps: crawling torrent indexers for keywords in recently added torrents using Really Simple Syndication protocol (RSS), querying torrent trackers for peer list data and verifying Internet Protocol (IP) addresses from peer lists. We verify IPs using active monitoring methods. Peer behavior is evaluated and modeled using bitfield message responses. We also design a tool to profile worldwide file distribution by mapping IP-to-geolocation and linking to WHOIS server information in Google Earth.
True random numbers from amplified quantum vacuum
Jofre, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V; 10.1364/OE.19.020665
2011-01-01
Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up t...
PEA: Polymorphic Encryption Algorithm based on quantum computation
Komninos, N.; Mantas, G.
2011-01-01
In this paper, a polymorphic encryption algorithm (PEA), based on basic quantum computations, is proposed for the encryption of binary bits. PEA is a symmetric key encryption algorithm that applies different combinations of quantum gates to encrypt binary bits. PEA is also polymorphic since the states of the shared secret key control the different combinations of the ciphertext. It is shown that PEA achieves perfect secrecy and is resilient to eavesdropping and Trojan horse attacks. A securit...
Formalization of Quantum Protocols using Coq
Directory of Open Access Journals (Sweden)
Jaap Boender
2015-11-01
Full Text Available Quantum Information Processing, which is an exciting area of research at the intersection of physics and computer science, has great potential for influencing the future development of information processing systems. The building of practical, general purpose Quantum Computers may be some years into the future. However, Quantum Communication and Quantum Cryptography are well developed. Commercial Quantum Key Distribution systems are easily available and several QKD networks have been built in various parts of the world. The security of the protocols used in these implementations rely on information-theoretic proofs, which may or may not reflect actual system behaviour. Moreover, testing of implementations cannot guarantee the absence of bugs and errors. This paper presents a novel framework for modelling and verifying quantum protocols and their implementations using the proof assistant Coq. We provide a Coq library for quantum bits (qubits, quantum gates, and quantum measurement. As a step towards verifying practical quantum communication and security protocols such as Quantum Key Distribution, we support multiple qubits, communication and entanglement. We illustrate these concepts by modelling the Quantum Teleportation Protocol, which communicates the state of an unknown quantum bit using only a classical channel.
Directory of Open Access Journals (Sweden)
K. K. L. B. Adikaram
2014-01-01
Full Text Available With the increasing demand for online/inline data processing efficient Fourier analysis becomes more and more relevant. Due to the fact that the bit reversal process requires considerable processing time of the Fast Fourier Transform (FFT algorithm, it is vital to optimize the bit reversal algorithm (BRA. This paper is to introduce an efficient BRA with multiple memory structures. In 2009, Elster showed the relation between the first and the second halves of the bit reversal permutation (BRP and stated that it may cause serious impact on cache performance of the computer, if implemented. We found exceptions, especially when the said index mapping was implemented with multiple one-dimensional memory structures instead of multidimensional or one-dimensional memory structure. Also we found a new index mapping, even after the recursive splitting of BRP into equal sized slots. The four-array and the four-vector versions of BRA with new index mapping reported 34% and 16% improvement in performance in relation to similar versions of Linear BRA of Elster which uses single one-dimensional memory structure.
The postprocessing of quantum digital signatures
Wang, Tian-Yin; Ma, Jian-Feng; Cai, Xiao-Qiu
2017-01-01
Many novel quantum digital signature proposals have been proposed, which can effectively guarantee the information-theoretic security of the signature for a singe bit against forging and denying. Using the current basic building blocks of signing a single bit, we give a new proposal to construct an entire protocol for signing a long message. Compared with the previous work, it can improve at least 33.33% efficiency.
Circuit and interconnect design for high bit-rate applications
Veenstra, H.
2006-01-01
This thesis presents circuit and interconnect design techniques and design flows that address the most difficult and ill-defined aspects of the design of ICs for high bit-rate applications. Bottlenecks in interconnect design, circuit design and on-chip signal distribution for high bit-rate applicati
Cryptographic Properties of the Hidden Weighted Bit Function
2013-12-23
Pohlig–Hellman method, the 20-variable Carlet–Feng function allows computing one output bit per cycle with more than 1000 half- adders and full- adders . In...comparison, the 64-variable HWBF allows computing one output bit with only 26 − 1 = 63 half- adders and 26 − 6− 1 = 57 full- adders [16]. Therefore, by
Parallel SAT Solving using Bit-level Operations
Heule, M.J.H.; Van Maaren, H.
2008-01-01
We show how to exploit the 32/64 bit architecture of modern computers to accelerate some of the algorithms used in satisfiability solving by modifying assignments to variables in parallel on a single processor. Techniques such as random sampling demonstrate that while using bit vectors instead of Bo
Gradient Descent Bit Flipping Algorithms for Decoding LDPC Codes
Wadayama, Tadashi; Nakamura, Keisuke; Yagita, Masayuki; Funahashi, Yuuki; Usami, Shogo; Takumi, Ichi
2007-01-01
A novel class of bit-flipping (BF) algorithms for decoding low-density parity-check (LDPC) codes is presented. The proposed algorithms, which are called gradient descent bit flipping (GDBF) algorithms, can be regarded as simplified gradient descent algorithms. Based on gradient descent formulation, the proposed algorithms are naturally derived from a simple non-linear objective function.
16 Bits DAC s Design, Simulation and Layout
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The high speed and precision 16 bits DAC will be applied in DSP (Digital Signal Processing) based on CSR pulsed power supply control system. In this application the DAC is needed to work in 1 μs’ converting data rate, 16 bit resolution and its output voltage is 10 volts.
Quantum Dense Coding in Multiparticle Entangled States via Local Measurements
Institute of Scientific and Technical Information of China (English)
陈建兰; 匡乐满
2004-01-01
We study quantum dense coding between two arbitrarily fixed particles in a (N + 2)-particle maximally-entangled states through introducing an auxiliary qubit and carrying out local measurements. It is shown that the transmitted classical information amount through such an entangled quantum channel is usually less than two classical bits. However, the information amount may reach two classical bits of information, and the classical information capacity is independent of the number of the entangled particles under certain conditions. The results offer deeper insight into quantum dense coding via quantum channels of multi-particle entangled states.
Experimental quantum measurement with a few photons
Rozema, Lee Arthur
This thesis presents the results of a series of four photonic experiments on the topic of quantum measurement. The first two experiments relate to quantum metrology, and the use of quantum states to increase the precision of measurements beyond what is possible with classical systems; first to detect and characterize decoherence, and then in the context of quantum imaging. The third experiment studies a fundamental question in quantum mechanics: "How much must a quantum system be disturbed by a measurement?". We use weak measurement to confirm a recent theoretical result, showing that if a particle's state is already sufficiently uncertain we can perform a measurement with very little disturbance -- contrary to common explanations of Heisenberg's uncertainty principle. The fourth experiment falls in the category of quantum computation. In quantum mechanics having multiple copies of an identical system allows us to extract more information than we can extract from a single copy (since quantum mechanics allows each system to be measured only once before collapsing). We present and experimentally implement a quantum algorithm to compress all of the "extractable information" present in an ensemble of identical copies of quantum bits into exponentially fewer quantum bits. The research presented here samples from a variety of topics in quantum information, showing in several contexts how fascinating quantum effects can be exploited to gain a "quantum enhancement". To enable these experiments two sources of entangled photons were built, and "hybrid" quantum systems (encoding information in multiple degrees of freedom of a photon) were used to implement quantum circuits. This thesis will present the details of one of these sources (a novel and practical source of entangled N00N states), which was used in a four-photon quantum metrology experiment. The other, more standard, source of polarization-entangled photon pairs will only briefly be reviewed to leave room for the
Self-similarity, conservation of entropy/bits and the black hole information puzzle
Energy Technology Data Exchange (ETDEWEB)
Singleton, Douglas [Department of Physics, California State University Fresno,2345 East San Ramon Avenue M/S MH37, Fresno, CA 93740-8031 (United States); Department of Physics, Institut Teknologi Bandung,Jalan Ganesha 10, Bandung 40132 (Indonesia); Vagenas, Elias C. [Theoretical Physics Group, Department of Physics, Kuwait University,P.O. Box 5969, Safat 13060 (Kuwait); Zhu, Tao [GCAP-CASPER, Physics Department, Baylor University,One Bear Place, # 97316, Waco, TX 76798-7316 (United States); Institute for Advanced Physics & Mathematics, Zhejiang University of Technology,18 Chao-Wang Rd, Hangzhou, 310032 (China)
2014-05-19
John Wheeler coined the phrase “it from bit” or “bit from it” in the 1980s. However, much of the interest in the connection between information, i.e. “bits”, and physical objects, i.e. “its”, stems from the discovery that black holes have characteristics of thermodynamic systems having entropies and temperatures. This insight led to the information loss problem — what happens to the “bits” when the black hole has evaporated away due to the energy loss from Hawking radiation? In this essay we speculate on a radical answer to this question using the assumption of self-similarity of quantum correction to the gravitational action and the requirement that the quantum corrected entropy be well behaved in the limit when the black hole mass goes to zero.
Rhythms of Memory and Bits on Edge: Symbol Recognition as a Physical Phenomenon
Myers, John M
2011-01-01
Preoccupied with measurement, physics has neglected the need, before anything can be measured, to recognize what it is that is to be measured. The recognition of symbols employs a known physical mechanism. The elemental mechanism-a damped inverted pendulum joined by a driven adjustable pendulum (in effect a clock)-both recognizes a binary distinction and records a single bit. Referred to by engineers as a "clocked flip-flop," this paired-pendulum mechanism pervades scientific investigation. It shapes evidence by imposing discrete phases of allowable leeway in clock readings; and it generates a mathematical form of evidence that neither assumes a geometry nor assumes quantum states, and so separates statements of evidence from further assumptions required to explain that evidence, whether the explanations are made in quantum terms or in terms of general relativity. Cleansed of unnecessary assumptions, these expressions of evidence form a platform on which to consider the working together of general relativity ...
IMAGE STEGANOGRAPHY DENGAN METODE LEAST SIGNIFICANT BIT (LSB
Directory of Open Access Journals (Sweden)
M. Miftakul Amin
2014-02-01
Full Text Available Security in delivering a secret message is an important factor in the spread of information in cyberspace. Protecting that message to be delivered to the party entitled to, should be made a message concealment mechanism. The purpose of this study was to hide a secret text message into digital images in true color 24 bit RGB format. The method used to insert a secret message using the LSB (Least Significant Bit by replacing the last bit or 8th bit in each RGB color component. RGB image file types option considering that messages can be inserted capacity greater than if use a grayscale image, this is because in one pixel can be inserted 3 bits message. Tests provide results that are hidden messages into a digital image does not reduce significantly the quality of the digital image, and the message has been hidden can be extracted again, so that messages can be delivered to the recipient safely.
Cross Institutional Cooperation on a Shared Bit Repository
DEFF Research Database (Denmark)
Zierau, Eld; Kejser, Ulla Bøgvad
2010-01-01
This paper explores how independent institutions, such as archives and libraries, can cooperate on managing a shared bit repository with bit preservation in order to use their resources for preservation n in a more cost-effective way. It uses the OAIS Reference Model to provide a framework......, and confidentiality. This study further revealed that requirements for the level of bit safety must be supplemented by risk analysis, which needs to involve elements of the architecture; for example, the number of copies and how independence between the copies is ensured. The paper describes bit repository...... architecture and its strengths in being flexible in order to offer differentiated services with respect to, among other things, bit safety and cost. Furthermore, the challenges in formulating various aspects, such as risk requirements, are described....
Cross Institutional Cooperation on a Shared Bit Repository
DEFF Research Database (Denmark)
Zierau, Eld; Kejser, Ulla Bøgvad
2013-01-01
This paper explores how independent institutions, such as archives and libraries, can cooperate on managing a shared bit repository with bit preservation, in order to use their resources for preservation in a more cost-effective way. It uses the OAIS Reference Model to provide a framework......, and confidentiality. This study furthermore revealed that requirements for the level of bit safety must be supplemented by risk analysis, which needs to involve elements of the architecture, e.g. the number of copies and how independence between the copies is ensured. The paper describes the bit repository...... architecture, its strengths in being flexible in order to offer differentiated services with respect to, among other things, bit safety and cost. Furthermore, the challenges in formulating e.g. risk requirements are described....
Uniqueness: skews bit occurrence frequencies in randomly generated fingerprint libraries.
Chen, Nelson G
2016-08-01
Requiring that randomly generated chemical fingerprint libraries have unique fingerprints such that no two fingerprints are identical causes a systematic skew in bit occurrence frequencies, the proportion at which specified bits are set. Observed frequencies (O) at which each bit is set within the resulting libraries systematically differ from frequencies at which bits are set at fingerprint generation (E). Observed frequencies systematically skew toward 0.5, with the effect being more pronounced as library size approaches the compound space, which is the total number of unique possible fingerprints given the number of bit positions each fingerprint contains. The effect is quantified for varying library sizes as a fraction of the overall compound space, and for changes in the specified frequency E. The cause and implications for this systematic skew are subsequently discussed. When generating random libraries of chemical fingerprints, the imposition of a uniqueness requirement should either be avoided or taken into account.
A Novel Least Significant Bit First Processing Parallel CRC Circuit
Directory of Open Access Journals (Sweden)
Xiujie Qu
2013-01-01
Full Text Available In HDLC serial communication protocol, CRC calculation can first process the most or least significant bit of data. Nowadays most CRC calculation is based on the most significant bit (MSB first processing. An algorithm of the least significant bit (LSB first processing parallel CRC is proposed in this paper. Based on the general expression of the least significant bit first processing serial CRC, using state equation method of linear system, we derive a recursive formula by the mathematical deduction. The recursive formula is applicable to any number of bits processed in parallel and any series of generator polynomial. According to the formula, we present the parallel circuit of CRC calculation and implement it with VHDL on FPGA. The results verify the accuracy and effectiveness of this method.
Experimental implementation of the quantum baker's map.
Weinstein, Yaakov S; Lloyd, Seth; Emerson, Joseph; Cory, David G
2002-10-07
This Letter reports on the experimental implementation of the quantum baker's map via a three bit nuclear magnetic resonance quantum information processor. The experiments tested the sensitivity of the quantum chaotic map to perturbations. In the first experiment, the map was iterated forward and then backward to provide benchmarks for intrinsic errors and decoherence. In the second set of experiments, the least significant qubit was perturbed in between the iterations to test the sensitivity of the quantum chaotic map to controlled perturbations. These experiments can be used to investigate existing theoretical predictions for quantum chaotic dynamics.
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Directory of Open Access Journals (Sweden)
Somsak Panyakeow
2010-10-01
Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.
Gravitons, inflatons, twisted bits: A noncommutative bestiary
Pearson, John
In this work, we examine ideas connected with the noncommutativity of spacetime and its realizations in string theory. Motivated by Matrix Theory and the AdS-CFT correspondence, we propose a survey of selected noncommutative objects, assessing their implications for inflation, gauge theory duals, and solvable backgrounds. Our initial pair of examples, related to the Myers effect, incorporate elements of so-called "giant graviton" behavior. In the first, the formation of an extended, supersymmetry-restoring domain wall from point-brane sources in a flux background is related to a nonperturbative process of brane-flux annihilation. In the second, we reexamine these phenomena from a cosmological vantage, investigating the prospect of slow-roll inflation in the noncommutative configuration space of multiple d-branes. For our third and final example, we turn to the solvable pp-wave background, outlining a combinatorial, permutation-based approach to string physics which interpolates between gauge theory and worldsheet methods. This "string bit" language will allow us to find exact agreement between Yang-Mills theory in the large R-charge sector and string field theory on the light cone, resolving some previous discrepancies in the literature.
Notes on Bit-reversal Broadcast Scheduling
Kik, Marcin
2012-01-01
This report contains revision and extension of some results about RBO [arXiv:1108.5095]. RBO is a simple and efficient broadcast scheduling of $n = 2^k$ uniform frames for battery powered radio receivers. Each frame contains a key from some arbitrary linearly ordered universe. The broadcast cycle -- a sequence of frames sorted by the keys and permuted by $k$-bit reversal -- is transmitted in a round robin fashion by the broadcaster. At arbitrary time during the transmission, the receiver may start a simple protocol that reports to him all the frames with the keys that are contained in a specified interval of the key values $[K', K"]$. RBO receives at most $2 k + 1$ other frames' keys before receiving the first key from $[K', K"]$ or noticing that there are no such keys in the broadcast cycle. As a simple corollary, $4 k + 2$ is upper bound the number of keys outside $[K', K"]$ that will ever be received. In unreliable network the expected number of efforts to receive such frames is bounded by $(8 k + 4) / p +...
2010-01-01
On Monday 18 October, a little bit of legal history will be made when the first international tripartite agreement between CERN and its two Host States is signed. This agreement, which has been under negotiation since 2004, clarifies the working conditions of people employed by companies contracted to CERN. It will facilitate the management of service contracts both for CERN and its contractors. Ever since 1965, when CERN first crossed the border into France, the rule of territoriality has applied. This means that anyone working for a company contracted to CERN whose job involves crossing the border is subject to the employment legislation of both states. The new agreement simplifies matters by making only one legislation apply per contract, that of the country in which most of the work is carried out. This is good for CERN, it’s good for the companies, and it’s good for their employees. It is something that all three parties to the agreement have wanted for some time, and I...
Quantum secure direct communication and deterministic secure quantum communication
Institute of Scientific and Technical Information of China (English)
LONG Gui-lu; DENG Fu-guo; WANG Chuan; LI Xi-han; WEN Kai; WANG Wan-ying
2007-01-01
In this review article,we review the recent development of quantum secure direct communication(QSDC)and deterministic secure quantum communication(DSQC) which both are used to transmit secret message,including the criteria for QSDC,some interesting QSDC protocols,the DSQC protocols and QSDC network,etc.The difference between these two branches of quantum Communication is that DSOC requires the two parties exchange at least one bit of classical information for reading out the message in each qubit,and QSDC does not.They are attractivebecause they are deterministic,in particular,the QSDC protocol is fully quantum mechanical.With sophisticated quantum technology in the future,the QSDC may become more and more popular.For ensuring the safety of QSDC with single photons and quantum information sharing of single qubit in a noisy channel,a quantum privacy amplification protocol has been proposed.It involves very simple CHC operations and reduces the information leakage to a negligible small level.Moreover,with the one-party quantum error correction,a relation has been established between classical linear codes and quantum one-party codes,hence it is convenient to transfer many good classical error correction codes to the quantum world.The one-party quantum error correction codes are especially designed for quantum dense coding and related QSDC protocols based on dense coding.
Quantum data compression of a qubit ensemble.
Rozema, Lee A; Mahler, Dylan H; Hayat, Alex; Turner, Peter S; Steinberg, Aephraim M
2014-10-17
Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compressing three photonic qubits into two. This protocol sheds light on the subtle differences between quantum and classical information. Furthermore, since data compression stores all of the available information about the quantum state in fewer physical qubits, it could allow for a vast reduction in the amount of quantum memory required to store a quantum ensemble, making even today's limited quantum memories far more powerful than previously recognized.
Security enhanced memory for quantum state.
Mukai, Tetsuya
2017-07-27
Security enhancement is important in terms of both classical and quantum information. The recent development of a quantum storage device is noteworthy, and a coherence time of one second or longer has been demonstrated. On the other hand, although the encryption of a quantum bit or quantum memory has been proposed theoretically, no experiment has yet been carried out. Here we report the demonstration of a quantum memory with an encryption function that is realized by scrambling and retrieving the recorded quantum phase. We developed two independent Ramsey interferometers on an atomic ensemble trapped below a persistent supercurrent atom chip. By operating the two interferometers with random phases, the quantum phase recorded by a pulse of the first interferometer was modulated by the second interferometer pulse. The scrambled quantum phase was restored by employing another pulse of the second interferometer with a specific time delay. This technique paves way for improving the security of quantum information technology.
Experimental Satellite Quantum Communications.
Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo
2015-07-24
Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.
From Bell's inequalities to quantum information: a new quantum revolution
CERN. Geneva
2015-01-01
In 1964, John Stuart Bell discovered that it is possible to settle the debate experimentally, by testing the famous "Bell's inequalities", and to show directly that the revolutionary concept of entanglement is indeed a reality. A long series of experiments closer and closer to the ideal scheme presented by Bell has confirmed that entanglement is indeed "a great quantum mystery", to use the words of Feynman. Based on that concept, a new field of research has emerged, quantum information, where one uses quantum bits, the so-called “qubits”, to encode the information and process it. Entanglement ...
Quantum String Seal Is Insecure
Chau, H F
2006-01-01
A quantum string seal encodes the value of a (bit) string as a quantum state in such a way that everyone can extract a non-negligible amount of information on the string by a suitable measurement. Moreover, such measurement must disturb the quantum state and is likely to be detected by an authorized verifier. In this way, the intactness of the encoded quantum state plays the role of a wax seal in the digital world. Here I analyze the security of quantum string seal by studying the information disturbance tradeoff of a measurement. This information disturbance tradeoff analysis extends the earlier results of Bechmann-Pasquinucci et al. and Chau by concluding that all quantum string seals are insecure. Specifically, I find a way to obtain non-trivial information on the string that escapes the verifier's detection with probability at least one half.
Certifiable Quantum Dice - Or, testable exponential randomness expansion
Vazirani, Umesh V
2011-01-01
We introduce a protocol through which a pair of quantum mechanical devices may be used to generate n bits of true randomness from a seed of O(log n) uniform bits. The bits generated are certifiably random based only on a simple statistical test that can be performed by the user, and on the assumption that the devices obey the no-signaling principle. No other assumptions are placed on the devices' inner workings. A modified protocol uses a seed of O(log^3 n) uniformly random bits to generate $n$ bits of true randomness even conditioned on the state of a quantum adversary who may have had prior access to the devices, and may be entangled with them.
The Quantum Socket: Three-Dimensional Wiring for Extensible Quantum Computing
Béjanin, J H; Rinehart, J R; Earnest, C T; McRae, C R H; Shiri, D; Bateman, J D; Rohanizadegan, Y; Penava, B; Breul, P; Royak, S; Zapatka, M; Fowler, A G; Mariantoni, M
2016-01-01
Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum ...
Circular threshold quantum secret sharing
Institute of Scientific and Technical Information of China (English)
Yang Yu-Guang; Wen Qiao-Yan
2008-01-01
This paper proposes a circular threshold quantum secret sharing (TQSS) scheme with polarized single photons.A polarized single photon sequence runs circularly among any t or more of n parties and any t or more of n parties can reconstruct the secret key when they collaborate.It shows that entanglement is not necessary for quantum secret sharing.Moreover,the theoretic efficiency is improved to approach 100% as the single photons carrying the secret key are deterministically forwarded among any t or more of n parties,and each photon can carry one bit of information without quantum storage.This protocol is feasible with current technology.
Modeling and analysis of stick-slip and bit bounce in oil well drillstrings equipped with drag bits
Kamel, Jasem M.; Yigit, Ahmet S.
2014-12-01
Rotary drilling systems equipped with drag bits or fixed cutter bits (also called PDC), used for drilling deep boreholes for the production and the exploration of oil and natural gas, often suffer from severe vibrations. These vibrations are detrimental to the bit and the drillstring causing different failures of equipment (e.g., twist-off, abrasive wear of tubulars, bit damage), and inefficiencies in the drilling operation (reduction of the rate of penetration (ROP)). Despite extensive research conducted in the last several decades, there is still a need to develop a consistent model that adequately captures all phenomena related to drillstring vibrations such as nonlinear cutting and friction forces at the bit/rock formation interface, drive system characteristics and coupling between various motions. In this work, a physically consistent nonlinear model for the axial and torsional motions of a rotating drillstring equipped with a drag bit is proposed. A more realistic cutting and contact model is used to represent bit/rock formation interaction at the bit. The dynamics of both drive systems for rotary and translational motions of the drillstring, including the hoisting system are also considered. In this model, the rotational and translational motions of the bit are obtained as a result of the overall dynamic behavior rather than prescribed functions or constants. The dynamic behavior predicted by the proposed model qualitatively agree well with field observations and published theoretical results. The effects of various operational parameters on the dynamic behavior are investigated with the objective of achieving a smooth and efficient drilling. The results show that with proper choice of operational parameters, it may be possible to minimize the effects of stick-slip and bit-bounce and increase the ROP. Therefore, it is expected that the results will help reduce the time spent in drilling process and costs incurred due to severe vibrations and consequent
Scheme for Entering Binary Data Into a Quantum Computer
Williams, Colin
2005-01-01
A quantum algorithm provides for the encoding of an exponentially large number of classical data bits by use of a smaller (polynomially large) number of quantum bits (qubits). The development of this algorithm was prompted by the need, heretofore not satisfied, for a means of entering real-world binary data into a quantum computer. The data format provided by this algorithm is suitable for subsequent ultrafast quantum processing of the entered data. Potential applications lie in disciplines (e.g., genomics) in which one needs to search for matches between parts of very long sequences of data. For example, the algorithm could be used to encode the N-bit-long human genome in only log2N qubits. The resulting log2N-qubit state could then be used for subsequent quantum data processing - for example, to perform rapid comparisons of sequences.
Quantum coding demonstrated feasible to overcome qubit loss error
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
@@ Inspired by quantum mechanics,people have been dreaming of a new type of computers to revolutionize computing technique-quantum computers.Such dream machines take advantage of the fact that the quantum bit (qubit),the fundamental unit of quantum information,can be in a superposition state and thus is able to store massive data and solve complicated problems at an incredible speed beyond the capacity of classical computers.
Modern X86 assembly language programming 32-bit, 64-bit, SSE, and AVX
Kusswurm, Daniel
2014-01-01
Modern X86 Assembly Language Programming shows the fundamentals of x86 assembly language programming. It focuses on the aspects of the x86 instruction set that are most relevant to application software development. The book's structure and sample code are designed to help the reader quickly understand x86 assembly language programming and the computational capabilities of the x86 platform. Major topics of the book include the following: 32-bit core architecture, data types, internal registers, memory addressing modes, and the basic instruction setX87 core architecture, register stack, special
Test results judgment method based on BIT faults
Institute of Scientific and Technical Information of China (English)
Wang Gang; Qiu Jing; Liu Guanjun; Lyu Kehong
2015-01-01
Built-in-test (BIT) is responsible for equipment fault detection, so the test data correct-ness directly influences diagnosis results. Equipment suffers all kinds of environment stresses, such as temperature, vibration, and electromagnetic stress. As embedded testing facility, BIT also suffers from these stresses and the interferences/faults are caused, so that the test course is influenced, resulting in incredible results. Therefore it is necessary to monitor test data and judge test failures. Stress monitor and BIT self-diagnosis would redound to BIT reliability, but the existing anti-jamming researches are mainly safeguard design and signal process. This paper focuses on test results monitor and BIT equipment (BITE) failure judge, and a series of improved approaches is proposed. Firstly the stress influences on components are illustrated and the effects on the diagnosis results are summarized. Secondly a composite BIT program is proposed with information integra-tion, and a stress monitor program is given. Thirdly, based on the detailed analysis of system faults and forms of BIT results, the test sequence control method is proposed. It assists BITE failure judge and reduces error probability. Finally the validation cases prove that these approaches enhance credibility.
Evaluation of bit errors in different types demodulation discrete signals
Directory of Open Access Journals (Sweden)
V. M. Kychak
2015-12-01
Full Text Available Introduction. The introduction describes the main characteristics of bit errors. These sources of bit errors in discrete channels. Also listed scientists who worked on the study opportunities monitoring bit error in discrete channels. The main purpose of the article is to conduct research and theoretical modeling of processes in discrete channels to control error measurement and forecasting parameter BER bit error depending on the signal/noise ratio. Theoretical analysis. A comparison of some types of digital modulation for effective use in systems transmitting information. Comparisons were made using the correlation function, power spectral density and distance between signals. It was proved that through this you can control the real value of bit error (BER for each type of modulation. Important here is the dependence of the BER signal/noise ratio in the test communication channel. Determined that efficiency could be described bit error probability value of the output of the receiver, which is determined by the expression (4. Control parameters BER modulation in digital signals. At this paragraph the examples of control parameter BER at different modulation signals. The simulation results show that with an increase in the signal/noise bit error probability for different types of demodulation will decrease.
The Economics of BitCoin Price Formation
Ciaian, Pavel; Rajcaniova, Miroslava; Kancs, d'Artis
2014-01-01
This is the first article that studies BitCoin price formation by considering both the traditional determinants of currency price, e.g., market forces of supply and demand, and digital currencies specific factors, e.g., BitCoin attractiveness for investors and users. The conceptual framework is based on the Barro (1979) model, from which we derive testable hypotheses. Using daily data for five years (2009–2015) and applying time-series analytical mechanisms, we find that market forces and Bit...
AN EFFICIENT BIT COMMITMENT SCHEME BASED ON FACTORING ASSUMPTION
Institute of Scientific and Technical Information of China (English)
Zhong Ming; Yang Yixian
2001-01-01
Recently, many bit commitment schemes have been presented. This paper presents a new practical bit commitment scheme based on Schnorr's one-time knowledge proof scheme,where the use of cut-and-choose method and many random exam candidates in the protocols are replaced by a single challenge number. Therefore the proposed bit commitment scheme is more efficient and practical than the previous schemes In addition, the security of the proposed scheme under factoring assumption is proved, thus the cryptographic basis of the proposed scheme is clarified.
1-Bit Compressive Data Gathering for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Jiping Xiong
2014-01-01
Full Text Available Compressive sensing (CS has been widely used in wireless sensor networks for the purpose of reducing the data gathering communication overhead in recent years. In this paper, we firstly apply 1-bit compressive sensing to wireless sensor networks to further reduce the communication overhead that each sensor needs to send. Furthermore, we propose a novel blind 1-bit CS reconstruction algorithm which outperforms other state-of-the-art blind 1-bit CS reconstruction algorithms under the settings of WSN. Experimental results on real sensor datasets demonstrate the efficiency of our method.
Acetylcholine molecular arrays enable quantum information processing
Tamulis, Arvydas; Majauskaite, Kristina; Talaikis, Martynas; Zborowski, Krzysztof; Kairys, Visvaldas
2017-09-01
We have found self-assembly of four neurotransmitter acetylcholine (ACh) molecular complexes in a water molecules environment by using geometry optimization with DFT B97d method. These complexes organizes to regular arrays of ACh molecules possessing electronic spins, i.e. quantum information bits. These spin arrays could potentially be controlled by the application of a non-uniform external magnetic field. The proper sequence of resonant electromagnetic pulses would then drive all the spin groups into the 3-spin entangled state and proceed large scale quantum information bits.
Comparison between GEOCOR IV SIGN-BIT an DFS-V 16-bit floating point recording systems
Energy Technology Data Exchange (ETDEWEB)
Hollis, D.D.; Givens, R.
1986-04-01
A Vibroseis line was repeatedly shot in Andrews County, Texas. The first shot used a DFS-V 16-bit floating point recording system with parameters optimized for that particular recording system and subsurface geology. Then the line was shot with a GEOCOR IV SIGN-BIT recording system, once using the same parameters as on the floating point recording system, then with parameters optimized for a SIGN-BIT recording system - mainly higher fold, closer channel spacing, and using the VARISWEEP technique. The three lines were processed to stacked sections using identical processing parameters. When the 16-bit floating point recording system is compared to the SIGN-BIT system with identical parameters, the results indicate the systems are equivalent for Vibroseis recording. Basic primary reflections are similar in signal to noise and frequency. Multiple reflection energy is greater on the floating point section. However, the results differ when the two systems are compared using optimal parameters for each system. The SIGN-BIT section had shallower data because the receiver line has no gapping. The SIGN-BIT system also had better temporal and spatial resolution because channel spacing was reduced and a different sweep technique was used.
Experimental realization of the analogy of quantum dense coding in classical optics
Energy Technology Data Exchange (ETDEWEB)
Yang, Zhenwei; Sun, Yifan; Li, Pengyun; Zhang, Xiong; Song, Xinbing, E-mail: zhangxd@bit.edu.cn, E-mail: songxinbing@bit.edu.cn; Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn, E-mail: songxinbing@bit.edu.cn [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, 100081, Beijing (China)
2016-06-15
We report on the experimental realization of the analogy of quantum dense coding in classical optical communication using classical optical correlations. Compared to quantum dense coding that uses pairs of photons entangled in polarization, we find that the proposed design exhibits many advantages. Considering that it is convenient to realize in optical communication, the attainable channel capacity in the experiment for dense coding can reach 2 bits, which is higher than that of the usual quantum coding capacity (1.585 bits). This increased channel capacity has been proven experimentally by transmitting ASCII characters in 12 quaternary digitals instead of the usual 24 bits.
Secure quantum communication using classical correlated channel
Costa, D.; de Almeida, N. G.; Villas-Boas, C. J.
2016-10-01
We propose a secure protocol to send quantum information from one part to another without a quantum channel. In our protocol, which resembles quantum teleportation, a sender (Alice) and a receiver (Bob) share classical correlated states instead of EPR ones, with Alice performing measurements in two different bases and then communicating her results to Bob through a classical channel. Our secure quantum communication protocol requires the same amount of classical bits as the standard quantum teleportation protocol. In our scheme, as in the usual quantum teleportation protocol, once the classical channel is established in a secure way, a spy (Eve) will never be able to recover the information of the unknown quantum state, even if she is aware of Alice's measurement results. Security, advantages, and limitations of our protocol are discussed and compared with the standard quantum teleportation protocol.
Adaptive bit truncation and compensation method for EZW image coding
Dai, Sheng-Kui; Zhu, Guangxi; Wang, Yao
2003-09-01
The embedded zero-tree wavelet algorithm (EZW) is widely adopted to compress wavelet coefficients of images with the property that the bits stream can be truncated and produced anywhere. The lower bit plane of the wavelet coefficents is verified to be less important than the higher bit plane. Therefore it can be truncated and not encoded. Based on experiments, a generalized function, which can provide a glancing guide for EZW encoder to intelligently decide the number of low bit plane to be truncated, is deduced in this paper. In the EZW decoder, a simple method is presented to compensate for the truncated wavelet coefficients, and finally it can surprisingly enhance the quality of reconstructed image and spend scarcely any additional cost at the same time.
Apparatus and method for situ sharpening of bore hole bits
Energy Technology Data Exchange (ETDEWEB)
Bridwell, H.C.
1974-06-25
An impregnated diamond core bit is sharpened at the bottom of a borehole, the bit being secured to the outer barrel of coring apparatus attached to a tubular drill string. A sharpener is releasably mounted in the lower end of an inner core barrel lowered through the drill string into the outer barrel and latched thereto, with the sharpener projecting below the lower end of the core bit. The sharpener has nozzles for discharging abrasive material pumped through the sharpener against the drilling face of the bit to sharpen the same, whereupon the coring operation can be effected in the usual manner, the core releasing the sharpener from the inner barrel and pushing it upward along and within the inner barrel as the core is formed. The sharpener is rtrieved with the inner barrel upon release of the latter from the outer barrel and its upward removal through the drill string to the top of the borehole. (29 claims)
Bit-interleaved coded modulation in the wideband regime
Martinez, Alfonso; Caire, Giuseppe; Willems, Frans
2007-01-01
The wideband regime of bit-interleaved coded modulation (BICM) in Gaussian channels is studied. The Taylor expansion of the coded modulation capacity for generic signal constellations at low signal-to-noise ratio (SNR) is derived and used to determine the corresponding expansion for the BICM capacity. Simple formulas for the minimum energy per bit and the wideband slope are given. BICM is found to be suboptimal in the sense that its minimum energy per bit can be larger than the corresponding value for coded modulation schemes. The minimum energy per bit using standard Gray mapping on M-PAM or M^2-QAM is given by a simple formula and shown to approach -0.34 dB as M increases. Using the low SNR expansion, a general trade-off between power and bandwidth in the wideband regime is used to show how a power loss can be traded off against a bandwidth gain.
Efficient Generation of Random Bits from Finite State Markov Chains
Zhou, Hongchao
2010-01-01
The problem of random number generation from an uncorrelated random source (of unknown probability distribution) dates back to von Neumann's 1951 work. Elias (1972) generalized von Neumann's scheme and showed how to achieve optimal efficiency in unbiased random bits generation. Hence, a natural question is what if the sources are correlated? Both Elias and Samuelson proposed methods for generating unbiased random bits in the case of correlated sources (of unknown probability distribution), specifically, they considered finite Markov chains. However, their proposed methods are not efficient or have implementation difficulties. Blum (1986) devised an algorithm for efficiently generating random bits from degree-2 finite Markov chains in expected linear time, however, his beautiful method is still far from optimality on information-efficiency. In this paper, we generalize Blum's algorithm to arbitrary degree finite Markov chains and combine it with Elias's method for efficient generation of unbiased bits. As a re...
Synchronicity, Quantum Information and the Psyche
Martin, Francois; Galli Carminati, Giuliana
2009-01-01
In this paper we describe synchronicity phenomena. As an explanation of these phenomena we propose quantum entanglement between the psychic realm known as the "unconscious" and also the classical illusion of the collapse of the wave-function. Then, taking the theory of quantum information as a model we consider the human unconscious, pre-consciousness and consciousness as sets of quantum bits (qu-bits). We analyze how there can be communication between these various qu-bit sets. In doing this we are inspired by the theory of nuclear magnetic resonance. In this manner we build quantum processes that permit consciousness to "read" the unconscious and vice-versa. The most elementary interaction, e.g. between a pre-consciousness qu-bit and a consciousness one, allows us to predict the time evolution of the pre-consciousness + consciousness system in which pre-consciousness and consciousness are quantum entangled. This time evolution exhibits Rabi oscillations that we name mental Rabi oscillations. This time evolu...
Design of High Speed 128 bit Parallel Prefix Adders
T.KIRAN KUMAR; Srikanth, P
2014-01-01
In this paper, we propose 128-bit Kogge-Stone, Ladner-Fischer, Spanning tree parallel prefix adders and compared with Ripple carry adder. In general N-bit adders like Ripple Carry Adders (slow adders compare to other adders), and Carry Look Ahead adders (area consuming adders) are used in earlier days. But now the most Industries are using parallel prefix adders because of their advantages compare to other adders. Parallel prefix adders are faster and area efficient. Parallel pref...
Content Progressive Coding of Limited Bits/pixel Images
DEFF Research Database (Denmark)
Jensen, Ole Riis; Forchhammer, Søren
1999-01-01
A new lossless context based method for content progressive coding of limited bits/pixel images is proposed. Progressive coding is achieved by separating the image into contelnt layers. Digital maps are compressed up to 3 times better than GIF.......A new lossless context based method for content progressive coding of limited bits/pixel images is proposed. Progressive coding is achieved by separating the image into contelnt layers. Digital maps are compressed up to 3 times better than GIF....
Hash Based Least Significant Bit Technique For Video Steganography
Directory of Open Access Journals (Sweden)
Prof. Dr. P. R. Deshmukh ,
2014-01-01
Full Text Available The Hash Based Least Significant Bit Technique For Video Steganography deals with hiding secret message or information within a video.Steganography is nothing but the covered writing it includes process that conceals information within other data and also conceals the fact that a secret message is being sent.Steganography is the art of secret communication or the science of invisible communication. In this paper a Hash based least significant bit technique for video steganography has been proposed whose main goal is to embed a secret information in a particular video file and then extract it using a stego key or password. In this Least Significant Bit insertion method is used for steganography so as to embed data in cover video with change in the lower bit.This LSB insertion is not visible.Data hidding is the process of embedding information in a video without changing its perceptual quality. The proposed method involve with two terms that are Peak Signal to Noise Ratio (PSNR and the Mean Square Error (MSE .This two terms measured between the original video files and steganographic video files from all video frames where a distortion is measured using PSNR. A hash function is used to select the particular position for insertion of bits of secret message in LSB bits.
Integer Representations towards Efficient Counting in the Bit Probe Model
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Greve, Mark; Pandey, Vineet
2011-01-01
Abstract We consider the problem of representing numbers in close to optimal space and supporting increment, decrement, addition and subtraction operations efficiently. We study the problem in the bit probe model and analyse the number of bits read and written to perform the operations, both...... in the worst-case and in the average-case. A counter is space-optimal if it represents any number in the range [0,...,2 n − 1] using exactly n bits. We provide a space-optimal counter which supports increment and decrement operations by reading at most n − 1 bits and writing at most 3 bits in the worst...... of the counter as the ratio between L + 1 and 2 n . We present various representations that achieve different trade-offs between the read and write complexities and the efficiency. We also give another representation of integers that uses n + O(logn ) bits to represent integers in the range [0,...,2 n − 1...
Characterization and modeling of fast programming bits in flash EEPROM
Nkansah, F.; Hatalis, M.; Olasupo, K.
2000-11-01
The effects of flash EEPROM floating gate (FG) morphology on the generation and density of fast programming bits in a 2Mbit flash EEPROM array has been characterized. These fast programming bits exhibit identical subthreshold characteristics similar to that of a normal bit after UV erase, thus establishing that the initial charge stored on the FG of both fast and normal bit is the same. Experimental results clearly indicates that the fast programming phenomena result from an interaction of the programming process with the FG polysilicon microstructure. An in-depth experimentation previously reported, reveals that the FG poly deposition and doping processes are crucial for controlling the desired Fowler-Nordheim tunneling. A correlation is established between the fast bit density observed in the memory arrays, the FG polysilicon grain size and tunneling field enhancement factor μ( Rc). A compact model of the fast programming bit memory threshold voltage as a function of the effective FG polysilicon grain area factor Geff, and tunneling field enhancement factor μ( Rc) has been developed for the first time.
An elementary quantum network of single atoms in optical cavities.
Ritter, Stephan; Nölleke, Christian; Hahn, Carolin; Reiserer, Andreas; Neuzner, Andreas; Uphoff, Manuel; Mücke, Martin; Figueroa, Eden; Bochmann, Joerg; Rempe, Gerhard
2012-04-11
Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way-by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.
Bamatraf, Abdullah; Salleh, Mohd Najib Mohd
2011-01-01
In this paper, we introduce a new digital watermarking algorithm using least significant bit (LSB). LSB is used because of its little effect on the image. This new algorithm is using LSB by inversing the binary values of the watermark text and shifting the watermark according to the odd or even number of pixel coordinates of image before embedding the watermark. The proposed algorithm is flexible depending on the length of the watermark text. If the length of the watermark text is more than ((MxN)/8)-2 the proposed algorithm will also embed the extra of the watermark text in the second LSB. We compare our proposed algorithm with the 1-LSB algorithm and Lee's algorithm using Peak signal-to-noise ratio (PSNR). This new algorithm improved its quality of the watermarked image. We also attack the watermarked image by using cropping and adding noise and we got good results as well.
Xiao, Hailin; Zhang, Zhongshan
2017-01-01
Quantum key distribution (QKD) system is presently being developed for providing high-security transmission in future free-space optical communication links. However, current QKD technique restricts quantum secure communication to a low bit rate. To improve the QKD bit rate, we propose a subcarrier multiplexing multiple-input multiple-output quantum key distribution (SCM-MQKD) scheme with orthogonal quantum states. Specifically, we firstly present SCM-MQKD system model and drive symmetrical SCM-MQKD system into decoherence-free subspaces. We then utilize bipartite Werner and isotropic states to construct multiple parallel single photon with orthogonal quantum states that are invariant for unitary operations. Finally, we derive the density matrix and the capacity of SCM-MQKD system, respectively. Theoretical analysis and numerical results show that the capacity of SCM-MQKD system will increase {log _2}(N^2+1) times than that of single-photon QKD system.
Experimental bath engineering for quantitative studies of quantum control
CSIR Research Space (South Africa)
Soare, A
2014-04-01
Full Text Available We develop and demonstrate a technique to engineer universal unitary baths in quantum systems. Using the correspondence between unitary decoherence due to ambient environmental noise and errors in a control system for quantum bits, we show how a...
Cryptography in the Bounded Quantum-Storage Model
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Serge, Fehr; Schaffner, Christian;
2008-01-01
We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...
Cryptography In The Bounded Quantum-Storage Model
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Salvail, Louis; Schaffner, Christian;
2005-01-01
We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...
Quantum information theory with Gaussian systems
Energy Technology Data Exchange (ETDEWEB)
Krueger, O.
2006-04-06
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
A Heuristic Optimal Discrete Bit Allocation Algorithm for Margin Maximization in DMT Systems
Directory of Open Access Journals (Sweden)
Dong Shi-Wei
2007-01-01
Full Text Available A heuristic optimal discrete bit allocation algorithm is proposed for solving the margin maximization problem in discrete multitone (DMT systems. Starting from an initial equal power assignment bit distribution, the proposed algorithm employs a multistaged bit rate allocation scheme to meet the target rate. If the total bit rate is far from the target rate, a multiple-bits loading procedure is used to obtain a bit allocation close to the target rate. When close to the target rate, a parallel bit-loading procedure is used to achieve the target rate and this is computationally more efficient than conventional greedy bit-loading algorithm. Finally, the target bit rate distribution is checked, if it is efficient, then it is also the optimal solution; else, optimal bit distribution can be obtained only by few bit swaps. Simulation results using the standard asymmetric digital subscriber line (ADSL test loops show that the proposed algorithm is efficient for practical DMT transmissions.
Computing on Anonymous Quantum Network
Kobayashi, Hirotada; Tani, Seiichiro
2010-01-01
This paper considers distributed computing on an anonymous quantum network, a network in which no party has a unique identifier and quantum communication and computation are available. It is proved that the leader election problem can exactly (i.e., without error in bounded time) be solved with at most the same complexity up to a constant factor as that of exactly computing symmetric functions (without intermediate measurements for a distributed and superposed input), if the number of parties is given to every party. A corollary of this result is a more efficient quantum leader election algorithm than existing ones: the new quantum algorithm runs in O(n) rounds with bit complexity O(mn^2), on an anonymous quantum network with n parties and m communication links. Another corollary is the first quantum algorithm that exactly computes any computable Boolean function with round complexity O(n) and with smaller bit complexity than that of existing classical algorithms in the worst case over all (computable) Boolea...
Quantum computing with collective ensembles of multilevel systems.
Brion, E; Mølmer, K; Saffman, M
2007-12-31
We propose a new physical approach for encoding and processing of quantum information in ensembles of multilevel quantum systems, where the different bits are not carried by individual particles but associated with the collective population of different internal levels. One- and two-bit gates are implemented by collective internal state transitions taking place in the presence of an excitation blockade mechanism, which restricts the population of each internal state to the values zero and unity. Quantum computers with 10-20 bits can be built via this scheme in single trapped clouds of ground state atoms subject to the Rydberg excitation blockade mechanism, and the linear dependence between register size and the number of internal quantum states in atoms offers realistic means to reach larger registers.
A Quantum Algorithm Detecting Concentrated Maps.
Beichl, Isabel; Bullock, Stephen S; Song, Daegene
2007-01-01
We consider an arbitrary mapping f: {0, …, N - 1} → {0, …, N - 1} for N = 2 (n) , n some number of quantum bits. Using N calls to a classical oracle evaluating f(x) and an N-bit memory, it is possible to determine whether f(x) is one-to-one. For some radian angle 0 ≤ θ ≤ π/2, we say f(x) is θ - concentrated if and only if [Formula: see text] for some given ψ 0 and any 0 ≤ x ≤ N - 1. We present a quantum algorithm that distinguishes a θ-concentrated f(x) from a one-to-one f(x) in O(1) calls to a quantum oracle function Uf with high probability. For 0 quantum algorithm outperforms random (classical) evaluation of the function testing for dispersed values (on average). Maximal outperformance occurs at [Formula: see text] rad.
Sleep stage classification with low complexity and low bit rate.
Virkkala, Jussi; Värri, Alpo; Hasan, Joel; Himanen, Sari-Leena; Müller, Kiti
2009-01-01
Standard sleep stage classification is based on visual analysis of central (usually also frontal and occipital) EEG, two-channel EOG, and submental EMG signals. The process is complex, using multiple electrodes, and is usually based on relatively high (200-500 Hz) sampling rates. Also at least 12 bit analog to digital conversion is recommended (with 16 bit storage) resulting in total bit rate of at least 12.8 kbit/s. This is not a problem for in-house laboratory sleep studies, but in the case of online wireless self-applicable ambulatory sleep studies, lower complexity and lower bit rates are preferred. In this study we further developed earlier single channel facial EMG/EOG/EEG-based automatic sleep stage classification. An algorithm with a simple decision tree separated 30 s epochs into wakefulness, SREM, S1/S2 and SWS using 18-45 Hz beta power and 0.5-6 Hz amplitude. Improvements included low complexity recursive digital filtering. We also evaluated the effects of a reduced sampling rate, reduced number of quantization steps and reduced dynamic range on the sleep data of 132 training and 131 testing subjects. With the studied algorithm, it was possible to reduce the sampling rate to 50 Hz (having a low pass filter at 90 Hz), and the dynamic range to 244 microV, with an 8 bit resolution resulting in a bit rate of 0.4 kbit/s. Facial electrodes and a low bit rate enables the use of smaller devices for sleep stage classification in home environments.
Foldable Instrumented Bits for Ultrasonic/Sonic Penetrators
Bar-Cohen, Yoseph; Badescu, Mircea; Iskenderian, Theodore; Sherrit, Stewart; Bao, Xiaoqi; Linderman, Randel
2010-01-01
Long tool bits are undergoing development that can be stowed compactly until used as rock- or ground-penetrating probes actuated by ultrasonic/sonic mechanisms. These bits are designed to be folded or rolled into compact form for transport to exploration sites, where they are to be connected to their ultrasonic/ sonic actuation mechanisms and unfolded or unrolled to their full lengths for penetrating ground or rock to relatively large depths. These bits can be designed to acquire rock or soil samples and/or to be equipped with sensors for measuring properties of rock or soil in situ. These bits can also be designed to be withdrawn from the ground, restowed, and transported for reuse at different exploration sites. Apparatuses based on the concept of a probe actuated by an ultrasonic/sonic mechanism have been described in numerous prior NASA Tech Briefs articles, the most recent and relevant being "Ultrasonic/ Sonic Impacting Penetrators" (NPO-41666) NASA Tech Briefs, Vol. 32, No. 4 (April 2008), page 58. All of those apparatuses are variations on the basic theme of the earliest ones, denoted ultrasonic/sonic drill corers (USDCs). To recapitulate: An apparatus of this type includes a lightweight, low-power, piezoelectrically driven actuator in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that the size of the axial force needed to make the tool bit advance into soil, rock, or another material of interest is much smaller than in ordinary twist drilling, ordinary hammering, or ordinary steady pushing. Examples of properties that could be measured by use of an instrumented tool bit include electrical conductivity, permittivity, magnetic
Quantum Fingerprints that Keep Secrets
Gavinsky, Dmitry
2010-01-01
We introduce a new type of cryptographic primitive that we call \\e{hiding fingerprinting}. A (quantum) fingerprinting scheme translates a binary string of length $n$ to $d$ (qu)bits, typically $d\\ll n$, such that given any string $y$ and a fingerprint of $x$, one can decide with high accuracy whether $x=y$. Classical fingerprinting schemes cannot hide information very well:\\ a classical fingerprint of $x$ that guarantees error $\\le\\eps$ necessarily reveals \\asOm{\\log(1/\\eps)} bits about $x$. We call a scheme \\e{hiding} if it reveals \\aso{\\log(1/\\eps)} bits; accordingly, no classical scheme is hiding. For any constant $c$, we construct two kinds of hiding fingerprinting schemes, both mapping $x\\in\\01^n$ to \\asO{\\log n} qubits and guaranteeing one-sided error probability at most $1/n^c$. The first kind uses pure states and leaks at most \\asO1 bits, and the second kind uses mixed states and leaks at most $1/n^c$ bits, where the ``leakage'' is bounded via accessible information. The schemes are computationally ef...
Quantum key distribution without alternative measurements
Cabello, A
2000-01-01
Entanglement swapping between Einstein-Podolsky-Rosen (EPR) pairs can be used to generate the same sequence of random bits in two remote places. A quantum key distribution protocol based on this idea is described. The scheme exhibits the following features. (a) It does not require that Alice and Bob choose between alternative measurements, therefore improving the rate of generated bits by transmitted qubit. (b) It allows Alice and Bob to generate a key of arbitrary length using a single quantum system (three EPR pairs), instead of a long sequence of them. (c) Detecting Eve requires the comparison of fewer bits. (d) Entanglement is an essential ingredient. The scheme assumes reliable measurements of the Bell operator. (20 refs).
Remote preparation of quantum states
Bennett, C H; Leung, D W; Shor, P W; Winter, A; Bennett, Charles H; Hayden, Patrick; Leung, Debbie W.; Shor, Peter W.; Winter, Andreas
2003-01-01
Remote state preparation is the variant of quantum state teleportation in which the sender knows the quantum state to be communicated. The original paper introducing teleportation established minimal requirements for classical communication and entanglement but the corresponding limits for remote state preparation have remained unknown until now: previous work has shown, however, that it not only requires less classical communication but also gives rise to a trade-off between these two resources in the appropriate setting. We discuss this problem from first principles, including the various choices one may follow in the definitions of the actual resources. Our main result is a general method of remote state preparation for arbitrary states of many qubits, at a cost of 1 bit of classical communication and 1 bit of entanglement per qubit sent. In this "universal" formulation, these ebit and cbit requirements are shown to be simultaneously optimal by exhibiting a dichotomy. This then yields the exact trade-off c...
Numerical Study of the Simplest String Bit Model
Chen, Gaoli
2016-01-01
String bit models provide a possible method to formulate string as a discrete chain of point-like string bits. When the bit number $M$ is large, a chain behaves as a continuous string. We study the simplest case that has only one bosonic bit and one fermionic bit. The creation and annihilation operators are adjoint representations of $U\\left(N\\right)$ color group. We show that the supersymmetry reduces the parameter number of a Hamiltonian from seven to three and, at $N=\\infty$, ensures continuous energy spectrum, which implies the emergence of one spatial dimension. The Hamiltonian $H_{0}$ is constructed so that in large $N$ limit it produces a worldsheet spectrum with one grassmann worldsheet field. We concentrate on numerical study of the model in finite $N$. For the Hamiltonian $H_{0}$, we find that the would-be ground energy states disappear at $N=\\left(M-1\\right)/2$ for odd $M\\leq11$. Such a simple pattern is spoiled if $H$ has an additional term $\\xi\\Delta H$ which does not affect the result of $N=\\inf...
DSC and universal bit-level combining for HARQ systems
Directory of Open Access Journals (Sweden)
Lv Tiejun
2011-01-01
Full Text Available Abstract This paper proposes a Dempster -Shafer theory based combining scheme for single-input single-output (SISO systems with hybrid automatic retransmission request (HARQ, referred to as DSC, in which two methods for soft information calculations are developed for equiprobable (EP and non-equiprobable (NEP sources, respectively. One is based on the distance from the received signal to the decision candidate set consisting of adjacent constellation points when the source bits are equiprobable, and the corresponding DSC is regarded as DSC-D. The other is based on the posterior probability of the transmitted signals when the priori probability for the NEP source bits is available, and the corresponding DSC is regarded as DSC-APP. For the diverse EP and NEP source cases, both DSCD and DSC-APP are superior to maximal ratio combining, the so-called optimal combining scheme for SISO systems. Moreover, the robustness of the proposed DSC is illustrated by the simulations performed in Rayleigh channel and AWGN channel, respectively. The results show that the proposed DSC is insensitive to and especially applicable to the fading channels. In addition, a DS detection-aided bit-level DS combining scheme is proposed for multiple-input multiple-output--HARQ systems. The bit-level DS combining is deduced to be a universal scheme, and the traditional log-likelihood-ratio combining is a special case when the likelihood probability is used as bit-level soft information.
Low-bit-rate subband image coding with matching pursuits
Rabiee, Hamid; Safavian, S. R.; Gardos, Thomas R.; Mirani, A. J.
1998-01-01
In this paper, a novel multiresolution algorithm for low bit-rate image compression is presented. High quality low bit-rate image compression is achieved by first decomposing the image into approximation and detail subimages with a shift-orthogonal multiresolution analysis. Then, at the coarsest resolution level, the coefficients of the transformation are encoded by an orthogonal matching pursuit algorithm with a wavelet packet dictionary. Our dictionary consists of convolutional splines of up to order two for the detail and approximation subbands. The intercorrelation between the various resolutions is then exploited by using the same bases from the dictionary to encode the coefficients of the finer resolution bands at the corresponding spatial locations. To further exploit the spatial correlation of the coefficients, the zero trees of wavelets (EZW) algorithm was used to identify the potential zero trees. The coefficients of the presentation are then quantized and arithmetic encoded at each resolution, and packed into a scalable bit stream structure. Our new algorithm is highly bit-rate scalable, and performs better than the segmentation based matching pursuit and EZW encoders at lower bit rates, based on subjective image quality and peak signal-to-noise ratio.
Bit Serial Architecture for Variable Block Size Motion Estimation
Directory of Open Access Journals (Sweden)
Krishna Kaveri Devarinti
2013-06-01
Full Text Available H.264/AVC is the latest video coding standard adopting variable block size, quarter-pixel accuracy and motion vector prediction and multi-reference frames for motion estimations. These new features result in higher computation requirements than that for previous coding standards.The computational complexity of motion estimation is about 60% in the H.264/AVC encoder. In this paper most significant bit (MSB first arithmetic based bit serial Variable Block Size Motion Estimation (VBSME hardware architecture is proposed. MSB first bit serial architecture main feature is, its early termination SAD computation compared to normal bit serial architectures. With this early termination technique, number computations are reduced drastically. Hence power consumption is also less compared to parallel architectures. An efficient bit serial processing element is proposed and developed 2D architecture for processing of 4x4 block in parallel .Inter connect structure is developed in such way that data reusability is achieved between PEs. Two types of adder trees are employed for variable block size SAD calculation with less number of adders. The proposed architecture can generate up to 41 motion vectors (MVs for each macroblock. The inter connection complexity between PEs reduced drastically compared to parallel architectures. The architecture supports processing of SDTV (640x480 with 30fps at 172.8 MHz for search range [+8, -7]. We could reduce 14% of computations by using early termination technique.
Retrieving Drill Bit Seismic Signals Using Surface Seismometers
Institute of Scientific and Technical Information of China (English)
Linfei Wang; Huaishan Liu; Siyou Tong; Yanxin Yin; Lei Xing; Zhihui Zou; Xiugang Xu
2015-01-01
Seismic while drilling (SWD) is an emerging borehole seismic imaging technique that uses the downhole drill-bit vibrations as seismic source. Without interrupting drilling, SWD technique can make near-real-time images of the rock formations ahead of the bit and optimize drilling operation, with reduction of costs and the risk of drilling. However, the signal to noise ratio (SNR) of surface SWD-data is severely low for the surface acquisition of SWD data. Here, we propose a new method to retrieve the drill-bit signal from the surface data recorded by an array of broadband seismometers. Taking advantages of wavefield analysis, different types of noises are identified and removed from the surface SWD-data, resulting in the significant improvement of SNR. We also optimally synthesize seis-mic response of the bit source, using a statistical cross-coherence analysis to further improve the SNR and retrieve both the drill-bit direct arrivals and reflections which are then used to establish a reverse vertical seismic profile (RVSP) data set for the continuous drilling depth. The subsurface images de-rived from these data compare well with the corresponding images of the three-dimension surface seis-mic survey cross the well.
Scaling the ion trap quantum processor.
Monroe, C; Kim, J
2013-03-08
Trapped atomic ions are standards for quantum information processing, serving as quantum memories, hosts of quantum gates in quantum computers and simulators, and nodes of quantum communication networks. Quantum bits based on trapped ions enjoy a rare combination of attributes: They have exquisite coherence properties, they can be prepared and measured with nearly 100% efficiency, and they are readily entangled with each other through the Coulomb interaction or remote photonic interconnects. The outstanding challenge is the scaling of trapped ions to hundreds or thousands of qubits and beyond, at which scale quantum processors can outperform their classical counterparts in certain applications. We review the latest progress and prospects in that effort, with the promise of advanced architectures and new technologies, such as microfabricated ion traps and integrated photonics.
Quantum repeaters using continuous-variable teleportation
Dias, Josephine; Ralph, T. C.
2017-02-01
Quantum optical states are fragile and can become corrupted when passed through a lossy communication channel. Unlike for classical signals, optical amplifiers cannot be used to recover quantum signals. Quantum repeaters have been proposed as a way of reducing errors and hence increasing the range of quantum communications. Current protocols target specific discrete encodings, for example quantum bits encoded on the polarization of single photons. We introduce a more general approach that can reduce the effect of loss on any quantum optical encoding, including those based on continuous variables such as the field amplitudes. We show that in principle the protocol incurs a resource cost that scales polynomially with distance. We analyze the simplest implementation and find that while its range is limited it can still achieve useful improvements in the distance over which quantum entanglement of field amplitudes can be distributed.
Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence
Orszag, Miguel
2016-01-01
This new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this third edition, there is an enlarged chapter on trapped ions, as well as new sections on quantum computing and quantum bits with applications. There is also additional material included for quantum processing and entanglement. These topics are presented in a unified and didactic manner, each chapter is accompanied by specific problems and hints to solutions to...
The one-way quantum computer - a non-network model of quantum computation
Raussendorf, R; Briegel, H J; Raussendorf, Robert; Browne, Daniel E.; Briegel, Hans J.
2001-01-01
A one-way quantum computer works by only performing a sequence of one-qubit measurements on a particular entangled multi-qubit state, the cluster state. No non-local operations are required in the process of computation. Any quantum logic network can be simulated on the one-way quantum computer. On the other hand, the network model of quantum computation cannot explain all ways of processing quantum information possible with the one-way quantum computer. In this paper, two examples of the non-network character of the one-way quantum computer are given. First, circuits in the Clifford group can be performed in a single time step. Second, the realisation of a particular circuit --the bit-reversal gate-- on the one-way quantum computer has no network interpretation. (Submitted to J. Mod. Opt, Gdansk ESF QIT conference issue.)
Roy, Soumya Singha
2012-01-01
Nuclear Magnetic Resonance (NMR) forms a natural test-bed to perform quantum information processing (QIP) and has so far proven to be one of the most successful quantum information processors. The nuclear spins in a molecule treated as quantum bits or qubits which are the basic building blocks of a quantum computer. The development of NMR over half a century puts it in a platform where we can utilize its excellent control techniques over an ensemble of spin systems and perform quantum computation in a highly controlled way. Apart from a successful quantum information processor, NMR is also a highly powerful quantum platform where many of the potentially challenging quantum mechanical experiments can be performed.
Causes of wear of PDC bits and ways of improving their wear resistance
Timonin, VV; Smolentsev, AS; Shakhtorin, I. O.; Polushin, NI; Laptev, AI; Kushkhabiev, AS
2017-02-01
The scope of the paper encompasses basic factors that influence PDC bit efficiency. Feasible ways of eliminating the negatives are illustrated. The wash fluid flow in a standard bit is modeled, the resultant pattern of the bit washing is analyzed, and the recommendations are made on modification of the PDC bit design.
A reconfigurable spintronic device for quantum and classical logic
Bhowmik, Debanjan; Sarkar, Angik; Bhattacharyya, Tarun Kanti
2010-01-01
Quantum superposition and entanglement of physical states can be harnessed to solve some problems which are intractable on a classical computer implementing binary logic. Several algorithms have been proposed to utilize the quantum nature of physical states and solve important problems. For example, Shor's quantum algorithm is extremely important in the field of cryptography since it factors large numbers exponentially faster than any known classical algorithm. Another celebrated example is the Grovers quantum algorithm. These algorithms can only be implemented on a quantum computer which operates on quantum bits (qubits). Rudimentary implementations of quantum processor have already been achieved through linear optical components, ion traps, NMR etc. However demonstration of a solid state quantum processor had been elusive till DiCarlo et al demonstrated two qubit algorithms in superconducting quantum processor. Though this has been a significant step, scalable semiconductor based room temperature quantum co...
Quantum Computing with an Electron Spin Ensemble
DEFF Research Database (Denmark)
Wesenberg, Janus; Ardavan, A.; Briggs, G.A.D.
2009-01-01
We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized...
Quantum Algorithm Processor For Finding Exact Divisors
Burger, John Robert
2005-01-01
Wiring diagrams are given for a quantum algorithm processor in CMOS to compute, in parallel, all divisors of an n-bit integer. Lines required in a wiring diagram are proportional to n. Execution time is proportional to the square of n.
Reversible arithmetic logic unit for quantum arithmetic
DEFF Research Database (Denmark)
Thomsen, Michael Kirkedal; Glück, Robert; Axelsen, Holger Bock
2010-01-01
-bit operands and does not use ancillae. This remarkable low resource consumption was achieved by generalizing the V-shape design first introduced for quantum ripple-carry adders and nesting multiple V-shapes in a novel integrated design. This communication shows that the realization of an efficient reversible...
Multiparty Quantum Cryptographic Protocol
Institute of Scientific and Technical Information of China (English)
M. Ramzan; M. K. Khan
2008-01-01
We propose a multiparty quantum cryptographic protocol. Unitary operators applied by Bob and Charlie, on their respective qubits of a tripartite entangled state encoding a classical symbol that can be decoded at Alice's end with the help of a decoding matrix. Eve's presence can be detected by the disturbance of the decoding matrix. Our protocol is secure against intercept-resend attacks. Furthermore, it is efficient and deterministic in the sense that two classical bits can be transferred per entangled pair of qubits. It is worth mentioning that in this protocol, the same symbol can be used for key distribution and Eve's detection that enhances the effciency of the protocol.
Quantum communication for satellite-to-ground networks with partially entangled states
Chen, Na; Quan, Dong-Xiao; Pei, Chang-Xing; Yang-Hong
2015-02-01
To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).
Quantum communication for satellite-to-ground networks with partially entangled states
Institute of Scientific and Technical Information of China (English)
陈娜; 权东晓; 裴昌幸; 杨宏
2015-01-01
To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that in the presented scheme, the probability of successfully transferring a quantum bit is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on these critical components presented in this article, an efficient, secure, and practical wide-area quantum communication can be achieved.
Comparative Design of 16-Bit Sparse-Tree Rsfq Adder
Directory of Open Access Journals (Sweden)
S. Saddam Hussain
2014-06-01
Full Text Available In this paper, we propse 16-bit sparse tree RSFQ adder (Rapid single flux quantam, kogge-stone adder, carry lookahead adder. In general N-bit adders like Ripple carry adder s(slow adders compare to other adders, and carry lookahead adders(area consuming adders are used in earlier days. But now the most of industries are using parallel prefix adders because of their advantages compare to kogge-stone adder, carry lookahead adder, Our prefix sparse tree adders are faster and area efficient. Parallel prefix adder is a technique for increasing the speed in DSP processor while performing addition. We simulate and synthesis different types of 16-bit sparse tree RSFQ adders using Xilinx ISE10.1i tool, By using these synthesis results, We noted the performance parameters like number of LUT’s and delay. We compare these three adders interms of LUT’s represents area and delay values.
An improved EZBC algorithm based on block bit length
Wang, Renlong; Ruan, Shuangchen; Liu, Chengxiang; Wang, Wenda; Zhang, Li
2011-12-01
Embedded ZeroBlock Coding and context modeling (EZBC) algorithm has high compression performance. However, it consumes large amounts of memory space because an Amplitude Quadtree of wavelet coefficients and other two link lists would be built during the encoding process. This is one of the big challenges for EZBC to be used in real time or hardware applications. An improved EZBC algorithm based on bit length of coefficients was brought forward in this article. It uses Bit Length Quadtree to complete the coding process and output the context for Arithmetic Coder. It can achieve the same compression performance as EZBC and save more than 75% memory space required in the encoding process. As Bit Length Quadtree can quickly locate the wavelet coefficients and judge their significance, the improved algorithm can dramatically accelerate the encoding speed. These improvements are also beneficial for hardware. PACS: 42.30.Va, 42.30.Wb
Decision-fusion-based automated drill bit toolmark correlator
Jones, Brett C.; Press, Michael J.; Guerci, Joseph R.
1999-02-01
This paper describes a recent study conducted to investigate the reproducibility of toolmarks left by drill bits. This paper focuses on the automated analysis aspect of the study, and particularly the advantages of using decision fusion methods in the comparisons. To enable the study to encompass a large number of samples, existing technology was adapted to the task of automatically comparing the test impressions. Advanced forensic pattern recognition algorithms that had been developed for the comparison of ballistic evidence in the DRUGFIRETM system were modified for use in this test. The results of the decision fusion architecture closely matched those obtained by expert visual examination. The study, aided by the improved pattern recognition algorithm, showed that drill bit impressions do contain reproducible marks. In a blind test, the DRUGFIRE pattern recognition algorithm, enhanced with the decision fusion architecture, consistently identified the correct bit as the source of the test impressions.
Comodulation masking release in bit-rate reduction systems
DEFF Research Database (Denmark)
Vestergaard, Martin David; Rasmussen, Karsten Bo; Poulsen, Torben
1999-01-01
It has been suggested that the level dependence of the upper masking slope be utilized in perceptual models in bit-rate reduction systems. However, comodulation masking release (CMR) phenomena lead to a reduction of the masking effect when a masker and a probe signal are amplitude modulated...... with the same frequency. In bit-rate reduction systems the masker would be the audio signal and the probe signal would represent the quantization noise. Masking curves have been determined for sinusoids and 1-Bark-wide noise maskers in order to investigate the risk of CMR, when quantizing depths are fixed.......75. A CMR of up to 10 dB was obtained at a distance of 6 Bark above the masker. The amount of CMR was found to depend on the presentation level of the masker; a higher masker level leads to a higher CMR effect. Hence, the risk of CMR affecting the subjective performance of bit-rate reduction systems cannot...
BitCube: A Bottom-Up Cubing Engineering
Ferro, Alfredo; Giugno, Rosalba; Puglisi, Piera Laura; Pulvirenti, Alfredo
Enhancing on line analytical processing through efficient cube computation plays a key role in Data Warehouse management. Hashing, grouping and mining techniques are commonly used to improve cube pre-computation. BitCube, a fast cubing method which uses bitmaps as inverted indexes for grouping, is presented. It horizontally partitions data according to the values of one dimension and for each resulting fragment it performs grouping following bottom-up criteria. BitCube allows also partial materialization based on iceberg conditions to treat large datasets for which a full cube pre-computation is too expensive. Space requirement of bitmaps is optimized by applying an adaption of the WAH compression technique. Experimental analysis, on both synthetic and real datasets, shows that BitCube outperforms previous algorithms for full cube computation and results comparable on iceberg cubing.
Framed bit error rate testing for 100G ethernet equipment
DEFF Research Database (Denmark)
Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert
2010-01-01
The Internet users behavioural patterns are migrating towards bandwidth-intensive applications, which require a corresponding capacity extension. The emerging 100 Gigabit Ethernet (GE) technology is a promising candidate for providing a ten-fold increase of todays available Internet transmission...... rate. As the need for 100 Gigabit Ethernet equipment rises, so does the need for equipment, which can properly test these systems during development, deployment and use. This paper presents early results from a work-in-progress academia-industry collaboration project and elaborates on the challenges...... of performing bit error rate testing at 100Gbps. In particular, we show how Bit Error Rate Testing (BERT) can be performed over an aggregated 100G Attachment Unit Interface (CAUI) by encapsulating the test data in Ethernet frames at line speed. Our results show that framed bit error rate testing can...
Quantum Key Distribution over Probabilistic Quantum Repeaters
Amirloo, Jeyran; Majedi, A Hamed
2010-01-01
A feasible route towards implementing long-distance quantum key distribution (QKD) systems relies on probabilistic schemes for entanglement distribution and swapping as proposed in the work of Duan, Lukin, Cirac, and Zoller (DLCZ) [Nature 414, 413 (2001)]. Here, we calculate the conditional throughput and fidelity of entanglement for DLCZ quantum repeaters, by accounting for the DLCZ self-purification property, in the presence of multiple excitations in the ensemble memories as well as loss and other sources of inefficiency in the channel and measurement modules. We then use our results to find the generation rate of secure key bits for QKD systems that rely on DLCZ quantum repeaters. We compare the key generation rate per logical memory employed in the two cases of with and without a repeater node. We find the cross-over distance beyond which the repeater system outperforms the non-repeater one. That provides us with the optimum inter-node distancing in quantum repeater systems. We also find the optimal exci...
Holography, Quantum Geometry, and Quantum Information Theory
Directory of Open Access Journals (Sweden)
P. A. Zizzi
2000-03-01
Full Text Available Abstract: We interpret the Holographic Conjecture in terms of quantum bits (qubits. N-qubit states are associated with surfaces that are punctured in N points by spin networks' edges labelled by the spin-Ã‚Â½ representation of SU(2, which are in a superposed quantum state of spin "up" and spin "down". The formalism is applied in particular to de Sitter horizons, and leads to a picture of the early inflationary universe in terms of quantum computation. A discrete micro-causality emerges, where the time parameter is being defined by the discrete increase of entropy. Then, the model is analysed in the framework of the theory of presheaves (varying sets on a causal set and we get a quantum history. A (bosonic Fock space of the whole history is considered. The Fock space wavefunction, which resembles a Bose-Einstein condensate, undergoes decoherence at the end of inflation. This fact seems to be responsible for the rather low entropy of our universe.
Quantum Kolmogorov complexity and the quantum Turing machine
Energy Technology Data Exchange (ETDEWEB)
Mueller, M.
2007-08-31
The purpose of this thesis is to give a formal definition of quantum Kolmogorov complexity and rigorous mathematical proofs of its basic properties. Classical Kolmogorov complexity is a well-known and useful measure of randomness for binary strings. In recent years, several different quantum generalizations of Kolmogorov complexity have been proposed. The most natural generalization is due to A. Berthiaume et al. (2001), defining the complexity of a quantum bit (qubit) string as the length of the shortest quantum input for a universal quantum computer that outputs the desired string. Except for slight modifications, it is this definition of quantum Kolmogorov complexity that we study in this thesis. We start by analyzing certain aspects of the underlying quantum Turing machine (QTM) model in a more detailed formal rigour than was done previously. Afterwards, we apply these results to quantum Kolmogorov complexity. Our first result is a proof of the existence of a universal QTM which simulates every other QTM for an arbitrary number of time steps and than halts with probability one. In addition, we show that every input that makes a QTM almost halt can be modified to make the universal QTM halt entirely, by adding at most a constant number of qubits. It follows that quantum Kolmogorov complexity has the invariance property, i.e. it depends on the choice of the universal QTM only up to an additive constant. Moreover, the quantum complexity of classical strings agrees with classical complexity, again up to an additive constant. The proofs are based on several analytic estimates. Furthermore, we prove several incompressibility theorems for quantum Kolmogorov complexity. Finally, we show that for ergodic quantum information sources, complexity rate and entropy rate coincide with probability one. The thesis is finished with an outlook on a possible application of quantum Kolmogorov complexity in statistical mechanics. (orig.)
The Impossibility of Pseudo-Telepathy Without Quantum Entanglement
Galliard, V; Tapp, A; Galliard, Viktor; Wolf, Stefan; Tapp, Alain
2002-01-01
Imagine that Alice and Bob, unable to communicate, are both given a 16-bit string such that the strings are either equal, or they differ in exactly 8 positions. Both parties are then supposed to output a 4-bit string in such a way that these short strings are equal if and only if the original longer strings given to them were equal as well. It is known that this task can be fulfilled without failure and without communication if Alice and Bob share 4 maximally entangled quantum bits. We show that, on the other hand, they CANNOT win the same game with certainty if they only share classical bits, even if it is an unlimited number. This means that for fulfilling this particular distributed task, quantum entanglement can completely replace communication. This phenomenon has been called pseudo-telepathy. The results of this paper complete the analysis of the first proposed game of this type between two players.
Novel three-state quantum dot gate field effect transistor fabrication, modeling and applications
Karmakar, Supriya
2014-01-01
The book presents the fabrication and circuit modeling of quantum dot gate field effect transistor (QDGFET) and quantum dot gate NMOS inverter (QDNMOS inverter). It also introduces the development of a circuit model of QDGFET based on Berkley Short Channel IGFET model (BSIM). Different ternary logic circuits based on QDGFET are also investigated in this book. Advanced circuit such as three-bit and six bit analog-to-digital converter (ADC) and digital-to-analog converter (DAC) were also simulated.
Quantum control using genetic algorithms in quantum communication: superdense coding
Domínguez-Serna, Francisco; Rojas, Fernando
2015-06-01
We present a physical example model of how Quantum Control with genetic algorithms is applied to implement the quantum superdense code protocol. We studied a model consisting of two quantum dots with an electron with spin, including spin-orbit interaction. The electron and the spin get hybridized with the site acquiring two degrees of freedom, spin and charge. The system has tunneling and site energies as time dependent control parameters that are optimized by means of genetic algorithms to prepare a hybrid Bell-like state used as a transmission channel. This state is transformed to obtain any state of the four Bell basis as required by superdense protocol to transmit two bits of classical information. The control process protocol is equivalent to implement one of the quantum gates in the charge subsystem. Fidelities larger than 99.5% are achieved for the hybrid entangled state preparation and the superdense operations.
Large payload quantum steganography based on cavity quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
Ye Tian-Yu; Jiang Li-Zhen
2013-01-01
A large payload quantum steganography protocol based on cavity quantum electrodynamics (QED) is presented in this paper,which effectively uses the evolutionary law of atoms in cavity QED.The protocol builds up a hidden channel to transmit secret messages using entanglement swapping between one GHZ state and one Bell state in cavity QED together with the Hadamard operation.The quantum steganography protocol is insensitive to cavity decay and the thermal field.The capacity,imperceptibility and security against eavesdropping are analyzed in detail in the protocol.It turns out that the protocol not only has good imperceptibility but also possesses good security against eavesdropping.In addition,its capacity for a hidden channel achieves five bits,larger than most of the previous quantum steganography protocols.
Optically Controlled Distributed Quantum Computing Using Atomic Ensembles As Qubits
2016-02-23
Distribution approved for public release. 8 Figure 7: Schematic Illustration of a network of small-scale quantum...quantum bits in different systems, for example, Rb atoms and NV diamond, preferably using telecom fibres. In this paper, we describe a quantum frequency...converter (QFC) that will perform this telecom band qubit conversion. The QFC is based on periodically poled lithium niobate waveguides. For
NMR experimental implementation of three-parties quantum superdense coding
Institute of Scientific and Technical Information of China (English)
WEI Daxiu; YANG Xiaodong; LUO Jun; SUN Xianping; ZENG Xizhi; LIU Maili
2004-01-01
In this study, we report an experiment realization of quantum superdense coding (QSDC) between three parties using nuclear magnetic resonance (NMR). The experimental results have shown that in terms of the QSDC schemes between multiparties proposed by Liu et al. and Crudka et al., three-qubit QSDC can transmit three bits of classical information by sending two qubits only. Our results experimentally show that quantum superdense coding, as one of the quantum information processing protocols, is superior to classical ones.
Quantum random number generator using photon-number path entanglement
Kwon, Osung; Cho, Young-Wook; Kim, Yoon-Ho
2010-08-01
We report an experimental implementation of quantum random number generator based on the photon-number-path entangled state. The photon-number-path entangled state is prepared by means of two-photon Hong-Ou-Mandel quantum interference at a beam splitter. The randomness in our scheme is of truly quantum mechanical origin as it comes from the projection measurement of the entangled two-photon state. The generated bit sequences satisfy the standard randomness test.
Hanford coring bit temperature monitor development testing results report
Energy Technology Data Exchange (ETDEWEB)
Rey, D.
1995-05-01
Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks.
How to deal with malleability of BitCoin transactions
Andrychowicz, Marcin; Dziembowski, Stefan; Malinowski, Daniel; Mazurek, Łukasz
2013-01-01
BitCoin transactions are malleable in a sense that given a transaction an adversary can easily construct an equivalent transaction which has a different hash. This can pose a serious problem in some BitCoin distributed contracts in which changing a transaction's hash may result in the protocol disruption and a financial loss. The problem mostly concerns protocols, which use a "refund" transaction to withdraw a deposit in a case of the protocol interruption. In this short note, we show a gener...
Comparative Design of 16-Bit Sparse-Tree Rsfq Adder
S. Saddam Hussain; S. Mahaboob Basha
2014-01-01
In this paper, we propse 16-bit sparse tree RSFQ adder (Rapid single flux quantam), kogge-stone adder, carry lookahead adder. In general N-bit adders like Ripple carry adder s(slow adders compare to other adders), and carry lookahead adders(area consuming adders) are used in earlier days. But now the most of industries are using parallel prefix adders because of their advantages compare to kogge-stone adder, carry lookahead adder, Our prefix sparse tree adders are faster and ar...
An Efficient Power Optimized 1-bit CMOS Full Adder
Directory of Open Access Journals (Sweden)
R.M.Poojithaa
2013-06-01
Full Text Available Adders are the most important arithmetic units in a general microprocessor and the major source of power dissipation. Apart from addition, adders are also used in performing useful operations such as subtraction, multiplication, division and address calculation etc. In this paper, we have presented the study of different logic style using 1-bit full adder circuit and we have compared this 1-bit full adder on certain parameters such as power, number of transistor and frequency using microwind and T-spice.
BIT LENGTH REPLACEMENT STEGANOGRAPHY BASED ON DCT COEFFICIENTS
Directory of Open Access Journals (Sweden)
K B Shiva Kumar
2010-08-01
Full Text Available Steganography is a means of establishing secret communication through public channel in an artistic manner. In this paper, we propose Bit Length Replacement Steganography Based on DCT Coefficients (BLSDCT . The cover image is segmented into 8*8 blocks and DCT is applied on each block. The numbers of payload MSB bits are embedded into DCT coefficients of the cover image based on the values of DCT oefficients. It is observed that the proposed algorithm has better PSNR, Security and capacity compared to the existing algorithm.
Micro-electromechanical memory bit based on magnetic repulsion
López-Suárez, Miquel; Neri, Igor
2016-09-01
A bistable micro-mechanical system based on magnetic repulsion is presented exploring its applicability as memory unit where the state of the bit is encoded in the rest position of a deflected cantilever. The non-linearity induced on the cantilever can be tuned through the magnetic interaction intensity between the cantilever magnet and the counter magnet in terms of geometrical parameters. A simple model provides a sound prediction of the behavior of the system. Finally, we measured the energy required to store a bit of information on the system that, for the considered protocols, is bounded by the energy barrier separating the two stable states.
Comodulation masking release in bit-rate reduction systems
DEFF Research Database (Denmark)
Vestergaard, Martin D.; Rasmussen, Karsten Bo; Poulsen, Torben
1999-01-01
It has been suggested that the level dependence of the upper masking slopebe utilised in perceptual models in bit-rate reduction systems. However,comodulation masking release (CMR) phenomena lead to a reduction of themasking effect when a masker and a probe signal are amplitude modulated withthe...... same frequency. In bit-rate reduction systems the masker would be theaudio signal and the probe signal would represent the quantization noise.Masking curves have been determined for sinusoids and 1-Bark-wide noisemaskers in order to investigate the risk of CMR, when quantizing depths arefixed...
Perceptual importance analysis for H.264/AVC bit allocation
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The existing H.264/AVC rate control schemes rarely include the perceptual considerations. As a result, the improvements in visual quality are hardly comparable to those in peak signal-to-noise ratio (PSNR). In this paper, we propose a perceptual importance analysis scheme to accurately abstract the spatial and temporal perceptual characteristics of video contents. Then we perform bit allocation at macroblock (MB) level by adopting a perceptual mode decision scheme, which adaptively updates the Lagrangian multiplier for mode decision according to the perceptual importance of each MB. Simulation results show that the proposed scheme can efficiently reduce bit rates without visual quality degradation.
An improved bit shuffling pixels-based image scrambling method
Institute of Scientific and Technical Information of China (English)
ZHAO Hong; WANG Hong-xia; WANG Jin
2011-01-01
@@ Compared with the Arnold transform, the image scrambling method based on bit shuffling pixels is much more secure, and has higher efficiency and speed.However, the key space of this bit shuffling pixels based method is too small to resist exhaustive search attack.Therefore, an improved method based on chaos is proposed in this paper.The security of the improved scheme is enhanced by increasing the number of the keys.Theoretical analysis and experimental results show that the proposed method is effective and has higher security.
Video coding bit allocation algorithm over wireless transmission channel
Institute of Scientific and Technical Information of China (English)
ZHANG Wei; ZHOU Yuan-hua
2006-01-01
For two-way video communications over wireless channels using the automatic repeat request (ARQ) retransmission scheme, TMN8 rate control scheme is not effective in minimizing the number of frames skipped and cannot guarantee video quality during the retransmissions of error packets. This paper presents a joint source channel bit allocation scheme that allocates target bits according to encoder buffer fullness and estimation of channel condition by retransmission information. The results obtained from implementing our scheme in H. 263 + coder over wireless channel model show that our proposed scheme encodes the video sequences with lower and steadier buffer delay, fewer frames skipped and higher average PSNR compared to TMN8.
Modeling of Bit Error Rate in Cascaded 2R Regenerators
DEFF Research Database (Denmark)
Öhman, Filip; Mørk, Jesper
2006-01-01
This paper presents a simple and efficient model for estimating the bit error rate in a cascade of optical 2R-regenerators. The model includes the influences of of amplifier noise, finite extinction ratio and nonlinear reshaping. The interplay between the different signal impairments and the rege......This paper presents a simple and efficient model for estimating the bit error rate in a cascade of optical 2R-regenerators. The model includes the influences of of amplifier noise, finite extinction ratio and nonlinear reshaping. The interplay between the different signal impairments...
Development of a jet-assisted polycrystalline diamond drill bit
Energy Technology Data Exchange (ETDEWEB)
Pixton, D.S.; Hall, D.R.; Summers, D.A.; Gertsch, R.E.
1997-12-31
A preliminary investigation has been conducted to evaluate the technical feasibility and potential economic benefits of a new type of drill bit. This bit transmits both rotary and percussive drilling forces to the rock face, and augments this cutting action with high-pressure mud jets. Both the percussive drilling forces and the mud jets are generated down-hole by a mud-actuated hammer. Initial laboratory studies show that rate of penetration increases on the order of a factor of two over unaugmented rotary and/or percussive drilling rates are possible with jet-assistance.
Techniques of Very Low Bit-Rate Speech Coding1
Institute of Scientific and Technical Information of China (English)
CUIHuijuan; TANGKun; ZHAOMing; ZHANGXin
2004-01-01
Techniques of very low bit-rate speech coding,such as lower than 800 bps are presented in this paper. The techniques of multi-frame, multi-sub-band, multimodel, and vector quantization etc. are effective to decrease the bit-rate of vocoders based on a linear prediction model. These techniques bring the vocoder not only high quality of the reconstructed speech, but also robustness.Vocoders which apply those techniques can synthesize clear and intelligent speech with some naturalness. The mean DRT (Diagnostic rhyme test) score of an 800 bps vocoder is 89.2% and 86.3% for a 600 bps vocoder.
Secure communications using quantum cryptography
Energy Technology Data Exchange (ETDEWEB)
Hughes, R.J.; Buttler, W.T.; Kwiat, P.G. [and others
1997-08-01
The secure distribution of the secret random bit sequences known as {open_quotes}key{close_quotes} material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is an emerging technology for secure key distribution with single-photon transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal single-photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. In our optical fiber experiment we have performed quantum key distribution over 24-km of underground optical fiber using single-photon interference states, demonstrating that secure, real-time key generation over {open_quotes}open{close_quotes} multi-km node-to-node optical fiber communications links is possible. We have also constructed a quantum key distribution system for free-space, line-of-sight transmission using single-photon polarization states, which is currently undergoing laboratory testing. 7 figs.
Enhanced sensing and communication via quantum networks
Smith, James F.
2017-05-01
A network based on quantum information has been developed to improve sensing and communications capabilities. Quantum teleportation offers features for communicating information not found in classical procedures. It is fundamental to the quantum network approach. A version of quantum teleportation based on hyper-entanglement is used to bring about these improvements. Recently invented methods of improving sensing and communication via quantum information based on hyper-entanglement are discussed. These techniques offer huge improvements in the SNR, signal to interference ratio, and time-on-target of various sensors including RADAR and LADAR. Hyper-entanglement refers to quantum entanglement in more than one degree of freedom, e.g. polarization, energy-time, orbital angular momentum (OAM), etc. The quantum network makes use of quantum memory located in each node of the network, thus the network forms a quantum repeater. The quantum repeater facilitates the use of quantum teleportation, and superdense coding. Superdense coding refers to the ability to incorporate more than one classical bit into each transmitted qubit. The network of sensors and/or communication devices has an enhanced resistance to interference sources. The repeater has the potential for greatly reducing loss in communications and sensor systems related to the effect of the atmosphere on fragile quantum states. Measures of effectiveness (MOEs) are discussed that show the utility of the network for improving sensing and communications in the presence of loss and noise. The quantum repeater will reduce overall size, weight, power and cost (SWAPC) of fielded components of systems.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-02-22
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
Goto, Hayato
2016-02-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Lloyd, Seth
2012-01-01
This letter analyzes the limits that quantum mechanics imposes on the accuracy to which spacetime geometry can be measured. By applying the fundamental physical bounds to measurement accuracy to ensembles of clocks and signals moving in curved spacetime -- e.g., the global positioning system -- I derive a covariant version of the quantum geometric limit: the total number of ticks of clocks and clicks of detectors that can be contained in a four volume of spacetime of radius r and temporal extent t is less than or equal to rt/\\pi x_P t_P, where x_P, t_P are the Planck length and time. The quantum geometric limit bounds the number of events or `ops' that can take place in a four-volume of spacetime: each event is associated with a Planck-scale area. Conversely, I show that if each quantum event is associated with such an area, then Einstein's equations must hold. The quantum geometric limit is consistent with and complementary to the holographic bound which limits the number of bits that can exist within a spat...
Quantum entanglement in the NMR implementation of the Deutsch-Jozsa algorithm
Indian Academy of Sciences (India)
Arvind; Kavita Dorai; Anil Kumar
2001-05-01
A scheme to execute an -bit Deutsch-Jozsa (DJ) algorithm using qubits has been implemented for up to three cubits on an NMR quantum computer. For the one- and the two-bit Deutsch problem, the qubits do not get entangled, and the NMR implementation is achieved without using spin-spin interactions. It is for the three-bit case, that the manipulation of entangled states becomes essential. The interactions through scalar -couplings in NMR spin systems have been exploited to implement entangling transformations required for the three bit DJ algorithm.
A 1.5 bit/s Pipelined Analog-to-Digital Converter Design with Independency of Capacitor Mismatch
Institute of Scientific and Technical Information of China (English)
LI Dan; RONG Men-tian; MAO Jun-fa
2007-01-01
A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC).The residual voltage was obtained from the sampling capacitor, and the other capacitor was just a temporary storage of charge.Then, the linearity produced by the mismatch of these capacitors was eliminated without adding extra capacitor error-averaging amplifiers.The simulation results confirmed the high linearity and low dissipation of pipelined ADCs implemented in CTST, so CTST was a new method to implement high resolution, small size ADCs.
Optimal control and quantum simulations in superconducting quantum devices
Energy Technology Data Exchange (ETDEWEB)
Egger, Daniel J.
2014-10-31
Quantum optimal control theory is the science of steering quantum systems. In this thesis we show how to overcome the obstacles in implementing optimal control for superconducting quantum bits, a promising candidate for the creation of a quantum computer. Building such a device will require the tools of optimal control. We develop pulse shapes to solve a frequency crowding problem and create controlled-Z gates. A methodology is developed for the optimisation towards a target non-unitary process. We show how to tune-up control pulses for a generic quantum system in an automated way using a combination of open- and closed-loop optimal control. This will help scaling of quantum technologies since algorithms can calibrate control pulses far more efficiently than humans. Additionally we show how circuit QED can be brought to the novel regime of multi-mode ultrastrong coupling using a left-handed transmission line coupled to a right-handed one. We then propose to use this system as an analogue quantum simulator for the Spin-Boson model to show how dissipation arises in quantum systems.
Quantum key distribution with two-segment quantum repeaters
Energy Technology Data Exchange (ETDEWEB)
Kampermann, Hermann; Abruzzo, Silvestre; Bruss, Dagmar [Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)
2014-07-01
Quantum repeaters represent one possible way to achieve long-distance quantum key distribution. One way of improving the repeater rate and decreasing the memory coherence time is the usage of multiplexing. Motivated by the experimental fact that long-range connections are practically demanding, we extend the analysis of the quantum repeater multiplexing protocol to the case of short-range connections. We derive formulas for the repeater rate and we show that short-range connections lead to most of the benefits of a full-range multiplexing protocol. A less demanding QKD-protocol without quantum memories was recently introduced by Lo et al. We generalize this measurement-device-independent quantum key Distribution protocol to the scenario where the repeater Station contains also heralded quantum memories. We assume either single-photon sources or weak coherent pulse sources plus decay states. We show that it is possible to significantly outperform the original proposal, even in presence of decoherence of the quantum memory. We give formulas in terms of device imperfections i.e., the quantum bit error rate and the repeater rate.
Electrostatically defined silicon quantum dots with counted antimony donor implants
Energy Technology Data Exchange (ETDEWEB)
Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87175 (United States); Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Bielejec, E.; Carroll, M. S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2016-02-08
Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.
KEAMANAN CITRA DENGAN WATERMARKING MENGGUNAKAN PENGEMBANGAN ALGORITMA LEAST SIGNIFICANT BIT
Directory of Open Access Journals (Sweden)
Kurniawan Kurniawan
2015-01-01
Full Text Available Image security is a process to save digital. One method of securing image digital is watermarking using Least Significant Bit algorithm. Main concept of image security using LSB algorithm is to replace bit value of image at specific location so that created pattern. The pattern result of replacing the bit value of image is called by watermark. Giving watermark at image digital using LSB algorithm has simple concept so that the information which is embedded will lost easily when attacked such as noise attack or compression. So need modification like development of LSB algorithm. This is done to decrease distortion of watermark information against those attacks. In this research is divided by 6 process which are color extraction of cover image, busy area search, watermark embed, count the accuracy of watermark embed, watermark extraction, and count the accuracy of watermark extraction. Color extraction of cover image is process to get blue color component from cover image. Watermark information will embed at busy area by search the area which has the greatest number of unsure from cover image. Then watermark image is embedded into cover image so that produce watermarked image using some development of LSB algorithm and search the accuracy by count the Peak Signal to Noise Ratio value. Before the watermarked image is extracted, need to test by giving noise and doing compression into jpg format. The accuracy of extraction result is searched by count the Bit Error Rate value.
Steganography forensics method for detecting least significant bit replacement attack
Wang, Xiaofeng; Wei, Chengcheng; Han, Xiao
2015-01-01
We present an image forensics method to detect least significant bit replacement steganography attack. The proposed method provides fine-grained forensics features by using the hierarchical structure that combines pixels correlation and bit-planes correlation. This is achieved via bit-plane decomposition and difference matrices between the least significant bit-plane and each one of the others. Generated forensics features provide the susceptibility (changeability) that will be drastically altered when the cover image is embedded with data to form a stego image. We developed a statistical model based on the forensics features and used least square support vector machine as a classifier to distinguish stego images from cover images. Experimental results show that the proposed method provides the following advantages. (1) The detection rate is noticeably higher than that of some existing methods. (2) It has the expected stability. (3) It is robust for content-preserving manipulations, such as JPEG compression, adding noise, filtering, etc. (4) The proposed method provides satisfactory generalization capability.
Parity Bit Replenishment for JPEG 2000-Based Video Streaming
Directory of Open Access Journals (Sweden)
François-Olivier Devaux
2009-01-01
Full Text Available This paper envisions coding with side information to design a highly scalable video codec. To achieve fine-grained scalability in terms of resolution, quality, and spatial access as well as temporal access to individual frames, the JPEG 2000 coding algorithm has been considered as the reference algorithm to encode INTRA information, and coding with side information has been envisioned to refresh the blocks that change between two consecutive images of a video sequence. One advantage of coding with side information compared to conventional closed-loop hybrid video coding schemes lies in the fact that parity bits are designed to correct stochastic errors and not to encode deterministic prediction errors. This enables the codec to support some desynchronization between the encoder and the decoder, which is particularly helpful to adapt on the fly pre-encoded content to fluctuating network resources and/or user preferences in terms of regions of interest. Regarding the coding scheme itself, to preserve both quality scalability and compliance to the JPEG 2000 wavelet representation, a particular attention has been devoted to the definition of a practical coding framework able to exploit not only the temporal but also spatial correlation among wavelet subbands coefficients, while computing the parity bits on subsets of wavelet bit-planes. Simulations have shown that compared to pure INTRA-based conditional replenishment solutions, the addition of the parity bits option decreases the transmission cost in terms of bandwidth, while preserving access flexibility.
Forecasting the life of rock-bit journal bearings
Energy Technology Data Exchange (ETDEWEB)
Kelly, J.L. (Hughes Tool Co. (US))
1990-06-01
This paper describes an analytical procedure for forecasting the life expectancy of rock-bit journal bearings. Actual performance data and reliability analyses are used to establish empirical relationships and a graphic procedure that relates the risk of bearing failure to operating parameters and drilling cost.
Advanced "Dagang" Screw Drill and Man-made Diamond Bit
Institute of Scientific and Technical Information of China (English)
Wu Zhenya
1995-01-01
@@ Central Machinery Plant, a state enterprise, is a comprehensive petroleum machinery enterprise mainly manufacturing petroleum machinery equipment and drilling & production fillings, also maintaining oilfield construction equipment and submersible electrical pumps. In 1992,the plant was appointed to manufacture positive displacement drill, reciprocating pump, man-made diamond bit, downhole tool and roller precision chain, and to maintain submersible electrical pumps by CNPC.
An Educator’s Guide to Bits, Bytes, and Teaching
Amitabh Vikram Dwivedi
2016-01-01
Book review of: “Technology for Classroom and Online Learning: An Educator’s Guide to Bits, Bytes, and Teaching.” By Samuel M. Kwon, Daniel R. Tomal, and Aram S. Agajanian. Lanham, MD: Rowman and Littlefield, 2016. ISBN 978-1-4758-1544-3
An Educator’s Guide to Bits, Bytes, and Teaching
Directory of Open Access Journals (Sweden)
Amitabh Vikram Dwivedi
2016-11-01
Full Text Available Book review of: “Technology for Classroom and Online Learning: An Educator’s Guide to Bits, Bytes, and Teaching.” By Samuel M. Kwon, Daniel R. Tomal, and Aram S. Agajanian. Lanham, MD: Rowman and Littlefield, 2016. ISBN 978-1-4758-1544-3
"Material interactions": from atoms & bits to entangled practices
DEFF Research Database (Denmark)
Vallgårda, Anna
and intellectually stimulating panel moderated by Prof. Mikael Wiberg consisting of a number of scholars with a well-developed view on digital materialities to fuel a discussion on material interactions - from atoms & bits to entangled practices. These scholars include: Prof. Hiroshi Ishii, Prof. Paul Dourish...
Different Mass Processing Services in a Bit Repository
DEFF Research Database (Denmark)
Jurik, Bolette; Zierau, Eld
2011-01-01
This paper investigates how a general bit repository mass processing service using different programming models and platforms can be specified. Such a service is needed in large data archives, especially libraries, where different ways of doing mass processing is needed for different digital libr...
Pinning of written bits in perpendicular recording media
Energy Technology Data Exchange (ETDEWEB)
Greaves, S.J.; Muraoka, H. E-mail: muraoka@riec.tohoku.ac.jp; Sonobe, Y.; Schabes, M.; Nakamura, Y
2001-10-01
A perpendicular medium comprising two distinct magnetic layers is described. One layer has a granular structure with isolated, exchange-decoupled grains and the other is a continuous, exchange-coupled layer. In the combined structure domain wall movement is restricted and reversed grains within written bits are eliminated. The S/N ratio is improved compared with single layers of either type alone.
Low bit rate near-transparent image coding
Zhu, Bin; Tewfik, Ahmed H.; Gerek, Oemer N.
1995-04-01
In this paper, we describe an improved version of our previous approach for low bit rate near- perceptually transparent image compression. The method exploits both frequency and spatial domain visual masking effects and uses a combination of Fourier and wavelet representations to encode different bands. The frequency domain masking model is based on the psychophysical masking experimental data of sinusoidal patterns while the spatial domain masking is computed with a modified version of Girod's model. A discrete cosine transform is used in conjunction with frequency domain masking to encode the low frequency subimages. The medium and high frequency subimages are encoded in the wavelet domain with spatial domain masking. The main improvement over our previous technique is that a better model is used to calculate the tolerable error level for the subimages in the wavelet domain, and a boundary control is used to prevent or reduce the ringing noise in the decoded image. This greatly improves the decoded image quality for the same coding bit rates. Experiments show the approach can achieve very high quality to nearly transparent compression at bit rates of 0.2 to 0.4 bits/pixel for the image Lena.
Experimental realization of universal geometric quantum gates with solid-state spins.
Zu, C; Wang, W-B; He, L; Zhang, W-G; Dai, C-Y; Wang, F; Duan, L-M
2014-10-02
Experimental realization of a universal set of quantum logic gates is the central requirement for the implementation of a quantum computer. In an 'all-geometric' approach to quantum computation, the quantum gates are implemented using Berry phases and their non-Abelian extensions, holonomies, from geometric transformation of quantum states in the Hilbert space. Apart from its fundamental interest and rich mathematical structure, the geometric approach has some built-in noise-resilience features. On the experimental side, geometric phases and holonomies have been observed in thermal ensembles of liquid molecules using nuclear magnetic resonance; however, such systems are known to be non-scalable for the purposes of quantum computing. There are proposals to implement geometric quantum computation in scalable experimental platforms such as trapped ions, superconducting quantum bits and quantum dots, and a recent experiment has realized geometric single-bit gates in a superconducting system. Here we report the experimental realization of a universal set of geometric quantum gates using the solid-state spins of diamond nitrogen-vacancy centres. These diamond defects provide a scalable experimental platform with the potential for room-temperature quantum computing, which has attracted strong interest in recent years. Our experiment shows that all-geometric and potentially robust quantum computation can be realized with solid-state spin quantum bits, making use of recent advances in the coherent control of this system.
Analysis of bit-rock interaction during stick-slip vibrations using PDC cutting force model
Energy Technology Data Exchange (ETDEWEB)
Patil, P.A.; Teodoriu, C. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE
2013-08-01
Drillstring vibration is one of the limiting factors maximizing the drilling performance and also causes premature failure of drillstring components. Polycrystalline diamond compact (PDC) bit enhances the overall drilling performance giving the best rate of penetrations with less cost per foot but the PDC bits are more susceptible to the stick slip phenomena which results in high fluctuations of bit rotational speed. Based on the torsional drillstring model developed using Matlab/Simulink for analyzing the parametric influence on stick-slip vibrations due to drilling parameters and drillstring properties, the study of relations between weight on bit, torque on bit, bit speed, rate of penetration and friction coefficient have been analyzed. While drilling with the PDC bits, the bit-rock interaction has been characterized by cutting forces and the frictional forces. The torque on bit and the weight on bit have both the cutting component and the frictional component when resolved in horizontal and vertical direction. The paper considers that the bit is undergoing stick-slip vibrations while analyzing the bit-rock interaction of the PDC bit. The Matlab/Simulink bit-rock interaction model has been developed which gives the average cutting torque, T{sub c}, and friction torque, T{sub f}, values on cutters as well as corresponding average weight transferred by the cutting face, W{sub c}, and the wear flat face, W{sub f}, of the cutters value due to friction.
Experimental study of rock-breaking with an offset single cone bit
Institute of Scientific and Technical Information of China (English)
Chen Yinghua
2008-01-01
An experimental study of rock-breaking with an offset single cone bit was completed on the bit bench test equipment.Data such as transmission ratio,weight on bit (WOB),rate of penetration (ROP)and torque on bit were acquired in the experiments.Based on analyzing the experimental results,several conclusions were drawn as follows.The transmission ratio of the offset single-cone bit changed slightly with rotary speed of bit,weight on bit and offset distance.The rate of penetration of the offset singlecone bit increased with increase of WOB and offset distance.The torque on bit increased with increase of offset distance under the same WOB and bit rotary speed,decreased with increase of bit rotary speed under the same WOB.The rock-breaking mechanism of the offset single-cone bit was a scraping action.This indicates that the offset single-cone bit is a chipping type bit.
DEFF Research Database (Denmark)
Uskov, Alexander V.; Berg, Tommy Winther; Mørk, Jesper
2004-01-01
A theory for pulse amplification and saturation in quantum dot (QD) semiconductor optical amplifiers (SOAs) is developed. In particular, the maximum bit rate at which a data stream of pulses can be amplified without significant patterning effects is investigated. Simple expressions are derived...... that clearly show the dependence of the maximum bit rate on material and device parameters. A comparative analysis of QD, quantum well (QW), and bulk SOAs shows that QD SOAs may have superior properties; calculations predict patterning-free amplification up to bit rates of 150–200 Gb/s with pulse output...
Quantum communication and information processing
Beals, Travis Roland
Quantum computers enable dramatically more efficient algorithms for solving certain classes of computational problems, but, in doing so, they create new problems. In particular, Shor's Algorithm allows for efficient cryptanalysis of many public-key cryptosystems. As public key cryptography is a critical component of present-day electronic commerce, it is crucial that a working, secure replacement be found. Quantum key distribution (QKD), first developed by C.H. Bennett and G. Brassard, offers a partial solution, but many challenges remain, both in terms of hardware limitations and in designing cryptographic protocols for a viable large-scale quantum communication infrastructure. In Part I, I investigate optical lattice-based approaches to quantum information processing. I look at details of a proposal for an optical lattice-based quantum computer, which could potentially be used for both quantum communications and for more sophisticated quantum information processing. In Part III, I propose a method for converting and storing photonic quantum bits in the internal state of periodically-spaced neutral atoms by generating and manipulating a photonic band gap and associated defect states. In Part II, I present a cryptographic protocol which allows for the extension of present-day QKD networks over much longer distances without the development of new hardware. I also present a second, related protocol which effectively solves the authentication problem faced by a large QKD network, thus making QKD a viable, information-theoretic secure replacement for public key cryptosystems.
Estimating Hardness from the USDC Tool-Bit Temperature Rise
Bar-Cohen, Yoseph; Sherrit, Stewart
2008-01-01
A method of real-time quantification of the hardness of a rock or similar material involves measurement of the temperature, as a function of time, of the tool bit of an ultrasonic/sonic drill corer (USDC) that is being used to drill into the material. The method is based on the idea that, other things being about equal, the rate of rise of temperature and the maximum temperature reached during drilling increase with the hardness of the drilled material. In this method, the temperature is measured by means of a thermocouple embedded in the USDC tool bit near the drilling tip. The hardness of the drilled material can then be determined through correlation of the temperature-rise-versus-time data with time-dependent temperature rises determined in finite-element simulations of, and/or experiments on, drilling at various known rates of advance or known power levels through materials of known hardness. The figure presents an example of empirical temperature-versus-time data for a particular 3.6-mm USDC bit, driven at an average power somewhat below 40 W, drilling through materials of various hardness levels. The temperature readings from within a USDC tool bit can also be used for purposes other than estimating the hardness of the drilled material. For example, they can be especially useful as feedback to control the driving power to prevent thermal damage to the drilled material, the drill bit, or both. In the case of drilling through ice, the temperature readings could be used as a guide to maintaining sufficient drive power to prevent jamming of the drill by preventing refreezing of melted ice in contact with the drill.
Quantum red-green-blue image steganography
Heidari, Shahrokh; Pourarian, Mohammad Rasoul; Gheibi, Reza; Naseri, Mosayeb; Houshmand, Monireh
One of the most considering matters in the field of quantum information processing is quantum data hiding including quantum steganography and quantum watermarking. This field is an efficient tool for protecting any kind of digital data. In this paper, three quantum color images steganography algorithms are investigated based on Least Significant Bit (LSB). The first algorithm employs only one of the image’s channels to cover secret data. The second procedure is based on LSB XORing technique, and the last algorithm utilizes two channels to cover the color image for hiding secret quantum data. The performances of the proposed schemes are analyzed by using software simulations in MATLAB environment. The analysis of PSNR, BER and Histogram graphs indicate that the presented schemes exhibit acceptable performances and also theoretical analysis demonstrates that the networks complexity of the approaches scales squarely.
Experimental plug and play quantum coin flipping
Pappa, Anna; Jouguet, Paul; Lawson, Thomas; Chailloux, André; Legré, Matthieu; Trinkler, Patrick; Kerenidis, Iordanis; Diamanti, Eleni
2014-04-01
Performing complex cryptographic tasks will be an essential element in future quantum communication networks. These tasks are based on a handful of fundamental primitives, such as coin flipping, where two distrustful parties wish to agree on a randomly generated bit. Although it is known that quantum versions of these primitives can offer information-theoretic security advantages with respect to classical protocols, a demonstration of such an advantage in a practical communication scenario has remained elusive. Here we experimentally implement a quantum coin flipping protocol that performs strictly better than classically possible over a distance suitable for communication over metropolitan area optical networks. The implementation is based on a practical plug and play system, developed by significantly enhancing a commercial quantum key distribution device. Moreover, we provide combined quantum coin flipping protocols that are almost perfectly secure against bounded adversaries. Our results offer a useful toolbox for future secure quantum communications.
Specht, Holger P; Reiserer, Andreas; Uphoff, Manuel; Figueroa, Eden; Ritter, Stephan; Rempe, Gerhard
2011-01-01
The faithful storage of a quantum bit of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must, first, be able to receive and recreate the photonic qubit and, second, store an unknown quantum state of light better than any classical device. These two requirements have so far been met only by ensembles of material particles storing the information in collective excitations. Recent developments, however, have paved the way for a new approach in which the information exchange happens between single quanta of light and matter. This single-particle approach allows one to address the material qubit and thus has fundamental advantages for realistic implementations: First, to combat inevitable losses and finite efficiencies, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection. Second, it allows for individual qubit manipulations, opening up avenues for in situ p...
Li, Shu-Shen; Long, Gui-lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi
2001-01-01
Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.
Quantum watermarking scheme through Arnold scrambling and LSB steganography
Zhou, Ri-Gui; Hu, Wenwen; Fan, Ping
2017-09-01
Based on the NEQR of quantum images, a new quantum gray-scale image watermarking scheme is proposed through Arnold scrambling and least significant bit (LSB) steganography. The sizes of the carrier image and the watermark image are assumed to be 2n× 2n and n× n, respectively. Firstly, a classical n× n sized watermark image with 8-bit gray scale is expanded to a 2n× 2n sized image with 2-bit gray scale. Secondly, through the module of PA-MOD N, the expanded watermark image is scrambled to a meaningless image by the Arnold transform. Then, the expanded scrambled image is embedded into the carrier image by the steganography method of LSB. Finally, the time complexity analysis is given. The simulation experiment results show that our quantum circuit has lower time complexity, and the proposed watermarking scheme is superior to others.
A Quantum Random Number Generator Certified by Value Indefiniteness
Abbott, Alastair A; Svozil, Karl
2010-01-01
In this paper we propose a quantum random number generator (QRNG) which utilizes an entangled photon pair in a Bell singlet state, and is certified explicitly by value indefiniteness. While "true randomness" is a mathematical impossibility, the certification by value indefiniteness ensures the quantum random bits are incomputable in the strongest sense. This is the first QRNG setup in which a physical principle (Kochen-Specker value indefiniteness) guarantees that no single quantum bit produced can be classically computed (reproduced and validated), the mathematical form of bitwise physical unpredictability. The effects of various experimental imperfections are discussed in detail, particularly those related to detector efficiencies, context alignment and temporal correlations between bits. The analysis is to a large extent relevant for the construction of any QRNG based on beam-splitters. By measuring the two entangled photons in maximally misaligned contexts and utilizing the fact that two rather than one b...
Serialized quantum error correction protocol for high-bandwidth quantum repeaters
Glaudell, A. N.; Waks, E.; Taylor, J. M.
2016-09-01
Advances in single-photon creation, transmission, and detection suggest that sending quantum information over optical fibers may have losses low enough to be correctable using a quantum error correcting code (QECC). Such error-corrected communication is equivalent to a novel quantum repeater scheme, but crucial questions regarding implementation and system requirements remain open. Here we show that long-range entangled bit generation with rates approaching 108 entangled bits per second may be possible using a completely serialized protocol, in which photons are generated, entangled, and error corrected via sequential, one-way interactions with as few matter qubits as possible. Provided loss and error rates of the required elements are below the threshold for quantum error correction, this scheme demonstrates improved performance over transmission of single photons. We find improvement in entangled bit rates at large distances using this serial protocol and various QECCs. In particular, at a total distance of 500 km with fiber loss rates of 0.3 dB km-1, logical gate failure probabilities of 10-5, photon creation and measurement error rates of 10-5, and a gate speed of 80 ps, we find the maximum single repeater chain entangled bit rates of 51 Hz at a 20 m node spacing and 190 000 Hz at a 43 m node spacing for the {[[3,1,2
A condensed course of quantum mechanics
Cejnar, Pavel
2013-01-01
This book represents a concise summary of non-relativistic quantum mechanics on the level suitable for university students of physics. It covers, perhaps even slightly exceeds, a one-year course of about 50 lectures, requiring basic knowledge of calculus, algebra, classical mechanics and a bit of motivation for the quantum adventure.The exposition is succinct, with minimal narration, but witha maximum of explicit and hierarchically structured mathematical derivations. The text covers all essential topics of university courses of quantum mechanics - from general mathematical formalism to specif
Quantum identity authentication with single photon
Hong, Chang ho; Heo, Jino; Jang, Jin Gak; Kwon, Daesung
2017-10-01
Quantum identity authentication with single photons is proposed in the paper. It can verify a user's identity without exposing to an authentication key information. The protocol guarantees high efficiency in that it can verify two bits of authentication information using just a single photon. The security of our authentication scheme is analyzed and confirmed in the case of a general attack. Moreover, the proposed protocol is practicable with current technology. Our quantum identity authentication protocol does not require quantum memory registration and any entangled photon sources.
It from Bit or Bit from It? on physics and information
Foster, Brendan; Merali, Zeeya
2015-01-01
The essays in this book look at the question of whether physics can be based on information, or – as John Wheeler phrased it – whether we can get “It from Bit”. They are based on the prize-winning essays submitted to the FQXi essay competition of the same name, which drew over 180 entries. The eighteen contributions address topics as diverse as quantum foundations, entropy conservation, nonlinear logic and countable spacetime. Together they provide stimulating reading for all physics aficionados interested in the possible role(s) of information in the laws of nature. The Foundational Questions Institute, FQXi, catalyzes, supports, and disseminates research on questions at the foundations of physics and cosmology, particularly new frontiers and innovative ideas integral to a deep understanding of reality, but unlikely to be supported by conventional funding sources.
La Saturated Absorption Spectroscopy for Applications in Quantum Information
Becker, Patrick; Donoghue, Liz; Dungan, Kristina; Liu, Jackie; Olmschenk, Steven
2015-05-01
Quantum information may revolutionize computation and communication by utilizing quantum systems based on matter quantum bits and entangled light. Ions are excellent candidates for quantum bits as they can be well-isolated from unwanted external influences by trapping and laser cooling. Doubly-ionized lanthanum in particular shows promise for use in quantum information as it has infrared transitions in the telecom band, with low attenuation in standard optical fiber, potentially allowing for long distance information transfer. However, the hyperfine splittings of the lowest energy levels, required for laser cooling, have not been measured. We present progress and recent results towards measuring the hyperfine splittings of these levels in lanthanum by saturated absorption spectroscopy with a hollow cathode lamp. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.
High-speed quantum-random number generation by continuous measurement of arrival time of photons
Yan, Qiurong; Zhao, Baosheng; Hua, Zhang; Liao, Qinghong; Yang, Hao
2015-07-01
We demonstrate a novel high speed and multi-bit optical quantum random number generator by continuously measuring arrival time of photons with a common starting point. To obtain the unbiased and post-processing free random bits, the measured photon arrival time is converted into the sum of integral multiple of a fixed period and a phase time. Theoretical and experimental results show that the phase time is an independent and uniform random variable. A random bit extraction method by encoding the phase time is proposed. An experimental setup has been built and the unbiased random bit generation rate could reach 128 Mb/s, with random bit generation efficiency of 8 bits per detected photon. The random numbers passed all tests in the statistical test suite.
Efficient Controlled Quantum Secure Direct Communication Protocols
Patwardhan, Siddharth; Moulick, Subhayan Roy; Prasanta K. Panigrahi
2015-01-01
We study controlled quantum secure direct communication (CQSDC), a cryptographic scheme where a sender can send a secret bit-string to an intended recipient, without any secure classical channel, who can obtain the complete bit-string only with the permission of a controller. We report an efficient protocol to realize CQSDC using Cluster state and then go on to construct a (2-3)-CQSDC using Brown state, where a coalition of any two of the three controllers is required to retrieve the complete...
Experimental quantum digital signature over 102 km
Yin, Hua-Lei; Fu, Yao; Liu, Hui; Tang, Qi-Jie; Wang, Jian; You, Li-Xing; Zhang, Wei-Jun; Chen, Si-Jing; Wang, Zhen; Zhang, Qiang; Chen, Teng-Yun; Chen, Zeng-Bing; Pan, Jian-Wei
2017-03-01
Quantum digital signature (QDS) is an approach to guarantee the nonrepudiation, unforgeability, and transferability of a signature with information-theoretical security. Previous experimental realizations of QDS relied on an unrealistic assumption of secure channels and the longest distance is several kilometers. Here, we have experimentally demonstrated a recently proposed QDS protocol without assuming any secure channel. Exploiting the decoy state modulation, we have successfully signed a one-bit message through an up to 102-km optical fiber. Furthermore, we continuously run the system to sign the longer message "USTC" with 32 bits at the distance of 51 km. Our results pave the way towards the practical application of QDS.
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
Liu, Zhihao; Chen, Hanwu; Liu, Wenjie
2016-10-01
A new attack strategy, the so-called intercept-selectively-measure-resend attack is put forward. It shows that there are some security issues in the controlled quantum secure direct communication (CQSDC) and authentication protocol based on five-particle cluster states and quantum one-time pad. Firstly, an eavesdropper (Eve) can use this attack to eavesdrop on 0.656 bit of every bit of the identity string of the receiver and 1.406 bits of every couple of the corresponding bits of the secret message without being detected. Also, she can eavesdrop on 0.311 bit of every bit of the identity string of the controller. Secondly, the receiver can also take this attack to obtain 1.311 bits of every couple of the corresponding bits of the secret message without the permission of the controller, which is not allowed in the CQSDC protocols. In fact, there is another security issue in this protocol, that is, one half of the information about the secret is leaked out unconsciously. In addition, an alternative attack strategy which is called as the selective-CNOT-operation attack strategy to attack this protocol is discussed.
Practical secure quantum communications
Diamanti, Eleni
2015-05-01
We review recent advances in the field of quantum cryptography, focusing in particular on practical implementations of two central protocols for quantum network applications, namely key distribution and coin flipping. The former allows two parties to share secret messages with information-theoretic security, even in the presence of a malicious eavesdropper in the communication channel, which is impossible with classical resources alone. The latter enables two distrustful parties to agree on a random bit, again with information-theoretic security, and with a cheating probability lower than the one that can be reached in a classical scenario. Our implementations rely on continuous-variable technology for quantum key distribution and on a plug and play discrete-variable system for coin flipping, and necessitate a rigorous security analysis adapted to the experimental schemes and their imperfections. In both cases, we demonstrate the protocols with provable security over record long distances in optical fibers and assess the performance of our systems as well as their limitations. The reported advances offer a powerful toolbox for practical applications of secure communications within future quantum networks.
Modular trigger processing The GCT muon and quiet bit system
Stettler, Matthew; Hansen, Magnus; Iles, Gregory; Jones, John; PH-EP
2007-01-01
The CMS Global Calorimeter Trigger system's HCAL Muon and Quiet bit reformatting function is being implemented with a novel processing architecture. This architecture utilizes micro TCA, a modern modular communications standard based on high speed serial links, to implement a processing matrix. This matrix is configurable in both logical functionality and data flow, allowing far greater flexibility than current trigger processing systems. In addition, the modular nature of this architecture allows flexibility in scale unmatched by traditional approaches. The Muon and Quiet bit system consists of two major components, a custom micro TCA backplane and processing module. These components are based on Xilinx Virtex5 and Mindspeed crosspoint switch devices, bringing together state of the art FPGA based processing and Telcom switching technologies.
Implementation of Variable Least Significant Bits Stegnographyusing DDDB Algorithm
Directory of Open Access Journals (Sweden)
Sahib Khan
2011-11-01
Full Text Available Nobody can deny the importance of secure communication.Different techniques are being utilized to achieve this task. Image Stegnography is one such method in which we hide data in an otherwise ordinary image. In this paper, a novel Stegnographic technique named as Variable Least Significant Bits Stegnography (VLSB is proposed. To implement VLSB, we designed an algorithm named as Decreasing Distance Decreasing Bits Algorithm (DDDBA. In each test we performed, the data hiding capacity was always greater than 50 % ( a barrier considered in image Stegnography, ranging up to 69 % with signal to noise ratio varying from 10 db to 5 db respectively. The DDDBA provides self encryption mechanism in VLSB Stegnography, making the Steganalysis more difficult.
Efficient biased random bit generation for parallel processing
Energy Technology Data Exchange (ETDEWEB)
Slone, D.M.
1994-09-28
A lattice gas automaton was implemented on a massively parallel machine (the BBN TC2000) and a vector supercomputer (the CRAY C90). The automaton models Burgers equation {rho}t + {rho}{rho}{sub x} = {nu}{rho}{sub xx} in 1 dimension. The lattice gas evolves by advecting and colliding pseudo-particles on a 1-dimensional, periodic grid. The specific rules for colliding particles are stochastic in nature and require the generation of many billions of random numbers to create the random bits necessary for the lattice gas. The goal of the thesis was to speed up the process of generating the random bits and thereby lessen the computational bottleneck of the automaton.
MIMO ARQ with Multi-bit Feedback: Outage Analysis
Nguyen, Khoa D; Fabregas, Albert Guillen i; Letzepis, Nick
2010-01-01
We study the asymptotic outage performance of incremental redundancy automatic repeat request (INR-ARQ) transmission over the multiple-input multiple-output (MIMO) block-fading channels with discrete input constellations. We first show that transmission with random codes using a discrete signal constellation across all transmit antennas achieves the optimal outage diversity given by the Singleton bound. We then analyze the optimal SNR-exponent and outage diversity of INR-ARQ transmission over the MIMO block-fading channel. We show that a significant gain in outage diversity is obtained by providing more than one bit feedback at each ARQ round. Thus, the outage performance of INR-ARQ transmission can be remarkably improved with minimal additional overhead. A suboptimal feedback and power adaptation rule, which achieves the optimal outage diversity, is proposed for MIMO INR-ARQ, demonstrating the benefits provided by multi-bit feedback.
A novel chaotic encryption scheme based on pseudorandom bit padding
Sadra, Yaser; Fard, Zahra Arasteh
2012-01-01
Cryptography is always very important in data origin authentications, entity authentication, data integrity and confidentiality. In recent years, a variety of chaotic cryptographic schemes have been proposed. These schemes has typical structure which performed the permutation and the diffusion stages, alternatively. The random number generators are intransitive in cryptographic schemes and be used in the diffusion functions of the image encryption for diffused pixels of plain image. In this paper, we propose a chaotic encryption scheme based on pseudorandom bit padding that the bits be generated by a novel logistic pseudorandom image algorithm. To evaluate the security of the cipher image of this scheme, the key space analysis, the correlation of two adjacent pixels and differential attack were performed. This scheme tries to improve the problem of failure of encryption such as small key space and level of security.
Statistical mechanics analysis of thresholding 1-bit compressed sensing
Xu, Yingying
2016-01-01
The one-bit compressed sensing framework aims to reconstruct a sparse signal by only using the sign information of its linear measurements. To compensate for the loss of scale information, past studies in the area have proposed recovering the signal by imposing an additional constraint on the L2-norm of the signal. Recently, an alternative strategy that captures scale information by introducing a threshold parameter to the quantization process was advanced. In this paper, we analyze the typical behavior of the thresholding 1-bit compressed sensing utilizing the replica method of statistical mechanics, so as to gain an insight for properly setting the threshold value. Our result shows that, fixing the threshold at a constant value yields better performance than varying it randomly when the constant is optimally tuned, statistically. Unfortunately, the optimal threshold value depends on the statistical properties of the target signal, which may not be known in advance. In order to handle this inconvenience, we ...
b.i.t. Bremerhaven: Thin Clients entlasten Schulen
Das Schulamt Bremerhaven zentralisiert die Verwaltungs-IT und schafft dadurch Freiräume für pädagogische und organisatorische Herausforderungen. Pflege und Support der neuen Infrastruktur übernimmt der Dienstleister b.i.t. Bremerhaven, die Thin Clients kommen vom Bremer Hersteller IGEL Technology. Ganztagsschulen, das 12-jährige Abitur, PISA, der Wegfall der Orientierungsstufe - deutsche Schulen müssen derzeit zahlreiche organisatorische und pädagogische Herausforderungen bewältigen. Um die neuen Strukturen umsetzen zu können, werden zusätzliche Ressourcen benötigt. Das Schulamt Bremerhaven hat gemeinsam mit dem Dienstleister b.i.t. Bremerhaven (Betrieb für Informationstechnologie) eine intelligente Lösung gefunden, wie sich die benötigten finanziellen Freiräume schaffen lassen.
Opportunistic Collaborative Beamforming with One-Bit Feedback
Pun, Man-On; Poor, H Vincent
2008-01-01
An energy-efficient opportunistic collaborative beamformer with one-bit feedback is proposed for ad hoc sensor networks over Rayleigh fading channels. In contrast to conventional collaborative beamforming schemes in which each source node uses channel state information to correct its local carrier offset and channel phase, the proposed beamforming scheme opportunistically selects a subset of source nodes whose received signals combine in a quasi-coherent manner at the intended receiver. No local phase-precompensation is performed by the nodes in the opportunistic collaborative beamformer. As a result, each node requires only one-bit of feedback from the destination in order to determine if it should or shouldn't participate in the collaborative beamformer. Theoretical analysis shows that the received signal power obtained with the proposed beamforming scheme scales linearly with the number of available source nodes. Since the the optimal node selection rule requires an exhaustive search over all possible subs...
Design of 1.5 bit quantization correlator in satellite navigation software receiver
Institute of Scientific and Technical Information of China (English)
Hongwei Zhou; Tian Jin; Fangyao L
2016-01-01
Currently, 1 bit or 2 bit signal quantization is widely used in satelite navigation software receivers. The bit-wise paralel algorithm has been proposed for 1 bit and 2 bit signal quantization, which performs correlation with high efficiency. In order to improve the performance of the correlator, this paper proposes a new 1.5 bit quantization method. Theoreti-cal analyses are made from the aspects of complexity and quantization loss, and performance comparison between 1.5 bit quantization correlator and traditional correlators is dis-cussed. The results show that the 1.5 bit quantization algo-rithm can save about 30 percent complexity under similar quantization loss, reduce more than 0.5 dB signal noise ratio (SNR) loss under similar complexity. It shows great perform-ance improvement for correlators of satelite navigation soft-ware receivers.
Small digital recording head has parallel bit channels, minimizes cross talk
Eller, E. E.; Laue, E. G.
1964-01-01
A small digital recording head consists of closely spaced parallel wires, imbedded in a ferrite block to concentrate the magnetic flux. Parallel-recorded information bits are converted into serial bits on moving magnetic tape and cross talk is suppressed.
Secure and Efficient Pseudorandom Bit Generator for Chaotic Stream Ciphers
Institute of Scientific and Technical Information of China (English)
WANG Xiao-Min; ZHANG Jia-Shu
2007-01-01
Based on the entropy criterion and n-dimensional uniform distribution of nonlinear digital filter (NDF), we present an efficient NDF-based pseudorandom bit generator (NDF-PRBG) for chaotic stream ciphers. The cryptographic properties of the proposed NDF-PRBG are analysed, and some experiments are made. The results show that it has desirable cryptographic properties, and can be used to construct secure stream ciphers with high speed.
Ballistic bit addressing in a magnetic memory cell array
Schumacher, H. W.
2005-01-01
A ringing free bit addressing scheme for magnetic memories like MRAM (magnetic random access memory) is proposed. As in standard MRAM addressing schemes the switching of a selected cell is obtained by the combination of two half-select field pulses. Numerical solutions of a single spin model of an MRAM cell show that the pulse parameters can be chosen such that the application of the half select pulse induces a full precessional turn of the magnetization (no switch) whereas the superposition ...
Institute of Scientific and Technical Information of China (English)
胡纲
2006-01-01
微软终于在德国汉诺威举行的CeBIT 2006科技展示上揭开了所谓Origami项目的神秘面纱：原来这是一种使用Windows XP Tablet操作系统，具有触摸屏和无线连接的超便携PC （UltraMobile PC,简称UMPC）。
Amorphous Silicon 16—bit Array Photodetector①
Institute of Scientific and Technical Information of China (English)
ZHANGShaoqiang; XUZhongyang; 等
1997-01-01
An amorphous silicon 16-bit array photodetector with the a-SiC/a-Si heterojunction diode is presented.The fabrication processes of the device were studied systematically.By the optimum of the diode structure and the preparation procedures,the diode with Id<10-12A/mm2 and photocurrentIp≥0.35A/W has been obtained at the wavelength of 632nm.
Secure Classical Bit Commitment using Fixed Capacity Communication Channels
Kent, Adrian
1999-01-01
If mutually mistrustful parties A and B control two or more appropriately located sites, special relativity can be used to guarantee that a pair of messages exchanged by A and B are independent. In earlier work, we used this fact to define a relativistic bit commitment protocol, RBC1, in which security is maintained by exchanging a sequence of messages whose transmission rate increases exponentially in time. We define here a new relativistic protocol, RBC2, which requires only a constant tran...
Generating bit reversed numbers for calculating fast fourier transform
Digital Repository Service at National Institute of Oceanography (India)
Suresh, T.
(6) x (7)). Calculation of FFT becomes a difficult task for computation with input data in natural order and without reordering. Thus an efficient method of reordering is required for FFT calculation. We review a few methods of generating bit... with each successive stage. Other algorithms that depend on the efficient use of swapping data from an array are given in Buneman (1986) Evans (1987) and Walker (1990). Swapping of data is the most widely used method for reordering in FFT calculation. A...
Delay Efficient 32-Bit Carry-Skip Adder
Yu Shen Lin; Damu Radhakrishnan
2008-01-01
The design of a 32-bit carry-skip adder to achieve minimum delay is presented in this paper. A fast carry look-ahead logic using group generate and group propagate functions is used to speed up the performance of multiple stages of ripple carry adders. The group generate and group propagate functions are generated in parallel with the carry generation for each block. The optimum block sizes are decided by considering the critical path into account. The new architecture ...
A 64 Bits Rotor Enhanced Block Cipher (Rebc3
Directory of Open Access Journals (Sweden)
Ahmed ElShafee
2013-04-01
Full Text Available This paper gives a new proposed cryptosystem (REBC3 that is designed to take advantages of the new generation of 64bits microprocessors which commercially known as x64 systems. The old version REBC2,which was published in Africon 2007. REBC2 was basically developed for the 32bits microprocessors which is commercially known as x86 systems. REBC3 like REBC2 use the concept of rotor enhanced blockcipher which was initially proposed by the author in [NRSC 2002] on the first version of REBC. REBC2 used the same concept from a another point of view, which is using rotors to achieve two basiccryptographic operations; permutation, and substitution. Round key is generated using rotor too, which is used to achieve ciphertext key dependency. To enhance non-linearity and to resist linear cryptanalysis,REBC3 has a variable block, and key lengths. Each round has its own block length which depends on round the key and round key length. Dependency is based upon the previous round generated key. Rotors implemented using successive affine transformation . The 32 bits version was proposed in KAMFEE cipher, then the 64bits version was proposed in KAMFEE-X64 cipher. This achieved memory-less, normalized ciphertext statistics, and small processing speed trend. The strength of this system is compared with the REBC2 and RIJNDAEL (AES ciphers.REBC3 cipher gives excellent results from security characteristics and statistical point of view of. So authors suggests to use REBC3 in the area of banking and electronic fund transfer.
CMOS Bit-Stream Band-Pass Beamforming
2016-03-31
the Antenna Inputs,” IEEE Journal of Solid-State Circuits, Jun., 2014. 4. H. Aliakbarian, et al., “Analogue versus Digital for Baseband Beam...Arbor, Michigan, USA, 48109 Abstract: We introduce a unique bandpass ΣΔ based common module with reconfigurable, bit-stream based digital beam...forming (DBF). An array of bandpass ΣΔ modulators accurately and efficiently digitizes the IF signals. Beam-forming is implemented directly through
Quantum annealing with manufactured spins.
Johnson, M W; Amin, M H S; Gildert, S; Lanting, T; Hamze, F; Dickson, N; Harris, R; Berkley, A J; Johansson, J; Bunyk, P; Chapple, E M; Enderud, C; Hilton, J P; Karimi, K; Ladizinsky, E; Ladizinsky, N; Oh, T; Perminov, I; Rich, C; Thom, M C; Tolkacheva, E; Truncik, C J S; Uchaikin, S; Wang, J; Wilson, B; Rose, G
2011-05-12
Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin-spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.
Efficient Face Recognition in Video by Bit Planes Slicing
Directory of Open Access Journals (Sweden)
Srinivasa R. Inbathini
2012-01-01
Full Text Available Problem statement: Video-based face recognition must be able to overcome the imaging interference such as pose and illumination. Approach: A model is designed to study for face recognition based on video sequence and also test image. In training stage, single frontal image is taken as a input to the recognition system. A new virtual image is generated using bit plane feature fusion to effectively reduce the sensitivity to illumination variances. A Self-PCA is performed to get each set of Eigen faces and to get projected image. In recognition stage, automatic face detection scheme is first applied to the video sequences. Frames are extracted from the video and virtual frame is created. Each bit plane of test face is extracted and then the feature fusion face is constructed, followed by the projection and reconstruction using each set of the corresponding Eigen faces. Results: This algorithm is compared with conventional PCA algorithm. The minimum error of reconstruction is calculated. If error is less than a threshold value, then it recognizes the face from the database. Conclusion: Bit plane slicing mechanism is applied in video based face recognition. Experimental results shows that its far more superior than conventional method under various pose and illumination condition.
Development of Deduced Protein Database Using Variable Bit Binary Encoding
Directory of Open Access Journals (Sweden)
B. Parvathavarthini
2008-01-01
Full Text Available A large amount of biological data is semi-structured and stored in any one the following file formats such as flat, XML and relational files. These databases must be integrated with the structured data available in relational or object-oriented databases. The sequence matching process is difficult in such file format, because string comparison takes more computation cost and time. To reduce the memory storage size of amino acid sequence in protein database, a novel probability-based variable bit length encoding technique has been introduced. The number of mapping of triplet CODON for every amino acid evaluates the probability value. Then, a binary tree has been constructed to assign unique bits of binary codes to each amino acid. This derived unique bit pattern of amino acid replaces the existing fixed byte representation. The proof of reduced protein database space has been discussed and it is found to be reduced between 42.86 to 87.17%. To validate our method, we have collected few amino acid sequences of major organisms like Sheep, Lambda phage and etc from NCBI and represented them using proposed method. The comparison shows that of minimum and maximum reduction in storage space are 43.30% and 72.86% respectively. In future the biological data can further be reduced by applying lossless compression on this deduced data.
Low Power 256-bit Modified Carry Select Adder
Directory of Open Access Journals (Sweden)
P. Ramani
2014-09-01
Full Text Available Carry Select Adder (CSLA is one of the high speed adders used in many computational systems to perform fast arithmetic operations. When compared to earlier Ripple Carry Adder and Carry Look Ahead Adder, Regular CSLA (R-CSLA is observed to provide optimized results in terms of area. This study proposes an efficient method which replaces the RCA using BEC. The modified CSLA architecture has been developed using gate-level modification to significantly reduce the delay and power of the CSLA. Based on this modification 8-, 16-, 32-, 64- and 128-bit Square-Root CSLA (SQRT CSLA architecture have been developed and compared with the regular SQRT CSLA architecture. The proposed design for 256-bit has reduced power and delay as compared with the regular SQRT CSLA. Designs were developed using structural Verilog module and synthesized using Xilinx ISE simulator and the implementation is done in cadence RTL compiler using 0.18 µm technology. For 256-bit addition in this study, it is proposed to simple gate level modification which significantly reduces the power by 19.4% when compared with R-CSLA. The result analysis shows that the proposed architecture achieves two folded advantages in terms of delay and power.
On the Lorentz invariance of bit-string geometry
Energy Technology Data Exchange (ETDEWEB)
Noyes, H.P.
1995-09-01
We construct the class of integer-sided triangles and tetrahedra that respectively correspond to two or three discriminately independent bit-strings. In order to specify integer coordinates in this space, we take one vertex of a regular tetrahedron whose common edge length is an even integer as the origin of a line of integer length to the {open_quotes}point{close_quotes} and three integer distances to this {open_quotes}point{close_quotes} from the three remaining vertices of the reference tetrahedron. This - usually chiral - integer coordinate description of bit-string geometry is possible because three discriminately independent bit-strings generate four more; the Hamming measures of these seven strings always allow this geometrical interpretation. On another occasion we intend to prove the rotational invariance of this coordinate description. By identifying the corners of these figures with the positions of recording counters whose clocks are synchronized using the Einstein convention, we define velocities in this space. This suggests that it may be possible to define boosts and discrete Lorentz transformations in a space of integer coordinates. We relate this description to our previous work on measurement accuracy and the discrete ordered calculus of Etter and Kauffman (DOC).
Biometric Quantization through Detection Rate Optimized Bit Allocation
Chen, C.; Veldhuis, R. N. J.; Kevenaar, T. A. M.; Akkermans, A. H. M.
2009-12-01
Extracting binary strings from real-valued biometric templates is a fundamental step in many biometric template protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Previous work has been focusing on the design of optimal quantization and coding for each single feature component, yet the binary string—concatenation of all coded feature components—is not optimal. In this paper, we present a detection rate optimized bit allocation (DROBA) principle, which assigns more bits to discriminative features and fewer bits to nondiscriminative features. We further propose a dynamic programming (DP) approach and a greedy search (GS) approach to achieve DROBA. Experiments of DROBA on the FVC2000 fingerprint database and the FRGC face database show good performances. As a universal method, DROBA is applicable to arbitrary biometric modalities, such as fingerprint texture, iris, signature, and face. DROBA will bring significant benefits not only to the template protection systems but also to the systems with fast matching requirements or constrained storage capability.
Tit-Bits, New Journalism, and early Sherlock Holmes fandom
Directory of Open Access Journals (Sweden)
Ann K. McClellan
2017-03-01
Full Text Available The Strand's more popular sister magazine, Tit-Bits, played a significant role in establishing Sherlock Holmes as a literary and cultural icon, particularly through its use of participatory practices, cross-promotion, and transmedia storytelling. I argue that Tit-Bits' late 19th-century New Journalism techniques like contests and prizes, inquiry columns, correspondence, and internal advertising fostered a corporately devised participatory fandom that directly contributed to Sherlock Holmes's popularity. Tit-Bits audiences were invited and encouraged to imagine new scenarios for their favorite character that were validated through publication. Such practices not only created a unique identity for Sherlock Holmes fandom but also directly contributed to the creation and maintenance of Holmes's fictional world. With fandom studies reaching more and more audiences—both academic and popular—historicizing early fan practices like the early publication and reception of the Sherlock Holmes stories provides important insight into how audiences have historically responded to, and interacted with, fictional characters, and how they helped sustain and expand those characters' fictional worlds.
Biometric Quantization through Detection Rate Optimized Bit Allocation
Directory of Open Access Journals (Sweden)
C. Chen
2009-01-01
Full Text Available Extracting binary strings from real-valued biometric templates is a fundamental step in many biometric template protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Previous work has been focusing on the design of optimal quantization and coding for each single feature component, yet the binary string—concatenation of all coded feature components—is not optimal. In this paper, we present a detection rate optimized bit allocation (DROBA principle, which assigns more bits to discriminative features and fewer bits to nondiscriminative features. We further propose a dynamic programming (DP approach and a greedy search (GS approach to achieve DROBA. Experiments of DROBA on the FVC2000 fingerprint database and the FRGC face database show good performances. As a universal method, DROBA is applicable to arbitrary biometric modalities, such as fingerprint texture, iris, signature, and face. DROBA will bring significant benefits not only to the template protection systems but also to the systems with fast matching requirements or constrained storage capability.
Optical Switching and Bit Rates of 40 Gbit/s and above
DEFF Research Database (Denmark)
Ackaert, A.; Demester, P.; O'Mahony, M.;
2003-01-01
Optical switching in WDM networks introduces additional aspects to the choice of single channel bit rates compared to WDM transmission systems. The mutual impact of optical switching and bit rates of 40 Gbps and above is discussed.......Optical switching in WDM networks introduces additional aspects to the choice of single channel bit rates compared to WDM transmission systems. The mutual impact of optical switching and bit rates of 40 Gbps and above is discussed....
Pirandola, Stefano; Lupo, Cosmo; Giovannetti, Vittorio; Mancini, Stefano; Braunstein, Samuel L.
2011-11-01
The readout of a classical memory can be modelled as a problem of quantum channel discrimination, where a decoder retrieves information by distinguishing the different quantum channels encoded in each cell of the memory (Pirandola 2011 Phys. Rev. Lett. 106 090504). In the case of optical memories, such as CDs and DVDs, this discrimination involves lossy bosonic channels and can be remarkably boosted by the use of nonclassical light (quantum reading). Here we generalize these concepts by extending the model of memory from single-cell to multi-cell encoding. In general, information is stored in a block of cells by using a channel-codeword, i.e. a sequence of channels chosen according to a classical code. Correspondingly, the readout of data is realized by a process of ‘parallel’ channel discrimination, where the entire block of cells is probed simultaneously and decoded via an optimal collective measurement. In the limit of a large block we define the quantum reading capacity of the memory, quantifying the maximum number of readable bits per cell. This notion of capacity is nontrivial when we suitably constrain the physical resources of the decoder. For optical memories (encoding bosonic channels), such a constraint is energetic and corresponds to fixing the mean total number of photons per cell. In this case, we are able to prove a separation between the quantum reading capacity and the maximum information rate achievable by classical transmitters, i.e. arbitrary classical mixtures of coherent states. In fact, we can easily construct nonclassical transmitters that are able to outperform any classical transmitter, thus showing that the advantages of quantum reading persist in the optimal multi-cell scenario.
BitTorrent系统中free riders的研究%A study on free riders in BitTorrent system
Institute of Scientific and Technical Information of China (English)
于魁飞; 程久军; 李玉宏; 马建
2007-01-01
针对BitTorent文件共享过程的特点,根据乐观疏通的思想,利用仿真实验分析了free riders对系统中其他类型的peers的下载进程的影响,给出了识别free riders的方法,提出了解决free riders问题的机制,并进行了仿真实验.结果表明:这种解决free riders问题的机制更好地激励了系统中的peers为系统做出贡献,从而获得利益;有效地控制了BitTorrent系统中的free riders,提高了系统的整体性能.
Kumar, Santosh; Bisht, Ashish; Singh, Gurdeep; Choudhary, Kuldeep; Raina, K. K.; Amphawan, Angela
2015-12-01
The Mach-Zehnder interferometer (MZI) structures collectively show powerful capability in switching an input optical signal to a desired output port from a collection of output ports. Hence, it is possible to construct complex optical combinational digital circuits using the electro-optic effect constituting MZI structure as a basic building block. Optical switches have been designed for 1-bit and 2-bit magnitude comparators based on electro-optic effect using Mach-Zehnder interferometers. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. Analysis of some factors influencing the performances of proposed device has been discussed properly. The study is verified using beam propagation method.
Criteria for measures of quantum correlations
Brodutch, Aharon
2011-01-01
Entanglement does not describe all quantum correlations and several authors have shown the need to go beyond entanglement when dealing with mixed states. Several different measures have sprung up in the literature, for a variety of reasons, To describe quantum correlations; some are known under the collective name quantum discord. Yet, in the same sprit as the criteria for entanglement measures, there is no general mechanism that determines whether a measure of quantum and classical correlations is a proper measure of correlations. This is partially due to the fact that the answer is a bit muddy. In this article we attempt tackle this muddy topic by writing down several criteria for a "good" measure of correlations. We breakup our list into necessary, reasonable, and debatable conditions. We then proceed to prove several of these conditions for generalized measures of quantum correlations. However, not all conditions are met by all measures; we show this via several examples. The reasonable conditions are rel...
Hiding Quantum Information in the Perfect Code
Shaw, Bilal A
2010-01-01
We present and analyze a protocol for quantum steganography where the sender (Alice) encodes her steganographic information into the error syndromes of the perfect (five-qubit) quantum error-correcting code, and sends it to the receiver (Bob) over a depolarizing channel. Alice and Bob share a classical secret key, and hide quantum information in such a way that to an eavesdropper (Eve) without access to the secret key, the quantum message looks like an innocent codeword with a typical sequence of quantum errors. We calculate the average rate of key consumption, and show how the protocol improves in performance as information is spread over multiple codeword blocks. Alice and Bob utilize different encodings to optimize the average number of steganographic bits that they can send to each other while matching the error statistics of the depolarizing channel.
Microwave Photonics Parallel Quantum Key Distribution
Mora, Jose; Amaya, Waldimar; Martinez, Alfonso; Munoz, Victor Garcia-; Calvo, David; Capmany, Jose
2011-01-01
The incorporation of multiplexing techniques used in Microwave Photonics to Quantum Key Distribution (QKD) systems bring important advantages enabling the simultaneous and parallel delivery of multiple keys between a central station and different end-users in the context of multipoint access and metropolitan networks, or by providing higher key distribution rates in point to point links by suitably linking the parallel distributed keys. It also allows the coexistence of classical information and quantum key distribution channels over a single optical fibre infrastructure. Here we show, for the first time to our knowledge, the successful operation of a two domain (subcarrier and wavelength division) multiplexed strong reference BB84 quantum key distribution system. A four independent channel QKD system featuring 10 kb/s/channel over an 11 km link with Quantum Bit Error Rate (QBER) < 2 % is reported. These results open the way for multi-quantum key distribution over optical fiber networks.
DEFF Research Database (Denmark)
Mørk, Jesper; Berg, Tommy Winther; Magnúsdóttir, Ingibjörg
2003-01-01
We discuss the dynamical properties of semiconductor optical amplifiers and the importance for all-optical signal processing. In particular, the dynamics of quantum dot amplifiers is considered and it is suggested that these may be operated at very high bit-rates without significant patterning...... effects, as opposed to quantum well or bulk devices....
Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates
De Groot, P.C.; Ashhab, S.; Lupascu, A.; DiCarlo, L.; Nori, F.; Harmans, C.J.P.M.; Mooij, J.E.
2012-01-01
We present a theoretical analysis of the selective darkening method for implementing quantum controlled-NOT (CNOT) gates. This method, which we have recently proposed and demonstrated, consists of driving two transversely coupled quantum bits (qubits) with a driving field that is resonant with one o
Practical repeaters for ultralong-distance quantum communication
Vinay, Scott E.; Kok, Pieter
2017-05-01
Quantum repeaters enable long-range quantum communication in the presence of attenuation. Here we propose a method to construct a robust quantum repeater network using only existing technology. We combine the ideas of brokered graph-state construction with double-heralded entanglement generation to form a system that is able to perform all parts of the procedure in a way that is highly tolerant to photon loss and imperfections in detectors. We show that when used in quantum key distribution this leads to secure kilohertz bit rates over intercontinental distances.
Annual Report: Support Research for Development of Improved Geothermal Drill Bits
Energy Technology Data Exchange (ETDEWEB)
Hendrickson, R.R.; Winzenried, R.W.; Jones, A.H.; Green, S.J.
1978-07-01
The work reported herein is a continuation of the program initiated under DOE contract E(10-1)-1546* entitled "Program to Design and Experimentally Test an Improved Geothermal Bit"; the program is now DOE Contract EG-76-C-1546*. The objective of the program has been to accelerate the commercial availability of a tolling cutter drill bit for geothermal applications. Data and experimental tests needed to develop a bit suited to the harsh thermal, abrasive, and chemical environment of the more problematic geothermal wells, including those drilled with air, have been obtained. Efforts were directed at the improvement of both the sealed (lubricated) and unsealed types of bits. The unsealed bit effort included determination of the rationale for materials selection, the selection of steels for the bit body, cutters, and bearings, the selection of tungsten carbide alloys for the friction bearing, and preliminary investigation of optimized tungsten carbide drilling inserts. Bits build** with the new materials were tested under stimulated wellbore conditions. The sealed bit effort provided for the evaluation of candidate high temperature seals and lubricants, utilizing two specially developed test apparatus which simulate the conditions found in a sealed bit operating in a geothermal wellbore. Phase I of the program was devoted largely to (1) the study of the geothermal environment and the failure mechanisms of existing geothermal drill bits, (2) the design and construction of separate facilities for testing both drill-bit seals and full-scale drill bits under simulated geothermal drilling conditions, and (3) fabrication of the MK-I research drill bits from high-temperature steels, and testing in the geothermal drill-bit test facility. The work accomplished in Phase I is reported in References 1 through 9. In Phase II, the first generation experimental bits were tested in the geothermal drill-bit test facility. Test results indicated that hardness retention at temperature
The digital agenda of virtual currencies: Can BitCoin become a global currency?
CIAIAN PAVEL; RAJCANIOVA MIROSLAVA; KANCS D'ARTIS
2015-01-01
This paper identifies and analyzes BitCoin features which may facilitate BitCoin to become a global currency, as well as characteristics which may impede the use of BitCoin as a medium of exchange, a unit of account and a store of value, and compares BitCoin with standard currencies with respect to the main functions of money. Among all analyzed BitCoin features, the extreme price volatility stands out most clearly compared to standard currencies. In order to understand the reasons for such e...
Implementation of a multiple round quantum dense coding using nuclear magnetic resonance
Institute of Scientific and Technical Information of China (English)
ZHANG; Jingfu; XIE; Jingyi; WANG; Chuan; DENG; Zhiwei; LU
2005-01-01
A multiple round quantum dense coding scheme based on the quantum phase estimation algorithm is proposed and implemented in a three qubit nuclear magnetic resonance (NMR) quantum computer. Using an m + 1 qubit system, Bob can transmit one of 2m+1 messages to Alice, through manipulating only one qubit and exchanging it between Alice and Bob for m rounds. The information capacity is enhanced to m + 1 bits as compared to m bits in a classical scheme. The scheme has been demonstrated in NMR system, and the experimental results show a good agreement between theory and experiment.
Precision measurement and compensation of optical stark shifts for an ion-trap quantum processor.
Häffner, H; Gulde, S; Riebe, M; Lancaster, G; Becher, C; Eschner, J; Schmidt-Kaler, F; Blatt, R
2003-04-11
Using optical Ramsey interferometry, we precisely measure the laser-induced ac-Stark shift on the S(1/2)-D(5/2) "quantum bit" transition near 729 nm in a single trapped 40Ca+ ion. We cancel this shift using an additional laser field. This technique is of particular importance for the implementation of quantum information processing with cold trapped ions. As a simple application we measure the atomic phase evolution during a n x 2 pi rotation of the quantum bit.
Wire recycling for quantum circuit optimization
Paler, Alexandru; Wille, Robert; Devitt, Simon J.
2016-10-01
Quantum information processing is expressed using quantum bits (qubits) and quantum gates which are arranged in terms of quantum circuits. Here, each qubit is associated with a quantum circuit wire which is used to conduct the desired operations. Most of the existing quantum circuits allocate a single quantum circuit wire for each qubit and hence introduce significant overhead. In fact, qubits are usually not needed during the entire computation, only between their initialization and measurement. Before and after that, corresponding wires may be used by other qubits. In this work, we propose a solution which exploits this fact in order to optimize the design of quantum circuits with respect to the required wires. To this end, we introduce a representation of the lifetimes of all qubits which is used to analyze the respective need for wires. Based on this analysis, a method is proposed which "recycles" the available wires and, as a result, reduces the size of the resulting circuit. Numerical tests based on established reversible and fault-tolerant quantum circuits confirm that the proposed solution reduces the number of wires by more than 90% compared to unoptimized quantum circuits.
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Steane, A M
1998-01-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarise not just quantum computing, but the whole subject of quantum information theory. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, the review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the EPR experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from classical information theory, and, arguably, quantum from classical physics. Basic quantum information ideas are described, including key distribution, teleportation, data compression, quantum error correction, the universal quantum computer and qua...
Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.
Hein, Christopher; Inceoglu, Serkan; Juma, David; Zuckerman, Lee
2017-02-01
Cortical bone drilling for preparation of screw placement is common in multiple surgical fields. The heat generated while drilling may reach thresholds high enough to cause osteonecrosis. This can compromise implant stability. Orthopaedic drill bits are several orders more expensive than their similarly sized, publicly available industrial counterparts. We hypothesize that an industrial bit will generate less heat during drilling, and the bits will not generate more heat after multiple cortical passes. We compared 4 4.0 mm orthopaedic and 1 3.97 mm industrial drill bits. Three types of each bit were drilled into porcine femoral cortices 20 times. The temperature of the bone was measured with thermocouple transducers. The heat generated during the first 5 drill cycles for each bit was compared to the last 5 cycles. These data were analyzed with analysis of covariance. The industrial drill bit generated the smallest mean increase in temperature (2.8 ± 0.29°C) P industrial bit generated less heat during drilling than its orthopaedic counterparts. The bits maintained their performance after 20 drill cycles. Consideration should be given by manufacturers to design differences that may contribute to a more efficient cutting bit. Further investigation into the reuse of these drill bits may be warranted, as our data suggest their efficiency is maintained after multiple uses.
Layout parameter analysis in Shannon expansion theorem based on 32 bit adder circuit
Directory of Open Access Journals (Sweden)
C. Senthilpari
2017-02-01
Full Text Available The 1-bit adder circuits are schematized using pass transistor logic (PTL technique, that’s optimized by the Shannon expansion theorem. The proposed 32 bit carry increment adder (CIA circuit is designed by bit slice method. The CIA adder layout gives tremendous change compared to existing author results. The proposed circuit achieved better performance on power consumption, speed, throughput, and area. The 32-bit adder circuits are implemented in various types of 1-bit adder cells, such as Shannon, Mixed-Shannon and MCIT-7T. Furthermore, the 32-bit CIA adder layout is furtherly investigated for RLC interconnect parameter such as capacitive impedance, inductive impedance, power factor sin ϕ, tan ϕ for applying frequency. The 32 bit adder circuit acts in a better way than existing circuits in terms of power dissipation, delay, throughput, latency, power factor, sin ϕ and tan ϕ.
Chaotic laser based physical random bit streaming system with a computer application interface
Shinohara, Susumu; Arai, Kenichi; Davis, Peter; Sunada, Satoshi; Harayama, Takahisa
2017-03-01
We demonstrate a random bit streaming system that uses a chaotic laser as its physical entropy source. By performing real-time bit manipulation for bias reduction, we were able to provide the memory of a personal computer with a constant supply of ready-to-use physical random bits at a throughput of up to 4 Gbps. We pay special attention to the end-to-end entropy source model describing how the entropy from physical sources is converted into bit entropy. We confirmed the statistical quality of the generated random bits by revealing the pass rate of the NIST SP800-22 test suite to be 65 % to 75 %, which is commonly considered acceptable for a reliable random bit generator. We also confirmed the stable operation of our random bit steaming system with long-term bias monitoring.
FPGA Implementation of an Area Optimized Architecture for 128 bit AES Algorithm
Directory of Open Access Journals (Sweden)
S Ramanathan
2016-05-01
Full Text Available This paper aims at FPGA Implementation of an Area Optimized Architecture for 128 bit AES Algorithm. The conventional designs use a separate module for 32 bit byte substitution and 128 bit byte substitution. The 32 bit byte substitution is used in round key generation and the 128 bit byte substitution is used in the rounds. This report presents a modified architecture of 128 bit byte substitution module using a single 32 bit byte substitution module to reduce area.The AES encryption and decryption algorithm were designed using Verilog HDL. The functionality of the modules were checked using ModelSim. The simulations were carried out in ModelSim and Quartus II. The algorithm was implemented in FPGA and achieved a 2% reduction in the total logic element utilization
A FAST BIT-LOADING ALGORITHM FOR HIGH SPEED POWER LINE COMMUNICATIONS
Institute of Scientific and Technical Information of China (English)
Zhang Shengqing; Zhao Li; Zou Cairong
2012-01-01
Adaptive bit-loading is a key technology in high speed power line communications with the Orthogonal Frequency Division Multiplexing (OFDM) modulation technology.According to the real situation of the transmitting power spectrum limited in high speed power line communications,this paper explored the adaptive bit loading algorithm to maximize transmission bit number when transmitting power spectral density and bit error rate are not exceed upper limit.With the characteristics of the power line channel,first of all,it obtains the optimal bit loading algorithm,and then provides the improved algorithm to reduce the computational complexity.Based on the analysis and simulation,it offers a non-iterative bit allocation algorithm,and finally the simulation shows that this new algorithm can greatly reduce the computational complexity,and the actual bit allocation results close to optimal.
Information transfer through quantum channels
Energy Technology Data Exchange (ETDEWEB)
Kretschmann, D.
2007-03-12
This PhD thesis represents work done between Aug. 2003 and Dec. 2006 in Reinhard F. Werner's quantum information theory group at Technische Universitaet Braunschweig, and Artur Ekert's Centre for Quantum Computation at the University of Cambridge. My thesis falls into the field of abstract quantum information theory. This work investigates both fundamental properties of quantum channels and their asymptotic capacities for classical as well as quantum information transfer. Stinespring's theorem is the basic structure theorem for quantum channels. It implies that every quantum channel can be represented as a unitary evolution on an enlarged system. In Ch. 3 we present a continuity theorem for Stinespring's representation: two quantum channels are similar if and only if it is possible to find unitary implementations that are likewise similar, with dimension-independent norm bounds. The continuity theorem allows to derive a formulation of the information-disturbance tradeoff in terms of quantum channels, and a continuity estimate for the no-broadcasting principle. In Ch. 4 we then apply the continuity theorem to give a strengthened no-go proof for quantum bit commitment, an important cryptographic primitive. This result also provides a natural characterization of those protocols that fall outside the standard setting of unconditional security, and thus may allow secure bit commitment. We present a new such protocol whose security relies on decoherence in the receiver's lab. Ch. 5 reviews the capacities of quantum channels for the transfer of both classical and quantum information, and investigates several variations in the notion of channel capacity. Memory effects are then investigated in detail in Ch. 6. We advertise a model which is sufficiently general to encompass all causal automata: every quantum process in which the outputs up to any given time t do not depend on the inputs at times t'>t can be represented as a concatenated memory
Gosson, Maurice A. de
2012-01-01
Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture. This allows us to propose a substitute for phase space in quantum mechanics. We study the relationship between quantum blobs with a certain class of level set...
Quantum computing accelerator I/O : LDRD 52750 final report.
Energy Technology Data Exchange (ETDEWEB)
Schroeppel, Richard Crabtree; Modine, Normand Arthur; Ganti, Anand; Pierson, Lyndon George; Tigges, Christopher P.
2003-12-01
In a superposition of quantum states, a bit can be in both the states '0' and '1' at the same time. This feature of the quantum bit or qubit has no parallel in classical systems. Currently, quantum computers consisting of 4 to 7 qubits in a 'quantum computing register' have been built. Innovative algorithms suited to quantum computing are now beginning to emerge, applicable to sorting and cryptanalysis, and other applications. A framework for overcoming slightly inaccurate quantum gate interactions and for causing quantum states to survive interactions with surrounding environment is emerging, called quantum error correction. Thus there is the potential for rapid advances in this field. Although quantum information processing can be applied to secure communication links (quantum cryptography) and to crack conventional cryptosystems, the first few computing applications will likely involve a 'quantum computing accelerator' similar to a 'floating point arithmetic accelerator' interfaced to a conventional Von Neumann computer architecture. This research is to develop a roadmap for applying Sandia's capabilities to the solution of some of the problems associated with maintaining quantum information, and with getting data into and out of such a 'quantum computing accelerator'. We propose to focus this work on 'quantum I/O technologies' by applying quantum optics on semiconductor nanostructures to leverage Sandia's expertise in semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in information theory, processing, and algorithms. The work will be guided by understanding of practical requirements of computing and communication architectures. This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and between junior and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental nano/microstructures will be
Multi-Bit Data Hiding Scheme for Compressing Secret Messages
Directory of Open Access Journals (Sweden)
Wen-Chung Kuo
2015-11-01
Full Text Available The goal of data hiding techniques usually considers two issues, embedding capacity and image quality. Consequently, in order to achieve high embedding capacity and good image quality, a data hiding scheme combining run-length encoding (RLE with multi-bit embedding is proposed in this paper. This work has three major contributions. First, the embedding capacity is increased 62% because the secret message is compressed before embedding into the cover image. Secondly, the proposed scheme keeps the multi-bit generalized exploiting modification direction (MGEMD characteristics, which are effective to reduce modified pixels in the cover image and to maintain good stego image quality. Finally, the proposed scheme can prevent modern steganalysis methods, such as RS steganalysis and SPAM (subtractive pixel adjacency matrix, and is compared to MiPOD (minimizing the power of the optimal detector scheme. From our simulation results and security discussions, we have the following results: First, there are no perceivable differences between the cover images and stego images from human inspection. For example, the average PSNR of stego images is about 44.61 dB when the secret message (80,000 bits is embedded for test cover images (such as airplane, baboon, Lena of size 512×512. Secondly, Appl. Sci. 2015, 5 1034 on average, 222,087 pixels were not modified after embedding for the cover image. That is to say, 12% less pixels are modified as compared to the MGEMD method. From the performance discussions, the proposed scheme achieves high embedding capacity and good image quality, but also maintains stego image security.
True random numbers from amplified quantum vacuum.
Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V
2011-10-10
Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.
BSSSN: Bit String Swapping Sorting Network for Reversible Logic Synthesis
Islam, Md Saiful
2010-01-01
In this paper, we have introduced the notion of UselessGate and ReverseOperation. We have also given an algorithm to implement a sorting network for reversible logic synthesis based on swapping bit strings. The network is constructed in terms of n*n Toffoli Gates read from left to right and it has shown that there will be no more gates than the number of swappings the algorithm requires. The gate complexity of the network is O(n2). The number of gates in the network can be further reduced by template reduction technique and removing UselessGate from the network.
All-optical pseudorandom bit sequences generator based on TOADs
Sun, Zhenchao; Wang, Zhi; Wu, Chongqing; Wang, Fu; Li, Qiang
2016-03-01
A scheme for all-optical pseudorandom bit sequences (PRBS) generator is demonstrated with optical logic gate 'XNOR' and all-optical wavelength converter based on cascaded Tera-Hertz Optical Asymmetric Demultiplexer (TOADs). Its feasibility is verified by generation of return-to-zero on-off keying (RZ-OOK) 263-1 PRBS at the speed of 1 Gb/s with 10% duty radio. The high randomness of ultra-long cycle PRBS is validated by successfully passing the standard benchmark test.
Bit-Interleaved Coded Multiple Beamforming with Constellation Precoding
Park, Hong Ju
2009-01-01
In this paper, we present the diversity order analysis of bit-interleaved coded multiple beamforming (BICMB) combined with the constellation precoding scheme. Multiple beamforming is realized by singular value decomposition of the channel matrix which is assumed to be perfectly known to the transmitter as well as the receiver. Previously, BICMB is known to have a diversity order bound related with the product of the code rate and the number of parallel subchannels, losing the full diversity order in some cases. In this paper, we show that BICMB combined with the constellation precoder and maximum likelihood detection achieves the full diversity order. We also provide simulation results that match the analysis.
Design of high-bit-rate coherent communication links
Konyshev, V. A.; Leonov, A. V.; Nanii, O. E.; Novikov, A. G.; Treshchikov, V. N.; Ubaydullaev, R. R.
2016-12-01
We report an analysis of the problems encountered in the design of modern high-bit-rate coherent communication links. A phenomenological communication link model is described, which is suitable for solving applied tasks of the network design with nonlinear effects taken into account. We propose an engineering approach to the design that is based on the use of fundamental nonlinearity coefficients calculated in advance for the experimental configurations of communication links. An experimental method is presented for calculating the nonlinearity coefficient of communication links. It is shown that the proposed approach allows one to successfully meet the challenges in designing communication networks.
Distribution of digital games via BitTorrent
DEFF Research Database (Denmark)
Drachen, Anders; Bauer, Kevin; Veitch, Robert W. D.
2011-01-01
distribution across game titles and game genres. This paper presents the first large-scale, open-method analysis of the distribution of digital game titles, which was conducted by monitoring the BitTorrent peer-to-peer (P2P) file-sharing protocol. The sample includes 173 games and a collection period of three...... months from late 2010 to early 2011. With a total of 12.6 million unique peers identified, it is the largest examination of game piracy via P2P networks to date. The study provides findings that reveal the magnitude of game piracy, the time-frequency of game torrents, which genres that get pirated...
INFORMATION SECURITY THROUGH IMAGE WATERMARKING USING LEAST SIGNIFICANT BIT ALGORITHM
Directory of Open Access Journals (Sweden)
Puneet Kr Sharma
2012-05-01
Full Text Available The rapid advancement of internet has made it easier to send the data/image accurate and faster to the destination. Besides this, it is easier to modify and misuse the valuable information through hacking at the same time. In order to transfer the data/image securely to the destination without any modifications, there are many approaches like Cryptography, Watermarking and Steganography. This paper presents the general overview of image watermarking and different security issues. In this paper, Image Watermarking using Least Significant Bit (LSB algorithm has been used for embedding the message/logo into the image. This work has been implemented through MATLAB.
Burdin, Vladimir A.; Kartashevsky, Vyacheslav G.; Grigorov, Igor V.
2016-03-01
This paper presents «reception in general with bit-by-bit decision-making» algorithm, which is the alternative to Viterbi algorithm. It is proposed to use it for fiber-optic transmission systems. It's features is compared with the Viterbi algorithm for digital signal processing in optical communication channels.
Hiwasa, Takeshi; Morishita, Junji; Hatanaka, Shiro; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu
2009-01-01
Our purpose in this study was to examine the potential usefulness of liquid-crystal display (LCD) monitors having the capability of rendering higher than 8 bits in display-bit depth. An LCD monitor having the capability of rendering 8, 10, and 12 bits was used. It was calibrated to the grayscale standard display function with a maximum luminance of 450 cd/m(2) and a minimum of 0.75 cd/m(2). For examining the grayscale resolution reported by ten observers, various simple test patterns having two different combinations of luminance in 8, 10, and 12 bits were randomly displayed on the LCD monitor. These patterns were placed on different uniform background luminance levels, such as 0, 50, and 100%, for maximum luminance. All observers participating in this study distinguished a smaller difference in luminance than one gray level in 8 bits irrespective of background luminance levels. As a result of the adaptation processes of the human visual system, observers distinguished a smaller difference in luminance as the luminance level of the test pattern was closer to the background. The smallest difference in luminance that observers distinguished was four gray levels in 12 bits, i.e., one gray level in 10 bits. Considering the results obtained by use of simple test patterns, medical images should ideally be displayed on LCD monitors having 10 bits or greater so that low-contrast objects with small differences in luminance can be detected and for providing a smooth gradation of grayscale.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Quantum Steganography and Quantum Error-Correction
Shaw, Bilal A
2010-01-01
In the current thesis we first talk about the six-qubit quantum error-correcting code and show its connections to entanglement-assisted error-correcting coding theory and then to subsystem codes. This code bridges the gap between the five-qubit (perfect) and Steane codes. We discuss two methods to encode one qubit into six physical qubits. Each of the two examples corrects an arbitrary single-qubit error. The first example is a degenerate six-qubit quantum error-correcting code. We prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender (Alice) and the receiver (Bob) and corrects an arbitrary single-qubit e...
A System-Level Throughput Model for Quantum Key Distribution
2015-09-17
quantum mechanics to generate and distribute shared secret keying material. QKD systems generate and distribute key by progressing through a number of...communicate a seed to prime random number generation to construct a very large matrix used in the calculation of Privacy Amplification. We assume that... generate a desired number of final key bits. RQ7: What are the implications of altering the amount of Alice’s memory allocated for Quantum Exchange
Arrazola, Juan Miguel; Scarani, Valerio
2016-12-01
We extend covert communication to the quantum regime by showing that covert quantum communication is possible over optical channels with noise arising either from the environment or from the sender's lab. In particular, we show that sequences of qubits can be transmitted covertly by using both a single photon and a coherent state encoding. We study the possibility of performing covert quantum key distribution (QKD) and show that positive key rates and covertness can be achieved simultaneously. Covert communication requires a secret key between the sender and receiver, which raises the problem of how this key can be regenerated covertly. We show that covert QKD consumes more secret bits than it can generate and propose instead a hybrid protocol for covert key regeneration that uses pseudorandom number generators (PRNGs) together with covert QKD to regenerate secret keys. The security of the new key is guaranteed by QKD while the security of the covert communication is at least as strong as the security of the PRNG.
Wecker, Dave; Hastings, Matthew B.; Troyer, Matthias
2016-08-01
We study a variant of the quantum approximate optimization algorithm [E. Farhi, J. Goldstone, and S. Gutmann, arXiv:1411.4028] with a slightly different parametrization and a different objective: rather than looking for a state which approximately solves an optimization problem, our goal is to find a quantum algorithm that, given an instance of the maximum 2-satisfiability problem (MAX-2-SAT), will produce a state with high overlap with the optimal state. Using a machine learning approach, we chose a "training set" of instances and optimized the parameters to produce a large overlap for the training set. We then tested these optimized parameters on a larger instance set. As a training set, we used a subset of the hard instances studied by Crosson, Farhi, C. Y.-Y. Lin, H.-H. Lin, and P. Shor (CFLLS) (arXiv:1401.7320). When tested, on the full set, the parameters that we find produce a significantly larger overlap than the optimized annealing times of CFLLS. Testing on other random instances from 20 to 28 bits continues to show improvement over annealing, with the improvement being most notable on the hardest instances. Further tests on instances of MAX-3-SAT also showed improvement on the hardest instances. This algorithm may be a possible application for near-term quantum computers with limited coherence times.
Ion Trap Quantum Computers: Performance Limits and Experimental Progress
Hughes, Richard
1998-03-01
In a quantum computer information would be represented by the quantum mechanical states of suitable atomic-scale systems. (A single bit of information represented by a two-level quantum system is known as a qubit.) This notion leads to the possibility of computing with quantum mechanical superpositions of numbers ("quantum parallelism"), which for certain problems would make Quantum/quantum.html>quantum computation very much more efficient than classical computation. The possibility of rapidly factoring the large integers used in public-key cryptography is an important example. (Public key cryptosystems derive their security from the difficuty of factoring, and similar problems, with conventional computers.) Quantum computational hardware development is in its infancy, but an experimental study of quantum computation with laser-cooled trapped calcium ions that is under way at Los Alamos will be described. One of the pricipal obstacles to practical quantum computation is the inevitable loss of quantum coherence of the complex quantum states involved. The results of a theoretical analysis showing that quantum factoring of small integers should be possible with trapped ions will be presented. The prospects for larger-scale computations will be discussed.
Quantum Dialogue Based on Hypertanglement Against Collective Noise
Wang, Rui-jin; Li, Dong-fen; Zhang, Feng-li; Qin, Zhiguang; Baaguere, Edward; Zhan, Huayi
2016-08-01
The major problem faced by photons propagating through a physical channel is that of collective noise. This collective noise has the ability to reduce the number of quantum bits that are transmitted, thereby reduces the message fidelity. The traditional method of noise immunity is the use of entanglement purification, which consumes a lot of quantum resources in accomplishing the joint probability of noise immunity but does not guarantee accurate quantum dialog. In this paper, we investigate a new approach to quantum dialogue in which quantum information can be faithfully transmitted via a noisy channel. we constructs corresponding Decoherence Free Subspace(DFS), the quantum state after the change is in the maximally entangled state, so as to realize the fidelity of quantum dialogue model that can ensure the accuracy and noise resistance, and secret information exchange.
Single-electron Spin Resonance in a Quadruple Quantum Dot
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo
2016-08-01
Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.
Learning may need only a few bits of synaptic precision
Baldassi, Carlo; Gerace, Federica; Lucibello, Carlo; Saglietti, Luca; Zecchina, Riccardo
2016-05-01
Learning in neural networks poses peculiar challenges when using discretized rather then continuous synaptic states. The choice of discrete synapses is motivated by biological reasoning and experiments, and possibly by hardware implementation considerations as well. In this paper we extend a previous large deviations analysis which unveiled the existence of peculiar dense regions in the space of synaptic states which accounts for the possibility of learning efficiently in networks with binary synapses. We extend the analysis to synapses with multiple states and generally more plausible biological features. The results clearly indicate that the overall qualitative picture is unchanged with respect to the binary case, and very robust to variation of the details of the model. We also provide quantitative results which suggest that the advantages of increasing the synaptic precision (i.e., the number of internal synaptic states) rapidly vanish after the first few bits, and therefore that, for practical applications, only few bits may be needed for near-optimal performance, consistent with recent biological findings. Finally, we demonstrate how the theoretical analysis can be exploited to design efficient algorithmic search strategies.
STEGANOGRAFI DENGAN CHAOTIC LEAST SIGNIFICANT BIT ENCODING PADA TELEPON GENGGAM
Directory of Open Access Journals (Sweden)
Susany Soplanit
2007-01-01
Full Text Available The issues of security in mobile phone in recent days become crucial. Many privacy or secretly data is stored using unsecured protocol or sometimes without the security procedures at all. This will lead to great awareness about security in mobile phone. The effective ways to secure data are steganography and cryptography. The first one concentrate to data hiding in a certain media. In this paper, we present Chaotic Least Significant Bit Encoding (CLSBE as a steganography method in our system design. The experiment results show that hidden messages in PNG form can be retrieved correctly. The implementation of system in emulator works well but depends on mobile phone features and environment. Abstract in Bahasa Indonesia : Telepon genggam saat ini dapat digunakan untuk menyimpan data-data yang bersifat pribadi atau rahasia, oleh karena itu pengamanan data pada telepon genggam akan menjadi hal yang penting di masa ini ataupun di masa yang akan datang. Sistem pengamanan data yang efektif pada telepon genggam selain kriptografi adalah Steganografi yaitu penyembunyian data dalam sebuah media. Dalam perancangan ini metode yang digunakan adalah Chaotic Least Significant Bit Encoding (CLSBE. Hasil pengujian membuktikan bahwa pesan yang tersembunyi dalam citra digital dengan format PNG masih dapat diambil kembali dengan benar. Implementasi pada emulator telah berjalan dengan baik, namun untuk telepon genggam perlu penyesuaian dengan fasilitas pada telepon tersebut. Kata kunci: CLSBE, steganografi, stego-image, cover-image.
Single-Cycle Bit Permutations with MOMR Execution
Institute of Scientific and Technical Information of China (English)
Ruby B. Lee; Xiao Yang; Zhi-Jie Jerry Shi
2005-01-01
Secure computing paradigms impose new architectural challenges for general-purpose processors. Cryptographic processing is needed for secure communications, storage, and computations. We identify two categories of operations in symmetric-key and public-key cryptographic algorithms that are not common in previous general-purpose workloads:advanced bit operations within a word and multi-word operations. We define MOMR (Multiple Operands Multiple Results)execution or datarich execution as a unified solution to both challenges. It allows arbitrary n-bit permutations to be achieved in one or two cycles, rather than O(n) cycles as in existing RISC processors. It also enables significant acceleration of multiword multiplications needed by public-key ciphers. We propose two implementations of MOMR: one employs only hardware changes while the other uses Instruction Set Architecture (ISA) support. We show that MOMR execution leverages available resources in typical multi-issue processors with minimal additional cost. Multi-issue processors enhanced with MOMR units provide additional speedup over standard multi-issue processors with the same datapath. MOMR is a general architectural solution for word-oriented processor architectures to incorporate datarich operations.
A 16-Bit Fully Functional Single Cycle Processor
Directory of Open Access Journals (Sweden)
Nidhi Maheshwari
2011-08-01
Full Text Available The existing commercial microprocessors are provided as black box units, with which users are unable to monitor internal signals and operation process, neither can they modify the original structure. Inorder to solve this problem 16-bit fully functional single cycle processor is designed in terms of its architecture and its functional capabilities. The procedure of design and verification for a 16-bit processor is introduced in this paper. The key architecture elements are being described, as well as the hardware block diagram and internal structure. The summary of instruction set is presented. This processor is modify as a Very High Speed Integrated Circuit Hardware Description Language (VHDL and gives access to every internal signal. In order to consume fewer resources, the design of arithmetic logical unit (ALU is optimized. The RTL views and verified simulation results of processor are shown in this paper. The synthesis report of the design is also described. The design architecture is written in Very High Speed Integrated Circuit Hardware Description Language (VHDL code using Xilinx ISE 9.2i tool for synthesis and simulation.
Giga-bit optical data transmission module for Beam Instrumentation
Roedne, L T; Cenkeramaddi, L R; Jiao, L
Particle accelerators require electronic instrumentation for diagnostic, assessment and monitoring during operation of the transferring and circulating beams. A sensor located near the beam provides an electrical signal related to the observable quantity of interest. The front-end electronics provides analog-to-digital conversion of the quantity being observed and the generated data are to be transferred to the external digital back-end for data processing, and to display to the operators and logging. This research project investigates the feasibility of radiation-tolerant giga-bit data transmission over optic fibre for beam instrumentation applications, starting from the assessment of the state of the art technology, identification of challenges and proposal of a system level solution, which should be validated with a PCB design in an experimental setup. Radiation tolerance of 10 kGy (Si) Total Ionizing Dose (TID) over 10 years of operation, Bit Error Rate (BER) 10-6 or better. The findings and results of th...
Improved Hardfacing for Drill Bits and Drilling Tools
Sue, Albert; Sreshta, Harry; Qiu, Bao He
2011-01-01
New flame spray hardfacing, DSH (DuraShell® Steel Hardfacing, US patent pending), was developed to improve thermal conductivity, abrasion wear, and erosion resistance for subterranean drilling application. The materials consisted of spherical cast WC/W2C and Ni-Si-B alloy powders. The hardfacing compositions were tailored for various processes such as flame spray and laser cladding. Typically, the hardfacing comprised hard tungsten carbide particles being uniformly distributed in a tough Ni-alloy matrix. The hardness of WC/W2C exceeded 2300 Hv.3 and that of Ni-alloy matrix varied from about 400 to 700 Hv.3. High- and low-stress abrasion resistances of these hardfacing materials were characterized and compared to the conventional hard coatings of cast WC/W2C and Ni-Cr-Si-B-Fe. The increase in thermal, wear, and erosion resistances of the hardfacing improved the durability of PDC (polycrystalline diamond compact) steel body bit and drilling tools and their cost-effective performance. Several case studies of DSH hardfacings on drill bits were described.
A Short Introduction to Bit-String Physics
Noyes, H P
1997-01-01
This paper starts with a personal memoir of how some significant ideas arose and events took place during the period from 1972, when I first encountered Ted Bastin, to 1979, when I proposed the foundation of ANPA. I then discuss program universe, the fine structure paper and its rejection, the quantitative results up to ANPA 17 and take a new look at the handy-dandy formula. Following this historical material is a first pass at establishing new foundations for bit-string physics. An abstract model for a laboratory notebook and an historical record are developed, culminating in the bit-string representation. I set up a tic-toc laboratory with two synchronized clocks and show how this can be used to analyze arbitrary incoming data. This allows me to discuss (briefly) finite and discrete Lorentz transformations, commutation relations, and scattering theory. Earlier work on conservation laws in 3- and 4-events and the free space Dirac and Maxwell equations is cited. The paper concludes with a discussion of the qu...
Statistical mechanics analysis of thresholding 1-bit compressed sensing
Xu, Yingying; Kabashima, Yoshiyuki
2016-08-01
The one-bit compressed sensing framework aims to reconstruct a sparse signal by only using the sign information of its linear measurements. To compensate for the loss of scale information, past studies in the area have proposed recovering the signal by imposing an additional constraint on the l 2-norm of the signal. Recently, an alternative strategy that captures scale information by introducing a threshold parameter to the quantization process was advanced. In this paper, we analyze the typical behavior of thresholding 1-bit compressed sensing utilizing the replica method of statistical mechanics, so as to gain an insight for properly setting the threshold value. Our result shows that fixing the threshold at a constant value yields better performance than varying it randomly when the constant is optimally tuned, statistically. Unfortunately, the optimal threshold value depends on the statistical properties of the target signal, which may not be known in advance. In order to handle this inconvenience, we develop a heuristic that adaptively tunes the threshold parameter based on the frequency of positive (or negative) values in the binary outputs. Numerical experiments show that the heuristic exhibits satisfactory performance while incurring low computational cost.
Statistical mechanics approach to 1-bit compressed sensing
Xu, Yingying; Kabashima, Yoshiyuki
2013-02-01
Compressed sensing is a framework that makes it possible to recover an N-dimensional sparse vector x∈RN from its linear transformation y∈RM of lower dimensionality M entry of y to recover x was recently proposed. This is often termed 1-bit compressed sensing. Here, we analyze the typical performance of an l1-norm-based signal recovery scheme for 1-bit compressed sensing using statistical mechanics methods. We show that the signal recovery performance predicted by the replica method under the replica symmetric ansatz, which turns out to be locally unstable for modes breaking the replica symmetry, is in good consistency with experimental results of an approximate recovery algorithm developed earlier. This suggests that the l1-based recovery problem typically has many local optima of a similar recovery accuracy, which can be achieved by the approximate algorithm. We also develop another approximate recovery algorithm inspired by the cavity method. Numerical experiments show that when the density of nonzero entries in the original signal is relatively large the new algorithm offers better performance than the abovementioned scheme and does so with a lower computational cost.
Design of Low Noise 16-bit CMOS Digitally Controlled Oscillator
Directory of Open Access Journals (Sweden)
Nitin Kumar
2012-02-01
Full Text Available In this paper, a new differential delay cell is proposed and 16-bit Digital Controlled Oscillator (DCO based on proposed delay cell is designed. The 16-bit DCO consist of 4-stages differential delay cell in ring structure and a digital control scheme has been used to improved noise characteristics. The structure of the DCO utilizes dual delay path techniques to achieve high oscillation frequency and awide tuning range. The DCO circuit has been simulated in SPICE with 0.5μm technology operating with supply voltage of 5V. DCO achieved a controllable frequency range of [1.7324-4.8649] GHz with a tuningrange of 3.1325GHz (≈64%. The measured output noise is -161.2dB/Hz and the total harmonic distortion have been found 75.4865dB with 6666H control word. The phase noise in proposed DCO design is -179.4dB/Hz at a frequency of 1.7324GHz.
Nozzle assembly for an earth boring drill bit
Energy Technology Data Exchange (ETDEWEB)
Madigan, J. A.
1985-09-24
A nozzle assembly for an earth boring drill bit of the type adapted to receive drilling fluid under pressure and having a nozzle bore in the bottom thereof positioned closely adjacent the well bore bottom when the bit is in engagement therewith with the bore having inner and outer portions. The nozzle assembly comprises a generally cylindrical nozzle member of abrasion and erosion resistant material, selected from a plurality of such members, each being of the same outer diameter but having passaging therein of different cross-sectional area. The nozzle member is adapted to be fitted in the inner portion of the nozzle bore in sealing relationship therewith for forming a first seal for the nozzle assembly. The nozzle assembly further comprises a locknut, separate from the nozzle member, for detachbably securing the nozzle member in the nozzle bore, formed at least in part of an abrasion and erosion resistant material. The locknut has a threaded side wall engageable with the outer portion of the nozzle bore, and an aperture therethrough for enabling a stream of drilling fluid from the nozzle member to flow therethrough and being so configured in section as to receive a tool for turning the lockout to install it in and remove it from the nozzle bore.
Performance of Photon-Pair Quantum Key Distribution Systems
Walton, Z D; Atatüre, M; Saleh, B E A; Teich, M C
2001-01-01
We analyze the quantitative improvement in performance provided by a novel quantum key distribution (QKD) system that employs a correlated photon source (CPS) and a photon-number resolving detector (PNR). Our calculations suggest that given current technology, the CPR implementation offers an improvement of several orders of magnitude in secure bit rate over previously described implementations.
A new scheme for quantum secret sharing
Bagherinezhad, S; Bagherinezhad, Saber; Karimipour, Vahid
2002-01-01
We introduce a protocol for quantum secret sharing based on reusable entangled states. The entangled state between the sender and the receiver acts only as a carrier and no measurement is performed on this shared state. Half of the sequence of bits can be retrieved independently and for the other half the receivers need each other's assistance. We also show that the protocol is completely safe against eavesdropping.
Quantum Reading of a Classical Memory
Pirandola, Stefano
2009-01-01
We consider a digital memory where each memory cell is a mirror with two possible reflectivities (used to encode a bit of information). Adopting this model, we show that a non-classical source of light, possessing Einstein-Podolsky-Rosen correlations, can retrieve the stored information more efficiently than every classical source. The improvement brought by this quantum reading of the memory can be dramatic for high reflectivities and can be tested with current technology.
Coherent communication with continuous quantum variables
Wilde, Mark M.; Krovi, Hari; Brun, Todd A.
2007-06-01
The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.
Quantum Gravity Constraints on Inflation
Conlon, Joseph P
2012-01-01
We study quantum gravity constraints on inflationary model building. Our approach is based on requiring the entropy associated to a given inflationary model to be less than that of the de Sitter entropy. We give two prescriptions for determining the inflationary entropy, based on either `bits per unit area' or entanglement entropy. The existence of transPlanckian flat directions, necessary for large tensor modes in the CMB, correlates with an inflationary entropy greater than that allowed by de Sitter space. Independently these techniques also constrain or exclude de Sitter models with large-rank gauge groups and high UV cutoffs, such as racetrack inflation or the KKLT construction.
Combinatorics and quantum nonlocality.
Buhrman, Harry; Høyer, Peter; Massar, Serge; Röhrig, Hein
2003-07-25
We use techniques for lower bounds on communication to derive necessary conditions (in terms of detector efficiency or amount of superluminal communication) for being able to reproduce the quantum correlations occurring in Einstein-Podolsky-Rosen-type experiments with classical local hidden-variable theories. As an application, we consider n parties sharing a Greenberger-Horne-Zeilinger-type state and show that the amount of superluminal classical communication required to reproduce the correlations is at least n(log((2)n-3) bits and the maximum detector efficiency eta(*) for which the resulting correlations can still be reproduced by a local hidden-variable theory is upper bounded by eta(*)
Rate Distortion Analysis and Bit Allocation Scheme for Wavelet Lifting-Based Multiview Image Coding
Lasang, Pongsak; Kumwilaisak, Wuttipong
2009-12-01
This paper studies the distortion and the model-based bit allocation scheme of wavelet lifting-based multiview image coding. Redundancies among image views are removed by disparity-compensated wavelet lifting (DCWL). The distortion prediction of the low-pass and high-pass subbands of each image view from the DCWL process is analyzed. The derived distortion is used with different rate distortion models in the bit allocation of multiview images. Rate distortion models including power model, exponential model, and the proposed combining the power and exponential models are studied. The proposed rate distortion model exploits the accuracy of both power and exponential models in a wide range of target bit rates. Then, low-pass and high-pass subbands are compressed by SPIHT (Set Partitioning in Hierarchical Trees) with a bit allocation solution. We verify the derived distortion and the bit allocation with several sets of multiview images. The results show that the bit allocation solution based on the derived distortion and our bit allocation scheme provide closer results to those of the exhaustive search method in both allocated bits and peak-signal-to-noise ratio (PSNR). It also outperforms the uniform bit allocation and uniform bit allocation with normalized energy in the order of 1.7-2 and 0.3-1.4 dB, respectively.
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Energy Technology Data Exchange (ETDEWEB)
Tojo, K.; Kurosawa, M.; Oka, K.; Higuchi, T. [The University of Tokyo, Tokyo (Japan)
1998-05-01
The application of single-bit digital signal processing to mechanical control system has already been proposed by the authors. Multi-bit A/D converter has been improved to the high level. But it is difficult to make more high resolution A/D by latest semiconductor technologies. There is single-bit digital signal which is generated by a delta-sigma modulator. Single-bit digital signal has small quantized error around low frequency. Then with this single-bit digital signal processing, high resolution on controlling such a narrow band width mechanical system will be realized. In this paper, resolution of analog, multi-bit and single-bit control systems are estimated with simulation. According to simulations` results, single-bit control system has higher resolution than multi-bit system in the condition of equal bit rate. 5 refs., 17 figs., 1 tab.
Iterative quantum algorithm for distributed clock synchronization
Institute of Scientific and Technical Information of China (English)
Wang Hong-Fu; Zhang Shou
2012-01-01
Clock synchronization is a well-studied problem with many practical and scientific applications.We propose an arbitrary accuracy iterative quantum algorithm for distributed clock synchronization using only three qubits.The n bits of the time difference △ between two spatially separated clocks can be deterministically extracted by communicating only O(n) messages and executing the quantum iteration process n times based on the classical feedback and measurement operations.Finally,we also give the algorithm using only two qubits and discuss the success probability of the algorithm.
Scheme for Quantum Computing Immune to Decoherence
Williams, Colin; Vatan, Farrokh
2008-01-01
A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report
Quantum superdense coding based on hyperentanglement
Institute of Scientific and Technical Information of China (English)
Zhao Rui-Tong; Guo Qi; Chen Li; Wang Hong-Fu; Zhang Shou
2012-01-01
We present a scheme for quantum superdense coding with hyperentanglement,in which the sender can transfer four bits of classical information by sending only one photon.The important device in the scheme is the hyperentangled Bell-state analyzer in both polarization and frequency degrees of freedom,which is also constructed in the paper by using a quantum nondemolition detector assisted by cross-Kerr nonlinearity.Our scheme can transfer more information with less resources than the existing schemes and is nearly deterministic and nondestructive.
Quantum key distribution series network protocol with M-classical Bobs
Institute of Scientific and Technical Information of China (English)
Zhang Xian-Zhou; Gong Wei-Gui; Tan Yong-Gang; Ren Zhen-Zhong; Guo Xiao-Tian
2009-01-01
Secure key distribution among classical parties is impossible both between two parties and in a network. In this paper, we present a quantum key distribution (QKD) protocol to distribute secure key bits among one quantum party and numerous classical parties who have no quantum capacity. We prove that our protocol is completely robust, i.e.,any eavesdropping attack should be detected with nonzero probability. Our calculations show that our protocol may be secure against Eve's symmetrically individual attack.
Nondigital implementation of the arithmetic of real numbers by means of quantum computer media
Litvinov, Grigori; Maslov, Viktor; Shpiz, Grigori
1999-01-01
In the framework of a model for quantum computer media, a nondigital implementation of the arithmetic of the real numbers is described. For this model, an elementary storage "cell" is an ensemble of qubits (quantum bits). It is found that to store an arbitrary real number it is sufficient to use four of these ensembles and the arithmetic operations can be implemented by fixed quantum circuits.
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
de Gosson, Maurice A
2011-01-01
Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture. This allows us to propose a substitute for phase space in quantum mechanics. We study the relationship between quantum blobs with a certain class of level sets defined by Fermi for the purpose of representing geometrically quantum states.
Wu, L A; Wu, Lian-Ao; Lidar, Daniel
2005-01-01
Quantum computation and communication offer unprecedented advantages compared to classical information processing. Currently, quantum communication is moving from laboratory prototypes into real-life applications. When quantum communication networks become more widespread it is likely that they will be subject to attacks by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware.
Directory of Open Access Journals (Sweden)
Mohamad Ali Sadikin
2016-10-01
Full Text Available This research addresses the implementation of encryption and digital signature technique for electronic health record to prevent cybercrime such as robbery, modification and unauthorised access. In this research, RSA 2048-bit algorithm, AES 256-bit and SHA 256 will be implemented in Java programming language. Secure Electronic Health Record Information (SEHR application design is intended to combine given services, such as confidentiality, integrity, authentication, and nonrepudiation. Cryptography is used to ensure the file records and electronic documents for detailed information on the medical past, present and future forecasts that have been given only to the intended patients. The document will be encrypted using an encryption algorithm based on NIST Standard. In the application, there are two schemes, namely the protection and verification scheme. This research uses black-box testing and whitebox testing to test the software input, output, and code without testing the process and design that occurs in the system.We demonstrated the implementation of cryptography in SEHR. The implementation of encryption and digital signature in this research can prevent archive thievery.
A single channel, 6-bit 410-MS/s 3bits/stage asynchronous SAR ADC based on resistive DAC
Xue, Han; Qi, Wei; Huazhong, Yang; Hui, Wang
2015-05-01
This paper presents a single channel, low power 6-bit 410-MS/s asynchronous successive approximation register analog-to-digital converter (SAR ADC) for ultrawide bandwidth (UWB) communication, prototyped in a SMIC 65-nm process. Based on the 3 bits/stage structure, resistive DAC, and the modified asynchronous successive approximation register control logic, the proposed ADC attains a peak spurious-free dynamic range (SFDR) of 41.95 dB, and a signal-to-noise and distortion ratio (SNDR) of 28.52 dB for 370 MS/s. At the sampling rate of 410 MS/s, this design still performs well with a 40.71-dB SFDR and 30.02-dB SNDR. A four-input dynamic comparator is designed so as to decrease the power consumption. The measurement results indicate that this SAR ADC consumes 2.03 mW, corresponding to a figure of merit of 189.17 fJ/step at 410 MS/s. Project supported by the National Science Foundation for Young Scientists of China (No. 61306029) and the National High Technology Research and Development Program of China (No. 2013AA014103).
Improved Bounds on Quantum Learning Algorithms
Atici, A; Atici, Alp; Servedio, Rocco A.
2004-01-01
In this article we give several new results on the complexity of algorithms that learn Boolean functions from quantum queries and quantum examples. Hunziker et al. conjectured that for any class C of Boolean functions, the number of quantum black-box queries which are required to exactly identify an unknown function from C is at most $O(\\frac{\\log |C|}{\\sqrt{{\\hat{\\gamma}}^{C}}})$, where $\\hat{\\gamma}^{C}$ is a combinatorial parameter of the class C. We essentially resolve this conjecture in the affirmative by giving a quantum algorithm that, for any class C, identifies any unknown function from C using at most $O(\\frac{\\log |C| \\log \\log |C|}{\\sqrt{{\\hat{\\gamma}}^{C}}})$ quantum black-box queries. We consider a range of natural problems intermediate between the exact learning problem (in which the learner must obtain all bits of information about the black-box function) and the usual problem of computing a predicate (in which the learner must obtain only one bit of information about the black-box function). ...
Dual Field Theories of Quantum Computation
Vanchurin, Vitaly
2016-01-01
Given two quantum states of $N$ q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large $N$ limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an $N+1$ dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an $N$ dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli $Z$ matrices. Since such situation is not generic we call it the $Z$-problem. On the dual field the...
Scarani, Valerio; Iblisdir, Sofyan; Gisin, Nicolas; Acin, Antonio
2005-01-01
The impossibility of perfectly copying (or cloning) an arbitrary quantum state is one of the basic rules governing the physics of quantum systems. The processes that perform the optimal approximate cloning have been found in many cases. These "quantum cloning machines" are important tools for studying a wide variety of tasks, e.g. state estimation and eavesdropping on quantum cryptography. This paper provides a comprehensive review of quantum cloning machines (both for discrete-dimensional an...
Experimental research on characteristics of hole reaming and side cutting of one-cone bits
Institute of Scientific and Technical Information of China (English)
Yu Kai'an
2008-01-01
The hole reaming and side cutting characteristics of offset one-cone bit and conventional one-cone bit were investigated on simulated drilling experimental equipment.The borehole diameter was a little larger than the bit diameter due to side force.However,the reaming effect was not very apparent,whether drilling with an offset or conventional one-cone bit.The side cutting displacement increased gradually with increasing depth of drilling and side force.The side cutting displacement of offset one-cone bits was larger than that of conventional ones under the same conditions of weight-on-bit(WOB),rotary speed,side force and borehole depth.
Yang, Aiying; Li, Xiangming; Jiang, Tao
2012-04-23
Combination of overlapping pulse position modulation and pulse width modulation at the transmitter and grouped bit-flipping algorithm for low-density parity-check decoding at the receiver are proposed for visible Light Emitting Diode (LED) indoor communication system in this paper. The results demonstrate that, with the same Photodetector, the bit rate can be increased and the performance of the communication system can be improved by the scheme we proposed. Compared with the standard bit-flipping algorithm, the grouped bit-flipping algorithm can achieve more than 2.0 dB coding gain at bit error rate of 10-5. By optimizing the encoding of overlapping pulse position modulation and pulse width modulation symbol, the performance can be further improved. It is reasonably expected that the bit rate can be upgraded to 400 Mbit/s with a single available LED, thus transmission rate beyond 1 Gbit/s is foreseen by RGB LEDs.
Quantum CPU and Quantum Algorithm
Wang, An Min
1999-01-01
Making use of an universal quantum network -- QCPU proposed by me\\upcite{My1}, it is obtained that the whole quantum network which can implement some the known quantum algorithms including Deutsch algorithm, quantum Fourier transformation, Shor's algorithm and Grover's algorithm.
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…