WorldWideScience

Sample records for quantizing magnetic fields

  1. Two dimensional topological insulator in quantizing magnetic fields

    Science.gov (United States)

    Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.

    2018-05-01

    The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.

  2. Electrical resistance of flaky crystals in the longitudinal quantizing magnetic field

    International Nuclear Information System (INIS)

    Askerov, B.M.; Figarova, S.R.; Makhmudov, M.M.

    2005-01-01

    Specific resistance of the quasi-two-dimensional electrical gas in the longitudinal quantizing magnetic field is investigated in this work. Common expression for resistivity in the flaky crystals was received. In quantum limit was analyzed dependence of the resistivity from the size of magnetic field and parameters energetic spectra in case of strong degenerate gas. It was tagged that, the conduct of specific resistance is formed by the dependence of chemical potential from the size of magnetic field. At the defined value of the chemical potential and size of magnetic field obtains inflation of the specific resistance. (author)

  3. Precise quantization of anomalous Hall effect near zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bestwick, A. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fox, E. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kou, Xufeng [Univ. of California, Los Angeles, CA (United States); Pan, Lei [Univ. of California, Los Angeles, CA (United States); Wang, Kang L. [Univ. of California, Los Angeles, CA (United States); Goldhaber-Gordon, D. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  4. On propagation of sound waves in Q2D conductors in a quantizing magnetic field

    CERN Document Server

    Kirichenko, O V; Galbova, O; Ivanovski, G; Krstovska, D

    2003-01-01

    The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers.

  5. On propagation of sound waves in Q2D conductors in a quantizing magnetic field

    International Nuclear Information System (INIS)

    Kirichenko, O.V.; Peschansky, V.G.; Galbova, O.; Ivanovski, G.; Krstovska, D.

    2003-01-01

    The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers

  6. A physically motivated quantization of the electromagnetic field

    International Nuclear Information System (INIS)

    Bennett, Robert; Barlow, Thomas M; Beige, Almut

    2016-01-01

    The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field. (paper)

  7. Quantized fields in external field. Pt. 2

    International Nuclear Information System (INIS)

    Bellissard, J.

    1976-01-01

    The case of a charged scalar field is considered first. The existence of the corresponding Green's functions is proved. For weak fields, as well as pure electric or scalar external fields, the Bogoliubov S-operator is shown to be unitary, covariant, causal up-to-a-phase. These results are generalised to a class of higher spin quantized fields, 'nicely' coupled to external fields, which includes the Dirac theory, and in the case of minimal and magnetic dipole coupling, the spin one Petiau-Duffin-Kemmer theory. (orig.) [de

  8. Flux quantization in 'autistic' magnets

    Energy Technology Data Exchange (ETDEWEB)

    Costa de Beauregard, O.; Vigoureux, J.M.

    1974-03-15

    The Dirac electron theory for the evanescent wave surrounding an infinitely long cylindrical magnet with zero surface polarization and the requirement of the single valuedness of this wave are used to show that the magnetic flux is quantized in units h/2e emu. The same quantization is shown for a general ''autistic'' magnet (i.e. magnet completely trapping its flux), thus establishing complete external equivalence of the ''autistic'' magnet with the ''perfect solenoid''. An experimental test of the predicted quantization is suggested.

  9. Flux quantization and quantum mechanics on Riemann surfaces in an external magnetic field

    International Nuclear Information System (INIS)

    Bolte, J.; Steiner, F.

    1990-10-01

    We investigate the possibility to apply an external constant magnetic field to a quantum mechanical system consisting of a particle moving on a compact or non-compact two-dimensional manifold of constant negative Gaussian curvature and of finite volume. For the motion on compact Riemann surfaces we find that a consistent formulation is only possible if the magnetic flux is quantized, as it is proportional to the (integrated) first Chern class of a certain complex line bundle over the manifold. In the case of non-compact surfaces of finite volume we obtain the striking result that the magnetic flux has to vanish identically due to the theorem that any holomorphic line bundle over a non-compact Riemann surface is holomorphically trivial. (orig.)

  10. Quantized gauge field

    International Nuclear Information System (INIS)

    Arodz, H.

    1987-01-01

    The two formulations of quantum theory of the free electromagnetic field are presented. In the Coulomb gauge approach the independent dynamical variables have been identified and then, in order to quantize the theory, it has been sufficient to apply the straightforward canonical quantization. In the Gupta-Bleuler approach the auxilliary theory is first considered. The straightforward canonical quantization of it leads to the quantum theory defined in the space G with indefinite norm. 15 refs. (author)

  11. Quantized beam shifts in graphene

    Energy Technology Data Exchange (ETDEWEB)

    de Melo Kort-Kamp, Wilton Junior [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinitsyn, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego Alejandro Roberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  12. The Berry phase in GaAs semiconductor with a quantized field

    International Nuclear Information System (INIS)

    Chen Gang; Chen Zidong; Yu Lixian

    2007-01-01

    In this paper we investigate the Berry phase in GaAs semiconductor with a quantized magnetic field in the rotating wave approximation. The eigenfunctions of the nuclear spin in the quantized external field are obtained and thus the Berry phase is evaluated explicitly in terms of the introduction of the phase shift. It is shown that the Berry phase can be easily controlled by the coupling strength, the anisotropy constant and the frequency of the electromagnetic wave, which can be important in applications in geometric quantum computing

  13. Quantization of fields with constraints

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M.; Tyutin, I.V.

    1990-01-01

    The quantization of singular field theories, in particular, gauge theories, is one of the key problems in quantum field theory. This book - which addresses the reader acquainted with the foundations of quantum field theory - provides a comprehensive analysis of this problem and techniques for its solution. The main topics are canonical and Lagrangian quantization and the path integral method. (orig.).

  14. Evidence for quantization of mechanical rotation of magnetic nanoparticles.

    Science.gov (United States)

    Tejada, J; Zysler, R D; Molins, E; Chudnovsky, E M

    2010-01-15

    We report evidence of the quantization of the rotational motion of solid particles containing thousands of atoms. A system of CoFe2O4 nanoparticles confined inside polymeric cavities has been studied. The particles have been characterized by the x-ray diffraction, transmission electron microscopy, plasma mass spectroscopy, ferromagnetic resonance (FMR), and magnetization measurements. Magnetic and FMR data confirm the presence of particles that are free to rotate inside the cavities. Equidistant, temperature-independent jumps in the dependence of the microwave absorption on the magnetic field have been detected. This observation is in accordance with the expectation that orbital motion splits the low-field absorption line into multiple lines.

  15. Semiclassical quantization of integrable systems of few interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Sivan, N.; Levit, S.

    1992-01-01

    We present a semiclassical theory of charged interacting anyons in a strong magnetic field. We derive the appropriate generalization of the WKB quantization conditions and determine the corresponding wave functions for non separable integrable anyonic systems. This theory is applies to a system of two interacting anyons, two interacting anyons in the presence of an impurity and three interacting anyons. We calculate the dependence of the semiclassical energy levels on the statistical parameter and find regions in which dependence follows very different patterns. The semiclassical treatment allows to find the correlation between these patterns and the change in the character of the classical motion of the system. We also test the accuracy of the mean field approximation for low and high energy states of the three anyons. (author)

  16. Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy, E-mail: praloydasdurgapur@gmail.com; Pramanik, Souvik, E-mail: souvick.in@gmail.com; Ghosh, Subir, E-mail: subirghosh20@gmail.com

    2016-11-15

    Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac’s Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein–Brillouin–Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr–Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.

  17. Influence of quantizing magnetic field and Rashba effect on indium arsenide metal-oxide-semiconductor structure accumulation capacitance

    Science.gov (United States)

    Kovchavtsev, A. P.; Aksenov, M. S.; Tsarenko, A. V.; Nastovjak, A. E.; Pogosov, A. G.; Pokhabov, D. A.; Tereshchenko, O. E.; Valisheva, N. A.

    2018-05-01

    The accumulation capacitance oscillations behavior in the n-InAs metal-oxide-semiconductor structures with different densities of the built-in charge (Dbc) and the interface traps (Dit) at temperature 4.2 K in the magnetic field (B) 2-10 T, directed perpendicular to the semiconductor-dielectric interface, is studied. A decrease in the oscillation frequency and an increase in the capacitance oscillation amplitude are observed with the increase in B. At the same time, for a certain surface accumulation band bending, the influence of the Rashba effect, which is expressed in the oscillations decay and breakdown, is traced. The experimental capacitance-voltage curves are in a good agreement with the numeric simulation results of the self-consistent solution of Schrödinger and Poisson equations in the magnetic field, taking into account the quantization, nonparabolicity of dispersion law, and Fermi-Dirac electron statistics, with the allowance for the Rashba effect. The Landau quantum level broadening in a two-dimensional electron gas (Lorentzian-shaped density of states), due to the electron scattering mechanism, linearly depends on the magnetic field. The correlation between the interface electronic properties and the characteristic scattering times was established.

  18. New approach to the problem of gauge field quantization

    International Nuclear Information System (INIS)

    Skachkov, N.B.; Shevchenko, O.Yu.

    1987-01-01

    A new scheme of calibration field quantization containing considerable change of the procedure of calibration conditions application on field variables is suggested. The above approach is based on a proved theorem on the subordination of fields to the additional Lorenz condition when applying a wide class of initial calibration conditions on these fields. This condition has the sense of the secondary bond, which must be included in the system of bonds during field quantization. The fact of secondary bond presence in the form of Lorenz condition was not earlier considered in literature and used in quantization. Due to this, the report suggests modification of all existing methods of field quantization: according to Dirac-Bergman, covariant approach using an indefinite metric and the method of functional integration

  19. Energy of magnetic moment of superconducting current in magnetic field

    International Nuclear Information System (INIS)

    Gurtovoi, V.L.; Nikulov, A.V.

    2015-01-01

    Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment

  20. Topological quantization of gravitational fields

    International Nuclear Information System (INIS)

    Patino, Leonardo; Quevedo, Hernando

    2005-01-01

    We introduce the method of topological quantization for gravitational fields in a systematic manner. First we show that any vacuum solution of Einstein's equations can be represented in a principal fiber bundle with a connection that takes values in the Lie algebra of the Lorentz group. This result is generalized to include the case of gauge matter fields in multiple principal fiber bundles. We present several examples of gravitational configurations that include a gravitomagnetic monopole in linearized gravity, the C-energy of cylindrically symmetric fields, the Reissner-Nordstroem and the Kerr-Newman black holes. As a result of the application of the topological quantization procedure, in all the analyzed examples we obtain conditions implying that the parameters entering the metric in each case satisfy certain discretization relationships

  1. Quantized Roentgen Effect in Bose-Einstein Condensates

    OpenAIRE

    Leonhardt, U.; Piwnicki, P.

    1998-01-01

    A classical dielectric moving in a charged capacitor can create a magnetic field (Roentgen effect). A quantum dielectric, however, will not produce a magnetization, except at vortices. The magnetic field outside the quantum dielectric appears as the field of quantized monopoles.

  2. Quantization of a scalar field in the Kerr spacetime

    International Nuclear Information System (INIS)

    Ford, L.H.

    1974-01-01

    A discussion of field quantization in a curved background spacetime is presented, with emphasis on the quantization of a scalar field in the Kerr spacetime. The ambiguity in the choice of a Fock space is discussed. The example of quantized fields in a rotating frame of reference in Minkowski space is analyzed, and it is shown that there is a preferred choice of states which makes particle number an invariant under transformation to the rotating frame. This choice allows the existence of negative energy quanta of the field

  3. Resonance properties of a three-level atom with quantized field modes

    International Nuclear Information System (INIS)

    Yoo, H.I.

    1984-01-01

    A system of one three-level atom and one or two quantized electro-magnetic field modes coupled to each other by the dipole interaction, with the rotating wave approximation is studied. All three atomic configurations, i.e., cascade Lambda- and V-types, are treated simultaneously. The system is treated as closed, i.e., no interaction with the external radiation field modes, to reveal the internal structures and symmetries in the system. The general dynamics of the system are investigated under several distinct initial conditions and their similarities and differences with the dynamics of the Jaynes-Cummings model are revealed. Also investigated is the possibility of so-called coherent trapping of the atom in the quantized field modes in a resonator. An atomic state of coherent trapping exists only for limited cases, and it generally requires the field to be in some special states, depending on the system. The discussion of coherent trapping is extended into a system of M identical three-level atoms. The stability of a coherent-trapping state when fluorescence can take place is discussed. The distinction between a system with resonator field modes and one with ideal laser modes is made clear, and the atomic relaxation to the coherent-trapping atomic state when a Lambda-type atom is irradiated by two ideal laser beams is studied. The experimental prospects to observe the collapse-revival phenomena in the atomic occupation probabilities, which is characteristic of a system with quantized resonator field modes is discussed

  4. Quantized Majorana conductance

    Science.gov (United States)

    Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Op Het Veld, Roy L. M.; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.; Sarma, S. Das; Kouwenhoven, Leo P.

    2018-04-01

    Majorana zero-modes—a type of localized quasiparticle—hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

  5. Creation of particles in the gravitational field and the boundary conditions for quantized fields

    International Nuclear Information System (INIS)

    Khrustalev, O.A.; Silaev, P.K.

    1995-01-01

    We prove, that if one impose the linear constraints on the quantized fields that satisfy different boundary conditions, it can leads to such a transformation between creation-annihilation operators, that corresponds to particle creation. We also prove, that the correspondence between field, quantized in Minkowski space and the field, quantized in Rindler space has Rindler space can't be observed. 7 refs

  6. Quantization of the Radiation Field

    Indian Academy of Sciences (India)

    field,quantization,Lamb shift. Avinash Khare ... actions as well as for theories beyond like grand unified theories. Further, the same ... cules as well as condensed matter physics, not to men- tion their ... of an electromagnetic field by a moving electron, and of the reaction of this field on the electron have not yet been touched.".

  7. Stochastic quantization of Proca field

    International Nuclear Information System (INIS)

    Lim, S.C.

    1981-03-01

    We discuss the complications that arise in the application of Nelson's stochastic quantization scheme to classical Proca field. One consistent way to obtain spin-one massive stochastic field is given. It is found that the result of Guerra et al on the connection between ground state stochastic field and the corresponding Euclidean-Markov field extends to the spin-one case. (author)

  8. On quantization of the electromagnetic field in radiation gauge

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    This paper contains a detailed description of quantization of the electromagnetic field (in radiation gauge) and quantization of some basic physical variables connected with radiation field as energy, momentum and spin. The dynamics of the free quantum radiation field and the field interacting with external classical sources is described. The canonical formalism is not used explicity. (author)

  9. Ionization in a quantized electromagnetic field

    International Nuclear Information System (INIS)

    Gonoskov, I. A.; Vugalter, G. A.; Mironov, V. A.

    2007-01-01

    An analytical expression for a matrix element of the transition from a bound state of an electron in an atom to continuum states is obtained by solving the problem of interaction of the electron with a quantized electromagnetic field. This expression is used to derive formulas for the photoelectron spectrum and the rate of ionization of the simplest model atomic system upon absorption of an arbitrary number of photons. The expressions derived are analyzed and compared with the corresponding relationships obtained via other approaches. It is demonstrated that there are differences as compared to the case of the classical field. In particular, the photoelectron spectrum exhibits dips due to the destructive interference of the transition amplitudes in the quantized electromagnetic field

  10. A geometrical approach to free-field quantization

    International Nuclear Information System (INIS)

    Tabensky, R.; Valle, J.W.F.

    1977-01-01

    A geometrical approach to the quantization of free relativistic fields is given. Complex probability amplitudes are assigned to the solutions of the classical evolution equation. It is assumed that the evolution is stricly classical, according to the scalar unitary representation of the Poincare group in a functional space. The theory is equivalent to canonical quantization [pt

  11. Stochastic quantization of gravity and string fields

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    The stochastic quantization method of Parisi and Wu is generalized so as to make it applicable to Einstein's theory of gravitation. The generalization is based on the existence of a preferred metric in field configuration space, involves Ito's calculus, and introduces a complex stochastic process adapted to Lorentzian spacetime. It implies formally the path integral measure of DeWitt, a causual Feynman propagator, and a consistent stochastic perturbation theory. The lineraized version of the theory is also obtained from the stochastic quantization of the free string field theory of Siegel and Zwiebach. (Author)

  12. Conductance quantization suppression in the quantum Hall regime

    DEFF Research Database (Denmark)

    Caridad, José M.; Power, Stephen R.; Lotz, Mikkel R.

    2018-01-01

    Conductance quantization is the quintessential feature of electronic transport in non-interacting mesoscopic systems. This phenomenon is observed in quasi one-dimensional conductors at zero magnetic field B, and the formation of edge states at finite magnetic fields results in wider conductance...... conduction channels. Despite being a universal effect, this regime has proven experimentally elusive because of difficulties in realizing one-dimensional systems with sufficiently hard-walled, disorder-free confinement. Here, we experimentally demonstrate the suppression of conductance quantization within...

  13. Magnetic resonance image compression using scalar-vector quantization

    Science.gov (United States)

    Mohsenian, Nader; Shahri, Homayoun

    1995-12-01

    A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. SVQ is a fixed-rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity issues of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation which is typical of coding schemes which use variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit-rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original, when displayed on a monitor. This makes our SVQ based coder an attractive compression scheme for picture archiving and communication systems (PACS), currently under consideration for an all digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired.

  14. Surface structure of quark stars with magnetic fields

    Indian Academy of Sciences (India)

    We investigate the impact of magnetic fields on the electron distribution of the electrosphere of quark stars. For moderately strong magnetic fields of ∼ 1013 G, quantization effects are generally weak due to the large number density of electrons at surface, but can nevertheless affect the photon emission properties of quark ...

  15. Energy spectrum and density of states for a graphene quantum dot in a magnetic field

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J; Liu, S Y

    2010-01-01

    In this paper, we determine the spectrum and density of states of a graphene quantum dot in a normal quantizing magnetic field. To accomplish this, we employ the retarded Green function for a magnetized, infinite-sheet graphene layer to describe the dynamics of a tightly confined graphene quantum dot subject to Landau quantization. Considering a δ (2) (r) potential well that supports just one subband state in the well in the absence of a magnetic field, the effect of Landau quantization is to 'splinter' this single energy level into a proliferation of many Landau-quantized states within the well. Treating the graphene sheet and dot as a closed system subject to a fully Hermitian Hamiltonian (including boundary conditions), there is no indication of decay of the Landau-quantized graphene dot states into the quantized states of the host graphene sheet for 'tight' confinement by the δ (2) (r) potential well, notwithstanding extension of the dot Green function (and eigenfunctions) outside the δ (2) (r) potential well.

  16. From the geometric quantization to conformal field theory

    International Nuclear Information System (INIS)

    Alekseev, A.; Shatashvili, S.

    1990-01-01

    Investigation of 2d conformal field theory in terms of geometric quantization is given. We quantize the so-called model space of the compact Lie group, Virasoro group and Kac-Moody group. In particular, we give a geometrical interpretation of the Virasoro discrete series and explain that this type of geometric quantization reproduces the chiral part of CFT (minimal models, 2d-gravity, WZNW theory). In the appendix we discuss the relation between classical (constant) r-matrices and this geometrical approach. (orig.)

  17. Covariant canonical quantization of fields and Bohmian mechanics

    International Nuclear Information System (INIS)

    Nikolic, H.

    2005-01-01

    We propose a manifestly covariant canonical method of field quantization based on the classical De Donder-Weyl covariant canonical formulation of field theory. Owing to covariance, the space and time arguments of fields are treated on an equal footing. To achieve both covariance and consistency with standard non-covariant canonical quantization of fields in Minkowski spacetime, it is necessary to adopt a covariant Bohmian formulation of quantum field theory. A preferred foliation of spacetime emerges dynamically owing to a purely quantum effect. The application to a simple time-reparametrization invariant system and quantum gravity is discussed and compared with the conventional non-covariant Wheeler-DeWitt approach. (orig.)

  18. Zero-field magnetic response functions in Landau levels

    Science.gov (United States)

    Gao, Yang; Niu, Qian

    2017-07-01

    We present a fresh perspective on the Landau level quantization rule; that is, by successively including zero-field magnetic response functions at zero temperature, such as zero-field magnetization and susceptibility, the Onsager’s rule can be corrected order by order. Such a perspective is further reinterpreted as a quantization of the semiclassical electron density in solids. Our theory not only reproduces Onsager’s rule at zeroth order and the Berry phase and magnetic moment correction at first order but also explains the nature of higher-order corrections in a universal way. In applications, those higher-order corrections are expected to curve the linear relation between the level index and the inverse of the magnetic field, as already observed in experiments. Our theory then provides a way to extract the correct value of Berry phase as well as the magnetic susceptibility at zero temperature from Landau level fan diagrams in experiments. Moreover, it can be used theoretically to calculate Landau levels up to second-order accuracy for realistic models.

  19. Electromagnetically induced transparency with quantized fields in optocavity mechanics

    International Nuclear Information System (INIS)

    Huang Sumei; Agarwal, G. S.

    2011-01-01

    We report electromagnetically induced transparency (EIT) using quantized fields in optomechanical systems. The weak probe field is a narrowband squeezed field. We present a homodyne detection of EIT in the output quantum field. We find that the EIT dip exists even though the photon number in the squeezed vacuum is at the single-photon level. The EIT with quantized fields can be seen even at temperatures on the order of 100 mK, thus paving the way for using optomechanical systems as memory elements.

  20. Response of two-band systems to a single-mode quantized field

    Science.gov (United States)

    Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.

    2016-03-01

    The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.

  1. Quantum theory of laser radiation scattering by electrons in magnetic fields

    International Nuclear Information System (INIS)

    Rochlin, H.; Davidovich, L.

    1982-01-01

    A system consisting of an electron in a static magnetic field, interacting with the quantized electromagnetic field, within the non-relativistic and electric dipole approximations (with a cutoff in momentum space) is considered. The Heisenberg equations of motion are solved exactly and the time evolution of the electric field is determined. The power spectrum of the scattered radiation is calculated, when the electromagnetic field is initially in a coherent state. The results for the line shape of the scattered radiation are shown to be valid for magnetic fields up to 10 12 G. The quantization of the electromagnetic field allows one to consider effects of the natural linewidth and its dependence on the magnetic field. The renormalization of the electron mass is included in these treatment, and the results remain finite when the cutoff goes to infinity. (Author) [pt

  2. A unique Fock quantization for fields in non-stationary spacetimes

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Marugán, Guillermo A. Mena; Olmedo, Javier; Velhinho, José M.

    2010-01-01

    In curved spacetimes, the lack of criteria for the construction of a unique quantization is a fundamental problem undermining the significance of the predictions of quantum field theory. Inequivalent quantizations lead to different physics. Recently, however, some uniqueness results have been obtained for fields in non-stationary settings. In particular, for vacua that are invariant under the background symmetries, a unitary implementation of the classical evolution suffices to pick up a unique Fock quantization in the case of Klein-Gordon fields with time-dependent mass, propagating in a static spacetime whose spatial sections are three-spheres. In fact, the field equation can be reinterpreted as describing the propagation in a Friedmann-Robertson-Walker spacetime after a suitable scaling of the field by a function of time. For this class of fields, we prove here an even stronger result about the Fock quantization: the uniqueness persists when one allows for linear time-dependent transformations of the field in order to account for a scaling by background functions. In total, paying attention to the dynamics, there exists a preferred choice of quantum field, and only one SO(4)-invariant Fock representation for it that respects the standard probabilistic interpretation along the evolution. The result has relevant implications e.g. in cosmology

  3. On the effective mass in tetragonal semiconductors in the presence of an arbitrarily oriented quantizing magnetic field

    International Nuclear Information System (INIS)

    Mondal, M.; Ghatak, K.P.

    1984-01-01

    A generalized expression of the effective mass of charge carriers in tetragonal semiconductors (taking n-Cd 3 As 2 as an example) in the presence of arbitrary magnetic quantization has been derived considering the generalized dispersion relation of the conduction electrons and taking into account only the effective mass of the electrons at the Fermi surface

  4. Light-front quantization of field theory

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-07-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.

  5. Light-front quantization of field theory

    International Nuclear Information System (INIS)

    Srivastava, Prem P.

    1996-07-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs

  6. Quadratic Zeeman spectra for the hydrogen atom by means of semiclassical quantization

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Adachi, Satoshi

    1988-01-01

    The elliptic cylindrical coordinates of type I adapted to the Fock hypersphere in momentum space of the Kepler motion and their canonical momenta are used to construct an analytic form of the classical action integrals which yield an adequate parametrization of the KAM (Kolmogorov-Arnold-Moser) tori of the Kepler trajectories weakly perturbed by a uniform magnetic field. The semiclassical quantization formula so provided presents a prototype of the exact EBK (Einstein-Brillouin-Keller) quantization scheme, and the resulting quantized energies vs the magnetic field strength correspond to the quadratic Zeeman spectra of each Rydberg multiplet lifted by the perturbation. (author)

  7. The quantized Hall effect

    International Nuclear Information System (INIS)

    Klitzing von, K.

    1989-01-01

    The quantized Hall effect is theoretically explained in detail as are its basic properties. The explanation is completed with the pertinent mathematical relations and illustrative figures. Experimental data are critically assessed obtained by quantum transport measurement in a magnetic field on two-dimensional systems. The results are reported for a MOSFET silicon transistor and for GaAs-Al x Ga 1-x As heterostructures. The application is discussed of the quantized Hall effect in determining the fine structure constant or in implementing the resistance standard. (M.D.). 27 figs., 57 refs

  8. Discrete phase space - II: The second quantization of free relativistic wave fields

    International Nuclear Information System (INIS)

    Das, A.

    2010-01-01

    The Klein-Gordon equation, the Maxwell equation, and the Dirac equation are presented as partial difference equations in the eight-dimensional covariant discrete phase space. These equations are also furnished as difference-differential equations in the arena of discrete phase space and continuous time. The scalar field and electromagnetic fields are quantized with commutation relations. The spin-1/2 field is quantized with anti-commutation relations. Moreover, the total momentum, energy and charge of these free relativisitic quantized fields in the discrete phase space and continuous time are computed exactly. The results agree completely with those computed from the relativisitic fields defined on the space-time continuum. (author)

  9. Background independent quantizations-the scalar field: II

    International Nuclear Information System (INIS)

    Kaminski, Wojciech; Lewandowski, Jerzy; Okolow, Andrzej

    2006-01-01

    We are concerned with the issue of the quantization of a scalar field in a diffeomorphism invariant manner. We apply the method used in loop quantum gravity. It relies on the specific choice of scalar field variables referred to as the polymer variables. The quantization, in our formulation, amounts to introducing the 'quantum' polymer *-star algebra and looking for positive linear functionals, called states. As assumed in our paper, homeomorphism invariance allows us to derive the complete class of the states. They are determined by the homeomorphism invariant states defined on the CW-complex *-algebra. The corresponding GNS representations of the polymer *-algebra and their self-adjoint extensions are derived, the equivalence classes are found, and invariant subspaces characterized. In part I we outlined those results. Here, we present the technical details

  10. Quantization of edge currents for continuous magnetic operators

    CERN Document Server

    Kellendonk, J

    2003-01-01

    For a magnetic Hamiltonian on a half-plane given as the sum of the Landau operator with Dirichlet boundary conditions and a random potential, a quantization theorem for the edge currents is proven. This shows that the concept of edge channels also makes sense in presence of disorder. Moreover, gaussian bounds on the heat kernel and its covariant derivatives are obtained.

  11. Width dependent transition of quantized spin-wave modes in Ni80Fe20 square nanorings

    Science.gov (United States)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Rousseau, Olivier; Otani, YoshiChika; Barman, Anjan

    2014-10-01

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni80Fe20 nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  12. Algebraic quantization, good operators and fractional quantum numbers

    International Nuclear Information System (INIS)

    Aldaya, V.; Calixto, M.; Guerrero, J.

    1996-01-01

    The problems arising when quantizing systems with periodic boundary conditions are analysed, in an algebraic (group-) quantization scheme, and the failure of the Ehrenfest theorem is clarified in terms of the already defined notion of good (and bad) operators. The analysis of constrained Heisenberg-Weyl groups according to this quantization scheme reveals the possibility for quantum operators without classical analogue and for new quantum (fractional) numbers extending those allowed for Chern classes in traditional Geometric Quantization. This study is illustrated with the examples of the free particle on the circumference and the charged particle in a homogeneous magnetic field on the torus, both examples featuring anomalous operators, non-equivalent quantization and the latter, fractional quantum numbers. These provide the rationale behind flux quantization in superconducting rings and Fractional Quantum Hall Effect, respectively. (orig.)

  13. Particle states of a quantized meson field

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    A simple non-linear field theory is considered as the model for a recently proposed classical field theory of mesons and their particle sources. Quantization may be made according to canonical procedures; the problem is to show the existence of quantum states corresponding with the particle-like solutions of the classical field equations. A plausible way to do this is suggested. (author). 5 refs

  14. Twisted condensates of quantized fields

    International Nuclear Information System (INIS)

    Gallone, F.; Sparzani, A.; Ubertone, G.; Streater, R.F.

    We construct some quasi-free pure states of free quantized fields in 1+1 dimensions, that are localized in the sense of Knight. We consider massless or massive Dirac fields forming a U(n), n >= 1, multiplet and subject it to a local gauge transformation. We also subject a doublet of massive Klein-Gordon fields to local SO(2) transformations. We find the conditions that the resulting automorphism is spatial in Fock space. In some cases the conditions turn out to require that certain parameters, identified as the winding numbers of the gauge, are integers. It is argued that this integer labels states of various charge. (orig.)

  15. Enhanced quantization particles, fields and gravity

    CERN Document Server

    Klauder, John R

    2015-01-01

    This pioneering book addresses the question: Are the standard procedures of canonical quantization fully satisfactory, or is there more to learn about assigning a proper quantum system to a given classical system? As shown in this book, the answer to this question is: The standard procedures of canonical quantization are not the whole story! This book offers alternative quantization procedures that complete the story of quantization. The initial chapters are designed to present the new procedures in a clear and simple manner for general readers. As is necessary, systems that exhibit acceptable results with conventional quantization lead to the same results when the new procedures are used for them. However, later chapters examine selected models that lead to unacceptable results when quantized conventionally. Fortunately, these same models lead to acceptable results when the new quantization procedures are used.

  16. Landau quantization effects on hole-acoustic instability in semiconductor plasmas

    Science.gov (United States)

    Sumera, P.; Rasheed, A.; Jamil, M.; Siddique, M.; Areeb, F.

    2017-12-01

    The growth rate of the hole acoustic waves (HAWs) exciting in magnetized semiconductor quantum plasma pumped by the electron beam has been investigated. The instability of the waves contains quantum effects including the exchange and correlation potential, Bohm potential, Fermi-degenerate pressure, and the magnetic quantization of semiconductor plasma species. The effects of various plasma parameters, which include relative concentration of plasma particles, beam electron temperature, beam speed, plasma temperature (temperature of electrons/holes), and Landau electron orbital magnetic quantization parameter η, on the growth rate of HAWs, have been discussed. The numerical study of our model of acoustic waves has been applied, as an example, to the GaAs semiconductor exposed to electron beam in the magnetic field environment. An increment in either the concentration of the semiconductor electrons or the speed of beam electrons, in the presence of magnetic quantization of fermion orbital motion, enhances remarkably the growth rate of the HAWs. Although the growth rate of the waves reduces with a rise in the thermal temperature of plasma species, at a particular temperature, we receive a higher instability due to the contribution of magnetic quantization of fermions to it.

  17. Higgs mechanism in light-front quantized field theory

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P P

    1993-12-31

    The spontaneous symmetry breaking of continuous symmetry in light-front quantized scalar field theory is studied following the standard Dirac procedure for constrained dynamical systems. A non-local constraint is found to follow. The values of the constant backgrounds fields (zero modes) at the tree level, as a consequence, are shown to given by minimizing the light-front energy. The zero modes are shown to commute with the non-zero ones and the isovector built from them is seen to characterize a (non-perturbative) vacuum state and the corresponding physical sector. The infinite degeneracy of the vacuum is described by the continuum of the allowed orientations of this background isovector in the isospin space. The symmetry generators in the quantized field theory annihilate the vacuum is contrast to the case of equal-time quantization. Not all of them are conserved and the conserved ones determine the surviving symmetry of the quantum theory Lagrangian. The criteria for determining the background isovector and the counting of the number of Goldstone bosons goes as in the equal-time case. A demonstration in favour of the absence of Goldstone bosons in two dimensions is also found. Finally, is extended to an understanding of the Higgs mechanism in light-front frame. (author). 13 refs.

  18. Higgs mechanism in light-front quantized field theory

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1992-01-01

    The spontaneous symmetry breaking of continuous symmetry in light-front quantized scalar field theory is studied following the standard Dirac procedure for constrained dynamical systems. A non-local constraint is found to follow. The values of the constant backgrounds fields (zero modes) at the tree level, as a consequence, are shown to given by minimizing the light-front energy. The zero modes are shown to commute with the non-zero ones and the isovector built from them is seen to characterize a (non-perturbative) vacuum state and the corresponding physical sector. The infinite degeneracy of the vacuum is described by the continuum of the allowed orientations of this background isovector in the isospin space. The symmetry generators in the quantized field theory annihilate the vacuum is contrast to the case of equal-time quantization. Not all of them are conserved and the conserved ones determine the surviving symmetry of the quantum theory Lagrangian. The criteria for determining the background isovector and the counting of the number of Goldstone bosons goes as in the equal-time case. A demonstration in favour of the absence of Goldstone bosons in two dimensions is also found. Finally, is extended to an understanding of the Higgs mechanism in light-front frame. (author). 13 refs

  19. Quantization in presence of external soliton fields

    International Nuclear Information System (INIS)

    Grosse, H.; Karner, G.

    1986-01-01

    Quantization of a fermi field interacting with an external soliton protential is considered. Classes of interactions leading to unitarily equivalent representations of the canonical anticommutation relations are determined. Soliton-like potentials compared to trivial ones yield inequivalent representations. (Author)

  20. Quantization of an electromagnetic field in two-dimensional photonic structures based on the scattering matrix formalism ( S-quantization)

    Science.gov (United States)

    Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-10-01

    Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate

  1. Path integral quantization of parametrized field theory

    International Nuclear Information System (INIS)

    Varadarajan, Madhavan

    2004-01-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory

  2. d and f electrons in a qp-quantized cubical field

    International Nuclear Information System (INIS)

    Kibler, M.; Sztucki, J.

    1993-03-01

    A procedure for qp-quantizing a crystal-field potential V with an arbitrary symmetry G is developed. Such a procedure is applied to the case where V involves cubic components (G=0) of the degrees 4 and 6. This case corresponds to d and f electrons in a qp-quantized cubical potential. It is shown that the qp-quantization of the considered cubical potential is equivalent to a symmetry breaking of type O→D 4 . A general conjecture about this symmetry breaking phenomenon is given. (author) 21 refs

  3. Nonabelian gauge fields in the background of magnetic strings

    International Nuclear Information System (INIS)

    Wieczorek, E.

    1993-01-01

    Quantized nonabelian gauge fields are studied in the external classical background of a linear magnetic string. The determination of the gauge field propagator demands a specification of the string by suitable physical limiting procedures. The vacuum energy density is obtained after transforming the background problem into a Casimir problem. (orig.)

  4. A new approach to quantum field theory and a spacetime quantization

    International Nuclear Information System (INIS)

    Banai, I.

    1982-09-01

    A quantum logical approach to achieve a sound kinematical picture for LQFT (local quantum field theory) is reviewed. Then a general language in the framework of axiomatic set theory is presented, in which the 'local' description of a LQFT can be formulated in almost the same form as quantum mechanics was formulated by von Neumann. The main physical implication of this approach is that, in this framework, the quantization of a CRLFT (classical relativistic local field theory) requires not only the quantization of physical fields over M 4 but the quantization of spacetime M 4 itself, too. The uncertainty priciple is compatible with the Heisenberg uncertainty principle, but it requires the generalization of Poincare symmetries to all unitary symmetries. Some indications show that his approach might be successful in describing low laying hadronic phenomena. (author)

  5. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Broderick, A.; Prakash, M.; Lattimer, J. M.

    2000-01-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10 14 G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10 18 G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society

  6. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, A; Prakash, M; Lattimer, J M

    2000-07-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10{sup 14} G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10{sup 18} G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society.

  7. Quantization of fermions in external soliton fields and index calculation

    International Nuclear Information System (INIS)

    Grosse, H.

    1986-01-01

    We review recent results on the quantization of fermions in external fields, discuss equivalent and inequivalent representations of the canonical anticommutation relations, indicate how the requirement of implementability of gauge transformations leads to quantization conditions, determine the algebra of charges, identify the Schwinger term and remark finally how one may calculate a ground state charge. (Author)

  8. Quantized Dirac field interacting with a classical Maxwell field

    International Nuclear Information System (INIS)

    Kolsrud, M.

    1987-10-01

    The S operator for the quantized and the s matrix for the unquantized Dirac field, both fields interacting with an unquantized Maxwell field, are shown to be related in the following way: S=exp(-ic†kc) and s=exp(-ik). Here c is the column matrix of the particle operators, and k is a Hermitian matrix. With splitting of c into an electron and a positron part, a corresponding factorization of S is performed. Exact expressions for the probability amplitude for various electron and/or positron processes are then obtained

  9. Stochastic quantization and gauge-fixing of the linearized gravitational field

    International Nuclear Information System (INIS)

    Hueffel, H.; Rumpf, H.

    1984-01-01

    Due to the indefiniteness of the Euclidean gravitational action the Parisi-Wu stochastic quantization scheme fails in the case of the gravitational field. Therefore we apply a recently proposed modification of stochastic quantization that works in Minkowski space and preserves all the advantages of the original Parisi-Wu method; in particular no gauge-fixing is required. Additionally stochastic gauge-fixing may be introduced and is also studied in detail. The graviton propagators obtained with and without stochastic gauge-fixing all exhibit a noncausal contribution, but apart from this effect the gauge-invariant quantities are the same as those of standard quantization. (Author)

  10. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Rousseau, Olivier [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otani, YoshiChika [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  11. Effect of magnetic field on selectivity of three-step photoionization

    International Nuclear Information System (INIS)

    Lim, Chang Hwan; Rho, Si Pyo; Ko, Kwang Hoon; Kim, Chul Joong; Izawa, Yasukazu

    2001-01-01

    Effect of magnetic field on selectivity by linearly polarized lasers was analyzed by formulating the density matrix equations. To investigate the effect of magnetic field on the selectivity of AVLIS, we proposed a general Hamiltonian for multilevel atomic system in magnetic field. The population dynamics of magnetic sublevels have been observed by solving the Liouville equation. Mixing between magnetic sublevels was observed in each state during the laser excitations when the magnetic field perpendicular to the quantization axis was applied to the atomic system. The magnetic field dependence on ionization rate of even isotopes was also discussed. In the magnetic field dependence, two ionization peaks were appeared because of the interference between Rabi and Larmor frequency during the ionization process. The permissible intensities of magnetic field were predicted to obtain enough selectivity for the target isotopes of zirconium and gadolinium in the AVLIS process based on the polarization selection rule

  12. The general theory of quantized fields in the 1950s

    International Nuclear Information System (INIS)

    Wightman, A.S.

    1989-01-01

    This review describes developments in theoretical particle physics in the 1950s which were important in the race to develop a putative general theory of quantized fields, especially ideas that offered a mathematically rigorous theory. Basic theoretical concepts then available included the Hamiltonian formulation of quantum dynamics, canonical quantization, perturbative renormalization theory and the theory of distributions. Following a description of various important theoretical contributions of this era, the review ends with a summary of the most important contributions of axiomatic field theory to concrete physics applications. (UK)

  13. Phase-space quantization of field theory

    International Nuclear Information System (INIS)

    Curtright, T.; Zachos, C.

    1999-01-01

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999

  14. Fedosov quantization and perturbative quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Collini, Giovanni

    2016-12-12

    Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the Poisson algebra associated with a finite-dimensional symplectic manifold (''phase space''). His algorithm gives a non-commutative, but associative, product (a so-called ''star-product'') between smooth phase space functions parameterized by Planck's constant ℎ, which is treated as a deformation parameter. In the limit as ℎ goes to zero, the star product commutator goes to ℎ times the Poisson bracket, so in this sense his method provides a quantization of the algebra of classical observables. In this work, a generalization of Fedosov's method is developed which applies to the infinite-dimensional symplectic ''manifolds'' that occur in Lagrangian field theories. We show that the procedure remains mathematically well-defined, and we explain the relationship of the method to more standard perturbative quantization schemes in quantum field theory.

  15. Electric charge quantization and the muon anomalous magnetic moment

    International Nuclear Information System (INIS)

    Pires, C.A.S. de; Rodrigues da Silva, P.S.

    2002-01-01

    We investigate some proposals to solve the electric charge quantization puzzle that simultaneously explain the recent measured deviation on the muon anomalous magnetic moment. For this we assess extensions of the electro-weak standard model spanning modifications on the scalar sector only. It is interesting to verify that one can have modest extensions which easily account for the solution for both problems

  16. Green's function for electrons in a narrow quantum well in a parallel magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J. Morgenstern; Glasser, M. Lawrence; Dong Bing

    2005-01-01

    Electron dynamics in a narrow quantum well in a parallel magnetic field of arbitrary strength are examined here. We derive an explicit analytical closed-form solution for the Green's function of Landau-quantized electrons in skipping states of motion between the narrow well walls coupled with in-plane translational motion and hybridized with the zero-field lowest subband energy eigenstate. Such Landau-quantized modes are not uniformly spaced

  17. Background field method for nonlinear σ-model in stochastic quantization

    International Nuclear Information System (INIS)

    Nakazawa, Naohito; Ennyu, Daiji

    1988-01-01

    We formulate the background field method for the nonlinear σ-model in stochastic quantization. We demonstrate a one-loop calculation for a two-dimensional non-linear σ-model on a general riemannian manifold based on our formulation. The formulation is consistent with the known results in ordinary quantization. As a simple application, we also analyse the multiplicative renormalization of the O(N) nonlinear σ-model. (orig.)

  18. Stochastic quantization and mean field approximation

    International Nuclear Information System (INIS)

    Jengo, R.; Parga, N.

    1983-09-01

    In the context of the stochastic quantization we propose factorized approximate solutions for the Fokker-Planck equation for the XY and Zsub(N) spin systems in D dimensions. The resulting differential equation for a factor can be solved and it is found to give in the limit of t→infinity the mean field or, in the more general case, the Bethe-Peierls approximation. (author)

  19. Symplectic geometry of field theories and covariant quantization of superstrings and superparticles

    International Nuclear Information System (INIS)

    Crnkovic, C.

    1987-01-01

    A detailed development of the symplectic geometry formalism for a general Lagrangian field theory is presented. Special attention is paid to the theories with constraints and/or gauge degrees of freedom. Special cases of Yang-Mills theory, general relativity and Witten's string field theory are studied and the generators of (super-) Poincare transformations are derived using their respective symplectic forms. The formalism extends naturally to theories formulated in the superspace. The second part of the thesis deals with issues in covariant quantization. By studying the symplectic geometry of the Green-Schwarz covariant superstring action, we elucidate some aspects of its covariant quantization. We derive the on-shell gauge-fixed action and the equations of motion for all the fields. Finally, turning to Siegel's version of the superparticle action, we perform its BRST quantization

  20. Tunable zero-line modes via magnetic field in bilayer graphene

    Science.gov (United States)

    Wang, Ke; Qiao, Zhenhua

    Zero-line modes appear in bilayer graphene at the internal boundary between two opposite vertical electrostatic confinements. These one-dimensional modes are metallic along the boundary and exhibit quantized conductance in the absence of inter-valley scattering. However, experimental results show that the conductance is around 0.5 e2/h rather than quantized. This observation can be explained from our numerical results, which suggest that the scattering between zero-line mode and bound states and the presence of atomic scale disorders that provide inter-valley scattering can effectively reduce the conductance to about 0.5 e2/h. We further find that out-of-plane magnetic field can strongly suppress these scattering mechanisms and gives rise to nearly quantized conductance. On one hand, the presence of magnetic field makes bound states become Landau levels, which reduces the scattering between zero-line mode and bound states. On the other hand, the wave function distributions of oppositely propagating zero-line modes at different valleys are spatially separated, which can strongly suppress the inter-valley scattering. Specifically speaking, the conductance can be increased to 3.2 e2/h at 8 T even when the atomic Anderson type disorders are considered.

  1. Polymer quantization of the free scalar field and its classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Laddha, Alok; Varadarajan, Madhavan, E-mail: alok@rri.res.i, E-mail: madhavan@rri.res.i [Raman Research Institute, Bangalore 560 080 (India)

    2010-09-07

    Building on prior work, a generally covariant reformulation of a free scalar field theory on the flat Lorentzian cylinder is quantized using loop quantum gravity (LQG)-type 'polymer' representations. This quantization of the continuum classical theory yields a quantum theory which lives on a discrete spacetime lattice. We explicitly construct a state in the polymer Hilbert space which reproduces the standard Fock vacuum two-point functions for long-wavelength modes of the scalar field. Our construction indicates that the continuum classical theory emerges under coarse graining. All our considerations are free of the 'triangulation' ambiguities which plague attempts to define quantum dynamics in LQG. Our work constitutes the first complete LQG-type quantization of a generally covariant field theory together with a semi-classical analysis of the true degrees of freedom and thus provides a perfect infinite-dimensional toy model to study open issues in LQG, particularly those pertaining to the definition of quantum dynamics.

  2. Quantum theory of the laser radiation scattering by electrons in magnetic fields

    International Nuclear Information System (INIS)

    Rochlin, H.

    1981-08-01

    A system composed of an electron in a static magnetic field interacting with the quantized electromagnetic field, within the electric-dipole and the nonrelativistic approximations (with a cutoff in momentum space) is considered. The Heisenberg equations are solved exactly and the time evolution of the electric field is determined. This result is then used to obtain the spectrum of the scattered radiation when the initial state of the field is coherent, aplying the theory of photodetection. This theory is thoroughly discussed. Several expressions proposed in the literature for the time-dependent spectrum are compared and conditions for the equivalence of these expressions are analyzed. Moreover, inaccuracies in previous treatments of the theory of photodetection are corrected. The results allow the line shape of the scattered radiation to be analyzed for magnetic fields up to 10 12 G. The quantization of the eletromagnetic field allows one to consider the role of the natural line width, which becomes important near ressonance. In particular, it is analyzed the dependence of the line width with the magnetic field. This treatment includes the renormalization of the electron mass, which keeps the results finite when the cutoff goes to infinity. (Author) [pt

  3. Dynamic and statistical thermodynamic properties of electrons in a thin quantum well in a parallel magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern; Glasser, M Lawrence; Dong Bing

    2006-01-01

    We carry out a theoretical analysis of quantum well electron dynamics in a parallel magnetic field of arbitrary strength, for a narrow quantum well. An explicit analytical closed-form solution is obtained for the retarded Green's function for Landau-quantized electrons in skipping states of motion between the narrow well walls, effectively involving in-plane translational motion, and hybridized with the zero-field lowest subband energy eigenstate. The dispersion relation for electron eigenstates is examined, and we find a plethora of such discrete Landau-quantized modes coupled to the subband state. In the weak field limit, we determine low magnetic field corrections to the lowest subband state energy associated with close-packing (phase averaging) of the Landau levels in the skipping states. At higher fields the discrete energy levels of the well lie between adjacent Landau levels, but they are not equally spaced, albeit undamped. Furthermore, we also examine the associated thermodynamic Green's function for Landau-quantized electrons in a thin quantum well in a parallel magnetic field and construct the (grand) thermodynamic potential (logarithm of the grand partition function) determining the statistical thermodynamics of the system

  4. Canonical action-angle formalism for quantized nonlinear fields

    International Nuclear Information System (INIS)

    Garbaczewki, P.

    1987-01-01

    The canonical quantizations of field and action-angle coordinates which (locally) parameterize the phase manifold for the same nonlinear field theory model (e.g. sine-Gordon and nonlinear Schrodinger with the attractive coupling) are reconciled on the common for both cases state space. The classical-quantum relationship is maintained in the mean: coherent state expectation values of operators give rise to classical objects

  5. Quantized fields in interaction with external fields. Pt. 1

    International Nuclear Information System (INIS)

    Bellissard, J.

    1975-01-01

    We consider a massive, charged, scalar quantized field interacting with an external classical field. Guided by renormalized perturbation theory we show that whenever the integral equations defining the Feynman or retarded or advanced interaction kernel possess non perturbative solutions, there exists an S-operator which satisfies, up to a phase, the axioms of Bogoliubov, and is given for small external fields by a power series which converges on coherent states. Furthermore this construction is shown to be equivalent to the one based on the Yang-Kaellen-Feldman equation. This is a consequence of the relations between chronological and retarded Green's functions which are described in detail. (orig.) [de

  6. Entanglement of two-qubit photon beam by magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Levin, A.D.; Castro, R.A. [University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo (Brazil); Gitman, D.M. [University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State University, Tomsk (Russian Federation)

    2014-09-15

    We study the possibility of affecting the entanglement in a two-qubit system consisting of two photons with different fixed frequencies but with two arbitrary linear polarizations, moving in the same direction, with the help of an applied external magnetic field. The interaction between the magnetic field and the photons in our model is achieved through intermediate electrons that interact both with the photons and the magnetic field. The possibility of an exact theoretical analysis of this scheme is based on well-known exact solutions that describe the interaction of an electron subjected to an external magnetic field (or a medium of electrons not interacting with each other) with a quantized field of two photons. We adapt these exact solutions to the case under consideration. Using explicit wave functions for the resulting electromagnetic field, we calculate the entanglement measures (the information and the Schmidt ones) of the photon beam as functions of the applied magnetic field and the parameters of the electron medium. (orig.)

  7. Perspectives of Light-Front Quantized Field Theory: Some New Results

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Prem P.

    1999-08-13

    A review of some basic topics in the light-front (LF) quantization of relativistic field theory is made. It is argued that the LF quantization is equally appropriate as the conventional one and that they lead, assuming the microcausality principle, to the same physical content. This is confirmed in the studies on the LF of the spontaneous symmetry breaking (SSB), of the degenerate vacua in Schwinger model (SM) and Chiral SM (CSM), of the chiral boson theory, and of the QCD in covariant gauges among others. The discussion on the LF is more economical and more transparent than that found in the conventional equal-time quantized theory. The removal of the constraints on the LF phase space by following the Dirac method, in fact, results in a substantially reduced number of independent dynamical variables. Consequently, the descriptions of the physical Hilbert space and the vacuum structure, for example, become more tractable. In the context of the Dyson-Wick perturbation theory the relevant propagators in the front form theory are causal. The Wick rotation can then be performed to employ the Euclidean space integrals in momentum space. The lack of manifest covariance becomes tractable, and still more so if we employ, as discussed in the text, the Fourier transform of the fermionic field based on a special construction of the LF spinor. The fact that the hyperplanes x{sup {+-}} = 0 constitute characteristic surfaces of the hyperbolic partial differential equation is found irrelevant in the quantized theory; it seems sufficient to quantize the theory on one of the characteristic hyperplanes.

  8. Group quantization on configuration space: Gauge symmetries and linear fields

    International Nuclear Information System (INIS)

    Navarro, M.; Aldaya, V.; Calixto, M.

    1997-01-01

    A new, configuration-space picture of a formalism of group quantization, the GAQ formalism, is presented in the context of a previous algebraic generalization. This presentation serves to make a comprehensive discussion in which other extensions of the formalism, principally to incorporate gauge symmetries, are developed as well. Both images are combined in order to analyze, in a systematic manner and with complete generality, the case of linear fields (Abelian current groups). To illustrate these developments we particularize them for several fields and, in particular, we carry out the quantization of the Abelian Chern endash Simons models over an arbitrary closed surface in detail. copyright 1997 American Institute of Physics

  9. Implementability of gauge transformations and quantization of fermions in external fields

    International Nuclear Information System (INIS)

    Grosse, H.; Karner, G.

    1986-01-01

    Quantization of fermions in an external soliton field, leading to a representation of the CAR which is inequivalent to the representation connected to the massive Dirac operator, is studied. We determine classes of gauge and axial gauge transformations which can be unitarily implemented. In the latter case quantization conditions for gauge functions are obtained; integers entering can be interpreted as winding numbers. (Author)

  10. Grassmann's fields and generalized magnetic monopoles

    International Nuclear Information System (INIS)

    Maia Junior, A.; Rodrigues Junior, W.A.

    1989-01-01

    We present a theory of dual charges with the introduction of a generalized potential and a generalized field are locally respectively elements of the odd and even parts of the Grassmann algebra of space-time, with values in the Lie algebra of a gauge group G. Defining a generalized Dirac operator and its dual, we get the field equations of the theory. When G = U(1) we obtain a theory of electrodynamics with magnetic monopoles without string. We show that the generalized field is invariant under harmonic gauge transformations and we obtain Dirac's quantization condition for the dual charges. (author) [pt

  11. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, I. C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, João Pessoa, PB 58051-970 (Brazil)

    2016-01-07

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  12. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    Science.gov (United States)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  13. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    International Nuclear Information System (INIS)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels

  14. Correspondence between quantum gauge theories without ghost fields and their covariantly quantized theories with ghost fields

    International Nuclear Information System (INIS)

    Cheng Hung; Tsai Ercheng

    1986-01-01

    We give a correspondence formula which equates transition amplitudes in a quantum gauge field theory without ghost fields to those in a quantum theory with the gauge fields covariantly quantized and coupled to ghost fields. (orig.)

  15. Stochastic quantization of the Kink solution of phi4 field theory

    International Nuclear Information System (INIS)

    Kates, R.; Rosenblum, A.

    1989-01-01

    The method of Parisi-Wu Stochastic quantization in quantum field theory is compared to earlier work in classical field equations. The method is applied to solve for the propagator for Phi 4 field theory by perturbing the Kink solution

  16. The canonical quantization of local scalar fields over quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1983-05-01

    Canonical quantization of a classical local field theory (CLFT) consisting of N real scalar fields is formulated in the Hilbert space over the sup(*)-algebra A of linear operators of L 2 (R 3 ). The canonical commutation relations (CCR) have an irreducible solution, unique up to A-unitary equivalence. The canonical equations as operator equations are equivalent to the classical (c) field equations. The interaction picture can be introduced in a well-defined manner. The main adventage of this treatment is that the corresponding S-matrix is free of divergences. The Feynman's graph technique is adaptable in a straightforward manner. This approach is a natural extension of the conventional canonical quantization method of quantum mechanics. (author)

  17. Quantization of the minimal and non-minimal vector field in curved space

    OpenAIRE

    Toms, David J.

    2015-01-01

    The local momentum space method is used to study the quantized massive vector field (the Proca field) with the possible addition of non-minimal terms. Heat kernel coefficients are calculated and used to evaluate the divergent part of the one-loop effective action. It is shown that the naive expression for the effective action that one would write down based on the minimal coupling case needs modification. We adopt a Faddeev-Jackiw method of quantization and consider the case of an ultrastatic...

  18. Harmonic generation and flux quantization in granular superconductors

    International Nuclear Information System (INIS)

    Lam, Q.H.; Jeffries, C.D.

    1989-01-01

    Simple dynamical models of granular superconductors are used to compute the generation of harmonic power in ac and dc magnetic fields. In zero order, the model is a single superconducting loop, with or without a weak link. The sample-average power is predicted by averaging over suitable distribution functions for loop areas and orientations in a dc magnetic field. In a first-order model, inductance and resistance are also included. In all models the power at high harmonics shows strikingly sharp dips periodic in the dc field, revealing flux quantization in the prototype loops

  19. An unconventional canonical quantization of local scalar fields over quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1985-12-01

    An unconventional extension of the canonical quantization method is presented for a classical local field theory. The proposed canonical commutation relations have a solution in the A-valued Hilbert space where A is the algebra of the bounded operators of the Hilbert space Lsup(2) (IRsup(3)). The canonical equations as operator equations are equivalent formally with the classical field equations, and are well defined for interacting systems, too. This model of quantized field lacks some of the difficulties of the conventional approach. Examples satisfying the asymptotic condition provide examples for Haag-Kastler's axioms, however, they satisfy Wightman's axioms only partially. (author)

  20. Anisotropic transport properties of quasiballistic InAs nanowires under high magnetic field

    Science.gov (United States)

    Vigneau, Florian; Zeng, Zaiping; Escoffier, Walter; Caroff, Philippe; Leturcq, Renaud; Niquet, Yann-Michel; Raquet, Bertrand; Goiran, Michel

    2018-03-01

    The magnetoconductance of a long channel InAs nanowire based field effect transistor in the quasiballistic regime under large magnetic field is investigated. The quasi-1D nanowire is fully characterized by a bias voltage spectroscopy and measurements under magnetic field up to 50 T applied either perpendicular or parallel to the nanowire axis lifting the spin and orbital degeneracies of the subbands. Under normal magnetic field, the conductance shows quantized steps due to the backscattering reduction and a decrease due to depopulation of the 1D modes. Under axial magnetic field, a quasioscillatory behavior is evidenced due to the coupling of the magnetic field with the angular momentum of the wave function. In addition the formation of cyclotron orbits is highlighted under high magnetic field. The experimental results are compared with theoretical calculation of the 1D band structure and related parameters.

  1. On the general theory of quantized fields

    International Nuclear Information System (INIS)

    Fredenhagen, K.

    1991-10-01

    In my lecture I describe the present stage of the general theory of quantized fields on the example of 5 subjects. They are ordered in the direction from large to small distances. The first one is the by now classical problem of the structure of superselection sectors. It involves the behavior of the theory at spacelike infinity and is directly connected with particle statistics and internal symmetries. It has become popular in recent years by the discovery of a lot of nontrivial models in 2d conformal-field theory, by connections to integrable models and critical behavior in statistical mechanics and by the relations to the Jones' theory of subfactors in von Neumann algebras and to the corresponding geometrical objects (braids, knots, 3d manifolds, ...). At large timelike distances the by far most important feature of quantum field theory is the particle structure. This will be the second subject of my lecture. It follows the technically most involved part which is concerned with the behavior at finite distances. Two aspets, nuclearity which emphasizes the finite density of states in phase space, and the modular structure which relies on the infinite number of degrees of freedom present even locally, and their mutual relations will be treated. The next point, involving the structure at infinitesimal distances, is the connection between the Haag-Kastler framework of algebras of local and the framework of Wightman fields. Finally, problems in approaches to quantum gravity will be discussed, as far as they are accessible by the methods of the general theory of quantized fields. (orig.)

  2. Propagators for a quantized scalar field in a static closed universe

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Azuma, Takahiro.

    1978-07-01

    In a previous paper, a massive scalar field in an expanding closed universe was canonically quantized by taking full account of its coupling-type with the background universe and of the latter's topological (spherical or elliptic) nature. General formulae (including the parts of vacuum fluctuation which should after all be removed by a suitable regularization) for the energy density and pressure of the quantized medium were derived. Various propagators for the quantized scalar field were also dealt with, because the Feynman propagator in particular became important as soon as the pair-creation of those particles was called for. However, there will be an intimate relation between the former hydrodynamic quantities and the pair-creation of their constituents. Accordingly, this problem is studied in detail by adopting a static closed universe (for simplicity in the reduction of various expressions derived in the previous paper) and examining the behavior of various bi-scalar propagators in the universe. (author)

  3. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  4. Quantum dynamics of an electric charge in an oscillating pulsed magnetic field

    International Nuclear Information System (INIS)

    Oliveira, I.S.; Guimaraes, A.P.; Silva, X.A. da

    1996-11-01

    The motion of a charged particle under the action of a time-dependent oscillating magnetic field has been investigated. For one and two magnetic pulses were obtained analytical expressions for the free current decay and current echo in agreement with a recently proposed classical description of electrical current in fields E and B. When the resonance condition is achieved, the axis of quantization is turned over by 90 degrees. The results suggest a magnetic pulsed resonant method to separate charged particles in a beam. (author). 12 refs

  5. Topology of magnetic fields in particle physics, implications on the quark model

    Energy Technology Data Exchange (ETDEWEB)

    Jehle, H.

    1977-01-01

    The flux-loop model of quarks is considered covering electomagnetic gauge invariance, flux quantization, topological conditions for the magnetic field, the extended source model, the electric field, linkage of loop forms, topology and motion of flux loop forms, coalial loops of hadrons having weak interactions, magnetic moments of hadrons, strong interactions, some remarks about string models, and the implications of he topological quark model on the ground and excited states of mesons. 80 references. (JFP)

  6. The extended local gauge invariance and the BRS symmetry in stochastic quantization of gauge fields

    International Nuclear Information System (INIS)

    Nakazawa, Naohito.

    1989-05-01

    We investigate the BRS invariance of the first-class constrained systems in the context of the stochastic quantization. For the first-class constrained systems, we construct the nilpotent BRS transformation and the BRS invariant stochastic effective action based on the D+1 dimensional field theoretical formulation of stochastic quantization. By eliminating the multiplier field of the gauge fixing condition and an auxiliary field, it is shown that there exists a truncated BRS transformation which satisfies the nilpotency condition. The truncated BRS invariant stochastic action is also derived. As the examples of the general formulation, we investigate the BRS invariant structure in the massless and massive Yang-Mills fields in stochastic quantization. (author)

  7. Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.

    Science.gov (United States)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J

    2017-08-01

    Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.

  8. Green's functions for a graphene sheet and quantum dot in a normal magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern; Liu, S Y

    2009-01-01

    This paper is concerned with the derivation of the retarded Green's function for a two-dimensional graphene layer in a perpendicular magnetic field in two explicit, analytic forms, which we employ in obtaining a closed-form solution for the Green's function of a tightly confined magnetized graphene quantum dot. The dot is represented by a δ (2) (r)-potential well and the system is subject to Landau quantization in the normal magnetic field

  9. BRS symmetry in stochastic quantization of the gravitational field

    International Nuclear Information System (INIS)

    Nakazawa, Naohito.

    1989-12-01

    We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in a sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space for gravity (in general, for the first-class constrained systems). The stochastic action of gravity includes explicitly an unique De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)

  10. Conditional expectations on the von Neumann algebras and causal independence of quantized fields

    International Nuclear Information System (INIS)

    Dadashyan, K.Yu.; Khoruzhij, S.S.

    1981-01-01

    Implementation of the condition of casual independence of quantized fields has been established for a number of quantum-field systems. Implementation of a property of the Haag-Castler casual independence has been proved for a net of the von Neumann local algebras in a number of models of free and quantized fields interacting in the Fock local way. In particular, proved is a theorem of meeting the condition of casual independence with the net of local albegras of the Dirac free field. A new method based on the techniques of noncommutative probability law has been used for the proof [ru

  11. Generalized field quantization and statistics of elementary particles

    International Nuclear Information System (INIS)

    Govorkov, A.V.

    1994-01-01

    Generalized schemes for the quantization of free fields based on the deformed trilinear relations of Green are investigated. A theorem shows that in reality continuous deformation is impossible. In particular, it is shown that a open-quotes smallclose quotes violation of the ordinary Fermi and Bose statistics is impossible both in the framework of local field theory, corresponding to parastatistics of finite orders, and in the framework of nonlocal field theory, corresponding to infinite statistics. The existence of antiparticles plays a decisive role in establishing the matter case. 23 refs

  12. Quantization of spin-two field in terms of Fierz variables the linear case

    International Nuclear Information System (INIS)

    Novello, M.; Freitas, L.R. de; Neto, N.P.; Svaiter, N.F.

    1991-01-01

    We give a complete self-contained presentation of the description of spin-two fields using Fierz variables A sub(α β μ) instead of the conventional standard approach which deals with second order symmetric tensor φ sub(μ ν). After a short review of the classical properties of the Gierz field we present the quantization procedure. The theory presents a striking similitude with electrodynamics which induced us to follow analogy with the Fermi-Gupta-Breuler scheme of quantization. (author)

  13. Magnetic charge in an octonionic field theory

    International Nuclear Information System (INIS)

    Lassig, C.C.; Jashi, G.C.

    1996-01-01

    The violation of the Jacobi identity by the presence of magnetic charge is accommodated by using an explicitly nonassociative theory of octonionic fields. Lagrangian and Hamiltonian formalisms are constructed, and issues of the quantisation discussed. Finally an extension of these concepts to string theory is contemplated. The two main problems that seems to arise in this octonionic field theory are the difficulty of constructing an appropriate action to suit the desired equations of motion, and the failure to complete a Hamiltonian formalism and hence quantize the theory. 8 refs

  14. Magnetic field effects on the quantum wire energy spectrum and Green's function

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J.

    2010-01-01

    We analyze the energy spectrum and propagation of electrons in a quantum wire on a 2D host medium in a normal magnetic field, representing the wire by a 1D Dirac delta function potential which would support just a single subband state in the absence of the magnetic field. The associated Schroedinger Green's function for the quantum wire is derived in closed form in terms of known functions and the Landau quantized subband energy spectrum is examined.

  15. Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution

    Directory of Open Access Journals (Sweden)

    Luis Amilca Andrade-Morales

    2016-09-01

    Full Text Available We study the entropy of a quantized field in interaction with a two-level atom (in a pure state when the field is initially in a mixture of two number states. We then generalise the result for a thermal state; i.e., an (infinite statistical mixture of number states. We show that for some specific interaction times, the atom passes its purity to the field and therefore the field entropy decreases from its initial value.

  16. q-bosons and the q-analogue quantized field

    International Nuclear Information System (INIS)

    Nelson, C.A.

    1994-01-01

    The q-analogue coherent states |z > q are used to identify physical signatures for the presence of a q-analogue quantized radiation field in the | > q classical limit where |z| is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/|z|) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H N = ℎω(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (ΔN) 2 / → 0 as |z| → ∞. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, φ q , still exhibits normal classical behavior. The standard number-phase uncertainty-relation, ΔN Δφ q = 1/2, and the approximate commutation relation, [N,φ q ] = i, still hold for the single-mode q-analogue quantized field. So, N and φ q are almost canonically conjugate operators in the |z > q classical limit. The |z > q CS's minimize this uncertainty relation for moderate |z| 2

  17. Stochastic quantization of field theories on the lattice and supersymmetrical models

    International Nuclear Information System (INIS)

    Aldazabal, Gerardo.

    1984-01-01

    Several aspects of the stochastic quantization method are considered. Specifically, field theories on the lattice and supersymmetrical models are studied. A non-linear sigma model is studied firstly, and it is shown that it is possible to obtain evolution equations written directly for invariant quantities. These ideas are generalized to obtain Langevin equations for the Wilson loops of non-abelian lattice gauge theories U (N) and SU (N). In order to write these equations, some different ways of introducing the constraints which the fields must satisfy are discussed. It is natural to have a strong coupling expansion in these equations. The correspondence with quantum field theory is established, and it is noticed that at all orders in the perturbation theory, Langevin equations reduce to Schwinger-Dyson equations. From another point of view, stochastic quantization is applied to large N matrix models on the lattice. As a result, a simple and systematic way of building reduced models is found. Referring to stochastic quantization in supersymmetric theories, a simple supersymmetric model is studied. It is shown that it is possible to write an evolution equation for the superfield wich leads to quantum field theory results in equilibrium. As the Langevin equation preserves supersymmetry, the property of dimensional reduction known for the quantum model is shown to be valid at all times. (M.E.L.) [es

  18. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensi......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.......The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity...... on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors...

  19. Current-current correlation function in presence of chemical potential and external magnetic field

    International Nuclear Information System (INIS)

    Apresyan, E.A.

    2017-01-01

    The (2+1)-dimensional electron system was observed, where relation between the Green functions and conductivity was used. The current-current correlation function Π_μ_ν(B) for the fermion system was calculated in presence of non-quantizing magnetic field B, chemical potential η and gap m. From this function it is possible to obtain the equation for polarization operator calculated without the magnetic field. The result is also applicable for graphene

  20. Dirac particles in the field of magnetic monopoles and of strong electric charges

    International Nuclear Information System (INIS)

    Schafer, A.; Muller, B.; Greiner, W.

    1985-01-01

    The field of a magnetic pointlike monopole acts in a similar way on a charged Dirac particle as the field of a very strong electric point charge. To explore this parallel it is constructed a field solution for an extended magnetic-charge distribution. In contrast to what is found for extended electric charges, the Hamiltonian remains nonself-adjoint for an extended magnetic monopole. This suggests that there exist a fundamental difference between the two cases. In particular, the appearance of undefined states for point monopoles is not a consequence of the mere strength of the magnetic-monopole charge, which has a minimum value fixed by Dirac's quantization condition

  1. Homotopy arguments for quantized Hall conductivity

    CERN Document Server

    Richter, T

    2002-01-01

    Using the strong localization bounds obtained by the Aizenman-Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling parameter vary in a region of strong localization of the corresponding two-dimensional phase diagram.

  2. Perturbation theory for quantized string fields

    International Nuclear Information System (INIS)

    Thorn, C.B.; Florida Univ., Gainesville

    1987-01-01

    We discuss the problem of gauge fixing in string field theory. We show that BRST invariance requires the gauge-fixed action to contain terms cubic in the ghost... of ghost of ghost fields. The final BRST invariant gauge-fixed action for the gauge b 0 A=0 is extremely simple: with the proper interpretation (as given in this article), it is essentially the one anticipated earlier in the work of Giddings, Martinec, and Witten in their analysis of the BRST invariant world-sheet approach to string theory. We derive the Feynman rules from this action and explain in detail how the sum over sufaces of the BRST first-quantized string is reproduced. This result depends crucially on the correct assignment for the Grassmann character of the string field and its ghost... of ghost of ghost string fields. If all these fields are unified in a single string field Φ containing all ghost numbers, the requirements is that Φ be uniformly Grassmann odd. Finally, we do some sample calculations which provide some simple checks on our general results. (orig.)

  3. Symmetric Double Quantum Dot Energy States in a High Magnetic Field

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J; Sawamura, Makoto

    2011-01-01

    The dynamical Green's function and energy spectrum of a 2D symmetric quantum double-dot system on a planar host in a normal magnetic field are analyzed here, representing the two dots by Dirac delta function potentials. The proliferation of energy levels due to Landau quantization is examined in detail.

  4. Coherent states of a particle in a magnetic field and the Stieltjes moment problem

    International Nuclear Information System (INIS)

    Gazeau, J.P.; Baldiotti, M.C.; Gitman, D.M.

    2009-01-01

    A solution to a version of the Stieltjes moment problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion.

  5. Coherent states of a particle in a magnetic field and the Stieltjes moment problem

    Energy Technology Data Exchange (ETDEWEB)

    Gazeau, J.P. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: gazeau@apc.univ-paris7.fr; Baldiotti, M.C. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: baldiott@fma.if.usp.br; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: gitman@dfn.if.usp.br

    2009-05-11

    A solution to a version of the Stieltjes moment problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion.

  6. Gauged BPS baby Skyrmions with quantized magnetic flux

    Science.gov (United States)

    Adam, C.; Wereszczynski, A.

    2017-06-01

    A new type of gauged BPS baby Skyrme model is presented, where the derivative term is just the Schroers current (i.e., gauge invariant and conserved version of the topological current) squared. This class of models has a topological bound saturated for solutions of the pertinent Bogomolnyi equations supplemented by a so-called superpotential equation. In contrast to the gauged BPS baby Skyrme models considered previously, the superpotential equation is linear and, hence, completely solvable. Furthermore, the magnetic flux is quantized in units of 2 π , which allows, in principle, to define this theory on a compact manifold without boundary, unlike all gauged baby Skyrme models considered so far.

  7. Lorentz invariance from classical particle paths in quantum field theory of electric and magnetic charge

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Zwanziger, D.

    1979-01-01

    We establish the Lorentz invariance of the quantum field theory of electric and magnetic charge. This is a priori implausible because the theory is the second-quantized version of a classical field theory which is inconsistent if the minimally coupled charged fields are smooth functions. For our proof we express the generating functional for the gauge-invariant Green's functions of quantum electrodynamics: with or without magnetic charge: as a path integral over the trajectories of classical charged point particles. The electric-electric and electric-magnetic interactions contribute factors exp(JDJ) and exp(JD'K), where J and K are the electric and magnetic currents of classical point particles and D is the usual photon propagator. The propagator D' involves the Dirac string but exp(JD'K) depends on it only through a topological integer linking string and classical particle trajectories. The charge quantization condition e/sub i/g/sub j/ - g/sub i/e/sub j/ = integer then suffices to make the gauge-invariant Green's functions string independent. By implication our formulation shows that if the Green's functions of quantum electrodynamics are expressed as usual as functional integrals over classical charged fields, the smooth field configurations have measure zero and all the support of the Feynman measure lies on the trajectories of classical point particles

  8. Loop quantization as a continuum limit

    International Nuclear Information System (INIS)

    Manrique, Elisa; Oeckl, Robert; Weber, Axel; Zapata, Jose A

    2006-01-01

    We present an implementation of Wilson's renormalization group and a continuum limit tailored for loop quantization. The dynamics of loop-quantized theories is constructed as a continuum limit of the dynamics of effective theories. After presenting the general formalism we show as a first explicit example the 2D Ising field theory, an interacting relativistic quantum field theory with local degrees of freedom quantized by loop quantization techniques

  9. Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field

    International Nuclear Information System (INIS)

    Bach, V.; Sigal, I.M.

    1999-01-01

    We consider systems of static nuclei and electrons - atoms and molecules - coupled to the quantized radiation field. The interactions between electrons and the soft modes of the quantized electromagnetic field are described by minimal coupling, p→p-eA(x), where A(x) is the electromagnetic vector potential with an ultraviolet cutoff. If the interactions between the electrons and the quantized radiation field are turned off, the atom or molecule is assumed to have at least one bound state. We prove that, for sufficiently small values of the fine structure constant α, the interacting system has a ground state corresponding to the bottom of its energy spectrum. For an atom, we prove that its excited states above the ground state turn into metastable states whose life-times we estimate. Furthermore the energy spectrum is absolutely continuous, except, perhaps,in a small interval above the ground state energy and around the threshold energies of the atom or molecule. (orig.)

  10. Diffraction of ultracold fermions by quantized light fields: Standing versus traveling waves

    International Nuclear Information System (INIS)

    Meiser, D.; Search, C.P.; Meystre, P.

    2005-01-01

    We study the diffraction of quantum-degenerate fermionic atoms off of quantized light fields in an optical cavity. We compare the case of a linear cavity with standing-wave modes to that of a ring cavity with two counterpropagating traveling wave modes. It is found that the dynamics of the atoms strongly depends on the quantization procedure for the cavity field. For standing waves, no correlations develop between the cavity field and the atoms. Consequently, standing-wave Fock states yield the same results as a classical standing wave field while coherent states give rise to a collapse and revivals in the scattering of the atoms. In contrast, for traveling waves the scattering results in quantum entanglement of the radiation field and the atoms. This leads to a collapse and revival of the scattering probability even for Fock states. The Pauli exclusion principle manifests itself as an additional dephasing of the scattering probability

  11. Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Gomar, Laura Castelló [Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Cortez, Jerónimo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico D.F. 04510 (Mexico); Blas, Daniel Martín-de; Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: laucaste@estumail.ucm.es, E-mail: jacq@ciencias.unam.mx, E-mail: daniel.martin@iem.cfmac.csic.es, E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal)

    2012-11-01

    We study the Fock quantization of scalar fields in (generically) time dependent scenarios, focusing on the case in which the field propagation occurs in –either a background or effective– spacetime with spatial sections of flat compact topology. The discussion finds important applications in cosmology, like e.g. in the description of test Klein-Gordon fields and scalar perturbations in Friedmann-Robertson-Walker spacetime in the observationally favored flat case. Two types of ambiguities in the quantization are analyzed. First, the infinite ambiguity existing in the choice of a Fock representation for the canonical commutation relations, understandable as the freedom in the choice of inequivalent vacua for a given field. Besides, in cosmological situations, it is customary to scale the fields by time dependent functions, which absorb part of the evolution arising from the spacetime, which is treated classically. This leads to an additional ambiguity, this time in the choice of a canonical pair of field variables. We show that both types of ambiguities are removed by the requirements of (a) invariance of the vacuum under the symmetries of the three-torus, and (b) unitary implementation of the dynamics in the quantum theory. In this way, one arrives at a unique class of unitarily equivalent Fock quantizations for the system. This result provides considerable robustness to the quantum predictions and renders meaningful the confrontation with observation.

  12. Axion production from Landau quantization in the strong magnetic field of magnetars

    Science.gov (United States)

    Maruyama, Tomoyuki; Balantekin, A. Baha; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2018-04-01

    We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic field. The luminosity of axions emitted by protons is shown to be much larger than that of electrons and becomes stronger with increasing matter density. Cooling by axion emission is shown to be much larger than neutrino cooling by the Urca processes. Consequently, axion emission in the crust may significantly contribute to the cooling of magnetars. In the high-density core, however, it may cause heating of the magnetar.

  13. Theory of a four-electron 2-D system in a strong magnetic field

    International Nuclear Information System (INIS)

    Yuandong Dai; Bingjian Ni; Fusui Liu.

    1985-10-01

    An orthogonal and complete set for relative motion of four-electron 2-D system in strong magnetic field is given, the energy of ground state of relative motion is calculated. This paper also calculates the energy of ground state whose maximum of single electron angular momentum is limited by the degeneracy under a given magnetic field, obtains the energy minimums corresponding to a fractional quantized Hall effect of 2/5, 2/7, and from it the physical meaning of 'magic number' is interpreted. (author)

  14. Remarks on the quantization of conformal fields

    International Nuclear Information System (INIS)

    Bakas, I.

    1988-01-01

    The quantization of a general (b,c) system in two dimensions is formulated in terms of an infinite hierarchy of modules for the Virasoro algebra that interpolate between the space of classical conformal fields of weight j and the Dirac sea of semi-infinite forms. This provides a natural framework in which to study the relation between algebraic geometry and representations of the Virasoro algebra with central charge c j = -2(6j 2 -6j+1). The importance of the construction is discussed in the context of string theory. (orig.)

  15. BRST stochastic quantization

    International Nuclear Information System (INIS)

    Hueffel, H.

    1990-01-01

    After a brief review of the BRST formalism and of the Parisi-Wu stochastic quantization method we introduce the BRST stochastic quantization scheme. It allows the second quantization of constrained Hamiltonian systems in a manifestly gauge symmetry preserving way. The examples of the relativistic particle, the spinning particle and the bosonic string are worked out in detail. The paper is closed by a discussion on the interacting field theory associated to the relativistic point particle system. 58 refs. (Author)

  16. Geometro-stochastic quantization of gauge fields in curved space-time

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1988-01-01

    It is shown that the geometro-stochastic method of quantization of massive fields in curved space-time can be extended to the massless cases of electromagnetic fields and general Yang-Mills fields. The Fock fibres of the massive case are replaced in the present context by fibres with indefinite inner products, such as Gupta-Bleuler fibres in the electromagnetic case. The quantum space-time form factor used in the massive case gives rise in the present case to quantum gauge frames whose elements are generalized coherent states corresponding to pseudounitary spin-one representations of direct products of the Poincare group with the U(1), SU(N) or other internal gauge groups. Quantum connections are introduced on bundles of second-quantized frames, and the corresponding parallel transport is expressed in terms of path integrals for quantum frame propagators. In the Yang-Mills case, these path integral make use of Faddeev-Popov quantum frames. It is shown, however, that in the present framework the ghost fields that give rise to these frames possess a geometric interpretation related to the presence of a super-gauge group that, in addition to the external Poincare and Yang-Mills gauge degrees of freedom, involves also the internal ones related to choices of gauge bases within the quantum fibres

  17. Distribution of electron orbits having a definite angular momentum in a static magnetic field

    International Nuclear Information System (INIS)

    Olszewski, S.

    1996-01-01

    Electron orbits having a definite angular momentum in a static magnetic field are calculated with the aid of the Bohr-Sommerfeld quantization rules. The quantization gives that orbits are arranged along a straight line but the distance between the centers of two neighboring orbits decreases with increase of the absolute value of the angular momentum. With the energy correction equal to the zero-point energy of the harmonic oscillator, the distribution of orbits becomes identical to that obtained recently with the aid of a mixed semiclassical and quantum mechanical theory. 16 refs., 1 fig

  18. Quantizing higher-spin gravity in free-field variables

    Science.gov (United States)

    Campoleoni, Andrea; Fredenhagen, Stefan; Raeymaekers, Joris

    2018-02-01

    We study the formulation of massless higher-spin gravity on AdS3 in a gauge in which the fundamental variables satisfy free field Poisson brackets. This gauge choice leaves a small portion of the gauge freedom unfixed, which should be further quotiented out. We show that doing so leads to a bulk version of the Coulomb gas formalism for W N CFT's: the generators of the residual gauge symmetries are the classical limits of screening charges, while the gauge-invariant observables are classical W N charges. Quantization in these variables can be carried out using standard techniques and makes manifest a remnant of the triality symmetry of W ∞[λ]. This symmetry can be used to argue that the theory should be supplemented with additional matter content which is precisely that of the Prokushkin-Vasiliev theory. As a further application, we use our formulation to quantize a class of conical surplus solutions and confirm the conjecture that these are dual to specific degenerate W N primaries, to all orders in the large central charge expansion.

  19. Stochastic quantization

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1983-01-01

    The author provides an introductory survey to stochastic quantization in which he outlines this new approach for scalar fields, gauge fields, fermion fields, and condensed matter problems such as electrons in solids and the statistical mechanics of quantum spins. (Auth.)

  20. Transport properties of finite carbon nanotubes under electric and magnetic fields

    International Nuclear Information System (INIS)

    Li, T S; Lin, M F

    2006-01-01

    Electronic and transport properties of finite carbon nanotubes subject to the influences of a transverse electric field and a magnetic field with varying polar angles are studied by the tight-binding model. The external fields will modify the state energies, destroy the state degeneracy, and modulate the energy gap. Both the state energy and the energy gap exhibit rich dependence on the field strength, the magnetic field direction, and the types of carbon nanotubes. The semiconductor-metal transition would be allowed for certain field strengths and magnetic field directions. The variations of state energies with the external fields will also be reflected in the electrical and thermal conductance. The number, the heights, and the positions of the conductance peaks are strongly dependent on the external fields. The heights of the electrical and thermal conductance peaks display a quantized behaviour, while that of the Peltier coefficient does not. Finally, it is found that the validity of the Wiedemann-Franz law depends upon the temperature, the field strength, the electronic structure, and the chemical potential

  1. Nelson's stochastic quantization of free linearized gravitational field and its Markovian structure

    International Nuclear Information System (INIS)

    Lim, S.C.

    1983-05-01

    It is shown that by applying Nelson's stochastic quantization scheme to free linearized gravitational field tensor one can associate with the resulting stochastic system a stochastic tensor field which coincides with the ''space'' part of the Riemannian tensor in Euclidean space-time. However, such a stochastic field fails to satisfy the Markov property. Instead, it satisfies the reflection positivity. The Markovian structure of the stochastic fields associated with the electromagnetic field is also discussed. (author)

  2. Semicalssical quantization of interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Levit, S.; Sivan, N.

    1992-01-01

    We represent a semiclassical theory of charged interacting anyons in strong magnetic fields. We apply this theory to a number of few anyons systems including two interacting anyons in the presence of an impurity and three interacting anyons. We discuss the dependence of their energy levels on the statistical parameter and find regions in which this dependence follows very different patterns. The semiclassical arguments allow to correlate these patterns with the change in the character of the classical motion of the system. (author)

  3. Shallow acceptors in Ge/GeSi heterostructures with quantum wells in magnetic field

    International Nuclear Information System (INIS)

    Aleshkin, V.Ya.; Antonov, A.V.; Veksler, D.B.; Gavrilenko, V.I.; Erofeeva, I.V.; Ikonnikov, A.V.; Kozlov, D.V.; Spirin, K.E.; Kuznetsov, O.A.

    2005-01-01

    One investigated both theoretically and experimentally into shallow acceptors in Ge/GeSi heterostructures with quantum wells (QW) in a magnetic field. It is shown that alongside with lines of cyclotron resonance in magnetoabsorption spectra one observes transitions from the ground state of acceptor to the excited ones associated with the Landau levels from the first and the second subbands of dimensional quantization, and resonance caused by ionization of A + -centres. To describe impurity transitions in Ge/GeSi heterostructures with QW in a magnetic field and to interpret the experiment results in detail one uses numerical method of calculation based on expansion of wave function of acceptor in terms of basis of wave functions of holes in QW in the absence of magnetic field [ru

  4. Quantum oscillations of thermomagnetic coefficients of layered conductors in a strong magnetic field

    International Nuclear Information System (INIS)

    Kirichenko, O.V.; Kozlov, I.V.; Peschansky, V.G.; Krstovska, D.

    2008-01-01

    The linear response of the electronic system of a conductor to a perturbation in the form of an electric field and a temperature gradient in a quantizing magnetic field B is investigated theoretically. The thermoelectric effect in a layered conductor is analyzed and it is shown that the quasi-two-dimensional character of the dispersion law of the charge carriers results in gigantic oscillations of the thermo-emf

  5. Effect of electrical field on the quantized vortices in He II

    International Nuclear Information System (INIS)

    Natsik, V.D.

    2007-01-01

    Electrical polarization and interaction of quantized vortices with electrical field in superfluid Bose fluid are studied. Two types of the vortices polarization are considered; both of them are caused by action of centrifugal forces upon the fluid atoms at their azimuthal motion around the vortex line. Firstly, atoms obtain dipole moments (internal polarization when external polarization when external field is absent) and a nonuniform symmetrical distribution of the polarization density arises; at that, a vortex has no integral dipole moment but each element of the vortex line bears a quadrupole moment. Secondly, action of the centrifugal forces leads to a nonuniform distribution of the atomic density around the vortex line; therefore, the polarization density of the fluid in the external electrical field is also nonuniform in the vicinity of this line and each isolated element of the vortex line obtains dipole moment proportional to the field magnitude (inductive polarization). Analytical expressions for the polarization density around the straight and circular vortex lines are obtained and the effective dipole and quadrupole moments of the vortices are determined. A distribution of the ponderomotive forces acting on the superfluid fluid with quantized vortices in the external electrical field has been analyzed and the caused by field additives to the energy of the straight and circular vortices are found. Numerical estimations of the effects considered are given for He II

  6. The quantization of gravity

    CERN Document Server

    Gerhardt, Claus

    2018-01-01

    A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...

  7. On the Uniqueness of the Fock Quantization of the Dirac Field in the Closed FRW Cosmology

    Directory of Open Access Journals (Sweden)

    Jerónimo Cortez

    2018-01-01

    Full Text Available The Fock quantization of free fields propagating in cosmological backgrounds is in general not unambiguously defined due to the nonstationarity of the space-time. For the case of a scalar field in cosmological scenarios, it is known that the criterion of unitary implementation of the dynamics serves to remove the ambiguity in the choice of Fock representation (up to unitary equivalence. Here, applying the same type of arguments and methods previously used for the scalar field case, we discuss the issue of the uniqueness of the Fock quantization of the Dirac field in the closed FRW space-time proposed by D’Eath and Halliwell.

  8. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field.

    Science.gov (United States)

    Liu, Zheng-Xin; Normand, B

    2018-05-04

    Motivated by recent experimental observations in α-RuCl_{3}, we study the K-Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α-RuCl_{3}. For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  9. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field

    Science.gov (United States)

    Liu, Zheng-Xin; Normand, B.

    2018-05-01

    Motivated by recent experimental observations in α -RuCl3 , we study the K -Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α -RuCl3 . For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  10. Classical local U(1 gauge invariance in Weyl 2-spinor lenguage and charge quantization from irreducible representations of the gauge group

    Directory of Open Access Journals (Sweden)

    J. Buitrago

    Full Text Available A new classical 2-spinor approach to U(1 gauge theory is presented in which the usual four-potential vector field is replaced by a symmetric second rank spinor. Following a lagrangian formulation, it is shown that the four-rank spinor representing the Maxwell field tensor has a U(1 local gauge invariance in terms of the electric and magnetic field strengths. When applied to the magnetic field of a monopole, this formulation, via the irreducible representation condition for the gauge group, leads to a quantization condition differing by a factor 2 of the one predicted by Dirac without relying on any kind of singular vector potentials. Finally, the U(1 invariant spinor equations, are applied to electron magnetic resonance which has many applications in the study of materials. Keywords: Weyl 2-spinor lenguage, Dirac equation, Gauge theories, Charge quantization

  11. Quantum theory of longitudinal dielectric response properties of a two-dimensional plasma in a magnetic field

    International Nuclear Information System (INIS)

    Horing, N.J.M.; Yildiz, M.M.

    1976-01-01

    An analysis of dynamic and nonlocal longitudinal dielectric response properties of a two-dimensional Landau-quantized plasma is carried out, using a thermodynamic Green's function formulation of the RPA with a two-dimensional thermal Green's function for electron propagation in a magnetic field developed in closed form. The longitudinal-electrostatic plasmon dispersion relation is discussed in the low wave-number regime with nonlocal corrections, and Bernstein mode structure is studied for arbitrary wavenumber. All regimes of magnetic field strength and statistics are investigated. The class of integrals treated here should have broad applicability in other two-dimensional and finite slab plasma studies.The two-dimensional static shielding law in a magnetic field is analyzed for low wavenumber, and for large distances we find V (r) approx. = Q/k 2 2 r 3 . The inverse screening length k 0 =2πe 2 partial rho/ partialxi (rho= density, xi= chemical potential) is evaluated in all regimes of magnetic field strength and all statistical regimes. k 0 exhibits violent DHVA oscillatory behavior in the degenerate zero-temperature case at higher field strengths, and the shielding is complete when xi =r'hω/subc/ but there is no shielding when xi does not = r'hω/subc/. A careful analysis confirms that there is no shielding at large distances in the degenerate quantum strong field limit h3π/subc/>xi. Since shielding does persist in the nondegenerate quantum strong field limit hω/subc/>KT, there should be a pronounced change in physical properties that depend on shielding if the system is driven through a high field statistical transition. Finally, we find that the zero field two-dimensional Friedel--Kohn ''wiggle'' static shielding phenomenon is destroyed by the dispersal of the zero field continuum of electron states into the discrete set of Landau-quantized orbitals due to the imposition of the magnetic field

  12. Quantum kinematic theory of a point charge in a constant magnetic field

    International Nuclear Information System (INIS)

    Krause, J.

    1996-01-01

    A group-theoretic quantization method is applied to the open-quote open-quote complete symmetry group close-quote close-quote describing the motion of a point charge in a constant magnetic field. Within the regular ray representation, the Schroedinger operator is obtained as the Casimir operator of the extended Lie algebra. Configuration ray representations of the complete group cast the Schroedinger operator into the familiar space-time differential operator. Next, open-quote open-quote group quantization close-quote close-quote yields the superselection rules, which produce irreducible configuration ray representations. In this way, the Schroedinger operator becomes diagonalized, together with the angular momentum. Finally, the evaluation of an invariant integral, over the group manifold, gives rise to the Feynman propagation kernel left-angle t',x'|t,x right-angle of the system. Everything stems from the assumed symmetry group. Neither canonical quantization nor the path-integral method is used in the present analysis. copyright 1996 The American Physical Society

  13. Formal connections in deformation quantization

    DEFF Research Database (Denmark)

    Masulli, Paolo

    The field of this thesis is deformation quantization, and we consider mainly symplectic manifolds equipped with a star product. After reviewing basics in complex geometry, we introduce quantization, focusing on geometric quantization and deformation quantization. The latter is defined as a star...... characteristic class, and that formal connections form an affine space over the derivations of the star products. Moreover, if the parameter space for the family of star products is contractible, we obtain that any two flat formal connections are gauge equivalent via a self-equivalence of the family of star...

  14. Quantum theory for magnons and phonons interactions under time-varying magnetic fields

    International Nuclear Information System (INIS)

    Guerreiro, S.C.

    1971-01-01

    The magnon-fonon interaction in a ferromagnetic material submited to a time-varying magnetic field is studied by quantum methods. This problem has already been solved by semi-classical methods, and one of its results is that under certain conditions a state of lattice vibrations may be completely converted into spin oscillations. The main proporties of magnetoelastic waves in static magnetic fields and extend the quantum treatment for the time varying magnetic field case is revised. Field operators whose equations of motion are analogous to the classical ones are introduced. Their equations, which appear as a linear system of first order coupled equations, are converted into equations for complex functions by an expansion of the field operators in a time t as linear combinations of the same operators in a time t 0 prior to the variation of the magnetic field. The quantity g vector obtained from the classical solution is quantized and shown to be the linear momentum density of the magnetoelastic system, the quantum field spin density operator is deduced for the two interacting fields, and finally the results are used to study the magnetization and lattice displacement vector fields in the case of a system described by a coherent state of one of its normal modes

  15. The dressed nonrelativistic electron in a magnetic field

    International Nuclear Information System (INIS)

    Amour, L.; Grebert, B.; Guillot, J.C.

    2005-01-01

    We consider a nonrelativistic electron interacting with a classical magnetic field pointing along the x 3 -axis and with a quantized electromagnetic field. Because of the translation invariance along the x 3 -axis, we consider the reduced Hamiltonian associated with the total momentum along the x 3 -axis and, after introducing an ultraviolet cutoff and an infrared regularization, we prove that the reduced Hamiltonian has a ground state if the coupling constant and the total momentum along the x 3 -axis are sufficiently small. Finally, we determine the absolutely continuous spectrum of the reduced Hamiltonian and we prove that the renormalized mass of the electron is greater than its bare one. (authors)

  16. Coherent State Quantization and Moment Problem

    Directory of Open Access Journals (Sweden)

    J. P. Gazeau

    2010-01-01

    Full Text Available Berezin-Klauder-Toeplitz (“anti-Wick” or “coherent state” quantization of the complex plane, viewed as the phase space of a particle moving on the line, is derived from the resolution of the unity provided by the standard (or gaussian coherent states. The construction of these states and their attractive properties are essentially based on the energy spectrum of the harmonic oscillator, that is on natural numbers. We follow in this work the same path by considering sequences of non-negative numbers and their associated “non-linear” coherent states. We illustrate our approach with the 2-d motion of a charged particle in a uniform magnetic field. By solving the involved Stieltjes moment problem we construct a family of coherent states for this model. We then proceed with the corresponding coherent state quantization and we show that this procedure takes into account the circle topology of the classical motion.

  17. On a gauge theory of the self-dual field and its quantization

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1990-01-01

    A gauge theory of self-dual fields is constructed by adding a Wess-Zumino term to the recently studied formulation based on a second-order scalar field lagrangian carrying with it an auxiliary vector field to take care of the self-duality constraint in a linear fashion. The two versions are quantized using the BRST formulation following the BFV procedure. No violation of microcausality occurs and the action of the ordinary scalar field may not be written as the sum of the actions of the self- and anti-self-dual fields. (orig.)

  18. Stochastic quantization of topological field theory: generalized Langevin equation with memory kernel

    International Nuclear Information System (INIS)

    Menezes, G.; Svaiter, N.F.

    2006-04-01

    We use the method of stochastic quantization in a topological field theory defined in an Euclidean space, assuming a Langevin equation with a memory kernel. We show that our procedure for the Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient. (author)

  19. Renormalization in the stochastic quantization of field theories

    International Nuclear Information System (INIS)

    Brunelli, J.C.

    1991-01-01

    In the stochastic quantization scheme of Parisi and Wu the renormalization of the stochastic theory of some models in field theory is studied. Following the path integral approach for stochastic process the 1/N expansion of the non linear sigma model is performed and, using a Ward identity obtained, from a BRS symmetry of the effective action of this formulation. It is shown the renormalizability of the model. Using the Langevin approach for stochastic process the renormalizability of the massive Thirring model is studied showing perturbatively the vanishing of the renormalization group's beta functions at finite fictitious time. (author)

  20. A uniqueness criterion for the Fock quantization of scalar fields with time-dependent mass

    International Nuclear Information System (INIS)

    Cortez, Jeronimo; Mena Marugan, Guillermo A; Olmedo, Javier; Velhinho, Jose M

    2011-01-01

    A major problem in the quantization of fields in curved spacetimes is the ambiguity in the choice of a Fock representation for the canonical commutation relations. There exists infinite number of choices leading to different physical predictions. In stationary scenarios, a common strategy is to select a vacuum (or a family of unitarily equivalent vacua) by requiring invariance under the spacetime symmetries. When stationarity is lost, a natural generalization consists in replacing time invariance by unitarity in the evolution. We prove that when the spatial sections are compact, the criterion of a unitary dynamics, together with the invariance under the spatial isometries, suffices to select a unique family of Fock quantizations for a scalar field with time-dependent mass. (fast track communication)

  1. Landau quantization of Dirac fermions in graphene and its multilayers

    Science.gov (United States)

    Yin, Long-Jing; Bai, Ke-Ke; Wang, Wen-Xiao; Li, Si-Yu; Zhang, Yu; He, Lin

    2017-08-01

    When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum-mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.

  2. Monrelativistic particle in a magnetic field in two-dimensional Lobachevsky space, the cylindrical coordinates and the Poincare half-plane

    International Nuclear Information System (INIS)

    Ovsiyu, E.M.

    2012-01-01

    Exact solutions of the Schrodinger equation in the two-dimensional Riemannian space of negative curvature, the hyperbolic Lobachevsky plane, in the presence of an external magnetic field, which is an analog of a uniform magnetic field in the Minkowski space, are constructed. The description uses the cylindrical and quasi-Cartesian coordinates. The quasi-Cartesian coordinates determine the Poincare half-plane. In the both coordinate systems, the Schrodinger equation is solved exactly, the wave functions are constructed. A generalized formula for energy levels is found, which describes the quantized motion of a particle in a magnetic field in the Lobachevsky plane. (authors)

  3. Quantized fields and operators on a partial inner product space

    International Nuclear Information System (INIS)

    Shabani, J.

    1985-11-01

    We investigate the connection between the space OpV of all operators on a partial inner product space V and the weak sequential completion of the * algebra L + (Vsup(no.)) of all operators X such that Vsup(no.) is contained in D(X) intersection D(X*) and both X and its adjoint X* leave Vsup(no.) invariant. This connection gives a mathematical description of quantized fields in terms of elements of OpV. (author)

  4. System Identification with Quantized Observations

    CERN Document Server

    Wang, Le Yi; Zhang, Jifeng; Zhao, Yanlong

    2010-01-01

    This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification,

  5. Geometric quantization and general relativity

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-01-01

    The purpose of geometric quantization is to give a rigorous mathematical content to the 'correspondence principle' between classical and quantum mechanics. The main tools are borrowed on one hand from differential geometry and topology (differential manifolds, differential forms, fiber bundles, homology and cohomology, homotopy), on the other hand from analysis (functions of positive type, infinite dimensional group representations, pseudo-differential operators). Some satisfactory results have been obtained in the study of dynamical systems, but some fundamental questions are still waiting for an answer. The 'geometric quantization of fields', where some further well known difficulties arise, is still in a preliminary stage. In particular, the geometric quantization on the gravitational field is still a mere project. The situation is even more uncertain due to the fact that there is no experimental evidence of any quantum gravitational effect which could give us a hint towards what we are supposed to look for. The first level of both Quantum Theory, and General Relativity describes passive matter: influence by the field without being a source of it (first quantization and equivalence principle respectively). In both cases this is only an approximation (matter is always a source). But this approximation turns out to be the least uncertain part of the description, because on one hand the first quantization avoids the problems of renormalization and on the other hand the equivalence principle does not imply any choice of field equations (it is known that one can modify Einstein equations at short distances without changing their geometrical properties). (Auth.)

  6. Equivalence of Lagrangian and Hamiltonian BRST quantizations

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.

    1992-01-01

    Two approaches to the quantization of gauge theories using BRST symmetry are widely used nowadays: the Lagrangian quantization, developed in (BV-quantization) and Hamiltonian quantization, formulated in (BFV-quantization). For all known examples of field theory (Yang-Mills theory, gravitation etc.) both schemes give equivalent results. However the equivalence of these approaches in general wasn't proved. The main obstacle in comparing of these formulations consists in the fact, that in Hamiltonian approach the number of ghost fields is equal to the number of all first-class constraints, while in the Lagrangian approach the number of ghosts is equal to the number of independent gauge symmetries, which is equal to the number of primary first-class constraints only. This paper is devoted to the proof of the equivalence of Lagrangian and Hamiltonian quantizations for the systems with first-class constraints only. This is achieved by a choice of special gauge in the Hamiltonian approach. It's shown, that after integration over redundant variables on the functional integral we come to effective action which is constructed according to rules for construction of the effective action in Lagrangian quantization scheme

  7. Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields.

    Science.gov (United States)

    Maranville, Brian B; Kirby, Brian J; Grutter, Alexander J; Kienzle, Paul A; Majkrzak, Charles F; Liu, Yaohua; Dennis, Cindi L

    2016-08-01

    The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.

  8. Quantized field formulation of the free-electron laser in the Heisenberg picture

    International Nuclear Information System (INIS)

    Takeda, H.

    1985-01-01

    The phase and amplitude operator equations valid for field intensities ranging from a single photon state to an intense laser state are derived by means of quantized field theory. Using the Dirac equation, driving current operators, which are expressed by radiation and electron fields, are separated into spontaneous, stimulated, and spin terms. Then, utilizing the semiclassical nature of the electron state, coherence condition and spectral equations are derived. From the spectral phase equation, a delay-time scaling for oscillator operation is obtained in good agreement with experiments. 1 ref

  9. A color magnetic vortex condensate in QCD

    International Nuclear Information System (INIS)

    Ambjoern, J.; Olesen, P.

    1980-03-01

    It is shown that there exists a very close analogy between a lattice of vorticies in a superconductor near the critical field and a condensate of color magnetic flux tubes due to the unstable mode in QCD. This analogy makes it possible to identify a dynamical Higgs field in QCD. It is shown that the color magnetic flux tubes are quantized in terms of the center group Z(2) in the SU(2) case. In the case of SU(N) it is possible to select a color direction of the field such that one has Z(N) quantization. (Auth.)

  10. Quantized levitation states of superconducting multiple-ring systems

    International Nuclear Information System (INIS)

    Haley, S.B.; Fink, H.J.

    1996-01-01

    The quantized levitation, trapped, and suspension states of a magnetic microsphere held in equilibrium by two fixed superconducting (SC) microrings are calculated by minimizing the free energy of the system. Each state is a discrete function of two independent fluxoid quantum numbers of the rings. When the radii of the SC rings are of the same order as the Ginzburg-Landau coherence length ξ(T), the system exhibits a small set of gravity and temperature-dependent levels. The levels of a weakly magnetized particle are sensitive functions of the gravitational field, indicating potential application as an accelerometer, and for trapping small magnetic particles in outer space or on Earth. The equilibrium states of a SC ring levitated by another SC ring are also calculated. copyright 1996 The American Physical Society

  11. Quantum paradoxes, entanglement and their explanation on the basis of quantization of fields

    Science.gov (United States)

    Melkikh, A. V.

    2017-01-01

    Quantum entanglement is discussed as a consequence of the quantization of fields. The inclusion of quantum fields self-consistently explains some quantum paradoxes (EPR and Hardy’s paradox). The definition of entanglement was introduced, which depends on the maximum energy of the interaction of particles. The destruction of entanglement is caused by the creation and annihilation of particles. On this basis, an algorithm for quantum particle evolution was formulated.

  12. Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras

    Directory of Open Access Journals (Sweden)

    Lothar Schlafer

    2008-05-01

    Full Text Available C*-algebraic Weyl quantization is extended by allowing also degenerate pre-symplectic forms for the Weyl relations with infinitely many degrees of freedom, and by starting out from enlarged classical Poisson algebras. A powerful tool is found in the construction of Poisson algebras and non-commutative twisted Banach-*-algebras on the stage of measures on the not locally compact test function space. Already within this frame strict deformation quantization is obtained, but in terms of Banach-*-algebras instead of C*-algebras. Fourier transformation and representation theory of the measure Banach-*-algebras are combined with the theory of continuous projective group representations to arrive at the genuine C*-algebraic strict deformation quantization in the sense of Rieffel and Landsman. Weyl quantization is recognized to depend in the first step functorially on the (in general infinite dimensional, pre-symplectic test function space; but in the second step one has to select a family of representations, indexed by the deformation parameter h. The latter ambiguity is in the present investigation connected with the choice of a folium of states, a structure, which does not necessarily require a Hilbert space representation.

  13. On the quantization of Hall currents in presence of disorder

    CERN Document Server

    Combes, J; Hislop, P

    2005-01-01

    We review recent results of two of the authors concerning the quantization of Hall currents, in particular a general quantization formula for the difference of edge Hall conductances in semi-infinite samples with and without a confining wall. We then study the case where the Fermi energy is located in a region of localized states and discuss new regularizations. We also sketch the proof of localization for 2D-models with constant magnetic field with random potential located in a half-plane in two different situations: 1) with a zero potential in the other half plane and for energies away from the Landau levels and 2) with a confining potential in the other half plane and on an interval of energies that covers an arbitrary number of Landau levels.

  14. Quantization of physical parameters

    International Nuclear Information System (INIS)

    Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    Dynamical models are described with parameters (mass, coupling strengths) which must be quantized for quantum mechanical consistency. These and related topological ideas have physical application to phenomenological descriptions of high temperature and low energy quantum chromodynamics, to the nonrelativistic dynamics of magnetic monopoles, and to the quantum Hall effect. (author)

  15. A modified Stern-Gerlach experiment using a quantum two-state magnetic field

    Science.gov (United States)

    Daghigh, Ramin G.; Green, Michael D.; West, Christopher J.

    2018-06-01

    The Stern-Gerlach experiment has played an important role in our understanding of quantum behavior. We propose and analyze a modified version of this experiment where the magnetic field of the detector is in a quantum superposition, which may be experimentally realized using a superconducting flux qubit. We show that if incident spin-1/2 particles couple with the two-state magnetic field, a discrete target distribution results that resembles the distribution in the classical Stern-Gerlach experiment. As an application of the general result, we compute the distribution for a Gaussian waveform of the incident fermion. This analysis allows us to demonstrate theoretically: (1) the quantization of the intrinsic angular momentum of a spin-1/2 particle, and (2) a correlation between EPR pairs leading to nonlocality, without necessarily collapsing the particle's spin wavefunction.

  16. A hybrid approach for quantizing complicated motion of a charged particle in time-varying magnetic field

    International Nuclear Information System (INIS)

    Menouar, Salah; Choi, Jeong Ryeol

    2015-01-01

    Quantum characteristics of a charged particle subjected to a singular oscillator potential under an external magnetic field is investigated via SU(1,1) Lie algebraic approach together with the invariant operator and the unitary transformation methods. The system we managed is somewhat complicated since we considered not only the time-variation of the effective mass of the system but also the dependence of the external magnetic field on time in an arbitrary fashion. In this case, the system is a kind of time-dependent Hamiltonian systems which require more delicate treatment when we study it. The complete wave functions are obtained without relying on the methods of perturbation and/or approximation, and the global phases of the system are identified. To promote the understanding of our development, we applied it to a particular case, assuming that the effective mass slowly varies with time under a time-dependent magnetic field

  17. Kubo formulas for relativistic fluids in strong magnetic fields

    International Nuclear Information System (INIS)

    Huang Xuguang; Sedrakian, Armen; Rischke, Dirk H.

    2011-01-01

    Magnetohydrodynamics of strongly magnetized relativistic fluids is derived in the ideal and dissipative cases, taking into account the breaking of spatial symmetries by a quantizing magnetic field. A complete set of transport coefficients, consistent with the Curie and Onsager principles, is derived for thermal conduction, as well as shear and bulk viscosities. It is shown that in the most general case the dissipative function contains five shear viscosities, two bulk viscosities, and three thermal conductivity coefficients. We use Zubarev's non-equilibrium statistical operator method to relate these transport coefficients to correlation functions of the equilibrium theory. The desired relations emerge at linear order in the expansion of the non-equilibrium statistical operator with respect to the gradients of relevant statistical parameters (temperature, chemical potential, and velocity.) The transport coefficients are cast in a form that can be conveniently computed using equilibrium (imaginary-time) infrared Green's functions defined with respect to the equilibrium statistical operator. - Highlights: → Strong magnetic fields can make charged fluids behave anisotropically. → Magnetohydrodynamics for these fluids contains 5 shear, 2 bulk viscosities, and 3 heat conductivities. → We derive Kubo formulas for these transport coefficients.

  18. In-Plane Magnetic Field Effect on the Transport Properties in a Quasi-3D Quantum Well Structure

    International Nuclear Information System (INIS)

    Brooks, J.; Clark, R.; Lumpkin, N.; O'Brien, J.; Reno, J.; Simmons, J.; Wang, Z.; Zhang, B.

    1999-01-01

    The transport properties of a quasi-three-dimensional, 200 layer quantum well structure are investigated at integer filling in the quantum Hall state. We find that the transverse magnetoresistance R xx , the Hall resistance R xy , and the vertical resistance R zz all follow a similar behavior with both temperature and in-plane magnetic field. A general feature of the influence of increasing in-plane field B in is that the Hall conductance quantization first improves, but above a characteristic value B C in , the quantization is systematically removed. We consider the interplay of the chid edge state transport and the bulk (quantum Hall) transport properties. This mechanism may arise from the competition of the cyclotron energy with the superlattice band structure energies. A comparison of the resuIts with existing theories of the chiral edge state transport with in-plane field is also discussed

  19. Topological phase transitions in an inverted InAs/GaSb quantum well driven by tilted magnetic fields

    Science.gov (United States)

    Hsu, Hsiu-Chuan; Jhang, Min-Jyun; Chen, Tsung-Wei; Guo, Guang-Yu

    2017-05-01

    The helical edge states in a quantum spin Hall insulator are presumably protected by time-reversal symmetry. However, even in the presence of magnetic field which breaks time-reversal symmetry, the helical edge conduction can still exist, dubbed as pseudo quantum spin Hall effect. In this paper, the effects of the magnetic fields on the pseudo quantum spin Hall effect and the phase transitions are studied. We show that an in-plane magnetic field drives a pseudo quantum spin Hall state to a metallic state at a high field. Moreover, at a fixed in-plane magnetic field, an increasing out-of-plane magnetic field leads to a reentrance of pseudo quantum spin Hall state in an inverted InAs/GaSb quantum well. The edge state probability distribution and Chern numbers are calculated to verify that the reentrant states are topologically nontrivial. The origin of the reentrant behavior is attributed to the nonmonotonic bending of Landau levels and the Landau level mixing caused by the orbital effect induced by the in-plane magnetic field. The robustness to disorder is demonstrated by the numerically calculated quantized conductance for disordered nanowires within Landauer-Büttiker formalism.

  20. Floquet Engineering of Optical Solenoids and Quantized Charge Pumping along Tailored Paths in Two-Dimensional Chern Insulators

    Science.gov (United States)

    Wang, Botao; Ünal, F. Nur; Eckardt, André

    2018-06-01

    The insertion of a local magnetic flux, as the one created by a thin solenoid, plays an important role in gedanken experiments of quantum Hall physics. By combining Floquet engineering of artificial magnetic fields with the ability of single-site addressing in quantum gas microscopes, we propose a scheme for the realization of such local solenoid-type magnetic fields in optical lattices. We show that it can be employed to manipulate and probe elementary excitations of a topological Chern insulator. This includes quantized adiabatic charge pumping along tailored paths inside the bulk, as well as the controlled population of edge modes.

  1. Stochastic quantization and gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1984-01-01

    We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)

  2. Hamiltonian quantization of self-dual tensor fields and a bosonic Nielsen-Ninomiya theorem

    International Nuclear Information System (INIS)

    Tang Waikeung

    1989-01-01

    The quantization of self-dual tensor fields is carried out following the procedure of Batalin and Fradkin. The (anti) self-duality constraints (either fermionic or bosonic) in the action leads to the gravitational anomaly. In the process of gauge fixing, the impossibility of the co-existence of a positive hamiltonian and covariant action is shown. A version of the Nielsen-Ninomiya theorem applies to self-dual tensor fields viz. the lattice version of the theory shows species doubling with zero net chirality. (orig.)

  3. Enhanced quantization: a primer

    International Nuclear Information System (INIS)

    Klauder, John R

    2012-01-01

    Although classical mechanics and quantum mechanics are separate disciplines, we live in a world where Planck’s constant ℏ > 0, meaning that the classical and quantum world views must actually coexist. Traditionally, canonical quantization procedures postulate a direct linking of various c-number and q-number quantities that lie in disjoint realms, along with the quite distinct interpretations given to each realm. In this paper we propose a different association of classical and quantum quantities that renders classical theory a natural subset of quantum theory letting them coexist as required. This proposal also shines light on alternative linking assignments of classical and quantum quantities that offer different perspectives on the very meaning of quantization. In this paper we focus on elaborating the general principles, while elsewhere we have published several examples of what this alternative viewpoint can achieve; these examples include removal of singularities in classical solutions to certain models, and an alternative quantization of several field theory models that are trivial when quantized by traditional methods but become well defined and nontrivial when viewed from the new viewpoint. (paper)

  4. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator.

    Science.gov (United States)

    Wu, Liang; Salehi, M; Koirala, N; Moon, J; Oh, S; Armitage, N P

    2016-12-02

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi 2 Se 3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry's phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system. Copyright © 2016, American Association for the Advancement of Science.

  5. Gupta-Bleuler Photon Quantization in the SME

    CERN Document Server

    Colladay, Don; Potting, Robertus

    2014-01-01

    Photon quantization is implemented in the standard model extension (SME) using the Gupta-Bleuler method and BRST concepts. The quantization prescription applies to both the birefringent and non-birefringent CPT-even couplings. A curious incompatibility is found between the presence of the Lorentz-violating terms and the existence of a nontrivial conjugate momentum $\\Pi^0$ yielding problems with covariant quantization procedure. Introduction of a mass regulator term can avoid the vanishing of $\\Pi^0$ and allows for the implementation of a covariant quantization procedure. Field-theoretic calculations involving the SME photons can then be performed using the mass regulator, similar to the conventional procedure used in electrodynamics for infrared-divergence regulation.

  6. Constraints and Hamiltonian in light-front quantized field theory

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1993-01-01

    Self-consistent hamiltonian formulation of scalar theory on the null plane is constructed and quantized following the Dirac procedure. The theory contains also constraint equations which would give, if solved, to a nonlocal Hamiltonian. In contrast to the equal-time formulation we obtain a different description of the spontaneous symmetry breaking in the continuum and the symmetry generators are found to annihilate the light-front vacuum. Two examples are given where the procedure cannot be applied self-consistently. The corresponding theories are known to be ill-defined from the equal-time quantization. (author)

  7. Topological quantization of ensemble averages

    International Nuclear Information System (INIS)

    Prodan, Emil

    2009-01-01

    We define the current of a quantum observable and, under well-defined conditions, we connect its ensemble average to the index of a Fredholm operator. The present work builds on a formalism developed by Kellendonk and Schulz-Baldes (2004 J. Funct. Anal. 209 388) to study the quantization of edge currents for continuous magnetic Schroedinger operators. The generalization given here may be a useful tool to scientists looking for novel manifestations of the topological quantization. As a new application, we show that the differential conductance of atomic wires is given by the index of a certain operator. We also comment on how the formalism can be used to probe the existence of edge states

  8. Semiclassical dynamics and magnetic Weyl calculus

    International Nuclear Information System (INIS)

    Lein, Maximilian Stefan

    2011-01-01

    Weyl quantization and related semiclassical techniques can be used to study conduction properties of crystalline solids subjected to slowly-varying, external electromagnetic fields. The case where the external magnetic field is constant, is not covered by existing theory as proofs involving usual Weyl calculus break down. This is the regime of the so-called quantum Hall effect where quantization of transverse conductance is observed. To rigorously derive semiclassical equations of motion, one needs to systematically develop a magnetic Weyl calculus which contains a semiclassical parameter. Mathematically, the operators involved in the analysis are magnetic pseudodifferential operators, a topic which by itself is of interest for the mathematics and mathematical physics community alike. Hence, we will devote two additional chapters to further understanding of properties of those operators. (orig.)

  9. Semiclassical dynamics and magnetic Weyl calculus

    Energy Technology Data Exchange (ETDEWEB)

    Lein, Maximilian Stefan

    2011-01-19

    Weyl quantization and related semiclassical techniques can be used to study conduction properties of crystalline solids subjected to slowly-varying, external electromagnetic fields. The case where the external magnetic field is constant, is not covered by existing theory as proofs involving usual Weyl calculus break down. This is the regime of the so-called quantum Hall effect where quantization of transverse conductance is observed. To rigorously derive semiclassical equations of motion, one needs to systematically develop a magnetic Weyl calculus which contains a semiclassical parameter. Mathematically, the operators involved in the analysis are magnetic pseudodifferential operators, a topic which by itself is of interest for the mathematics and mathematical physics community alike. Hence, we will devote two additional chapters to further understanding of properties of those operators. (orig.)

  10. Influence of disorder and magnetic field on conductance of “sandwich” type two dimensional system

    Directory of Open Access Journals (Sweden)

    Long LIU

    2017-04-01

    Full Text Available In order to discuss the transport phenomena and the physical properties of the doping of the disorder system under magnetic field, the electron transport in a two-dimensional system is studied by using Green function and scattering matrix theory. Base on the two-dimensional lattice model, the phenomenon of quantized conductance of the "sandwich" type electronic system is analyzed. The contact between the lead and the scatterer reduce the system's conductance, and whittle down the quantum conductance stair-stepping phenomenon; when an external magnetic field acts on to the system, the conductance presents a periodicity oscillation with the magnetic field. The intensity of this oscillation is related to the energy of the electron;with the increase of the impurity concentration, the conductance decreases.In some special doping concentration, the conductance of the system can reach the ideal step value corresponding to some special electron energy. The result could provide reference for further study of the conductance of the "sandwich" type two dimensional system.

  11. Generalized noise terms for the quantized fluctuational electrodynamics

    DEFF Research Database (Denmark)

    Partanen, Mikko; Hayrynen, Teppo; Tulkki, Jukka

    2017-01-01

    position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization...

  12. Field-induced Gap and Quantized Charge Pumping in Nano-helix

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; /Stanford U., Phys. Dept. /Tsinghua U., Beijing; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-02-15

    We propose several novel physical phenomena based on nano-scale helical wires. Applying a static electric field transverse to the helical wire induces a metal to insulator transition, with the band gap determined by the applied voltage. Similar idea can be applied to 'geometrically' constructing one-dimensional systems with arbitrary external potential. With a quadrupolar electrode configuration, the electric field could rotate in the transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a device could be used as a new standard for the high precession measurement of the electric current. The inverse effect implies that passing an electric current through a helical wire in the presence of a transverse static electric field can lead to a mechanical rotation of the helix. This effect can be used to construct nano-scale electro-mechanical motors. Finally, our methodology also enables new ways of controlling and measuring the electronic properties of helical biological molecules such as the DNA.

  13. On a quantized scalar field in the de Sitter and Nariai universes

    International Nuclear Information System (INIS)

    Nariai, Hidekazu.

    1984-08-01

    After canonical quantization of a massive or massless scalar field in the de Sitter and Nariai universes (both of which satisfy the same Einstein equations with a non-vanishing cosmological constant, Rsub(μν)=Agsub(μν), but their topological structures differ from each other), the uniquely obtained 4-dimensional commutation functions in both universes are comparatively studied with due emphasis on their topological structures, as well as the difference of couplings to the background universe. (author)

  14. Current distribution and conductance quantization in the integer quantum Hall regime

    International Nuclear Information System (INIS)

    Cresti, Alessandro; Farchioni, Riccardo; Grosso, Giuseppe; Parravicini, Giuseppe Pastori

    2003-01-01

    Charge transport of a two-dimensional electron gas in the presence of a magnetic field is studied by means of the Keldysh-Green function formalism and the tight-binding method. We evaluate the spatial distributions of persistent (equilibrium) and transport (nonequilibrium) currents, and give a vivid picture of their profiles. In the quantum Hall regime, we find exact conductance quantization both for persistent currents and for transport currents, even in the presence of impurity scattering centres and moderate disorder. (letter to the editor)

  15. Current distribution and conductance quantization in the integer quantum Hall regime

    Energy Technology Data Exchange (ETDEWEB)

    Cresti, Alessandro [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Farchioni, Riccardo [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Grosso, Giuseppe [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Parravicini, Giuseppe Pastori [NEST-INFM and Dipartimento di Fisica ' A Volta' , Universita di Pavia, via A Bassi 6, I-27100 Pavia (Italy)

    2003-06-25

    Charge transport of a two-dimensional electron gas in the presence of a magnetic field is studied by means of the Keldysh-Green function formalism and the tight-binding method. We evaluate the spatial distributions of persistent (equilibrium) and transport (nonequilibrium) currents, and give a vivid picture of their profiles. In the quantum Hall regime, we find exact conductance quantization both for persistent currents and for transport currents, even in the presence of impurity scattering centres and moderate disorder. (letter to the editor)

  16. Quantum regime of a plasma-wave-pumped free-electron laser in the presence of an axial magnetic field.

    Science.gov (United States)

    Shirvani, H; Jafari, S

    2018-03-01

    The quantum regime of a plasma-whistler-wave-pumped free-electron laser (FEL) in the presence of an axial-guide magnetic field is presented. By quantizing both the plasma whistler field and axial magnetic field, an N-particle three-dimensional Hamiltonian of quantum-FEL (QFEL) has been derived. Employing Heisenberg evolution equations and introducing a new collective operator which controls the vertical motion of electrons, a quantum dispersion relation of the plasma whistler wiggler has been obtained analytically. Numerical results indicate that, by increasing the intrinsic quantum momentum spread and/or increasing the axial magnetic field strength, the bunching and the radiation fields grow exponentially. In addition, a spiking behavior of the spectrum was observed with increasing cyclotron frequency which provides an enormous improvement in the coherence of QFEL radiation even in a limit close-to-classical regime, where an overlapping of these spikes is observed. Also, an upper limit of the intrinsic quantum momentum spread which depends on the value of the cyclotron frequency was found.

  17. On the zero mode problem of the light-cone quantization

    International Nuclear Information System (INIS)

    Huang, Suzhou; Lin, Wei

    1993-01-01

    The light-cone quantization for theories involving arbitrarily interacting scalars is studied systematically. The zero mode, which plays a special role in the light-cone quantization, is treated explicitly. The arguments utilize a lattice regularization and the constrained path-integral method. It is shown, to all orders in coupling constants or the loop expansion, that the ghost fields, introduced to enforce the constraints, decouple from all the virtual processes in the infinite-volume limit. The only possibility for the light-cone quantization to deviate from the equal-time quantization is when the interaction is such that the bosonic ghost fields develop expectation values and consequently alter the location of the minimum point of the effective potential. 24 refs

  18. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source

    Science.gov (United States)

    Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.

    2018-04-01

    Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.

  19. Lifshitz transition with interactions in high magnetic fields: Application to CeIn3

    Science.gov (United States)

    Schlottmann, Pedro

    2012-02-01

    The N'eel ordered state of CeIn3 is suppressed by a magnetic field of 61 T at ambient pressure. There is a second transition at ˜45 T, which has been associated with a Lifshitz transition [1,2]. Skin depth measurements [2] indicate that the transition is discontinuous as T ->0. Motivated by this transition we study the effects of Landau quantization and interaction among carriers on a Lifshitz transition. The Landau quantization leads to quasi-one-dimensional behavior for the direction parallel to the field. Repulsive Coulomb interactions give rise to a gas of strongly coupled carriers [3]. The density correlation function is calculated for a special long-ranged potential [4]. It is concluded that in CeIn3 a pocket is being emptied as a function of field in a discontinuous fashion in the ground state. This discontinuity is gradually smeared by the temperature [4] in agreement with the skin depth experiments [2]. 0.05in [1] S.E. Sebastian et al, PNAS 106, 7741 (2009). [2] K.M. Purcell et al, Phys. Rev. B 79, 214428 (2009). [3] P. Schlottmann and R. Gerhardts, Z. Phys. B 34, 363 (1979). [4] P. Schlottmann, Phys. Rev. B 83, 115133 (2011); J. Appl. Phys., in print.

  20. Geometric quantization of vector bundles and the correspondence with deformation quantization

    International Nuclear Information System (INIS)

    Hawkins, E.

    2000-01-01

    I repeat my definition for quantization of a vector bundle. For the cases of the Toeplitz and geometric quantizations of a compact Kaehler manifold, I give a construction for quantizing any smooth vector bundle, which depends functorially on a choice of connection on the bundle. Using this, the classification of formal deformation quantizations, and the formal, algebraic index theorem, I give a simple proof as to which formal deformation quantization (modulo isomorphism) is derived from a given geometric quantization. (orig.)

  1. Stochastic quantization of general relativity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1986-01-01

    Following an elementary exposition of the basic mathematical concepts used in the theory of stochastic relaxation processes the stochastic quantization method of Parisi and Wu is briefly reviewed. The method is applied to Einstein's theory of gravitation using a formalism that is manifestly covariant with respect to field redefinitions. This requires the adoption of Ito's calculus and the introduction of a metric in field configuration space, for which there is a unique candidate. Due to the indefiniteness of the Euclidean Einstein-Hilbert action stochastic quantization is generalized to the pseudo-Riemannian case. It is formally shown to imply the DeWitt path integral measure. Finally a new type of perturbation theory is developed. (Author)

  2. ADC border effect and suppression of quantization error in the digital dynamic measurement

    International Nuclear Information System (INIS)

    Bai Li-Na; Liu Hai-Dong; Zhou Wei; Zhai Hong-Qi; Cui Zhen-Jian; Zhao Ming-Ying; Gu Xiao-Qian; Liu Bei-Ling; Huang Li-Bei; Zhang Yong

    2017-01-01

    The digital measurement and processing is an important direction in the measurement and control field. The quantization error widely existing in the digital processing is always the decisive factor that restricts the development and applications of the digital technology. In this paper, we find that the stability of the digital quantization system is obviously better than the quantization resolution. The application of a border effect in the digital quantization can greatly improve the accuracy of digital processing. Its effective precision has nothing to do with the number of quantization bits, which is only related to the stability of the quantization system. The high precision measurement results obtained in the low level quantization system with high sampling rate have an important application value for the progress in the digital measurement and processing field. (paper)

  3. Quantization ambiguity and the Aharanov-Bohm effect

    International Nuclear Information System (INIS)

    Kunstatter, G.

    1983-01-01

    A brief review is given of the role of quantization ambiguity in both quantum mechanics and quantum field theory. The author points out that quantization ambiguity is not relevant to discussions of physical experiments designed to test the Aharanov-Bohm effect. A recent proposal for such an experiment involving Aharanov-Bohm currents in thin superconducting cylinders is mentioned. (Auth.)

  4. Light-like noncommutativity, light-front quantization and new light on UV/IR mixing

    International Nuclear Information System (INIS)

    Sheikh-Jabbari, M.M.; Tureanu, A.

    2011-01-01

    We revisit the problem of quantizing field theories on noncommutative Moyal space-time with light-like noncommutativity. To tackle the issues arising from noncommuting and hence nonlocal time, we argue that for this case light-front quantization procedure should be employed. In this appropriate quantization scheme we perform the non-planar loop analysis for the light-like noncommutative field theories. One of the important and peculiar features of light-front quantization is that the UV cutoff of the light-cone Hamiltonian manifests itself as an IR cutoff for the light-cone momentum, p + . Due to this feature, the naive results of covariant quantization for the light-like case allude to the absence of the UV/IR mixing in the light-front quantization. However, by a careful analysis of non-planar loop integrals we show that this is not the case and the UV/IR mixing persists. In addition, we argue in favour of the perturbative unitarity of light-like noncommutative field theories in the light-front quantization scheme.

  5. Fluxoid quantization in disordered, quasiperiodic, and anisotropic superconducting networks

    International Nuclear Information System (INIS)

    Itzler, M.A.

    1992-01-01

    The quantization of the magnetic fluxoid in the unit cells of a network of superconducting wires gives rise to a system with competing length scales determined by the resulting fluxoid lattice and the underlying network. This system provides an excellent experimental model for studying questions concerning the concept of commensurability, and the first emphasis of this thesis is on the formation of commensurate states in disordered and quasiperiodic geometries. Measurements of the resistive phase boundary Tc(H)|R reveal cusp-like structure signifying the existence of commensurate states at particular values of the applied field. The authors find that sufficient disorder in the tile areas will destroy all commensurate states in any network, and they accurately describe this behavior using the intuitive open-quotes J 2 modelclose quotes in which one considers only the effects of supercurrents generated to satisfy fluxoid quantization (i.e., the London approximation). However, a disturbance of the local tile ordering destroys only certain types of commensurate states. They find that commensurability is not universally predicated by the presence of inflation symmetry in the lattice, but instead is more closely related to the Fourier transform of the lattice geometry. These experimental results in two dimensions are similar to analytical results for one-dimensional systems. Because the description of the superconducting networks using linearized Ginzburg-Landau theory is identical to a Schroedinger equation, these systems can be used to study the nature of electronic ground states on a two-dimensional lattice in a magnetic field. The second emphasis of this thesis addresses this problem in width-anisotropic square networks. They find that network anisotropy induces localization of the superconducting order parameter in one direction at incommensurate fields while in the perpendicular direction the order parameter remains extended

  6. Canonical quantization of the Proca field in the Rindler wedge

    International Nuclear Information System (INIS)

    Castineiras, Jorge; Correa, Emerson Benedito Sousa; Crispino, Luis Carlos Bassalo; Matsas, George Emanuel Avraam

    2009-01-01

    Full text. We perform the canonical quantization of a massive vector field in Rindler spacetime. We pay special attention to the zero frequency modes of the Proca field because these are the modes that interact with structureless sources which are static in the Rindler spacetime. Our motivation is the computation of the total response of a static source with some fixed proper acceleration a 0 in Rindler spacetime interacting with the zero energy massive vector particle of the Fulling-Davies-Unruh (FDU) thermal bath and compare it with the response of a static source with the same proper acceleration a 0 outside a Schwarzschild black hole interacting with the massive vector particles of the Hawking thermal radiation. Surprisingly, as it was already shown in a resent article, these responses would be identical if a massless scalar field is consider instead of the massive vector field, the field outside the Schwarzschild black hole is supposed to be in the Unruh vacuum and the source proper acceleration is the same in both cases. This came as a surprise because structureless static sources can only interact with zero-frequency field modes. Such modes can probe the global geometry of spacetime and are accordingly quite different in Schwarzschild spacetime and in the Rindler wedge. (author)

  7. Unique Fock quantization of scalar cosmological perturbations

    Science.gov (United States)

    Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.

    2012-05-01

    We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.

  8. Semi-classical derivation of charge-quantization through charge-field self-interaction

    International Nuclear Information System (INIS)

    Kosok, M.; Madhyastha, V.L.

    1990-01-01

    A semi-classical synthesis of classical mechanics, wave mechanics, and special relativity yields a unique nonlinear energy-wave structure of relations (velocity triad uv = c 2 ) fundamental to modern physics. Through the above vehicle, using Maxwell's equations, charge quantization and the fine structure constant are derived. It is shown that the numerical value of the nonlinear charge-field self-interaction range for the electron is of the order of 10 -13 m, which is greater than the classical electron radius but less than the Compton wavelength of the electron. Finally, it is suggested that the structure of the electron-in-space is expressed by a self-extending nonlinear ''fractal geometry'' based on derived numerical values obtained from our model, thus opening this presentation of charge-field structure to experimental testing for possible verification

  9. On the Langevin equation for stochastic quantization of gravity

    International Nuclear Information System (INIS)

    Nakazawa, Naohito.

    1989-10-01

    We study the Langevin equation for stochastic quantization of gravity. By introducing two independent variables with a second-class constraint for the gravitational field, we formulate a pair of the Langevin equations for gravity which couples with white noises. After eliminating the multiplier field for the second-class constraint, we show that the equations leads to stochastic quantization of gravity including an unique superspace metric. (author)

  10. Nonlinear optical properties of an electromagnetically induced transparency medium interacting with two quantized fields

    CERN Document Server

    Kuang-Leman; Wu Yong Shi

    2003-01-01

    We study linear and nonlinear optical properties of an electromagnetically induced transparency (EIT) medium interacting with two quantized laser fields in the adiabatic EIT case. We show that the EIT medium exhibits normal dispersion. Kerr and higher-order nonlinear refractive index coefficients are also calculated in a completely analytical form. It is indicated that the EIT medium exhibits giant resonantly enhanced nonlinearities. We discuss the response of the EIT medium to nonclassical light fields and find that the polarization vanishes when the probe laser is initially in a nonclassical state of no single-photon coherence.

  11. Construction of quantized gauge fields: continuum limit of the Abelian Higgs model in two dimensions

    International Nuclear Information System (INIS)

    Seiler, E.

    1981-01-01

    The author proves the existence of the continuum limit of the two-dimensional Higgs model for two cases: External gauge fields that are Hoelder continuous and may be non-Abelian, and the fully quantized Abelian model. In the latter case all Wightman axioms are verified except clustering. Important ingredients are a universal diamagnetic bound and correlation inequalities. (Auth.)

  12. Search for Magnetic Monopoles with the NO$\

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zukai [Univ. of Virginia, Charlottesville, VA (United States)

    2015-09-01

    The magnetic monopole is a hypothetical particle, which is an important field configuration in many Grand Unified Theories, and whose mass may vary from 104 to 1018 GeV. The quantization of magnetic charge derived by Dirac in 1931 suggests the heavy ionization nature of magnetic monopoles. The NO$\

  13. Quantization of bag-like solitons

    International Nuclear Information System (INIS)

    Breit, J.D.

    1982-01-01

    The method of collective coordinates is used to quantize bag-like solitons formed by scalar and spinor fields. This method leads to approximate wave functions for quarks in the bag that are orthogonal to the translational modes. Solutions are given for the MIT bag limit of the fields. (orig.)

  14. A possibility to solve the problems with quantizing gravity

    International Nuclear Information System (INIS)

    Hossenfelder, Sabine

    2013-01-01

    It is generally believed that quantum gravity is necessary to resolve the known tensions between general relativity and the quantum field theories of the standard model. Since perturbatively quantized gravity is non-renormalizable, the problem how to unify all interactions in a common framework has been open since the 1930s. Here, I propose a possibility to circumvent the known problems with quantizing gravity, as well as the known problems with leaving it unquantized: By changing the prescription for second quantization, a perturbative quantization of gravity is sufficient as an effective theory because matter becomes classical before the perturbative expansion breaks down. This is achieved by considering the vanishing commutator between a field and its conjugated momentum as a symmetry that is broken at low temperatures, and by this generates the quantum phase that we currently live in, while at high temperatures Planck's constant goes to zero

  15. Renormalization of an abelian gauge theory in stochastic quantization

    International Nuclear Information System (INIS)

    Chaturvedi, S.; Kapoor, A.K.; Srinivasan, V.

    1987-01-01

    The renormalization of an abelian gauge field coupled to a complex scalar field is discussed in the stochastic quantization method. The super space formulation of the stochastic quantization method is used to derive the Ward Takahashi identities associated with supersymmetry. These Ward Takahashi identities together with previously derived Ward Takahashi identities associated with gauge invariance are shown to be sufficient to fix all the renormalization constants in terms of scaling of the fields and of the parameters appearing in the stochastic theory. (orig.)

  16. Superposition of number and squeezed states of the quantized light field

    International Nuclear Information System (INIS)

    De Brito, A.L.; Marques, G.A.; Baseia, B.; Dias, H.

    1998-01-01

    A recent paper in the literature (Mod. Phys. Lett. B, 9 (1995) 1673) introduced the Intermediate Number Squeezed State (INSS) of the quantized radiation field interpolating between the number state (n) and the squeezed-coherent state (z, α), exhibiting various nonclassical properties. Here, it's introduced an alternative state, interpolating between those limiting states and show that nonclassical effects in this new intermediate state can be greater than those exhibited by the INSS, depending on the values of the interpolating parameters. Although constituting an application of a general approach (Nuovo Cimento D, 18 (1996) 425), it concludes another case in the literature (Phys. Scr., 55 (1997) 179) as a particularisation of this

  17. Cosmic Magnetic Fields

    Science.gov (United States)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  18. On the Generation of Intermediate Number Squeezed State of the Quantized Radiation Field

    Science.gov (United States)

    Baseia, B.; de Lima, A. F.; Bagnato, V. S.

    Recently, a new state of the quantized radiation field — the intermediate number squeezed state (INSS) — has been introduced in the literature: it interpolates between the number state |n> and the squeezed state |z, α>=Ŝ(z)|α>, and exhibits interesting nonclassical properties as antibunching, sub-Poissonian statistics and squeezing. Here we introduce a slight modification in the previous definition allowing us a proposal to generate the INSS. Nonclassical properties using a new set of parameters are also studied.

  19. The quantization of Regge calculus

    International Nuclear Information System (INIS)

    Rocek, M.; Williams, R.M.; Cambridge Univ.

    1984-01-01

    We discuss the quantization of Regge's discrete description of Einstein's theory of gravitation. We show how the continuum theory emerges in the weak field long wavelength limit. We also discuss reparametrizations and conformal transformations. (orig.)

  20. Polarization in heavy-ion collisions: magnetic field and vorticity

    Science.gov (United States)

    Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.

    2017-12-01

    The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  1. Completely quantized collapse and consequences

    International Nuclear Information System (INIS)

    Pearle, Philip

    2005-01-01

    Promotion of quantum theory from a theory of measurement to a theory of reality requires an unambiguous specification of the ensemble of realizable states (and each state's probability of realization). Although not yet achieved within the framework of standard quantum theory, it has been achieved within the framework of the continuous spontaneous localization (CSL) wave-function collapse model. In CSL, a classical random field w(x,t) interacts with quantum particles. The state vector corresponding to each w(x,t) is a realizable state. In this paper, I consider a previously presented model, which is predictively equivalent to CSL. In this completely quantized collapse (CQC) model, the classical random field is quantized. It is represented by the operator W(x,t) which satisfies [W(x,t),W(x ' ,t ' )]=0. The ensemble of realizable states is described by a single state vector, the 'ensemble vector'. Each superposed state which comprises the ensemble vector at time t is the direct product of an eigenstate of W(x,t ' ), for all x and for 0≤t ' ≤t, and the CSL state corresponding to that eigenvalue. These states never interfere (they satisfy a superselection rule at any time), they only branch, so the ensemble vector may be considered to be, as Schroedinger put it, a 'catalog' of the realizable states. In this context, many different interpretations (e.g., many worlds, environmental decoherence, consistent histories, modal interpretation) may be satisfactorily applied. Using this description, a long-standing problem is resolved, where the energy comes from the particles gain due to the narrowing of their wave packets by the collapse mechanism. It is shown how to define the energy of the random field and its energy of interaction with particles so that total energy is conserved for the ensemble of realizable states. As a by-product, since the random-field energy spectrum is unbounded, its canonical conjugate, a self-adjoint time operator, can be discussed. Finally, CSL

  2. Immirzi parameter without Immirzi ambiguity: Conformal loop quantization of scalar-tensor gravity

    Science.gov (United States)

    Veraguth, Olivier J.; Wang, Charles H.-T.

    2017-10-01

    Conformal loop quantum gravity provides an approach to loop quantization through an underlying conformal structure i.e. conformally equivalent class of metrics. The property that general relativity itself has no conformal invariance is reinstated with a constrained scalar field setting the physical scale. Conformally equivalent metrics have recently been shown to be amenable to loop quantization including matter coupling. It has been suggested that conformal geometry may provide an extended symmetry to allow a reformulated Immirzi parameter necessary for loop quantization to behave like an arbitrary group parameter that requires no further fixing as its present standard form does. Here, we find that this can be naturally realized via conformal frame transformations in scalar-tensor gravity. Such a theory generally incorporates a dynamical scalar gravitational field and reduces to general relativity when the scalar field becomes a pure gauge. In particular, we introduce a conformal Einstein frame in which loop quantization is implemented. We then discuss how different Immirzi parameters under this description may be related by conformal frame transformations and yet share the same quantization having, for example, the same area gaps, modulated by the scalar gravitational field.

  3. Designing magnets with prescribed magnetic fields

    International Nuclear Information System (INIS)

    Liu Liping

    2011-01-01

    We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

  4. Light-front quantized field theory: (an introduction). Spontaneous symmetry breaking. Phase transition in φ4 theory

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1993-01-01

    The field theory quantized on the light-front is compared with the conventional equal-time quantized theory. The arguments based on the micro causality principle would imply that the light-front field theory may become nonlocal with respect to the longitudinal coordinate even though the corresponding equal-time formulation is local. This is found to be the case for the scalar theory. The conventional instant form theory is sometimes required to be constrained by invoking external physical considerations; the analogous conditions seem to be already built in the theory on the light-front. In spite of the different mechanisms of the spontaneous symmetry breaking in the two forms of dynamics they result in the same physical content. The phase transition in (φ 4 ) 2 theory is also discussed. The symmetric vacuum state for vanishingly small couplings is found to turn into an unstable symmetric one when the coupling is increased and may result in a phase transition of the second order in contrast to the first order transition concluded from the usual variational methods. (author)

  5. Null-plane quantization of fermions

    International Nuclear Information System (INIS)

    Mustaki, D.

    1990-01-01

    Massive Dirac fermions are canonically quantized on the null plane using the Dirac-Bergmann algorithm. The procedure is carried out in the framework of quantum electrodynamics as an illustration of a rigorous treatment of interacting fermion fields

  6. Resonant tunneling of spin-wave packets via quantized states in potential wells.

    Science.gov (United States)

    Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O

    2007-09-21

    We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.

  7. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  8. Quantizing non-Lagrangian gauge theories: an augmentation method

    International Nuclear Information System (INIS)

    Lyakhovich, Simon L.; Sharapov, Alexei A.

    2007-01-01

    We discuss a recently proposed method of quantizing general non-Lagrangian gauge theories. The method can be implemented in many different ways, in particular, it can employ a conversion procedure that turns an original non-Lagrangian field theory in d dimensions into an equivalent Lagrangian, topological field theory in d+1 dimensions. The method involves, besides the classical equations of motion, one more geometric ingredient called the Lagrange anchor. Different Lagrange anchors result in different quantizations of one and the same classical theory. Given the classical equations of motion and Lagrange anchor as input data, a new procedure, called the augmentation, is proposed to quantize non-Lagrangian dynamics. Within the augmentation procedure, the originally non-Lagrangian theory is absorbed by a wider Lagrangian theory on the same space-time manifold. The augmented theory is not generally equivalent to the original one as it has more physical degrees of freedom than the original theory. However, the extra degrees of freedom are factorized out in a certain regular way both at classical and quantum levels. The general techniques are exemplified by quantizing two non-Lagrangian models of physical interest

  9. Supersymmetric gauge theories, quantization of Mflat, and conformal field theory

    International Nuclear Information System (INIS)

    Teschner, J.; Vartanov, G.S.

    2013-02-01

    We propose a derivation of the correspondence between certain gauge theories with N=2 supersymmetry and conformal field theory discovered by Alday, Gaiotto and Tachikawa in the spirit of Seiberg-Witten theory. Based on certain results from the literature we argue that the quantum theory of the moduli spaces of flat SL(2,R)-connections represents a nonperturbative ''skeleton'' of the gauge theory, protected by supersymmetry. It follows that instanton partition functions can be characterized as solutions to a Riemann-Hilbert type problem. In order to solve it, we describe the quantization of the moduli spaces of flat connections explicitly in terms of two natural sets of Darboux coordinates. The kernel describing the relation between the two pictures represents the solution to the Riemann Hilbert problem, and is naturally identified with the Liouville conformal blocks.

  10. Inflation and inhomogeneities: a hybrid quantization

    International Nuclear Information System (INIS)

    Olmedo, J; Fernández-Méndez, M; Mena Marugán, G A

    2012-01-01

    We provide a complete quantization of a homogeneous and isotropic spacetime with positive spatial curvature coupled to a massive scalar field in the framework of Loop Quantum Cosmology. The physical Hilbert space is constructed out of the space of initial data on the minimum volume section. By means of a perturbative treatment we introduce inhomogeneities and thereafter we adopt a hybrid quantum approach, in which these inhomogeneous degrees of freedom are described by a standard Fock quantization. For the considered case of compact spatial topology, the requirements of: i) invariance of the vacuum state under the spatial isometries, and ii) unitary implementation of the quantum dynamics, pick up a privileged set of canonical fields and a unique Fock representation (up to unitary equivalence).

  11. Quantization of the Yang-Mills field and Mandelstam's theory in gauge-independent path-dependent formalism

    International Nuclear Information System (INIS)

    Naito, S.

    1976-01-01

    We derive commutation relations (CR's) between gauge-invariant quantities in the Yang-Mills field theory by applying the Peierls method. The CR's obtained are different from those given by Mandelstam in his gauge-independent, path-dependent formalism. However, our CR's are shown to give a consistently quantized field theory, while his CR's do not. In fact, there exist systematic errors in Mandelstam's treatment of the covariant Green's functions. On the other hand, if we correctly treat covariant Green's functions guided by his procedure, our CR's are shown to lead to the same Feynman rules for the Yang-Mills field as prescribed by Feynman, DeWitt, Faddeev and Popov, and Mandelstam

  12. Reentrant high-magnetic field superconductivity in a clean two-dimensional superconductor with shallow band

    Science.gov (United States)

    Koshelev, Alexei E.; Song, Kok Wee

    We investigate the superconducting instability in the magnetic field for a clean two-dimensional multiple-band superconductor in the vicinity of the Lifshitz transition when one of the bands is very shallow. Due to a small number of carriers in this band, the quasiclassical Werthamer-Helfand approximation breaks down and Landau quantization has to be taken into account. We found that the transition temperature Tc 2 (H) has giant oscillations and is resonantly enhanced at the magnetic fields corresponding to full occupancy of the Landau levels in the shallow band. This enhancement is especially pronounced for the lowest Landau level. As a consequence, the reentrant superconducting regions in the temperature-field phase diagram emerge at low temperatures near the magnetic fields at which the chemical potential matches the Landau levels. These regions may be disconnected from the main low-field superconducting region. The specific behavior depends on the relative strength of the intraband and interband coupling constants and the effect is most pronounced when the interband coupling dominates. The Zeeman spin splitting reduces sizes of the reentrant regions and changes their location in the parameter space. The predicted behavior may realize in the gate-tuned FeSe monolayer. This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Science, under Award No. DEAC0298CH1088.

  13. Quantization Procedures

    International Nuclear Information System (INIS)

    Cabrera, J. A.; Martin, R.

    1976-01-01

    We present in this work a review of the conventional quantization procedure, the proposed by I.E. Segal and a new quantization procedure similar to this one for use in non linear problems. We apply this quantization procedures to different potentials and we obtain the appropriate equations of motion. It is shown that for the linear case the three procedures exposed are equivalent but for the non linear cases we obtain different equations of motion and different energy spectra. (Author) 16 refs

  14. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  15. Quantization rules for point singularities in superfluid 3He and liquid crystals

    International Nuclear Information System (INIS)

    Blaha, S.

    1976-01-01

    It is shown that pointlike singularities can exist in superfluid 3 He. Integer quantum numbers are associated with these singularities. The quantization rules follow from the single valuedness of the order parameter and quantities derived from it. The results are also easily extended to the quantization of point singularities in nematic liquid crystals. The pointlike singularities in 3 He-A are experimentally accessible analogs of the magnetic monopole

  16. Heavily-doped 2D-quantized structures and the Einstein relation

    CERN Document Server

    Ghatak, Kamakhya P

    2015-01-01

    This book presents the Einstein Relation(ER) in two-dimensional (2-D) Heavily Doped(HD) Quantized Structures. The materials considered are quantized structures of HD non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, GaP, Gallium Antimonide, II-V, Bismuth Telluride together with various types of HD superlattices and their Quantized counterparts respectively. The ER in HD opto-electronic materials and their nanostructures is studied in the presence of strong light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The suggestion for the experimental determination of HD 2D and 3D ERs and the importance of measurement of band gap in HD optoelectronic materials under intense built-in electric field in nanodevices and strong external photo excitation (for measuring photon induced physical properties) are also discussed in this context. The influence of crossed electric and quantizing ma...

  17. Fourth quantization

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir

    2013-12-18

    In this Letter we will analyze the creation of the multiverse. We will first calculate the wave function for the multiverse using third quantization. Then we will fourth-quantize this theory. We will show that there is no single vacuum state for this theory. Thus, we can end up with a multiverse, even after starting from a vacuum state. This will be used as a possible explanation for the creation of the multiverse. We also analyze the effect of interactions in this fourth-quantized theory.

  18. Group theoretical quantization of isotropic loop cosmology

    Science.gov (United States)

    Livine, Etera R.; Martín-Benito, Mercedes

    2012-06-01

    We achieve a group theoretical quantization of the flat Friedmann-Robertson-Walker model coupled to a massless scalar field adopting the improved dynamics of loop quantum cosmology. Deparemetrizing the system using the scalar field as internal time, we first identify a complete set of phase space observables whose Poisson algebra is isomorphic to the su(1,1) Lie algebra. It is generated by the volume observable and the Hamiltonian. These observables describe faithfully the regularized phase space underlying the loop quantization: they account for the polymerization of the variable conjugate to the volume and for the existence of a kinematical nonvanishing minimum volume. Since the Hamiltonian is an element in the su(1,1) Lie algebra, the dynamics is now implemented as SU(1, 1) transformations. At the quantum level, the system is quantized as a timelike irreducible representation of the group SU(1, 1). These representations are labeled by a half-integer spin, which gives the minimal volume. They provide superselection sectors without quantization anomalies and no factor ordering ambiguity arises when representing the Hamiltonian. We then explicitly construct SU(1, 1) coherent states to study the quantum evolution. They not only provide semiclassical states but truly dynamical coherent states. Their use further clarifies the nature of the bounce that resolves the big bang singularity.

  19. Quantization and Quantum-Like Phenomena: A Number Amplitude Approach

    Science.gov (United States)

    Robinson, T. R.; Haven, E.

    2015-12-01

    Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.

  20. Modular invariance and stochastic quantization

    International Nuclear Information System (INIS)

    Ordonez, C.R.; Rubin, M.A.; Zwanziger, D.

    1989-01-01

    In Polyakov path integrals and covariant closed-string field theory, integration over Teichmueller parameters must be restricted by hand to a single modular region. This problem has an analog in Yang-Mills gauge theory---namely, the Gribov problem, which can be resolved by the method of stochastic gauge fixing. This method is here employed to quantize a simple modular-invariant system: the Polyakov point particle. In the limit of a large gauge-fixing force, it is shown that suitable choices for the functional form of the gauge-fixing force can lead to a restriction of Teichmueller integration to a single modular region. Modifications which arise when applying stochastic quantization to a system in which the volume of the orbits of the gauge group depends on a dynamical variable, such as a Teichmueller parameter, are pointed out, and the extension to Polyakov strings and covariant closed-string field theory is discussed

  1. Quantized Dirac field in curved Riemann--Cartan background. I. Symmetry properties, Green's function

    International Nuclear Information System (INIS)

    Nieh, H.T.; Yan, M.L.

    1982-01-01

    In the present series of papers, we study the properties of quantized Dirac field in curved Riemann--Cartan space, with particular attention on the role played by torsion. In this paper, we give, in the spirit of the original work of Weyl, a systematic presentation of Dirac's theory in curved Riemann--Cartan space. We discuss symmetry properties of the system, and derive conservation laws as direct consequences of these symmetries. Also discussed is conformal gauge symmetry, with torsion effectively playing the role of a conformal gauge field. To obtain short-distance behavior, we calculate the spinor Green's function, in curved Riemann--Cartan background, using the Schwinger--DeWitt method of proper-time expansion. The calculation corresponds to a generalization of DeWitt's calculation for a Riemannian background

  2. Generalized canonical quantization and background fields equations of motion in the Bosonic string theory

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Lyakhovich, S.L.; Pershin, V.D.; Fradkin, E.S.

    1991-01-01

    At present, superstring theory is the only candidate to be a unified theory of all fundamental interactions. For this reason, the various aspects of the string theory have been attracting great attention. String theory has a nontrivial gauge symmetry and therefore is an interesting object from the viewpoint of application of general quantization methods. This paper discusses the bosonic string theory. The purpose of this paper is a consistent operator quantization of the theory with the action. The natural basis for it is provided by the method of the generalized canonical quantization

  3. Canonical quantization of so-called non-Lagrangian systems

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil); Kupriyanov, V.G. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil); Tomsk State University, Physics Department, Tomsk (Russian Federation)

    2007-04-15

    We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form that can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories as described in D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990). to the case under consideration. There exists an ambiguity (that cannot be reduced to the addition of a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge. (orig.)

  4. Canonical quantization of so-called non-Lagrangian systems

    International Nuclear Information System (INIS)

    Gitman, D.M.; Kupriyanov, V.G.

    2007-01-01

    We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form that can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories as described in D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990). to the case under consideration. There exists an ambiguity (that cannot be reduced to the addition of a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge. (orig.)

  5. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-11-15

    A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  6. Einstein's photoemission emission from heavily-doped quantized structures

    CERN Document Server

    Ghatak, Kamakhya Prasad

    2015-01-01

    This monograph solely investigates the Einstein's Photoemission(EP) from Heavily Doped(HD) Quantized Structures on the basis of newly formulated electron dispersion laws. The materials considered are quantized structures of HD non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, GaP, Gallium Antimonide, II-V, Bismuth Telluride together with various types of HD superlattices and their Quantized counterparts respectively. The EP in HD opto-electronic materials and their nanostructures is studied in the presence of strong light waves and intense electric fields  that control the studies of such quantum effect devices. The suggestions for the experimental determinations of different important physical quantities in HD 2D and 3D materials  and the importance of measurement of band gap in HD optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring   physical properties in the presence of intense light waves w...

  7. Dirac particle in a magnetic field: Symmetries and their breaking by monopole singularities

    International Nuclear Information System (INIS)

    Goldhaber, A.S.

    1977-01-01

    Some rules governing motion of a charged particle obeying the Dirac equation are assembled, including exact helicity conservation for scattering on an arbitrary finite magnetic field configuration. The singularity at the location of a magnetic monopole invalidates the derivation of the rules mentioned, leaving the Dirac Hamiltonian H undefined for the lowest angular momentum state of the electron in the field of the pole. Specifying the behavior of H under the discrete P, T, and C symmetries determines it almost uniquely. One result is that H may possess a bound state of zero energy, contrary to assertions in early papers on the subject. Zero-energy bound states which violate the superselection rule for electric charge are also studied, including one which is the point limit of a solution for a fermion multiplet interacting with a finite-energy soliton monopole. Implications of such a bound state for second quantization have been considered previously by others and are further analyzed here. The suggestion that monopoles may possess half-integral fermion number is shown to be unwarranted by present evidence

  8. Light-front quantized field theory (an introduction): spontaneous symmetry breaking. Phase transition in φ4 theory

    International Nuclear Information System (INIS)

    Srivastava, Prem P.

    1994-01-01

    The Dirac procedure is used to construct the Hamiltonian formulation of the scalar field theory on the light-front. The theory is quantized and the mechanism of the spontaneous symmetry breaking in the front form and the instant form dynamics are compared. The phase transition in (φ 4 )2 theory is also discussed and found to be of the second order. (author). 36 refs

  9. {theta}-vacua in the light-front quantized Schwinger model

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-09-01

    The light-front quantization of the bosonized Schwinger model is discussed in the continuum formulation. The proposal, successfully used earlier for describing the spontaneous symmetry breaking on the light-front, of separating first the scalar field into the dynamical condensate and the fluctuation fields before employing the standard Dirac method works here as well. Some topics on the front form theory are summarized in the Appendices and attention is drawn to the fact that the theory quantized, at x{sup +} seems already to carry information on equal x{sup -} commutators as well. (author). 21 refs.

  10. θ-vacua in the light-front quantized Schwinger model

    International Nuclear Information System (INIS)

    Srivastava, Prem P.

    1996-09-01

    The light-front quantization of the bosonized Schwinger model is discussed in the continuum formulation. The proposal, successfully used earlier for describing the spontaneous symmetry breaking on the light-front, of separating first the scalar field into the dynamical condensate and the fluctuation fields before employing the standard Dirac method works here as well. Some topics on the front form theory are summarized in the Appendices and attention is drawn to the fact that the theory quantized, at x + seems already to carry information on equal x - commutators as well. (author). 21 refs

  11. Gupta-Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times

    Science.gov (United States)

    Finster, Felix; Strohmaier, Alexander

    2015-08-01

    We give a complete framework for the Gupta-Bleuler quantization of the free electromagnetic field on globally hyperbolic space-times. We describe one-particle structures that give rise to states satisfying the microlocal spectrum condition. The field algebras in the so-called Gupta-Bleuler representations satisfy the time-slice axiom, and the corresponding vacuum states satisfy the microlocal spectrum condition. We also give an explicit construction of ground states on ultrastatic space-times. Unlike previous constructions, our method does not require a spectral gap or the absence of zero modes. The only requirement, the absence of zero-resonance states, is shown to be stable under compact perturbations of topology and metric. Usual deformation arguments based on the time-slice axiom then lead to a construction of Gupta-Bleuler representations on a large class of globally hyperbolic space-times. As usual, the field algebra is represented on an indefinite inner product space, in which the physical states form a positive semi-definite subspace. Gauge transformations are incorporated in such a way that the field can be coupled perturbatively to a Dirac field. Our approach does not require any topological restrictions on the underlying space-time.

  12. Becchi-Rouet-Stora-Tyutin quantization of histories electrodynamics

    International Nuclear Information System (INIS)

    Noltingk, Duncan

    2002-01-01

    This article is a continuation of earlier work where a classical history theory of pure electrodynamics was developed in which the history fields have five components. The extra component is associated with an extra constraint, thus enlarging the gauge group of histories electrodynamics. In this article we quantize the classical theory developed previously by two methods. First we quantize the reduced classical history space to obtain a reduced quantum history theory. Second we quantize the classical BRST-extended history space, and use the Becchi-Rouet-Stora-Tyutin charge to define a 'cohomological' quantum history theory. Finally, we show that the reduced history theory is isomorphic (as a history theory) to the cohomological history theory

  13. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  14. Omnigenous magnetic fields

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1982-01-01

    In omnigenous magnetic fields particles' drift surfaces coincide with plasma magnetic surfaces. In this paper we formulate equations of omnigenous magnetic fields in natural curvilinear coordinates. An analysis of fields which are omnigenous only in the paraxial approximation is presented. (author)

  15. Magnetic anisotropy and quantized spin waves in hematite nanoparticles

    DEFF Research Database (Denmark)

    Klausen, Stine Nyborg; Lefmann, Kim; Lindgård, Per-Anker

    2004-01-01

    We report on the observation of high-frequency collective magnetic excitations, (h) over bar omegaapproximate to1.1 meV, in hematite (alpha-Fe2O3) nanoparticles. The neutron scattering experiments include measurements at temperatures in the range 6-300 K and applied fields up to 7.5 T as well...... as polarization analysis. We give an explanation for the field- and temperature dependence of the excitations, which are found to have strongly elliptical out-of-plane precession. The frequency of the excitations gives information on the magnetic anisotropy constants in the system. We have in this way determined...

  16. Depth of quantization in signals of the digital X-ray television

    International Nuclear Information System (INIS)

    Beuthan, J.

    1989-01-01

    The technological realization of image acquisition and processing in digital X-ray television in methodical dependence on the image-forming purpose places particular requirements in signal quantization. By evaluation of experimental results with simultaneous modification of a special calculation method an optimum quantization stage is ascertained with method-relevant quantization characteristic. In addition to consideration made so far in this field a self-contained solution is presented with inclusion of vision physiology and information gain. (author)

  17. Temperature dependence of collapse of quantized hall resistance

    International Nuclear Information System (INIS)

    Tanaka, Hiroyasu; Kawashima, Hironori; Iizuka, Hisamitsu; Fukuda, Hideaki; Kawaji, Shinji

    2006-01-01

    Similarity is observed in the deviation of Hall resistance from the quantized value with the increase in the source-drain current I SD in our butterfly-type Hall bars and in the Hall bars used by Jeanneret et al., while changes in the diagonal resistivity ρ xx with I SD are significantly different between these Hall bars. The temperature dependence of the critical Hall electric field F cr (T) for the collapse of R H (4) measured in these Hall bars is approximated using F cr (T) = F cr (0)(1 - (T/T cr ) 2 ). Here, the critical Hall electric field at zero temperature depends on the magnetic field B as F cr (0) ∝ B 3/2 . Theoretical considerations are given on F cr (T) on the basis of a temperature-dependent mobility edge model and a schema of temperature-dependent inter-Landau level tunneling probability arising from the Fermi distribution function. The former does not fit in with the I SD dependence of activation energy in ρ xx . (author)

  18. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  19. Dirac’s magnetic monopole and the Kontsevich star product

    Science.gov (United States)

    Soloviev, M. A.

    2018-03-01

    We examine relationships between various quantization schemes for an electrically charged particle in the field of a magnetic monopole. Quantization maps are defined in invariant geometrical terms, appropriate to the case of nontrivial topology, and are constructed for two operator representations. In the first setting, the quantum operators act on the Hilbert space of sections of a nontrivial complex line bundle associated with the Hopf bundle, whereas the second approach uses instead a quaternionic Hilbert module of sections of a trivial quaternionic line bundle. We show that these two quantizations are naturally related by a bundle morphism and, as a consequence, induce the same phase-space star product. We obtain explicit expressions for the integral kernels of star-products corresponding to various operator orderings and calculate their asymptotic expansions up to the third order in the Planck constant \\hbar . We also show that the differential form of the magnetic Weyl product corresponding to the symmetric ordering agrees completely with the Kontsevich formula for deformation quantization of Poisson structures and can be represented by Kontsevich’s graphs.

  20. On the quantization of spacetime

    International Nuclear Information System (INIS)

    Banai, M.

    1981-01-01

    A program of quantization of relativistic local field theories in terms of Hilbert modules over non-commutative Csup*-algebras is outlined. The spacetime of the considered systems should become a ''quantum'' represented by a Hilbert space. Two suggestions are given for the possible determination this quantum spacetime. (author)

  1. Creation of quantized particles, gravitons, and scalar perturbations by the expanding universe

    International Nuclear Information System (INIS)

    Parker, Leonard

    2015-01-01

    Quantum creation processes during the very rapid early expansion of the universe are believed to give rise to temperature anisotropies and polarization patterns in the CMB radiation. These have been observed by satellites such as COBE, WMAP, and PLANCK, and by bolometric instruments placed near the South Pole by the BICEP collaborations. The expected temperature anisotropies are well-confirmed. The B-mode polarization patterns in the CMB are currently under measurement jointly by the PLANCK and BICEP groups to determine the extent to which the B-modes can be attributed to gravitational waves from the creation of gravitons in the earliest universe.As the original discoverer of the quantum phenomenon of particle creation from vacuum by the expansion of the universe, I will explain how the discovery came about and how it relates to the current observations. The first system that I considered when I started my Ph.D. thesis in 1962 was the quantized minimally-coupled scalar field in an expanding FLRW (Friedmann, Lemaitré, Robertson, Walker) universe having a general continuous scale factor a(t) with continuous time derivatives. I also considered quantized fermion fields of spin-1/2 and the spin-1 massless photon field, as well as the quantized conformally-invariant field equations of arbitrary integer and half-integer spins that had been written down in the classical context for general gravitational metrics by Penrose.It was during 1962 that I proved that quanta of the minimally-coupled scalar field were created by the general expanding FLRW universe. This was relevant also to the creation of quantized perturbations of the gravitational field, since these perturbations satisfied linear field equations that could be quantized in the same way as the minimally-coupled scalar field equation. In fact, in 1946, E.M. Lifshitz had considered the classical Einstein gravitational field in FLRW expanding universes and had shown that the classical linearized Einstein field

  2. Measurement of magnetic fields in the Area Metropolitana

    International Nuclear Information System (INIS)

    Masis Mesen, Juan Pablo

    2007-01-01

    The operation and proper handling of equipment for measuring EMR-300 electromagnetic waves are studied and apply that knowledge to determine which areas of the metropolitan area are mostly affected by exposure to the emission of radiation. This team is able to measure magnetic field strength, electric field strength and power density, also can measure the most important parameters in a simple manner. International standards provide maximum values for these parameters that limit human exposure to such radiation. These standards are based on epidemiological several and laboratory that have been carried out in order to determine in which circumstances a biological entity is exposed to a level of radiation that can cause harm to their health. It focuses on measuring the level of radiation in certain areas of interest, which were chosen because are areas with high population density and also in proximity to antennas that emit electromagnetic waves. Before carrying out the data collection was performed a detailed study of which are the recommendations to measure and avoid as far as possible sources of error, once that those recommendations are implemented the making data was started. Data obtained show that these areas do not present any health risk and that levels of magnetic field strength and power density are well below the limits set by both the International Commission on Non-Ionizing Radiation Protection and the Institute of Electrical and Electronics Engineers. On the other hand, based on the obtained results and the study already done before by the Instituto Costarricense de Electricidad, it was concluded that the power density conditions for plane wave is the parameter most effective to quantize the associated risk with different levels of radiation of radio frequency electromagnetic fields. (author) [es

  3. Novel Electrochemical Phenomena in Magnetic Fields(Research in High Magnetic Fields)

    OpenAIRE

    Mogi, Iwao; Kamiko, Masao

    1996-01-01

    Recent two topics are given of electrochemical studies in steady magnetic fields at the High Field Laboratory of Tohoku University. One is the magnetic-field-induced diffusion-limited-aggregation in the pattern formation of silver electrodeposits . The other is the magnetic field effect on the learning effect in a dopant-exchange process of an organic conducting polymer polypyrrole.

  4. The infrared problem for the dressed non-relativistic electron in a magnetic field

    International Nuclear Information System (INIS)

    Amour, L.; Faupin, J.; Grebert, B.; Guillot, J.C.

    2008-01-01

    We consider a non-relativistic electron interacting with a classical magnetic field pointing along the x 3 -axis and with a quantized electromagnetic field. The system is translation invariant in the x 3 -direction and the corresponding Hamiltonian has a decomposition H ≅∫ R + H(P 3 )dP 3 . For a fixed momentum P 3 sufficiently small, we prove that H(P 3 ) has a ground state in the Fock representation if and only if E'(P 3 )=0, where P 3 →E'(P 3 ) is the derivative of the map P 3 →E(P 3 )=infσ(H(P 3 )). If E'(P 3 )≠0, we obtain the existence of a ground state in a non-Fock representation. This result holds for sufficiently small values of the coupling constant. (authors)

  5. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  6. Spectral representation in stochastic quantization

    International Nuclear Information System (INIS)

    Nakazato, Hiromichi.

    1988-10-01

    A spectral representation of stationary 2-point functions is investigated based on the operator formalism in stochastic quantization. Assuming the existence of asymptotic non-interacting fields, we can diagonalize the total Hamiltonian in terms of asymptotic fields and show that the correlation length along the fictious time is proportional to the physical mass expected in the usual field theory. A relation between renormalization factors in the operator formalism is derived as a byproduct and its validity is checked with the perturbative results calculated in this formalism. (orig.)

  7. On the quantization of the massless Bateman system

    Science.gov (United States)

    Takahashi, K.

    2018-03-01

    The so-called Bateman system for the damped harmonic oscillator is reduced to a genuine dual dissipation system (DDS) by setting the mass to zero. We explore herein the condition under which the canonical quantization of the DDS is consistently performed. The roles of the observable and auxiliary coordinates are discriminated. The results show that the complete and orthogonal Fock space of states can be constructed on the stable vacuum if an anti-Hermite representation of the canonical Hamiltonian is adopted. The amplitude of the one-particle wavefunction is consistent with the classical solution. The fields can be quantized as bosonic or fermionic. For bosonic systems, the quantum fluctuation of the field is directly associated with the dissipation rate.

  8. Quantized, piecewise linear filter network

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    1993-01-01

    A quantization based piecewise linear filter network is defined. A method for the training of this network based on local approximation in the input space is devised. The training is carried out by repeatedly alternating between vector quantization of the training set into quantization classes...... and equalization of the quantization classes linear filter mean square training errors. The equalization of the mean square training errors is carried out by adapting the boundaries between neighbor quantization classes such that the differences in mean square training errors are reduced...

  9. Canonical quantization of spinning relativistic particle in external backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: We revise the problem of the quantization of spinning relativistic particle pseudoclassical model, using a modified consistent canonical scheme. It allows one not only to include arbitrary electromagnetic and gravitational backgrounds in the consideration but to get in course of the quantization a consistent relativistic quantum mechanics, which reproduces literally the behavior of the one-particle sector of quantized spinor field. In particular, in a physical sector of the Hilbert space a complete positive spectrum of energies of relativistic particles and antiparticles is reproduced. Requirement to maintain all classical symmetries under the coordinate transformations and under U(1) transformations allows one to realize operator algebra without any ambiguities. (author)

  10. Superfield extended BRST quantization in general coordinates

    OpenAIRE

    Geyer, B.; Gitman, D. M.; Lavrov, P. M.; Moshin, P. Yu.

    2003-01-01

    We propose a superfield formalism of Lagrangian BRST-antiBRST quantization of arbitrary gauge theories in general coordinates with the base manifold of fields and antifields desribed in terms of both bosonic and fermionic variables.

  11. Statistical Physics and Light-Front Quantization

    Energy Technology Data Exchange (ETDEWEB)

    Raufeisen, J

    2004-08-12

    Light-front quantization has important advantages for describing relativistic statistical systems, particularly systems for which boost invariance is essential, such as the fireball created in a heavy ion collisions. In this paper the authors develop light-front field theory at finite temperature and density with special attention to quantum chromodynamics. They construct the most general form of the statistical operator allowed by the Poincare algebra and show that there are no zero-mode related problems when describing phase transitions. They then demonstrate a direct connection between densities in light-front thermal field theory and the parton distributions measured in hard scattering experiments. The approach thus generalizes the concept of a parton distribution to finite temperature. In light-front quantization, the gauge-invariant Green's functions of a quark in a medium can be defined in terms of just 2-component spinors and have a much simpler spinor structure than the equal-time fermion propagator. From the Green's function, the authors introduce the new concept of a light-front density matrix, whose matrix elements are related to forward and to off-diagonal parton distributions. Furthermore, they explain how thermodynamic quantities can be calculated in discretized light-cone quantization, which is applicable at high chemical potential and is not plagued by the fermion-doubling problems.

  12. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  13. Quantization in the neighborhood of a classical solution in the theory of a Fermi field

    International Nuclear Information System (INIS)

    Sveshnikov, K.A.

    1988-01-01

    The quantization of a Fermi-Bose field system in the neighborhood of a classical solution of the equations of motion that contains both bosonic and spinor components is considered. The latter is regarded as an absolutely anticommuting (Grassmann) component of a fermion field. On account of the transport of the fermion number, such an object mixes the fermionic and bosonic and fermionic and antifermionic degrees of freedom already at the level of the single-particle states (in the approximately of quadratic forms). Explicit expressions are obtained for the operator of the S matrix, which describes such transport processes, and the total Hamiltonian and total fermion charge of the system in this approximation

  14. Foundations of quantization for probability distributions

    CERN Document Server

    Graf, Siegfried

    2000-01-01

    Due to the rapidly increasing need for methods of data compression, quantization has become a flourishing field in signal and image processing and information theory. The same techniques are also used in statistics (cluster analysis), pattern recognition, and operations research (optimal location of service centers). The book gives the first mathematically rigorous account of the fundamental theory underlying these applications. The emphasis is on the asymptotics of quantization errors for absolutely continuous and special classes of singular probabilities (surface measures, self-similar measures) presenting some new results for the first time. Written for researchers and graduate students in probability theory the monograph is of potential interest to all people working in the disciplines mentioned above.

  15. BFV-BRST quantization of 2D supergravity

    International Nuclear Information System (INIS)

    Fujiwara, T.; Igarashi, Y.; Kuriki, R.; Tabei, T.

    1995-02-01

    Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of 2D supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity super-multiplets are introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-lightcone gauge-fixing, where the super-curvature equations (δ - 3 g ++ =δ - 2 χ ++ =0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp (1,2) current algebra symmetry in a transparent manner. (author)

  16. Light-Front Quantization of Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.

    2003-03-25

    Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.

  17. Light-Front Quantization of Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Brodskey, Stanley

    2002-12-01

    Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.

  18. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2011-11-01

    Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa2Cu3Oy (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  19. Equivalence of Dirac quantization and Schwinger's action principle quantization

    International Nuclear Information System (INIS)

    Das, A.; Scherer, W.

    1987-01-01

    We show that the method of Dirac quantization is equivalent to Schwinger's action principle quantization. The relation between the Lagrange undetermined multipliers in Schwinger's method and Dirac's constraint bracket matrix is established and it is explicitly shown that the two methods yield identical (anti)commutators. This is demonstrated in the non-trivial example of supersymmetric quantum mechanics in superspace. (orig.)

  20. Modeling quantization effects in field effect transistors

    International Nuclear Information System (INIS)

    Troger, C.

    2001-06-01

    Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coefficients is introduced and the parameters are calculated via perturbation theory. The method described in this work has been implemented in a software tool that performs a self-consistent solution of Schroedinger- and Poisson-equation for a one-dimensional cut through a MOS structure or heterostructure. The calculation of the carrier densities is performed assuming Fermi-Dirac statistics. In the case of a MOS structure a metal or a polysilicon gate is considered and an arbitrary gate bulk voltage can be applied. This allows investigating quantum mechanical effects in capacity calculations, to compare the simulated data with measured CV curves and to evaluate the results obtained with a quantum mechanical correction for the classical electron density. The behavior of the defined subband parameters is compared to the value of the mass and the non-parabolicity coefficient from the model due to Kane. Finally the presented characterization of the subbands is applied

  1. Semiclassical quantization of the nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nohl, C.R.

    1976-01-01

    Using the functional integral technique of Dashen, Hasslacher, and Neveu, we perform a semiclassical quantization of the nonlinear Schrodinger equation (NLSE), which reproduces McGuire's exact result for the energy levels of the bound states of the theory. We show that the stability angle formalism leads to the one-loop normal ordering and self-energy renormalization expected from perturbation theory, and demonstrate that taking into account center-of-mass motion gives the correct nonrelativistic energy--momentum relation. We interpret the classical solution in the context of the quantum theory, relating it to the matrix element of the field operator between adjacent bound states in the limit of large quantum numbers. Finally, we quantize the NLSE as a theory of N component fermion fields and show that the semiclassical method yields the exact energy levels and correct degeneracies

  2. BRS invariant stochastic quantization of Einstein gravity

    International Nuclear Information System (INIS)

    Nakazawa, Naohito.

    1989-11-01

    We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in the sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space of the first-class constrained systems. The phase space is spanned by the dynamical variables, their canonical conjugate momentum variables, Faddeev-Popov ghost and anti-ghost. We apply the general BRS invariant formulation to stochastic quantization of gravity which is described as a second-class constrained system in terms of a pair of Langevin equations coupled with white noises. It is shown that the stochastic action of gravity includes explicitly the De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)

  3. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  4. Modeling of a quantized current and gate field-effect in gated three-terminal Cu2-αS electrochemical memristors

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2015-02-01

    Full Text Available Memristors exhibit very sharp off-to-on transitions with a large on/off resistance ratio. These remarkable characteristics coupled with their long retention time and very simple device geometry make them nearly ideal for three-terminal devices where the gate voltage can change their on/off voltages and/or simply turn them off, eliminating the need for bipolar operations. In this paper, we propose a cation migration-based computational model to explain the quantized current conduction and the gate field-effect in Cu2-αS memristors. Having tree-shaped conductive filaments inside a memristor is the reason for the quantized current conduction effect. Applying a gate voltage causes a deformation of the conductive filaments and thus controls the SET and the RESET process of the device.

  5. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  6. Initial behavior of a quantized scalar field the associated pair-creation in several anisotropic universes

    International Nuclear Information System (INIS)

    Nariai, Hidekazu

    1981-01-01

    As a sequel to previous works on the definition of a positive frequency part of a quantized scalar field near an initial stage of several Robertson-Walker universes with flat, open or closed 3-space and the associated pair-creation of those particles, an attempt is made to seek for the same concept in several Bianchi-type I anisotropic universes. It is shown that, if the positive frequency part is introduced, the pair-creation of scalar particles and their spectral law are uniquely determined, as in the case of isotropic universes. (author)

  7. Strong Magnetic Field Characterisation

    Science.gov (United States)

    2012-04-01

    an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699

  8. Group Approach to the Quantization of Non-Abelian Stueckelberg Models

    International Nuclear Information System (INIS)

    Aldaya, V; Lopez-Ruiz, F F; Calixto, M

    2011-01-01

    The quantum field theory of Non-Linear Sigma Models on coadjoint orbits of a semi-simple group G are formulated in the framework of a Group Approach to Quantization. In this scheme, partial-trace Lagrangians are recovered from two-cocycles defined on the infinite-dimensional group of sections of the jet-gauge group J 1 (G). This construction is extended to the entire physical system coupled to Yang-Mills fields, thus constituting an algebraic formulation of the Non-Abelian Stueckelgerg formalism devoid of the unitarity/renormalizability obstruction that this theory finds in the standard Lagrangian formalism under canonical quantization.

  9. Group Approach to the Quantization of Non-Abelian Stueckelberg Models

    Energy Technology Data Exchange (ETDEWEB)

    Aldaya, V; Lopez-Ruiz, F F [Instituto de Astrofisica de AndalucIa (IAA-CSIC), Apartado Postal 3004, 18080 Granada (Spain); Calixto, M, E-mail: valdaya@iaa.es, E-mail: Manuel.Calixto@upct.es, E-mail: flopez@iaa.es [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain)

    2011-03-01

    The quantum field theory of Non-Linear Sigma Models on coadjoint orbits of a semi-simple group G are formulated in the framework of a Group Approach to Quantization. In this scheme, partial-trace Lagrangians are recovered from two-cocycles defined on the infinite-dimensional group of sections of the jet-gauge group J{sup 1} (G). This construction is extended to the entire physical system coupled to Yang-Mills fields, thus constituting an algebraic formulation of the Non-Abelian Stueckelgerg formalism devoid of the unitarity/renormalizability obstruction that this theory finds in the standard Lagrangian formalism under canonical quantization.

  10. A few comments on general theory of quantized fields

    International Nuclear Information System (INIS)

    Yamaguchi, Yoshio

    2005-01-01

    Several important comments on General Theory of Quantized Fields shall be supplemented here. Our theory is based on (Riemannian) momentum spaces with finite volumes. Our theory is formulated in the specific inertial frame, i.e., the rest frame of the cosmic back-ground radiation (RF-CBR). To go to other reference frame, we reply on general co-ordinate (in our case, energy and momentum variables, p-representation) transformations and the principle of general relativity. We find the degeneracy on energy levels of all elementary particles (same values of all particle energies appear twice) (as compared to the conventional field theories). This doubling of energy levels might be important at the beginning (very early stage) of our evolutional universe. However, we may not wish to have such a doubling at the present epoch. We can avoid the doubling by introducing appropriate (natural and rational, of course) Yukawa interactions among fermions and bosons. Then it is easy to realize the situation in which elementary particles populated in the half of the energy levels (called 'our particles' having normal spin multiplicity) shall not 'interact' with particles populated in the other half of energy levels except gravity. The particles in the latter group may be called 'dark matter particles', which give the most natural candidates of dark matter. We have already emphasized that other candidates of dark matter are zero-point vibration energy of all elementary particles and the energy of the vacuum due to interaction Hamiltonians. (author)

  11. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  12. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  13. Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Elizaga Navascués, Beatriz, E-mail: beatriz.elizaga@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Martín-Benito, Mercedes, E-mail: m.martin@hef.ru.nl [Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics, Heyendaalseweg 135, NL-6525 AJ Nijmegen (Netherlands); Mena Marugán, Guillermo A., E-mail: mena@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: jvelhi@ubi.pt [Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001, Covilhã (Portugal)

    2017-01-15

    We address the issue of the infinite ambiguity that affects the construction of a Fock quantization of a Dirac field propagating in a cosmological spacetime with flat compact sections. In particular, we discuss a physical criterion that restricts to a unique possibility (up to unitary equivalence) the infinite set of available vacua. We prove that this desired uniqueness is guaranteed, for any possible choice of spin structure on the spatial sections, if we impose two conditions. The first one is that the symmetries of the classical system must be implemented quantum mechanically, so that the vacuum is invariant under the symmetry transformations. The second and more important condition is that the constructed theory must have a quantum dynamics that is implementable as a (non-trivial) unitary operator in Fock space. Actually, this unitarity of the quantum dynamics leads us to identify as explicitly time dependent some very specific contributions of the Dirac field. In doing that, we essentially characterize the part of the dynamics governed by the Dirac equation that is unitarily implementable. The uniqueness of the Fock vacuum is attained then once a physically motivated convention for the concepts of particles and antiparticles is fixed.

  14. Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Velhinho, José M.

    2017-01-01

    We address the issue of the infinite ambiguity that affects the construction of a Fock quantization of a Dirac field propagating in a cosmological spacetime with flat compact sections. In particular, we discuss a physical criterion that restricts to a unique possibility (up to unitary equivalence) the infinite set of available vacua. We prove that this desired uniqueness is guaranteed, for any possible choice of spin structure on the spatial sections, if we impose two conditions. The first one is that the symmetries of the classical system must be implemented quantum mechanically, so that the vacuum is invariant under the symmetry transformations. The second and more important condition is that the constructed theory must have a quantum dynamics that is implementable as a (non-trivial) unitary operator in Fock space. Actually, this unitarity of the quantum dynamics leads us to identify as explicitly time dependent some very specific contributions of the Dirac field. In doing that, we essentially characterize the part of the dynamics governed by the Dirac equation that is unitarily implementable. The uniqueness of the Fock vacuum is attained then once a physically motivated convention for the concepts of particles and antiparticles is fixed.

  15. Magnetic fluid bridge in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Pelevina, D.A.; Naletova, V.A.; Turkov, V.A.

    2017-01-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  16. Magnetic fluid bridge in a non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pelevina, D.A., E-mail: pelevina.daria@gmail.com; Naletova, V.A.; Turkov, V.A.

    2017-06-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  17. Static and dynamic magnetic properties of Co{sub 2}FeAl-based stripe arrays

    Energy Technology Data Exchange (ETDEWEB)

    Belmeguenai, M., E-mail: belmeguenai.mohamed@univ-paris13.fr [LSPM-CNRS, Université Paris XIII-Sorbonne Paris Cité, 93430 Villetaneuse (France); Gabor, M.S. [Center for Superconductivity, Spintronics and Surface Science, Technical University of Cluj-Napoca, Str. Memorandumului No. 28 RO-400114, Cluj-Napoca (Romania); Zighem, F. [LSPM-CNRS, Université Paris XIII-Sorbonne Paris Cité, 93430 Villetaneuse (France); Berling, D. [IS2M, CNRS-LRC 7228, Université de Haute-Alsace, 68057 Mulhouse-Cedex (France); Roussigné, Y. [LSPM-CNRS, Université Paris XIII-Sorbonne Paris Cité, 93430 Villetaneuse (France); Petrisor, T. [Center for Superconductivity, Spintronics and Surface Science, Technical University of Cluj-Napoca, Str. Memorandumului No. 28 RO-400114, Cluj-Napoca (Romania); Chérif, S.M. [LSPM-CNRS, Université Paris XIII-Sorbonne Paris Cité, 93430 Villetaneuse (France); Tiusan, C. [Center for Superconductivity, Spintronics and Surface Science, Technical University of Cluj-Napoca, Str. Memorandumului No. 28 RO-400114, Cluj-Napoca (Romania); Institut Jean Lamour, CNRS, Université de Nancy, BP 70239, F-54506 Vandoeuvre (France); Brinza, O.; Moch, P. [LSPM-CNRS, Université Paris XIII-Sorbonne Paris Cité, 93430 Villetaneuse (France)

    2016-02-01

    25 nm to 50 nm Co{sub 2}FeAl (CFA) thick wire arrays with varying widths and spacing have been patterned from continuous CFA films deposited on MgO(001) using e-beam lithography and Ar ion milling. Magneto-optical Kerr effect, transverse bias initial inverse susceptibility and torque measurements reveal that the in-plane magnetic anisotropy of the wires is dominantly monitored by a uniaxial term, in contrast with the continuous films where it is governed by the superposition of a fourfold term and of a smaller uniaxial term. The microstrip ferromagnetic resonance spectra performed using a magnetic field H, applied in the plane of the studied sample along various directions, or perpendicularly to this plane, gave us access to various quantized modes originating from the patterning. In addition, Brillouin light scattering also exhibits quantized modes. A large part of the experimental observations can be quantitatively interpreted as resulting from the demagnetizing terms induced by the geometrical patterning. However, the presented model, simply built on the effect of the demagnetizing field, is not able to give account of all the quantized modes present in the resonance spectra. When H is parallel to the wires, a more complete description is used: it considers the wave-vector quantization induced by the patterning. For the magnetic modes concerned by both approaches, the correspondence between the 2 models is easily established. When H is not parallel to the wires quantitative descriptions of the behavior of the field dependence of the observed modes still can often be performed. Finally, in all the studied patterned samples, the uniform magnetic mode, termed “film mode”, relative to the parent continuous film is observed by ferromagnetic resonance: such a behavior, which has been reported previously, remains to be completely interpreted. - Highlights: • The static and dynamic properties of Co{sub 2}FeAl wire arrays have been studied. • Microstrip

  18. Quantized vortices in interacting gauge theories

    International Nuclear Information System (INIS)

    Butera, Salvatore; Valiente, Manuel; Öhberg, Patrik

    2016-01-01

    We consider a two-dimensional weakly interacting ultracold Bose gas whose constituents are two-level atoms. We study the effects of a synthetic density-dependent gauge field that arises from laser–matter coupling in the adiabatic limit with a laser configuration such that the single-particle zeroth-order vector potential corresponds to a constant synthetic magnetic field. We find a new exotic type of current nonlinearity in the Gross–Pitaevskii equation which affects the dynamics of the order parameter of the condensate. We investigate the rotational properties of this system in the Thomas–Fermi limit, focusing in particular on the physical conditions that make the existence of a quantized vortex in the system energetically favourable with respect to the non-rotating solution. We point out that two different physical interpretations can be given to this new nonlinearity: firstly it can be seen as a local modification of the mean field coupling constant, whose value depends on the angular momentum of the condensate. Secondly, it can be interpreted as a density modulated angular velocity given to the cloud. Looking at the problem from both of these viewpoints, we show that the effect of the new nonlinearity is to induce a rotation to the condensate, where the transition from non-rotating to rotating states depends on the density of the cloud. (paper)

  19. Asymptotic and geometrical quantization

    International Nuclear Information System (INIS)

    Karasev, M.V.; Maslov, V.P.

    1984-01-01

    The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered

  20. STM/STS Measurements of Two-Dimensional Electronic States in Magnetic Fields at Epitaxially Grown InAs(111)A Surfaces

    International Nuclear Information System (INIS)

    Niimi, Y; Kanisawa, K; Kojima, H; Kambara, H; Hirayama, Y; Tarucha, S; Fukuyama, Hiroshi

    2007-01-01

    The local density of states (LDOS) at the epitaxially grown InAs surface on a GaAs substrate was studied at very low temperatures in magnetic fields up to 6 T by scanning tunneling microscopy and spectroscopy. We observed a series of peaks, associated with Landau quantization of the two-dimensional electron system (2DES), in the tunnel spectra just above the subband energy (-80 meV) of the 2DES. The intervals between the peaks are consistent with the estimation from the effective mass of the 2DES at the InAs surface. In a wider energy range, another type of oscillation which was independent of magnetic field was also observed. This oscillation can be explained by the energy dependence of the transmission probability of the tunneling current through the Schottky barrier formed at the interface between the InAs film and GaAs substrate

  1. Dynamics of solar magnetic fields. VI. Force-free magnetic fields and motions of magnetic foot-points

    International Nuclear Information System (INIS)

    Low, B.C.; Nakagawa, Y.

    1975-01-01

    A mathematical model is developed to consider the evolution of force-free magnetic fields in relation to the displacements of their foot-points. For a magnetic field depending on only two Cartesian coordinates and time, the problem reduces to solving a nonlinear elliptic partial differential equation. As illustration of the physical process, two specific examples of evolving force-free magnetic fields are examined in detail, one evolving with rising and the other with descending field lines. It is shown that these two contrasting behaviors of the field lines correspond to sheared motions of their foot-points of quite different characters. The physical implications of these two examples of evolving force-free magnetic fields are discussed. (auth)

  2. Quantum features of a charged particle in ionized plasma controlled by a time-dependent magnetic field

    Directory of Open Access Journals (Sweden)

    Jeong Ryeol eChoi

    2014-08-01

    Full Text Available Quantum characteristics of a charged particle traveling under the influence of an external time-dependent magnetic field in ionized plasma are investigated using the invariant operator method. The Hamiltonian that gives the radial part of the classical equation of motion for the charged particle is dependent on time. The corresponding invariant operator that satisfies Liouville-von Neumann equation is constructed using fundamental relations. The exact radial wave functions are derived by taking advantage of the eigenstates of the invariant operator. Quantum properties of the system is studied using these wave functions. Especially, the time behavior of the radial component of the quantized energy is addressed in detail.

  3. The Juno Magnetic Field Investigation

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor ...

  4. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  5. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  6. Quantization of Green-Schwarz superstring

    International Nuclear Information System (INIS)

    Kallosh, R.E.

    1987-04-01

    The problem of quantization of superstrings is traced back to the nil-potency of gauge generators of the first-generation ghosts. The quantization of such theories is performed. The novel feature of this quantization is the freedom in choosing the number of ghost generations as well as gauge conditions. As an example, we perform quantization of heterotic string in a gauge, which preserves space-time supersymmetry. The equations of motion are those of a free theory. (author). 12 refs, 2 figs

  7. Anomalous behavior of a confined two-dimensional electron within an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, R; Riera R; Marin, J. L. [Universidad de Sonora, Hermosillo, Sonora (Mexico); Leon, H. [Instituto Superior Jose Antonio Echeverria, La Habana (Cuba)

    2001-10-01

    An anomalous diamagnetic behavior of a confined two-dimensional electron within an external magnetic field (perpendicular to the confining plane) is discussed in this letter. Although this finding is consistent with the pioneering work of Robnik, it has not been previously reported. When this effect occurs, the ratio between the typical length of spatial and magnetic confinement is an integer number. This property leads also to a quantization of the magnetic flux across the confining circle. The possible consequences of the peculiar behavior of the electron within such a structure are discussed. [Spanish] Se estudia una posible anomalia en las propiedades diamagneticas de un electron bidimensional confinado en presencia de un campo magnetico externo perpendicular al plano de confinamiento. Aunque los resultados obtenidos son consistentes con el trabajo pionero de Robnik, no han sido reportados anteriormente, a pesar de sus posibles aplicaciones, ya que cuando ocurre, el cociente entre la longitud magnetica y el tamano de la region de confinamiento es un numero entero, propiedad que establece una cuantizacion del flujo magnetico que atraviesa el circulo confinante. Se discuten las posibles consecuencias del comportamiento peculiar del electron en este tipo de estructura.

  8. Application of State Quantization-Based Methods in HEP Particle Transport Simulation

    Science.gov (United States)

    Santi, Lucio; Ponieman, Nicolás; Jun, Soon Yung; Genser, Krzysztof; Elvira, Daniel; Castro, Rodrigo

    2017-10-01

    Simulation of particle-matter interactions in complex geometries is one of the main tasks in high energy physics (HEP) research. An essential aspect of it is an accurate and efficient particle transportation in a non-uniform magnetic field, which includes the handling of volume crossings within a predefined 3D geometry. Quantized State Systems (QSS) is a family of numerical methods that provides attractive features for particle transportation processes, such as dense output (sequences of polynomial segments changing only according to accuracy-driven discrete events) and lightweight detection and handling of volume crossings (based on simple root-finding of polynomial functions). In this work we present a proof-of-concept performance comparison between a QSS-based standalone numerical solver and an application based on the Geant4 simulation toolkit, with its default Runge-Kutta based adaptive step method. In a case study with a charged particle circulating in a vacuum (with interactions with matter turned off), in a uniform magnetic field, and crossing up to 200 volume boundaries twice per turn, simulation results showed speedups of up to 6 times in favor of QSS while it being 10 times slower in the case with zero volume boundaries.

  9. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  10. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  11. Behaviour of magnetic superconductors in a magnetic field

    International Nuclear Information System (INIS)

    Buzdin, A.I.

    1984-01-01

    The behaviour of magnetic superconductors with close ferromagnetic and superconducting transition temperatures in a magnetic field is considered. It is shown that on lowering of the temperature the superconducting transition changes from a second to first order transition. The respective critical fields and dependence of the magnetization on the magnetic field and temperature are found. The magnetization discontinuity in the vortex core in magnetic superconductors is noted. Due to this property and the relatively large scattering cross section, magnetic superconductors are convenient for studying the superconducting vortex lattice by neutron diffraction techniques

  12. Method of regulating magnetic field of magnetic pole center

    International Nuclear Information System (INIS)

    Watanabe, Masao; Yamada, Teruo; Kato, Norihiko; Toda, Yojiro; Kaneda, Yasumasa.

    1978-01-01

    Purpose: To provide the subject method comprising using a plurality of magnetic metal pieces having different thicknesses, regulating very easily symmetry of the field of the magnetic pole center depending upon the combination of said metal pieces, thereby obtaining a magnetic field of high precision. Method: The regulation of magnetic field at the central part of the magnetic field is not depending only upon processing of the center plug, axial movement of trim coil and ion source but by providing a magnetic metal piece such as an iron ring, primary higher harmonics of the field at the center of the magnetic field can be regulated simply while the position of the ion source slit is on the equipotential surface in the field. (Yoshihara, H.)

  13. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  14. Magnetic fields at Neptune

    International Nuclear Information System (INIS)

    Ness, N.F.; Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P.; Neubauer, F.M.

    1989-01-01

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10 -5 gauss) was observed near closest approach, at a distance of 1.18 R N . The planetary magnetic field between 4 and 15 R N can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R N and inclined by 47 degrees with respect to the rotation axis. Within 4 R N , the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an oblique rotator

  15. Deformation of second and third quantization

    Science.gov (United States)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  16. Renormalization group equations in the stochastic quantization scheme

    International Nuclear Information System (INIS)

    Pugnetti, S.

    1987-01-01

    We show that there exists a remarkable link between the stochastic quantization and the theory of critical phenomena and dynamical statistical systems. In the stochastic quantization of a field theory, the stochastic Green functions coverge to the quantum ones when the frictious time goes to infinity. We therefore use the typical techniques of the Renormalization Group equations developed in the framework of critical phenomena to discuss some features of the convergence of the stochastic theory. We are also able, in this way, to compute some dynamical critical exponents and give new numerical valuations for them. (orig.)

  17. Mathematical obstructions to quantization

    International Nuclear Information System (INIS)

    Chernoff, P.R.

    1981-01-01

    Quantization is commonly viewed as a mapping of functions on classical phase space to operators on Hilbert space, preserving the Lie algebra structure and satisfying some additional physically motivated requirements. The present paper surveys the main results, old and new, concerning the existence of quantization process. Although it is possible to preserve the Lie structure, it is shown that any one of a number of reasonable additional requirements on the quantization process leads to a contradiction

  18. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Directory of Open Access Journals (Sweden)

    Fei Sun

    2015-09-01

    Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  19. Charge quantization without superheavy masses in a Kaluza--Klein description of electromagnetism

    International Nuclear Information System (INIS)

    Ross, D.K.

    1987-01-01

    A scalar matter field coupled to general relativity and electromagnetism in a five-dimensional Kaluza--Klein model is considered. The five-dimensional space is assumed to be a fiber bundle as in the usual description of a gauge theory and not a more general manifold. Properly taking this into account allows one to use a Lagrangian density for the scalar field which includes charge quantization but not the unphysical superheavy masses found by other authors. A natural, satisfactory explanation of why charge is quantized results

  20. Zero modes in discretized light-front quantization

    International Nuclear Information System (INIS)

    Martinovic, E.

    1997-01-01

    The current understanding of the role of bosonic zero modes in field-theoretical models quantized at the equal light-front time is reviewed. After a brief discussion of the main features of the light-front field theories - in particular the simplicity of the physical vacuum - the light-front canonical formalism for the quantum electrodynamics and the Yukawa model is sketched. The zero mode of Maskawa and Yamawaki is reviewed. Reasons for the appearance of the constrained and/or dynamical zero modes are explained along with the subtleties of the gauge fixing in presence of boundary conditions. Perturbative treatment of the corresponding constraint equations in the Yukawa model and quantum electrodynamics (3+1) is outlined. The next topic is the manifestation of the symmetry breaking in the light-front field theory. A pattern of multiple solutions to the zero-mode constraint equations replacing physical picture of multiple vacua of the conventionally quantized field theories is illustrated on an example of 2-dimensional theory. The importance of a (regularized) constrained zero mode of the pion field for the consistency of the Nambu-Goldstone phase of the discretized light-front linear a/model is demonstrated. Finally, a non-trivial physical vacuum based on the dynamical zero mode is constructed for the two-dimensional light-front quantum electrodynamics. (authors)

  1. Quantization of the Jackiw-Teitelboim model

    International Nuclear Information System (INIS)

    Constantinidis, Clisthenis P.; Piguet, Olivier; Perez, Alejandro

    2009-01-01

    We study the phase space structure of the Jackiw-Teitelboim model in its connection variables formulation where the gauge group of the field theory is given by local SL(2,R)[or SU(2) for the Euclidean model], i.e. the de Sitter group in two dimensions. In order to make the connection with two-dimensional gravity explicit, a partial gauge fixing of the de Sitter symmetry can be introduced that reduces it to space-time diffeomorphisms. This can be done in different ways. Having no local physical degrees of freedom, the reduced phase space of the model is finite dimensional. The simplicity of this gauge field theory allows for studying different avenues for quantization, which may use various (partial) gauge fixings. We show that reduction and quantization are noncommuting operations: the representation of basic variables as operators in a Hilbert space depends on the order chosen for the latter. Moreover, a representation that is natural in one case may not even be available in the other leading to inequivalent quantum theories.

  2. Supersymmetric gauge theories, quantization of M{sub flat}, and conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Teschner, J.; Vartanov, G.S.

    2013-02-15

    We propose a derivation of the correspondence between certain gauge theories with N=2 supersymmetry and conformal field theory discovered by Alday, Gaiotto and Tachikawa in the spirit of Seiberg-Witten theory. Based on certain results from the literature we argue that the quantum theory of the moduli spaces of flat SL(2,R)-connections represents a nonperturbative ''skeleton'' of the gauge theory, protected by supersymmetry. It follows that instanton partition functions can be characterized as solutions to a Riemann-Hilbert type problem. In order to solve it, we describe the quantization of the moduli spaces of flat connections explicitly in terms of two natural sets of Darboux coordinates. The kernel describing the relation between the two pictures represents the solution to the Riemann Hilbert problem, and is naturally identified with the Liouville conformal blocks.

  3. Covariant quantizations in plane and curved spaces

    International Nuclear Information System (INIS)

    Assirati, J.L.M.; Gitman, D.M.

    2017-01-01

    We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)

  4. Covariant quantizations in plane and curved spaces

    Energy Technology Data Exchange (ETDEWEB)

    Assirati, J.L.M. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P.N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil)

    2017-07-15

    We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)

  5. Introduction to quantized LIE groups and algebras

    International Nuclear Information System (INIS)

    Tjin, T.

    1992-01-01

    In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl 2 is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxter equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl 2 algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory

  6. Quantization of Space-like States in Lorentz-Violating Theories

    Science.gov (United States)

    Colladay, Don

    2018-01-01

    Lorentz violation frequently induces modified dispersion relations that can yield space-like states that impede the standard quantization procedures. In certain cases, an extended Hamiltonian formalism can be used to define observer-covariant normalization factors for field expansions and phase space integrals. These factors extend the theory to include non-concordant frames in which there are negative-energy states. This formalism provides a rigorous way to quantize certain theories containing space-like states and allows for the consistent computation of Cherenkov radiation rates in arbitrary frames and avoids singular expressions.

  7. Magnetic resonance of field-frozen and zero-field-frozen magnetic fluids

    International Nuclear Information System (INIS)

    Pereira, A.R.; Pelegrini, F.; Neto, K. Skeff; Buske, N.; Morais, P.C.

    2004-01-01

    In this study magnetic resonance was used to investigate magnetic fluid samples frozen under zero and non-zero (15 kG) external fields. The magnetite-based sample containing 2x10 17 particle/cm 3 was investigated from 100 to 400 K. Analysis of the temperature dependence of the resonance field revealed bigger magnetic structures in the frozen state than in the liquid phase. Also, differences in the mesoscopic organization in the frozen state may explain the data obtained from samples frozen under zero and non-zero fields

  8. Faddeev-Senjanovic quantization of SU(n) N=2 supersymmetric gauge field system with a non-Abelian Chern-Simons topological term and its fractional spin

    International Nuclear Information System (INIS)

    Huang Yongchang; Huo Qiuhong

    2008-01-01

    Using Faddeev-Senjanovic path integral quantization for constrained Hamilton system, we quantize SU(n) N=2 supersymmetric gauge field system with non-Abelian Chern-Simons topological term in 2+1 dimensions. We use consistency of Coulomb gauge condition to naturally deduce a new gauge condition. Furthermore, we obtain the generating functional of Green function in phase space, deduce the angular momentum based on the global canonical Noether theorem at quantum level, obtain the fractional spin of this supersymmetric system, and show that the total angular momentum is the sum of the orbital angular momentum and spin angular momentum of the non-Abelian gauge field. Finally, we obtain the anomalous fractional spin and discover that the fractional spin has the contributions of both the group superscript components and A 0 s (x) charge

  9. Covariant Quantization with Extended BRST Symmetry

    OpenAIRE

    Geyer, B.; Gitman, D. M.; Lavrov, P. M.

    1999-01-01

    A short rewiev of covariant quantization methods based on BRST-antiBRST symmetry is given. In particular problems of correct definition of Sp(2) symmetric quantization scheme known as triplectic quantization are considered.

  10. Depolarization of neutron spin echo by magnetic fluid

    International Nuclear Information System (INIS)

    Achiwa, N.; Sirozu, G.; Nishioka, T.; Ebisawa, T.; Hino, M.; Tasaki, S.; Kawai, T.; Yamazaki, D.

    2001-01-01

    A new method to study the fluctuations of magnetization in magnetic fluids by measuring relations between the phase shift of Larmor precession and the visibility of the neutron spin echo caused by the change of flight path length is studied. Magnetic fluid in which fine particles of magnetite of about 10 nm diameters coated with oleic acid and suspended in water was used. Thickness of the sample was 2 mm. In the dynamics of magnetic fluids, Brownian motions of colloids and the thermal fluctuations of magnetization known as the superparamagnetism are dominant. Isolated ferromagnetic particles of the present size are superparamagnetic but they aggregate to form clusters in a weak magnetic field in the sample of 40% weight density. When neutrons pass the sample, spins process in the magnetic flux density of the clusters fluctuating in time and space. Consequently the Larmor precession phases become distributed and the quantization axes are fluctuated. The result is observed as a decrease of the visibility of the spin echo signals. The change of magnetic flux density in the magnetic fluid is measured from the change of echo visibility of the neutrons, vice versa. In the present experiment, echo was measured at q=0. It is observed that the phase shift changes as a quadratic function of the sample angle reflecting the change of the path length through the sample. Since the number of Larmor precession is proportional to the product of the magnetic field and the length of the flight path, mean flux density in the magnetic fluid is calculated from the phase shift. On the other hand, the decrease of the spin echo amplitude as the function of the sample angle reflects the time and space fluctuations of the flux density in the sample. If the direction of the magnetic flux density vector (quantization axis) changes slowly enough compared to the Larmor precession period while a neutron passes one magnetic domain, the neutron spin rotation in the domain is given by the spin

  11. Self-generation of magnetic fields

    International Nuclear Information System (INIS)

    Dolan, T.J.

    2000-01-01

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  12. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  13. Mathematical quantization

    CERN Document Server

    Weaver, Nik

    2001-01-01

    With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a variety of topics.Detailed here for the first time, the fundamental idea of mathematical quantization is that sets are replaced by Hilbert spaces. Building on this idea, and most importantly on the fact that scalar-valued functions on a set correspond to operators on a Hilbert space, one can determine quantum analogs of a variety of classical structures. In particular, because topologies and measure classes on a set can be treated in terms of scalar-valued functions, we can transfer these constructions to the quantum realm, giving rise to C*- and von Neumann algebras.In the first half of the book, the author quickly builds the operator algebra setting. He uses this ...

  14. q-Derivatives, quantization methods and q-algebras

    International Nuclear Information System (INIS)

    Twarock, Reidun

    1998-01-01

    Using the example of Borel quantization on S 1 , we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number τ. This extension is denoted as quasi-crystal Lie algebra, because this is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed

  15. Covarient quantization of heterotic strings in supersymmetric chiral boson formulation

    International Nuclear Information System (INIS)

    Yu, F.

    1992-01-01

    This dissertation presents the covariant supersymmetric chiral boson formulation of the heterotic strings. The main feature of this formulation is the covariant quantization of the so-called leftons and rightons -- the (1,0) supersymmetric generalizations of the world-sheet chiral bosons -- that constitute basic building blocks of general heterotic-type string models. Although the (Neveu-Schwarz-Ramond or Green-Schwarz) heterotic strings provide the most realistic string models, their covariant quantization, with the widely-used Siegel formalism, has never been rigorously carried out. It is clarified in this dissertation that the covariant Siegel formalism is pathological upon quantization. As a test, a general classical covariant (NSR) heterotic string action that has the Siegel symmetry is constructed in arbitrary curved space-time coupled to (1,0) world-sheet super-gravity. In the light-cone gauge quantization, the critical dimensions are derived for such an action with leftons and rightons compactified on group manifolds G L x G R . The covariant quantization of this action does not agree with the physical results in the light-cone gauge quantization. This dissertation establishes a new formalism for the covariant quantization of heterotic strings. The desired consistent covariant path integral quantization of supersymmetric chiral bosons, and thus the general (NSR) heterotic-type strings with leftons and rightons compactified on torus circle-times d L S 1 x circle-times d R S 1 are carried out. An infinite set of auxiliary (1,0) scalar superfields is introduced to convert the second-class chiral constraint into first-class ones. The covariant gauge-fixed action has an extended BRST symmetry described by the graded algebra GL(1/1). A regularization respecting this symmetry is proposed to deal with the contributions of the infinite towers of auxiliary fields and associated ghosts

  16. Angular momentum, g-value, and magnetic flux of gyration states

    International Nuclear Information System (INIS)

    Arunasalam, V.

    1991-10-01

    Two of the world's leading (Nobel laureate) physicists disagree on the definition of the orbital angular momentum L of the Landau gyration states of a spinless charged particle in a uniform external magnetic field B = B i Z . According to Richard P. Feynman (and also Frank Wilczek) L = (rxμv) = rx(p - qA/c), while Felix Bloch (and also Kerson Huang) defines it as L = rxp. We show here that Bloch's definition is the correct one since it satisfies the necessary and sufficient condition LxL = iℎ L, while Feynman's definition does not. However, as a consequence of the quantized Aharonov-Bohm magnetic flux, this canonical orbital angular momentum (surprisingly enough) takes half-odd-integral values with a zero-point gyration states of L Z = ℎ/2. Further, since the diamagnetic and the paramagnetic contributions to the magnetic moment are interdependent, the g-value of these gyration states is two and not one, again a surprising result for a spinless case. The differences between the gauge invariance in classical and quantum mechanics, Onsager's suggestion that the flux quantization might be an intrinsic property of the electromagnetic field-charged particle interaction, the possibility that the experimentally measured fundamental unit of the flux quantum need not necessarily imply the existence of ''electron pairing'' of the Bardeen-Cooper-Schrieffer superconductivity theory, and the relationship to the Dirac's angular momentum quantization condition for the magnetic monopole-charged particle composites (i.e. Schwinger's dyons), are also briefly examined from a pedestrian viewpoint

  17. The Population Inversion and the Entropy of a Moving Two-Level Atom in Interaction with a Quantized Field

    Science.gov (United States)

    Abo-Kahla, D. A. M.; Abdel-Aty, M.; Farouk, A.

    2018-05-01

    An atom with only two energy eigenvalues is described by a two-dimensional state space spanned by the two energy eigenstates is called a two-level atom. We consider the interaction between a two-level atom system with a constant velocity. An analytic solution of the systems which interacts with a quantized field is provided. Furthermore, the significant effect of the temperature on the atomic inversion, the purity and the information entropy are discussed in case of the initial state either an exited state or a maximally mixed state. Additionally, the effect of the half wavelengths number of the field-mode is investigated.

  18. On quantization of relativistic string theory

    International Nuclear Information System (INIS)

    Isaev, A.P.

    1982-01-01

    Quantization of the relativistic string theory based on methods of the constrained Hamiltonian systems quantization is considered. Connections of this approach and Polyakov's quantization are looked. New representation of a loop heat kernel is obtained

  19. A C*-algebra formulation of the quantization of the electromagnetic field

    International Nuclear Information System (INIS)

    Carey, A.L.; Gaffney, J.M.; Hurst, C.A.

    1977-01-01

    A presentation of the Fermi, Gupta--Bleuler, and radiation gauge methods for quantizing the free electromagnetic field is given in the Weyl algebra formalism for quantum field theory first introduced by Segal. The abstract Weyl algebra of the vector potential is defined using the formalism of Manuceau. Then the Fermi and Gupta--Bleuler methods are given as schemes for constructing representations of the algebra. The algebra of the physical photons is shown to be a factor algebra of a certain subalgebra of the original algebra of the vector potential. In this formalism, the application of the supplementary condition in the Fermi method, and the supplementary condition and indefinite metric in the Gupta--Bleuler method, can be interpreted as the means by which a representation of this factor algebra is obtained. The Weyl algebra of the physical photons is the Weyl algebra associated with the radiation gauge method. It is also shown that in the Fock representation of the Weyl algebra given by the Fermi method, automorphisms of the algebra corresponding to Lorentz transformations cannot always be implemented by unitary transformations. This leads us to construct a new representation of the Weyl algebra which provides a covariant representation for the vector potential

  20. Theoretical study of in-plane response of magnetic field sensor to magnetic beads magnetized by the sensor self-field

    DEFF Research Database (Denmark)

    Hansen, Troels Borum Grave; Damsgaard, Christian Danvad; Dalslet, Bjarke Thomas

    2010-01-01

    We present a theoretical study of the spatially averaged in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead, a monolayer of magnetic beads, and a half-space filled with magnetic beads being magnetized by the magnetic self-field due to the applied...... bias current through the sensor. The analysis of the single bead response shows that beads always contribute positively to the average magnetic field as opposed to the case for an applied homogeneous magnetic field where the sign of the signal depends on the bead position. General expressions...... and analytical approximations are derived for the sensor response to beads as function of the bead distribution, the bias current, the geometry and size of the sensor, and the bead characteristics. Consequences for the sensor design are exemplified and it is described how the contribution from the self...

  1. Perturbation theory in angular quantization approach and the expectation values of exponential fields in sine-Gordon model

    International Nuclear Information System (INIS)

    Poghossian, R.H.

    2000-01-01

    In an angular quantization approach a perturbation theory for the Massive Thirring Model (MTM) is developed, which allows us to calculate vacuum expectation values of exponential fields in sine-Gordon theory near the free fermion point in first order of the MTM coupling constant g. The Hankel transforms play an important role when carrying out these calculations. The expression we have found coincides with that of the direct expansion over g of the exact formula conjectured by Lukyanov and Zamolodchikov

  2. A quantization scheme for scale-invariant pure gauge theories

    International Nuclear Information System (INIS)

    Hortacsu, M.

    1988-01-01

    A scheme is suggested for the quantization of the recently proposed scale-invariant gauge theories in higher dimensions. The model is minimally coupled to a spinor field. Regularization algorithms are proposed. (orig.)

  3. Visibility of wavelet quantization noise

    Science.gov (United States)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  4. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  5. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  6. Magnetic field driven domain-wall propagation in magnetic nanowires

    International Nuclear Information System (INIS)

    Wang, X.R.; Yan, P.; Lu, J.; He, C.

    2009-01-01

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  7. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  8. Cosmological magnetic fields - V

    Indian Academy of Sciences (India)

    Magnetic fields seem to be everywhere that we can look in the universe, from our own ... The field tensor is observer-independent, while the electric and magnetic .... based on string theory [11], in which vacuum fluctuations of the field are ...

  9. Quantization rules for strongly chaotic systems

    International Nuclear Information System (INIS)

    Aurich, R.; Bolte, J.

    1992-09-01

    We discuss the quantization of strongly chaotic systems and apply several quantization rules to a model system given by the unconstrained motion of a particle on a compact surface of constant negative Gaussian curvature. We study the periodic-orbit theory for distinct symmetry classes corresponding to a parity operation which is always present when such a surface has genus two. Recently, several quantization rules based on periodic orbit theory have been introduced. We compare quantizations using the dynamical zeta function Z(s) with the quantization condition cos(π N(E)) = 0, where a periodix-orbit expression for the spectral staircase N(E) is used. A general discussion of the efficiency of periodic-orbit quantization then allows us to compare the different methods. The system dependence of the efficiency, which is determined by the topological entropy τ and the mean level density anti d(E), is emphasized. (orig.)

  10. High-field superferric MR magnet

    International Nuclear Information System (INIS)

    Huson, F.R.; Carcagno, R.; Colvin, J.

    1987-01-01

    Current large-bore (>20 cm), high-field (2-T) MR magnets have major implementation disadvantages, mostly related to the extensive stray field of traditional air-core superconducting magnets. To circumvent this problem, the authors designed, constructed, and tested a 30-cm prototype superconducting, self-shielded, high field magnet. This unshimmed superferric magnet can operate between 0.5 and 4 T with a field quality of about one part per million over one quarter of its aperture. The magnet can be ramped from one field strength to another in approximately 10 minutes. The 5-Gauss line extends less than 1 meter outside the magnet structure. Further details, including MR measurements and images, are demonstrated, as well as 1-meter bore scale-up projections

  11. Magnetic field and magnetic isotope effects on photochemical reactions

    International Nuclear Information System (INIS)

    Wakasa, Masanobu

    1999-01-01

    By at present exact experiments and the theoretical analysis, it was clear that the magnetic field less than 2 T affected a radical pair reaction and biradical reaction. The radical pair life and the dissipative radical yield showed the magnetic field effects on chemical reactions. The radical pair mechanism and the triplet mechanism were known as the mechanism of magnetic field effects. The radical pair mechanism consists of four mechanisms such as the homogeneous hyperfine interaction (HFC), the delta-g mechanism, the relaxation mechanism and the level cross mechanism. In order to observe the magnetic effects of the radical pair mechanism, two conditions need, namely, the recombination rate of singlet radical pair > the dissipation rate and the spin exchange rate > the dissipation rate. A nanosecond laser photo-decomposition equipment can observe the magnetic field effects. The inversion phenomena of magnetic field effect, isolation of the relaxation mechanism and the delta-g mechanism, the magnetic field effect of heavy metal radical reaction, the magnetic field effect in homogeneous solvent, saturation of delta-g mechanism are explained. The succeeded examples of isotope concentration by the magnetic isotope effect are 17 O, 19 Si, 33 S, 73 Ge and 235 U. (S.Y.)

  12. The Capacitive Magnetic Field Sensor

    Science.gov (United States)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  13. High magnetic field MRI system

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Urata, Masami; Satoh, Kozo

    1990-01-01

    A high field superconducting magnet, 4-5 T in central magnetic field, is required for magnetic resonance spectroscopic imaging (MRSI) on 31 P, essential nuclei for energy metabolism of human body. This paper reviews superconducting magnets for high field MRSI systems. Examples of the cross-sectional image and the spectrum of living animals are shown in the paper. (author)

  14. Magnetic resonance imaging: effects of magnetic field strength

    International Nuclear Information System (INIS)

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-01-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields

  15. On a Canonical Quantization of 3D Anti de Sitter Pure Gravity

    CERN Document Server

    Kim, Jihun

    2015-10-14

    We perform a canonical quantization of pure gravity on AdS3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,R)xSL(2,R). We first quantize the theory canonically on an asymptotically AdS space --which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kaehler quantization of Teichmuller space. After explicitly computing the Kaehler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,R) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous sp...

  16. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  17. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

    Energy Technology Data Exchange (ETDEWEB)

    Butko, Yana A., E-mail: yanabutko@yandex.ru, E-mail: kinderknecht@math.uni-sb.de [Bauman Moscow State Technical University, 2nd Baumanskaya street, 5, Moscow 105005, Russia and University of Saarland, Postfach 151150, D-66041 Saarbrücken (Germany); Grothaus, Martin, E-mail: grothaus@mathematik.uni-kl.de [University of Kaiserslautern, 67653 Kaiserslautern (Germany); Smolyanov, Oleg G., E-mail: Smolyanov@yandex.ru [Lomonosov Moscow State University, Vorob’evy gory 1, Moscow 119992 (Russian Federation)

    2016-02-15

    Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures.

  18. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

    International Nuclear Information System (INIS)

    Butko, Yana A.; Grothaus, Martin; Smolyanov, Oleg G.

    2016-01-01

    Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures

  19. Dirac vacuum: Acceleration and external-field effects

    International Nuclear Information System (INIS)

    Jauregui, R.; Torres, M.; Hacyan, S.

    1991-01-01

    The quantization of the massive spin-1/2 field in Rindler coordinates is considered, including the effects of a background magnetic field. We calculate the expectation values of conserved quantities such as the stress-energy tensor, current density, and spin distribution, as detected by an accelerated observer. The ratio of the energy and particle densities is given by a Fermi-Dirac distribution, but the spectrum of these quantities takes in general a complicated form that cannot be simply interpreted as a thermal spectrum. For the free-particle case the spectrum of the energy-stress tensor has a Fermi-Dirac form only in the massless limit. In the presence of the magnetic field the Dirac vacuum is magnetized and exhibits plasmalike properties

  20. arXiv The prototype of the HL-LHC magnets monitoring system based on Recurrent Neural Networks and adaptive quantization

    CERN Document Server

    Wielgosz, Maciej; Skoczeń, Andrzej

    This paper focuses on an examination of an applicability of Recurrent Neural Network models for detecting anomalous behavior of the CERN superconducting magnets. In order to conduct the experiments, the authors designed and implemented an adaptive signal quantization algorithm and a custom GRU-based detector and developed a method for the detector parameters selection. Three different datasets were used for testing the detector. Two artificially generated datasets were used to assess the raw performance of the system whereas the 231 MB dataset composed of the signals acquired from HiLumi magnets was intended for real-life experiments and model training. Several different setups of the developed anomaly detection system were evaluated and compared with state-of-the-art OC-SVM reference model operating on the same data. The OC-SVM model was equipped with a rich set of feature extractors accounting for a range of the input signal properties. It was determined in the course of the experiments that the detector, a...

  1. Gauge invariance and fractional quantized Hall effect

    International Nuclear Information System (INIS)

    Tao, R.; Wu, Y.S.

    1984-01-01

    It is shown that gauge invariance arguments imply the possibility of fractional quantized Hall effect; the Hall conductance is accurately quantized to a rational value. The ground state of a system showing the fractional quantized Hall effect must be degenerate; the non-degenerate ground state can only produce the integral quantized Hall effect. 12 references

  2. Inter plane coupling and magnetic properties in a high Tc superconductor

    International Nuclear Information System (INIS)

    Malacarne, L.C.; Mendes, R.S.; Veroneze, P.R.

    1997-01-01

    We investigate if besides an increasing in T c , an interaction favoring pair tunneling reproduces some characteristic properties of the superconductors, in the presence of a magnetic field. With this objective, we use a sufficiently simple Hamiltonian which maintains the main qualitative aspects of the inter plane interaction through pairs. We also apply an functional integration method for obtaining the Landau-Ginzburg (L G) equations in presence of magnetic field. From these equations, we verify that the applied model presents the properties expected for a superconductor, e.g. magnetic flux quantization, Meissner effect and possible existence of vortex and vortex lattice

  3. Deep Learning Policy Quantization

    NARCIS (Netherlands)

    van de Wolfshaar, Jos; Wiering, Marco; Schomaker, Lambertus

    2018-01-01

    We introduce a novel type of actor-critic approach for deep reinforcement learning which is based on learning vector quantization. We replace the softmax operator of the policy with a more general and more flexible operator that is similar to the robust soft learning vector quantization algorithm.

  4. Magnetic fields in cosmology

    International Nuclear Information System (INIS)

    Madsen, M.S.

    1989-01-01

    The possible role of a large-scale relic magnetic field in the history of the Universe is considered. The perturbation of the cosmic microwave back-ground radiation on large angular scales due to a homogeneous magnetic field is estimated in a simple relativistic model. This allows corresponding limits to be placed on the magnitude of any such large-scale relic magnetic field at the present time. These limits are essentially the strongest which can be set on the largest scales. A corresponding bound is obtained by use of the requirement that the field should not spoil the predictions of primordial nucleosynthesis. It is noted that the existence of large-scale cosmic magnetic fields would circumvent the limits previously set - also on the basis of nucleosynthesis considerations - on the large-scale anisotropy now present in the Universe. (author)

  5. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  6. Quantum Computing and Second Quantization

    International Nuclear Information System (INIS)

    Makaruk, Hanna Ewa

    2017-01-01

    Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.

  7. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  8. Background field quantization in non-covariant gauges: Renormalization and WTST identities

    International Nuclear Information System (INIS)

    McKeon, G.; Phillips, S.B.; Samant, S.S.; Sherry, T.N.

    1986-01-01

    Background field quantization of pure YM theories in non-covariant gauges is treated with particular emphasis on renormalization. Gauge fixing terms of the form (1/2α)n . Qsup(a)fsup(ab)n . Qsup(b) are considered where fsup(ab) can assume the forms fsup(ab)sub((i))=-deltasup(ab) (the axial gauge), fsup(ab)sub((ii))=(n . D(A))sup(2ab)/n 4 and fsup(ab)sub((iii))=D 2 (A)sup(ab)/n 2 (the planar gauge). For the cases where fsup(ab) depends explicitly on the background field Asub(μ)sup(a) the ghost sector is enlarged by the addition of appropriate Nielson-Kallosh ghost fields. The BRS identities for these gauge choices are derived and solved. The quantum-corrected versions of both the bare background field gauge transformations and the bare quantum field gauge transformations are obtained from the BRS analysis. It is also shown that, to one loop, all the counter terms are determined by the background field independent part of the theory and this result is used, in cases (ii) and (iii), to derive all the counter terms and to show that Kallosh's theorem is verified. The result is also used to demonstrate the pathological nature of case (i) for αnot=0, in particular the result that Kallosh's theorem is not applicable. The result that the generating functional of Green functions is independent of the background field Asub(μ)sup(a) in the absence of all external sources is generalized to the case of non-covariant gauges. The equality established by Abbott between the 1PI generating functionals GAMMA tilde[A,0] and GAMMAsub(c)[anti Q; A] sub(anti Q=A), where GAMMAsub(c) is a conventional generating functional in an A-dependent gauge, is analysed. We show that the WTST identities satisfied by GAMMAsub(c) reduce, when anti Q is set equal to A, to the naive Ward-identity satisfied by GAMMA tilde[A,0]. (orig.)

  9. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  10. Uniqueness of the Fock quantization of the Gowdy T3 model

    International Nuclear Information System (INIS)

    Cortez, Jeronimo; Marugan, Guillermo A. Mena; Velhinho, Jose M.

    2007-01-01

    After its reduction by a gauge-fixing procedure, the family of linearly polarized Gowdy T 3 cosmologies admits a scalar field description whose evolution is governed by a Klein-Gordon type equation in a flat background in 1+1 dimensions with the spatial topology of S 1 , though in the presence of a time-dependent potential. The model is still subject to a homogeneous constraint, which generates S 1 -translations. Recently, a Fock quantization of this scalar field was introduced and shown to be unique under the requirements of unitarity of the dynamics and invariance under the gauge group of S 1 -translations. In this work, we extend and complete this uniqueness result by considering other possible scalar field descriptions, resulting from reasonable field reparametrizations of the induced metric of the reduced model. In the reduced phase space, these alternate descriptions can be obtained by means of a time-dependent scaling of the field, the inverse scaling of its canonical momentum, and the possible addition of a time-dependent, linear contribution of the field to this momentum. Demanding again unitarity of the field dynamics and invariance under the gauge group, we prove that the alternate canonical pairs of fieldlike variables admit a Fock representation if and only if the scaling of the field is constant in time. In this case, there exists essentially a unique Fock representation, provided by the quantization constructed by Corichi, Cortez, and Mena Marugan. In particular, our analysis shows that the scalar field description proposed by Pierri does not admit a Fock quantization with the above unitarity and invariance properties

  11. Magnetic field dependent atomic tunneling in non-magnetic glasses

    International Nuclear Information System (INIS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-01-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field

  12. Magnetic field dependent atomic tunneling in non-magnetic glasses

    Science.gov (United States)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  13. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.

    2000-01-01

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  14. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  15. Studies in geometric quantization

    International Nuclear Information System (INIS)

    Tuynman, G.M.

    1988-01-01

    This thesis contains five chapters, of which the first, entitled 'What is prequantization, and what is geometric quantization?', is meant as an introduction to geometric quantization for the non-specialist. The second chapter, entitled 'Central extensions and physics' deals with the notion of central extensions of manifolds and elaborates and proves the statements made in the first chapter. Central extensions of manifolds occur in physics as the freedom of a phase factor in the quantum mechanical state vector, as the phase factor in the prequantization process of classical mechanics and it appears in mathematics when studying central extension of Lie groups. In this chapter the connection between these central extensions is investigated and a remarkable similarity between classical and quantum mechanics is shown. In chapter three a classical model is given for the hydrogen atom including spin-orbit and spin-spin interaction. The method of geometric quantization is applied to this model and the results are discussed. In the final chapters (4 and 5) an explicit method to calculate the operators corresponding to classical observables is given when the phase space is a Kaehler manifold. The obtained formula are then used to quantise symplectic manifolds which are irreducible hermitian symmetric spaces and the results are compared with other quantization procedures applied to these manifolds (in particular to Berezin's quantization). 91 refs.; 3 tabs

  16. Electron dynamics in inhomogeneous magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, Alain, E-mail: A.R.Nogaret@bath.ac.u [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-06-30

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. (topical review)

  17. Magnetic monopole solution in non-Abelian gauge theory

    International Nuclear Information System (INIS)

    Hietarinta, J.; Takasugi, E.; Tanaka, K.

    1976-01-01

    An approximate analytic solution of the equations of motion of the 't Hooft magnetic monopole model is proposed. Virial type global tests are carried out for the solution. Then, the monopole mass, energies of the vector field A/sub mu/sup a/, Higgs field phi/sup a/ and interaction are computed in closed form. The form factors of A/sub i/sup a/ and phi/sup a/ in a quantized version are also calculated

  18. The Juno Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-11-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  19. Quantization of scalar-spinor instanton

    International Nuclear Information System (INIS)

    Inagaki, H.

    1977-04-01

    A systematic quantization to the scalar-spinor instanton is given in a canonical formalism of Euclidean space. A basic idea is in the repair of the symmetries of the 0(5) covariant system in the presence of the instanton. The quantization of the fermion is carried through in such a way that the fermion number should be conserved. Our quantization enables us to get well-defined propagators for both the scalar and the fermion, which are free from unphysical poles

  20. Quantization Procedures; Sistemas de cuantificacion

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, J. A.; Martin, R.

    1976-07-01

    We present in this work a review of the conventional quantization procedure, the proposed by I.E. Segal and a new quantization procedure similar to this one for use in non linear problems. We apply this quantization procedures to different potentials and we obtain the appropriate equations of motion. It is shown that for the linear case the three procedures exposed are equivalent but for the non linear cases we obtain different equations of motion and different energy spectra. (Author) 16 refs.

  1. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  2. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  3. Another scheme for quantization of scale invariant gauge theories

    International Nuclear Information System (INIS)

    Hortacsu, M.

    1987-10-01

    A new scheme is proposed for the quantization of scale invariant gauge theories for all even dimensions when they are minimally coupled to a spinor field. A cut-off procedure suggests an algorithm which may regularize the theory. (author). 10 refs

  4. Quantization of Robertson-Walker geometry coupled to fermionic matter

    International Nuclear Information System (INIS)

    Christodoulakis, T.; Zanelli, J.

    1983-06-01

    A Robertson-Walker universe coupled to a spin 1/2 Dirac field is quantized following Dirac's formalism for constrained Hamiltonian systems. It is found that in nearly all cases it can be asserted that the universe avoids the collapse. (author)

  5. Magnetization of neutron star matter and implications in physics of soft gamma repeaters

    Energy Technology Data Exchange (ETDEWEB)

    Kondratyev, V N [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-01-01

    The magnetization of neutron star matter is considered within the thermodynamic formalism. The quantization effects are demonstrated to result in sharp abrupt magnetic field dependence of nuclide magnetic moments. Accounting for inter-nuclide magnetic coupling we show that such anomalies give rise to erratic jumps in magnetotransport of neutron star crusts. The properties of such a noise are favorably compared with burst statistics of Soft Gamma Repeaters. PACS: 97.60.Jd, 21.10.Dr, 26.60.+c, 95.30.Ky. (author)

  6. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  7. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  8. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  9. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  10. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  11. Controlling magnetic field profiles

    International Nuclear Information System (INIS)

    Freeman, J.R.

    1979-04-01

    A method for designing solenoid magnets with controlled field profiles is discussed. The method, originated by D.B. Montgomery, minimizes both the field errors and the power consumption. An NOS time-sharing computer program for the CDC-6600, entitled MAGCOR, was constructed to provide an interactive magnet design capability. Results obtained during the design of magnets for a radial line electron accelerator are presented. 9 figures

  12. Field dependent shape variation of magnetic fluid droplets on magnetic dots

    International Nuclear Information System (INIS)

    Lee, Chiun-Peng; Yang, Shu-Ting; Wei, Zung-Hang

    2012-01-01

    The morphology of magnetic fluid droplets on magnetic thin film dots is studied experimentally, including the aspect ratio and the contact angle variation of the droplets. Under a uniform external magnetic field, the droplet's aspect ratio increases with the external field and with the diameter of the magnetic dot due to the concentrated magnetic flux inside the magnetic fluid droplet. Similar to the electrical wetting phenomenon, the induced magnetic dipoles in the magnetic film and in the magnetic fluid near the solid–liquid interface change the solid–liquid interfacial tension, and in consequence reduce the apparent contact angle of the magnetic fluid droplet. - Highlights: ► Morphology of ferrofluid droplets on magnetic thin film dots was studied experimentally. ► Aspect ratio of ferrofluid droplets was found to increase with increasing of magnetic field. ► Liquid–solid contact angle of ferrofluid droplets was found to vary with magnetic field. ► Relationship between magnetic field and the liquid–solid interfacial tension was modeled.

  13. Theory of the Knight Shift and Flux Quantization in Superconductors

    Science.gov (United States)

    Cooper, L. N.; Lee, H. J.; Schwartz, B. B.; Silvert, W.

    1962-05-01

    Consequences of a generalization of the theory of superconductivity that yields a finite Knight shift are presented. In this theory, by introducing an electron-electron interaction that is not spatially invariant, the pairing of electrons with varying total momentum is made possible. An expression for Xs (the spin susceptibility in the superconducting state) is derived. In general Xs is smaller than Xn, but is not necessarily zero. The precise magnitude of Xs will vary from sample to sample and will depend on the nonuniformity of the samples. There should be no marked size dependence and no marked dependence on the strength of the magnetic field; this is in accord with observation. The basic superconducting properties are retained, but there are modifications in the various electromagnetic and thermal properties since the electrons paired are not time sequences of this generalized theory on flux quantization arguments are presented.(auth)

  14. Surface magnetic field measurement with magnetic shielding

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Roč. 61, č. 7 (2010), 66-68 ISSN 1335-3632 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  15. Using axial magnetized permanent rings to build axial gradient magnetic field

    International Nuclear Information System (INIS)

    Peng Quanling

    2003-01-01

    Axial field produced by an axially magnetized permanent ring was studied. For two permanent magnet rings, if they are magnetized in the same direction, a nearly uniform axial field can be produced; if they are magnetized in opposite direction, an axial gradient field can be produced in the region between the two permanent rings, with the field strength changing from -B 0 to B 0 . A high gradient axial magnetic field has been built by using two axially magnetized permanent rings, the measured field results agree with the PANDIRA calculation very well. It is desirable that the field gradient can be varied to match various requirements. A method to produce the variable gradient field is presented. Axial gradient field can also be used as a beam focusing facility for linear accelerator if axial periodic field can be produced. Its magnetic field is similar to that of a solenoid, in which, large stray field will leak to the outside environment. A method for shielding the outside stray field is discussed

  16. Stochastic quantization and 1/N expansion

    International Nuclear Information System (INIS)

    Brunelli, J.C.; Mendes, R.S.

    1992-10-01

    We study the 1/N expansion of field theories in the stochastic quantization method of Parisi and Wu using the supersymmetric functional approach. This formulation provides a systematic procedure to implement the 1/N expansion which resembles the ones used in the equilibrium. The 1/N perturbation theory for the non linear sigma model in two dimensions is worked out as an example. (author). 19 refs., 5 figs

  17. The dynamic behavior of magnetic fluid adsorbed to small permanent magnet in alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.j [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Asano, Daisaku [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Takana, Hidemasa; Nishiyama, Hideya [Institute of Fluid Science, Tohoku University, Katahira 2-1-1, Aobaku, Sendai 980-8577 (Japan)

    2011-05-15

    The dynamic behavior of a magnetic fluid adsorbed to a small NdFeB permanent magnet subjected to an alternating magnetic field was studied with a high speed video camera system. The directions of alternating magnetic field are parallel and opposite to that of the permanent magnet. It was found that the surface of magnetic fluid responds to the external alternating magnetic field in elongation and contraction with a lot of spikes. Generation of a capillary magnetic fluid jet was observed in the neighbourhood of a specific frequency of alternating field. The effect of gravitational force on surface phenomena of magnetic fluid adsorbed to the permanent magnet was revealed. - Research Highlights: Magnetic fluid of the system responds to alternating magnetic field with higher frequencies. Large-amplitude surface motions of magnetic fluid occur at the specific frequencies of the external field. Capillary jets of magnetic fluid are generated at the natural frequency of the system.

  18. TFTR magnetic field design analyses

    International Nuclear Information System (INIS)

    Davies, K.; Iwinski, E.; McWhirter, J.M.

    1975-11-01

    The three main magnetic field windings for the TFTR are the toroidal field (TF) windings, the ohmic heating (OH) winding, and the equilibrium field (EF) winding. The following information is provided for these windings: (1) descriptions, (2) functions, (3) magnetic designs, e.g., number and location of turns, (4) design methods, and (5) descriptions of resulting magnetic fields. This report does not deal with the thermal, mechanical support, or construction details of the windings

  19. p-brane dyons and electric-magnetic duality

    International Nuclear Information System (INIS)

    Deser, S.; Henneaux, M.; Teitelboim, C.

    1998-01-01

    We discuss dyons, charge quantization and electric-magnetic duality for self-interacting, abelian, p-form theories in the space-time dimensions D=2(p+1) where dyons can be present. The corresponding quantization conditions and duality properties are strikingly different depending on whether p is odd or even. If p is odd one has the familiar e anti g-g anti e=2πnℎ, whereas for even p one finds the opposite relative sign, e anti g+g anti e=2πnℎ. These conditions are obtained by introducing Dirac strings and taking due account of the multiple connectedness of the configuration space of the strings and the dyons. A two-potential formulation of the theory that treats the electric and magnetic sources on the same footing is also given. Our results hold for arbitrary gauge invariant self-interaction of the fields and are valid irrespective of their duality properties. (orig.)

  20. Investigations on magnetic field induced optical transparency in magnetic nanofluids

    Science.gov (United States)

    Mohapatra, Dillip Kumar; Philip, John

    2018-02-01

    We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.

  1. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  2. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  3. Satellite to study earth's magnetic field

    Science.gov (United States)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  4. Canonical group quantization and boundary conditions

    International Nuclear Information System (INIS)

    Jung, Florian

    2012-01-01

    In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.

  5. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....

  6. Tensor products of quantized tilting modules

    International Nuclear Information System (INIS)

    Andersen, H.H.

    1992-01-01

    Let U k denote the quantized enveloping algebra corresponding to a finite dimensional simple complex Lie algebra L. Assume that the quantum parameter is a root of unity in k of order at least the Coxeter number for pound. Also assume that this order is odd and not divisible by 3 if type G 2 occurs. We demonstrate how one can define a reduced tensor product on the family F consisting of those finite dimensional simple U k -modules which are deformations of simple L-modules and which have non-zero quantum dimension. This together with the work of Reshetikhin-Turaev and Turaev-Wenzl prove that (U k , F) is a modular Hopf algebra and hence produces invariants of 3-manifolds. Also by recent work of Duurhus, Jakobsen and Nest it leads to a general topological quantum field theory. The method of proof explores quantized analogues of tilting modules for algebraic groups. (orig.)

  7. Observing Interstellar and Intergalactic Magnetic Fields

    Science.gov (United States)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  8. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields

    Science.gov (United States)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-03-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other

  9. Mixed quantization dimensions of self-similar measures

    International Nuclear Information System (INIS)

    Dai Meifeng; Wang Xiaoli; Chen Dandan

    2012-01-01

    Highlights: ► We define the mixed quantization dimension of finitely many measures. ► Formula of mixed quantization dimensions of self-similar measures is given. ► Illustrate the behavior of mixed quantization dimension as a function of order. - Abstract: Classical multifractal analysis studies the local scaling behaviors of a single measure. However recently mixed multifractal has generated interest. The purpose of this paper is some results about the mixed quantization dimensions of self-similar measures.

  10. Five years of magnetic field management

    International Nuclear Information System (INIS)

    Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

    1995-01-01

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors' experiences and shows the results of the specific projects completed in recent years

  11. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-03-01

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  12. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  13. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  14. Study on magnetic field mapping within cylindrical center volume of general magnet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of)

    2016-06-15

    For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace's equation in the cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line (PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.

  15. Fuzzy spheres from inequivalent coherent states quantizations

    International Nuclear Information System (INIS)

    Gazeau, Jean Pierre; Huguet, Eric; Lachieze-Rey, Marc; Renaud, Jacques

    2007-01-01

    The existence of a family of coherent states (CS) solving the identity in a Hilbert space allows, under certain conditions, to quantize functions defined on the measure space of CS parameters. The application of this procedure to the 2-sphere provides a family of inequivalent CS quantizations based on the spin spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue for the Cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to these differences, our procedure yields new types of fuzzy spheres. Moreover, the general applicability of CS quantization suggests similar constructions of fuzzy versions of a large variety of sets

  16. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  17. Hypernuclear matter in strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-17

    Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.

  18. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  19. New approaches for searching for the Dirac magnetic monopole

    International Nuclear Information System (INIS)

    Kukhtin, V.V.; Krivokhizhin, V.G.; Stetsenko, S.G.; Cheplakov, A.P.

    2012-01-01

    Three new approaches, not applied earlier, are proposed to search for the Dirac monopole - an object whose existence was proposed by P.Dirac more than 80 years ago to explain the electrical charge quantization. The first approach assumes that the monopole must be accelerated by a magnetic field, and such acceleration is constant in the magnetic field which is homogeneous and constant. The conclusion about the object movement nature can be drawn by measuring the time marks for equidistant registering planes. The second approach is supposed to reconstruct the movement trajectory in the homogeneous and permanent electrical field, which is the circle or its part for the magnetic monopole. The third approach is based on the constancy of energy losses by Dirac monopole due to medium ionization in the multilayer passive dielectric tracking detectors placed in the homogeneous and permanent electrical field

  20. A family of quantization based piecewise linear filter networks

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    1992-01-01

    A family of quantization-based piecewise linear filter networks is proposed. For stationary signals, a filter network from this family is a generalization of the classical Wiener filter with an input signal and a desired response. The construction of the filter network is based on quantization...... of the input signal x(n) into quantization classes. With each quantization class is associated a linear filter. The filtering at time n is carried out by the filter belonging to the actual quantization class of x(n ) and the filters belonging to the neighbor quantization classes of x(n) (regularization......). This construction leads to a three-layer filter network. The first layer consists of the quantization class filters for the input signal. The second layer carries out the regularization between neighbor quantization classes, and the third layer constitutes a decision of quantization class from where the resulting...

  1. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    International Nuclear Information System (INIS)

    Parker, E.N.

    1987-01-01

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case the phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references

  2. Canonical group quantization and boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Florian

    2012-07-16

    In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.

  3. Context quantization by minimum adaptive code length

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Wu, Xiaolin

    2007-01-01

    Context quantization is a technique to deal with the issue of context dilution in high-order conditional entropy coding. We investigate the problem of context quantizer design under the criterion of minimum adaptive code length. A property of such context quantizers is derived for binary symbols....

  4. Hamiltonian theories quantization based on a probability operator

    International Nuclear Information System (INIS)

    Entral'go, E.E.

    1986-01-01

    The quantization method with a linear reflection of classical coordinate-momentum-time functions Λ(q,p,t) at quantum operators in a space of quantum states ψ, is considered. The probability operator satisfies a system of equations representing the principles of dynamical and canonical correspondences between the classical and quantum theories. The quantization based on a probability operator leads to a quantum theory with a nonnegative joint coordinate-momentum distribution function for any state ψ. The main consequences of quantum mechanics with a probability operator are discussed in comparison with the generally accepted quantum and classical theories. It is shown that a probability operator leads to an appearance of some new notions called ''subquantum'' ones. Hence the quantum theory with a probability operator does not pretend to any complete description of physical reality in terms of classical variables and by this reason contains no problems like Einstein-Podolsky-Rosen paradox. The results of some concrete problems are given: a free particle, a harmonic oscillator, an electron in the Coulomb field. These results give hope on the possibility of an experimental verification of the quantization based on a probability operator

  5. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    Science.gov (United States)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  6. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength

    International Nuclear Information System (INIS)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-01-01

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems

  7. A class of non-null toroidal electromagnetic fields and its relation to the model of electromagnetic knots

    International Nuclear Information System (INIS)

    Arrayás, Manuel; Trueba, José L

    2015-01-01

    An electromagnetic knot is an electromagnetic field in vacuum in which the magnetic lines and the electric lines coincide with the level curves of a pair of complex scalar fields ϕ and θ (see equations (A.1), (A.2)). When electromagnetism is expressed in terms of electromagnetic knots, it includes mechanisms for the topological quantization of the electromagnetic helicity, the electric charge, the electromagnetic energy inside a cavity and the magnetic flux through a superconducting ring. In the case of electromagnetic helicity, its topological quantization depends on the linking number of the field lines, both electric and magnetic. Consequently, to find solutions of the electromagnetic knot equations with nontrivial topology of the field lines has important physical consequences. We study a new class of solutions of Maxwell's equations in vacuum Arrayás and Trueba (2011 arXiv:1106.1122) obtained from complex scalar fields that can be interpreted as maps S 3 →S 2 , in which the topology of the field lines is that of the whole torus-knot set. Thus this class of solutions is built as electromagnetic knots at initial time. We study some properties of those fields and consider if detection based on the energy and momentum observables is possible. (paper)

  8. Magnetic Fields in the Early Universe

    CERN Document Server

    Grasso, D; Grasso, D

    2001-01-01

    This review concerns the origin and the possible effects of magnetic fields in the early Universe. We start by providing to the reader with a short overview of the current state of art of observations of cosmic magnetic fields. We then illustrate the arguments in favour of a primordial origin of magnetic fields in the galaxies and in the clusters of galaxies. We argue that the most promising way to test this hypothesis is to look for possible imprints of magnetic fields on the temperature and polarization anisotropies of the cosmic microwave background radiation (CMBR). With this purpose in mind, we provide a review of the most relevant effects of magnetic fields on the CMBR. A long chapter of this review is dedicated to particle physics inspired models which predict the generation of magnetic fields during the early Universe evolution. Although it is still unclear if any of these models can really explain the origin of galactic and intergalactic magnetic fields, we show that interesting effects may arise any...

  9. Development of high field superconducting magnet

    International Nuclear Information System (INIS)

    Irie, Fujio; Takeo, Masakatsu.

    1986-01-01

    Recently, in connection with nuclear fusion research, the development of high field superconducting magnets showed rapid progress. The development of high field magnets of 15 T class by the techniques of winding after heat treatment has been continued in various places, as these techniques are suitable to make large magnets. In 1985, Kyushu University attained the record of 15.5 T. However in high field magnets, there are many problems peculiar to them, and the basic research related to those is demanded. In this report, these general problems, the experience of the design and manufacture in Kyushu University and the related problems are described. The superconducting magnet installed in the Superconducting Magnet Research Center of Kyushu University attained the record of 15.5 T for the first time in March, 1985. In superconducting magnets, very difficult problem must be solved since superconductivity, heat and mechanical force are inter related. The problems of the wire materials for high field, the scale of high field magnets, the condition limiting mean current density, and the development of high field magnets in Kyushu University are described. (Kako, I.)

  10. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  11. Quantum Tunneling of Magnetization in Trigonal Single-Molecule Magnets

    Science.gov (United States)

    Liu, Junjie; Del Barco, Enrique; Hill, Stephen

    2012-02-01

    We perform a numerical analysis of the quantum tunneling of magnetization (QTM) that occurs in a spin S = 6 single-molecule magnet (SMM) with idealized C3 symmetry. The deconstructive points in the QTM are located by following the Berry-phase interference (BPI) oscillations. We find that the O4^3 (=12[Sz,S+^3 +S-^3 ]) operator unfreezes odd-k QTM resonances and generates three-fold patterns of BPI minima in all resonances, including k = 0! This behavior cannot be reproduced with operators that possess even rotational symmetry about the quantization axis. We find also that the k = 0 BPI minima shift away from zero longitudinal field. The wider implications of these results will be discussed in terms of the QTM behavior observed in other SMMs.

  12. Measurements of magnetic field sources in schools

    International Nuclear Information System (INIS)

    Johnson, G.B.

    1992-01-01

    The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed

  13. Path integration quantization

    International Nuclear Information System (INIS)

    DeWitt-Morette, C.

    1983-01-01

    Much is expected of path integration as a quantization procedure. Much more is possible if one recognizes that path integration is at the crossroad of stochastic and differential calculus and uses the full power of both stochastic and differential calculus in setting up and computing path integrals. In contrast to differential calculus, stochastic calculus has only comparatively recently become an instrument of thought. It has nevertheless already been used in a variety of challenging problems, for instance in the quantization problem. The author presents some applications of the stochastic scheme. (Auth.)

  14. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  15. Noncanonical quantization-on the coexistence of particles and ghosts

    International Nuclear Information System (INIS)

    Saller, H.

    1988-01-01

    Local interactions of quantized fields are sometimes parametrized with the aid of ghostlike degrees of freedom, e.g., in non-Abelian gauge theories. These ghosts do not necessarily lead to eigenstates of energy. Such a situation requires a discussion of the asymptotic boundary condition for the ghosts, leading to ghost propagation only for timelike distance. Coexisting particle and ghost degrees of freedom in one basic field operator allow the formulation of interactions for such a field without local ambiguities

  16. Dirac equation in magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Dept. Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M.; Smirnov, A.A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2004-07-01

    We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid. (orig.)

  17. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  18. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  19. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  20. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  1. Determination of the saturation magnetization, anisotropy field, mean field interaction, and switching field distribution for nanocrystalline hard magnets

    International Nuclear Information System (INIS)

    McCallum, R. William

    2005-01-01

    For a uniaxial nanocrystalline magnetic material, the determination of the saturation magnetization, M s , requires measurements of the magnetization at fields which exceed the anisotropy field. For a typical RE-Tm compound, where RE=rare earth and Tm=transition metal, this may require fields above 7 T if the approach to saturation law is used. However for an isotropic material composed of a random distribution of non-interacting uniaxial grains, both M s and the anisotropy filed, H a , may be determined by fitting the Stoner-Wohlfarth (SW) model (Philos. Trans. Roy. Soc. 240 (1948) 599) to the reversible part of the demagnetization curve in the first quadrant. Furthermore, using the mean field interaction model of Callen, Liu and Cullen [2], a quantitative measure of the interaction strength for interacting particles may be determined. In conjunction with an analytical fit to the first quadrant demagnetization curve of the SW model, this allows M s , H a and the mean field interaction constant of a nanocrystalline magnet to be determined from measurements below 5 T. Furthermore, comparison of the model solution for the reversible magnetization with experimental data in the 2nd and 3rd quadrants allows the accurate determination of the switching field distribution. In many cases the hysteresis loop may be accurately described by a normal distribution of switching fields

  2. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  3. The CMS Magnetic Field Map Performance

    CERN Document Server

    Klyukhin, V.I.; Andreev, V.; Ball, A.; Cure, B.; Herve, A.; Gaddi, A.; Gerwig, H.; Karimaki, V.; Loveless, R.; Mulders, M.; Popescu, S.; Sarycheva, L.I.; Virdee, T.

    2010-04-05

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

  4. Disorder effects on helical edge transport in graphene under a strong tilted magnetic field

    Science.gov (United States)

    Huang, Chunli; Cazalilla, Miguel A.

    2015-10-01

    In a recent experiment, Young et al. [Nature (London) 505, 528 (2014), 10.1038/nature12800] observed a metal to insulator transition as well as transport through helical edge states in monolayer graphene under a strong, tilted magnetic field. Under such conditions, the bulk is a magnetic insulator which can exhibit metallic conduction through helical edges. It was found that the two-terminal conductance of the helical channels deviates from the expected quantized value (=e2/h per edge, at zero temperature). Motivated by this observation, we study the effect of disorder on the conduction through the edge channels. We show that, unlike for helical edges of topological insulators in semiconducting quantum wells, a disorder Rashba spin-orbit coupling does not lead to backscattering, at least to leading order. Instead, we find that the lack of perfect antialignment of the electron spins in the helical channels to be the most likely cause for backscattering arising from scalar (i.e., spin-independent) impurities. The intrinsic spin-orbit coupling and other time-reversal symmetry-breaking and/or sublattice parity-breaking potentials also lead to (subleading) corrections to the channel conductance.

  5. Theorem on magnet fringe field

    International Nuclear Information System (INIS)

    Wei, Jie; Talman, R.

    1995-01-01

    Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b n ) and skew (a n ) multipoles, B y + iB x = summation(b n + ia n )(x + iy) n , where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ''field integrals'' such as bar BL ≡ ∫ B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For bar a n , bar b n , bar B x , and bar B y defined this way, the same expansion Eq. 1 is valid and the ''standard'' approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell's equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of |Δp ∝ |, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to |Δp 0 |, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field B x from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC

  6. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  7. Magnetic field on board

    International Nuclear Information System (INIS)

    Estevez Radio, H.; Fernandez Arenal, C.A.

    1995-01-01

    Here, the calculation of the magnetic field on board ships is performed, using matrix calculus, in a similar way as when the magnetic field in matter is studied. Thus the final formulas are written in a more compact form and they are obtained through a simpler way, more suitable for the university education. (Author)

  8. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    International Nuclear Information System (INIS)

    Whang, Y. C.

    2010-01-01

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma β-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  9. Quantization of (2 + 1)-spinning particles and bifermionic constraint problem

    Energy Technology Data Exchange (ETDEWEB)

    Fresneda, R [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil); Gavrilov, S P [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil); Gitman, D M [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil); Moshin, P Yu [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil)

    2004-03-21

    This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.

  10. Light-cone quantization and hadron structure

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1996-04-01

    Quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. In this talk, the author will discuss light-cone quantization and the light-cone Fock expansion as a tractable and consistent representation of relativistic many-body systems and bound states in quantum field theory. The Fock state representation in QCD includes all quantum fluctuations of the hadron wavefunction, including fax off-shell configurations such as intrinsic strangeness and charm and, in the case of nuclei, hidden color. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer. In other applications, such as the calculation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics

  11. Quantization ambiguity, ergodicity and semiclassics

    International Nuclear Information System (INIS)

    Kaplan, Lev

    2002-01-01

    It is well known that almost all eigenstates of a classically ergodic system are individually ergodic on coarse-grained scales. This has important implications for the quantization ambiguity in ergodic systems: the difference between alternative quantizations is suppressed compared with the O( h-bar 2 ) ambiguity in the integrable or regular case. For two-dimensional ergodic systems in the high-energy regime, individual eigenstates are independent of the choice of quantization procedure, in contrast with the regular case, where even the ordering of eigenlevels is ambiguous. Surprisingly, semiclassical methods are shown to be much more precise in any dimension for chaotic than for integrable systems

  12. Giant magnetic anisotropy and robust quantum anomalous Hall effect in boron-doped graphene with Re-adsorption

    Science.gov (United States)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Yong; Zhu, Yan

    2018-04-01

    Recently topological materials have attracted much attention due to their quantization transports as well as edge states. It will be excellent to realize the robust quantum anomalous Hall transports in graphene-based devices. Using density-functional theory and tight-binding method, we investigated the structural, magnetic and topological properties for the boron-doped graphene with Re-adsorption. A large band-gap of 32.5 meV is opened by the Rashba spin-orbital coupling, and the band-gap is robust against the shape deformation of  ± 4% along the zigzag direction. Giant magnetic anisotropy emerges in this adsorption system together with the Fermi level lying in the band gap. Both the magnetic anisotropy and the band gap can be tuned by a moderate electric field. Calculations reveal that the system exhibits the quantization transports with the Chern number C=2 .

  13. Dyons in presence of gravitation and symmetrized field equations

    International Nuclear Information System (INIS)

    Rawat, A.S.; Negi, O.P.S.

    1999-01-01

    Combined theory of gravitation and electromagnetism associated with particles carrying electric and magnetic charges has been established from an invariant action principle. Corresponding field equations, equation of motion and Einstein Maxwell's equations are obtained in unique and consistent way. It is shown that weak field approximation of slowly moving particle in gravitational field leads the symmetry between electromagnetic and linear gravitational fields. Postulation of the existence of gravimagnetic monopole leads structural symmetry between generalized electromagnetic and gravielectromagnetic fields. Corresponding quantization conditions and angular momentum are also analysed. (author)

  14. Voltage quantization by ballistic vortices in two-dimensional superconductors

    International Nuclear Information System (INIS)

    Orlando, T.P.; Delin, K.A.

    1991-01-01

    The voltage generated by moving ballistic vortices with a mass m ν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions

  15. Quantization and hall effect: necessities and difficulties

    International Nuclear Information System (INIS)

    Ahmed Bouketir; Hishamuddin Zainuddin

    1999-01-01

    The quantization procedure is a necessary tool for a proper understanding of many interesting quantum phenomena in modern physics. In this note, we focus on geometrical framework for such procedures, particularly the group-theoretic approach and their difficulties. Finally we look through the example of Hall effect as a quantized macroscopic phenomenon with group-theoretic quantization approach. (author)

  16. High Magnetic Field in THz Plasma Wave Detection by High Electron Mobility Transistors

    Science.gov (United States)

    Sakowicz, M.; Łusakowski, J.; Karpierz, K.; Grynberg, M.; Valusis, G.

    The role of gated and ungated two dimensional (2D) electron plasma in THz detection by high electron mobility transistors (HEMTs) was investigated. THz response of GaAs/AlGaAs and GaN/AlGaN HEMTs was measured at 4.4K in quantizing magnetic fields with a simultaneous modulation of the gate voltage UGS. This allowed us to measure both the detection signal, S, and its derivative dS/dUGS. Shubnikov - de-Haas oscillations (SdHO) of both S and dS/dUGS were observed. A comparison of SdHO observed in detection and magnetoresistance measurements allows us to associate unambiguously SdHO in S and dS/dUGS with the ungated and gated parts of the transistor channel, respectively. This allows us to conclude that the entire channel takes part in the detection process. Additionally, in the case of GaAlAs/GaAs HEMTs, a structure related to the cyclotron resonance transition was observed.

  17. Establishment of magnetic coordinates for a given magnetic field

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1981-04-01

    A method is given for expressing the magnetic field strength in magnetic coordinates for a given field. This expression is central to the study of equilibrium, stability, and transport in asymmetric plasmas

  18. Inertial fusion reactors and magnetic fields

    International Nuclear Information System (INIS)

    Cornwell, J.B.; Pendergrass, J.H.

    1985-01-01

    The application of magnetic fields of simple configurations and modest strengths to direct target debris ions out of cavities can alleviate recognized shortcomings of several classes of inertial confinement fusion (ICF) reactors. Complex fringes of the strong magnetic fields of heavy-ion fusion (HIF) focusing magnets may intrude into reactor cavities and significantly affect the trajectories of target debris ions. The results of an assessment of potential benefits from the use of magnetic fields in ICF reactors and of potential problems with focusing-magnet fields in HIF reactors conducted to set priorities for continuing studies are reported. Computational tools are described and some preliminary results are presented

  19. A no-go theorem for the consistent quantization of the massive gravitino on Robertson-Walker spacetimes and arbitrary spin 3/2 fields on general curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul; Makedonski, Mathias [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2011-06-15

    We first introduce a set of conditions which assure that a free spin (3)/(2) field with m{>=}0 can be consistently ('unitarily') quantized on all four-dimensional curved spacetimes, i.e. also on spacetimes which are not assumed to be solutions of the Einstein equations. We discuss a large - and, as we argue, exhaustive - class of spin (3)/(2) field equations obtained from the Rarita-Schwinger equation by the addition of non-minimal couplings and prove that no equation in this class fulfils all sufficient conditions. Afterwards, we investigate the situation in supergravity, where the curved background is usually assumed to satisfy the Einstein equations and, hence, detailed knowledge on the spacetime curvature is available. We provide a necessary condition for the unitary quantization of a spin (3)/(2) Majorana field and prove that this condition is not met by supergravity models in four-dimensional Robertson-Walker spacetimes if local supersymmetry is broken. Our proof is model-independent as we merely assume that the gravitino has the standard kinetic term. (orig.)

  20. Magnetic field considerations in fusion power plant environs

    International Nuclear Information System (INIS)

    Liemohn, H.B.; Lessor, D.L.; Duane, B.H.

    1976-09-01

    A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic fields, and (7) magnetic field transients from tokamak malfunctions

  1. Tripolar electric field Structure in guide field magnetic reconnection

    OpenAIRE

    S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng

    2018-01-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...

  2. Line formation in microturbulent magnetic fields

    International Nuclear Information System (INIS)

    Domke, H.; Pavlov, G.G.

    1979-01-01

    The formation of Zeeman lines in Gaussian microturbulent magnetic fields is considered assuming LTE. General formulae are derived for the local mean values of the transfer matrix elements. The cases of one-dimensional (longitudinal), isotropic, and two-dimensional (transversal) magnetic microturbulence are studied in some detail. Asymptotic formulae are given for small mean as well as for small microturbulent magnetic fields. Characteristic effects of magnetic microturbulence on the transfer coefficients are: (i) the broadening of the frequency contours, although only for the case of longitudinal Zeeman effect and longitudinal magnetic microturbulence this effect can be described analogous to Doppler broadening, (ii) the appearance of a pseudo-Zeeman structure for nonlongitudinal magnetic microturbulence, (iii) the reduction of maximal values of circular polarization, and (iv) the appearance of characteristic linear polarization effects due to the anisotropy of the magnetic microturbulence. Line contours and polarization of Zeeman triplets are computed for Milne-Eddington atmospheres. It is shown that magnetic intensification due to microturbulent magnetic fields may be much more efficient than that due to regular fields. The gravity center of a Zeeman line observed in circularly polarized light remains a reasonable measure of the line of sight component of the mean magnetic field for a line strength eta 0 < approx. 2. For saturated lines, the gravity center distance depends significantly on the magnetic microturbulence and its anisotropy. The influence of magnetic microturbulence on the ratio of longitudinal field magnetographic signals shows that unique conclusions about the magnetic microstructure can be drawn from the line ratio measurements only in combination with further spectroscopic data or physical reasoning. (orig.)

  3. Magnetic vector field tag and seal

    Science.gov (United States)

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  4. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Kuchnir, M.; Schmidt, E.E.

    1987-01-01

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  5. Interaction of Mutually Perpendicular Magnetic Fields in HTSC

    Directory of Open Access Journals (Sweden)

    Vasilyev Aleksandr Fedorovich

    2015-11-01

    Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.

  6. Magnetic properties of HoVOΛ4 in high magnetic fields

    International Nuclear Information System (INIS)

    Andronenko, S.I.; Bazhan, A.N.; Ioffe, V.A.; Udalov, Yu.P.

    1985-01-01

    Values magnetization and susceptibility of HoVO 4 , Van Vleck paramagnetic are specified in the 4.2-40 K temperature range and magnetic fields up to 50 kOe. Magnetic properties of HoVO 4 are analyzed using a theoretical model in which the interaction of rare earth ions with the crystal- and magnetic fields is considered. A possibility of rare earth ion interaction with the Bsub(1g), Bsub(2g), Asub(1g) symmetry deformations is also considered. It is stated that magnetic properties of HoVO 4 are completely explained within the frames of the crystal field model; the rare earth ion interactions with deformations are insignificant. Anisotropy of magnetization in the (001) plane is determined by the crystal field B 4 4 , B 6 4 constants; the constants being shown to be positive

  7. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

    Science.gov (United States)

    Wen, Qianqian; Wang, Yu; Gong, Xinglong

    2017-07-01

    In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.

  8. Light-front quantization of the sine-Gordon model

    International Nuclear Information System (INIS)

    Burkardt, M.

    1993-01-01

    It is shown how to modify the canonical light-front quantization of the (1+1)-dimensional sine-Gordon model such that the zero-mode problem of light-front quantization is avoided. The canonical sine-Gordon Lagrangian is replaced by an effective Lagrangian which does not lead to divergences as k + =(k 0 +k 1 )/ √2 →0. After canonically quantizing the effective Lagrangian, one obtains the effective light-front Hamiltonian which agrees with the naive light-front (LF) Hamiltonian, up to one additional renormalization. The spectrum of the effective LF Hamiltonian is determined using discrete light-cone quantization and agrees with results from equal-time quantization

  9. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  10. Spin-polarized ground state and exact quantization at ν=5/2

    Science.gov (United States)

    Pan, Wei

    2002-03-01

    The nature of the even-denominator fractional quantum Hall effect at ν=5/2 remains elusive, in particular, its ground state spin-polarization. An earlier, so-called "hollow core" model arrived at a spin-unpolarized wave function. The more recent calculations based on a model of BCS-like pairing of composite fermions, however, suggest that its ground state is spin-polarized. In this talk, I will first review the earlier experiments and then present our recent experimental results showing evidence for a spin-polarized state at ν=5/2. Our ultra-low temperature experiments on a high quality sample established the fully developed FQHE state at ν=5/2 as well as at ν=7/3 and 8/3, manifested by a vanishing R_xx and exact quantization of the Hall plateau. The tilted field experiments showed that the added in-plane magnetic fields not only destroyed the FQHE at ν=5/2, as seen before, but also induced an electrical anisotropy, which is now interpreted as a phase transition from a paired, spin-polarized ν=5/2 state to a stripe phase, not unlike the ones at ν=9/2, 11/2, etc in the N > 1 higher Landau levels. Furthermore, in the experiments on the heterojunction insulated-gate field-effect transistors (HIGFET) at dilution refrigerator temperatures, a strong R_xx minimum and a concomitant developing Hall plateau were observed at ν=5/2 in a magnetic field as high as 12.6 Tesla. This and the subsequent density dependent studies of its energy gap largely rule out a spin-singlet state and point quite convincingly towards a spin-polarized ground state at ν=5/2.

  11. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  12. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  13. Analysis of magnetic nanoparticles using quadrupole magnetic field-flow fractionation

    International Nuclear Information System (INIS)

    Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej; Chalmers, Jeffrey J.; Williams, P. Stephen

    2005-01-01

    The new technique of quadrupole magnetic field-flow fractionation is described. It is a separation and characterization technique for particulate magnetic materials. Components of a sample are eluted from the separation channel at times dependent on the strength of their interaction with the magnetic field. A quadrupole electromagnet allows a programmed reduction of field strength during analysis of polydisperse samples

  14. Orbital effect of the magnetic field in dynamical mean-field theory

    Science.gov (United States)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  15. Magnetic field compression using pinch-plasma

    International Nuclear Information System (INIS)

    Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.

    1987-01-01

    In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch

  16. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  17. On Fock Space Representations of quantized Enveloping Algebras related to Non-Commutative Differential Geometry

    CERN Document Server

    Jurco, B; Jurco, B; Schlieker, M

    1995-01-01

    In this paper we construct explicitly natural (from the geometrical point of view) Fock space representations (contragradient Verma modules) of the quantized enveloping algebras. In order to do so, we start from the Gauss decomposition of the quantum group and introduce the differential operators on the corresponding q-deformed flag manifold (asuumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, we express the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group as first-order differential operators on the q-deformed flag manifold.

  18. Probing Black Hole Magnetic Fields with QED

    Directory of Open Access Journals (Sweden)

    Ilaria Caiazzo

    2018-05-01

    Full Text Available The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED: the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly magnetized astrophysical objects, such as accreting black holes. In the X-ray regime, the polarization of photons traveling in the magnetosphere of a black hole is not frozen at emission but is changed by the local magnetic field. We show that, for photons traveling along the plane of the disk, where the field is expected to be partially organized, this results in a depolarization of the X-ray radiation. Because the amount of depolarization depends on the strength of the magnetic field, this effect can provide a way to probe the magnetic field in black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  19. Light-cone quantization of quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Pauli, H.C.

    1991-06-01

    We discuss the light-cone quantization of gauge theories from two perspectives: as a calculational tool for representing hadrons as QCD bound-states of relativistic quarks and gluons, and also as a novel method for simulating quantum field theory on a computer. The light-cone Fock state expansion of wavefunctions at fixed light cone time provides a precise definition of the parton model and a general calculus for hadronic matrix elements. We present several new applications of light-cone Fock methods, including calculations of exclusive weak decays of heavy hadrons, and intrinsic heavy-quark contributions to structure functions. A general nonperturbative method for numerically solving quantum field theories, ''discretized light-cone quantization,'' is outlined and applied to several gauge theories, including QCD in one space and one time dimension, and quantum electrodynamics in physical space-time at large coupling strength. The DLCQ method is invariant under the large class of light-cone Lorentz transformations, and it can be formulated such at ultraviolet regularization is independent of the momentum space discretization. Both the bound-state spectrum and the corresponding relativistic light-cone wavefunctions can be obtained by matrix diagonalization and related techniques. We also discuss the construction of the light-cone Fock basis, the structure of the light-cone vacuum, and outline the renormalization techniques required for solving gauge theories within the light-cone Hamiltonian formalism

  20. Light-cone quantization of quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Pauli, H.C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))

    1991-06-01

    We discuss the light-cone quantization of gauge theories from two perspectives: as a calculational tool for representing hadrons as QCD bound-states of relativistic quarks and gluons, and also as a novel method for simulating quantum field theory on a computer. The light-cone Fock state expansion of wavefunctions at fixed light cone time provides a precise definition of the parton model and a general calculus for hadronic matrix elements. We present several new applications of light-cone Fock methods, including calculations of exclusive weak decays of heavy hadrons, and intrinsic heavy-quark contributions to structure functions. A general nonperturbative method for numerically solving quantum field theories, discretized light-cone quantization,'' is outlined and applied to several gauge theories, including QCD in one space and one time dimension, and quantum electrodynamics in physical space-time at large coupling strength. The DLCQ method is invariant under the large class of light-cone Lorentz transformations, and it can be formulated such at ultraviolet regularization is independent of the momentum space discretization. Both the bound-state spectrum and the corresponding relativistic light-cone wavefunctions can be obtained by matrix diagonalization and related techniques. We also discuss the construction of the light-cone Fock basis, the structure of the light-cone vacuum, and outline the renormalization techniques required for solving gauge theories within the light-cone Hamiltonian formalism.

  1. First quantized noncritical relativistic Polyakov string

    International Nuclear Information System (INIS)

    Jaskolski, Z.; Meissner, K.A.

    1994-01-01

    The first quantization of the relativistic Brink-DiVecchia-Howe-Polyakov (BDHP) string in the range 1 < d 25 is considered. It is shown that using the Polyakov sum over bordered surfaces in the Feynman path integral quantization scheme one gets a consistent quantum mechanics of relativistic 1-dim extended objects in the range 1 < d < 25. In particular, the BDHP string propagator is exactly calculated for arbitrary initial and final string configurations and the Hilbert space of physical states of noncritical BDHP string is explicitly constructed. The resulting theory is equivalent to the Fairlie-Chodos-Thorn massive string model. In contrast to the conventional conformal field theory approach to noncritical string and random surfaces in the Euclidean target space the path integral formulation of the Fairlie-Chodos-Thorn string obtained in this paper does not rely on the principle of conformal invariance. Some consequences of this feature for constructing a consistent relativistic string theory based on the ''splitting-joining'' interaction are discussed. (author). 42 refs, 1 fig

  2. Quantization of 2 + 1-spinning particles and bifermionic constraint problem

    Energy Technology Data Exchange (ETDEWEB)

    Fresneda, R.; Gavrilov, S.P.; Gitman, D.M.; Moshin, P.Yu. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2004-07-01

    In this paper, we have quantized a P- and T-noninvariant pseudoclassical model of a massive relativistic spin-1=2 particle in 2 + 1 dimensions, on the background of an arbitrary U(1) gauge vector field. A peculiar feature of the model at the classical level is that it contains a bifermionic first-class constraint, which does not admit gauge-fixing. It is shown that this first-class constraint can be realized at the quantum level as a bounded operator, which is imposed as a condition on the state vectors (by analogy with the Dirac quantization method). This allows us to generalize the quantization scheme [?] in case there is a bifermionic first-class constraint.We present a detailed construction of the Hilbert space and verify that the constructed QM possesses the necessary symmetry properties. We show that the condition of preservation of the classical symmetries under the restricted Lorentz transformations and the U(1) transformations allows one to realize the operator algebra in an unambiguous way. Within the constructed relativistic QM, we select a physical subspace which describes the one-particle sector. The physical sector of the QM contains both particles and antiparticles with positive energy hat {omega} levels, and exactly reproduces the one-particle sector of the quantum theory of the 2 + 1 spinor field. (author)

  3. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  4. Magnetic anisotropy study of UGe2in a static high magnetic field

    International Nuclear Information System (INIS)

    Sakon, T; Saito, S; Koyama, K; Awaji, S; Sato, I; Nojima, T; Watanabe, K; Motokawa, M; Sato, N K

    2006-01-01

    UGe 2 has orthorhombic C mmm crystalline symmetry and shows ferromagnetic Heavy-Fermion (HF) Superconductor, which provides superconductivity under pressure in the range from 1.0 GPa to 1.5 GPa. Magnetic field dependence of magnetization shows strong magnetic anisotropy. When a magnetic field is applied parallel to easy axis (a-axis), magnetization presents ferromagnetic behavior. At 4.2 K, which is much lower than the Curie temperature T c = 54 K. Spontaneous magnetization is 1.4 μ B /U, and the magnetization gradually increase with increasing field. On the contrary, when a field is applied parallel to hard axis (b-axis or c-axis), magnetization increases linearly with increasing magnetic field. As for H//b-axis, magnetization is 0.23 μ B /U even at 27 T. Magnetocrystalline anisotropy constant is obtained as 230 [T μ B ] 3.4[kJ/kg] at 4.2 K. This value is comparable with rare-earth magnet Nd 2 Fe 17 , which is typical strongly correlated ferromagnet

  5. Features of the magnetic field of a rectangular combined function bending magnet

    International Nuclear Information System (INIS)

    Hwang, C.S.; National Chiao Tung Univ., Hsinchu; Chang, C.H.; Hwang, G.J.; Uen, T.M.; Tseng, P.K.; National Taiwan Univ., Taipei

    1996-01-01

    Magnetic field features of the combined function bending magnet with dipole and quadrupole field components are essential for the successful operation of the electron beam trajectory. These fields also dominate the photon beam quality. The vertical magnetic field B y (x,y) calculation is performed by a computer code MAGNET at the magnet center (s = 0). Those results are compared with the 2-D field measurement by the Hall probe mapping system. Also detailed survey has been made of the harmonic field strength and the main features of the fundamental integrated strength, effective length, magnetic symmetry, tilt of the pole face, offset of the field center and the fringe field. The end shims that compensate for the strong end negative sextupole field to increase the good field region for the entire integrated strength are discussed. An important physical feature of this combined function bending magnet is the constant ratio of dipole and quadrupole strength ∫Bds/∫Gds which is expressed as a function of excitation current in the energy range 0.6 to 1.5 GeV

  6. Electron holography of magnetic field generated by a magnetic recording head.

    Science.gov (United States)

    Goto, Takayuki; Jeong, Jong Seok; Xia, Weixing; Akase, Zentaro; Shindo, Daisuke; Hirata, Kei

    2013-06-01

    The magnetic field generated by a magnetic recording head is evaluated using electron holography. A magnetic recording head, which is connected to an electric current source, is set on the specimen holder of a transmission electron microscope. Reconstructed phase images of the region around the magnetic pole show the change in the magnetic field distribution corresponding to the electric current applied to the coil of the head. A simulation of the magnetic field, which is conducted using the finite element method, reveals good agreement with the experimental observations.

  7. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method

  8. Initial magnetic field decay of the superconducting magnet in persistent current mode

    International Nuclear Information System (INIS)

    Yamamoto, S.; Yanada, T.

    1988-01-01

    The initial magnetic field decay in the persistent current mode of a magnetic resonance imaging magnet has been studied experimentally. The field decay is greater than the steady field decay due to joint resistances of conductors. Imaging experiments cannot be carried out during the periods, which last ten or more hours. The current distribution in the multifilamentory conductor is non-uniform just after the energization. It is suggested that the change of the current distribution causes the initial magnetic field decay. A 6th order superconducting magnet was prepared for experiments (central field = 0.35 T, inner diameters = 1 m, length = 1.86 m). The steady state magnetic field decay was 7*10/sup -8//hr. The initial magnetic field decay was 3*10/sup -6//hr. Overshoot currents (101 and 105 percent of the rated current) were applied to the magnet and the current reduced to the rated current to improve the initial decay. The energizing and de-energizing rate of the field was 1.8 gauss/second. No initial decay was observed when 105 percent current pattern was applied to the magnet

  9. Investigation of magnetic drift on transport of plasma across magnetic field

    International Nuclear Information System (INIS)

    Hazarika, Parismita; Chakraborty, Monojit; Das, Bidyut; Bandyopadhyay, Mainak

    2015-01-01

    When a metallic body is inserted inside plasma chamber it is always associated with sheath which depends on plasma and wall condition. The effect of sheath formed in the magnetic drift and magnetic field direction on cross field plasma transport has been investigated in a double Plasma device (DPD). The drifts exist inside the chamber in the transverse magnetic field (TMF) region in a direction perpendicular to both magnetic field direction and axis of the DPD chamber. The sheath are formed in the magnetic drift direction in the experimental chamber is due to the insertion of two metallic plates in these directions and in the magnetic field direction sheath is formed at the surface of the TMF channels. These metallic plates are inserted in order to obstruct the magnetic drift so that we can minimised the loss of plasma along drift direction and density in the target region is expected to increase due to the obstruction. It ultimately improves the negative ion formation parameters. The formation of sheath in the transverse magnetic field region is studied by applying electric field both parallel and antiparallel to drift direction. Data are acquired by Langmuir probe in source and target region of our chamber. (author)

  10. Generation of magnetic fields for accelerators with permanent magnets

    International Nuclear Information System (INIS)

    Meinander, T.

    1994-01-01

    Commercially available permanent magnet materials and their properties are reviewed. Advantages and disadvantages of using permanent magnets as compared to electromagnets for the generation of specific magnetic fields are discussed. Basic permanent magnet configurations in multipole magnets and insertion devices are presented. (orig.)

  11. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  12. Minimizing magnetic fields for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S., E-mail: stefan.stuiber@ph.tum.de; Sturm, M.; Taggart Singh, J.; Taubenheim, B. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Rohrer, H. K. [Rohrer GmbH, D-80667 München (Germany); Schläpfer, U. [IMEDCO AG, CH-4614 Hägendorf (Switzerland)

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  13. Minimizing magnetic fields for precision experiments

    International Nuclear Information System (INIS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application

  14. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI.

    Science.gov (United States)

    Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe

    2010-12-01

    We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Gauge-invariant charged, monopole and dyon fields in gauge theories

    International Nuclear Information System (INIS)

    Froehlich, J.; Marchetti, P.A.

    1999-01-01

    We propose explicit recipes to construct the Euclidean Green functions of gauge-invariant charged, monopole and dyon fields in four-dimensional gauge theories whose phase diagram contains phases with deconfined electric and/or magnetic charges. In theories with only either abelian electric or magnetic charges, our construction is an Euclidean version of Dirac's original proposal, the magnetic dual of his proposal, respectively. Rigorous mathematical control is achieved for a class of abelian lattice theories. In theories where electric and magnetic charges coexist, our construction of Green functions of electrically or magnetically charged fields involves taking an average over Mandelstam strings or the dual magnetic flux tubes, in accordance with Dirac's flux quantization condition. We apply our construction to 't Hooft-Polyakov monopoles and Julia-Zee dyons. Connections between our construction and the semiclassical approach are discussed

  16. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  17. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  18. First, Second Quantization and Q-Deformed Harmonic Oscillator

    International Nuclear Information System (INIS)

    Van Ngu, Man; Vinh, Ngo Gia; Lan, Nguyen Tri; Viet, Nguyen Ai; Thanh, Luu Thi Kim

    2015-01-01

    Relations between the first, the second quantized representations and deform algebra are investigated. In the case of harmonic oscillator, the axiom of first quantization (the commutation relation between coordinate and momentum operators) and the axiom of second quantization (the commutation relation between creation and annihilation operators) are equivalent. We shown that in the case of q-deformed harmonic oscillator, a violence of the axiom of second quantization leads to a violence of the axiom of first quantization, and inverse. Using the coordinate representation, we study fine structures of the vacuum state wave function depend in the deformation parameter q. A comparison with fine structures of Cooper pair of superconductivity in the coordinate representation is also performed. (paper)

  19. Spurious-Free Dynamic Range of a Uniform Quantizer

    NARCIS (Netherlands)

    Oude Alink, M.S.; Kokkeler, Andre B.J.; Klumperink, Eric A.M.; Rovers, K.C.; Smit, Gerardus Johannes Maria; Nauta, Bram

    2009-01-01

    Abstract—Quantization plays an important role in many systems where analog-to-digital conversion and/or digital-to-analog conversion take place. If the quantization error is correlated with the input signal, then the spectrum of the quantization error will contain spurious peaks. Although analytical

  20. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University