Magnetic anisotropy and quantized spin waves in hematite nanoparticles
DEFF Research Database (Denmark)
Klausen, Stine Nyborg; Lefmann, Kim; Lindgård, Per-Anker
2004-01-01
We report on the observation of high-frequency collective magnetic excitations, (h) over bar omegaapproximate to1.1 meV, in hematite (alpha-Fe2O3) nanoparticles. The neutron scattering experiments include measurements at temperatures in the range 6-300 K and applied fields up to 7.5 T as well...... the temperature dependence of the magnetic anisotropy, which is strongly related to the suppression of the Morin transition in nanoparticles of hematite. Further, the localization of the signal in both energy and momentum transfer brings evidence for finite-size quantization of spin waves in the system....... as polarization analysis. We give an explanation for the field- and temperature dependence of the excitations, which are found to have strongly elliptical out-of-plane precession. The frequency of the excitations gives information on the magnetic anisotropy constants in the system. We have in this way determined...
Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Rousseau, Olivier [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otani, YoshiChika [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)
2014-10-28
We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.
Spin Foams and Canonical Quantization
Alexandrov, Sergei; Noui, Karim
2011-01-01
This review is devoted to the analysis of the mutual consistency of the spin foam and canonical loop quantizations in three and four spacetime dimensions. In the three-dimensional context, where the two approaches are in good agreement, we show how the canonical quantization \\`a la Witten of Riemannian gravity with a positive cosmological constant is related to the Turaev-Viro spin foam model, and how the Ponzano-Regge amplitudes are related to the physical scalar product of Riemannian loop quantum gravity without cosmological constant. In the four-dimensional case, we recall a Lorentz-covariant formulation of loop quantum gravity using projected spin networks, compare it with the new spin foam models, and identify interesting relations and their pitfalls. Finally, we discuss the properties which a spin foam model is expected to possess in order to be consistent with the canonical quantization, and suggest a new model illustrating these results.
Quantized photonic spin Hall effect in graphene
Cai, Liang; Liu, Mengxia; Chen, Shizhen; Liu, Yachao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun
2017-01-01
We examine the photonic spin Hall effect (SHE) in a graphene-substrate system with the presence of an external magnetic field. In the quantum Hall regime, we demonstrate that the in-plane and transverse spin-dependent splittings in the photonic SHE exhibit different quantized behaviors. The quantized SHE can be described as a consequence of a quantized geometric phase (Berry phase), which corresponds to the quantized spin-orbit interaction. Furthermore, an experimental scheme based on quantum weak value amplification is proposed to detect the quantized SHE in the terahertz frequency regime. By incorporating the quantum weak measurement techniques, the quantized photonic SHE holds great promise for detecting quantized Hall conductivity and the Berry phase. These results may bridge the gap between the electronic SHE and photonic SHE in graphene.
Fractional quantization of charge and spin in topological quantum pumps
Marra, Pasquale; Citro, Roberta
2017-07-01
Topological quantum pumps are topologically equivalent to the quantum Hall state: In these systems, the charge pumped during each pumping cycle is quantized and coincides with the Chern invariant. However, differently from quantum Hall insulators, quantum pumps can exhibit novel phenomena such as the fractional quantization of the charge transport, as a consequence of their distinctive symmetries in parameter space. Here, we report the analogous fractional quantization of the spin transport in a topological spin pump realized in a one-dimensional lattice via a periodically modulated Zeeman field. In the proposed model, which is a spinfull generalization of the Harper-Hofstadter model, the amount of spin current pumped during well-defined fractions of the pumping cycle is quantized as fractions of the spin Chern number. This fractional quantization of spin is topological, and is a direct consequence of the additional symmetries ensuing from the commensuration of the periodic field with the underlying lattice.
On the "Spin-Connection Foam" Picture of Quantum Gravity from Precanonical Quantization
Kanatchikov, I V
2015-01-01
Precanonical quantization uses a different generalization of Hamiltonian formalism to field theory, the so-called De Donder--Weyl (DW) theory, which does not require a space-time decomposition and treats the space-time variables on the equal footing. Quantum dynamics is encoded in precanonical wave function on the space of field coordinates and space-time coordinates, which satisfies a partial derivative precanonical Schr\\"odinger equation on this space. Based on analysis of constraints within the De Donder--Weyl Hamiltonian formulation of Einstein-Palatini vielbein formulation of GR and quantization of generalized Dirac brackets defined on differential forms, we derived the covariant analogue of the Schr\\"odinger equation for precanonical wave function of quantum gravity. The resulting dynamics of quantum gravity is encoded in the wave function on the bundle of spin-connections over the space-time or, equivalently, the transition amplitudes on this space. Thus the precanonical quantization leads to the "spin...
Degenerate Plebanski Sector and its Spin Foam Quantization
Alexandrov, Sergei
2012-01-01
We show that the degenerate sector of Spin(4) Plebanski formulation of four-dimensional gravity is exactly solvable and describes covariantly embedded SU(2) BF theory. This fact provides its spin foam quantization and allows to test various approaches of imposing the simplicity constraints. Our analysis suggests a unique method of imposing the constraints which leads to a consistent and well defined spin foam model.
On precanonical quantization of gravity in spin connection variables
Energy Technology Data Exchange (ETDEWEB)
Kanatchikov, I. V. [National Center of Quantum Information in Gdansk (KCIK), 81-824 Sopot (Poland)
2013-02-21
The basics of precanonical quantization and its relation to the functional Schroedinger picture in QFT are briefly outlined. The approach is then applied to quantization of Einstein's gravity in vielbein and spin connection variables and leads to a quantum dynamics described by the covariant Schroedinger equation for the transition amplitudes on the bundle of spin connection coefficients over space-time, that yields a novel quantum description of space-time geometry. A toy model of precanonical quantum cosmology based on the example of flat FLRW universe is considered.
A Quantized Spacetime Based on $Spin(3,1)$ Symmetry
Chen, Pisin; Hu, Yao-Chieh
2016-01-01
We introduce a new type of spacetime quantization based on the spinorial description suggested by loop quantum gravity. Specifically, we build our theory on a string theory inspired $Spin(3,1)$ worldsheet action. Because of its connection with quantum gravity theories, our proposal may in principle link back to string theory, connect to loop quantum gravity where $SU(2)$ is suggested as the fundamental symmetry, or serve as a Lorentzian spin network. We derive the generalized uncertainty principle and demonstrate the holographic nature of our theory. Due to the quantization of spacetime, geodesics in our theory are fuzzy, but the fuzziness is shown to be much below conceivable astrophysical bounds.
DEFF Research Database (Denmark)
Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans
1975-01-01
The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...
Electronic Wave Packet in a Quantized Electromagnetic Field
Institute of Scientific and Technical Information of China (English)
程太旺; 薛艳丽; 李晓峰; 吴令安; 傅盘铭
2002-01-01
We study a non-stationary electronic wave packet in a quantized electromagnetic field. Generally, the electron and field become entangled as the electronic wave packet evolves. Here we find that, when the initial photon state is a coherent one, the wavefunction of the system can be factorized if we neglect the transferred photon number. In this case, the quantized-field calculation is equivalent to the semi-classical calculation.
Semiclassical Quantization of Spinning Quasiparticles in Ballistic Josephson Junctions
Konschelle, François; Bergeret, F. Sebastián; Tokatly, Ilya V.
2016-06-01
A Josephson junction made of a generic magnetic material sandwiched between two conventional superconductors is studied in the ballistic semiclassic limit. The spectrum of Andreev bound states is obtained from the single valuedness of a particle-hole spinor over closed orbits generated by electron-hole reflections at the interfaces between superconducting and normal materials. The semiclassical quantization condition is shown to depend only on the angle mismatch between initial and final spin directions along such closed trajectories. For the demonstration, an Andreev-Wilson loop in the composite position-particle-hole-spin space is constructed and shown to depend on only two parameters, namely, a magnetic phase shift and a local precession axis for the spin. The details of the Andreev-Wilson loop can be extracted via measuring the spin-resolved density of states. A Josephson junction can thus be viewed as an analog computer of closed-path-ordered exponentials.
2008-01-01
This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role in the description of very small magnetic systems ranging from microelements, which form the basis of magnetic sensors, to magnetic nano-contacts. The spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, and
Consistent quantization of massless fields of any spin and the generalized Maxwell's equations
Gersten, Alexander
2016-01-01
A simplified formalism of first quantized massless fields of any spin is presented. The angular momentum basis for particles of zero mass and finite spin s of the D^(s-1/2,1/2) representation of the Lorentz group is used to describe the wavefunctions. The advantage of the formalism is that by equating to zero the s-1 components of the wave functions, the 2s-1 subsidiary conditions (needed to eliminate the non-forward and non-backward helicities) are automatically satisfied. Probability currents and Lagrangians are derived allowing a first quantized formalism. A simple procedure is derived for connecting the wave functions with potentials and gauge conditions. The spin 1 case is of particular interest and is described with the D^(1/2,1/2) vector representation of the well known self-dual representation of the Maxwell's equations. This representation allows us to generalize Maxwell's equations by adding the E_0 and B_0 components to the electric and magnetic four-vectors. Restrictions on their existence are dis...
Precanonical Quantization and the Schr\\"odinger Wave Functional Revisited
Kanatchikov, I V
2011-01-01
We address the long-standing issue of the relation between the Schr\\"odinger functional representation in quantum field theory and the approach of precanonical field quantization which requires neither a distinguished time variable nor infinite-dimensional spaces of field configurations. The functional Schr\\"odinger equation is derived in the limiting case \\varkappa \\rightarrow \\delta(0) from the Dirac-like covariant generalization of the Schr\\"odinger equation within the precanonical quantization approach, where the constant \\varkappa of the dimension of the inverse spatial volume naturally appears on dimensional grounds. An explicit expression of the Schr\\"odinger wave functional as a continuous product of precanonical wave functions on the finite-dimensional covariant configuration space of the field and space-time variables is obtained.
Covariant Quantization of "Massive" Spin-3/2 Fields in the de Sitter Space
Takook, M V; Babaian, E
2012-01-01
We present a covariant quantization of the free "massive" spin-3/2 fields in four-dimensional de Sitter space-time based on analyticity in the complexified pseudo-Riemannian manifold. The field equation is obtained as an eigenvalue equation of the Casimir operator of the de Sitter group. The solutions are calculated in terms of coordinate-independent de Sitter plane-waves in tube domains and the null curvature limit is discussed. We give the group theoretical content of the field equation. The Wightman two-point function $S^{i \\bar j}_{\\alpha\\alpha'}(x,x')$ is calculated. We introduce the spinor-vector field operator $\\Psi_\\alpha(f)$ and the Hilbert space structure. A coordinate-independent formula for the field operator $\\Psi_\\alpha(x)$ is also presented.
Stigloher, J.; Decker, M.; Körner, H. S.; Tanabe, K.; Moriyama, T.; Taniguchi, T.; Hata, H.; Madami, M.; Gubbiotti, G.; Kobayashi, K.; Ono, T.; Back, C. H.
2016-07-01
We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25 ° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.
Four-Wave Mixing in Landau-Quantized Graphene.
König-Otto, Jacob C; Wang, Yongrui; Belyanin, Alexey; Berger, Claire; de Heer, Walter A; Orlita, Milan; Pashkin, Alexej; Schneider, Harald; Helm, Manfred; Winnerl, Stephan
2017-04-12
For Landau-quantized graphene, featuring an energy spectrum consisting of nonequidistant Landau levels, theory predicts a giant resonantly enhanced optical nonlinearity. We verify the nonlinearity in a time-integrated degenerate four-wave mixing (FWM) experiment in the mid-infrared spectral range, involving the Landau levels LL-1, LL0 and LL1. A rapid dephasing of the optically induced microscopic polarization on a time scale shorter than the pulse duration (∼4 ps) is observed, while a complementary pump-probe experiment under the same experimental conditions reveals a much longer lifetime of the induced population. The FWM signal shows the expected field dependence with respect to lowest order perturbation theory for low fields. Saturation sets in for fields above ∼6 kV/cm. Furthermore, the resonant behavior and the order of magnitude of the third-order susceptibility are in agreement with our theoretical calculations.
Askerov, B. M.; Figarova, S. R.; Mahmudov, M. M.
2006-07-01
The magnetoresistance of layered crystals in a longitudinal quantizing magnetic field by taking into account the spin splitting is theoretically investigated. The general expression for the electrical conductivity of a quasi two-dimensional electron gas at the deformation-potential scattering has been obtained. In the behavior of the specific resistance, peaks have been revealed, and a number and positions of the peaks are dictated by the spin splitting magnitude.
Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets
Energy Technology Data Exchange (ETDEWEB)
Hou, Zhuofei [University of Georgia, Athens; Landau, David P [University of Georgia, Athens; Stocks, George Malcolm [ORNL; Brown, G. [Florida State University, Tallahassee
2015-02-17
Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic lattice with linear sizes L≤ 40 at a temperature below the Neel temperature. In this study, nanoparticles are modeled with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic boundaries parallel to the surfaces in the xy direction, which are compared to the infinite system with periodic boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations. The local dynamic structure factor S(q,ω) was calculated from the local space- and time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic structure factor S^{T} (q,ω) in the nanoscale classical Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption of q-space spin-wave reflections with broken momentum conservation due to free-surface confinements, we successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for S^{T} (q,ω) not expected in bulk systems. In conclusion, the results of this study indicate the presence of unexpected forms of spin-wave excitation behavior that have yet to be observed experimentally but could be directly tested through neutron scattering experiments on nanoscale RbMnF_{3} particles or
DEFF Research Database (Denmark)
Clausen, Kurt Nørgaard; Lebech, Bente
1980-01-01
Spin wave excitations in a single crystal of Ho2Co17 have been studied at 4.8 and 78 K. The results are discussed in terms of a linear spin wave model. At 78 K both ground state and excited state spin waves are observed.......Spin wave excitations in a single crystal of Ho2Co17 have been studied at 4.8 and 78 K. The results are discussed in terms of a linear spin wave model. At 78 K both ground state and excited state spin waves are observed....
Discrete phase space - II: The second quantization of free relativistic wave fields
Das, A
2008-01-01
The Klein-Gordon equation, the Maxwell equation, and the Dirac equation are presented as partial difference equations in the eight-dimensional covariant discrete phase space. These equations are also furnished as difference-differential equations in the arena of discrete phase space and continuous time. The scalar field and electromagnetic fields are quantized with commutation relations. The spin-1/2 field is quantized with anti-commutation relations. Moreover, the total momentum, energy and charge of these free relativisitic quantized fields in the discrete phase space and continuous time are computed exactly. The results agree completely with those computed from the relativisitic fields defned on the space-time continuum.
Spin-Orbit Twisted Spin Waves: Group Velocity Control
Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.
2016-09-01
We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.
Fractionalized spin-wave continuum in kagome spin liquids
Mei, Jia-Wei; Wen, Xiao-Gang
Motivated by spin-wave continuum (SWC) observed in recent neutron scattering experiments in Herbertsmithite, we use Gutzwiller-projected wave functions to study dynamic spin structure factor S (q , ω) of spin liquid states on the kagome lattice. Spin-1 excited states in spin liquids are represented by Gutzwiller-projected two-spinon excited wave functions. We investigate three different spin liquid candidates, spinon Fermi-surface spin liquid (FSL), Dirac spin liquid (DSL) and random-flux spin liquid (RSL). FSL and RSL have low energy peaks in S (q , ω) at K points in the extended magnetic Brillouin zone, in contrast to experiments where low energy peaks are found at M points. There is no obviuos contradiction between DSL and neutron scattering measurements. Besides a fractionalized spin (i.e. spin-1/2), spinons in DSL carry a fractionalized crystal momentum which is potentially detectable in SWC in the neutron scattering measurements.
Reconfigurable heat-induced spin wave lenses
Dzyapko, O.; Borisenko, I. V.; Demidov, V. E.; Pernice, W.; Demokritov, S. O.
2016-12-01
We study the control and manipulation of propagating spin waves in yttrium iron garnet films using a local laser-induced heating. We show that, due to the refraction of spin waves in the thermal gradients, the heated region acts as a defocusing lens for Damon-Eshbach spin waves and as a focusing lens for backward volume waves enabling collimation of spin-wave beams in the latter case. In addition to the focusing/defocusing functionality, the local heating allows one to manipulate the propagation direction of the spin-wave beams and to efficiently suppress their diffraction spreading by utilizing caustic effects.
DEFF Research Database (Denmark)
Jensen, J.; Houmann, Jens Christian Gylden
1975-01-01
The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been expl...... by Liu. The coupled magnon—transverse-phonon system for the c direction of Tb is analyzed in detail, and the strengths of the couplings are deduced as a function of wave vector by combining the experimental studies with the theory....
Higher Spin Fermionic Quantum Fields on Curved Spacetimes and their Algebraic Quantization
Muehlhoff, Rainer
2011-01-01
A first order linear differential operator for Fermionic spinor fields of arbitrary half integral spin on globally hyperbolic Lorentzian spacetime manifolds is constructed. The Cauchy problem for the resulting field equation (massive as well as massless) is shown to have unique solutions. On the spinor bundle, a natural Hermitian scalar product is constructed with respect to which the differential operator is of positive-definite type. This leads to a construction of C*-algebra representation of the canonical anti-commutation relations and thus to a quantization of the higher spin system, which does not depend on further choices. Hence, these considerations show that the well-known CAR-algebraic quantization construction by Dimock (1982) for the spin 1/2 Dirac field can naturally be generalized to Fermionic fields of higher spin, which was as yet an open question. This document is equipped with a solid introduction to the formalism of 2-spinors on curved spacetimes in an invariant fashion using abstract index...
Different quantization mechanisms in single-electron pumps driven by surface acoustic waves
DEFF Research Database (Denmark)
Utko, P.; Gloos, K.; Hansen, Jørn Bindslev
2006-01-01
We have studied the acoustoelectric current in single-electron pumps driven by surface acoustic waves. We have found that in certain parameter ranges two different sets of quantized steps dominate the acoustoelectric current versus gate-voltage characteristics. In some cases, both types of quanti......We have studied the acoustoelectric current in single-electron pumps driven by surface acoustic waves. We have found that in certain parameter ranges two different sets of quantized steps dominate the acoustoelectric current versus gate-voltage characteristics. In some cases, both types...
Spin-transfer torque induced spin waves in antiferromagnetic insulators
Daniels, Matthew; Guo, Wei; Stocks, G. Malcolm; Xiao, Di; Xiao, Jiang
2015-03-01
We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations. Supported by NSF EFRI-1433496 (M.W.D), U.S. DOE Office of Basic Energy Sciences, Materials Sciences and Engineering (D.X. & G.M.S.), Major State Basic Research Project of China and National Natural Science Foundation of China (W.G. and J.X.).
On the Irreducible BRST Quantization of Spin-5/2 Gauge Fields
Bizdadea, C; Timneanu, E N
1998-01-01
Spin-5/2 gauge fields are quantized in an irreducible way within both the BRST and BRST-anti-BRST manners. To this end, we transform the reducible generating set into an irreducible one, such that the physical observables corresponding to these two formulations coincide. The gauge-fixing procedure emphasizes on the one hand the differences among our procedure and the results obtained in the literature, and on the other hand the equivalence between our BRST and BRST-anti-BRST approaches.
The role of the spin connection in quantum Hall effect: A perspective from geometric quantization
Karabali, Dimitra
2016-01-01
The topological terms of the bulk effective action for the integer quantum Hall effect, capturing the dynamics of gauge and gravitational fluctuations, reveal a curiosity, namely, the Abelian potential for the magnetic field appears in a particular combination with the Abelian spin connection. This seems to hold for quantum Hall effect on complex projective spaces of arbitrary dimensions. An interpretation of this in terms of the algebra of symplectic transformations is given. This can also be viewed in terms of the metaplectic correction in geometric quantization.
Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes
Energy Technology Data Exchange (ETDEWEB)
Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)
2016-09-15
The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green’s function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.
Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes
Mi, Bin-Zhou
2016-09-01
The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green's function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.
Gravitational waves and spinning test particles
Mohseni, M
2000-01-01
The motion of a classical spinning test particle in the field of a weak plane gravitational wave is studied. It is found that the characteristic dimensions of the particle's orbit is sensitive to the ratio of the spin to the mass of the particle. The results are compared with the corresponding motion of a particle without spin.
Extraordinary momentum and spin in evanescent waves
Bliokh, Konstantin Y; Nori, Franco
2013-01-01
Momentum and spin represent fundamental dynamical properties of quantum particles. It is known that the photon's momentum is determined by the wave vector and is independent of polarization. The spin of the photon is associated with circular polarization and is also collinear with the wave vector. We show that exactly the opposite can be the case for evanescent optical waves. First, a single evanescent wave possesses a spin angular momentum, which is largely independent of the polarization and is orthogonal to the wave vector. Second, such a wave carries a momentum component, which depends on the circular polarization and is also orthogonal to the wave vector. Although these extraordinary properties seem to be in contradiction with what is known about photons, we show that they reveal a fundamental spin momentum, introduced by Belinfante in field theory more than 70 years ago, which is unobservable in propagating fields. We demonstrate, both theoretically and numerically, that the unusual transverse momentum ...
Spin waves and spin instabilities in quantum plasmas
Andreev, P A
2014-01-01
We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Instabilities appearing due to interaction of magnetic moments of neutrons with plasma are described.
Suhl instabilities for spin waves in ferromagnetic nanostripes and ultrathin films
Haghshenasfard, Zahra; Nguyen, Hoa T.; Cottam, Michael G.
2017-03-01
A microscopic (or Hamiltonian-based) theory is employed for the spin-wave instability thresholds of nonlinear processes in ultrathin ferromagnetic stripes and films under perpendicular pumping with an intense microwave field. The spatially-quantized linear spin waves in these nanostructures may participate in parametric processes through the three-magnon interactions (the first-order Suhl process) and the four-magnon interactions (the second-order Suhl process) when pumped. By contrast with most previous studies of spin-wave instabilities made for larger samples, where macroscopic (or continuum) theories involving Maxwell's equations for magnetic dipolar effects are used, a discrete lattice of effective spins is employed. Then a dipole-exchange spin Hamiltonian is employed to investigate the behavior of the quantized spin waves under perpendicular pumping, when modifications due to the more extensive spatial confinement and edges effects in these nanostructures become pronounced. The instability thresholds versus applied magnetic field are calculated, with emphasis on the size effects and geometries of the nanostructures and on the different relative strengths of the magnetic dipole-dipole and exchange interactions in materials. Numerical results are presented using parameters for Permalloy, YIG, and EuS.
Orbital quantization in the high-magnetic-field state of a charge-density-wave system
Andres, D.; Kartsovnik, M. V.; Grigoriev, P. D.; Biberacher, W.; Müller, H.
2003-11-01
A superposition of the Pauli and orbital couplings of a high magnetic field to charge carriers in a charge-density-wave (CDW) system is proposed to give rise to transitions between subphases with quantized values of the CDW wave vector. By contrast to the purely orbital field-induced density-wave effects which require a strongly imperfect nesting of the Fermi surface, the new transitions can occur even if the Fermi surface is well nested at zero field. We suggest that such transitions are observed in the organic metal α-(BEDT-TTF)2KHg(SCN)4 under a strongly tilted magnetic field.
Spin pumping with coherent elastic waves
Weiler, M.; Huebl, H.; Goerg, F. S.; Czeschka, F. D.; Gross, R.; Goennenwein, S. T. B.
2012-02-01
The generation and detection of pure spin currents is an important topic for spintronic applications. Spin currents may be generated, e.g., via spin pumping. In this approach, a precessing magnetization relaxes via the emission of a spin current. Conventionally, electromagnetic waves, i.e. microwave photons, are used to drive the magnetization precession. We here show that a spin current can also be pumped by means of an acoustic wave, i.e. microwave phonons. In the experiments, coherent surface acoustic wave (SAW) phonons with a frequency of 1.55 GHz traverse a ferromagnetic thin film/normal metal (Co/Pt) bilayer. The SAW phonons drive the resonant magnetization precession via magnetoelastic coupling [1]. We use the inverse spin Hall voltage in the Pt film as a measure for the generated spin current and record its evolution as a function of time and external magnetic field magnitude and orientation. Our experiments show that a spin current is generated in the exclusive presence of a resonant elastic excitation. This establishes acoustic spin pumping as a resonant analogue to the spin Seebeck effect and opens intriguing perspectives for applications in, e.g., micromechanical resonators. [4pt] [1] M. Weiler et al., Phys. Rev. Lett. 106, 117601 (2011)
Antiferromagnetic spin wave and the superconductivity
Koh, Shun-ichiro
2000-07-01
The neutron scattering of UPd 2Al 3 showed that a sharp peak, which is absent in the normal phase, appears in the superconducting phase (Metoki et al., J. Phys. Soc. Japan 66 (1997) 2560; Bernhoeft et al., Phys. Rev. Lett. 81 (1998) 4244). Assuming this excitation to be an antiferromagnetic (AFM) spin-wave, this paper deals with its enhancement by the superconductivity. Applying the slave-boson formalism, we consider the AFM ordering as a spin-density-wave (Koh, Phys. Lett. A 253 (1999) 98). Above Tc, the spin-wave suffers an energy dissipation due to the conduction electron. Below Tc, the superconductivity suppresses the dissipation, resulting in the growth of the AFM spin-wave.
Superdirected Beam of the Surface Spin Wave
Annenkov, Alexander Yu; Lock, Edwin H
2016-01-01
Visualized diffraction patterns of the surface spin wave excited by arbitrarily oriented linear transducer in tangentially magnetized ferrite film are investigated experimentally in the plane of ferrite film for the case where the transducer length D is much larger than the wavelength L. Superdirected (nonexpanding) beam of the surface spin wave with noncollinear wave vector k and group velocity vector V was observed experimentally: the angular width of this beam was about zero, the smearing of the beam energy along the film plane was minimal and the length of the beam trajectory was maximal (50 mm). Thus it was shown that such phenomenon as superdirected propagation of the wave exists in the nature.
Omnidirectional spin-wave nanograting coupler
Yu, Haiming; Duerr, G.; Huber, R.; Bahr, M.; Schwarze, T.; Brandl, F.; Grundler, D.
2013-01-01
Magnonics as an emerging nanotechnology offers functionalities beyond current semiconductor technology. Spin waves used in cellular nonlinear networks are expected to speed up technologically, demanding tasks such as image processing and speech recognition at low power consumption. However, efficient coupling to microelectronics poses a vital challenge. Previously developed techniques for spin-wave excitation (for example, by using parametric pumping in a cavity) may not allow for the relevan...
Grigoriyn, G V
1995-01-01
The pseudoclassical hamiltonian and action of the $D=2n$ dimensional Dirac particle with anomalous magnetic moment interacting with the external electromagnetic field is found. The Bargmann-Michel-Telegdi equation of motion for the Pauli-Lubanski vector is deduced. The canonical quantization of $D=2n$ dimensional Dirac spinning particle with anomalous magnetic moment in the external electromagnetic field is carried out in the gauge which allows to describe simultaneously particles and antiparticles (massive and massless) already at the classical level. Pseudoclassical Foldy-Wouthuysen transformation is used to obtain canonical (Newton-Wigner) coordinates and in terms of this variables the theory is quantized. The connection of this quantization with the deGroot and Suttorp's description of Dirac particle with anomalous magnetic moment in the external electromagnetic field is discussed.
Kartsovnik, Mark; Andres, Dieter; Grigoriev, Pavel; Biberacher, Werner; Müller, Harald
2004-04-01
The interlayer magnetoresistance of the low-dimensional organic metal α-(BEDT-TTF) 2KHg(SCN) 4 under pressure shows features which are likely associated with theoretically predicted field-induced charge-density-wave (FICDW) transitions. At ambient pressure, a magnetic field strongly tilted towards the conducting layers induces a series of hysteretic anomalies. We attribute these anomalies to a novel kind of FICDW originating from a superposition of the orbital quantization of the nesting vector and Pauli effect on the charge-density wave.
Energy Technology Data Exchange (ETDEWEB)
Kartsovnik, Mark; Andres, Dieter; Grigoriev, Pavel; Biberacher, Werner; Mueller, Harald
2004-04-30
The interlayer magnetoresistance of the low-dimensional organic metal {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} under pressure shows features which are likely associated with theoretically predicted field-induced charge-density-wave (FICDW) transitions. At ambient pressure, a magnetic field strongly tilted towards the conducting layers induces a series of hysteretic anomalies. We attribute these anomalies to a novel kind of FICDW originating from a superposition of the orbital quantization of the nesting vector and Pauli effect on the charge-density wave.
Confined spin wave spectra of Kagome artificial spin ice arrays
Panagiotopoulos, I.
2017-01-01
The spin wave modes of elongated magnetic islands arranged in Kagome artificial spin-ice arrays are micromagnetically simulated in the frequency regime between 3 and 16 GHz. The edge modes are more suitable in order to detect the signatures of various types of local order of the spin-ice lattice as they are much more sensitive to the magnetic configurations of neighboring elements. The spectra of arrays consisting up to 30 elements can be decomposed to those originating from local magnetic states of their vertices.
Quantization of a particle guided by its own pilot-wave
Perrard, Stéphane; Labousse, Matthieu; Fort, Emmanuel; Couder, Yves
2013-11-01
The association of a particle and a wave can be obtained even at a macroscopic scale, using a simple experimental set up. A liquid bath is set into vertical oscillation so that any drop deposit on it has never the time to break the air layer under it. The drop is always ejected from the bath by the vibration and can then live for hours. The impact generates waves at the surface of the bath which can propel the drop. It becomes a walker, the self-propelled entity formed by a bouncing droplet and its associated surface wave. This system has already shown surprising wave-particle duality as single particle diffraction or Bohr-Sommerfeld quantization of level when the drop is submitted to a transverse force. We now study its motion when the walker is submitted to a central force, which can be tuned at will. In particular, I will present our results in the case of a 2D harmonic potential well. In the case of a strong coupling between the waves and the bouncing drop, the walker exhibit a discrete set of state where the angular momentum and the spatial extend of each level are quantized. Disordered trajectories also appear, as an intermittency between the pure eigenmodes through transitions between them.
Matthes, L.; Küfner, S.; Furthmüller, J.; Bechstedt, F.
2016-03-01
Ab initio relativistic band structure calculations are performed for the frequency-dependent spin Hall conductivity of two-dimensional atomically thin crystals and one-dimensional nanoribbons. We study the influence of topology, quantization, and topological edge states. As model systems fully halogenated germanene, GeI, and its zigzag nanoribbons are investigated. GeI represents a topological insulator (TI). For comparison, also the TI germanene and the trivial insulator hydrogenated germanene are studied. For the TIs we demonstrate the quantization of the static spin Hall conductivity. It is hardly influenced by temperature and Fermi level shift. Its frequency dependence is governed by the band-structure details. Topological edge states influence the conductivity mainly for vanishing frequencies.
Energy Technology Data Exchange (ETDEWEB)
Faizal, Mir
2013-12-18
In this Letter we will analyze the creation of the multiverse. We will first calculate the wave function for the multiverse using third quantization. Then we will fourth-quantize this theory. We will show that there is no single vacuum state for this theory. Thus, we can end up with a multiverse, even after starting from a vacuum state. This will be used as a possible explanation for the creation of the multiverse. We also analyze the effect of interactions in this fourth-quantized theory.
Spin waves theory and applications
Stancil, Daniel D
2009-01-01
Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magneto static properties of the material, they are called magneto static waves (sometimes 'magnons' or 'magnetic polarons'). This book discusses magnetic properties of materials, and magnetic moments of atoms and ions
Omnidirectional spin-wave nanograting coupler.
Yu, Haiming; Duerr, G; Huber, R; Bahr, M; Schwarze, T; Brandl, F; Grundler, D
2013-01-01
Magnonics as an emerging nanotechnology offers functionalities beyond current semiconductor technology. Spin waves used in cellular nonlinear networks are expected to speed up technologically, demanding tasks such as image processing and speech recognition at low power consumption. However, efficient coupling to microelectronics poses a vital challenge. Previously developed techniques for spin-wave excitation (for example, by using parametric pumping in a cavity) may not allow for the relevant downscaling or provide only individual point-like sources. Here we demonstrate that a grating coupler of periodically nanostructured magnets provokes multidirectional emission of short-wavelength spin waves with giantly enhanced amplitude compared with a bare microwave antenna. Exploring the dependence on ferromagnetic materials, lattice constants and the applied magnetic field, we find the magnonic grating coupler to be more versatile compared with gratings in photonics and plasmonics. Our results allow one to convert, in particular, straight microwave antennas into omnidirectional emitters for short-wavelength spin waves, which are key to cellular nonlinear networks and integrated magnonics.
Domain Wall Propagation through Spin Wave Emission
Wang, X.S.; Yan, P.; Shen, Y.H.; Bauer, G.E.W.; Wang, X.R.
2012-01-01
We theoretically study field-induced domain wall motion in an electrically insulating ferromagnet with hard- and easy-axis anisotropies. Domain walls can propagate along a dissipationless wire through spin wave emission locked into the known soliton velocity at low fields. In the presence of damping
Spectrum of spin waves in cold polarized gases
Energy Technology Data Exchange (ETDEWEB)
Andreeva, T. L., E-mail: phdocandreeva@yandex.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-02-15
The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.
Spin-wave modes of ferromagnetic films
Arias, R. E.
2016-10-01
The spin-wave modes of ferromagnetic films have been studied for a long time experimentally as well as theoretically, either in the magnetostatic approximation or also considering the exchange interaction. A theoretical method is presented that allows one to determine with ease the exact frequency dispersion relations of dipole-exchange modes under general conditions: an obliquely applied magnetic field, and surface boundary conditions that allow for partial pinning, which may be of different origins. The method is a generalization of Green's theorem to the problem of solving the linear dynamics of ferromagnetic spin-wave modes. Convolution integral equations for the magnetization and the magnetostatic potential of the modes are derived on the surfaces of the film. For the translation-invariant film these become simple local algebraic equations at each in-plane wave vector. Eigenfrequencies result from imposing a 6 ×6 determinant to be null, and spin-wave modes follow everywhere through solving linear 6 ×6 inhomogeneous systems. An interpretation of the results is that the Green's functions represent six independent plane-wave solutions to the equations of motion, with six associated complex perpendicular wave vectors: volume modes correspond to the cases in which two of these are purely real at a given frequency. Furthermore, the convolution extinction equations enforce the boundary conditions: this is possible at specific eigenfrequencies for a given in-plane wave vector. Magnetostatic modes may also be obtained in detail. At low frequencies and for some obliquely applied magnetic fields, magnetostatic and dipole-exchange volume modes may have forward or backward character depending on the frequency range.
Magnetometer Based On Spin Wave Interferometer
Balynsky, M; Chiang, H; Kozhevnikov, A; Filimonov, Y; Balandin, A A; Khitun, A
2016-01-01
We describe magnetic field sensor based on spin wave interferometer. Its sensing element consists of a magnetic cross junction with four micro-antennas fabricated at the edges. Two of these antennas are used for spin wave excitation and two others antennas are used for the detection of the inductive voltage produced by the interfering spin waves. Two waves propagating in the orthogonal arms of the cross may accumulate significantly different phase shifts depending on the magnitude and the direction of the external magnetic field. This phenomenon is utilized for magnetic field sensing. The sensitivity has maximum at the destructive interference condition, where a small change of the external magnetic field results in a drastic increase of the inductive voltage as well as the change of the output phase. We report experimental data obtained on a micrometer scale Y3Fe2(FeO4)3 cross structure. The change of the inductive voltage near the destructive interference point exceeds 40 dB per 1 Oe. At the same time, the ...
Energy Technology Data Exchange (ETDEWEB)
Mandal, Ruma; Laha, Pinaki; Das, Kaustuv; Saha, Susmita; Barman, Saswati; Raychaudhuri, A. K.; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India)
2013-12-23
We show that the optically induced spin wave spectra of nanoscale Ni{sub 80}Fe{sub 20} (permalloy) antidot lattices can be tuned by changing the antidot shape. The spin wave spectra also show an anisotropy with the variation of the in-plane bias field orientation. Analyses show this is due to various quantized and extended modes, whose nature changes with the antidot shape and bias field orientation as a result of the variation of the internal magnetic field profile. The observed variation and anisotropy in the spin waves with the internal and external parameters are important for their applications in magnonic devices.
Density functional calculations of spin-wave dispersion curves.
Kleinman, Leonard; Niu, Qian
1998-03-01
Extending the density functional method of Kubler et al( J. Kubler et al, J. Phys. F 18, 469 (1983) and J. Phys. Condens. Matter 1, 8155 (1989). ) for calcuating spin density wave ground states (but not making their atomic sphere approximation which requires a constant spin polarization direction in each WS sphere) we dicuss the calculation of frozen spin-wave eigenfunctions and their total energies. From these and the results of Niu's talk, we describe the calculation of spin-wave frequencies.
Spin wave Feynman diagram vertex computation package
Price, Alexander; Javernick, Philip; Datta, Trinanjan
Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.
Dzhunushaliev, Vladimir
2016-01-01
The contribution of gluon fields to the proton spin is calculated. The calculations are performed following non-perturbative Heisenberg's quantization technique. In our approach a proton is considered as consisting of three quarks connected by three flux tubes. The flux tubes contain colour longitudinal electric and transversal electric and magnetic fields. The longitudinal electric field causes the interaction forces between quarks. The quantum superposition of the transversal fields causes the appearance of the angular momentum density. From our calculations, we obtain that the contribution of the gluon field from the flux tubes to the proton spin is of the order of $15\\%$. The dimensionless relation between the angular momentum and the mass of the gluon fields is obtained. The experimental verification of this relation is discussed. Simple numerical relation between the proton mass, the speed of light and the proton radius, which is of the same order as the Planck constant, is discussed.
Spin waves in exchange-coupled double layers in the presence of spin torques
Baláž, Pavel; Barnaś, Józef
2015-03-01
Spin-wave spectra of a double magnetic layer are calculated theoretically in the macroscopic limit. Magnetic dynamics is described in terms of the Landau-Lifshitz-Gilbert equation, and both static (of the Ruderman-Kittel-Kasuya-Yosida type) and dynamic (via spin pumping) interlayer couplings are taken into account. The influence of spin pumping and spin transfer torque on the spin-wave spectra (frequency and damping factor) has been studied for both parallel and antiparallel magnetic configurations. The spin-wave spectrum in the parallel magnetic state is reciprocal, while in the antiparallel configuration it is nonreciprocal. In both cases, a substantial reduction of the spin-wave lifetimes due to spin pumping to the nonmagnetic metallic layers has been found. In the parallel configuration, this reduction appears mainly for optical modes, while in the antiparallel configuration, it is remarkable for all modes. In turn, the spin torque due to spin current flowing from a metallic layer, created for instance by the spin Hall effect, gives rise to significant changes in the damping factors as well, but these modifications depend on the sign of spin current. For one spin current orientation, the spin-wave damping becomes reduced and may disappear for some modes at a specific threshold value of the spin current, indicating magnetic instability in the system due to spin transfer torque. For the opposite spin current, the damping is enhanced, which indicates stabilization of the corresponding magnetic state.
Spin current-induced by a sound wave.
Lyapilin, Igor I
2013-04-01
The interaction of conduction electrons with a longitudinal sound wave propagating in a crystal in a constant magnetic field is investigated. It is shown that the transverse spin current arises when the longitudinal sound wave propagation through the system. The average power absorbed by the spin subsystem of the conduction electrons and the spin-Hall conductivity have a resonant character.
Spin wave and spin flip in hexagonal LuMnO3 single crystal
Chen, Xiang-Bai; Guo, Peng-Cheng; Huyen, Nguyen Thi; Kim, Seung; Yang, In-Sang; Wang, Xueyun; Cheong, Sang-Wook
2017-03-01
Manipulation and control of spin wave and spin flip are crucial for future developments of magnonic and spintronic devices. We present that the spin wave in hexagonal LuMnO3 single crystal can be selectively excited with laser polarization perpendicular to the c-axis of hexagonal LuMnO3 and photon energy ˜1.8 eV. The selective excitation of spin wave also suggests that the spin flip can be selectively controlled in hexagonal manganites. In addition, a microscopic model of the spin wave generation correlated with the four-spin-flip in hexagonal manganites is suggested to account for the line-shape of the observed spin wave.
Nonreciprocal spin wave spectroscopy of thin Ni–Fe stripes
Khalili Amiri, P.K.; Rejaei, B.; Vroubel, M.; Zhuang, Y.
2007-01-01
The authors report on the observation of nonreciprocal spin wave propagation in a thin ( ∼ 200 nm) patterned Ni–Fe stripe. The spin wave transmission spectrum is measured using a pair of microstrip lines as antennas. The nonreciprocity of surface wave dispersion brought about by an adjacent aluminum
Spin waves in a skyrmion crystal
Petrova, Olga; Tchernyshyov, Oleg
2012-02-01
We derive the spectrum of low-frequency spin waves in skyrmion crystals observed recently in noncentrosymmetric ferromagnets [1-4]. We treat the skyrmion crystal as a superposition of three helices whose wavevectors form an equilateral triangle [1]. The low-frequency spin waves are Goldstone modes associated with displacements of skyrmions. Their dispersion is determined by the elastic properties of the skyrmion crystal and by the kinetic terms of the effective Lagrangian, which include both kinetic energy and a Berry phase term reflecting a non-trivial topology of magnetization. The Berry phase term acts like an effective magnetic field, mixing longitudinal and transverse vibrations into a gapped cyclotron mode and a twist wave with a quadratic dispersion [5]. [4pt][1] Muehlbauer, Binz, Jonietz, Pfleiderer, Rosch, Neubauer, Georgii, Boeni, Science 323, 915 (2009). [0pt][2] Muenzer, Neubauer, Adams, Muehlbauer, Franz, Jonietz, Georgii, et al., Phys. Rev. B 81, 041203 (2010). [0pt][3] Yu, Onose, Kanazawa, Park, Han, Matsui, Nagaosa, Tokura, Nature 465, 901 (2010). [0pt][4] Yu, Kanazawa, Onose, Kimoto, Zhang, Ishiwata, Matsui, Tokura, Nat. Mater. 10, 106 (2011). [0pt][5] Petrova, Tchernyshyov, arXiv:1109.4990v2 [cond-mat.mes-hall
Spin- and Pair-Density-Wave Glasses
Directory of Open Access Journals (Sweden)
David F. Mross
2015-07-01
Full Text Available Spontaneous breaking of translational symmetry, known as density-wave order, is common in nature. However, such states are strongly sensitive to impurities or other forms of frozen disorder leading to fascinating glassy phenomena. We analyze impurity effects on a particularly ubiquitous form of broken translation symmetry in solids: a spin-density wave (SDW with spatially modulated magnetic order. Related phenomena occur in pair-density-wave (PDW superconductors where the superconducting order is spatially modulated. For weak disorder, we find that the SDW or PDW order can generically give way to a SDW or PDW glass—new phases of matter with a number of striking properties, which we introduce and characterize here. In particular, they exhibit an interesting combination of conventional (symmetry-breaking and spin-glass (Edwards-Anderson order. This is reflected in the dynamic response of such a system, which—as expected for a glass—is extremely slow in certain variables, but, surprisingly, is fast in others. Our results apply to all uniaxial metallic SDW systems where the ordering vector is incommensurate with the crystalline lattice. In addition, the possibility of a PDW glass has important consequences for some recent theoretical and experimental work on La_{2−x}Ba_{x}Cu_{2}O_{4}.
Energy Technology Data Exchange (ETDEWEB)
Huang Yongchang [Institute of Theoretical Physics, Beijing University of Technology, Beijing 100022 (China); CCAST (World Laboratory), Beijing 100080 (China)], E-mail: ychuang@bjut.edu.cn; Huo Qiuhong [Institute of Theoretical Physics, Beijing University of Technology, Beijing 100022 (China)
2008-04-24
Using Faddeev-Senjanovic path integral quantization for constrained Hamilton system, we quantize SU(n) N=2 supersymmetric gauge field system with non-Abelian Chern-Simons topological term in 2+1 dimensions. We use consistency of Coulomb gauge condition to naturally deduce a new gauge condition. Furthermore, we obtain the generating functional of Green function in phase space, deduce the angular momentum based on the global canonical Noether theorem at quantum level, obtain the fractional spin of this supersymmetric system, and show that the total angular momentum is the sum of the orbital angular momentum and spin angular momentum of the non-Abelian gauge field. Finally, we obtain the anomalous fractional spin and discover that the fractional spin has the contributions of both the group superscript components and A{sub 0}{sup s}(x) charge.
Broken Lifshitz invariance, spin waves and hydrodynamics
Roychowdhury, Dibakar
2016-01-01
In this paper, based on the basic principles of thermodynamics, we explore the hydrodynamic regime of interacting Lifshitz field theories in the presence of broken rotational invariance. We compute the entropy current and discover new dissipative effects those are consistent with the principle of local entropy production in the fluid. In our analysis, we consider both the parity even as well as the parity odd sector upto first order in the derivative expansion. Finally, we argue that the present construction of the paper could be systematically identified as that of the hydrodynamic description associated with \\textit{spin waves} (away from the domain of quantum criticality) under certain limiting conditions.
Quantization on Space-Time Hyperboloids
Biernat, Elmar P
2011-01-01
We quantize a relativistic massive complex spin-0 field and a relativistic massive spin-1/2 field on a space-time hyperboloid. We call this procedure point-form canonical quantization. Lorentz invariance of the hyperboloid implies that the 4 generators for translations become dynamic and interaction dependent, whereas the 6 generators for Lorentz transformations remain kinematic and interaction free. We expand the fields in terms of usual plane waves and prove the equivalence to equal-time quantization by representing the Poincare generators in a momentum basis. We formulate a generalized scattering theory for interacting fields by considering evolution of the system generated by the interaction dependent four-momentum operator. Finally we expand our generalized scattering operator in powers of the interaction and show its equivalence to the Dyson expansion of usual time-ordered perturbation theory.
Nonlinear spin wave coupling in adjacent magnonic crystals
Energy Technology Data Exchange (ETDEWEB)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)
2016-07-25
We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.
Spin wave amplification using the spin Hall effect in permalloy/platinum bilayers
Energy Technology Data Exchange (ETDEWEB)
Gladii, O.; Henry, Y.; Bailleul, M. [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2 (France); Collet, M.; Garcia-Hernandez, K.; Cheng, C.; Bortolotti, P.; Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767 Palaiseau (France); Xavier, S. [Thales Research and Technology, 1 Av. A. Fresnel, Campus de l' Ecole Polytechnique, 91767 Palaiseau (France); Kim, J.-V. [Institut d' Electronique Fondamentale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)
2016-05-16
We investigate the effect of an electrical current on the attenuation length of a 900 nm wavelength spin-wave in a permalloy/Pt bilayer using propagating spin-wave spectroscopy. The modification of the spin-wave relaxation rate is linear in current density, reaching up to 14% for a current density of 2.3 × 10{sup 11} A/m{sup 2} in Pt. This change is attributed to the spin transfer torque induced by the spin Hall effect and corresponds to an effective spin Hall angle of 0.13, which is among the highest values reported so far. The spin Hall effect thus appears as an efficient way of amplifying/attenuating propagating spin waves.
Spin Waves in a Classical Compressible Heisenberg Chain
Fivez, J.; Raedt, H. De
1980-01-01
The effect of the spin—lattice interaction on the spin dynamics of a classical Heisenberg chain is studied by means of a truncated continued fraction. At low temperature, the spin correlation length and the spin wave frequency show the same simple dependence on the coupling.
Theory of Spin Waves in Strongly Anisotropic Magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Cooke, J. F.
1976-01-01
A new infinite-order perturbation approach to the theory of spin waves in strongly anisotropic magnets is introduced. The system is transformed into one with effective two-ion anisotropy and considerably reduced ground-state corrections. A general expression for the spin-wave energy, valid to any...
Investigation of dominant spin wave modes by domain walls collision
Energy Technology Data Exchange (ETDEWEB)
Ramu, M.; Purnama, I.; Goolaup, S.; Chandra Sekhar, M.; Lew, W. S., E-mail: wensiang@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)
2014-06-28
Spin wave emission due to field-driven domain wall (DW) collision has been investigated numerically and analytically in permalloy nanowires. The spin wave modes generated are diagonally symmetric with respect to the collision point. The non-propagating mode has the highest amplitude along the middle of the width. The frequency of this mode is strongly correlated to the nanowire geometrical dimensions and is independent of the strength of applied field within the range of 0.1 mT to 1 mT. For nanowire with film thickness below 5 nm, a second spin wave harmonic mode is observed. The decay coefficient of the spin wave power suggests that the DWs in a memory device should be at least 300 nm apart for them to be free of interference from the spin waves.
Covariant canonical quantization
Energy Technology Data Exchange (ETDEWEB)
Hippel, G.M. von [University of Regina, Department of Physics, Regina, Saskatchewan (Canada); Wohlfarth, M.N.R. [Universitaet Hamburg, Institut fuer Theoretische Physik, Hamburg (Germany)
2006-09-15
We present a manifestly covariant quantization procedure based on the de Donder-Weyl Hamiltonian formulation of classical field theory. This procedure agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and we apply the formalism to a number of simple examples. These show that covariant canonical quantization produces both the Klein-Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses. Covariant canonical quantization can thus be understood as a ''first'' or pre-quantization within the framework of conventional QFT. (orig.)
Bouchard, Vincent; Dauphinee, Tyler
2016-01-01
We study the connection between the Eynard-Orantin topological recursion and quantum curves for the family of genus one spectral curves given by the Weierstrass equation. We construct quantizations of the spectral curve that annihilate the perturbative and non-perturbative wave-functions. In particular, for the non-perturbative wave-function, we prove, up to order hbar^5, that the quantum curve satisfies the properties expected from matrix models. As a side result, we obtain an infinite sequence of identities relating A-cycle integrals of elliptic functions and quasi-modular forms.
Spin wave vortex from the scattering on Bloch point solitons
Energy Technology Data Exchange (ETDEWEB)
Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elías, R.G., E-mail: gabriel.elias@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, A.S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)
2015-12-15
The interaction of a spin wave with a stationary Bloch point is studied. The topological non-trivial structure of the Bloch point manifests in the propagation of spin waves endowing them with a gauge potential that resembles the one associated with the interaction of a magnetic monopole and an electron. By pursuing this analogy, we are led to the conclusion that the scattering of spin waves and Bloch points is accompanied by the creation of a magnon vortex. Interference between such a vortex and a plane wave leads to dislocations in the interference pattern that can be measurable by means of magnon holography.
Kort-Kamp, W J M; Dalvit, D A R
2015-01-01
We predict quantized Imbert-Fedorov, Goos-H\\"anchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant $\\alpha$, while the Goos- H\\"anchen ones in multiples of $\\alpha^2$. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.
Spin wave absorber generated by artificial surface anisotropy for spin wave device network
Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru
2016-09-01
Spin waves (SWs) have the potential to reduce the electric energy loss in signal processing networks. The SWs called magnetostatic forward volume waves (MSFVWs) are advantageous for networking due to their isotropic dispersion in the plane of a device. To control the MSFVW flow in a processing network based on yttrium iron garnet, we developed a SW absorber using artificial structures. The mechanical surface polishing method presented in this work can well control extrinsic damping without changing the SW dispersion of the host material. Furthermore, enhancement of the ferromagnetic resonance linewidth over 3 Oe was demonstrated.
All-optical observation and reconstruction of spin wave dispersion
Hashimoto, Yusuke; Daimon, Shunsuke; Iguchi, Ryo; Oikawa, Yasuyuki; Shen, Ka; Sato, Koji; Bossini, Davide; Tabuchi, Yutaka; Satoh, Takuya; Hillebrands, Burkard; Bauer, Gerrit E. W.; Johansen, Tom H.; Kirilyuk, Andrei; Rasing, Theo; Saitoh, Eiji
2017-06-01
To know the properties of a particle or a wave, one should measure how its energy changes with its momentum. The relation between them is called the dispersion relation, which encodes essential information of the kinetics. In a magnet, the wave motion of atomic spins serves as an elementary excitation, called a spin wave, and behaves like a fictitious particle. Although the dispersion relation of spin waves governs many of the magnetic properties, observation of their entire dispersion is one of the challenges today. Spin waves whose dispersion is dominated by magnetostatic interaction are called pure-magnetostatic waves, which are still missing despite of their practical importance. Here, we report observation of the band dispersion relation of pure-magnetostatic waves by developing a table-top all-optical spectroscopy named spin-wave tomography. The result unmasks characteristics of pure-magnetostatic waves. We also demonstrate time-resolved measurements, which reveal coherent energy transfer between spin waves and lattice vibrations.
Voltage modulation of propagating spin waves in Fe
Energy Technology Data Exchange (ETDEWEB)
Nawaoka, Kohei; Shiota, Yoichi; Miwa, Shinji; Tamura, Eiiti [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); CREST, Japan Science Technology, Kawaguchi, Saitama 332-0012 (Japan); Tomita, Hiroyuki; Mizuochi, Norikazu; Shinjo, Teruya [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Suzuki, Yoshishige, E-mail: suzuki-y@mp.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); CREST, Japan Science Technology, Kawaguchi, Saitama 332-0012 (Japan); Display and Semiconductor Physics Department, Korea University, Sejong 339-700 (Korea, Republic of)
2015-05-07
The effect of a voltage application on propagating spin waves in single-crystalline 5 nm-Fe layer was investigated. Two micro-sized antennas were employed to excite and detect the propagating spin waves. The voltage effect was characterized using AC lock-in technique. As a result, the resonant field of the magnetostatic surface wave in the Fe was clearly modulated by the voltage application. The modulation is attributed to the voltage induced magnetic anisotropy change in ferromagnetic metals.
Surface spin-electron acoustic waves in magnetically ordered metals
Andreev, Pavel A
2015-01-01
Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area the dispersion branches are located close to each other. In this area there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the SEAWs.
Perspectives of using spin waves for computing and signal processing
Energy Technology Data Exchange (ETDEWEB)
Csaba, György, E-mail: gcsaba@gmail.com [Center for Nano Science and Technology, University of Notre Dame (United States); Faculty for Information Technology and Bionics, Pázmány Péter Catholic University (Hungary); Papp, Ádám [Center for Nano Science and Technology, University of Notre Dame (United States); Faculty for Information Technology and Bionics, Pázmány Péter Catholic University (Hungary); Porod, Wolfgang [Center for Nano Science and Technology, University of Notre Dame (United States)
2017-05-03
Highlights: • We give an overview of spin wave-based computing with emphasis on non-Boolean signal processors. • Spin waves can combine the best of electronics and photonics and do it in an on-chip and integrable way. • Copying successful approaches from microelectronics may not be the best way toward spin-wave based computing. • Practical devices can be constructed by minimizing the number of required magneto-electric interconnections. - Abstract: Almost all the world's information is processed and transmitted by either electric currents or photons. Now they may get a serious contender: spin-wave-based devices may just perform some information-processing tasks in a lot more efficient and practical way. In this article, we give an engineering perspective of the potential of spin-wave-based devices. After reviewing various flavors for spin-wave-based processing devices, we argue that the niche for spin-wave-based devices is low-power, compact and high-speed signal-processing devices, where most traditional electronics show poor performance.
Spin waves in antiferromagnetic FeF2
DEFF Research Database (Denmark)
Hutchings, M T; Rainford, B.D.; Guggenheim, H J
1970-01-01
Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin Hamilton......Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin...
Lagrangian geometrical optics of nonadiabatic vector waves and spin particles
Ruiz, D E
2015-01-01
Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Both phenomena are governed by an effective gauge Hamiltonian, which vanishes in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of $N$ resonant modes, where $N$ is arbitrary, and lead to equations for the wave spin, which happens to be a $(N^2-1)$-dimensional spin vector. As a special case, classical equations for a Dirac particle $(N=2)$ are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangi...
Frequency selective tunable spin wave channeling in the magnonic network
Energy Technology Data Exchange (ETDEWEB)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Odincov, S. A.; Sheshukova, S. E.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Stognij, A. I. [Scientific-Practical Materials Research Center, National Academy of Sciences of Belarus, 220072 Minsk (Belarus)
2016-04-25
Using the space-resolved Brillouin light scattering spectroscopy, we study the frequency and wavenumber selective spin-wave channeling. We demonstrate the frequency selective collimation of spin-wave in an array of magnonic waveguides, formed between the adjacent magnonic crystals on the surface of yttrium iron garnet film. We show the control over spin-wave propagation length by the orientation of an in-plane bias magnetic field. Fabricated array of magnonic crystal can be used as a magnonic platform for multidirectional frequency selective signal processing applications in magnonic networks.
Nonlinear spin-wave excitations at low magnetic bias fields
Woltersdorf, Georg
We investigate experimentally and theoretically the nonlinear magnetization dynamics in magnetic films at low magnetic bias fields. Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. In the experiments we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common Suhl instability model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behavior in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. For these modes, we also find pronounced frequency locking effects that may be used for synchronization purposes in magnonic devices. By using this effect, effective spin-wave sources based on parametric spin-wave excitation may be realized. Our results also show that it is not required to invoke a wave vector-dependent damping parameter in the interpretation of nonlinear magnetic resonance experiments performed at low bias fields.
Universal spin-momentum locking of evanescent waves
Van Mechelen, Todd
2015-01-01
We show the existence of an inherent property of evanescent electromagnetic waves: spin-momentum locking, where the direction of momentum fundamentally locks the polarization of the wave. We trace the ultimate origin of this phenomenon to complex dispersion and causality requirements on evanescent waves. We demonstrate that every case of evanescent waves in total internal reflection, surface states and optical fibers/waveguides possesses this intrinsic spin-momentum locking. We derive the Stokes parameters for evanescent waves which reveal an intriguing result - every fast decaying evanescent wave is inherently circularly polarized with its handedness tied to the direction of propagation. We also show the existence of a fundamental angle associated with total internal reflection (TIR) such that propagating waves locally inherit perfect circular polarized characteristics from the evanescent wave. This circular TIR condition occurs if and only if the ratio of permittivities of the two dielectric media exceeds t...
Control of Spin-Wave Refraction Using Arrays of Skyrmions
Moon, Kyoung-Woong; Chun, Byong Sun; Kim, Wondong; Hwang, Chanyong
2016-12-01
A periodically patterned and magnetized medium for controlling spin waves is proposed in a magnonic device and presents a clear advantage compared with other metamaterials because of the tunability in reconfiguring its pattern during operation. We study the spin-wave propagation numerically by controlling the arrangement of two magnetic Skyrmion arrays instead of patterned structures. The adjustment the position of each of the Skyrmion arrays could result in distinct spin-wave propagation or refraction depending on the location of the Skyrmions in each array. Control of the arrangement of two Skyrmion arrays can be made by an asymmetric magnetic field generated by a symmetric electrode with different current directions. This simple method of spin-wave manipulation can be applied to the development of magnonic devices consisting of Skyrmions as the building blocks of the magnonic crystals.
Experimental prototype of a spin-wave majority gate
Fischer, T.; Kewenig, M.; Bozhko, D. A.; Serga, A. A.; Syvorotka, I. I.; Ciubotaru, F.; Adelmann, C.; Hillebrands, B.; Chumak, A. V.
2017-04-01
Featuring low heat dissipation, devices based on spin-wave logic gates promise to comply with increasing future requirements in information processing. In this work, we present the experimental realization of a majority gate based on the interference of spin waves in an Yttrium-Iron-Garnet-based waveguiding structure. This logic device features a three-input combiner with the logic information encoded in a phase of 0 or π of the input spin waves. We show that the phase of the output signal represents the majority of the three phase states of the spin waves in the three inputs. A switching time of about 10 ns in the prototype device provides evidence for the ability of sub-nanosecond data processing in future down-scaled devices.
Entanglement between low- and high-lying atomic spin waves
Ding, D. S.; Wang, K.; Zhang, W.; Shi, S.; Dong, M. X.; Yu, Y. C.; Zhou, Z. Y.; Shi, B. S.; Guo, G. C.
2016-11-01
Establishing a quantum interface between different physical systems is of special importance for developing the practical versatile quantum networks. Entanglement between low- and high-lying atomic spin waves is essential for building up Rydberg-based quantum information engineering, which is also helpful to study the dynamics behavior of entanglement under external perturbations. Here, we report on the successful storage of a single photon as a high-lying atomic spin wave in a quantum regime. By storing a K-vector entanglement between a single photon and low-lying spin wave, we experimentally realize the entanglement between low- and high-lying atomic spin waves in two separated atomic systems. This makes our experiment a primary demonstration of Rydberg quantum memory of entanglement, representing a primary step toward the construction of a hybrid quantum interface.
On the coupling between spinning particles and cosmological gravitational waves
Milillo, Irene; Montani, Giovanni
2008-01-01
The influence of spin in a system of classical particles on the propagation of gravitational waves is analyzed in the cosmological context of primordial thermal equilibrium. On a flat Friedmann-Robertson-Walker metric, when the precession is neglected, there is no contribution due to the spin to the distribution function of the particles. Adding a small tensor perturbation to the background metric, we study if a coupling between gravitational waves and spin exists that can modify the evolution of the distribution function, leading to new terms in the anisotropic stress, and then to a new source for gravitational waves. In the chosen gauge, the final result is that, in the absence of other kind of perturbations, there is no coupling between spin and gravitational waves.
Covariant canonical quantization
Von Hippel, G M; Hippel, Georg M. von; Wohlfarth, Mattias N.R.
2006-01-01
We present a manifestly covariant quantization procedure based on the de Donder-Weyl Hamiltonian formulation of classical field theory. Covariant canonical quantization agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and apply the formalism to a number of simple examples. These show that covariant canonical quantization produces both the Klein-Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses.
Spin waves and the order-disorder transition in chromium
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Dietrich, O.W.
1969-01-01
The inelastic magnetic scattering of neutrons has been studied in Cr and Cr0.95-Mn0.05 both below and above the Neel temperature. The temperature dependence of the spin-wave velocity in the alloy has been measured below TN. The scattering above TN may also be interpreted in terms of spin-wavelike...
New Spin-Wave Mode in Weak Ferromagnetic Fermi Liquids
Petkova, Penka I.
1999-01-01
We study a phenomenological model for weak ferromagnetic Fermi liquids and investigate the properties of the spin waves in the model. The Landau kinetic equation is used to derive, in addition to the known Goldstone mode, a new spin-wave mode -- the first Silin-like ferromagnetic mode. We discuss the role of the interaction parameter F^a_1 on the behavior of the Goldstone mode and the first Silin-like ferromagnetic mode.
Magnetization dynamics and spin pumping induced by standing elastic waves
Azovtsev, A. V.; Pertsev, N. A.
2016-11-01
The magnetization dynamics induced by standing elastic waves excited in a thin ferromagnetic film is described with the aid of micromagnetic simulations taking into account the magnetoelastic coupling between spins and lattice strains. Our calculations are based on the numerical solution of the Landau-Lifshitz-Gilbert equation comprising the damping term and the effective magnetic field with all relevant contributions. The simulations have been performed for 2-nm-thick F e81G a19 film dynamically strained by longitudinal and transverse standing waves with various frequencies, which span a wide range around the resonance frequency νres of coherent magnetization precession in unstrained F e81G a19 film. It is found that standing elastic waves give rise to complex local magnetization dynamics and spatially inhomogeneous dynamic patterns in the form of standing spin waves with the same wavelength. Remarkably, the amplitude of magnetization precession does not go to zero at nodes of these spin waves, which cannot be precisely described by simple analytical formulae. In the steady-state regime, magnetization oscillates with the frequency of the elastic wave, except in the case of longitudinal waves with frequencies well below νres, where the magnetization precesses with variable frequency strongly exceeding the wave frequency. The results obtained for the magnetization dynamics driven by elastic waves are used to calculate the spin current pumped from the dynamically strained ferromagnet into adjacent paramagnetic metal. Numerical calculations demonstrate that the transverse charge current in the paramagnetic layer, which is created by the spin current via inverse spin Hall effect, is high enough to be measured experimentally.
Pion-Nucleon Scattering in Kadyshevsky Formalism and Higher Spin Field Quantization
Wagenaar, J W
2009-01-01
This thesis contains two parts. The first part deals with pion-nucleon/meson-baryon scattering in the Kadyshevsky formalism. This formalism is introduced and discussed. Problems may arise when derivative couplings and/or higher spin fields are used, especially when compared to the results in the Feynman formalism: unwanted contact terms pop-up. These terms are cancelled using the Gross and Jackiw or Takahashi and Umezawa method. The final results in both formalisms are therefore equal, causal and covariant. Formal incorporation of pair suppression in the baryon exchange sector is achieved using a method based on the Takahashi and Umezawa method. For the resulting tree level amplitudes, we have shown, to our knowledge for the first time, that they are causal, covariant and n-independent. Moreover, the amplitudes are just a factor 1/2 of the usual Feynman expressions. The amplitudes contain only posititve energy initial and final states, although it should be mentioned that negative energy is present inside an ...
Spin Waves in 2D ferromagnetic square lattice stripe
Ahmed, Maher Z.
2011-01-01
In this work, the area and edges spin wave calculations were carried out using the Heisenberg Hamiltonian and the tridiagonal method for the 2D ferromagnetic square lattice stripe, where the SW modes are characterized by a 1D in-plane wave vector $q_x$. The results show a general and an unexpected feature that the area and edge spin waves only exist as optic modes. This behavior is also seen in 2D Heisenberg antiferromagnetic square lattice. This absence of the acoustic modes in the 2D square...
Magnetization oscillations and waves driven by pure spin currents
Demidov, V. E.; Urazhdin, S.; de Loubens, G.; Klein, O.; Cros, V.; Anane, A.; Demokritov, S. O.
2017-02-01
Recent advances in the studies of pure spin currents-flows of angular momentum (spin) not accompanied by the electric currents-have opened new horizons for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. The main advantage of pure spin current, as compared to the spin-polarized electric current, is the possibility to exert spin transfer torque on the magnetization in thin magnetic films without the electrical current flow through the material. In addition to minimizing Joule heating and electromigration effects, this enables the implementation of spin torque devices based on the low-loss insulating magnetic materials, and offers an unprecedented geometric flexibility. Here we review the recent experimental achievements in investigations of magnetization oscillations excited by pure spin currents in different nanomagnetic systems based on metallic and insulating magnetic materials. We discuss the spectral properties of spin-current nano-oscillators, and relate them to the spatial characteristics of the excited dynamic magnetic modes determined by the spatially-resolved measurements. We also show that these systems support locking of the oscillations to external microwave signals, as well as their mutual synchronization, and can be used as efficient nanoscale sources of propagating spin waves.
Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits
Labousse, M.; Oza, A. U.; Perrard, S.; Bush, J. W. M.
2016-03-01
We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed.
Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits
Labousse, Matthieu; Perrard, Stéhane; Bush, John W M
2016-01-01
We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed.
Highly retrievable spin-wave-photon entanglement source.
Yang, Sheng-Jun; Wang, Xu-Jie; Li, Jun; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei
2015-05-29
Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.
Kim, V T; Pivovarov, G B; Vary, J P; Kim, Victor T.; Matveev, Victor A.; Pivovarov, Grigorii B.; Vary, James P.
2001-01-01
Without a gauge fixing, canonical variables for the light-front SU(2) gluodynamics are determined. The Gauss law is written in terms of the canonical variables. The system is qualified as a generalized dynamical system with first class constraints. Abeliazation is a specific feature of the formulation (most of the canonical variables transform nontrivially only under the action of an Abelian subgroup of the gauge transformations). At finite volume, a discrete spectrum of the light-front Hamiltonian $P_+$ is obtained in the sector of vanishing $P_-$. We obtain, therefore, a quantized form of the classical solutions previously known as non-Abelian plane waves. Then, considering the infinite volume limit, we find that the presence of the mass gap depends on the way the infinite volume limit is taken, which may suggest the presence of different ``phases'' of the infinite volume theory.
Strings On Plane-waves And Spin Chains On Orbifolds
Sadri, D
2005-01-01
This thesis covers a number of topics in string theory focusing on various aspects of the AdS/CFT duality in various guises and regimes. In the first chapter we present a self-contained review of the Plane- wave/super-Yang-Mills duality. This duality is a specification of the usual AdS/CFT correspondence in the “Penrose limit”. In chapter two we study the most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Quantization of string modes, their compactification and behaviour under T- duality are also studied, as are BPS Dp- branes on such backgrounds. In chapter three we consider giant gravitons on the maximally supersymmetric plane-wave background. We deduce the low energy effective light-cone Hamiltonian of ...
Damping factor estimation using spin wave attenuation in permalloy film
Energy Technology Data Exchange (ETDEWEB)
Manago, Takashi, E-mail: manago@fukuoka-u.ac.jp [Department of Applied Physics, Fukuoka University, 8-19-1 Nanakuma, Jonan, Fukuoka 814-0180 (Japan); Yamanoi, Kazuto [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kasai, Shinya; Mitani, Seiji [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047 (Japan)
2015-05-07
Damping factor of a Permalloy (Py) thin film is estimated by using the magnetostatic spin wave propagation. The attenuation lengths are obtained by the dependence of the transmission intensity on the antenna distance, and decrease with increasing magnetic fields. The relationship between the attenuation length, damping factor, and external magnetic field is derived theoretically, and the damping factor was determined to be 0.0063 by fitting the magnetic field dependence of the attenuation length, using the derived equation. The obtained value is in good agreement with the general value of Py. Thus, this estimation method of the damping factor using spin waves attenuation can be useful tool for ferromagnetic thin films.
Spin Wave Theory of Strongly Anisotropic Magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1977-01-01
A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments a...
Curvature-Induced Asymmetric Spin-Wave Dispersion
Otálora, Jorge A.; Yan, Ming; Schultheiss, Helmut; Hertel, Riccardo; Kákay, Attila
2016-11-01
In magnonics, spin waves are conceived of as electron-charge-free information carriers. Their wave behavior has established them as the key elements to achieve low power consumption, fast operative rates, and good packaging in magnon-based computational technologies. Hence, knowing alternative ways that reveal certain properties of their undulatory motion is an important task. Here, we show using micromagnetic simulations and analytical calculations that spin-wave propagation in ferromagnetic nanotubes is fundamentally different than in thin films. The dispersion relation is asymmetric regarding the sign of the wave vector. It is a purely curvature-induced effect and its fundamental origin is identified to be the classical dipole-dipole interaction. The analytical expression of the dispersion relation has the same mathematical form as in thin films with the Dzyalonshiinsky-Moriya interaction. Therefore, this curvature-induced effect can be seen as a "dipole-induced Dzyalonshiinsky-Moriya-like" effect.
Searching for Gravitational Waves from Compact Binaries with Precessing Spins
Harry, Ian; Bohé, Alejandro; Buonanno, Alessandra
2016-01-01
Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or anti-aligned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron-star--black-hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have a factor of ten to twenty more templates than the aligned-spin banks, we find an overall improvement in signal recovery at fixed false-alarm rate for systems with high-mass ratio and highly precessing spins ---up to 60\\% for neutron-star--black-hole mergers. This gain in se...
On the spin wave multifractal spectra in magnetic multilayers
Bezerra, C. G.; Albuquerque, E. L.; , E. Nogueira, Jr.
The multifractal properties of spin wave bandwidths in quasiperiodic magnetic multilayers are studied. The profiles of the bandwidths are analyzed and the f( α) function is calculated for different values of the dimensionless in-plane wave vector kxa and for four different sequences: Fibonacci, double-period, Thue-Morse and Rudin-Shapiro. We note that the f( α) spectra is qualitatively the same for different values of kxa.
Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation
Energy Technology Data Exchange (ETDEWEB)
Macia, Ferran; Kent, Andrew D [Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Hoppensteadt, Frank C, E-mail: fmb2@nyu.edu [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 (United States)
2011-03-04
Magnetization dynamics in nanomagnets has attracted broad interest since it was predicted that a dc current flowing through a thin magnetic layer can create spin-wave excitations. These excitations are due to spin momentum transfer, a transfer of spin angular momentum between conduction electrons and the background magnetization, that enables new types of information processing. Here we show how arrays of spin-torque nano-oscillators can create propagating spin-wave interference patterns of use for memory and computation. Memristic transponders distributed on the thin film respond to threshold tunnel magnetoresistance values, thereby allowing spin-wave detection and creating new excitation patterns. We show how groups of transponders create resonant (reverberating) spin-wave interference patterns that may be used for polychronous wave computation and information storage.
Gravitational waves from spinning eccentric binaries
Csizmadia, Péter; Rácz, István; Vasúth, Mátyás
2012-01-01
This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity. In addition, by investigating the validity of the energy balance relat...
Hopfion canonical quantization
Acus, A; Norvaisas, E; Shnir, Ya
2012-01-01
We study the effect of the canonical quantization of the rotational mode of the charge Q=1 and Q=2 spinning Hopfions. The axially-symmetric solutions are constructed numerically, it is shown the quantum corrections to the mass of the configurations are relatively large.
Hopfion canonical quantization
Energy Technology Data Exchange (ETDEWEB)
Acus, A. [Vilnius University, Institute of Theoretical Physics and Astronomy, Gostauto 12, Vilnius 01108 (Lithuania); Halavanau, A. [Department of Theoretical Physics and Astrophysics, BSU, Minsk (Belarus); Norvaisas, E. [Vilnius University, Institute of Theoretical Physics and Astronomy, Gostauto 12, Vilnius 01108 (Lithuania); Shnir, Ya., E-mail: shnir@maths.tcd.ie [Department of Theoretical Physics and Astrophysics, BSU, Minsk (Belarus); Institute of Physics, Carl von Ossietzky University Oldenburg (Germany)
2012-05-03
We study the effect of the canonical quantization of the rotational mode of the charge Q=1 and Q=2 spinning Hopfions. The axially-symmetric solutions are constructed numerically, it is shown the quantum corrections to the mass of the configurations are relatively large.
Excitations of incoherent spin-waves due to spin-transfer torque.
Lee, Kyung-Jin; Deac, Alina; Redon, Olivier; Nozières, Jean-Pierre; Dieny, Bernard
2004-12-01
The possibility of exciting microwave oscillations in a nanomagnet by a spin-polarized current, as predicted by Slonczewski and Berger, has recently been demonstrated. This observation opens important prospects of applications in radiofrequency components. However, some unresolved inconsistencies are found when interpreting the magnetization dynamics within the coherent spin-torque model. In some cases, the telegraph noise caused by spin-currents could not be quantitatively described by that model. This has led to controversy about the need for an effective magnetic temperature model. Here we interpret the experimental results of Kiselev et al. using micromagnetic simulations. We point out the key role played by incoherent spin-wave excitation due to spin-transfer torque. The incoherence is caused by spatial inhomogeneities in local fields generating distributions of local precession frequencies. We observe telegraph noise with gigahertz frequencies at zero temperature. This is a consequence of the chaotic dynamics and is associated with transitions between attraction wells in phase space.
User-friendly software for modeling collective spin wave excitations
Hahn, Steven; Peterson, Peter; Fishman, Randy; Ehlers, Georg
There exists a great need for user-friendly, integrated software that assists in the scientific analysis of collective spin wave excitations measured with inelastic neutron scattering. SpinWaveGenie is a C + + software library that simplifies the modeling of collective spin wave excitations, allowing scientists to analyze neutron scattering data with sophisticated models fast and efficiently. Furthermore, one can calculate the four-dimensional scattering function S(Q,E) to directly compare and fit calculations to experimental measurements. Its generality has been both enhanced and verified through successful modeling of a wide array of magnetic materials. Recently, we have spent considerable effort transforming SpinWaveGenie from an early prototype to a high quality free open source software package for the scientific community. S.E.H. acknowledges support by the Laboratory's Director's fund, ORNL. Work was sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
Spin-wave and critical neutron scattering from chromium
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Axe, J.D.; Shirane, G.
1971-01-01
Chromium and its dilute alloys are unique examples of magnetism caused by itinerant electrons. The magnetic excitations have been studied by inelastic neutron scattering using a high-resolution triple-axis spectrometer. Spin-wave peaks in q scans at constant energy transfer ℏω could, in general, ...
Inelastic scattering of neutrons by spin waves in terbium
DEFF Research Database (Denmark)
Bjerrum Møller, Hans; Houmann, Jens Christian Gylden
1966-01-01
Measurements of spin-wave dispersion relations for magnons propagating in symmetry directions in ferromagnetic Tb; it is first experiment to give detailed information on magnetic excitations in heavy rare earths; Tb was chosen for these measurements because it is one of few rare-earth metals which...
Quantized beam shifts in graphene
Energy Technology Data Exchange (ETDEWEB)
de Melo Kort-Kamp, Wilton Junior [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinitsyn, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego Alejandro Roberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-10-08
We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α^{2}. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.
Quantum Computing with an Electron Spin Ensemble
DEFF Research Database (Denmark)
Wesenberg, Janus; Ardavan, A.; Briggs, G.A.D.
2009-01-01
We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized...
The Pilot-Wave Perspective on Spin
Norsen, Travis
2013-01-01
The alternative pilot-wave theory of quantum phenomena -- associated especially with Louis de Broglie, David Bohm, and John Bell -- reproduces the statistical predictions of ordinary quantum mechanics, but without recourse to special \\emph{ad hoc} axioms pertaining to measurement. That (and how) it does so is relatively straightforward to understand in the case of position measurements and, more generally, measurements whose outcome is ultimately registered by the position of a pointer. Despi...
Thermodynamic transport theory of spin waves in ferromagnetic insulators
Basso, Vittorio; Ferraro, Elena; Piazzi, Marco
2016-10-01
We use the Boltzmann transport theory in the relaxation time approximation to describe the thermal transport of spin waves in a ferromagnet. By treating spin waves as magnon excitations we are able to compute analytically and numerically the coefficients of the constitutive thermomagnetic transport equations. As a main result, we find that the absolute thermomagnetic power coefficient ɛM, relating the gradient of the potential of the magnetization current and the gradient of the temperature, in the limit of low temperature and low field, is a constant ɛM=-0.6419 kB/μB . The theory correctly describes the low-temperature and magnetic-field dependencies of spin Seebeck experiments. Furthermore, the theory predicts that in the limit of very low temperatures the spin Peltier coefficient ΠM, relating the heat and the magnetization currents, tends to a finite value which depends on the amplitude of the magnetic field. This indicates the possibility to exploit the spin Peltier effect as an efficient cooling mechanism in cryogenics.
Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator
Directory of Open Access Journals (Sweden)
N. I. Polzikova
2016-05-01
Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.
Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator
Energy Technology Data Exchange (ETDEWEB)
Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.; Kotelyanskii, I. M.; Luzanov, V. A.; Orlov, A. P. [Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Mokhovaya 11, building 7, Moscow, 125009 (Russian Federation)
2016-05-15
We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.
Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale
Directory of Open Access Journals (Sweden)
Thomas eSebastian
2015-06-01
Full Text Available Spin waves constitute an important part of research in the field of magnetization dynamics. Spin waves are the elementary excitations of the spin system in a magnetically ordered material state and magnons are their quasi particles. In the following article, we will discuss the optical method of Brillouin light scattering (BLS spectroscopy which is a now a well established tool for the characterization of spin waves. BLS is the inelastic scattering of light from spin waves and confers several benefits: the ability to map the spin wave intensity distribution with spatial resolution and high sensitivity as well as the potential to simultaneously measure the frequency and the wave vector and, therefore, the dispersion properties.For several decades, the field of spin waves gained huge interest by the scientific community due to its relevance regarding fundamental issues of spindynamics in the field of solid states physics. The ongoing research in recent years has put emphasis on the high potential of spin waves regarding information technology. In the emerging field of textit{magnonics}, several concepts for a spin-wave based logic have been proposed and realized. Opposed to charge-based schemes in conventional electronics and spintronics, magnons are charge-free currents of angular momentum, and, therefore, less subject to scattering processes that lead to heating and dissipation. This fact is highlighted by the possibility to utilize spin waves as information carriers in electrically insulating materials. These developments have propelled the quest for ways and mechanisms to guide and manipulate spin-wave transport. In particular, a lot of effort is put into the miniaturization of spin-wave waveguides and the excitation of spin waves in structures with sub-micrometer dimensions.For the further development of potential spin-wave-based devices, the ability to directly observe spin-wave propagation with spatial resolution is crucial. As an optical
Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale
Sebastian, Thomas; Schultheiss, Katrin; Obry, Björn; Hillebrands, Burkard; Schultheiss, Helmut; Obry, Björn
2015-06-01
Spin waves constitute an important part of research in the field of magnetization dynamics. Spin waves are the elementary excitations of the spin system in a magnetically ordered material state and magnons are their quasi particles. In the following article, we will discuss the optical method of Brillouin light scattering (BLS) spectroscopy which is a now a well established tool for the characterization of spin waves. BLS is the inelastic scattering of light from spin waves and confers several benefits: the ability to map the spin wave intensity distribution with spatial resolution and high sensitivity as well as the potential to simultaneously measure the frequency and the wave vector and, therefore, the dispersion properties. For several decades, the field of spin waves gained huge interest by the scientific community due to its relevance regarding fundamental issues of spindynamics in the field of solid states physics. The ongoing research in recent years has put emphasis on the high potential of spin waves regarding information technology. In the emerging field of textit{magnonics}, several concepts for a spin-wave based logic have been proposed and realized. Opposed to charge-based schemes in conventional electronics and spintronics, magnons are charge-free currents of angular momentum, and, therefore, less subject to scattering processes that lead to heating and dissipation. This fact is highlighted by the possibility to utilize spin waves as information carriers in electrically insulating materials. These developments have propelled the quest for ways and mechanisms to guide and manipulate spin-wave transport. In particular, a lot of effort is put into the miniaturization of spin-wave waveguides and the excitation of spin waves in structures with sub-micrometer dimensions. For the further development of potential spin-wave-based devices, the ability to directly observe spin-wave propagation with spatial resolution is crucial. As an optical technique BLS do
Stern Gerlach spin filter using surface acoustic waves
Santos, Paulo V.; Nitta, Junsaku; Ploog, Klaus H.
2004-12-01
We propose the ambipolar carrier transport by surface acoustic waves (SAWs) in a semiconductor quantum well (QW) for the realization of the Stern-Gerlach (SG) experiment in the solid phase. The well-defined and very low carrier velocity in the moving SAW field leads to a large deflection angle and thus to efficient spin separation, even for the weak field gradients and short (μm-long) interaction lengths that can be produced by micromagnets. The feasibility of a SG spin filter is discussed for different QW materials.
Noguchi, Ryo; Kuroda, Kenta; Yaji, K.; Kobayashi, K.; Sakano, M.; Harasawa, A.; Kondo, Takeshi; Komori, F.; Shin, S.
2017-01-01
We use spin- and angle-resolved photoemission spectroscopy (SARPES) combined with a polarization-variable laser and investigate the spin-orbit coupling effect under interband hybridization of Rashba spin-split states for the surface alloys Bi/Ag(111) and Bi/Cu(111). In addition to the conventional band mapping of photoemission for Rashba spin splitting, the different orbital and spin parts of the surface wave function are directly imaged into energy-momentum space. It is unambiguously revealed that the interband spin-orbit coupling modifies the spin and orbital character of the Rashba surface states leading to the enriched spin-orbital entanglement and the pronounced momentum dependence of the spin polarization. The hybridization thus strongly deviates the spin and orbital characters from the standard Rashba model. The complex spin texture under interband spin-orbit hybridization proposed by first-principles calculation is experimentally unraveled by SARPES with a combination of p - and s -polarized light.
Real-time observation of Snell’s law for spin waves in thin ferromagnetic films
Tanabe, Kenji; Matsumoto, Ryo; Ohe, Jun-ichiro; Murakami, Shuichi; Moriyama, Takahiro; Chiba, Daichi; Kobayashi, Kensuke; Ono, Teruo
2014-05-01
We report the real-time observation of spin-wave propagation across a step inserted between two ferromagnetic films with different thicknesses. Because the dispersion relation of the spin wave depends on the thickness of the film, the step works as a junction to affect the spin wave propagation. When the spin wave transmits through the junction, the wavenumber undergoes modulation as per Snell’s law, which states that the refraction index is proportional to the wavenumber. From the viewpoint of magnonics, the present achievement opens up new possibilities of controlling the wavenumber of spin waves.
Amari, Yuki; Klimas, Paweł; Sawado, Nobuyuki
2016-07-01
The C PN extended Skyrme-Faddeev model possesses planar soliton solutions. We consider quantum aspects of the solutions applying collective coordinate quantization in regime of rigid body approximation. In order to discuss statistical properties of the solutions we include an Abelian Chern-Simons term (the Hopf term) in the Lagrangian. Since Π3(C P1)=Z then for N =1 the term becomes an integer. On the other hand for N >1 it became perturbative because Π3(C PN) is trivial. The prefactor of the Hopf term (anyon angle) Θ is not quantized and its value depends on the physical system. The corresponding fermionic models can fix value of the angle Θ for all N in a way that the soliton with N =1 is not an anyon type whereas for N >1 it is always an anyon even for Θ =n π , n ∈Z . We quantize the solutions and calculate several mass spectra for N =2 . Finally we discuss generalization for N ≧3 .
Magnetic Snell's law and spin-wave fiber with Dzyaloshinskii-Moriya interaction
Yu, Weichao; Lan, Jin; Wu, Ruqian; Xiao, Jiang
2016-10-01
Spin waves are collective excitations propagating in the magnetic medium with ordered magnetizations. Magnonics, utilizing the spin wave (magnon) as an information carrier, is a promising candidate for low-dissipation computation and communication technologies. We discover that, due to the Dzyaloshinskii-Moriya interaction, the scattering behavior of the spin wave at a magnetic domain wall follows a generalized Snell's law, where two magnetic domains work as two different mediums. Similar to optical total reflection that occurs at water-air interfaces, spin waves may experience total reflection at the magnetic domain walls when their incident angle is larger than a critical value. We design a spin-wave fiber using a magnetic domain structure with two domain walls, and demonstrate that such a spin-wave fiber can transmit spin waves over long distances by total internal reflections, in analogy to an optical fiber.
Klauder, J R
1998-01-01
Canonical quantization may be approached from several different starting points. The usual approaches involve promotion of c-numbers to q-numbers, or path integral constructs, each of which generally succeeds only in Cartesian coordinates. All quantization schemes that lead to Hilbert space vectors and Weyl operators---even those that eschew Cartesian coordinates---implicitly contain a metric on a flat phase space. This feature is demonstrated by studying the classical and quantum ``aggregations'', namely, the set of all facts and properties resident in all classical and quantum theories, respectively. Metrical quantization is an approach that elevates the flat phase space metric inherent in any canonical quantization to the level of a postulate. Far from being an unwanted structure, the flat phase space metric carries essential physical information. It is shown how the metric, when employed within a continuous-time regularization scheme, gives rise to an unambiguous quantization procedure that automatically ...
A scenario for magnonic spin-wave traps.
Busse, Frederik; Mansurova, Maria; Lenk, Benjamin; von der Ehe, Marvin; Münzenberg, Markus
2015-08-17
Spatially resolved measurements of the magnetization dynamics on a thin CoFeB film induced by an intense laser pump-pulse reveal that the frequencies of resulting spin-wave modes depend strongly on the distance to the pump center. This can be attributed to a laser generated temperature profile. We determine a shift of 0.5 GHz in the spin-wave frequency due to the spatial thermal profile induced by the femtosecond pump pulse that persists for up to one nanosecond. Similar experiments are presented for a magnonic crystal composed of a CoFeB-film based antidot lattice with a Damon Eshbach mode at the Brillouin zone boundary and its consequences are discussed.
Spin Waves Excitations of Co/Pt Multilayers
Directory of Open Access Journals (Sweden)
W. Zhou
2012-01-01
Full Text Available The present work investigated interlayer couplings of [Co(20 Å/Pt(30 Å]5, [Co(4 Å/Pt(7 Å]30, and [Co(4 Å/Pt(9 Å]30 multilayers with strong perpendicular magnetic anisotropy (PMA. Brillouin light scattering measurements were utilized to obtain spin waves of these samples with in-plane external magnetic fields. Interlayer couplings were found to be very sensitive to Pt thickness change from 7 Å to 9 Å, which implies that Pt atoms were more difficult to be polarized to provide interlayer coupling between Co layers than in the perpendicular external magnetic field situation. When Pt layer is 30 Å, the observed single spin wave can confirm the disappearance of interlayer coupling even when Co layer thickness is 20 Å.
Polymers on disordered trees, spin glasses, and traveling waves
Energy Technology Data Exchange (ETDEWEB)
Derrida, B.; Spohn, H.
1988-06-01
We show that the problem of a directed polymer on a tree with disorder can be reduced to the study of nonlinear equations of reaction-diffusion type. These equations admit traveling wave solutions that move at all possible speeds above a certain minimal speed. The speed of the wavefront is the free energy of the polymer problem and the minimal speed corresponds to a phase transition to a glassy phase similar to the spin-glass phase. Several properties of the polymer problem can be extracted from the correspondence with the traveling wave: probability distribution of the free energy, overlaps, etc.
Shape-manipulated spin-wave eigenmodes of magnetic nanoelements
Zhang, Guang-Fu; Li, Zhi-Xiong; Wang, Xi-Guang; Nie, Yao-Zhuang; Guo, Guang-Hua
2015-09-01
The magnetization dynamics of nanoelements with tapered ends have been studied by micromagnetic simulations. Several spin-wave modes and their evolutions with the sharpness of the element ends are characterized. The edge mode localized in the two ends of the element can be effectively tuned by the element shape. Its frequency increases rapidly with the tapered parameter h and its localized area gradually expands toward the element center, and it finally merges into the fundamental mode at a critical tapered parameter h0. For nanoelements with h > h0, the edge mode is completely suppressed. The standing spin-wave modes mainly in the internal area of the element are less affected by the element shape. The shifts of their frequencies are small and they display different tendencies. The evolution of the spin-wave modes with the element shape is explained by considering the change of the internal field. Project supported by the National Natural Science Foundation of China (Grant No. 11374373), the Doctoral Fund of Ministry of Education of China (Grant No. 20120162110020), the Natural Science Foundation of Hunan Province of China (Grant No. 13JJ2004), and the Science and Technology Planning of Yiyang City of Hunan Province of China (Grant No. 2014JZ54).
Nonreciprocal spin wave elementary excitation in dislocated dimerized Heisenberg chains.
Liu, Wanguo; Shen, Yang; Fang, Guisheng; Jin, Chongjun
2016-05-18
A mechanism for realizing nonreciprocal elementary excitation of spin wave (SW) is proposed. We study a reference model which describes a magnonic crystal (MC) formed by two Heisenberg chains with a lateral displacement (dislocation) and a longitudinal spacer, and derive a criterion to judge whether the elementary excitation spectra are reciprocal in this ferromagnetic lattice. An analytical method based on the spin precession equation is used to solve the elementary excitation spectra. The solution is related to a key factor, the spatio-temporal structure factor [Formula: see text], which can be directly calculated through the structural parameters. When it keeps invariant under the reversions of the external magnetic field [Formula: see text] and the dislocation [Formula: see text], or one of them, the spectra are reciprocal. Otherwise, the SW possesses nonreciprocal spectra with direction-dependent band edges and exhibits a directional magnetoresistance effect. This criterion can be regarded as a necessary and sufficient condition for the (non)reciprocity in the spin lattice. Besides, this novel lattice provides a prototype for spin diodes and spin logic gates.
Quantum dust magnetosonic waves with spin and exchange correlation effects
Energy Technology Data Exchange (ETDEWEB)
Maroof, R.; Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics, Shahdra Valley Road, Islamabad 44000 (Pakistan)
2016-01-15
Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.)
Spin-electron acoustic waves: The Landau damping and ion contribution in the spectrum
Andreev, Pavel A
2014-01-01
Separated spin-up and spin-down quantum kinetics is derived for more detailed research of the spin-electron acoustic waves. Kinetic theory allows to obtain spectrum of the spin-electron acoustic waves including effects of occupation of quantum states more accurately than quantum hydrodynamics. We apply quantum kinetic to calculate the Landau damping of the spin-electron acoustic waves. We have considered contribution of ions dynamics in the spin-electron acoustic wave spectrum. We obtain contribution of ions in the Landau damping in temperature regime of classic ions. Kinetic analysis for ion-acoustic, zero sound, and Langmuir waves at separated spin-up and spin-down electron dynamics is presented as well.
Energy Technology Data Exchange (ETDEWEB)
Mahato, Bipul Kumar; Rana, Bivas; Kumar, Dheeraj; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Sugimoto, Satoshi [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Otani, YoshiChika [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2014-07-07
We demonstrate tunable spin wave spectrum in two-dimensional Ni{sub 80}Fe{sub 20} nanodot lattices by varying dot shape. A single collective mode in elliptical dot lattices transforms into three distinct modes for the half-elliptical, rectangular, and diamond dot lattices, albeit with different peak frequencies and intensities. A drastic change is observed for the triangular dots, where eight modes covering a broad band are observed. Using micromagnetic simulations, we characterized the modes as different localized, extended, and quantized modes, whose frequencies and spatial profiles are determined by a combination of internal field profiles within the nanodots and the stray magnetic field within the lattice.
Chowdhury, Nadim; Azim, Zubair Al; Alam, Md Hasibul; Niaz, Iftikhar Ahmad; Khosru, Quazi D M
2014-01-01
We propose a physically based analytical compact model to calculate Eigen energies and Wave functions which incorporates penetration effect. The model is applicable for a quantum well structure that frequently appears in modern nano-scale devices. This model is equally applicable for both silicon and III-V devices. Unlike other models already available in the literature, our model can accurately predict all the eigen energies without the inclusion of any fitting parameters. The validity of our model has been checked with numerical simulations and the results show significantly better agreement compared to the available methods.
Anderson, Edward
2016-01-01
We consider here kinematical quantization: a first and often overlooked step in quantization procedures. $\\mathbb{R}$, $\\mathbb{R}_+$ and the interval are considered, as well as direct (Cartesian) products thereof. Some simple minisuperspace models, and mode by mode consideration of slightly inhomogeneous cosmology, have indefinite signature versions of such kinematical quantizations. The examples in the current paper build in particular toward the case of vacuum $\\mathbb{S}^3$ slightly inhomogeneous cosmology's mode configuration space, which is mathematically a finite time interval slab of Minkowski spacetime.
Weak Nonlinear Matter Waves in a Trapped Spin-1 Condensates
Institute of Scientific and Technical Information of China (English)
CAI Hong-Qiang; YANG Shu-Rong; XUE Ju-Kui
2011-01-01
The dynamics of the weak nonlinear matter solitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BEGs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation freauencv are also obtained.
Quantization of Time-Like Energy for Wave Maps into Spheres
Grinis, Roland
2016-10-01
In this article we consider large energy wave maps in dimension 2+1, as in the resolution of the threshold conjecture by Sterbenz and Tataru (Commun. Math. Phys. 298(1):139-230, 2010; Commun. Math. Phys. 298(1):231-264, 2010), but more specifically into the unit Euclidean sphere {S}^{n-1} subset{R}n with {n≥2} , and study further the dynamics of the sequence of wave maps that are obtained in Sterbenz and Tataru (Commun. Math. Phys. 298(1):231-264, 2010) at the final rescaling for a first, finite or infinite, time singularity. We prove that, on a suitably chosen sequence of time slices at this scaling, there is a decomposition of the map, up to an error with asymptotically vanishing energy, into a decoupled sum of rescaled solitons concentrating in the interior of the light cone and a term having asymptotically vanishing energy dispersion norm, concentrating on the null boundary and converging to a constant locally in the interior of the cone, in the energy space. Similar and stronger results have been recently obtained in the equivariant setting by several authors (Côte, Commun. Pure Appl. Math. 68(11):1946-2004, 2015; Côte, Commun. Pure Appl. Math. 69(4):609-612, 2016; Côte, Am. J. Math. 137(1):139-207, 2015; Côte et al., Am. J. Math. 137(1):209-250, 2015; Krieger, Commun. Math. Phys. 250(3):507-580, 2004), where better control on the dispersive term concentrating on the null boundary of the cone is provided, and in some cases the asymptotic decomposition is shown to hold for all time. Here, however, we do not impose any symmetry condition on the map itself and our strategy follows the one from bubbling analysis of harmonic maps into spheres in the supercritical regime due to Lin and Rivière (Ann. Math. 149(2):785-829, 1999; Duke Math. J. 111:177-193, 2002), which we make work here in the hyperbolic context of Sterbenz and Tataru (Commun. Math. Phys. 298(1), 231-264, 2010).
The collapse of the wave function in the joint metric-matter quantization for inflation
Diez-Tejedor, Alberto; Sudarsky, Daniel
2011-01-01
It has been argued that the standard inflationary scenario suffers from a serious deficiency as a model for the origin of the seeds of cosmic structure: it can not truly account for the transition from an early homogeneous and isotropic stage to another one lacking such symmetries. The issue has often been thought as a standard instance of the "quantum measurement problem", but as has been recently argued by some of us the situation reaches a critical level in the cosmological context of interest here. This has lead to a proposal in which the standard paradigm is supplemented by a hypothesis concerning the self-induced dynamical collapse of the wave function, as representing the physical mechanism through which such change of symmetry is brought forth. This proposal was formulated within the context of semiclassical gravity. Here we investigate an alternative realization of such idea implemented directly within the standard analysis in terms of a quantum field jointly describing the inflaton and metric pertur...
Giller, Stefan
2011-01-01
A way of construction of semiclassical wave function (SWF) based on the Maslov - Fedoriuk approach is proposed which appears to be appropriate also for systems with chaotic classical limits. Some classical constructions called skeletons are considered. The skeletons are generalizations of Arnolds' tori able to gather chaotic dynamics. SWF's are continued by caustic singularities in the configuration space rather then in the phase space using complex time method. The skeleton formulation provides us with a new algorithm for the semiclassical approximation method which is applied to construct SWF's as well as to calculate energy spectra for the circular and rectangular billiards as well as to construct the simplest SWF's and the respective spectrum for the Bunimovich stadium. The scar phenomena are considered and a possibility of their description by the skeleton method is discussed. PACS number(s): 03.65.-w, 03.65.Sq, 02.30.Jr, 02.30.Lt, 02.30.Mv Key Words: Schr\\"odinger equation, semiclassical expansion, Lagr...
Quantization of interface currents
Energy Technology Data Exchange (ETDEWEB)
Kotani, Motoko [AIMR, Tohoku University, Sendai (Japan); Schulz-Baldes, Hermann [Department Mathematik, Universität Erlangen-Nürnberg, Erlangen (Germany); Villegas-Blas, Carlos [Instituto de Matematicas, Cuernavaca, UNAM, Cuernavaca (Mexico)
2014-12-15
At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.
The spin-wave spectrum of layered magnetic thin films
van Stapele, R. P.; Greidanus, F. J. A. M.; Smits, J. W.
1985-02-01
The ferromagnetic resonance spectrum of a layered magnetic thin film is expected to show a number of standing spin-wave resonances with a wavelength that matches the thickness of the film. For the case of perpendicular resonance such spectra were calculated for some typical films in which magnetic layers are alternated with weaker magnetic layers. Some useful approximations are discussed. The results of the calculations are compared with experimental perpendicular spectra measured on films in which fifty Permalloy layers alternate with Ni layers.
Spin wave spectra in perpendicularly magnetized permalloy rings
Energy Technology Data Exchange (ETDEWEB)
Zhou, X.; Ding, J.; Adeyeye, A. O., E-mail: eleaao@nus.edu.sg [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Kostylev, M. [School of Physics, University of Western Australia, Crawley, Western Australia 6009 (Australia)
2015-03-16
The dynamic behavior of perpendicularly magnetized permalloy circular rings is systematically investigated as a function of film thickness using broadband field modulated ferromagnetic resonance spectroscopy. We observed the splitting of one spin wave mode into a family of dense resonance peaks for the rings, which is markedly different from the single mode observed for continuous films of the same thickness. As the excitation frequency is increased, the mode family observed for the rings gradually converges into one mode. With the increase in the film thickness, a sparser spectrum of modes is observed. Our experimental results are in qualitative agreement with the dynamic micromagnetic simulations.
Dipole-exchange spin waves in Fibonacci magnetic multilayers
Energy Technology Data Exchange (ETDEWEB)
Milton Pereira, J. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60451-970 Fortaleza, Ceara (Brazil)]. E-mail: pereira@fisica.yfc.br; Costa Filho, R.N. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60451-970 Fortaleza, Ceara (Brazil)]. E-mail: rai@fisica.ufc.br
2005-08-29
A microscopic model is employed to calculate the spectrum of spin waves in quasiperiodic magnetic multilayers in the dipole-exchange regime. Results are presented for structures in which thin ferromagnetic films are separated by non-magnetic spacers following a Fibonacci sequence and extend previous magnetostatic calculations. The results show the splitting of the frequency bands and the mode mixing caused by the dipolar interaction between the films as a function of spacer thickness, as well as the fractal aspect of the spectrum induced by the non-periodic aspect of the structure.
Mapping of spin wave propagation in a one-dimensional magnonic crystal
Ordóñez-Romero, César L.; Lazcano-Ortiz, Zorayda; Drozdovskii, Andrey; Kalinikos, Boris; Aguilar-Huerta, Melisa; Domínguez-Juárez, J. L.; Lopez-Maldonado, Guillermo; Qureshi, Naser; Kolokoltsev, Oleg; Monsivais, Guillermo
2016-07-01
The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show that the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch's theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.
Spin-wave propagation spectrum in magnetization-modulated cylindrical nanowires
Li, Zhi-xiong; Wang, Meng-ning; Nie, Yao-zhuang; Wang, Dao-wei; Xia, Qing-lin; Tang, Wei; Zeng, Zhong-ming; Guo, Guang-hua
2016-09-01
Spin-wave propagation in periodic magnetization-modulated cylindrical nanowires is studied by micromagnetic simulation. Spin wave scattering at the interface of two magnetization segments causes a spin-wave band structure, which can be effectively tuned by changing either the magnetization modulation level or the period of the cylindrical nanowire magnonic crystal. The bandgap width is oscillating with either the period or magnetization modulation due to the oscillating variation of the spin wave transmission coefficient through the interface of the two magnetization segments. Analytical calculation based on band theory is used to account for the micromagnetic simulation results.
Mapping of spin wave propagation in a one-dimensional magnonic crystal
Energy Technology Data Exchange (ETDEWEB)
Ordóñez-Romero, César L., E-mail: cloro@fisica.unam.mx; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa; Monsivais, Guillermo [Instituto de Física, Universidad Nacional Autónoma de México, CU, México D.F. 04510 (Mexico); Drozdovskii, Andrey; Kalinikos, Boris [St. Petersburg Electrotechnical University, 197376 St. Petersburg (Russian Federation); International laboratory “MultiferrLab,” ITMO University, 197101 St. Petersburg (Russian Federation); Domínguez-Juárez, J. L. [Cátedras CONACyT, CFATA, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230 (Mexico); Lopez-Maldonado, Guillermo [Universidad Autónoma Metropolitana, Lerma de Villada, 52006 Estado de México (Mexico); Qureshi, Naser; Kolokoltsev, Oleg [CCADET, Universidad Nacional Autónoma de México, CU, México D.F. 04510 (Mexico)
2016-07-28
The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show that the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.
Andreev, Pavel A
2016-01-01
Hydrodynamics analysis of waves in two-dimensional degenerate electron gas with the account of separate spin evolution is presented. The transverse electric field is included along with the longitudinal electric field. The Coulomb exchange interaction is included in the analysis. In contrast with the three-dimensional plasma-like mediums the contribution of the transverse electric field is small. We show the decrease of frequency of both the extraordinary (Langmuir) wave and the spin-electron acoustic wave due to the exchange interaction. Moreover, spin-electron acoustic wave has negative dispersion at the relatively large spin-polarization. Corresponding dispersion dependencies are presented and analyzed.
Broadband and total autocollimation of spin waves using planar magnonic crystals
Energy Technology Data Exchange (ETDEWEB)
Kumar, D.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)
2015-04-14
We present a systematic study of spin wave autocollimation in planar magnonic crystals comprising of antidot arrays in nanoscale permalloy (Py: Ni{sub 80}Fe{sub 20}) thin films. It is shown that a careful design of such crystals can allow for the autocollimation of the entire spin wave spectrum without any significant evanescence or any drop in the group velocity. These developments allow us access to spin wave beams which do not disperse or converge outside a waveguide. Collimated spin wave beams would be essential in applications such as dense signal routing and multiplexing in higher dimensional magnonic systems.
Compression gain of spin wave signals in a magnonic YIG waveguide with thermal non-uniformity
Kolokoltsev, O.; Gómez-Arista, Ivan; Qureshi, N.; Acevedo, A.; Ordóñez-Romero, César L.; Grishin, A.
2015-03-01
We report on the observation of the compression gain of the signals carried by surface spin waves (MSSWs) in yittrium iron garnet films as a result of non-uniform optical heating of the spin wave medium. Efficient gain takes place if a frequency downshift of the spin wave spectrum induced by the heating is compensated by the corresponding non-uniformity of the bias magnetic field. It is proposed that the effect can be understood in part as an interaction between spin waves and a thermally induced potential well in the sample.
Spin density wave order, topological order, and Fermi surface reconstruction
Sachdev, Subir; Chatterjee, Shubhayu; Schattner, Yoni
2016-01-01
In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW) order co-incides with the reconstruction of the Fermi surfaces into small 'pockets'. We present models which display this transition, while also displaying an alternative route between these phases via an intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron operator in the underlying Hamiltonian. We establish an intimate connection between the suppression of certain defects in the SDW order, and the presence of Fermi surface sizes distinct from the Luttinger value in Fermi liquids. We discuss the relevance of such models to the physics of the hole-doped cuprates near optimal doping.
Spin-orbit decomposition of ab initio nuclear wave functions
Johnson, Calvin W.
2015-03-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.
Exchange anisotropy pinning of a standing spin-wave mode
Magaraggia, R.; Kennewell, K.; Kostylev, M.; Stamps, R. L.; Ali, M.; Greig, D.; Hickey, B. J.; Marrows, C. H.
2011-02-01
Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin-wave thickness mode in Ni80Fe20/Ir25Mn75 exchange-biased bilayers was studied for a range of Ir25Mn75 thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique “fingerprint” of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet-antiferromagnet interface anisotropy. Thermal effects are studied for ultrathin antiferromagnetic Ir25Mn75 thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.
The First-Quantized Theory of Photons
Institute of Scientific and Technical Information of China (English)
WANG Zhi-Yong; XIONG Cai-Dong; Keller Ole
2007-01-01
In near-field optics and optical tunnelling theory, photon wave mechanics, I.e. The first-quantized theory of photons, allows us to address the spatial field localization problem in a flexible manner which links smoothly to classical electromagnetics. We develop photon wave mechanics in a rigorous and unified way, based on which field quantization is obtained in a new way.
Mintz, Stephan; Perlmutter, Arnold; Neutrino Mass, Dark Matter and Gravitational Waves, Condensation of Atoms and Monopoles, Light-cone Quantization : Orbis Scientiae '96
1996-01-01
The International Conference, Orbis Scientiae 1996, focused on the topics: The Neutrino Mass, Light Cone Quantization, Monopole Condensation, Dark Matter, and Gravitational Waves which we have adopted as the title of these proceedings. Was there any exciting news at the conference? Maybe, it depends on who answers the question. There was an almost unanimous agreement on the overall success of the conference as was evidenced by the fact that in the after-dinner remarks by one of us (BNK) the suggestion of organizing the conference on a biannual basis was presented but not accepted: the participants wanted the continuation of the tradition to convene annually. We shall, of course, comply. The expected observation of gravitational waves will constitute the most exciting vindication of Einstein's general relativity. This subject is attracting the attention of the experimentalists and theorists alike. We hope that by the first decade of the third millennium or earlier, gravitational waves will be detected,...
Action Quantization, Energy Quantization, and Time Parametrization
Floyd, Edward R.
2017-03-01
The additional information within a Hamilton-Jacobi representation of quantum mechanics is extra, in general, to the Schrödinger representation. This additional information specifies the microstate of ψ that is incorporated into the quantum reduced action, W. Non-physical solutions of the quantum stationary Hamilton-Jacobi equation for energies that are not Hamiltonian eigenvalues are examined to establish Lipschitz continuity of the quantum reduced action and conjugate momentum. Milne quantization renders the eigenvalue J. Eigenvalues J and E mutually imply each other. Jacobi's theorem generates a microstate-dependent time parametrization t-τ =partial _E W even where energy, E, and action variable, J, are quantized eigenvalues. Substantiating examples are examined in a Hamilton-Jacobi representation including the linear harmonic oscillator numerically and the square well in closed form. Two byproducts are developed. First, the monotonic behavior of W is shown to ease numerical and analytic computations. Second, a Hamilton-Jacobi representation, quantum trajectories, is shown to develop the standard energy quantization formulas of wave mechanics.
Quantization of Presymplectic Manifolds and Circle Actions
Silva, A C; Tolman, S; Silva, Ana Canas da; Karshon, Yael; Tolman, Susan
1997-01-01
We prove several versions of "quantization commutes with reduction" for circle actions on manifolds that are not symplectic. Instead, these manifolds possess a weaker structure, such as a spin^c structure. Our theorems work whenever the quantization data and the reduction data are compatible; this condition always holds if we start from a presymplectic (in particular, symplectic) manifold.
Current-induced modulation of backward spin-waves in metallic microstructures
Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji
2017-03-01
We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m-2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m-2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.
Hida, Kazuo; Iino, Takashi
2012-03-01
Low temperature properties of the spin-1/2 frustrated ladder with ferromagnetic rungs and legs, and two different antiferromagnetic next nearest neighbor interactions are investigated using the modified spin wave approximation in the region with ferromagnetic ground states. The temperature dependence of the magnetic susceptibility and magnetic structure factors is calculated. The results are consistent with the numerical exact diagonalization results in the intermediate temperature range. Below this temperature range, the finite size effect is significant in the numerical diagonalization results, while the modified spin wave approximation gives more reliable results. The low temperature properties near the limit of the stability of the ferromagnetic ground state are also discussed.
Uniform quantized electron gas
Høye, Johan S.; Lomba, Enrique
2016-10-01
In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T = 0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies.
Observation of spin-wave Doppler shift in Co90Fe10/Ru micro-strips for evaluating spin polarization
Sugimoto, Satoshi; Rosamond, Mark C.; Linfield, Edmund H.; Marrows, Christopher H.
2016-09-01
The current-induced spin-wave Doppler shift has been investigated for Co90Fe10 films, with and without under- and overlayers of Ru, aiming to obtain quantitative insights into the value of spin polarization of the diffusive electrical currents flowing in this material. This extends the use of spin-wave Doppler shift spectroscopy beyond the study of permalloy to other soft magnetic materials suitable for use in spintronic applications such as racetrack memories. The Damon-Eshbach spin-wave mode was employed, and a control experiment of permalloy yielded a value of spin polarization of P = 0.44 ± 0.03 for that material. An extended method to properly evaluate spin-wave Doppler shifts is developed that takes account of the non-negligible Oersted fields that are generated by the current density asymmetry caused by conducting under- or overlayers. The values of spin polarization for various Co90Fe10-based structures are found to lie in the range of 0.3-0.35, only slightly less than in permalloy.
Institute of Scientific and Technical Information of China (English)
Ren Min; Zhang Lei; Hu Jiu-Ning; Dong Hao; Deng Ning; Chen Pei-Yi
2009-01-01
This paper proposes a symmetry ensemble model for the magnetic dynamics caused by spin transfer torque in nanoscale pseudo-spin-valves, in which individual spin moments in the free layer are considered as subsystems to form a spinor ensemble. The magnetization dynamics equation of the ensemble was developed. By analytically investigating the equation, many magnetization dynamics properties excited by polarized current reported in experiments, such as double spin wave modes and the abrupt frequency jump, can be successfully explained. It is pointed out that an external field is not necessary for spin wave emitting (SWE) and a novel perpendicular configuration structure can provide much higher SWE efficiency in zero magnetic field.
Is Fundamental Particle Mass 4-pi Quantized?
Directory of Open Access Journals (Sweden)
Stone R. A. Jr.
2010-01-01
Full Text Available The Standard Model lacks an explanation for the specific mass values of the fundamental particles. This is to report that a single spin quantized mass formula can produce the masses of the proton, the $W$, and the three electron generations. The $4pi$ mass quantization pattern limits the electron generations to three, while the particle's generational property is one of the components of the proposed intra-particle quantization process. Although the developed relationships are presently phenomenological, so was Bohr's atomic quantization proposal that lead to quantum mechanics.
Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices
Energy Technology Data Exchange (ETDEWEB)
Papp, A., E-mail: apapp@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Pázmány Péter Catholic University, Faculty of Information Technology, Budapest 1088 (Hungary); Porod, W., E-mail: porod@nd.edu; Csaba, G., E-mail: gcsaba@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)
2015-05-07
We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnet structures can be the basis of potentially high-performance, ultra low-power computing devices.
Magnetic Spin Waves in CsNiF3 with an Applied Field
DEFF Research Database (Denmark)
Steiner, M.; Kjems, Jørgen
1977-01-01
The spin wave dispersion in the planar 1D ferromagnet CsNiF3 has been measured by inelastic neutron scattering in an external field. The spin wave linewidths are found to decrease with increasing field and become resolution-limited for H>10 kG at 4.2K. At high fields, H>10 kG, both energies...... and intensities are found to follow linear spin wave theory. The analysis resolves a discrepancy between the anisotropy constants, A, derived earlier from spin-wave and susceptibility measurements, respectively. It turns out that a quantum correction is necessary in order to get consistent parameters. Two...... parameters namely the nearest-neighbour exchange, J/k=11.5+or-0.05K and A/k=8.9+or-0.2K, are needed to fully describe the system. The temperature dependence of the spin waves in an external field was also studied....
Studies on Nematic Liquid Crystal Using Spin Wave Theory
Institute of Scientific and Technical Information of China (English)
LIUJian-Jun; LIUXiao-Jing; SHENMan; YANGGuo-Chen
2004-01-01
A spin wave theory is proposed to study nematic liquid crystals. Since the orientation of the molecular long axis and the angular momentum of the molecule rotating around its long axis have the same direction, operators can be introduced to research the nematic liquid crystal. By transforming the intermolecular interaction potential,the Hamiltonian of the system has the same form as that of the ferromagnetic substance. The relation of the order parameters to the reduced temperature can be obtained. It is in good agreement with the experimental results in the low temperature region. In the high temperature region close to the transition point, by using the Hamiltonian, the transition point can be obtained, which is near to the Maier-Saupe's result.
Quantization of Second Order Fermions
Energy Technology Data Exchange (ETDEWEB)
Angeles, Rene; Napsuciale, Mauro, E-mail: rene@fisica.ugto.mx, E-mail: mauro@fisica.ugto.mx [Departamento de Fisica, Universidad de Guanajuato, Lomas del Bosque 103, Fraccionamiento Lomas del Campestre, Leon Guanajuato, 37150 (Mexico)
2011-04-01
We review how second order equations for fields arise just by using projectors over Poincare invariant subspaces. We focus in the case of fields describing massive spin 1/2 particles, we propose a particular second order Lagrangian and present preliminary results in its quantization.
Coherence and stiffness of spin waves in diluted ferromagnets
Turek, I.; Kudrnovský, J.; Drchal, V.
2016-11-01
We present the results of a numerical analysis of magnon spectra in supercells simulating two-dimensional and bulk random diluted ferromagnets with long-range pair exchange interactions. We show that low-energy spectral regions for these strongly disordered systems contain a coherent component leading to interference phenomena manifested by a pronounced sensitivity of the lowest excitation energies to the adopted boundary conditions. The dependence of configuration averages of these excitation energies on the supercell size can be used for an efficient determination of the spin-wave stiffness D . The developed formalism is applied to the ferromagnetic Mn-doped GaAs semiconductor with optional incorporation of phosphorus; the obtained concentration trends of D are found to be in reasonable agreement with recent experiments. Moreover, a relation of the spin stiffness to the Curie temperature TC has been studied for Mn-doped GaAs and GaN semiconductors. It is found that the ratio TC/D exhibits qualitatively the same dependence on Mn concentration in both systems.
Spin waves in terbium. III. Magnetic anisotropy at zero wave vector
DEFF Research Database (Denmark)
Houmann, Jens Christian Gylden; Jensen, J.; Touborg, P.
1975-01-01
The energy gap at zero wave vector in the spin-wave dispersion relation of ferromagnetic. Tb has been studied by inelastic neutron scattering. The energy was measured as a function of temperature and applied magnetic field, and the dynamic anisotropy parameters were deduced from the results...... the effects of zero-point deviations from the fully aligned ground state, and we tentatively propose polarization-dependent two-ion couplings as their origin........ The axial anisotropy is found to depend sensitively on the orientation of the magnetic moments in the basal plane. This behavior is shown to be a convincing indication of considerable two-ion contributions to the magnetic anisotropy at zero wave vector. With the exception of the sixfold basal...
Accurate ab initio spin densities
Boguslawski, Katharina; Legeza, Örs; Reiher, Markus
2012-01-01
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys. 2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CA...
Farrell, Aaron; Wu, P.-K.; Kao, Y.-J.; Pereg-Barnea, T.
2016-12-01
On a square lattice, the Hubbard model at half filling reduces to the Heisenberg model and exhibits antiferromagnetism. When doped away from half filling this model gives rise to d -wave superconductivity. This behavior is reminiscent of the phenomenology of the cuprate family with their high Tcd -wave superconductivity and their antiferromagnetic parent compound. It is therefore interesting to study an extension of the Hubbard model which includes spin orbit coupling. We have previously studied this model away from half filling [see, for example, Farrell and Pereg-Barnea, Phys. Rev. B 89, 035112 (2014), 10.1103/PhysRevB.89.035112] and found that the addition of spin-orbit coupling and Zeeman field leads to topological superconductivity with d +i d pairing function. In this paper we are interested in the `parent compound' of this state. Namely, we study the half filling, strong coupling limit of the square lattice Hubbard model with spin orbit coupling and Zeeman field. The strong coupling expansion of the model is a spin model which contains compass anisotropy and Dzyaloshinsky-Moriya interaction on top of the usual Heisenberg term. We analyze this spin model classically and find an incommensurate spin density wave (ISDW) for low Zeeman fields. This ISDW has a wave vector Q ⃗ which deviates from (π ,π ) by an amount which is proportional to the spin-orbit coupling and can therefore serve as a signature. We study the stability of the ISDW phase using spin wave theory and find a stable and an unstable region. At higher but moderate Zeeman fields we find a tilted antiferromagnet and a ferromagnet at high Zeeman fields.
Weaver, Nik
2001-01-01
With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a variety of topics.Detailed here for the first time, the fundamental idea of mathematical quantization is that sets are replaced by Hilbert spaces. Building on this idea, and most importantly on the fact that scalar-valued functions on a set correspond to operators on a Hilbert space, one can determine quantum analogs of a variety of classical structures. In particular, because topologies and measure classes on a set can be treated in terms of scalar-valued functions, we can transfer these constructions to the quantum realm, giving rise to C*- and von Neumann algebras.In the first half of the book, the author quickly builds the operator algebra setting. He uses this ...
Spinning wave plate design for retinal birefringence scanning
Irsch, K.; Gramatikov, B. I.; Wu, Y.-K.; Guyton, D. L.
2009-02-01
To enhance foveal fixation detection while bypassing the deleterious effects of corneal birefringence in retinal birefringence scanning (RBS), we developed a new RBS design introducing a double-pass spinning half wave plate (HWP) and a fixed double-pass retarder into the optical system. Utilizing the measured corneal birefringence from a data set of 300 human eyes, an algorithm and a related computer program, based on Mueller-Stokes matrix calculus, were developed in MATLAB for optimizing the properties of both wave plates. Foveal fixation detection was optimized with the HWP spun 9/16 as fast as the circular scan, with the fixed retarder having a retardance of 45° and fast axis at 90°. With this new RBS design, a significant statistical improvement of 7.3 times in signal strength, i.e. FFT power, was achieved for the available data set compared with the previous RBS design. The computer-model-optimized RBS design has the potential not only for eye alignment screening, but also for remote fixation sensing and eye tracking applications.
Engineering spin-wave channels in submicrometer magnonic waveguides
Directory of Open Access Journals (Sweden)
XiangJun Xing
2013-03-01
Full Text Available Based on micromagnetic simulations and model calculations, we demonstrate that degenerate well and barrier magnon modes can exist concurrently in a single magnetic waveguide magnetized perpendicularly to the long axis in a broad frequency band, corresponding to copropagating edge and centre spin waves, respectively. The dispersion relations of these magnon modes clearly show that the edge and centre modes possess much different wave characteristics. By tailoring the antenna size, the edge mode can be selectively activated. If the antenna is sufficiently narrow, both the edge and centre modes are excited with considerable efficiency and propagate along the waveguide. By roughening the lateral boundary of the waveguide, the characteristics of the relevant channel can be easily engineered. Moreover, the coupling of the edge and centre modes can be conveniently controlled by scaling the width of the waveguide. For a wide waveguide with a narrow antenna, the edge and centre modes travel relatively independently in spatially-separate channels, whereas for a narrow strip, these modes strongly superpose in space. These discoveries might find potential applications in emerging magnonic devices.
Neutron-Scattering Study of Spin Waves in the Ferrimagnet RbNiF3
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1972-01-01
by a 180° antiferromagnetic exchange between nearest-neighbor A, B spins and a 90° ferromagnetic exchange between nearest-neighbor B spins. In this paper we report a detailed inelastic-neutron-scattering study of the spin waves in RbNiF3 both at low temperatures and through Tc. The magnetic unit cell...... contains six Ni++ spins so that there are in general six distinct branches in the spin-wave spectrum. All six branches are observed in the ΓA direction (c axis), while only the lowest three are observed in the ΓM direction. The measured dispersion curves at 4.2°K may be accurately fitted using simple spin-wave...
Crossover from spin waves to diffusive spin excitations in underdoped Ba(Fe1-xCox)2 As2
Energy Technology Data Exchange (ETDEWEB)
Tucker, G S; Fernandes, R M; Pratt, D K; Thaler, A; Ni, N; Marty, K; Christianson, A D; Lumsden, M D; Sales, B C; Sefat, A S; Bud' ko, S L; Canfield, P C; Kreyssig, A; Goldman, A I; McQueeney, R J
2014-05-01
Using inelastic neutron scattering, we show that the onset of superconductivity in underdoped Ba(Fe1-xCox)2As2 coincides with a crossover from well-defined spin waves to overdamped and diffusive spin excitations. This crossover occurs despite the presence of long-range stripe antiferromagnetic order for samples in a compositional range from x=0.04 to 0.055, and is a consequence of the shrinking spin-density wave gap and a corresponding increase in the particle-hole (Landau) damping. The latter effect is captured by a simple itinerant model relating Co doping to changes in the hot spots of the Fermi surface. We argue that the overdamped spin fluctuations provide a pairing mechanism for superconductivity in these materials.
Angular dependent study on ferromagnetic resonance and spin excitations by spin rectification
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yichao; Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Zhao, Xiaobing; Rao, Jinwei; Zhou, Hengan; Guo, Dangwei; Xue, Desheng [The Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Gui, Y. S.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)
2015-01-14
We report angular dependent spin rectification spectra which are applied to studying spin excitations in single permalloy stripe. Based on planar Hall effect, those spin excitations generate special resonant dc Hall voltages, which have been characterized as functions of the amplitude and direction of applied magnetic field. Through high angular resolution 2D mappings, the evolutions of different spin excitation can be directly presented, and the dynamic magnetic parameters such as the gyromagnetic ratio, effective exchange field, as well as the quantized numbers of standing spin waves can be accurately determined through fitting the angular evolution of each resonance.
Raman spectroscopy studies of spin-wave in V2O3 thin films
Chen, Xiang-Bai; Kong, Meng-Hong; Choi, Jeong-Yong; Kim, Hyun-Tak
2016-11-01
We present studies of the enhancement of spin-wave intensity and thickness dependence of spin-wave frequency in V2O3 thin films using Raman spectroscopy. Our results show that the intensity of spin-wave at ~450 cm-1 can be enhanced with a 633 nm laser rather than a 514 nm laser. The enhancement of spin-wave intensity is due to a resonance effect correlated with the on-site V 3d-3d Coulomb energy. A thickness dependence study shows that as the film thickness increases, the frequency of spin-wave at ~450 cm-1 has a redshift, while the frequency of the A g phonon at ~525 cm-1 has negligible shift. In comparison to the thickness dependence of the XRD results, we conclude that the spin-wave at ~450 cm-1 in V2O3 exists in the basal a-b plane, and the Raman study of the spin-wave provides a sensitive method for investigating the lattice and/or structure properties of crystals.
There is no "First" Quantization
Zeh, H D
2003-01-01
The appearance of spinor fields as operators or arguments of field functionals in quantum field theory is often regarded as a second quantization, since fermion wave functions were themselves discovered by quantizing mass points (``particles''). I argue that this language, though reflecting the historical development, is misleading. Field amplitudes always represent the true physical variables (in quantum theory the arguments of a fundamental wave functional), including fields which never appear classical, while apparent particles are no more than the result of decoherence in the measuring device, without playing any fundamental role in the theory or its interpretation. A remark on gauge fields is added.
Ajith, P
2011-01-01
This paper presents a post-Newtonian (PN) template family of gravitational waveforms from inspiralling compact binaries with non-precessing spins, where the spin effects are described by a single "reduced-spin" parameter. This template family, which reparametrizes all the spin-dependent PN terms in terms of the leading-order (1.5PN) spin-orbit coupling term in an approximate way, has very high overlaps (fitting factor > 0.99) with non-precessing binaries with arbitrary mass ratios and spins. We also show that this template family is "effectual" towards a significant fraction of generic spinning binaries in the comparable-mass regime (m_2/m_1 < 10), providing an attractive and feasible way of searching for gravitational waves (GWs) from spinning low-mass binaries. We also show that the secular (non-oscillatory) spin-dependent effects in the phase evolution (which are taken into account by the non-precessing templates) are more important than the oscillatory effects of precession in the comparable-mass (m_1 ...
Energy Technology Data Exchange (ETDEWEB)
Evelt, M.; Demidov, V. E., E-mail: demidov@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); Bessonov, V. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Demokritov, S. O. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Prieto, J. L. [Instituto de Sistemas Optoelectrónicos y Microtecnologa (UPM), Ciudad Universitaria, Madrid 28040 (Spain); Muñoz, M. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), PTM, E-28760 Tres Cantos, Madrid (Spain); Ben Youssef, J. [Laboratoire de Magnétisme de Bretagne CNRS, Université de Bretagne Occidentale, 29285 Brest (France); Naletov, V. V. [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Institute of Physics, Kazan Federal University, Kazan 420008 (Russian Federation); Loubens, G. de [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Collet, M.; Garcia-Hernandez, K.; Bortolotti, P.; Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France)
2016-04-25
We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by the nonlinear scattering of the coherent spin waves from current-induced excitations.
A formulation without partial wave decomposition for scattering of spin-1/2 and spin-0 particles
Abdulrahman, I
2010-01-01
A new technique has been developed to calculate scattering of spin-1/2 and spin-0 particles. The so called momentum-helicity basis states are constructed from the helicity and the momentum states, which are not expanded in the angular momentum states. Thus, all angular momentum states are taken into account. Compared with the partial-wave approach this technique will then give more benefit especially in calculations for higher energies. Taking as input a simple spin-orbit potential, the Lippman-Schwinger equations for the T-matrix elements are solved and some observables are calculated.
Unidirectional propagation of magnetostatic surface spin waves at a magnetic film surface
Energy Technology Data Exchange (ETDEWEB)
Wong, Kin L.; Bao, Mingqiang, E-mail: mingqiangbao@gmail.com, E-mail: caross@mit.edu; Lin, Yen-Ting; Wang, Kang L. [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Bi, Lei [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wen, Qiye; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chatelon, Jean Pierre [Univerisité de Saint-Etienne, Université de Lyon, LT2C, 25 rue du Docteur Rémy Annino, 42000 Saint-Etienne (France); Ross, C. A., E-mail: mingqiangbao@gmail.com, E-mail: caross@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2014-12-08
An analytical expression for the amplitudes of magnetostatic surface spin waves (MSSWs) propagating in opposite directions at a magnetic film surface is presented. This shows that for a given magnetic field H, it is forbidden for an independent MSSW to propagate along the direction of −H{sup →}×n{sup →}, where n{sup →} is the surface normal. This unidirectional propagation property is confirmed by experiments with both permalloy and yttrium iron garnet films of different film thicknesses, and has implications in the design of spin-wave devices such as isolators and spin-wave diodes.
The spin wave dispersion of NdCu 2 in strong magnetic fields
Kramp, S.; Loewenhaupt, M.; Rotter, M.
2000-03-01
The study of the spin wave excitation spectrum in NdCu 2 revealed a pronounced minimum which forms an energy gap. Previous experiments showed that the gap energy remains finite in external magnetic fields parallel to the b-axis. In this paper we report on measurements of the spin wave dispersion in strong magnetic fields applied parallel to the c-direction (hard magnetization axis). The spin wave gap changes its position and soft mode behavior at a magnetic phase transition is observed. The comparison with the dispersion at μ 0H ||b=3 T reveals the anisotropy between ( ac)-plane and b-axis.
Non-resonant wave front reversal of spin waves used for microwave signal processing
Energy Technology Data Exchange (ETDEWEB)
Vasyuchka, V I; Chumak, A V; Hillebrands, B [Fachbereich Physik and Forschungszentrum OPTIMAS, Technische Universitaet Kaiserslautern, 67663 Kaiserslautern (Germany); Melkov, G A; Moiseienko, V A [Department of Radiophysics, National Taras Shevchenko University of Kiev, 01033 Kiev (Ukraine); Slavin, A N, E-mail: vasyuchka@physik.uni-kl.d [Department of Physics, Oakland University, Rochester, MI 48309 (United States)
2010-08-18
It is demonstrated that non-resonant ({omega}{sub s} {ne} {omega}{sub p}/2) wave front reversal (WFR) of spin-wave pulses (carrier frequency {omega}{sub s}) caused by pulsed parametric pumping (carrier frequency {omega}{sub p}) can be effectively used for microwave signal processing. When the spectral width {Omega}{sub s} of the signal is wider than the frequency band {Omega}{sub p} of signal amplification by pumping ({Omega}{sub s} >> {Omega}{sub p}), the non-resonant WFR can be used for the analysis of the signal spectrum. In the opposite case ({Omega}{sub s} << {Omega}{sub p}) the non-resonant WFR can be used for active (with amplification) filtering of the input signal.
Electron-spin dynamics in elliptically polarized light waves
Bauke, Heiko; Grobe, Rainer
2014-01-01
We investigate the coupling of the spin angular momentum of light beams with elliptical polarization to the spin degree of freedom of free electrons. It is shown that this coupling, which is of similar origin as the well-known spin-orbit coupling, can lead to spin precession. The spin-precession frequency is proportional to the product of the laser-field's intensity and its spin density. The electron-spin dynamics is analyzed by employing exact numerical methods as well as time-dependent perturbation theory based on the fully relativistic Dirac equation and on the nonrelativistic Pauli equation that is amended by a relativistic correction that accounts for the light's spin density.
Energy Technology Data Exchange (ETDEWEB)
Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)
2015-06-29
The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.
Quantum computing with an electron spin ensemble.
Wesenberg, J H; Ardavan, A; Briggs, G A D; Morton, J J L; Schoelkopf, R J; Schuster, D I; Mølmer, K
2009-08-14
We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized radiation field. The transformation between different spin waves is achieved by applying gradient magnetic fields across the sample, while a Cooper pair box, resonant with the cavity field, may be used to carry out one- and two-qubit gate operations.
Energy Technology Data Exchange (ETDEWEB)
Weinstein, M
2003-11-19
This paper discusses the problem of inflation in the context of Friedmann-Robertson-Walker Cosmology. We show how, after a simple change of variables, one can quantize the problem in a way which parallels the classical discussion. The result is that two of the Einstein equations arise as exact equations of motion; one of the usual Einstein equations (suitably quantized) survives as a constraint equation to be imposed on the space of physical states. However, the Friedmann equation, which is also a constraint equation and which is the basis of the Wheeler-DeWitt equation, acquires a welcome quantum correction that becomes significant for small scale factors. We then discuss the extension of this result to a full quantum mechanical derivation of the anisotropy ({delta}{rho}/{rho}) in the cosmic microwave background radiation and the possibility that the extra term in the Friedmann equation could have observable consequences. Finally, we suggest interesting ways in which these techniques can be generalized to cast light on the question of chaotic or eternal inflation. In particular, we suggest that one can put an experimental bound on how far away a universe with a scale factor very different from our own must be, by looking at its effects on our CMB radiation.
Energy Technology Data Exchange (ETDEWEB)
Yamanoi, K.; Yokotani, Y. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Cui, X. [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Yakata, S. [Department of Information Electronics, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295 (Japan); Kimura, T., E-mail: t-kimu@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)
2015-12-21
We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of the standing spin wave is an important advantage for the high power operation of the spin-wave device.
Energy Technology Data Exchange (ETDEWEB)
Hack, Thomas-Paul; Makedonski, Mathias [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2011-06-15
We first introduce a set of conditions which assure that a free spin (3)/(2) field with m{>=}0 can be consistently ('unitarily') quantized on all four-dimensional curved spacetimes, i.e. also on spacetimes which are not assumed to be solutions of the Einstein equations. We discuss a large - and, as we argue, exhaustive - class of spin (3)/(2) field equations obtained from the Rarita-Schwinger equation by the addition of non-minimal couplings and prove that no equation in this class fulfils all sufficient conditions. Afterwards, we investigate the situation in supergravity, where the curved background is usually assumed to satisfy the Einstein equations and, hence, detailed knowledge on the spacetime curvature is available. We provide a necessary condition for the unitary quantization of a spin (3)/(2) Majorana field and prove that this condition is not met by supergravity models in four-dimensional Robertson-Walker spacetimes if local supersymmetry is broken. Our proof is model-independent as we merely assume that the gravitino has the standard kinetic term. (orig.)
Nonlinear effects in the propagation of optically generated magnetostatic volume mode spin waves
van Tilburg, L. J. A.; Buijnsters, F. J.; Fasolino, A.; Rasing, T.; Katsnelson, M. I.
2017-08-01
Recent experimental work has demonstrated optical control of spin wave emission by tuning the shape of the optical pulse [Satoh et al., Nat. Photon. 6, 662 (2012), 10.1038/nphoton.2012.218]. We reproduce these results and extend the scope of the control by investigating nonlinear effects for large amplitude excitations. We observe an accumulation of spin wave power at the center of the initial excitation combined with short-wavelength spin waves. These kinds of nonlinear effects have not been observed in earlier work on nonlinearities of spin waves. Our observations pave the way for the manipulation of magnetic structures at a smaller scale than the beam focus, for instance in devices with all-optical control of magnetism.
Interactions, disorder and spin waves in quantum Hall ferromagnets near integer filling
Rapsch, S
2001-01-01
dynamics is discussed in chapter 5 and employed to study spin waves in a domain wall structure. A hydrodynamic theory of spin waves is used to treat long-wavelength excitations of randomly disordered quantum Hall ferromagnets. Finally, the contribution of spin waves to the optical conductivity is studied in chapter 6. Predictions are made for the experimental signatures of spin waves in disordered quantum Hall systems. The observability of these signatures is discussed both for transport measurements and NMR experiments. The interplay between exchange interactions and disorder is studied in quantum Hall ferromagnets near integer filling. Both analytical and numerical methods are used to investigate a non-linear sigma model of these systems in the limit of vanishing Zeeman coupling and at zero temperature. Chapter 1 gives an introduction to the quantum Hall effect and to quantum Hall ferromagnets in particular. A brief review of existing work on disordered quantum Hall systems is included. In chapters 2-4, the...
Energy Technology Data Exchange (ETDEWEB)
Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Sadovnikov, A. V.; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Grishin, S. V.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)
2015-10-19
We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development of magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.
Spin-wave excitations and magnetism of sputtered Fe/Au multilayers
Indian Academy of Sciences (India)
M LASSRI; H SALHI; R MOUBAH; H LASSRI
2016-08-01
The spin-wave excitations and the magnetism of Fe/Au multilayers with different Fe thicknesses (tFe) grown by RF sputtering were investigated. The temperature dependence of spontaneous magnetization is well described by a T$_{3/2}$ law in all multilayers in the temperature range of 5–300 K. Spin-wave theory has been used to explain the temperature dependence of the spontaneous magnetization and the approximate values for the exchangeinteractions for various $t_{\\rm Fe}$ were obtained. The spin-wave constant $B$ was found to increase linearly with the inverse in the Fe thickness ($1/t_{\\rm Fe}$). Using the ferromagnetic resonance technique, the change of the anisotropy field $H_K$ as a function of $1/t_{\\rm Fe}$ was deduced. The spatial distributions of the discrete spin-wave modes were calculated. All theextracted results were in agreement with those determined experimentally and found in the literature.
Testing general gelativity using gravitational waves from binary neutron stars: Effect of spins
Agathos, Michalis; Li, Tjonnie G F; Broeck, Chris Van Den; Veitch, John; Vitale, Salvatore
2013-01-01
We present a Bayesian data analysis pipeline for testing GR using gravitational wave signals from coalescing compact binaries, and in particular binary neutron stars. In this study, we investigate its performance when sources with spins are taken into account.
Transverse azimuthal dephasing of vortex spin wave in a hot atomic gas
Shi, Shuai; Zhang, Wei; Zhou, Zhi-Yuan; Dong, Ming-Xin; Liu, Shi-Long; Shi, Bao-Sen; Guo, Guang-Can
2016-01-01
Optical fields with orbital angular momentum (OAM) interact with medium have many remarkable properties with its unique azimuthal phase, showing many potential applications in high capacity information processing, high precision measurement etc. The dephasing mechanics of optical fields with OAM in an interface between light and matter plays a vital role in many areas of physics. In this work, we study the transverse azimuthal dephasing of OAM spin wave in a hot atomic gas via OAM storage. The transverse azimuthal phase difference between the control and probe beams is mapped onto the spin wave, which essentially results in dephasing of atomic spin wave. The dephasing of OAM spin wave can be controlled by the parameters of OAM topological charge and beam waist. Our results are helpful for studying OAM light interaction with matter, maybe hold a promise in OAM-based quantum information processing.
Spinon Superconductivity and Superconductivities Mediated by Spin-Waves and Phonons in Cuprates
Mourachkine, A.
1998-01-01
The disclosure of spinon superconductivity and superconductivity mediated by spin-waves in hole-doped Bi2212 cuprate raises the question about the origin of the superconductivity in other cuprates and specially in an electron-doped NCCO cuprate.
Charge and spin currents in normal metal sandwiched by tow p-wave
Directory of Open Access Journals (Sweden)
Y Rahnavard
2010-09-01
Full Text Available Charge and spin transport properties of a clean $SNS$ Josephson junction (triplet superconductor-normal metal-triplet superconductor are studied using the quasiclassical Eilenberger equation of Green’s function. Our system consists of two p-wave superconducting crystals separated by a Copper nano layer. Effects of thickness of normal layer between superconductors on the spin and charge currents are investigated. Also misorientation between triplet superconductors which creates the spin current is another subject of this paper.
Relativistic wave equations for interacting massive particles with arbitrary half-intreger spins
Niederle, J
2001-01-01
New formulation of relativistic wave equations (RWE) for massive particles with arbitrary half-integer spins $s$ interacting with external electromagnetic fields are proposed. They are based on wave functions which are irreducible tensors of rank $2n$ ($n=s-\\frac12$) antisymmetric w.r.t. $n$ pairs of indices, whose components are bispinors. The form of RWE is straightforward and free of inconsistencies associated with the other approaches to equations describing interacting higher spin particles.
Spin Waves and Switching: The Dynamics of Exchange - Biased Co Core - CoO Shell Nanoparticles
Feygenson, Mikhail; Teng, Xiaowei; Inderhees, Sue E.; Yiu, Yuen; Du, Wenxin; Han, Weiqiang; Wen, Jinsheng; Xu, Zhijung; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Hagen, Mark; Qiu, Yiming; Brown, Craig M.; Zhang, Lihua; Aronson, Meigan C.
2009-01-01
The utility of nanoscaled ferromagnetic particles requires both stabilized moments and maximized switching speeds. During reversal, the spatial modulation of the nanoparticle magnetization evolves in time, and the energy differences between each new configuration are accomodated by the absorption or emission spin waves with different wavelengths and energy profiles. The switching speed is limited by how quickly this spin wave energy is dissipated. We present here the first observation of disp...
Spin Waves in Magnetic Thin Films: New Types of Solitons and Electrical Control
Wang, Zihui
New types of spin-wave solitons in magnetic thin films and the methods to control spin waves electrically are studied in this thesis. In the first part, the first observation of chaotic spin-wave solitons in yttrium iron garnet (YIG) thin film-based active feedback rings is presented. At some ring gain levels, one observes the self-generation of a single spin-wave soliton pulse in the ring. When the pulse circulates in the ring, its amplitude varies chaotically with time. The excitation of dark spin-wave envelope solitons in YIG thin film strips is also described. The formation of a pair of black solitons with a phase jump of 180° is observed for the first time. The excitation of bright solitons in the case of repulsive nonlinearity is also observed and is reproduced by a numerical simulation based on a high-order nonlinear Schrodinger equation. In the second part, the control of magnetization relaxation in ferromagnetic insulators via interfacial spin scattering is presented. In the experiments nanometer-thick YIG/Pt bi-layered structures are used, with the Pt layer biased by an electric voltage. The bias voltage produces a spin current across the Pt layer thickness due to the spin Hall effect. As this current scatters off the YIG surface, it exerts a torque on the YIG surface spins. This torque can reduce or increase the damping and thereby compress or broaden the ferromagnetic resonance linewidth of the YIG film, depending on the field/current configuration. The control of spin waves in a YIG thin film via interfacial spin scattering is also presented. In the experiments a 4.6-microm-thick YIG film strip with a 20-nm-thick Pt capping layer is used. A DC current pulse is applied to the Pt layer and produced a spin current across the Pt layer. As the spin current scatters off the YIG surface, it can either amplify or attenuate spin-wave pulses that travel in the YIG strip, depending on the current/field configuration.
Seligman, Thomas H
2010-01-01
The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Some applications, mainly to non-equilibrium steady states, will be mentioned.
Seligman, Thomas H.; Prosen, Tomaž
2010-12-01
The basic ideas of second quantization and Fock space are extended to density operator states, used in treatments of open many-body systems. This can be done for fermions and bosons. While the former only requires the use of a non-orthogonal basis, the latter requires the introduction of a dual set of spaces. In both cases an operator algebra closely resembling the canonical one is developed and used to define the dual sets of bases. We here concentrated on the bosonic case where the unboundedness of the operators requires the definitions of dual spaces to support the pair of bases. Some applications, mainly to non-equilibrium steady states, will be mentioned.
Xia, Hong; Chen, Jie; Zeng, Xiaoyan; Yan, Ming
2016-04-01
The Doppler effect is a fundamental physical phenomenon observed for waves propagating in vacuum or various media, commonly gaseous or liquid. Here, we report on the occurrence of a Doppler effect in a solid medium. Instead of a real object, a topological soliton, i.e., a magnetic domain wall (DW) traveling in a current-carrying ferromagnetic nanowire, plays the role of the moving wave source. The Larmor precession of the DW in an external field stimulates emission of monochromatic spin waves (SWs) during its motion, which show a significant Doppler effect, comparable to the acoustic one of a train whistle. This process involves two prominent spin-transfer-torque effects simultaneously, the current-driven DW motion and the current-induced SW Doppler shift. The latter gives rise to an interesting feature, i.e., the observed SW Doppler effect appears resulting from a stationary source and a moving observer, contrary to the laboratory frame.
Wave function collapses in a single spin magnetic resonance force microscopy
Berman, G P; Tsifrinovich, V I
2004-01-01
We study the effects of wave function collapses in the oscillating cantilever driven adiabatic reversals (OSCAR) magnetic resonance force microscopy (MRFM) technique. The quantum dynamics of the cantilever tip (CT) and the spin is analyzed and simulated taking into account the magnetic noise on the spin. The deviation of the spin from the direction of the effective magnetic field causes a measurable shift of the frequency of the CT oscillations. We show that the experimental study of this shift can reveal the information about the average time interval between the consecutive collapses of the wave function
Statistical reconstruction algorithms for continuous wave electron spin resonance imaging
Kissos, Imry; Levit, Michael; Feuer, Arie; Blank, Aharon
2013-06-01
Electron spin resonance imaging (ESRI) is an important branch of ESR that deals with heterogeneous samples ranging from semiconductor materials to small live animals and even humans. ESRI can produce either spatial images (providing information about the spatially dependent radical concentration) or spectral-spatial images, where an extra dimension is added to describe the absorption spectrum of the sample (which can also be spatially dependent). The mapping of oxygen in biological samples, often referred to as oximetry, is a prime example of an ESRI application. ESRI suffers frequently from a low signal-to-noise ratio (SNR), which results in long acquisition times and poor image quality. A broader use of ESRI is hampered by this slow acquisition, which can also be an obstacle for many biological applications where conditions may change relatively quickly over time. The objective of this work is to develop an image reconstruction scheme for continuous wave (CW) ESRI that would make it possible to reduce the data acquisition time without degrading the reconstruction quality. This is achieved by adapting the so-called "statistical reconstruction" method, recently developed for other medical imaging modalities, to the specific case of CW ESRI. Our new algorithm accounts for unique ESRI aspects such as field modulation, spectral-spatial imaging, and possible limitation on the gradient magnitude (the so-called "limited angle" problem). The reconstruction method shows improved SNR and contrast recovery vs. commonly used back-projection-based methods, for a variety of simulated synthetic samples as well as in actual CW ESRI experiments.
Rutonjski, Milica S.; Pavkov-Hrvojević, Milica V.; Berović, Maja B.
2016-12-01
The relevance of the quasi-two-dimensional spin-1/2 frustrated quantum antiferromagnet (AFM) due to its possibility of modeling the high-temperature superconducting parent compounds has resulted in numerous theoretical and experimental studies. This paper presents a detailed research of the influence of the varying exchange interactions on the model magnetic properties within the framework of self-consistent spin-wave theory based on Dyson-Maleev (DM) representation. Beside the nearest neighbor (NN) interaction within the plane, the planar frustration up to the third NNs, cyclic interaction and the interlayer coupling are taken into account. The detailed description of the elementary spin excitations, staggered magnetization, spin-wave velocity renormalization factor and ground state energy is given. The results are compared to the predictions of the linear spin-wave theory and when possible also to the second-order perturbative spin-wave expansion results. Finally, having at our disposal improved experimental results for the in-plane spin-wave dispersion in high-Tc copper oxide La2CuO4, the self-consistent spin-wave theory (SCSWT) is applied to that compound in order to correct earlier obtained set of exchange parameters and high-temperature spin-wave dispersion.
Relativistic quantum mechanical spin-1 wave equation in 2+1 dimensional spacetime
Dernek, Mustafa; Sucu, Yusuf; Unal, Nuri
2016-01-01
In the study, we introduce a relativistic quantum mechanical wave equation of the spin-1 particle as an excited state of the zitterbewegung and show that it is consistent with the 2+1 dimensional Proca theory. At the same time, we see that this equation has two eigenstates, particle and antiparticle states or negative and positive energy eigenstates, respectively, in the rest frame and the spin-1 matrices satisfy $SO(2,1)$ spin algebra. As practical applications, we derive the exact solutions of the equation in the presence of a constant magnetic field and a curved spacetime. From these solutions, we construct the current components of the spin-1 particle.
Controlled rephasing of single spin-waves in a quantum memory based on cold atoms
Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team
2015-05-01
Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.
Linear spin wave theory for single-Q incommensurate magnetic structures.
Toth, S; Lake, B
2015-04-29
Linear spin wave theory provides the leading term in the calculation of the excitation spectra of long-range ordered magnetic systems as a function of 1/√S. This term is acquired using the Holstein-Primakoff approximation of the spin operator and valid for small δS fluctuations of the ordered moment. We propose an algorithm that allows magnetic ground states with general moment directions and single-Q incommensurate ordering wave vector using a local coordinate transformation for every spin and a rotating coordinate transformation for the incommensurability. Finally we show, how our model can determine the spin wave spectrum of the magnetic C-site langasites with incommensurate order.
Is Fundamental Particle Mass 4π Quantized?
Directory of Open Access Journals (Sweden)
Stone R. A. Jr.
2010-01-01
Full Text Available The Standard Model lacks an explanation for the specific mass values of the fundamen- tal particles. This is to report that a single spin quantized mass formula can produce the masses of the proton, the W , and the three electron generations. The 4 mass quanti- zation pattern limits the electron generations to three, while the particle’s generational property is one of the components of the proposed intra-particle quantization process. Although the developed relationships are presently phenomenological, so was Bohr’s atomic quantization proposal that lead to quantum mechanics.
Short-range spin- and pair-correlations : a variational wave-function
van der Marel, D
2004-01-01
A many-body wave-function is postulated, which is sufficiently general to describe superconducting pair-correlations, and/or spin-correlations, which can occur either as long-range order or as finite-range correlations. The proposed wave-function appears to summarize some of the more relevant aspect
Arrighi, Pablo; Werner, Reinhard
2009-01-01
Consider a set of physical systems, evolving according to some global dynamics yielding another set of physical systems. Such a global dynamics f may have a causal structure, i.e. each output physical system may depend only on some subset of the input physical system, whom we may call its "neighbours". We can of course write down these dependencies, and hence formalize them in a bipartite graph labeled with the physical systems sitting at each node, with the first (resp. second) set holding the global state of the composite physical system at time t (resp. t'), and the edges between the partition stating which physical systems may influence which. Moreover if f is bijective, then we can quantize just by linear extension, so that it now turns into a unitary operator Q(f) acting upon this set of, now quantum, physical systems. The question we address is: what becomes, then, of the dependency graph? In other words, has Q(f) got the same causal structure as f? The answer to this question turns out to be a surpris...
Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics
Haiming Yu; O. d'Allivy Kelly; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Huber, R.; Stasinopoulos, I; Grundler, D.
2014-01-01
Wave control in the solid state has opened new avenues in modern information technology. Surface-acoustic-wave-based devices are found as mass market products in 100 millions of cellular phones. Spin waves (magnons) would offer a boost in today's data handling and security implementations, i.e., image processing and speech recognition. However, nanomagnonic devices realized so far suffer from the relatively short damping length in the metallic ferromagnets amounting to a few 10 micrometers ty...
Gorobets, Y. I.; Gorobets, Y.; Kulish, V. V.
2017-01-01
In the paper, spin waves in a uniaxial two-sublattice antiferromagnet are investigated. A new class of self-similar solutions of the Landau-Lifshitz equation is obtained and, therefore, a new type of spin waves is described. Examples of solutions of the found class are presented. New type of solution admits both linear and non-linear spin waves, including solitons. Space transformations used in the solution are mathematically analogous to the relativistic transformations.
Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.
Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto
2017-08-23
The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10(-7) against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.
Distinguishing spin-aligned and isotropic black hole populations with gravitational waves
Farr, Will M.; Stevenson, Simon; Miller, M. Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto
2017-08-01
The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the ‘effective’ spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10‑7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.
Measuring the spin of black holes in binary systems using gravitational waves
Vitale, Salvatore; Veitch, John; Raymond, Vivien; Sturani, Riccardo
2014-01-01
Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions, and the opportunity of measuring spins directly through GW observations. In this letter we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientation, and signal-to-noise ratio. We find that spin magnitudes and tilt angles can be estimated to accuracy of a few percent for neutron star--black hole systems and $\\sim$ 5-30% for black hole binaries. In contrast, the difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum, and that a sudden change of behavior occurs when a system is observed from ...
Design of a CMOS integrated on-chip oscilloscope for spin wave characterization
Egel, Eugen; Meier, Christian; Csaba, György; Breitkreutz-von Gamm, Stephan
2017-05-01
Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF) receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz) signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA). Then, it is down-converted by a mixer to Intermediate Frequency (IF). Finally, an Operational Amplifier (OpAmp) brings the IF signal to higher voltages (50-300 mV). The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO) is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.
Lagrangian geometrical optics of classical vector waves and particles with spin
Ruiz, D. E.; Dodin, I. Y.
2015-11-01
Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the ``wave spin.'' In this work, we present a universal Lagrangian theory that describes these effects by extending the geometrical-optics approximation to small but nonvanishing λ / l , where λ is the wavelength, and l is the characteristic inhomogeneity scale (arXiv:1503.07829; arXiv:1503.07819). When applied to classical waves, this theory correctly predicts, for example, the difference between the polarization-driven bending of left- and right-polarized electromagnetic wave rays in isotropic media (arXiv:1507.05863). When applied to quantum waves, the same general theory yields a Lagrangian point-particle model for the Dirac electron, i.e. the relativistic spin-1/2 particle. The model captures both the Bargmann-Michel-Telegdi spin precession theory and the Stern-Gerlach spin-orbital coupling theory. Moreover, we present, for the first time, a calculation of the fully relativistic ponderomotive Hamiltonian for a Dirac electron in a vacuum laser field. This Hamiltonian captures not only the usual relativistic mass shift but also spin effects. This work was supported by the DOE NNSA through contract No. DE274-FG52-08NA28553, by the U.S. DOE through Contract No. DE-AC02-09CH11466, and by DOD NDSEG fellowship through contract No. 32-CFR-168a.
Design of a CMOS integrated on-chip oscilloscope for spin wave characterization
Directory of Open Access Journals (Sweden)
Eugen Egel
2017-05-01
Full Text Available Spin waves can perform some optically-inspired computing algorithms, e.g. the Fourier transform, directly than it is done with the CMOS logic. This article describes a new approach for on-chip characterization of spin wave based devices. The readout circuitry for the spin waves is simulated with 65-nm CMOS technology models. Commonly used circuits for Radio Frequency (RF receivers are implemented to detect a sinusoidal ultra-wideband (5-50 GHz signal with an amplitude of at least 15 μV picked up by a loop antenna. First, the RF signal is amplified by a Low Noise Amplifier (LNA. Then, it is down-converted by a mixer to Intermediate Frequency (IF. Finally, an Operational Amplifier (OpAmp brings the IF signal to higher voltages (50-300 mV. The estimated power consumption and the required area of the readout circuit is approximately 55.5 mW and 0.168 mm2, respectively. The proposed On-Chip Oscilloscope (OCO is highly suitable for on-chip spin wave characterization regarding the frequency, amplitude change and phase information. It offers an integrated low power alternative to current spin wave detecting systems.
Compression gain of spin wave signals in a magnonic YIG waveguide with thermal non-uniformity
Energy Technology Data Exchange (ETDEWEB)
Kolokoltsev, O.; Gómez-Arista, Ivan; Qureshi, N.; Acevedo, A. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU 04510 D.F. (Mexico); Ordóñez-Romero, César L. [Instituto de Física, Universidad Nacional Autónoma de México, CU 04510 D.F. (Mexico); Grishin, A. [Condensed Matter Physics, Royal Institute of Technology, SE-164 40 Stockholm, Kista (Sweden)
2015-03-01
We report on the observation of the compression gain of the signals carried by surface spin waves (MSSWs) in yittrium iron garnet films as a result of non-uniform optical heating of the spin wave medium. Efficient gain takes place if a frequency downshift of the spin wave spectrum induced by the heating is compensated by the corresponding non-uniformity of the bias magnetic field. It is proposed that the effect can be understood in part as an interaction between spin waves and a thermally induced potential well in the sample. - Highlights: • In this manuscript we describe the case when thermal control of the magnetization profile leads to significant improvement of characteristics of a spin wave delay line element. • We believe that this technology can be used to realize reconfigurable magnonic crystals or waveguiding structures induced in the ferromagnets by scanning optic systems integrated with a semiconductor lasers. • It should be noted, in metallic systems thermal response times are of order of picoseconds.
Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State
Directory of Open Access Journals (Sweden)
D. Andrew Golter
2016-12-01
Full Text Available The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics.
Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; Slavin, A.; Finocchio, G.
2016-01-01
Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as “free” layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications. PMID:27786261
Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; Slavin, A.; Finocchio, G.
2016-10-01
Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as “free” layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications.
Multiple and spin off initiation of atmospheric convectively coupled Kelvin waves
Baranowski, Dariusz B.; Flatau, Maria K.; Flatau, Piotr J.; Schmidt, Jerome M.
2017-02-01
A novel atmospheric convectively coupled Kelvin wave trajectories database, derived from Tropical Rainfall Measuring Mission precipitation data, is used to investigate initiation of sequential Kelvin wave events. Based on the analysis of beginnings of trajectories from years 1998-2012 it is shown that sequential event initiations can be divided into two distinct categories: multiple initiations and spin off initiations, both of which involve interactions with ocean surface and upper ocean temperature variability. The results of composite analysis of the 83 multiple Kelvin wave initiations show that the local thermodynamic forcing related to the diurnal sea surface temperature variability is responsible for sequential Kelvin wave development. The composite analysis of 91 spin off Kelvin wave initiations shows that the dynamic forcing is a dominant effect and the local thermodynamic forcing is secondary. Detail case studies of both multiple and spin off initiations confirm statistical analysis. A multiple initiation occurs in the presence of the high upper ocean diurnal cycle and a spin off initiation results from both dynamic and local thermodynamic processes. The dynamic forcing is related to increased wind speed and latent heat flux likely associated with an off equatorial circulation. In addition a theoretical study of the sequential Kelvin waves is performed using a shallow water model. Finally, conceptual models of these two types of initiations are proposed.
Zecca, Antonio
2017-03-01
The arbitrary spin field equations that are not separable, contrarily to what happens in the Robertson-Walker and Schwarzschild metrics, are studied in a general comoving spherically symmetric metric. They result to be separable by variable separation in a class of metrics governing the Lemâitre Tolman Bondi cosmological models whose physical radius has a special factorized parametric representation. The result is proved by induction by explicitly considering the spin 1, 3/2, 2 case and then the higher spin values. The procedure is based on the Newman-Penrose formalism, which takes into account the strong analogy with the Robertson-Walker metric case. The existence of a nontrivial Weyl spinor requires a symmetrization of one of the spinor wave equations for spin values greater than 1.
Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M
2017-07-18
Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.
Incommensurate spin density wave in metallic V2-yO3
Bao, Wei; Broholm, C.; Carter, S. A.; Rosenbaum, T. F.; Aeppli, G.; Trevino, S. F.; Metcalf, P.; Honig, J. M.; Spalek, J.
1993-08-01
We show by neutron diffraction that metallic V2-7O3 develops a spin density wave below TN~=9 K with incommensurate wave vector q~=1.7c* and an ordered moment of 0.15μB. The weak ordering phenomenon is accompanied by strong, nonresonant spin fluctuations with a velocity c=67(4) meV Å. The spin correlations of the metal are very different from those of the insulator and place V2-yO3 in a distinct class of Motte-Hubbard systems where the wave vector for magnetic order in the metal is far from a high symmetry commensurate reciprocal lattice point.
Demonstration of atomic frequency comb memory for light with spin-wave storage.
Afzelius, Mikael; Usmani, Imam; Amari, Atia; Lauritzen, Björn; Walther, Andreas; Simon, Christoph; Sangouard, Nicolas; Minár, Jirí; de Riedmatten, Hugues; Gisin, Nicolas; Kröll, Stefan
2010-01-29
We present a light-storage experiment in a praseodymium-doped crystal where the light is mapped onto an inhomogeneously broadened optical transition shaped into an atomic frequency comb. After absorption of the light, the optical excitation is converted into a spin-wave excitation by a control pulse. A second control pulse reads the memory (on-demand) by reconverting the spin-wave excitation to an optical one, where the comb structure causes a photon-echo-type rephasing of the dipole moments and directional retrieval of the light. This combination of photon-echo and spin-wave storage allows us to store submicrosecond (450 ns) pulses for up to 20 mus. The scheme has a high potential for storing multiple temporal modes in the single-photon regime, which is an important resource for future long-distance quantum communication based on quantum repeaters.
ASYMPTOTIC QUANTIZATION OF PROBABILITY DISTRIBUTIONS
Institute of Scientific and Technical Information of China (English)
Klaus P(o)tzelberger
2003-01-01
We give a brief introduction to results on the asymptotics of quantization errors.The topics discussed include the quantization dimension,asymptotic distributions of sets of prototypes,asymptotically optimal quantizations,approximations and random quantizations.
Spinning swimming of Volvox by tangential helical wave
Felderhof, B U
2016-01-01
The swimming of a sphere by means of tangential helical waves running along its surface is studied on the basis of the Stokes equations. Two types of tangential waves are found. The first of these is associated with a pressure disturbance and leads to a higher rate of net rotation than the second one for the same power. It is suggested that the helical waves are relevant for the rotational swimming of Volvox.
Boundary-induced spin-density waves in linear Heisenberg antiferromagnetic spin chains with S ≥1
Dey, Dayasindhu; Kumar, Manoranjan; Soos, Zoltán G.
2016-10-01
Linear Heisenberg antiferromagnets (HAFs) are chains of spin-S sites with isotropic exchange J between neighbors. Open and periodic boundary conditions return the same ground-state energy per site in the thermodynamic limit, but not the same spin SG when S ≥1 . The ground state of open chains of N spins has SG=0 or S , respectively, for even or odd N . Density-matrix renormalization-group calculations with different algorithms for even and odd N are presented up to N =500 for the energy and spin densities ρ (r ,N ) of edge states in HAFs with S =1 , 3/2, and 2. The edge states are boundary-induced spin density waves (BI-SDWs) with ρ (r ,N ) ∝(-1) r -1 for r =1 ,2 ,...,N . The SDWs are in phase when N is odd, are out of phase when N is even, and have finite excitation energy Γ (N ) that decreases exponentially with N for integer S and faster than 1 /N for half integer S . The spin densities and excitation energy are quantitatively modeled for integer S chains longer than 5 ξ spins by two parameters, the correlation length ξ and the SDW amplitude, with ξ =6.048 for S =1 and 49.0 for S =2 . The BI-SDWs of S =3 /2 chains are not localized and are qualitatively different for even and odd N . Exchange between the ends for odd N is mediated by a delocalized effective spin in the middle that increases |Γ (N )| and weakens the size dependence. The nonlinear sigma model (NL σ M ) has been applied to the HAFs, primarily to S =1 with even N , to discuss spin densities and exchange between localized states at the ends as Γ (N ) ∝(-1) Nexp(-N /ξ ) . S =1 chains with odd N are fully consistent with the NL σ M ; S =2 chains have two gaps Γ (N ) with the same ξ as predicted whose ratio is 3.45 rather than 3; the NL σ M is more approximate for S =3 /2 chains with even N and is modified for exchange between ends for odd N .
Linear spin-wave study of a quantum kagome ice
Owerre, S. A.; Burkov, A. A.; Melko, Roger G.
2016-04-01
We present a large-S study of a quantum spin ice Hamiltonian, introduced by Huang et al. [Phys. Rev. Lett. 112, 167203 (2014), 10.1103/PhysRevLett.112.167203], on the kagome lattice. This model involves a competition between the frustrating Ising term of classical kagome ice, a Zeeman magnetic field h , and a nearest-neighbor transverse spin-flip term SixSjx-SiySjy . Recent quantum Monte Carlo (QMC) simulations by Carrasquilla et al. [Nat. Commun. 6, 7421 (2015), 10.1038/ncomms8421], uncovered lobes of a disordered phase for large Ising interaction and h ≠0 —a putative quantum spin liquid phase. Here, we examine the nature of this model using large-S expansion. We show that the ground state properties generally have the same trends with those observed in QMC simulations. In particular, the large-S ground state phase diagram captures the existence of the disordered lobes.
Magnetic excitations and anomalous spin-wave broadening in multiferroic FeV2O4
Energy Technology Data Exchange (ETDEWEB)
Zhang, Qiang [Ames Laboratory; Ramazanoglu, Mehmet [Ames Laboratory; Chi, Songxue [Oak Ridge National Laboratory; Liu, Yong [Ames Laboratory; Lograsso, Thomas A. [Ames Laboratory; Vaknin, David [Ames Laboratory
2014-06-01
We report on the different roles of two orbital-active Fe2+ at the A site and V3+ at the B site in the magnetic excitations and on the anomalous spin-wave broadening in FeV2O4. FeV2O4 exhibits three structural transitions and successive paramagnetic (PM)–collinear ferrimagnetic (CFI)–noncollinear ferrimagnetic (NCFI)/ferroelectric transitions. The high-temperature tetragonal/PM–orthorhombic/CFI transition is accompanied by the appearance of a large energy gap in the magnetic excitations due to strong spin-orbit-coupling-induced anisotropy at the Fe2+ site. While there is no measurable increase in the energy gap from the orbital ordering of V3+ at the orthorhombic/CFI–tetragonal/NCFI transition, anomalous spin-wave broadening is observed in the orthorhombic/CFI state due to V3+ spin fluctuations at the B site. The spin-wave broadening is also observed at the zone boundary without softening in the NCFI/ferroelectric phase, which is discussed in terms of magnon-phonon coupling. Our study also indicates that the Fe2+ spins without the frustration at the A site may not play an important role in inducing ferroelectricity in the tetragonal/NCFI phase of FeV2O4.
Beating the Spin-down Limit on Gravitational Wave Emission from the Vela Pulsar
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; Kim, N.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.
2011-08-01
We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, 1.9 × 10-24 and 2.2 × 10-24, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of 2.1 × 10-24, with 95% degree of belief. These limits are below the indirect spin-down limit of 3.3 × 10-24 for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of ~10-3. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and the wave polarization angles are unknown.
Modified High Frequency Radial Spin Wave Mode Spectrum in a Chirality-Controlled Nanopillar
Kolthammer, J. E.; Rudge, J.; Choi, B. C.; Hong, Y. K.
2016-09-01
Circular magnetic spin valve nanopillars in a dual vortex configuration have dynamic characteristics strongly dependent on the interlayer dipole coupling. We report here on frequency domain properties of such nanopillars obtained by micromagnetic simulations. After the free layer is chirality switched with spin transfer torque, a radial spin wave eigenmode spectrum forms in the free layer with unusually large edge amplitude. The structure of these modes indicate a departure from the magnetostatic processes typically observed experimentally and treated analytically in low aspect ratio isolated disks. Our findings give new details of dynamic chirality control and relxation in nanopillars and raise potential signatures for experiments.
Statistical mechanics of magnetic excitations from spin waves to stripes and checkerboards
Rastelli, Enrico
2013-01-01
The aim of this advanced textbook is to provide the reader with a comprehensive explanation of the ground state configurations, the spin wave excitations and the equilibrium properties of spin lattices described by the Ising-Heisenberg Hamiltonians in the presence of short (exchange) and long range (dipole) interactions.The arguments are presented in such detail so as to enable advanced undergraduate and graduate students to cross the threshold of active research in magnetism by using both analytic calculations and Monte Carlo simulations.Recent results about unorthodox spin configurations suc
High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V
Energy Technology Data Exchange (ETDEWEB)
Werner, S.A. (Missouri Univ., Columbia, MO (United States). Dept. of Physics); Fawcett, E. (Toronto Univ., ON (Canada). Dept. of Physics); Elmiger, M.W.; Shirane, G. (Brookhaven National Lab., Upton, NY (United States))
1992-01-01
Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.
High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V
Energy Technology Data Exchange (ETDEWEB)
Werner, S.A. [Missouri Univ., Columbia, MO (United States). Dept. of Physics; Fawcett, E. [Toronto Univ., ON (Canada). Dept. of Physics; Elmiger, M.W.; Shirane, G. [Brookhaven National Lab., Upton, NY (United States)
1992-11-01
Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.
Out-of-equilibrium dynamics of photoexcited spin-state concentration waves.
Marino, A; Buron-Le Cointe, M; Lorenc, M; Toupet, L; Henning, R; DiChiara, A D; Moffat, K; Bréfuel, N; Collet, E
2015-01-01
The spin crossover compound [FeIIH2L2-Me][PF6]2 presents a two-step phase transition. In the intermediate phase, a spin state concentration wave (SSCW) appears resulting from a symmetry breaking (cell doubling) associated with a long-range order of alternating high and low spin molecular states. By combining time-resolved optical and X-ray diffraction measurements on a single crystal, we study how such a system responds to femtosecond laser excitation and we follow in real time the erasing and rewriting of the SSCW.
Discontinuity of the Spin-Wave Stiffness in the Two-Dimensional XY Model
Chayes, L.
Using a graphical representation based on the Wolff algorithm, the (classical) d-dimensional XY model and some related spin-systems are studied. It is proved that in d≡2, the predicted discontinuity in the spin-wave stiffness indeed occurs. Further, the critical properties of the spin-system are related to percolation properties of the graphical representation. In particular, a suitably defined notion of percolation in the graphical representation is proved to be the necessary and sufficient condition for positivity of the spontaneous magnetization.
2007-10-08
Melkov,3 Vasil Tiberkevich,4 and Andrei N. Slavin4 1Dipartimento di Fisica della Materia e Tecnologie Fisiche Avanzate, University of Messina...nanocontact. In Eq. 1, the unit vector p defining the spin-polarization direction is parallel to the direction ez of the in-plane external magnetic field...linear theory,3 the propagating spin- wave mode excited at the threshold is a cylindrical spin- wave with the wave vector kL=1.2/Rc and frequency L
Quantum kinetics of spinning neutral particles: General theory and Spin wave dispersion
Andreev, P A
2013-01-01
Plasma physics give an example of physical system of particles with the long range interaction. At small velocity of particles we can consider the plasma approximately as a system of particles with the Coulomb interaction. The Coulomb interaction is isotropic. Systems of spinning neutral particles have long-range anisotropic interparticle interaction. So, they can reveal more reach properties than plasma. Furthermore for studying of systems of spinning particles we can develop kinetic and hydrodynamic methods analogous to used for the plasma. We derive kinetic equations by a new method, which is the generalization of the many-particle quantum hydrodynamics. Obtained set of kinetic equations is truncated, so we have closed set of two equations. One of them is the kinetic equation for quantum distribution function. The second equation is the equation for the spin-distribution. Which describes the spin kinetic evolution and gives contribution in time evolution of the distribution function. Our method allows to o...
Direct Observation of Spin- and Charge-Density Waves in a Luttinger Liquid
Cao, Chenglin; Marcum, Andrew; Mawardi Ismail, Arif; Fonta, Francisco; O'Hara, Kenneth
2016-05-01
At low energy, interacting fermions in one dimension (e.g. electrons in quantum wires or fermionic atoms in 1D waveguides) should behave as Luttinger liquids. In stark contrast to Fermi liquids, the low-energy elementary excitations in Luttinger liquids are collective sound-like modes that propagate independently as spin-density and/or charge-density (i.e. particle-density) waves with generally unequal, and interaction-dependent, velocities. Here we aim to unambiguously confirm this hallmark feature of the Luttinger liquid - the phenomenon of spin-charge separation - by directly observing in real space the dynamics of spin-density and ``charge''-density waves excited in an ultracold gas of spin-1/2 fermions confined in an array of 1D optical waveguides. Starting from a two-component mixture of 6 Li atoms harmonically confined along each of the 1D waveguides, we excite low lying normal modes of the trapped system - namely the spin dipole and density dipole and quadrupole modes - and measure their frequency as a function of interaction strength. Luttinger liquid theory predicts that the spin dipole frequency is strongly dependent on interaction strength whereas the density dipole and quadrupole mode frequencies are relatively insensitive. We will also discuss extending our approach to exciting localized spin density and particle density wavepackets which should propagate at different velocities. Supported by AFOSR and NSF.
Can we measure individual black-hole spins from gravitational-wave observations?
Pürrer, Michael; Hannam, Mark; Ohme, Frank
2016-04-01
Measurements of black-hole spins from gravitational-wave observations of black-hole binaries with ground-based detectors are known to be hampered by partial degeneracies in the gravitational-wave phasing: between the two component spins, and between the spins and the binary's mass ratio, at least for signals that are dominated by the binary's inspiral. Through the merger and ringdown, however, a different set of degeneracies apply. This suggests the possibility that, if the inspiral, merger and ringdown are all within the sensitive frequency band of a detector, we may be able to break these degeneracies and more accurately measure both spins. In this work we investigate our ability to measure individual spins for nonprecessing binaries, for a range of configurations and signal strengths, and conclude that in general the spin of the larger black hole will be measurable (at best) with observations from Advanced LIGO and Virgo. This implies that in many applications waveform models parameterized by only one effective spin will be sufficient. Our work does not consider precessing binaries or subdominant harmonics, although we provide some arguments why we expect that these will not qualitatively change our conclusions.
Measuring the spin of black holes in binary systems using gravitational waves.
Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo
2014-06-27
Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.
Mesh Size and Damped Edge Effects in Micromagnetic Spin Wave Simulation
Venkat, G; Fangohr, H; Prabhakar, A
2014-01-01
We have studied the dependence of spin wave dispersion on the characteristics of the mesh used in a finite element micromagnetic simulation. It is shown that the dispersion curve has a cut off at a frequency which is analytically predictable. The frequency depends on the average mesh length used for the simulation. Based on this, a recipe to effectively obtain the dispersion relation has been suggested. In a separate study, spin wave reflections are absorbed by introducing highly damped edges in the device. However, an abrupt change in the damping parameter causes reflections. We compare damping profiles and identify an exponential damping profile as causing significantly less reflections.
Demonstration of atomic frequency comb memory for light with spin-wave storage
2009-01-01
We present a light-storage experiment in a praseodymium-doped crystal where the light is mapped onto an inhomogeneously broadened optical transition shaped into an atomic frequency comb. After absorption of the light the optical excitation is converted into a spin-wave excitation by a control pulse. A second control pulse reads the memory (on-demand) by reconverting the spin-wave excitation to an optical one, where the comb structure causes a photon-echo type rephasing of the dipole moments a...
Bias-free spin-wave phase shifter for magnonic logic
Directory of Open Access Journals (Sweden)
Steven Louis
2016-06-01
Full Text Available A design of a magnonic phase shifter operating without an external bias magnetic field is proposed. The phase shifter uses a localized collective spin wave mode propagating along a domain wall “waveguide” in a dipolarly-coupled magnetic dot array with a chessboard antiferromagnetic (CAFM ground state. It is demonstrated numerically that the remagnetization of a single magnetic dot adjacent to the domain wall waveguide introduces a controllable phase shift in the propagating spin wave mode without significant change to the mode amplitude. It is also demonstrated that a logic XOR gate can be realized in the same system.
Spin waves in the ferrimagnetic phase of NdCu{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Kramp, S.; Rotter, M.; Loewenhaupt, M. E-mail: loewenhaupt@physik.tu-dresden.de; Pyka, N.M.; Schmidt, W.; Kamp, R. van de
2001-05-01
The spin wave dispersion relation in the ferrimagnetic phase F1 of NdCu{sub 2} has been measured by means of inelastic neutron scattering. In a-direction the expected six dispersion branches could be determined. The spin wave dispersion is compared to that of the ferromagnetic phase F3. In F1 the magnetic Brillouin zone is only one-third of that in F3 introducing additional symmetry conditions for the dispersion relation. The experimental results agree well with these conditions.
Spin waves in the ferrimagnetic phase of NdCu 2
Kramp, S.; Rotter, M.; Loewenhaupt, M.; Pyka, N. M.; Schmidt, W.; van de Kamp, R.
2001-05-01
The spin wave dispersion relation in the ferrimagnetic phase F1 of NdCu 2 has been measured by means of inelastic neutron scattering. In a-direction the expected six dispersion branches could be determined. The spin wave dispersion is compared to that of the ferromagnetic phase F3. In F1 the magnetic Brillouin zone is only one-third of that in F3 introducing additional symmetry conditions for the dispersion relation. The experimental results agree well with these conditions.
Quantum statistics and anharmonicity in the thermodynamics of spin waves in ferromagnetic metals
Wen, Haohua; Woo, C. H.
2016-09-01
The average energy needed to create a magnon is high in ferromagnetic metals due to the high-strength spin stiffness, which results in strong quantization effects that could be important even at thousands of degrees. To take into account quantum statistics at such high temperatures, the associated effects of anharmonicity of the spin vibrations must be taken into account. In addition to the complex nature of such effects, anharmonicity also affects the occupation of the density of state of the vibration states in the context of quantum statistics. Thus, an unoccupied vibration state might become occupied when its spring stiffness is substantially reduced with anharmonicity. Combined effects of quantum statistics and anharmonicity are expected. In this regard, the thermodynamics of ferromagnetic metals are investigated in this paper through the example of bcc iron between 10 and 1400 K. Theoretical analysis and spin-lattice dynamic simulations are performed, through which the physics behind the complex and dramatic temperature dependence of the thermodynamic functions of bcc iron is understood.
Null-Wave Giant Gravitons from Thermal Spinning Brane Probes
Armas, Jay; Pedersen, Andreas Vigand
2013-01-01
We construct and analyze thermal spinning giant gravitons in type II/M-theory based on spherically wrapped black branes, using the method of thermal probe branes originating from the blackfold approach. These solutions generalize in different directions recent work in which the case of thermal (non-spinning) D3-brane giant gravitons was considered, and reveal a rich phase structure with various new properties. First of all, we extend the construction to M-theory, by constructing thermal giant graviton solutions using spherically wrapped M2- and M5-branes. More importantly, we switch on new quantum numbers, namely internal spins on the sphere, which are not present in the usual extremal limit for which the brane world volume stress tensor is Lorentz invariant. We examine the effect of this new type of excitation and in particular analyze the physical quantities in various regimes, including that of small temperatures as well as low/high spin. As a byproduct we find new stationary dipole-charged black hole solu...
Thermally induced transparency for short spin wave pulses in yttrium iron garnet (YIG) films
Ordonez Romero, Cesar Leonardo; Kolokoltsev, Oleg; Gomez Arista, Ivan; Qureshi, Naser; Monsiváis Galindo, Guillermo; Vargas Hernández, Hesiquio
2014-03-01
The compensation of spin wave propagation losses plays a very important role in the development of novel magnonic devices. Up to now, however, most of the known amplification methods present relative narrow frequency bandwidths due to their resonant nature. In this work, we present compensation of the propagation losses or pseudo-amplification of travelling spin waves by tailoring the bias magnetic field profile. The thermally-induced non-uniform profile of the magnetization introduced on an Yttrium Iron Garnet (YIG) thin film by a localized spot of a cw argon-ion laser creates the conditions to observe the complete compensation of the spin wave propagation losses. The spin wave evolution was mapped with a time and spaced resolved inductive magneto-dynamic prove system. The experiment was carried out using a uniform sample of single-crystal YIG film grown on a gallium-gadolinium garnet (GGG) substrate. The 2mm-wide, 20mm-long and 6microns-thick YIG strip was saturated with an external magnetic field enabling the set up for the propagation of magneto-static surface waves. This work was supported by the UNAM-DGAPA-PAPIIT IA100413.
Spin Waves in a Ferromagnetic Film with a Periodic System of Antidots
Directory of Open Access Journals (Sweden)
V.V. Kulish
2015-03-01
Full Text Available In the paper, spin waves in a thin film (composed of a uniaxial ferromagnet with a two-dimensional periodical system of antidots are studied. The film ferromagnet is considered to have the “easy axis” type. To describe such waves, the magnetostatic approximation with account for the magnetic dipole-dipole interaction, the exchange interaction and the anisotropy effects is used. For such waves, an equation for the magnetic potential is derived; for the case of remote antidots, the dispersion relation and the transverse wavenumber spectrum are found. For the case of a film thin compared to the exchange length and for the case of a film bounded by a high-conductivity metal, the longitudinal wavenumber spectrum and the frequency spectrum of such spin waves are also obtained.
Gerhardt, Claus
2016-01-01
In a recent paper we quantized the interaction of gravity with a Yang-Mills and Higgs field and obtained as a result a gravitational wave equation in a globally hyperbolic spacetime. Assuming that the Cauchy hypersurfaces are compact we proved a spectral resolution for the wave equation by applying the method of separation of variables. In this paper we extend the results to the case when the Cauchy hypersurfaces are non-compact by considering a Gelfand triplet and applying the nuclear spectral theorem.
Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4
Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David
2017-03-01
We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.
Electric-Field Coupling to Spin Waves in a Centrosymmetric Ferrite
Liu, Tianyu
A systematic control of spin waves via external electric fields has been a long standing issue for the design of magnonic devices, and is of fundamental interest. One way to attain such control is to use multiferroics, whose electric and magnetic polarizations are inherently coupled. The lack of electric polarization in a centrosymmetric ferrite, however, makes direct coupling of its magnetization to external electric fields a challenge. Indirect electric control of spin waves has been accomplished by hybridizing yttrium iron garnet (YIG), a centrosymmetric ferrite, with a piezoelectric material. Here, we predict direct control of spin waves in YIG by a flexoelectric interaction, which couples an electric field to the spatial gradient of the magnetization, and thus the spin waves. Based on a superexchange model, which describes the antiferromagnetic coupling between two nearest neighbor iron ions through an oxygen ion, including spin-orbit coupling, we estimate the coupling constant and predict a phase shift linear in the applied electric fields. The theory is then confirmed by experimental measurement of the electric-field-induced phase shift in a YIG waveguide. In addition to the flexoelectric effect, another electric effect is observed, which couples the electric field directly with the magnetization of YIG. We call this a magnetoelectric effect. By adjusting the direction of the electric field, the two effects can be well separated. Experimental results agree quantitatively with the theoretical prediction. A phenomenological coupling constant for the magnetoelectric effect is also obtained. Our findings point to an important avenue for manipulating spin waves and developing electrically tunable magnonic devices.
Gowtham, P. G.; Labanowski, D.; Salahuddin, S.
2016-07-01
Surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, through the magnetoelastic interaction, excite traveling spin-wave resonance in a magnetic film deposited on the substrate. This spin-wave resonance in the magnetic film creates a time-ynamic surface stress of magnetoelastic origin that acts back on the surface of the piezoelectric and modifies the SAW propagation. Unlike previous analyses that treat the excitation as a magnon-phonon polariton, here the magnetoelastic film is treated as a perturbation modifying boundary conditions on the SAW. We use acoustical perturbation theory to find closed-form expressions for the back-action surface stress and strain fields and the resultant SAW velocity shifts and attenuation. We demonstrate that the shear stres fields associated with this spin-wave back-action also generate effective surface currents on the piezoelectric both in phase and out of phase with the driving SAW potential. Characterization of these surface currents and their applications in determination of the magnetoelastic coupling are discussed. The perturbative calculation is carried out explicitly to first order (a regime corresponding to many experimental situations of current interest) and we provide a sketch of the implications of the theory at higher order.
Cho, Hee-Suk
2016-01-01
We study the efficiency of nonspinning waveform templates in gravitational wave searches for aligned-spin binary black holes (BBHs). We use PhenomD, which is the most recent phenomenological waveform model designed to generate the full inspiral-merger-ringdown waveforms emitted from BBHs with the spins aligned with the orbital angular momentum. Here, we treat the effect of aligned-spins with a single spin parameter $\\chi$. We consider the BBH signals with moderately small spins in the range of $-0.4\\leq \\chi \\leq 0.4$. Using nonspinning templates, we calculate fitting factors of the aligned-spin signals in a wide mass range up to $\\sim 100 M_{\\odot}$. We find that the signals with negative spins can have higher fitting factors than those with positive spins. If $\\chi = 0.3$, only the highly asymmetric-mass signals can have the fitting factors exceeding the threshold of 0.965, while the fitting factors for all of the signals can be larger than the threshold if $\\chi = -0.3$. We demonstrate that the discrepancy...
Spin wave isolator based on frequency displacement nonreciprocity in ferromagnetic bilayer
Shichi, Shinsuke; Kanazawa, Naoki; Matsuda, Kenji; Okajima, Shingo; Hasegawa, Takashi; Okada, Takekazu; Goto, Taichi; Takagi, Hiroyuki; Inoue, Mitsuteru
2015-05-01
We demonstrated the spin wave isolator using bilayer ferromagnetic media comprising single crystalline and poly-crystalline yttrium iron garnet films, which can control the propagation frequency of magnetostatic waves by the direction of applied magnetic field. This isolator's property does not depend on their thickness then this can be downsized and integrated for nano-scale magnonic circuits. Calculated dispersion relationship shows good agreement with measured one.
Spin wave isolator based on frequency displacement nonreciprocity in ferromagnetic bilayer
Energy Technology Data Exchange (ETDEWEB)
Shichi, Shinsuke, E-mail: shinsuke-shichi@murata.com; Matsuda, Kenji; Okajima, Shingo; Hasegawa, Takashi; Okada, Takekazu [Murata Manufacturing Co., Ltd., Kyoto 617-8555 (Japan); Kanazawa, Naoki; Goto, Taichi, E-mail: goto@ee.tut.ac.jp; Takagi, Hiroyuki; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibari-Ga-Oka, Tempaku, Toyohashi, Aichi 441-8580 (Japan)
2015-05-07
We demonstrated the spin wave isolator using bilayer ferromagnetic media comprising single crystalline and poly-crystalline yttrium iron garnet films, which can control the propagation frequency of magnetostatic waves by the direction of applied magnetic field. This isolator's property does not depend on their thickness then this can be downsized and integrated for nano-scale magnonic circuits. Calculated dispersion relationship shows good agreement with measured one.
Gravitational waves: History of black holes revealed by their spin
Sigurðsson, Steinn
2017-08-01
Four probable detections of gravitational waves have so far been reported, each associated with the merger of two black holes. Analysis of the signals allows formation theories of such black-hole systems to be tested. See Letter p.426
Beating the spin-down limit on gravitational wave emission from the Vela pulsar
Abadie, J; Abbott, R; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Affeldt, C; Allen, B; Allen, G S; Ceron, E Amador; Amariutei, D; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Arai, K; Arain, M A; Araya, M C; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, D; Barnum, S; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Bauchrowitz, J; Bauer, Th S; Behnke, B; Beker, M BejgerM G; Bell, A S; Belletoile, A; Belopolski, I; Benacquista, M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Birindelli, S; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Boyle, M; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brau, J E; Breyer, J; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brummit, A; Budzyński, R; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Burmeister, O; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cain, J; Calloni, E; Camp, J B; Campagna, E; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C; Carbognani, F; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, Y; Chincarini, A; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Clara, F; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Coward, D M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Das, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; del Prete, M; Dent, T; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Dorsher, S; Douglas, E S D; Drago, M; Drever, R W P; Driggers, J C; Dumas, J -C; Dwyer, S; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Engel, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flanigan, M; Foley, S; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Galimberti, M; Gammaitoni, L; Garcia, J; Garofoli, J A; Garufi, F; Gáspár, M E; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gill, C; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Guido, C; Gupta, R; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Hayau, J -F; Hayler, T; Heefner, J; Heitmann, H; Hello, P; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hong, T; Hooper, S; Hosken, D J; Hough, J; Howell, E J; Huet, D; Hughey, B; Husa, S; Huttner, S H; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Jaranowski, P; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J B; Katsavounidis, E; Katzman, W; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Kelner, M; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, H; Kim, N; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kondrashov, V; Kopparapu, R; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kringel, V; Krishnamurthy, S; Krishnan, B; Królak, A; Kuehn, G; Kumar, R; Kwee, P; Landry, M; Lantz, B; Lastzka, N; Lazzarini, A; Leaci, P; Leong, J; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lindquist, P E; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Luan, J; Lubinski, M; Lück, H; Lundgren, A P; Macdonald, E; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marandi, A; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McKechan, D J A; Meadors, G; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Mercer, R A; Merill, L; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Moesta, P; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morgia, A; Mosca, S; Moscatelli, V; Mossavi, K; Mours, B; Mow--Lowry, C M; Mueller, G; Mukherjee, S; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Nash, T; Nawrodt, R; Nelson, J; Neri, I; Newton, G; Nishida, E; Nishizawa, A; Nocera, F; Nolting, D; Ochsner, E; O'Dell, J; Ogin, G H; Oldenburg, R G; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Pagliaroli, G; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parameswaran, A; Pardi, S; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pathak, D; Pedraza, M; Pekowsky, L; Penn, S; Peralta, C; Perreca, A; Persichetti, G; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Podkaminer, J; Poggiani, R; Pöld, J; Postiglione, F; Prato, M; Predoi, V; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Rakhmanov, M; Ramet, C R; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Redwine, K; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sakata, S; Sakosky, M; Salemi, F; Salit, M; Sammut, L; de la Jordana, L Sancho; Sandberg, V; Sannibale, V; Santamaría, L; Santiago-Prieto, I; Santostasi, G; Saraf, S; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Schilling, R; Schlamminger, S; Schnabel, R; Schofield, R M S; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D A; Shaltev, M; Shapiro, B; Shawhan, P; Weerathunga, T Shihan; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Singer, A; Singer, L; Sintes, A M; Skelton, G; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, N D; Smith, R; Somiya, K; Sorazu, B; Soto, J; Speirits, F C; Sperandio, L; Stefszky, M; Stein, A J; Steinlechner, J; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Szokoly, G P; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thüring, A; Titsler, C; Tokmakov, K V; Toncelli, A; Tonelli, M; Torre, O; Torres, C; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Tseng, K; Turner, L; Ugolini, D; Urbanek, K; Vahlbruch, H; Vaishnav, B; Vajente, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Veggel, A A; Vass, S; Vasuth, M; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A E; Vinet, J -Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Wanner, A; Ward, R L; Was, M; Wei, P; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yang, H; Yeaton-Massey, D; Yoshida, S; Yu, P; Yvert, M; Zanolin, M; Zhang, L; Zhang, Z; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J; Buchner, S; Hotan, A; Palfreyman, J
2011-01-01
We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, $1.9\\ee{-24}$ and $2.2\\ee{-24}$, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of $2.1\\ee{-24}$, with 95% degree of belief. These limits are below the indirect {\\it spin-down limit} of $3.3\\ee{-24}$ for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of $\\sim 10^{-3}$. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and ...
Can we measure individual black-hole spins from gravitational-wave observations?
Pürrer, Michael; Ohme, Frank
2015-01-01
Measurements of black-hole spins from gravitational-wave observations of black-hole binaries with ground-based detectors are expected to be hampered by partial degeneracies in the gravitational-wave phasing: between the two component spins, and between the spins and the binary's mass ratio, at least for signals that are dominated by the binary's inspiral. Through the merger and ringdown, however, a different set of degeneracies apply. This suggests the possibility that, if the inspiral, merger and ringdown are all within the sensitive frequency band of a detector, we may be able to break these degeneracies and more accurately measure both spins. In this work we investigate our ability to measure individual spins for non-precessing binaries, for a range of configurations and signal strengths, and conclude that in general the spin of the larger black hole will be measurable (at best) with observations from Advanced LIGO and Virgo. This implies that in many applications waveform models parameterized by only one ...
Detecting binary neutron star systems with spin in advanced gravitational-wave detectors
Brown, Duncan A; Lundgren, Andrew; Nitz, Alexander H
2012-01-01
The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars' angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, $cJ/GM^2$, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method of constructing filter banks for advanced-detector searches, which can create template banks of signals with non-zero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximium signal-to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and isotr...
Suvorova, S; Melatos, A; Moran, W; Evans, R J
2016-01-01
Gravitational wave searches for continuous-wave signals from neutron stars are especially challenging when the star's spin frequency is unknown a priori from electromagnetic observations and wanders stochastically under the action of internal (e.g. superfluid or magnetospheric) or external (e.g. accretion) torques. It is shown that frequency tracking by hidden Markov model (HMM) methods can be combined with existing maximum likelihood coherent matched filters like the F-statistic to surmount some of the challenges raised by spin wandering. Specifically it is found that, for an isolated, biaxial rotor whose spin frequency walks randomly, HMM tracking of the F-statistic output from coherent segments with duration T_drift = 10d over a total observation time of T_obs = 1yr can detect signals with wave strains h0 > 2e-26 at a noise level characteristic of the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). For a biaxial rotor with randomly walking spin in a binary orbit, whose orbital...
A coherent triggered search for single-spin compact binary coalescences in gravitational wave data
Energy Technology Data Exchange (ETDEWEB)
Harry, I W; Fairhurst, S, E-mail: ian.harry@astro.cf.ac.uk, E-mail: Stephen.Fairhurst@astro.cf.ac.uk [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom)
2011-07-07
In this paper, we present a method for conducting a coherent search for single-spin compact binary coalescences in gravitational wave data and compare this search to the existing coincidence method for single-spin searches. We propose a method to characterize the regions of the parameter space where the single-spin search, both coincident and coherent, will increase detection efficiency over the existing non-precessing search. We also show example results of the coherent search on a stretch of data from Laser Interferometer Gravitational-wave Observatory's fourth science run, but note that a set of signal-based vetoes will be needed before this search can be run to try to make detections.
Parameter Estimation on Gravitational Waves from Neutron-star Binaries with Spinning Components
Farr, Ben; Berry, Christopher P. L.; Farr, Will M.; Haster, Carl-Johan; Middleton, Hannah; Cannon, Kipp; Graff, Philip B.; Hanna, Chad; Mandel, Ilya; Pankow, Chris; Price, Larry R.; Sidery, Trevor; Singer, Leo P.; Urban, Alex L.; Vecchio, Alberto; Veitch, John; Vitale, Salvatore
2016-07-01
Inspiraling binary neutron stars (BNSs) are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. We investigate how well we could hope to measure properties of these binaries using the Advanced LIGO detectors, which began operation in September 2015. We study an astrophysically motivated population of sources (binary components with masses 1.2\\quad {M}⊙ {--}1.6\\quad {M}⊙ and spins of less than 0.05) using the full LIGO analysis pipeline. While this simulated population covers the observed range of potential BNS sources, we do not exclude the possibility of sources with parameters outside these ranges; given the existing uncertainty in distributions of mass and spin, it is critical that analyses account for the full range of possible mass and spin configurations. We find that conservative prior assumptions on neutron-star mass and spin lead to average fractional uncertainties in component masses of ˜16%, with little constraint on spins (the median 90% upper limit on the spin of the more massive component is ˜0.7). Stronger prior constraints on neutron-star spins can further constrain mass estimates but only marginally. However, we find that the sky position and luminosity distance for these sources are not influenced by the inclusion of spin; therefore, if LIGO detects a low-spin population of BNS sources, less computationally expensive results calculated neglecting spin will be sufficient for guiding electromagnetic follow-up.
Suvorova, S.; Sun, L.; Melatos, A.; Moran, W.; Evans, R. J.
2016-06-01
Gravitational wave searches for continuous-wave signals from neutron stars are especially challenging when the star's spin frequency is unknown a priori from electromagnetic observations and wanders stochastically under the action of internal (e.g., superfluid or magnetospheric) or external (e.g., accretion) torques. It is shown that frequency tracking by hidden Markov model (HMM) methods can be combined with existing maximum likelihood coherent matched filters like the F -statistic to surmount some of the challenges raised by spin wandering. Specifically, it is found that, for an isolated, biaxial rotor whose spin frequency walks randomly, HMM tracking of the F -statistic output from coherent segments with duration Tdrift=10 d over a total observation time of Tobs=1 yr can detect signals with wave strains h0>2 ×10-26 at a noise level characteristic of the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). For a biaxial rotor with randomly walking spin in a binary orbit, whose orbital period and semimajor axis are known approximately from electromagnetic observations, HMM tracking of the Bessel-weighted F -statistic output can detect signals with h0>8 ×10-26. An efficient, recursive, HMM solver based on the Viterbi algorithm is demonstrated, which requires ˜103 CPU hours for a typical, broadband (0.5-kHz) search for the low-mass x-ray binary Scorpius X-1, including generation of the relevant F -statistic input. In a "realistic" observational scenario, Viterbi tracking successfully detects 41 out of 50 synthetic signals without spin wandering in stage I of the Scorpius X-1 Mock Data Challenge convened by the LIGO Scientific Collaboration down to a wave strain of h0=1.1 ×10-25, recovering the frequency with a root-mean-square accuracy of ≤4.3 ×10-3 Hz .
Quarkonium and hydrogen spectra with spin-dependent relativistic wave equation
Indian Academy of Sciences (India)
V H Zaveri
2010-10-01
The non-linear non-perturbative relativistic atomic theory introduces spin in the dynamics of particle motion. The resulting energy levels of hydrogen atom are exactly the same as that of Dirac theory. The theory accounts for the energy due to spin-orbit interaction and for the additional potential energy due to spin and spin-orbit coupling. Spin angular momentum operator is integrated into the equation of motion. This requires modification to classical Laplacian operator. Consequently, the Dirac matrices and the k operator of Dirac’s theory are dispensed with. The theory points out that the curvature of the orbit draws on certain amount of kinetic and potential energies affecting the momentum of electron and the spin-orbit interaction energy constitutes a part of this energy. The theory is developed for spin-1/2 bound state single electron in Coulomb potential and then extended further to quarkonium physics by introducing the linear confining potential. The unique feature of this quarkonium model is that the radial distance can be exactly determined and does not have a statistical interpretation. The established radial distance is then used to determine the wave function. The observed energy levels are used as the input parameters and the radial distance and the string tension are predicted. This ensures 100% conformance to all observed energy levels for the heavy quarkonium.
Spin waves and phonons in a paraelectric antiferromagnet EuTiO3
Cao, Huibo; Hong, Jiawang; Delaire, Olivier; Hahn, Steven; Ehlers, Georg; Chi, Songxue; Garlea, Vasile; Fernandez-Baca, Jaime; Chakoumakos, Bryan; Yan, Jiaqiang; Sales, Brian
2015-03-01
Perovskite titanates ATiO3 (A=Ba,Pb,Sr,Ca,Cd,or Eu) are widely studied for their interesting instabilities and broad applications. A ferroelectric (FE) transition occurs in Ba, Pb, and Cd titanates, but not in SrTiO3 (STO) or EuTiO3 (ETO). In the case of STO, fluctuations yield a quantum paraelectric state, but whether ETO is quantum paraelectric remains an open question. Despite a number of similarities with well-studied STO, ETO is also unique owing to the magnetic Eu ions. By applying a tuning parameter, such as bi-axial tension, ETO can be turned into a FE ferromagnet, the ideal multiferroic. [J. H. Lee, et al., Nature 466, 954 (2010)] Studies of spin-spin and spin-lattice couplings in ETO are of great interest not only from a fundamental standpoint, but also for technological applications. We successfully grew a large, high-quality isotopically-enriched ETO crystal for neutron scattering. The crystal and magnetic structures were characterized with single crystal diffraction at HB-3A at HFIR at ORNL. The spin waves and phonons were measured in the temperature range of 1.5-400 K with CNCS at SNS and HB-3 at HFIR at ORNL. In this presentation, we will discuss structural instabilities, spin-spin interactions, and spin-phonon couplings in ETO. This work was supported by Office of Basic Energy Sciences, U.S. Department of Energy.
Entanglement of light-shift compensated atomic spin waves with telecom light
Dudin, Y O; Zhao, R; Blumoff, J Z; Kennedy, T A B; Kuzmich, A
2010-01-01
Entanglement of a 795 nm light polarization qubit and an atomic Rb spin wave qubit for a storage time of 0.1 s is observed by measuring the violation of Bell's inequality (S = 2.65 \\pm 0.12). Long qubit storage times are achieved by pinning the spin wave in a 1064 nm wavelength optical lattice, with a magic-valued magnetic field superposed to eliminate lattice-induced dephasing. Four-wave mixing in a cold Rb gas is employed to perform light qubit conversion between near infra red (795 nm) and telecom (1367 nm) wavelengths, and after propagation in a telecom fiber, to invert the conversion process. Observed Bell inequality violation (S = 2.66 \\pm 0.09), at 10 ms storage, confirms preservation of memory/light entanglement through the two stages of light qubit frequency conversion.
Wave-Particle Duality and the Hamilton-Jacobi Equation
Sivashinsky, Gregory I
2009-01-01
The Hamilton-Jacobi equation of relativistic quantum mechanics is revisited. The equation is shown to permit solutions in the form of breathers (oscillating/spinning solitons), displaying simultaneous particle-like and wave-like behavior. The de Broglie wave thus acquires a clear deterministic meaning of a wave-like excitation of the classical action function. The problem of quantization in terms of the breathing action function and the double-slit experiment are discussed.
Krawczyk, M; Levy, J C S; Mercier, D
2003-01-01
Spin-wave excitations in ferromagnetic layered composite (AB centre dot centre dot centre dot BA; A and B being different homogeneous ferromagnetic materials) are analysed theoretically, by means of the transfer matrix approach. The properties of multilayer spin-wave mode profiles are discussed in relation to multilayer characteristics, such as the filling fraction and the exchange or magnetization contrast; also, surface spin pinning conditions and dipolar interactions are taken into account. The interface conditions are satisfied by introducing an effective exchange field expressed by interface gradients of the exchange constant and the magnetization. This approach provides an easy way to find frequencies and amplitudes of standing spin waves in the multilayer. The developed theory is applied to interpretation of spin wave resonance (SWR) spectra obtained experimentally by Chambers et al in two systems: a bilayer Fe/Ni and a trilayer Ni/Fe/Ni, in perpendicular (to the multilayer surface) configuration of th...
Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar
Abbott, B.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bastarrika, M.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cao, J.; Cardenas, L.; Casebolt, T.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Clark, D.; Clark, J.; Cokelaer, T.; Conte, R.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Cumming, A.; Cunningham, L.; Cutler, R. M.; Dalrymple, J.; Danzmann, K.; Davies, G.; DeBra, D.; Degallaix, J.; Degree, M.; Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Duke, I.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Echols, C.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Finn, L. S.; Flasch, K.; Fotopoulos, N.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayama, K.; Hayler, T.; Heefner, J.; Heng, I. S.; Hennessy, M.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Huttner, S. H.; Ingram, D.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamat, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Khan, R.; Khazanov, E.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Kozhevatov, I.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M. M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leindecker, N.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lin, H.; Lindquist, P.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Lubinski, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McIvor, G.; McKechan, D.; McKenzie, K.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.; Miller, J.; Minelli, J.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S.; Moreno, G.; Mossavi, K.; MowLowry, C.; Mueller, G.; Mukherjee, S.; Mukhopadhyay, H.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; Ogin, G.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.; Petrie, T.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D. S.; Radkins, H.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S. W.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.
2008-08-01
We present direct upper limits on gravitational wave emission from the Crab pulsar using data from the first 9 months of the fifth science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). These limits are based on two searches. In the first we assume that the gravitational wave emission follows the observed radio timing, giving an upper limit on gravitational wave emission that beats indirect limits inferred from the spin-down and braking index of the pulsar and the energetics of the nebula. In the second we allow for a small mismatch between the gravitational and radio signal frequencies and interpret our results in the context of two possible gravitational wave emission mechanisms.
Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves
Energy Technology Data Exchange (ETDEWEB)
Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S. [Istituto Officina dei Materiali del CNR (IOM-CNR), Unità di Perugia, I-06123 Perugia (Italy); Del Bianco, L. [Department of Physics and Astronomy, University of Bologna, I-40127 Bologna (Italy); Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia (Italy)
2015-05-07
Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.
Andreev, Pavel A
2016-01-01
The dielectric permeability tensor for spin polarized plasmas derived in terms of the spin-1/2 quantum kinetic model in six-dimensional phase space in Part I of this work is applied for study of spectra of high-frequency transverse and transverse-longitudinal waves propagating perpendicular to the external magnetic field. Cyclotron waves are studied at consideration of waves with electric field directed parallel to the external magnetic field. It is found that the separate spin evolution modifies the spectrum of cyclotron waves. These modifications increase with the increase of the spin polarization and the number of the cyclotron resonance. Spin dynamics with no account of the anomalous magnetic moment gives a considerable modification of spectra either. The account of anomalous magnetic moment leads to a fine structure of each cyclotron resonance. So, each cyclotron resonance splits on three waves. Details of this spectrum and its changes with the change of spin polarization are studied for the first and se...
Gravitational waves from spinning compact object binaries: New post-Newtonian results
Marsat, Sylvain; Bohe, Alejandro; Faye, Guillaume
2013-01-01
We report on recent results obtained in the post-Newtonian framework for the modelling of the gravitational waves emitted by binary systems of spinning compact objects (black holes and/or neutron stars). These new results are obtained at the spin-orbit (linear-in-spin) level and solving Einstein's field equations iteratively in harmonic coordinates as well as the multipolar post-Newtonian formalism. The dynamics of the binary was tackled at the next-to-next-to-leading order, corresponding to the 3.5 post-Newtonian (PN) order for maximally spinning objects, and the result is found to be consistent with a previously obtained reduced Hamiltonian in the ADM approach. The corresponding contribution to the energy flux emitted by the binary was obtained at the 3.5PN order, as well as the next-to-leading 4PN tail contribution to this flux, an imprint of the non-linearity in the propagation of the wave. These new terms can be used to build more accurate PN templates for the next generation of gravitational wave detect...
Linear spin-wave theory of incommensurably modulated magnets
DEFF Research Database (Denmark)
Ziman, Timothy; Lindgård, Per-Anker
1986-01-01
Calculations of linearized theories of spin dynamics encounter difficulties when applied to incommensurable magnetic phases: lack of translational invariance leads to an infinite coupled system of equations. The authors resolve this for the case of a `single-Q' structure by mapping onto the problem...... of diagonalizing a quasiperiodic Hamiltonian of tight-binding type in one dimension. This allows for calculation of the correlation functions relevant to neutron scattering or magnetic resonance experiments. With the application to the case of a longitudinally modulated magnet a number of new predictions are made......: at higher frequency there appear bands of response sharply defined in frequency, but broad in momentum transfer; at low frequencies there is a response maximum at the q vector corresponding to the modulation vector. They discuss generalizations necessary for application to rare-earth magnets...
Third Quantization and Quantum Cosmology.
McGuigan, Michael Deturck
My thesis consists of three separate parts. Part one consists of a study of CP violation in the Kaon decay: K to pi pi gamma . To study the short distance contribution to the matrix element we developed an operator expansion for the effective Hamiltonian. An effective s to dgamma vertex arises through operator mixing. We evaluated several two-loop graphs in order to obtain the coefficient of this operator. We studied the long distance contributions to the matrix element and demonstrated that this was the dominant contribution. This explained why the polarization of the emitted photon is primarily of the magnetic type. Part two of my thesis involves the treatment of string theory at finite temperature. We introduced finite temperature into string theory by compactifying time on a twisted torus of radius beta = 1/kT, the reciprical of the temperature. The twisted torus takes into account the different thermal properties of bosons and fermions. We computed the one-loop vacuum amplitude Lambda(beta) on a twisted torus which is manifestly modular invariant. We found that lnZ(beta) = -betaVLambda (beta) where Z(beta) is the partition function and V the volume of the system. We computed the function sigma(E) which counts the number of multi-string states of total energy E by taking the inverse Laplace transform of Z( beta). We also studied the effect of finite temperature on the effective potentials which determine a string theory's compactification. The third part of my thesis involved the Wheeler DeWitt equation and a new interpretation of quantum cosmology. We examined a proposal by DeWitt for the normalization of solutions to the Wheeler-DeWitt equation. We avoided negative probability problems with this proposal by reinterpreting the Wheeler-DeWitt wave function as a second quantized field. As the arguments of the Wheeler-DeWitt wave functional are second quantized fields this represented a third quantization. We developed a mode decomposition for the third quantized
Evolution of spin-dependent atomic wave packets in a harmonic potential
Institute of Scientific and Technical Information of China (English)
Wen Ling-Hua; Liu Min; Kong Ling-Bo; Chen Ai-Xi; Zhan Ming-Sheng
2005-01-01
We have investigated theoretically the evolution of spin-dependent atomic wave packets in a harmonic magnetic trapping potential. For a Bose-condensed gas, which undergoes a Mott insulator transition and a spin-dependent transport, the atomic wavefunction can be described by an entangled single-atom state. Due to the confinement of the -harmonic potential, the density distributions exhibit periodic decay and revival, which is different from the case of free expansion after switching off the combined harmonic and optical lattice potential.
On the damping of right hand circularly polarized waves in spin quantum plasmas
Iqbal, Z.; Hussain, A.; Murtaza, G.; Ali, M.
2014-12-01
General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k ∥ v ≫ ( ω + ω c e ) , ( ω + ω c g ) and (ii) k ∥ v ≪ ( ω + ω c e ) , ( ω + ω c g ) . Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effects can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.
On the damping of right hand circularly polarized waves in spin quantum plasmas
Energy Technology Data Exchange (ETDEWEB)
Iqbal, Z. [Department of Physics, GC University Lahore, Lahore 54000 (Pakistan); Hussain, A., E-mail: ah-gcu@yahoo.com [Department of Physics, GC University Lahore, Lahore 54000 (Pakistan); Department of Physics, Quaid-i-Azam University Islamabad, Islamabad 45320 (Pakistan); Murtaza, G. [Department of Physics, Quaid-i-Azam University Islamabad, Islamabad 45320 (Pakistan); Ali, M. [Department of Physics, School of Natural Sciences, National University of Science and Technology Islamabad, Islamabad 44000 (Pakistan)
2014-12-15
General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k{sub ∥}v≫(ω+ω{sub ce}),(ω+ω{sub cg}) and (ii) k{sub ∥}v≪(ω+ω{sub ce}),(ω+ω{sub cg}). Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effects can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.
Temperature and field dependence of the spin wave gap in NdCu2
Kramp, S.; Pyka, N. M.; Loewenhaupt, M.; Rotter, M.
1999-04-01
NdCu2 shows a complex magnetic phase diagram below its Néel temperature of TN=6.5 K and for magnetic fields applied in the easy b direction. This complicated behavior is expected to be due to Ruderman-Kittel-Kasuya-Yoshida interaction of the 4f shells of the Nd ions in the presence of crystal field splitting. In order to obtain deeper insight into the mechanism leading to such different magnetic phases we started to study the spin wave spectra in a NdCu2 single crystal. In zero field as well as in fields applied in the easy b direction of magnetization, a pronounced minimum in the excitation spectrum has been observed and it forms an energy gap. The position of this spin wave gap does not coincide with any magnetic ordering wave vector in NdCu2, indicating anisotropic magnetic coupling. The temperature and field dependence of the spin wave gap have been studied. The position of the gap remains constant at qgap=(0.35, 0, 0), whereas the character of the excitations changes with temperature and the value of the energy gap changes with the magnetic field. Applying a field of 10 T in the hard c direction of magnetization changes the position of the minimum to qgap=(0.6, 0, 0) and gives proof of magnetic anisotropy.
Harms, Enno; Bernuzzi, Sebastiano; Nagar, Alessandro
2016-01-01
We consider a spinning test-body in circular motion around a nonrotating black hole and analyze different prescriptions for the body's dynamics. We compare, for the first time, the Mathisson-Papapetrou formalism under the Tulczyjew spin-supplementary-condition (SSC), the Pirani SSC and the Ohashi-Kyrian-Semerak SSC, and the spinning particle limit of the effective-one-body Hamiltonian of [Phys.~Rev.~D.90,~044018(2014)]. We analyze the four different dynamics in terms of the ISCO shifts and in terms of the coordinate invariant binding energies, separating higher-order spin contributions from spin-orbit contributions. The asymptotic gravitational wave fluxes produced by the spinning body are computed by solving the inhomogeneous $(2+1)D$ Teukolsky equation and contrasted for the different cases. For small orbital frequencies $\\Omega$, all the prescriptions reduce to the same dynamics and the same radiation fluxes. For large frequencies, ${x \\equiv (M \\Omega)^{2/3} >0.1 }$, where $M$ is the black hole mass, and ...
Anomalous spin waves and the commensurate-incommensurate magnetic phase transition in LiNiPO4
DEFF Research Database (Denmark)
Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Kenzelmann, M.
2009-01-01
above T-N. A linear spin-wave model based on Heisenberg exchange couplings and single-ion anisotropies accounts for all the observed spin-wave dispersions and intensities. Along the b axis an unusually strong next-nearest-neighbor AF coupling competes with the dominant nearest-neighbor AF exchange......Detailed spin-wave spectra of magnetoelectric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase below T-N=20.8 K. An anomalous shallow minimum is observed at the modulation vector of the incommensurate (IC) AF phase appearing...
Noncommutative Space-time from Quantized Twistors
Lukierski, Jerzy
2013-01-01
We consider the relativistic phase space coordinates (x_{\\mu},p_{\\mu}) as composite, described by functions of the primary pair of twistor coordinates. It appears that if twistor coordinates are canonicaly quantized the composite space-time coordinates are becoming noncommutative. We obtain deformed Heisenberg algebra which in order to be closed should be enlarged by the Pauli-Lubanski four-vector components. We further comment on star-product quantization of derived algebraic structures which permit to introduce spin-extended deformed Heisenberg algebra.
Implementing a search for gravitational waves from binary black holes with nonprecessing spin
Capano, Collin; Harry, Ian; Privitera, Stephen; Buonanno, Alessandra
2016-06-01
Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms—a template bank—chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins χ1 ,2∈[-0.99 ,0.99 ] aligned with the orbital angular momentum, component masses m1 ,2∈[2 ,48 ]M⊙ , and total mass Mtotal≤50 M⊙ . Using effective-one-body waveforms with spin effects, we show that less than 3% of the maximum signal-to-noise ratio (SNR) of these signals is lost due to the discreetness of the bank, using the early Advanced LIGO noise curve. We use simulated Advanced LIGO noise to compare the sensitivity of this bank to a nonspinning bank covering the same parameter space. In doing so, we consider the competing effects between improved SNR and signal-based vetoes and the increase in the rate of false alarms of the aligned-spin bank due to covering a larger parameter space. We find that the aligned-spin bank can be a factor of 1.3-5 more sensitive than a nonspinning bank to BBHs with dimensionless spins >+0.6 and component masses ≳20 M⊙ . Even larger gains are obtained for systems with equally high spins but smaller component masses.
Growth and spin-wave properties of thin Y{sub 3}Fe{sub 5}O{sub 12} films on Si substrates
Energy Technology Data Exchange (ETDEWEB)
Stognij, A. I.; Novitskii, N. N. [Scientific and Practical Materials Research Centre, National Academy of Sciences of Belarus, Minsk 220072 (Belarus); Lutsev, L. V., E-mail: l-lutsev@mail.ru; Bursian, V. E. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)
2015-07-14
We describe synthesis of submicron Y{sub 3}Fe{sub 5}O{sub 12} (YIG) films sputtered on Si substrates and present results of the investigation of ferromagnetic resonance (FMR) and spin waves in YIG/SiO{sub 2}/Si structures. It is found that decrease of the annealing time leads to essential reduction of the FMR linewidth ΔH and, consequently, to reduction of relaxation losses of spin waves. Spin-wave propagation in in-plane magnetized YIG/SiO{sub 2}/Si structures is studied. We observe the asymmetry of amplitude-frequency characteristics of the Damon-Eshbach spin waves caused by different localizations of spin waves at the free YIG surface and at the YIG/SiO{sub 2} interface. Growth of the generating microwave power leads to spin-wave instability and changes amplitude-frequency characteristics of spin waves.
Field-induced spin-density wave beyond hidden order in URu2Si2
Knafo, W.; Duc, F.; Bourdarot, F.; Kuwahara, K.; Nojiri, H.; Aoki, D.; Billette, J.; Frings, P.; Tonon, X.; Lelièvre-Berna, E.; Flouquet, J.; Regnault, L.-P.
2016-10-01
URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state. The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations and the Fermi surface is emphasized, calling for dedicated band-structure calculations.
Yang, Xihua; Shang, Jie; Xue, Bolin; Zhou, Yuanyuan; Xiao, Min
2014-05-19
We conduct theoretical studies on the effects of various parameters on generation of multipartite continuous-variable entanglement via atomic spin wave induced by the strong coupling and probe fields in the Λ-type electromagnetically induced transparency configuration in a realistic atomic ensemble by using the Heisenberg-Langevin formalism. It is shown that the increase of the atomic density and/or Rabi frequencies of the scattering fields, as well as the decrease of the coherence decay rate of the lower doublet would strengthen the degree of multipartite entanglement. This provides a clear evidence that the creation of multicolor multipartite entangled narrow-band fields to any desired number with a long correlation time can be achieved conveniently by using atomic spin wave in an atomic ensemble with large optical depth, which may find interesting applications in quantum information processing and quantum networks.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
DEFF Research Database (Denmark)
Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert
2017-01-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation......, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state...... is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...
Spin wave surface states in one-dimensional planar magnonic crystals
Rychły, Justyna
2016-01-01
We have investigated surface spin wave states in one-dimensional planar bi-component magnonic crystals, localized on the surfaces resulting from the breaking of the periodic structure. The two systems have been considered: the magnonic crystal with periodic changes of the anisotropy field in exchange regime and the magnonic crystal composed of Fe and Ni stripes in dipolar regime with exchange interactions included. We chose the symmetric unit cell for both systems to implement the symmetry related criteria for existence of the surface states. We investigated also the surface states induced by the presence of perturbation of the surface areas of the magnonic crystals. We showed, that the system with modulated anisotropy is a direct analog of the electronic crystal. Therefore, the surface states in both systems have the same properties. For surface states existing in magnonic crystals in dipolar regime we demonstrated that spin waves preserve distinct differences to the electronic crystals, which are due to lon...
Complete mapping of the spin-wave spectrum in a vortex-state nanodisk
Taurel, B.; Valet, T.; Naletov, V. V.; Vukadinovic, N.; de Loubens, G.; Klein, O.
2016-05-01
We report a study on the complete spin-wave spectrum inside a vortex-state nanodisk. Transformation of this spectrum is continuously monitored as the nanodisk becomes gradually magnetized by a perpendicular magnetic field and encounters a second-order phase transition to the uniformly magnetized state. This reveals the bijective relationship that exists between the eigenmodes in the vortex state and the ones in the saturated state. It is found that the gyrotropic mode can be continuously viewed as a uniform phase precession, which uniquely softens (its frequency vanishes) at the saturation field to transform above into the Kittel mode. By contrast, the other spin-wave modes remain finite as a function of the applied field, while their character is altered by level anticrossing.
Energy Technology Data Exchange (ETDEWEB)
Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)
2015-11-15
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics.
Yu, Haiming; Kelly, O d'Allivy; Cros, V; Bernard, R; Bortolotti, P; Anane, A; Brandl, F; Huber, R; Stasinopoulos, I; Grundler, D
2014-10-30
Wave control in the solid state has opened new avenues in modern information technology. Surface-acoustic-wave-based devices are found as mass market products in 100 millions of cellular phones. Spin waves (magnons) would offer a boost in today's data handling and security implementations, i.e., image processing and speech recognition. However, nanomagnonic devices realized so far suffer from the relatively short damping length in the metallic ferromagnets amounting to a few 10 micrometers typically. Here we demonstrate that nm-thick YIG films overcome the damping chasm. Using a conventional coplanar waveguide we excite a large series of short-wavelength spin waves (SWs). From the data we estimate a macroscopic of damping length of about 600 micrometers. The intrinsic damping parameter suggests even a record value about 1 mm allowing for magnonics-based nanotechnology with ultra-low damping. In addition, SWs at large wave vector are found to exhibit the non-reciprocal properties relevant for new concepts in nanoscale SW-based logics. We expect our results to provide the basis for coherent data processing with SWs at GHz rates and in large arrays of cellular magnetic arrays, thereby boosting the envisioned image processing and speech recognition.
Classical non-linear wave dynamics and gluon spin operator in SU(2) QCD
Kim, Youngman; Tsukioka, Takuya; Zhang, P M
2016-01-01
We study various types of classical non-linear wave solutions with mass scale parameters in a pure SU(2) quantum chromodynamics. It has been shown that there are two gauge non-equivalent solutions for non-linear plane waves with a mass parameter. One of them corresponds to embedding \\lambda \\phi^4 theory into the SU(2) Yang-Mills theory, another represents essentially Yang-Mills type solution. We describe a wide class of stationary and non-stationary wave solutions among which kink like solitons and non-linear wave packet solutions have been found. A regular stationary monopole like solution with a finite energy density is proposed. The solution can be treated as a Wu-Yang monopole dressed in off-diagonal gluons. All non-linear wave solutions have common features: presence of a mass scale parameter, non-vanishing projection of the color magnetic field along the propagation direction and a total spin zero. Gauge invariant and Lorentz frame independent definitions of the gluon spin operator are considered.
Extraordinary Spin-Wave Thermal Conductivity in Low-Dimensional Copper Oxides
2015-01-23
Low-Dimensional Copper Oxides Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 611102 6. AUTHORS Sd. PROJECT NUMBER David Cahill Se. TASK NUMBER Sf...TDTR) to advance understanding of the1mal transp01i in low dimensional copper - oxides that display extraordina1y thennal transp01i by the1mal...by ANSI Std. Z39.18 ABSTRACT Final Report: Extraoridinary Spin-Wave Thermal Conductivity in Low-Dimensional Copper Oxides Report Title We applied
Polarization dependence of the spin-density-wave excitations in single-domain chromium
Energy Technology Data Exchange (ETDEWEB)
Boeni, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Roessli, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France); Sternlieb, B.J. [Brookhaven (United States); Lorenzo, E. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France); Werner, S.A. [Missouri (United States)
1997-09-01
A polarized neutron scattering experiment has been performed with a single-Q, single domain sample of chromium in a magnetic field of 4 T. It is confirmed that the longitudinal fluctuations are enhanced for small energy transfers and that the spin wave modes with {delta}S parallel to Q and {delta}S perpendicular to Q are similar. (author) 2 figs., 1 tab., 2 refs.
Spin-Wave Dispersion and Sublattice Magnetization in NiCl_2
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Birgeneau, R. J.; Als-Nielsen, Jens Aage
1975-01-01
NiCl2 is a Heisenberg planar antiferromagnet composed of hexagonal ferromagnetic Ni2+ sheets with effective XY symmetry weakly coupled antiferromagnetically to adjacent Ni2+ sheets. The near two-dimensionality dimples a directionally-dependent spin-wave renormalization together with an unusual te......-dependent dispersion relations (together with the sublattice magnetization) and the gap energy up to approximately 0.4 TN are properly predicted....
Finster, Felix
2015-01-01
A family of spectral decompositions of the spin-weighted spheroidal wave operator is constructed for complex aspherical parameters with bounded imaginary part. As the operator is not symmetric, its spectrum is complex and Jordan chains may appear. We prove uniform upper bounds for the length of the Jordan chains and the norms of the idempotent operators mapping onto the invariant subspaces. The completeness of the spectral decomposition is proven.
A nonlinear lattice model for Heisenberg helimagnet and spin wave instabilities
Ludvin Felcy, A.; Latha, M. M.; Christal Vasanthi, C.
2016-10-01
We study the dynamics of a Heisenberg helimagnet by presenting a square lattice model and proposing the Hamiltonian associated with it. The corresponding equation of motion is constructed after averaging the Hamiltonian using a suitable wavefunction. The stability of the spin wave is discussed by means of Modulational Instability (MI) analysis. The influence of various types of inhomogeneities in the lattice is also investigated by improving the model.
Enhancement of antiferromagnetic spin wave in the heavy-fermion superconductors
Koh, Shun-ichiro
2000-06-01
Recently, the inelastic neutron scattering experiments of UPd 2Al 3 showed that a sharp peak indicating a magnetic excitation appears below the superconducting phase transition temperature (M. Metoki et al., J. Phys. Soc. Japan 66 (1997) 2560, N. Bernhoeft et al., Phys. Rev. Lett. 81 (1998) 4244). Assuming this excitation to be an antiferromagnetic (AFM) spin wave, this paper deals with its enhancement by the superconductivity.
su(1,2) Algebraic Structure of XYZ Antiferromagnetic Model in Linear Spin-Wave Frame
Institute of Scientific and Technical Information of China (English)
GUAN Yong; JIN Shuo; LIN Bing-Sheng; XIE Bing-Hao; JING Si-Cong; YU Zhao-Xian; HOU Jing-Min
2008-01-01
The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) aigebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obtained by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics.
Hida, Kazuo
1995-01-01
The ground state of the square lattice bilayer quantum antiferromagnet with nearest and next-nearest neighbour intralayer interaction is studied by means of the modified spin wave method. For weak interlayer coupling, the ground state is found to be always magnetically ordered while the quantum disordered phase appear for large enough interlayer coupling. The properties of the disordered phase vary according to the strength of the frustration. In the regime of weak frustration, the disordered...
Neuberger, Herbert
2016-01-01
Starting with a general discussion, a program is sketched for a quantization based on dilations. This resolving-power quantization is simplest for scalar field theories. The hope is to find a way to relax the requirement of locality so that the necessity to fine tune mass parameters is eliminated while universality is still preserved.
Rhythm quantization for transcription
Cemgil, A.T.; Desain, P.W.M.; Kappen, H.J.
1999-01-01
Automatic Music Transcription is the extraction of an acceptable notation from performed music. One important task in this problem is rhythm quantization which refers to categorization of note durations. Although quantization of a pure mechanical performance is rather straightforward, the task becom
Generalized Quantization Condition
Institute of Scientific and Technical Information of China (English)
LIANG Zheng; CAO Zhuang-Qi; DENG Xiao-Xu; SHEN Qi-Shun
2005-01-01
@@ On the basis of analytical transfer matrix theory, we fine a generalized quantization condition. By introducing a new type of modified momentum, our quantization condition has the same form as the Bohr-Sommerfeld formula.Numerical and analytical comparisons show that the present method is exact.
Zakharova, A.; Nilsson, K.; Chao, K. A.; Yen, S. T.
2005-09-01
We investigate spin-dependent interband magnetotunneling processes in strained broken-gap resonant tunneling structures made from InAs, AlSb, and GaSb, which are promising materials for quantum devices. InAs/AlSb/GaSb/InAs/AlSb/GaSb double-barrier structures grown on both InAs and GaSb are considered. Transmission coefficients for interband tunneling processes from individual eigenstates in the InAs emitter as well as current-voltage characteristics were calculated using a six-band k•p model and the scattering matrix method. We predict that due to lattice-mismatch induced strain, the interband tunneling current density for the structure grown on InAs can be one or two orders of magnitude less than that for the structure grown on GaSb. Furthermore, as a consequence of interband magnetotunneling, structures grown on different substrates yield different spin polarization of the tunneling current. It is obtained that the current spin polarization can be greater than 90%. These resonant tunneling structures can be used as spin filters in the rapidly growing field of spintronics.
Energy Technology Data Exchange (ETDEWEB)
Kaplan, B., E-mail: bengukaplan@yahoo.com; Kaplan, R.
2014-12-15
We investigate the calculated spin wave gap of two-dimensional magnetic films under the combined influence of the in-plane direction of the applied magnetic field and different kinds of magnetic anisotropies. We also compute the spin wave gap as a function of the applied magnetic field at zero temperature. We discuss the results in connection with experimental data reported for epitaxial Fe-deficient yttrium garnet (YIG) films grown by pulsed laser deposition (PLD) technique onto the different faces of the Gd{sub 3}Ga{sub 5}O{sub 12} single crystal. - Highlights: • The spin wave gap as a function of the applied field is calculated. • The influence of in-plane anisotropy on the spin wave gap is discussed. • The results are compared in connection with experimental data.
GRB-supernovae: a new spin on gravitational waves
Van Putten, M H P M
2005-01-01
The discovery of the GRB-supernova association poses the question on the nature of the inner engine as the outcome of Type Ib/c supernovae. These events are believed to represent core-collapse of massive stars, probably in low-period stellar binaries and similar but not identical to the Type II event SN1987A. The branching ratio of Type Ib/c supernovae into GRB-supernovae has the remarkably small value of less than 0.5%. These observational constraints point towards a rapidly rotating black hole formed at low probability with low kick velocity. The putative black hole hereby remains centered, and matures into a high-mass object with large rotational energy in angular momentum. As the MeV-neutrino emissions from SN1987A demonstrate, the most powerful probe of the inner workings of core-collapse events are radiation channels to which the remnant envelope is optically thin. We here discuss the prospect of gravitational-wave emissions powered by a rapidly rotating central black hole which, in contrast to MeV-neut...
The impact of finite size effects on spin waves in CoO
Feygenson, Mikhail; Teng, Xiaowei; Du, Wenxin; Podlesnyak, Andrey; Niedziela, Jennifer; Hagen, Mark; Aronson, Meigan
2010-03-01
We studied the spin waves in nanoscaled CoO using inelastic neutron scattering. The zero-field measurements were carried out on Co/CoO nanoparticles, CoO nanoparticles, and the bulk powder of CoO in the temperature range of 15 -- 300 K. The temperature-dependent inelastic intensity at 2.5 meV, found in all samples, was ascribed to CoO spin waves. We observed an increase at least of factor of 100 in the inelastic intensity for Co/CoO as compared to the CoO bulk, and shift of intensity towards larger scattering vectors. We suggest that new boundary conditions imposed by the nanoparticle surface and the breaking of the symmetry are mainly responsible for this effect. Similar enhancement of the spin wave spectrum was also predicted in thin films [1,2]. [1] S. Reshetnyak et al PMC Physics B 2008 [2] Y.Gorobets et al, Tech. Phys. 1998
Spin-wave thermal population as temperature probe in magnetic tunnel junctions
Energy Technology Data Exchange (ETDEWEB)
Le Goff, A., E-mail: adrien.le-goff@u-psud.fr; Devolder, T. [Institut d' Electronique Fondamentale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Nikitin, V. [SAMSUNG Electronics Corporation, 601 McCarthy Blvd Milpitas, California 95035 (United States)
2016-07-14
We study whether a direct measurement of the absolute temperature of a Magnetic Tunnel Junction (MTJ) can be performed using the high frequency electrical noise that it delivers under a finite voltage bias. Our method includes quasi-static hysteresis loop measurements of the MTJ, together with the field-dependence of its spin wave noise spectra. We rely on an analytical modeling of the spectra by assuming independent fluctuations of the different sub-systems of the tunnel junction that are described as macrospin fluctuators. We illustrate our method on perpendicularly magnetized MgO-based MTJs patterned in 50 × 100 nm{sup 2} nanopillars. We apply hard axis (in-plane) fields to let the magnetic thermal fluctuations yield finite conductance fluctuations of the MTJ. Instead of the free layer fluctuations that are observed to be affected by both spin-torque and temperature, we use the magnetization fluctuations of the sole reference layers. Their much stronger anisotropy and their much heavier damping render them essentially immune to spin-torque. We illustrate our method by determining current-induced heating of the perpendicularly magnetized tunnel junction at voltages similar to those used in spin-torque memory applications. The absolute temperature can be deduced with a precision of ±60 K, and we can exclude any substantial heating at the spin-torque switching voltage.
Physics Colloquium: Theory of the spin wave Seebeck effect in magnetic insulators
Université de Genève
2011-01-01
Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Lundi 28 février 2011 17h00 - École de Physique, Auditoire Stückelberg Theory of the spin wave Seebeck effect in magnetic insulators Prof. Gerrit Bauer Delft University of Technology The subfield of spin caloritronics addresses the coupling of heat, charge and spin currents in nanostructures. In the center of interest is here the spin Seebeck effect, which was discovered in an iron-nickel alloy. Uchida et al. recently observed the effect also in an electrically insulating Yttrium Iron Garnett (YIG) thin magnetic film. To our knowledge this is the first observation of a Seebeck effect generated by an insulator, implying that the physics is fundamentally different from the conventional Seebeck effect in metals. We explain the experiments by the pumping of a spin current into the detecting contacts by the thermally excited magnetization dynamics. In this talk I will give a brief overview over the state o...
Dynamic magnetization switching and spin wave excitations by voltage-induced torque
Shiota, Yoichi
2013-03-01
The effect of electric fields on ultrathin ferromagnetic metal layer is one of the promising approaches for manipulating the spin direction with low-energy consumption, localization, and coherent behavior. Several experimental approaches to realize it have been investigated using ferromagnetic semiconductors, magnetostriction together with piezo-electric materials, multiferroic materials, and ultrathin ferromagnetic layer. In this talk, we will present a dynamic control of spins by voltage-induced torque. We used the magnetic tunnel junctions with ultrathin ferromagnetic layer, which shows voltage-induced perpendicular magnetic anisotropy change. By applying the voltage to the junction, the magnetic easy-axis in the ultrathin ferromagnetic layer changes from in-plane to out-of-plane, which causes a precession of the spins. This precession resulted in a two-way toggle switching by determining an appropriate pulse length. On the other hand, an application of rf-voltage causes an excitation of a uniform spin-wave. Since the precession of spin associates with an oscillation in the resistance of the junction, the applied rf-signal is rectified and produces a dc-voltage. From the spectrum of the dc-voltage as a function of frequency, we could estimate the voltage-induced torque. This research was supported by CREST-JST, G-COE program, and JSPS for the fellowship. Collaborators include T. Nozaki, S. Miwa, F. Bonell, N. Mizuochi, T. Shinjo, and Y. Suzuki.
Spin-triplet f-wave symmetry in superconducting monolayer MoS2
Goudarzi, H.; Khezerlou, M.; Sedghi, H.; Ghorbani, A.
2017-04-01
The proximity-induced spin-triplet f-wave symmetry pairing in a monolayer molybdenum disulfide-superconductor hybrid features an interesting electron-hole excitations and also effective superconducting subgap, giving rise to a distinct Andreev resonance state. Owing to the complicated Fermi surface and momentum dependency of f-wave pair potential, monolayer MoS2 with strong spin-orbit coupling can be considered an intriguing structure to reveal the superconducting state. Actually, this can be possible by calculating the peculiar spin-valley polarized transport of quasiparticles in a related normal metal/superconductor junction. We theoretically study the formation of effective gap at the interface and resulting normalized conductance on top of a MoS2 under induction of f-wave order parameter, using Blonder-Tinkham-Klapwijk formalism. The superconducting excitations shows that the gap is renormalized by a bias limitation coefficient including dynamical band parameters of monolayer MoS2 , especially, ones related to the Schrodinger-type momentum of Hamiltonian. The effective gap is more sensitive to the n-doping regime of superconductor region. The signature of spin-orbit coupling, topological and asymmetry mass-related terms in the resulting subgap conductance and, in particular, maximum conductance is presented. In the absence of topological term, the effective gap reaches to its maximum value. The unconventional nature of superconducting order leads to the appearance of zero-bias conductance. In addition, the maximum value of conductance can be controlled by tuning the doping level of normal and superconductor regions.
Use of gravitational waves to measure alignment of spins in compact binaries
Vitale, Salvatore; Graff, Philip; Sturani, Riccardo
2015-01-01
Coalescences of compact objects, neutron star and black holes, in binary systems are very promising sources of gravitational waves for the ground based detectors Advanced LIGO and Virgo. Much about compact binaries is still uncertain, including how often they are formed in the Universe, and some key details about their formation channels. One of the key open questions about compact binary coalescences is whether or not common envelope evolution is highly efficient in aligning spins with the orbital angular momentum. In this paper we show how gravitational waves detected by Advanced LIGO and Virgo can be used to verify if spins are preferentially aligned with the orbital angular momentum in compact binaries made of two black holes or a neutron star and a black hole. We first assume that all sources have either nearly aligned or non-aligned spins and use Bayesian model selection to calculate a cumulative odds ratio to compare the aligned and non-aligned models. We see that the correct model is typically preferr...
Parallel ferromagnetic resonance and spin-wave excitation in exchange-biased NiFe/IrMn bilayers
Energy Technology Data Exchange (ETDEWEB)
Sousa, Marcos Antonio de, E-mail: marcossharp@gmail.com [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Pelegrini, Fernando [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Alayo, Willian [Departamento de Física, Universidade Federal de Pelotas, Pelotas, 96010-900 (Brazil); Quispe-Marcatoma, Justiniano; Baggio-Saitovitch, Elisa [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, 22290-180 (Brazil)
2014-10-01
Ferromagnetic Resonance study of sputtered Ru(7 nm)/NiFe(t{sub FM})/IrMn(6 nm)/Ru(5 nm) exchange-biased bilayers at X and Q-band microwave frequencies reveals the excitation of spin-wave and NiFe resonance modes. Angular variations of the in-plane resonance fields of spin-wave and NiFe resonance modes show the effect of the unidirectional anisotropy, which is about twice larger for the spin-wave mode due to spin pinning at the NiFe/IrMn interface. At Q-band frequency the angular variations of in-plane resonance fields also reveal the symmetry of a uniaxial anisotropy. A modified theoretical model which also includes the contribution of a rotatable anisotropy provides a good description of the experimental results.
Loop quantization of the Schwarzschild black hole.
Gambini, Rodolfo; Pullin, Jorge
2013-05-24
We quantize spherically symmetric vacuum gravity without gauge fixing the diffeomorphism constraint. Through a rescaling, we make the algebra of Hamiltonian constraints Abelian, and therefore the constraint algebra is a true Lie algebra. This allows the completion of the Dirac quantization procedure using loop quantum gravity techniques. We can construct explicitly the exact solutions of the physical Hilbert space annihilated by all constraints. New observables living in the bulk appear at the quantum level (analogous to spin in quantum mechanics) that are not present at the classical level and are associated with the discrete nature of the spin network states of loop quantum gravity. The resulting quantum space-times resolve the singularity present in the classical theory inside black holes.
Parameter estimation on gravitational waves from neutron-star binaries with spinning components
Farr, Ben; Farr, Will M; Haster, Carl-Johan; Middleton, Hannah; Cannon, Kipp; Graff, Philip B; Hanna, Chad; Mandel, Ilya; Pankow, Chris; Price, Larry R; Sidery, Trevor; Singer, Leo P; Urban, Alex L; Vecchio, Alberto; Veitch, John; Vitale, Salvatore
2015-01-01
Inspiraling binary neutron stars are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. Advanced LIGO will begin operation in 2015 and we investigate how well we could hope to measure properties of these binaries should a detection be made in the first observing period. We study an astrophysically motivated population of sources (binary components with masses $1.2~\\mathrm{M}_\\odot$-$1.6~\\mathrm{M}_\\odot$ and spins of less than $0.05$) using the full LIGO analysis pipeline. While this simulated population covers the observed range of potential binary neutron-star sources, we do not exclude the possibility of sources with parameters outside these ranges; given the existing uncertainty in distributions of mass and spin, it is critical that analyses account for the full range of possible mass and spin configurations. We find that conservative prior assumptions on neutron-star mass and spin lead to average fractional uncertain...
Dirac-fermions in graphene d-wave superconducting heterojunction with the spin orbit interaction
Wang, Juntao; Wang, Andong; Zhang, Rui; Sun, Deng; Yang, Yanling
2017-09-01
In this study, based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the interaction effect between the anisotropic d-wave pairing symmetry and the spin orbit interaction (the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI)) in a graphene superconducting heterojunction. We find that the spin orbit interaction (SOI) plays a critical role on the tunneling conductance in the pristine case, but minimally affecting the tunneling conductance in the heavily doped case. As for the zero bias state, in contrast to the keep intact feature in the heavily doped case, it exhibits a distinct dependence on the RSOI and the DSOI in the pristine case. In particular, the damage of the zero bias state with a slight DSOI results in the disappearance of the zero bias conductance peak. Moreover, the tunneling conductances also show a qualitative difference with respect to the RSOI when both the RSOI and the DSOI are finite. These remarkable results suggest that the SOI and the anisotropic superconducting gap can be regarded as a key tool for diagnosing the specular Andreev reflection.
Implementing a search for gravitational waves from non-precessing, spinning binary black holes
Capano, Collin; Privitera, Stephen; Buonanno, Alessandra
2016-01-01
Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms --- a template bank --- chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins $\\chi_{1,2}\\in [-0.99, 0.99]$ aligned with the orbital angular momentum, component masses $m_{1,2}\\in [2, 48]\\,\\mathrm{M}_\\odot$, and total mass $M_\\mathrm{total} \\leq 50\\,\\mathrm{M}_\\odot$. Using effective-one-body waveforms with spin effects, we show that less than $3\\%$ of the maximum signal...
Magnonic Charge Pumping via Spin-Orbit Coupling
Ciccarelli, Chiara; Hals, Kjetil; Irvine, Andrew; Novak, Vit; Tserkovnyak, Yaroslav; Kurebayashi, Hidekazu; Brataas, Arne; Ferguson, Andrew
2015-03-01
The interplay between spin, charge and orbital degrees of freedom has led to the development of spintronic devices such as spin-torque oscillators and spin-transfer torque MRAM. In this development, spin pumping represents a convenient way to electrically detect magnetization dynamics. The effect originates from direct conversion of low-energy quantized spin waves in the magnet, known as magnons, into a flow of spins from the precessing magnet to adjacent leads. In this case, a secondary spin-charge conversion element, such as heavy metals with large spin Hall angle or multilayer layouts, is required to convert the spin current into a charge signal. Here, we report the observation of charge pumping in which a precessing ferromagnet pumps a charge current, demonstrating direct conversion of magnons into high-frequency currents via spin-orbit interaction. The generated electric current, unlike spin currents generated by spin-pumping, can be directly detected without the need of any additional spin-charge conversion mechanism. The charge-pumping phenomenon is generic and gives a deeper understanding of its reciprocal effect, the spin orbit torque, which is currently attracting interest for their potential in manipulating magnetic information.
Maiz, F
2012-01-01
A general quantization rule for bound states of the Schrodinger equation is presented. Like fundamental theory of integral, our idea is mainly based on dividing the potential into many pieces, solving the Schr\\"odinger equation, and deriving the general quantization rule. For both exactly and non-exactly solvable systems, the energy levels of all the bound states can be easily calculated from the general quantization rule. Using this new general quantization rule, we re-calculate the energy levels for the one-dimensional system, with an infinite square well, with the harmonic oscillator potential, with the Morse Potential, with the symmetric and asymmetric Rosen-Morse potentials, with the first P\\"oschl-Teller potential, with the Coulomb Potential, with the V-shape Potential, and the ax^4 potential, and for the three dimensions systems, with the harmonic oscillator potential, with the ordinary Coulomb potential, and for the hydrogen atom.
Quantization of Emergent Gravity
Yang, Hyun Seok
2013-01-01
Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as spacetime admits a symplectic structure, in other words, a microscopic spacetime becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC spacetime, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing spacetime itself, leading to a dynamical NC spacetime. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background independent formulation where spacetime as well as matter fields is equally emergent from a universal vacuum of quantum gravity.
Quantization of emergent gravity
Yang, Hyun Seok
2015-02-01
Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as space-time admits a symplectic structure, in other words, a microscopic space-time becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC space-time, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing space-time itself, leading to a dynamical NC space-time. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background-independent formulation where space-time and matter fields are equally emergent from a universal vacuum of quantum gravity.
Riemann surface and quantization
Perepelkin, E. E.; Sadovnikov, B. I.; Inozemtseva, N. G.
2017-01-01
This paper proposes an approach of the unified consideration of classical and quantum mechanics from the standpoint of the complex analysis effects. It turns out that quantization can be interpreted in terms of the Riemann surface corresponding to the multivalent LnΨ function. A visual interpretation of "trajectories" of the quantum system and of the Feynman's path integral is presented. A magnetic dipole having a magnetic charge that satisfies the Dirac quantization rule was obtained.
Spin-density-wave magnetism in dilute copper-manganese alloys
Energy Technology Data Exchange (ETDEWEB)
Lamelas, F.J. [Marquette Univ., Milwaukee, WI (United States). Dept. of Physics; Werner, S.A. [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Shapiro, S.M. [Brookhaven National Lab., Upton, NY (United States); Mydosh, J.A. [Kammerlingh Onnes Lab., Leiden (Netherlands)
1995-02-01
Elastic neutron-scattering measurements on two samples of Cu alloyed with 1.3% Mn and 0.55% Mn show that the spin-density-wave (SDW) features found in more concentrated alloys persist in the limit of very dilute alloys. These features consist of temperature-dependent incommensurate peaks in magnetic neutron scattering, with positions and strengths which are fully consistent with those in the concentrated alloys. The implications of these measurements are twofold. First, it is clear from this data that SDW magnetic ordering occurs across the entire range of CuMn alloys which have typically been interpreted as spin glasses. Second, the more fundamental significance of this work is the suggestion via extrapolation that a peak in the magnetic susceptibility x(q) occurs in pure copper, at a value of q given by the Fermi-surface diameter 2k{sub F}.
Switching dynamics of the spin density wave in superconducting CeCoIn5
Kim, Duk Y.; Lin, Shi-Zeng; Bauer, Eric D.; Ronning, Filip; Thompson, J. D.; Movshovich, Roman
2017-06-01
The ordering wave vector Q of a spin density wave (SDW), stabilized within the superconducting state of CeCoIn5 in a high magnetic field, has been shown to be hypersensitive to the direction of the field. Q can be switched from a nodal direction of the d -wave superconducting order parameter to a perpendicular node by rotating the in-plane magnetic field through the antinodal direction within a fraction of a degree. Here, we address the dynamics of the switching of Q . We use a free-energy functional based on the magnetization density, which describes the condensation of magnetic fluctuations of nodal quasiparticles, and show that the switching process includes closing of the SDW gap at one Q and then reopening the SDW gap at another Q perpendicular to the first one. The magnetic field couples to Q through the spin-orbit interaction. Our calculations show that the width of the hysteretic region of switching depends linearly on the deviation of magnetic field from the critical field associated with the SDW transition, consistent with our thermal conductivity measurements. The agreement between theory and experiment supports our scenario of the hypersensitivity of the Q phase on the direction of magnetic field, as well as the magnon condensation as the origin of the SDW phase in CeCoIn5.
Quantum Monte Carlo studies of a metallic spin-density wave transition
Energy Technology Data Exchange (ETDEWEB)
Gerlach, Max Henner
2017-01-20
Plenty experimental evidence indicates that quantum critical phenomena give rise to much of the rich physics observed in strongly correlated itinerant electron systems such as the high temperature superconductors. A quantum critical point of particular interest is found at the zero-temperature onset of spin-density wave order in two-dimensional metals. The appropriate low-energy theory poses an exceptionally hard problem to analytic theory, therefore the unbiased and controlled numerical approach pursued in this thesis provides important contributions on the road to comprehensive understanding. After discussing the phenomenology of quantum criticality, a sign-problem-free determinantal quantum Monte Carlo approach is introduced and an extensive toolbox of numerical methods is described in a self-contained way. By the means of large-scale computer simulations we have solved a lattice realization of the universal effective theory of interest. The finite-temperature phase diagram, showing both a quasi-long-range spin-density wave ordered phase and a d-wave superconducting dome, is discussed in its entirety. Close to the quantum phase transition we find evidence for unusual scaling of the order parameter correlations and for non-Fermi liquid behavior at isolated hot spots on the Fermi surface.
Farkašovský, Pavol
2016-08-01
The projector quantum Monte Carlo method is used to examine the effects of the spin-independent U fd as well as spin-dependent J z Coulomb interaction between the localized f and itinerant d electrons on the stability of various types of charge/spin ordering and superconducting correlations in the spin-one-half Falicov-Kimball model with Hund and Hubbard coupling. The model is studied for a wide range of f- and d-electron concentrations and it is found that the interband interactions U fd and J z stabilize three basic types of charge/spin ordering, namely, i) the axial striped phases, ii) the regular n-molecular phases and iii) the phase-separated states. It is shown that the d-wave pairing correlations are enhanced within the axial striped and phase-separated states, but not in the regular phases. Moreover, it was found that the antiferromagnetic spin arrangement within the chains further enhances the d-wave paring correlations, while the ferromagnetic one has a fully opposite effect.
Quantization of super Teichmueller spaces
Energy Technology Data Exchange (ETDEWEB)
Aghaei, Nezhla
2016-08-15
The quantization of the Teichmueller spaces of Riemann surfaces has found important applications to conformal field theory and N=2 supersymmetric gauge theories. We construct a quantization of the Teichmueller spaces of super Riemann surfaces, using coordinates associated to the ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. We construct a projective unitary representation of the groupoid of changes of refined ideal triangulations. Therefore, we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential. In the quantum Teichmueller theory, it was observed that the key object defining the Teichmueller theory has a close relation to the representation theory of the Borel half of U{sub q}(sl(2)). In our research we observed that the role of U{sub q}(sl(2)) is taken by quantum superalgebra U{sub q}(osp(1 vertical stroke 2)). A Borel half of U{sub q}(osp(1 vertical stroke 2)) is the super quantum plane. The canonical element of the Heisenberg double of the quantum super plane is evaluated in certain infinite dimensional representations on L{sup 2}(R) x C{sup 1} {sup vertical} {sup stroke} {sup 1} and compared to the flip operator from the Teichmueller theory of super Riemann surfaces.
Gravitational brainwaves, quantum fluctuations and stochastic quantization
Bar, D
2007-01-01
It is known that the biological activity of the brain involves radiation of electric waves. These waves result from ionic currents and charges traveling among the brain's neurons. But it is obvious that these ions and charges are carried by their relevant masses which should give rise, according to the gravitational theory, to extremely weak gravitational waves. We use in the following the stochastic quantization (SQ) theory to calculate the probability to find a large ensemble of brains radiating similar gravitational waves. We also use this SQ theory to derive the equilibrium state related to the known Lamb shift.
Lagrange structure and quantization
Energy Technology Data Exchange (ETDEWEB)
Kazinski, Peter O. [Department of Quantum Field Theory, Tomsk State University, Tomsk 634050 (Russian Federation); Lyakhovich, Simon L. [Department of Quantum Field Theory, Tomsk State University, Tomsk 634050 (Russian Federation); Sharapov, Alexey A. [Department of Quantum Field Theory, Tomsk State University, Tomsk 634050 (Russian Federation)
2005-07-01
A path-integral quantization method is proposed for dynamical systems whose classical equations of motion do not necessarily follow from the action principle. The key new notion behind this quantization scheme is the Lagrange structure which is more general than the lagrangian formalism in the same sense as Poisson geometry is more general than the symplectic one. The Lagrange structure is shown to admit a natural BRST description which is used to construct an AKSZ-type topological sigma-model. The dynamics of this sigma-model in d+1 dimensions, being localized on the boundary, are proved to be equivalent to the original theory in d dimensions. As the topological sigma-model has a well defined action, it is path-integral quantized in the usual way that results in quantization of the original (not necessarily lagrangian) theory. When the original equations of motion come from the action principle, the standard BV path-integral is explicitly deduced from the proposed quantization scheme. The general quantization scheme is exemplified by several models including the ones whose classical dynamics are not variational.
Miller, Brandon; Littenberg, Tyson B; Farr, Ben
2015-01-01
Reliable low-latency gravitational wave parameter estimation is essential to target limited electromagnetic followup facilities toward astrophysically interesting and electromagnetically relevant sources of gravitational waves. In this study, we examine the tradeoff between speed and accuracy. Specifically, we estimate the astrophysical relevance of systematic errors in the posterior parameter distributions derived using a fast-but-approximate waveform model, SpinTaylorF2 (STF2), in parameter estimation with lalinference_mcmc. Though efficient, the STF2 approximation to compact binary inspiral employs approximate kinematics (e.g., a single spin) and an approximate waveform (e.g., frequency domain versus time domain). More broadly, using a large astrophysically-motivated population of generic compact binary merger signals, we report on the effectualness and limitations of this single-spin approximation as a method to infer parameters of generic compact binary sources. For most low-mass compact binary sources, ...
Superconductivity and magnetic field induced spin density waves in the (TMTTF)2X family
Balicas, L.; Behnia, K.; Kang, W.; Canadell, E.; Auban-Senzier, P.; Jérome, D.; Ribault, M.; Fabre, J. M.
1994-10-01
We report magnetotransport measurements in the quasi one dimensional (Q-1-D) organic conductor (TMTTF)2Br at pressures up to 26 kbar, clown to 0.45 K in magnetic fields up to 19 T along the c^{ast} direction. It is found that a superconducting ground state is stabilized under 26 kbar at T_C = 0.8 K. No magnetic field induced spin density wave (FISDW) transitions are observed below 19T unlike other Q-1-D superconductors pertaining to the selenium series. The computed amplitude of the interchain coupling along transverse directions is unable to explain the missing; FISDW instability.
Conditions for the spin wave nonreciprocity in an array of dipolarly coupled magnetic nanopillars
Verba, Roman; Tiberkevich, Vasil; Bankowski, Elena; Meitzler, Thomas; Melkov, Gennadiy; Slavin, Andrei
2013-08-01
It is demonstrated that collective spin waves (SWs) propagating in complex periodic arrays of dipolarly coupled magnetic nanopillars existing in a saturated (single-domain) ground state in a zero bias magnetic field could be nonreciprocal. To guarantee the SW nonreciprocity, two conditions should be fulfilled: (i) existence of a nonzero out-of-plane component of the pillars' static magnetization and (ii) a complex periodicity of array's ground state with at least two elements per a primitive cell, if the elements are different, and at least three elements per a primitive cell, if the elements are identical.
Large-scale simulations of spin-density-wave order in frustrated lattices
Barros, Kipton; Batista, Cristian; Chern, Gia-Wei
We investigate spin-density-wave (SDW) phases within a generalized mean-field approximation. This approach incorporates the thermal fluctuations of SDW order and the development of short-range order above magnetic ordering temperatures Tc. Using a new Langevin dynamics method, we study mesoscale structures associated with triple- Q SDW states that are induced by Fermi surface nesting in triangular and kagome lattice Hubbard models. The core of our linear-scaling Langevin dynamics simulations is an efficient stochastic kernel polynomial method for computing the electron density matrix. We also investigate exotic phases above Tc arising from preformed magnetic moments.
Temperature Dependence of the Spin Waves in ErFe2
DEFF Research Database (Denmark)
Clausen, K.; Rhyne, J. J.; Lebech, Bente
1982-01-01
The temperature renormalisation of the energies of the optic modes in ErFe2 has been determined from room temperature up to close to the Curie temperature (574K). It is found that the two modes, a dispersive transition-metal mode and a localised crystal-field-dominated mode, cross over at about 4......K. The experimental results have been interpreted and are well accounted for by a linear spin wave model, where the level scheme of the lowest J multiplet of the Er3+ site has been assumed to consist of pure Jz states with an equidistant energy spacing between the levels....
Spin Decomposition of Electron in QED
Ji, Xiangdong; Yuan, Feng; Zhang, Jian-Hui; Zhao, Yong
2015-01-01
We perform a systematic study on the spin decomposition of an electron in QED at one-loop order. It is found that the electron orbital angular momentum defined in Jaffe-Manohar and Ji spin sum rules agrees with each other, and the so-called potential angular momentum vanishes at this order. The calculations are performed in both dimensional regularization and Pauli-Villars regularization for the ultraviolet divergences, and they lead to consistent results. We further investigate the calculations in terms of light-front wave functions, and find a missing contribution from the instantaneous interaction in light-front quantization. This clarifies the confusing issues raised recently in the literature on the spin decomposition of an electron, and will help to consolidate the spin physics program for nucleons in QCD.
Energy Technology Data Exchange (ETDEWEB)
Soh, Wee Tee, E-mail: a0046479@u.nus.edu; Ong, C. K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2015-04-21
We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films.
Ultrafast Spin Density Wave Transition in Chromium Governed by Thermalized Electron Gas
Nicholson, C. W.; Monney, C.; Carley, R.; Frietsch, B.; Bowlan, J.; Weinelt, M.; Wolf, M.
2016-09-01
The energy and momentum selectivity of time- and angle-resolved photoemission spectroscopy is exploited to address the ultrafast dynamics of the antiferromagnetic spin density wave (SDW) transition photoexcited in epitaxial thin films of chromium. We are able to quantitatively extract the evolution of the SDW order parameter Δ through the ultrafast phase transition and show that Δ is governed by the transient temperature of the thermalized electron gas, in a mean field description. The complete destruction of SDW order on a sub-100 fs time scale is observed, much faster than for conventional charge density wave materials. Our results reveal that equilibrium concepts for phase transitions such as the order parameter may be utilized even in the strongly nonadiabatic regime of ultrafast photoexcitation.
Directory of Open Access Journals (Sweden)
P. Sahebsara
2006-09-01
Full Text Available The self-energy-functional approach is a powerful many-body tool to investigate different broken symmetry phases of strongly correlated electron systems. We use the variational cluster perturbation theory (also called the variational cluster approximation to investigate the interplay between the antiferromagnetism and d-wave superconductivity of κ-(ET2 X conductors. These compounds are described by the so-called dimer Hubbard model, with various values of the on-site repulsion U and diagonal hopping amplitude t. At strong coupling, our zero-temperature calculations show a transition from Néel antiferromagnetism to a spin-liquid phase with no long range order, at around t ~ 0.9. At lower values of U, we find d-wave superconductivity. Taking into account the point group symmetries of the lattice, we find a transition between dx2-y2 and dxy pairing symmetries, the latter happening for smaller values of U.
Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films
Energy Technology Data Exchange (ETDEWEB)
Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098 (India)
2014-04-07
Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidths shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.
An introduction to field quantization
Takahashi, Yasushi
1969-01-01
An Introduction to Field Quantization is an introductory discussion of field quantization and problems closely related to it. Field quantization establishes a commutation relation of the field and finds an operator in such a manner that the Heisenberg equation of motion is satisfied. This book contains eight chapters and begins with a review of the quantization of the Schroedinger field and the close relation between quantized field theory and the many-body theory in quantum mechanics. These topics are followed by discussions of the quantization of the radiation field and the field of lattice
Alcoba, Diego R; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Oña, Ofelia B; Capuzzi, Pablo
2016-07-07
This work deals with the spin contamination in N-electron wave functions provided by the excitation-based configuration interaction methods. We propose a procedure to ensure a suitable selection of excited N-electron Slater determinants with respect to a given reference determinant, required in these schemes. The procedure guarantees the construction of N-electron wave functions which are eigenfunctions of the spin-squared operator Sˆ(2), avoiding any spin contamination. Our treatment is based on the evaluation of the excitation level of the determinants by means of the expectation value of an excitation operator formulated in terms of spin-free replacement operators. We report numerical determinations of energies and 〈Sˆ(2)〉 expectation values, arising from our proposal as well as from traditional configuration interaction methods, in selected open-shell systems, in order to compare the behavior of these procedures and their computational costs.
Spin Hall conductivity in the impure two-dimensional Rashba s-wave superconductor
Biderang, M.; Yavari, H.
2016-06-01
Based on the Kubo formula approach, the spin Hall conductivity (SHC) of a two-dimensional (2D) Rashba s-wave superconductor in the presence of nonmagnetic impurities is calculated. We will show that by increasing the superconducting gap, the SHC decreases monotonically to zero, while by decreasing the concentration of impurities at zero gap, the SHC closes to the clean limit universal value - e/8 π. As a function of the impurity relaxation rate τ at Tc = 0.1 and γ = 0.01 (γ is the spin-orbit coupling in unit of eV · m), we will show that in the dirty limit (τ → 0) the SHC vanishes, and by increasing the relaxation time (τ → ∞) the SHC depends on the value of superconducting gap (Δ = 1.76Tc√{ 1 -T/Tc }), is changed from zero for full gap to -e/8 π in zero gap. At low temperatures, the SHC goes to zero exponentially and near the critical temperature depending on the concentration of the scattering centers, the SHC will tend to the value of normal state. We will also show that the SHC is independent of spin-orbit coupling (γ) in the clean limit.
Lagrange structure and quantization
Kazinski, P O; Sharapov, A A
2005-01-01
A path-integral quantization method is proposed for dynamical systems whose classical equations of motion do \\textit{not} necessarily follow from the action principle. The key new notion behind this quantization scheme is the Lagrange structure which is more general than the Lagrangian formalism in the same sense as Poisson geometry is more general than the symplectic one. The Lagrange structure is shown to admit a natural BRST description which is used to construct an AKSZ-type topological sigma-model. The dynamics of this sigma-model in $d+1$ dimensions, being localized on the boundary, are proved to be equivalent to the original theory in $d$ dimensions. As the topological sigma-model has a well defined action, it is path-integral quantized in the usual way that results in quantization of the original (not necessarily Lagrangian) theory. When the original equations of motion come from the action principle, the standard BV path-integral is explicitly deduced from the proposed quantization scheme. The genera...
Andreev, Pavel A
2016-01-01
We consider the separate spin evolution of electrons and positrons in electron-positron and electron-positron-ion plasmas. We consider oblique propagating longitudinal waves in this systems. We report presence of the spin-electron acoustic waves and their dispersion dependencies. In electron-positron plasmas, similarly to the electron-ion plasmas, we find one spin-electron acoustic wave (SEAW) at propagation parallel or perpendicular to the external field and two spin-electron acoustic waves at the oblique propagation. At the parallel or perpendicular propagation of the longitudinal waves in electron-positron-ion plasmas we find four branches: the Langmuir wave, the positron-acoustic wave and pair of waves having spin nature, they are the SEAW and, as we called it, spin-electron-positron acoustic wave (SEPAW). At the oblique propagation we find eight longitudinal waves: the Langmuir wave, Trivelpiece-Gould wave, pair of positron-acoustic waves, pair of SEAWs, and pair of SEPAWs. Thus, for the first time, we r...
Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories
Rieländer, Daniel; Lenhard, Andreas; Mazzera, Margherita; de Riedmatten, Hugues
2016-12-01
We report on a source of heralded narrowband (≈ 3 MHz) single photons compatible with solid-state spin-wave quantum memories based on praseodymium doped crystals. Widely non-degenerate narrow-band photon pairs are generated using cavity enhanced down conversion. One photon from the pair is at telecom wavelengths and serves as heralding signal, while the heralded single photon is at 606 nm, resonant with an optical transition of Pr3+:Y2SiO5. The source offers a heralding efficiency of 28% and a generation rate exceeding 2000 pairs mW-1 in a single-mode. The single photon nature of the heralded field is confirmed by a direct antibunching measurement, with a measured antibunching parameter down to 0.010(4). Moreover, we investigate in detail photon cross- and autocorrelation functions proving non-classical correlations between the two photons. The results presented in this paper offer prospects for the demonstration of single photon spin-wave storage in an on-demand solid state quantum memory, heralded by a telecom photon.
Spin-wave dispersion of nanostructured magnonic crystals with periodic defects
Zhang, V. L.; Lim, H. S.; Ng, S. C.; Kuok, M. H.; Zhou, X.; Adeyeye, A. O.
2016-11-01
The spin-wave dispersions in nanostructured magnonic crystals with periodic defects have been mapped by Brillouin light scattering. The otherwise perfect crystals are one-dimensional arrays of alternating 460nm-wide Ni80Fe20 stripes and 40nm-wide air gaps, where one in ten Ni80Fe20 stripes is a defect of width other than 460 nm. Experimentally, the defects are manifested as additional Brillouin peaks, lying within the first and second bandgaps of the perfect crystal, whose frequencies decrease with increasing defect stripe width. Finite-element calculations, based on a supercell comprising one defect and nine perfect Py stripes, show that the defect modes are localized about the defects, with the localization exhibiting an approximate U-shaped dependence on defect size. Calculations also reveal extra magnon branches and the opening of mini-bandgaps, within the allowed bands of the perfect crystal, arising from Bragg reflections at the boundaries of the shorter supercell Brillouin zone. Simulated magnetization profiles of the band-edge modes of the major and mini-bandgaps reveal their different symmetries and localization properties. The findings could find application in microwave magnonic devices like single-frequency passband spin-wave filters.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco
2017-05-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.
Renormalization of Long Wavelength Spin Waves in the 2d Ferromagnet Rb2CrCl4
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Als-Nielsen, Jens Aage; Hutchings, M. T.
1980-01-01
Rb2CrCl4 is a nearly 2d-ferromagnetic, optically transparent insulator isomorphous with K2CuF4. High resolution neutron scattering data for temperatures below Tc = 52.4 K of the low energy long wavelength spin waves are presented and a Hartree-Fock analysis yields Hamiltonian parameters and accou...... and accounts for the renormalization. No evidence of a Bose condensate is found. A spin canting angle θ ≈ 2° is predicted....
Excitation and tailoring of diffractive spin-wave beams in NiFe using nonuniform microwave antennas
Körner, H. S.; Stigloher, J.; Back, C. H.
2017-09-01
We experimentally demonstrate by time-resolved scanning magneto-optical Kerr microscopy the possibility to locally excite multiple spin-wave beams in the dipolar-dominated regime in metallic NiFe films. For this purpose we employ differently shaped nonuniform microwave antennas consisting of several coplanar waveguide sections different in size, thereby adapting an approach for the generation of spin-wave beams in the exchange-dominated regime suggested by Gruszecki et al. [Sci. Rep. 6, 22367 (2016), 10.1038/srep22367]. The occurring spin-wave beams are diffractive and we show that the width of the beam and its widening as it propagates can be tailored by the shape and the length of the nonuniformity. Moreover, the propagation direction of the diffractive beams can be manipulated by changing the bias field direction.
Trifirò, Daniele; Gerosa, Davide; Berti, Emanuele; Kesden, Michael; Littenberg, Tyson; Sperhake, Ulrich
2015-01-01
Gravitational waves from coalescing binary black holes encode the evolution of their spins prior to merger. In the post-Newtonian regime and on the precession timescale, this evolution has one of three morphologies, with the spins either librating around one of two fixed points ("resonances") or circulating freely. In this work we perform full parameter estimation on resonant binaries with fixed masses and spin magnitudes, changing three parameters: a conserved "projected effective spin" $\\xi$ and resonant family $\\Delta\\Phi=0,\\pi$ (which uniquely label the source); the inclination $\\theta_{JN}$ of the binary's total angular momentum with respect to the line of sight (which determines the strength of precessional effects in the waveform); and the signal amplitude. We demonstrate that resonances can be distinguished for a wide range of binaries, except for highly symmetric configurations where precessional effects are suppressed. Motivated by new insight into double-spin evolution, we introduce new variables t...
Energy Technology Data Exchange (ETDEWEB)
Yi, Y.; Bishop, A.R. [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
1998-08-01
We study the spin-dependent geometric phase effect in mesoscopic rings of charge-density-wave (CDW) materials. When electron spin is explicitly taken into account, we show that the spin-dependent Aharonov-Casher phase can have pronounced frustration effects on such CDW materials with appropriate electron filling. We show that this frustration has observable consequences for transport experiments. We identify a phase transition from a Peierls insulator to metal, which is induced by spin-dependent phase interference effects. Mesoscopic CDW materials and spin-dependent geometric phase effects, and their interplay, are becoming attractive opportunities for exploitation with the rapid development of modern fabrication technology. {copyright} {ital 1998} {ital The American Physical Society}
Radiation losses and dark mode for spin-wave propagation through a discrete magnetic micro-waveguide
Barabanenkov, Yuri; Osokin, Sergey; Kalyabin, Dmitry; Nikitov, Sergey
2016-11-01
This paper presents the quantum mechanical type T -scattering operator approach to studying the forward volume magnetostatic spin-wave multiple scattering by a finite ensemble of cylindrical magnetic inclusions in a ferromagnetic thin film. The approach is applied to the problem of spin-wave excitation transfer along a linear chain of inclusions. The substantial results are deriving the optical theorem for the T -scattering operator and, as a consequence, deriving a formula for collective extinction cross section of inclusion ensemble, where only the first inclusion of the chain is irradiated by an incident narrow spin-wave beam. From this formula it can be shown that only irradiated inclusion makes a direct contribution in the collective extinction cross section of the total number of inclusions. In this case the direct summarized contribution of all the other inclusions from the chain into the spin-wave scattering is invisible; we call such phenomenon the dark mode. Applying a one-multipole and closest neighbor coupling approximation, we reveal a regime of distant resonant transfer for spin-wave excitation along the linear chain of an essentially big but finite number of particles with the dark mode. Because we also found a resonant mechanism of filtering this mode from radiation losses, the revealed regime shows that at resonant conditions the linear chain of magnetic inclusions can play the role of a spin-wave micro-waveguide, which transfers a signal over a big distance in a form of the dark mode, where the controllable level of radiation losses can tend to reach nearly zero values.
Black hole entropy quantization
Corichi, A; Fernandez-Borja, E; Corichi, Alejandro; Diaz-Polo, Jacobo; Fernandez-Borja, Enrique
2006-01-01
Ever since the pioneer works of Bekenstein and Hawking, black hole entropy has been known to have a quantum origin. Furthermore, it has long been argued by Bekenstein that entropy should be quantized in discrete (equidistant) steps given its identification with horizon area in (semi-)classical general relativity and the properties of area as an adiabatic invariant. This lead to the suggestion that black hole area should also be quantized in equidistant steps to account for the discrete black hole entropy. Here we shall show that loop quantum gravity, in which area is not quantized in equidistant steps can nevertheless be consistent with Bekenstein's equidistant entropy proposal in a subtle way. For that we perform a detailed analysis of the number of microstates compatible with a given area and show that an observed oscillatory behavior in the entropy-area relation, when properly interpreted yields an entropy that has discrete, equidistant values that are consistent with the Bekenstein framework.
Gukov, Sergei
2008-01-01
The problem of quantizing a symplectic manifold (M,\\omega) can be formulated in terms of the A-model of a complexification of M. This leads to an interesting new perspective on quantization. From this point of view, the Hilbert space obtained by quantization of (M,\\omega) is the space of (Bcc,B') strings, where Bcc and B' are two A-branes; B' is an ordinary Lagrangian A-brane, and Bcc is a space-filling coisotropic A-brane. B' is supported on M, and the choice of \\omega is encoded in the choice of Bcc. As an example, we describe from this point of view the representations of the group SL(2,R). Another application is to Chern-Simons gauge theory.
Kaplan, B.; Kaplan, R.
2014-12-01
We investigate the calculated spin wave gap of two-dimensional magnetic films under the combined influence of the in-plane direction of the applied magnetic field and different kinds of magnetic anisotropies. We also compute the spin wave gap as a function of the applied magnetic field at zero temperature. We discuss the results in connection with experimental data reported for epitaxial Fe-deficient yttrium garnet (YIG) films grown by pulsed laser deposition (PLD) technique onto the different faces of the Gd3Ga5O12 single crystal.
Nonperturbative effects in deformation quantization
Periwal, V
2000-01-01
The Cattaneo-Felder path integral form of the perturbative Kontsevich deformation quantization formula is used to explicitly demonstrate the existence of nonperturbative corrections to na\\"\\i ve deformation quantization.
Collective spin waves in reconfigurable artificial crystals and magnonic meta-materials
Grundler, Dirk
2014-03-01
Periodically nanopatterned ferromagnets have generated great interest in the research field of magnonics in that they support spin-wave (SW) nanochannels, allow for multi-directional emission of short-wavelength SWs via the grating coupler effect and form artificial crystals for SWs (magnons) in the GHz frequency regime. Allowed SW minibands and forbidden frequency gaps are not just tailored by the geometrical and material parameters, but reflect decisively the periodic order of the nanomagnets' remanent magnetization. Thereby a further degree of freedom is offered for controlling wave phenomena in solids compared to photonics and plasmonics. We investigated such so-called reconfigurable magnonic crystals (MCs) consisting of a one-dimensional (1D) array of permalloy nanostripes that allow one to vary the Brillouin zone boundaries, forbidden frequency gaps and number of SW minibands in one-and-the same device. When excited by a microwave antenna, an unexpected metamaterial property was found in that both reciprocal and nonreciprocal SW excitation occurred depending on the parallel and antiparallel alignment of magnetic moments in neighboring stripes. Such excitation characteristics are not found in natural materials. Switching an individual stripe from parallel to antiparallel magnetization in an otherwise saturated 1D MC modified the transmitted SW amplitude considerably offering SW control on the nanoscale. Combined with the grating coupler effect, periodically nanopatterned ferromagnets are expected to provide interesting building blocks for magnonic applications aiming at transmitting and processing information at microwave frequencies with spin waves. Funding from the European Community's 7th Framework Programme (FP7/2007-2013) under grant No. 228673 MAGNONICS, No. 247556 NoWaPhen, the DFG via GR1640/5-1 (SPP 1538) and the German Excellence Cluster `Nanosystems Initiative Munich (NIM)' is acknowledged.
Spinning particles and higher spin field equations
Bastianelli, Fiorenzo; Corradini, Olindo; Latini, Emanuele
2015-01-01
Relativistic particles with higher spin can be described in first quantization using actions with local supersymmetry on the worldline. First, we present a brief review of these actions and their use in first quantization. In a Dirac quantization scheme the field equations emerge as Dirac constraints on the Hilbert space, and we outline how they lead to the description of higher spin fields in terms of the more standard Fronsdal-Labastida equations. Then, we describe how these actions can be extended so that the propagating particle is allowed to take different values of the spin, i.e. carry a reducible representation of the Poincar\\'e group. This way one may identify a four dimensional model that carries the same degrees of freedom of the minimal Vasiliev's interacting higher spin field theory. Extensions to massive particles and to propagation on (A)dS spaces are also briefly commented upon.
Inelastic scattering of xenon atoms by quantized vortices in superfluids
Pshenichnyuk, I A
2016-01-01
We study inelastic interactions of particles with quantized vortices in superfluids by using a semi-classical matter wave theory that is analogous to the Landau two-fluid equations, but allows for the vortex dynamics. The research is motivated by recent experiments on xenon doped helium nanodroplets that show clustering of the impurities along the vortex cores. We numerically simulate the dynamics of trapping and interactions of xenon atoms by quantized vortices in superfluid helium and the obtained results can be extended to scattering of other impurities by quantized vortices. Different energies and impact parameters of incident particles are considered. We show that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex during the interaction even if there is no capture. The capture criterion of an impurity is formulated in terms of the binding energy.
Vector Potential Quantization and the Quantum Vacuum
Directory of Open Access Journals (Sweden)
Constantin Meis
2014-01-01
Full Text Available We investigate the quantization of the vector potential amplitude of the electromagnetic field to a single photon state starting from the fundamental link equations between the classical electromagnetic theory and the quantum mechanical expressions. The resulting wave-particle formalism ensures a coherent transition between the classical electromagnetic wave theory and the quantum representation. A quantization constant of the photon vector potential is defined. A new quantum vacuum description results directly in having very low energy density. The calculated spontaneous emission rate and Lambs shift for the nS states of the hydrogen atom are in agreement with quantum electrodynamics. This low energy quantum vacuum state might be compatible with recent astrophysical observations.
Quantized, piecewise linear filter network
DEFF Research Database (Denmark)
Sørensen, John Aasted
1993-01-01
A quantization based piecewise linear filter network is defined. A method for the training of this network based on local approximation in the input space is devised. The training is carried out by repeatedly alternating between vector quantization of the training set into quantization classes an...
The Necessity of Quantizing Gravity
Adelman, Jeremy
2015-01-01
The Eppley Hannah thought experiment is often cited as justification for attempts by theorists to develop a complete, consistent theory of quantum gravity. A modification of the earlier "Heisenberg microscope" argument for the necessity of quantized light, the Eppley-Hannah thought experiment purports to show that purely classical gravitational waves would either not conserve energy or else allow for violations of the uncertainty principle. However, several subsequent papers have cast doubt as to the validity of the Eppley-Hannah argument. In this paper, we attempt to resurrect the Eppley-Hannah thought experiment by modifying the original argument in such a manner as to render it immune to the present criticisms levied against it.
Banks of templates for directed searches of gravitational waves from spinning neutron stars
Pisarski, Andrzej; Pietka, Maciej
2010-01-01
We construct efficient banks of templates suitable for directed searches of almost monochromatic gravitational waves originating from spinning nuetron stars in our Galaxy in data being collected by currently operating interferometric detectors. We thus assume that the position of the gravitational-wave source in the sky is known, but we do not assume that the wave's frequency and its derivatives are a priori known. In the construction we employ simplified model of the signal with constant amplitude and phase which is a polynomial function of time. All our template banks enable usage of the fast Fourier transform algorithm in the computation of the maximum-likelihood F-statistic for nodes of the grids defining the bank. We study and employ the dependence of the grid's construction on the choice of the position of the observational interval with respect to the origin of time axis. We also study the usage of the fast Fourier transform algorithms with non-standard frequency resolutions achieved by zero padding or...
Rarita-Schwinger Quantum Free Field Via Deformation Quantization
Perez, B Carballo
2011-01-01
Rarita-Schwinger (RS) quantum free field is reexamined in the context of deformation quantization. It is found out that the subsidiary condition does not introduce any change either in the Wigner function or in other aspects of the deformation quantization formalism, in relation to the Dirac field case. This happens because the vector structure of the RS field imposes constraints on the space of wave function solutions and not on the operator structure. The RS propagator was also calculated within this formalism.
Kondrashov, A. V.; Ustinov, A. B.; Kalinikos, B. A.; Demokritov, S. O.
2016-11-01
This paper reports the first experimental study of broadband chaotic nonlinear spin- wave excitations which is formed through development of four-wave parametric processes in active ring oscillator based on metallized ferrite film. We find that an increase in the oscillation power leads to Hopf bifurcations sequence. Monochromatic, periodic quasi-periodic and chaotic excitations are observed. Spectra of the chaotic excitations consist of series of chaotic bands separated well in frequency. Parameters of the chaotic attractors are discussed.
Light-Front quantization of field theory
Srivastava, P P
1996-01-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincarè algebra and the LF Spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons.
DeBuvitz, William
2014-01-01
I am a volunteer reader at the Princeton unit of "Learning Ally" (formerly "Recording for the Blind & Dyslexic") and I recently discovered that high school students are introduced to the concept of quantization well before they take chemistry and physics. For the past few months I have been reading onto computer files a…
Revisiting Canonical Quantization
Klauder, John R
2012-01-01
Conventional canonical quantization procedures directly link various c-number and q-number quantities. Here, we advocate a different association of classical and quantum quantities that renders classical theory a natural subset of quantum theory with \\hbar>0. While keeping the good results of conventional procedures, some examples are noted where the new procedures offer better results than conventional ones.
Canton, Tito Dal; Lundgren, Andrew P; Nielsen, Alex B; Brown, Duncan A; Harry, Ian W; Krishnan, Badri; Miller, Andrew J; Wiesner, Karsten; Willis, Joshua L
2014-01-01
We study the effect of spins on searches for gravitational waves from compact binary coalescence events in realistic early advanced LIGO data. We construct a realistic detection pipeline which includes matched filtering, signal-based vetoes, coincidence tests between different detectors, clustering of events, and an estimate of the rate of background events. We restrict attention to neutron star--black hole (NS-BH) binary systems, and we compare a search using non-spinning templates to a search using templates which include spins aligned with the orbital angular momentum. We introduce a new implementation of the gravitational-wave matched-filter computation in a new software toolkit for gravitational-wave data analysis called PyCBC, and use this to run our search. We find that the inclusion of aligned-spin effects significantly improves the astrophysical reach of the search. If the dimensionless spin of the black hole in astrophysical NS-BH systems were uniformly distributed between (-1,1), the sensitive volu...
Privitera, Stephen; Ajith, Parameswaran; Cannon, Kipp; Fotopoulos, Nickolas; Frei, Melissa A; Hanna, Chad; Weinstein, Alan J; Whelan, John T
2014-01-01
We demonstrate the implementation of a sensitive search pipeline for gravitational waves from coalescing binary black holes whose components have spins aligned with the orbital angular momentum. We study the pipeline recovery of simulated gravitational wave signals from aligned-spin binary black holes added to real detector noise, comparing the pipeline performance with aligned-spin filter templates to the same pipeline with non-spinning filter templates. Our results exploit a three-parameter phenomenological waveform family that models the full inspiral-merger-ringdown coalescence and treats the effect of aligned spins with a single effective spin parameter \\chi. We construct template banks from these waveforms by a stochastic placement method and use these banks as filters in the recently-developed gstlal search pipeline. We measure the observable volume of the analysis pipeline for binary black hole signals with total mass in [15,25] solar masses and \\chi in [0, 0.85]. We find an increase in observable vol...
Size dependence of spin-wave modes in Ni80Fe20 nanodisks
Lupo, P.; Kumar, D.; Adeyeye, A. O.
2015-07-01
We investigate the radial and azimuthal spin-wave (SW) resonance modes in permalloy (Py: Ni80Fe20) disks at zero external magnetic field, as function of disk diameter and thickness, using broadband ferromagnetic resonance spectroscopy. We observed, from both experimental and micromagnetic simulation results that the number of SW absorption peaks increases with disk diameter. Numerically calculated SW mode profiles revealed a characteristic minimum size, which does not scale proportionately with the increasing disk diameter. We show that higher order modes could thus be avoided with an appropriate choice of the disk diameter (smaller than the minimum mode size). Moreover, based on the mode profiles, the existence of azimuthal SW modes with even number of crests or troughs can be ruled out. These results could be useful in enhancing our fundamental understanding as well as engineering of new magnonic devices.
Directory of Open Access Journals (Sweden)
Hamidreza Emamipour
2013-01-01
Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.
Size dependence of spin-wave modes in Ni80Fe20 nanodisks
Directory of Open Access Journals (Sweden)
P. Lupo
2015-07-01
Full Text Available We investigate the radial and azimuthal spin-wave (SW resonance modes in permalloy (Py: Ni80Fe20 disks at zero external magnetic field, as function of disk diameter and thickness, using broadband ferromagnetic resonance spectroscopy. We observed, from both experimental and micromagnetic simulation results that the number of SW absorption peaks increases with disk diameter. Numerically calculated SW mode profiles revealed a characteristic minimum size, which does not scale proportionately with the increasing disk diameter. We show that higher order modes could thus be avoided with an appropriate choice of the disk diameter (smaller than the minimum mode size. Moreover, based on the mode profiles, the existence of azimuthal SW modes with even number of crests or troughs can be ruled out. These results could be useful in enhancing our fundamental understanding as well as engineering of new magnonic devices.
Quantum oscillations in the anomalous spin density wave state of FeAs
Campbell, Daniel J.; Eckberg, Chris; Wang, Kefeng; Wang, Limin; Hodovanets, Halyna; Graf, Dave; Parker, David; Paglione, Johnpierre
2017-08-01
Quantum oscillations in the binary antiferromagnetic metal FeAs are presented and compared to theoretical predictions for the electronic band structure in the anomalous spin density wave state of this material. Demonstrating a method for growing single crystals out of Bi flux, we utilize the highest quality FeAs to perform torque magnetometry experiments up to 35 T, using rotations of field angle in two planes to provide evidence for one electron and one hole band in the magnetically ordered state. The resulting picture agrees with previous experimental evidence for multiple carriers at low temperatures, but the exact Fermi surface shape differs from predictions, suggesting that correlations play a role in deviation from ab initio theory and cause up to a fourfold enhancement in the effective carrier mass.
Integrable Open Spin Chain in Super Yang-Mills and the Plane-wave/SYM duality
Chen, B; Wu, Y S; Chen, Bin; Wang, Xiao-Jun; Wu, Yong-Shi
2004-01-01
We investigate the integrable structures in an N=2 superconfomal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, N=4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic operators is identified with the Hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime.
Integrable open spin chain in super Yang-Mills and the plane-wave/SYM duality
Chen, Bin; Wang, Xiao-Jun; Wu, Yong-Shi
2004-02-01
We investigate the integrable structures in an Script N = 2 superconformal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, Script N = 4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic scalar operators is identified with the hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime.
Frequency domain reduced order models for gravitational waves from aligned-spin black-hole binaries
Pürrer, Michael
2014-01-01
Black-hole binary coalescences are one of the most promising sources for the first detection of gravitational waves. Fast and accurate theoretical models of the gravitational radiation emitted from these coalescences are highly important for the detection and extraction of physical parameters. Spinning effective-one-body (EOB) models for binaries with aligned spins have been shown to be highly faithful, but are slow to generate and thus have not yet been used for parameter estimation studies. I provide a frequency-domain singular value decomposition (SVD)-based surrogate reduced order model that is thousands to hundred thousands times faster for typical system masses and has a faithfulness mismatch of better than $\\sim 0.1\\%$ with the original SEOBNRv1 model for advanced LIGO detectors. This model enables parameter estimation studies up to signal-to-noise ratios (SNRs) of 20 and even up to SNR 50 for masses below $50 M_\\odot$. This article discusses various choices for approximations and interpolation over th...
Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains
Tanveer, M.; Ruiz-Díaz, P.; Pastor, G. M.
2016-09-01
The electronic and magnetic properties of one-dimensional (1D) 3 d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation Δ E (q ⃗) as a function of the spin-density-wave vector q ⃗. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for Δ E (q ⃗) , the local magnetic moments μ⃗i at atom i , the magnetization-vector density m ⃗(r ⃗) , and the local electronic density of states ρi σ(ɛ ) . The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions Ji j between the local magnetic moments μ⃗i and μ⃗j are derived by fitting the ab initio Δ E (q ⃗) to a classical 1D Heisenberg model. The dominant competing interactions Ji j at the origin of the NC magnetic order are identified. The interplay between the various Ji j is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.
Long-range spin wave mediated control of defect qubits in nanodiamonds
Energy Technology Data Exchange (ETDEWEB)
Andrich, Paolo; de las Casas, Charles F.; Liu, Xiaoying; Bretscher, Hope L.; Berman, Jonson R.; Heremans, F. Joseph; Nealey, Paul F.; Awschalom, David D.
2017-07-17
Hybrid architectures that combine nitrogen-vacancy (NV) centers in diamond with other materials and physical systems have been proposed to enhance the NV center’s capabilities in many quantum sensing and information applications. In particular, spin waves (SWs) in ferromagnetic materials are a promising candidate to implement these platforms due to their strong magnetic fields, which could be used to efficiently interact with the NV centers. Here we develop an yttrium iron garnet-nanodiamond hybrid architecture constructed with the help of directed assembly and transfer printing techniques. Operating at ambient conditions, we demonstrate that surface confined SWs excited in the ferromagnet (FM) can strongly amplify the interactions between a microwave source and the NV centers by enhancing the local microwave magnetic field by several orders of magnitude. Crucially, we show the existence of a regime in which coherent interactions between SWs and NV centers dominate over incoherent mechanisms associated with the broadband magnetic field noise generated by the FM. These accomplishments enable the SW mediated coherent control of spin qubits over distances larger than 200 um, and allow low power operations for future spintronic technologies.
Zitterbewegung, internal momentum and spin of the circular travelling wave electromagnetic electron
Asif, Malik Mohammad
2016-01-01
The study of this paper demonstrates that electron has Dirac delta like internal momentum (u,p_{{\\theta}}), going round in a circle of radius equal to half the reduced Compton wavelength of electron with tangential velocity c. The circular momentum p_{{\\theta}} and energy u emanate from circular Dirac delta type rotating monochromatic electromagnetic (EM) wave that itself travels in another circle having radius equal to the reduced Compton wavelength of electron. The phenomenon of Zitterbewegung and the spin of electron are the natural consequences of the model. The spin is associated with the internal circulating momentum of electron in terms of four component spinor, which leads to the Dirac equation linking the EM electron model with quantum mechanical theory. Our model accurately explains the experimental results of electron channelling experiment, [P. Catillon et al., Found.Phys. 38, 659 (2008)], in which the momentum resonance is observed at 161.784MeV/c corresponding to Zitterbewegung frequency of 80.8...
Lin, C S; Lim, H S; Wang, Z K; Ng, S C; Kuok, M H; Adeyeye, A O
2011-03-01
An understanding of the spin dynamics of nanoscale magnetic elements is important for their applications in magnetic sensing and storage. Inhomogeneity of the demagnetizing field in a non-ellipsoidal magnetic element results in localization of spin waves near the edge of the element. However, relative little work has been carried out to investigate the effect of the applied magnetic fields on the nature of such localized modes. In this study, micromagnetic simulations are performed on an equilateral triangular nanomagnet to investigate the magnetic field dependence of the mode profiles of the lowest-frequency spin wave. Our findings reveal that the lowest-frequency mode is localized at the base edge of the equilateral triangle. The characteristics of its mode profile change with the ground state magnetization configuration of the nanotriangle, which, in turn, depends on the magnitude of the in-plane applied magnetic field.
BRST quantization of cosmological perturbations
Energy Technology Data Exchange (ETDEWEB)
Armendariz-Picon, Cristian [Physics Department, St. Lawrence University,Canton, NY 13617 (United States); Şengör, Gizem [Department of Physics, Syracuse University,Syracuse, NY 13244 (United States)
2016-11-08
BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.
BRST Quantization of Cosmological Perturbations
Armendariz-Picon, Cristian
2016-01-01
BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to the perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas quantization in synchronous gauge, which amounts to Dirac quantization, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.
Deformation quantization and Nambu mechanics
Dito, G; Sternheimer, D; Takhtajan, L A; Dito, Giuseppe; Flato, Moshe; Sternheimer, Daniel; Takhtajan, Leon
1996-01-01
Starting from deformation quantization (star-products), the quantization problem of Nambu Mechanics is investigated. After considering some impossibilities and pushing some analogies with field quantization, a solution to the quantization problem is presented in what we call the Zariski quantization of fields (observables, functions, in this case polynomials). This quantization is based on the factorization over {\\Bbb R} of polynomials in several real variables. We quantize the algebra of fields generated by the polynomials by defining a deformation of this algebra which is Abelian, associative and distributive. This procedure is then adapted to derivatives (needed for the Nambu brackets), which ensures the validity of the Fundamental Identity of Nambu Mechanics also at the quantum level. Our construction is in fact more general than the particular case considered here: it can be utilized for quite general defining identities and for much more general star-products.
Ma, Wen-Long; Liu, Ren-Bao
2016-08-01
Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.
Directory of Open Access Journals (Sweden)
Shenghan Jiang
2014-09-01
Full Text Available Recently, two interesting candidate quantum phases—the chiral spin-density wave state featuring anomalous quantum Hall effect and the d+id superconductor—were proposed for the Hubbard model on the honeycomb lattice at 1/4 doping. Using a combination of exact diagonalization, density matrix renormalization group, the variational Monte Carlo method, and quantum field theories, we study the quantum phase diagrams of both the Hubbard model and the t-J model on the honeycomb lattice at 1/4 doping. The main advantage of our approach is the use of symmetry quantum numbers of ground-state wave functions on finite-size systems (up to 32 sites to sharply distinguish different quantum phases. Our results show that for 1≲U/t<40 in the Hubbard model and for 0.1
Spin density waves predicted in zigzag puckered phosphorene, arsenene and antimonene nanoribbons
Wu, Xiaohua; Zhang, Xiaoli; Wang, Xianlong; Zeng, Zhi
2016-04-01
The pursuit of controlled magnetism in semiconductors has been a persisting goal in condensed matter physics. Recently, Vene (phosphorene, arsenene and antimonene) has been predicted as a new class of 2D-semiconductor with suitable band gap and high carrier mobility. In this work, we investigate the edge magnetism in zigzag puckered Vene nanoribbons (ZVNRs) based on the density functional theory. The band structures of ZVNRs show half-filled bands crossing the Fermi level at the midpoint of reciprocal lattice vectors, indicating a strong Peierls instability. To remove this instability, we consider two different mechanisms, namely, spin density wave (SDW) caused by electron-electron interaction and charge density wave (CDW) caused by electron-phonon coupling. We have found that an antiferromagnetic Mott-insulating state defined by SDW is the ground state of ZVNRs. In particular, SDW in ZVNRs displays several surprising characteristics:1) comparing with other nanoribbon systems, their magnetic moments are antiparallelly arranged at each zigzag edge and almost independent on the width of nanoribbons; 2) comparing with other SDW systems, its magnetic moments and band gap of SDW are unexpectedly large, indicating a higher SDW transition temperature in ZVNRs; 3) SDW can be effectively modified by strains and charge doping, which indicates that ZVNRs have bright prospects in nanoelectronic device.
A possible scheme for measuring gravitational waves by using a spinful quantum fluid
Directory of Open Access Journals (Sweden)
Cheng Yao
2014-06-01
Full Text Available A method is proposed for measuring gravitational waves (GWs from the collective electromagnetic (EM response of a spinful quantum fluid, based on recent studies of the long-lived Mössbauer state 93mNb in a pure Nb crystal. A pronounced EM response was found for the geometric phase by rotating the sample in a magnetic field, suggesting that GWs could also be detected. It was recently suggested that the macroscopic wave functions confined in two twisted nonspherical superconductors would give a geometrical phase oscillation induced by GWs. The sensitivity to GWs would be inversely proportional to the square of the bound length, which is the detector size. The proposed sensitivity to GWs would be dramatically enhanced by changing the characteristic size, i.e., using the microscopic size of a non-spherical particle instead of the macroscopic detector size of a scalar quantum fluid. The collective EM response from the quantum fluid would allow the macroscopic geometrical phase to be read from microscopic particles. GWs in the millihertz range, with amplitude of 10−22, would be detectable.
Fourth order wave equation in Bhabha-Madhavarao spin-$\\frac{3}{2}$ theory
Markov, Yu A; Bondarenko, A I
2016-01-01
Within the framework of the Bhabha-Madhavarao formalism, a consistent approach to the derivation of a system of the fourth order wave equations for the description of a spin-$\\frac{3}{2}$ particle is suggested. For this purpose an additional algebraic object, the so-called $q$-commutator ($q$ is a primitive fourth root of unity) and a new set of matrices $\\eta_{\\mu}$, instead of the original matrices $\\beta_{\\mu}$ of the Bhabha-Madhavarao algebra, are introduced. It is shown that in terms of the $\\eta_{\\mu}$ matrices we have succeeded in reducing a procedure of the construction of fourth root of the fourth order wave operator to a few simple algebraic transformations and to some operation of the passage to the limit $z \\rightarrow q$, where $z$ is some (complex) deformation parameter entering into the definition of the $\\eta$-matrices. In addition, a set of the matrices ${\\cal P}_{1/2}$ and ${\\cal P}_{3/2}^{(\\pm)}(q)$ possessing the properties of projectors is introduced. These operators project the matrices ...
Dey, Santanu; Sensarma, Rajdeep
2016-12-01
We propose an experimental setup using ultracold atoms to implement a bilayer honeycomb lattice with Bernal stacking. In the presence of a potential bias between the layers and at low densities, fermions placed in this lattice form an annular Fermi sea. The presence of two Fermi surfaces leads to interesting patterns in Friedel oscillations and RKKY interactions in the presence of impurities. Furthermore, a repulsive fermion-fermion interaction leads to a Stoner instability towards an incommensurate spin density wave order with a wave vector equal to the thickness of the Fermi sea. The instability occurs at a critical interaction strength which goes down with the density of the fermions. We find that the instability survives interaction renormalization due to vertex corrections and discuss how this can be seen in experiments. We also track the renormalization group flows of the different couplings between the fermionic degrees of freedom, and find that there are no perturbative instabilities, and that Stoner instability is the strongest instability which occurs at a critical threshold value of the interaction. The critical interaction goes to zero as the chemical potential is tuned towards the band bottom.
Goos-Hänchen effect and bending of spin wave beams in thin magnetic films
Gruszecki, P.; Romero-Vivas, J.; Dadoenkova, Yu. S.; Dadoenkova, N. N.; Lyubchanskii, I. L.; Krawczyk, M.
2014-12-01
For magnon spintronic applications, the detailed knowledge of spin wave (SW) beam dispersion, transmission (reflection) of SWs passing through (reflected from) interfaces, or borders or the scattering of SWs by inhomogeneities is crucial. These wave properties are decisive factors on the usefulness of a particular device. Here, we demonstrate, using micromagnetic simulations supported by an analytical model, that the Goos-Hänchen (GH) shift exists for SW reflecting from thin film edge and that with the effect becomes observable. We show that this effect will exist for a broad range of frequencies in the dipole-exchange range, with the magnetization degree of pinning at the film edge as the crucial parameter, whatever its nature. Moreover, we have also found that the GH effect can be accompanied or even dominating by a bending of the SW beam due to the inhomogeneity of the internal magnetic field. This inhomogeneity, created by demagnetizing field taking place at the film edge, causes gradual change of SWs refractive index. The refraction of the SW beams by the non-uniformity of the magnetic field enables the exploration of graded index magnonics and metamaterial properties for the transmission and processing of information at nanoscale.
Goos-Hänchen effect and bending of spin wave beams in thin magnetic films
Energy Technology Data Exchange (ETDEWEB)
Gruszecki, P., E-mail: pawel.gruszecki@amu.edu.pl; Krawczyk, M., E-mail: krawczyk@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań 61-614 (Poland); Romero-Vivas, J. [Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland); Dadoenkova, Yu. S.; Dadoenkova, N. N. [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine); Ulyanovsk State University, 42 Leo Tolstoy str., 432000 Ulyanovsk (Russian Federation); Lyubchanskii, I. L. [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine)
2014-12-15
For magnon spintronic applications, the detailed knowledge of spin wave (SW) beam dispersion, transmission (reflection) of SWs passing through (reflected from) interfaces, or borders or the scattering of SWs by inhomogeneities is crucial. These wave properties are decisive factors on the usefulness of a particular device. Here, we demonstrate, using micromagnetic simulations supported by an analytical model, that the Goos-Hänchen (GH) shift exists for SW reflecting from thin film edge and that with the effect becomes observable. We show that this effect will exist for a broad range of frequencies in the dipole-exchange range, with the magnetization degree of pinning at the film edge as the crucial parameter, whatever its nature. Moreover, we have also found that the GH effect can be accompanied or even dominating by a bending of the SW beam due to the inhomogeneity of the internal magnetic field. This inhomogeneity, created by demagnetizing field taking place at the film edge, causes gradual change of SWs refractive index. The refraction of the SW beams by the non-uniformity of the magnetic field enables the exploration of graded index magnonics and metamaterial properties for the transmission and processing of information at nanoscale.
Quantized Anomalous Hall Effect in Magnetic Topological Insulators
Institute of Scientific and Technical Information of China (English)
YU Rui
2011-01-01
@@ The Hall effect, the anomalous Hall effect (AHE) and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively.The AHE, in which a voltage transverse to the electric current appears even in the absence of an external magnetic field, was first detected in ferromagnetic (FM) metals in 1881 and later found to arise from the spin-orbit coupling (SOC) between the current and magnetic moments.Recent progress on the mechanism of AHE has established a link between the AHE and the topological nature of the Hall current by adopting the Berry-phase concepts in close analogy to the intrinsic spin Hall effect.Given the experimental discovery of the quantum Hall and the quantum spin Hall effects, it is natural to ask whether the AHE can also be quantized.In a quantized anomalous Hall (QAH) insulator, spontaneous magnetic moments and spin-orbit coupling combine to give rise to a topologically non-trivial electronic structure, leading to the quantized Hall effect without any external magnetic field.
Resurgence matches quantization
Couso-Santamaría, Ricardo; Mariño, Marcos; Schiappa, Ricardo
2017-04-01
The quest to find a nonperturbative formulation of topological string theory has recently seen two unrelated developments. On the one hand, via quantization of the mirror curve associated to a toric Calabi–Yau background, it has been possible to give a nonperturbative definition of the topological-string partition function. On the other hand, using techniques of resurgence and transseries, it has been possible to extend the string (asymptotic) perturbative expansion into a transseries involving nonperturbative instanton sectors. Within the specific example of the local {{{P}}2} toric Calabi–Yau threefold, the present work shows how the Borel–Padé–Écalle resummation of this resurgent transseries, alongside occurrence of Stokes phenomenon, matches the string-theoretic partition function obtained via quantization of the mirror curve. This match is highly non-trivial, given the unrelated nature of both nonperturbative frameworks, signaling at the existence of a consistent underlying structure.
Improved Lattice Radial Quantization
Brower, Richard C; Fleming, George T
2014-01-01
Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider here the use of the Finite Element Methods(FEM) to descretize the universally-equivalent $\\phi^4$ Lagrangian on $\\mathbb R \\times \\mathbb S^2$. It is argued that this lattice regularization will approach the exact conformal theory at the Wilson-Fisher fixed point in the continuum. Numerical tests are underway to support this conjecture.
Resurgence Matches Quantization
Couso-Santamaría, Ricardo; Schiappa, Ricardo
2016-01-01
The quest to find a nonperturbative formulation of topological string theory has recently seen two unrelated developments. On the one hand, via quantization of the mirror curve associated to a toric Calabi-Yau background, it has been possible to give a nonperturbative definition of the topological-string partition function. On the other hand, using techniques of resurgence and transseries, it has been possible to extend the string (asymptotic) perturbative expansion into a transseries involving nonperturbative instanton sectors. Within the specific example of the local P2 toric Calabi-Yau threefold, the present work shows how the Borel-Pade-Ecalle resummation of this resurgent transseries, alongside occurrence of Stokes phenomenon, matches the string-theoretic partition function obtained via quantization of the mirror curve. This match is highly non-trivial, given the unrelated nature of both nonperturbative frameworks, signaling at the existence of a consistent underlying structure.
Directory of Open Access Journals (Sweden)
B.Karuna kumar
2009-09-01
Full Text Available Fingerprints are today the most widely used biometric features for personal identification. With the increasing usage of biometric systems the question arises naturally how to store and handle the acquired sensor data. Our algorithm for the digitized images is based on adaptive uniform scalar quantization of discrete wavelet transform sub band decomposition. This technique referred to as the wavelet scalar quantization method. The algorithm produces archival quality images at compression ratios of around 15 to 1 and will allow the current database of paper finger print cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.
Energy Technology Data Exchange (ETDEWEB)
Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-01-15
The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.
Analysis of quantization noise and state estimation with quantized measurements
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The approximate correction of the additive white noise model in quantized Kalman filter is investigated under certain conditions. The probability density function of the error of quantized measurements is analyzed theoretically and experimentally. The analysis is based on the probability theory and nonparametric density estimation technique, respectively. The approximator of probability density function of quantized measurement noise is given. The numerical results of nonparametric density estimation algori...
Directory of Open Access Journals (Sweden)
J. Mok
2016-08-01
Full Text Available We investigate light spins for cylindrical electromagnetic waves on resonance. To this goal, we consider both a dielectric cylinder of infinite length immersed in vacuum and a cylindrical hole punched through a dense dielectric medium. In order for waves of constant frequencies to be established through lossless media, energy absorption is allowed in the surrounding medium to compensate for radiation loss. The dispersion relation is then numerically solved for an asymmetry parameter implying a balance in energy exchange. Numerical studies are performed by varying parameters of refractive index contrast, azimuthal mode index, and size parameter of a cylindrical object. The resulting data is presented mostly in terms of a specific spin, defined as light spin per energy density. This specific spin is found to be bounded in its magnitude, with its maximum associated with either optical vortices or large rotations. Depending on parametric combinations, the specific spin could not only undergo finite jumps across the material interface but also exhibit limit behaviors.
Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.
2008-08-01
We report on the methods and results of the first dedicated search for gravitational waves emitted during the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection template family specially designed to capture the effects of the spin-induced precession of the orbital plane. We present details of the techniques developed to enable this search for spin-modulated gravitational waves, highlighting the differences between this and other recent searches for binaries with nonspinning components. The template bank we employed was found to yield high matches with our spin-modulated target waveform for binaries with masses in the asymmetric range 1.0M⊙
带有磁性杂质的量子线中自旋相关传输%Spin-Dependent Transport through a Quantum Wire with Magnetic Impurity
Institute of Scientific and Technical Information of China (English)
汪源; 宋小龙; 黄豪; 施耀铭
2005-01-01
Spin-dependent transmission coefficients as a function of Fermi energy is calculated for electron scattering from magnetic impurity in a narrow quantum wire, in which spin-exchange interaction between conducting electron and the impurity leads to exchange spin-flip scattering. Transmission in the spin-flipped channels is explicitly calculated. It has been found that spin-up and spin-down transmission coefficients for intrasubband and intersubband enhance Fano-resonance profiles, which have asymmetric behaviors, whenever Fermi energy crosses bottom of every subband below. Meanwhile due to dephasing of electron wave caused by spin-flip scattering,the entanglement between spin states of electron and magnetic impurity obviously destroys the global step structure of quantized conductance and suppresses the height of the conductance step.
Light-Front Quantization of Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Brodskey, Stanley
2002-12-01
Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.
Quantization of rotating linear dilaton black holes
Sakalli, I
2014-01-01
In this paper, we firstly prove that the adiabatic invariant quantity, which is commonly used in the literature for quantizing the rotating black holes (BHs) is fallacious. We then show how its corrected form should be. The main purpose of this paper is to study the quantization of 4-dimensional rotating linear dilaton black hole (RLDBH) spacetime describing with an action, which emerges in the Einstein-Maxwell-Dilaton-Axion (EMDA) theory. The RLDBH spacetime has a non-asymptotically flat (NAF) geometry. They reduces to the linear dilaton black hole (LDBH) metric when vanishing its rotation parameter "a". While studying its scalar perturbations, it is shown that the Schr\\"odinger-like wave equation around the event horizon reduces to a confluent hypergeometric differential equation. Then the associated complex frequencies of the quasinormal modes (QNMs) are computed. By using those QNMs in the true definition of the rotational adiabatic invariant quantity, we obtain the quantum spectra of entropy/area for the...
Neural net approach to predictive vector quantization
Mohsenian, Nader; Nasrabadi, Nasser M.
1992-11-01
A new predictive vector quantization (PVQ) technique, capable of exploring the nonlinear dependencies in addition to the linear dependencies that exist between adjacent blocks of pixels, is introduced. Two different classes of neural nets form the components of the PVQ scheme. A multi-layer perceptron is embedded in the predictive component of the compression system. This neural network, using the non-linearity condition associated with its processing units, can perform as a non-linear vector predictor. The second component of the PVQ scheme vector quantizes (VQ) the residual vector that is formed by subtracting the output of the perceptron from the original wave-pattern. Kohonen Self-Organizing Feature Map (KSOFM) was utilized as a neural network clustering algorithm to design the codebook for the VQ technique. Coding results are presented for monochrome 'still' images.
Quantization Procedures; Sistemas de cuantificacion
Energy Technology Data Exchange (ETDEWEB)
Cabrera, J. A.; Martin, R.
1976-07-01
We present in this work a review of the conventional quantization procedure, the proposed by I.E. Segal and a new quantization procedure similar to this one for use in non linear problems. We apply this quantization procedures to different potentials and we obtain the appropriate equations of motion. It is shown that for the linear case the three procedures exposed are equivalent but for the non linear cases we obtain different equations of motion and different energy spectra. (Author) 16 refs.
System Identification with Quantized Observations
Wang, Le Yi; Zhang, Jifeng; Zhao, Yanlong
2010-01-01
This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification,
Holonomy Operator and Quantization Ambiguities on Spinor Space
Livine, Etera R
2013-01-01
We construct the holonomy-flux operator algebra in the recently developed spinor formulation of loop gravity. We show that, when restricting to SU(2)-gauge invariant operators, the familiar grasping and Wilson loop operators are written as composite operators built from the gauge-invariant `generalized ladder operators' recently introduced in the U(N) approach to intertwiners and spin networks. We comment on quantization ambiguities that appear in the definition of the holonomy operator and use these ambiguities as a toy model to test a class of quantization ambiguities which is present in the standard regularization and definition of the Hamiltonian constraint operator in loop quantum gravity.
Quantized Fields in a Nonlinear Dielectric Medium A Microscopic Approach
Hillery, M; Hillery, Mark; Mlodinow, Leonard
1997-01-01
Theories which have been used to describe the quantized electromagnetic field interacting with a nonlinear dielectric medium are either phenomenological or derived by quantizing the macroscopic Maxwell equations. Here we take a different approach and derive a Hamiltonian describing interacting fields from one which contains both field and matter degrees of freedom. The medium is modelled as a collection of two-level atoms, and these interact with the electromagnetic field. The atoms are grouped into effective spins and the Holstein- Primakoff representation of the spin operators is used to expand them in one over the total spin. When the lowest-order term is combined with the free atomic and field Hamiltonians, a theory of noninteracting polaritons results. When higher-order terms are expressed in terms of polariton operators, standard nonlinear optical interactions emerge.
Nematollahi, Delaram; Zhang, Qimin; Altermatt, Joseph; Zhong, Shan; Goodman, Matthew; Bhagat, Anita; Schwettmann, Arne
2016-05-01
We present our apparatus designed to study matter-wave quantum optics in spin space, including our recently finished vacuum system and laser systems. Microwave-dressed spin-exchange collisions in a sodium spinor Bose-Einstein condensate provide a precisely controllable nonlinear interaction that generates squeezing and acts as a source of entanglement. As a consequence of this entanglement between atoms with magnetic quantum numbers m = +1 and m = -1, the noise of population measurements can be reduced below the shot noise. Versatile microwave pulse sequences will be used to implement an interferometer, a phase-sensitive amplifier and other devices. With an added ion detector to detect Rydberg atoms via pulsed-field ionization, we plan to study the effect of Rydberg excitations on the spin evolution of the ultracold gas.
Quantization of submanifold embeddings
Energy Technology Data Exchange (ETDEWEB)
Bahns, Dorothea; Zahn, Jochen [Courant Research Centre ' ' Higher Order Structures' ' , Universitaet Goettingen (Germany); Rejzner, Katarzyna [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)
2013-07-01
We describe a perturbative quantization of the embedding of d-dimensional submanifolds into n-dimensional Minkowski space, based on suitable generalizations of the Nambu-Goto action. We use tools from perturbative algebraic quantum field theory, quantum field theory on curved spacetimes, and the Batalin-Vilkovisky formalism. The resulting theory is perturbatively non-renormalizable, but well-defined as an effective theory, i.e., there are no anomalies, for any dimension d,n. In particular there is no critical dimension for the case of string theory (d=2).
Generalized Superfield Lagrangian Quantization
Lavrov, P M; Moshin, P Y
2002-01-01
We consider an extension of the gauge-fixing procedure in the framework of the Lagrangian superfield BRST and BRST-antiBRST quantization schemes for arbitrary gauge theories, taking into account the possible ambiguity in the choice of the superfield antibracket. We show that this ambiguity is fixed by the algebraic properties of the antibracket and the form of the BRST and antiBRST transformations, realized in terms of superspace translations. The Ward identities related to the generalized gauge-fixing procedure are obtained.
Quantizing Earth surface deformations
Directory of Open Access Journals (Sweden)
C. O. Bowin
2015-03-01
Full Text Available The global analysis of Bowin (2010 used the global 14 absolute Euler pole set (62 Myr history from Gripp and Gordon (1990 and demonstrated that plate tectonics conserves angular momentum. We herein extend that analysis using the more detailed Bird (2003 52 present-day Euler pole set (relative to a fixed Pacific plate for the Earth's surface, after conversion to absolute Euler poles. Additionally, new analytical results now provide new details on upper mantle mass anomalies in the outer 200 km of the Earth, as well as an initial quantizing of surface deformations.
Optimization of frequency quantization
Tibabishev, V N
2011-01-01
We obtain the functional defining the price and quality of sample readings of the generalized velocities. It is shown that the optimal sampling frequency, in the sense of minimizing the functional quality and price depends on the sampling of the upper cutoff frequency of the analog signal of the order of the generalized velocities measured by the generalized coordinates, the frequency properties of the analog input filter and a maximum sampling rate for analog-digital converter (ADC). An example of calculating the frequency quantization for two-tier ADC with an input RC filter.
Covariant Quantization with Extended BRST Symmetry
Geyer, B; Lavrov, P M
1999-01-01
A short rewiev of covariant quantization methods based on BRST-antiBRST symmetry is given. In particular problems of correct definition of Sp(2) symmetric quantization scheme known as triplectic quantization are considered.
Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction
Labousse, Matthieu; Perrard, Stéphane; Couder, Yves; Fort, Emmanuel
2016-10-01
The back-reaction of a radiated wave on the emitting source is a general problem. In the most general case, back-reaction on moving wave sources depends on their whole history. Here we study a model system in which a pointlike source is piloted by its own memory-endowed wave field. Such a situation is implemented experimentally using a self-propelled droplet bouncing on a vertically vibrated liquid bath and driven by the waves it generates along its trajectory. The droplet and its associated wave field form an entity having an intrinsic dual particle-wave character. The wave field encodes in its interference structure the past trajectory of the droplet. In the present article we show that this object can self-organize into a spinning state in which the droplet possesses an orbiting motion without any external interaction. The rotation is driven by the wave-mediated attractive interaction of the droplet with its own past. The resulting "memory force" is investigated and characterized experimentally, numerically, and theoretically. Orbiting with a radius of curvature close to half a wavelength is shown to be a memory-induced dynamical attractor for the droplet's motion.
Lmai, F.; Moubah, R.; El Amiri, A.; Abid, Y.; Soumahoro, I.; Hassanain, N.; Colis, S.; Schmerber, G.; Dinia, A.; Lassri, H.
2016-07-01
We investigate the magnetic and optical properties of Zn1-xFexO (x = 0, 0.03, 0.05, and 0.07) thin films grown by spray pyrolysis technique. The magnetization as a function of temperature [M (T)] shows a prevailing paramagnetic contribution at low temperature. By using spin wave theory, we separate the M (T) curve in two contributions: one showing intrinsic ferromagnetism and one showing a purely paramagnetic behavior. Furthermore, it is shown that the spin wave theory is consistent with ab-initio calculations only when oxygen vacancies are considered, highlighting the key role played by structural defects in the mechanism driving the observed ferromagnetism. Using UV-visible measurements, the transmittance, reflectance, band gap energy, band tail, dielectric coefficient, refractive index, and optical conductivity were extracted and related to the variation of the Fe content.
Dutta, Sourav; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Naeemi, Azad
2015-11-01
The possibility of achieving phase-dependent deterministic switching of the magnetoelectric spin wave detector in the presence of thermal noise has been discussed. The proposed idea relies on the modification of the energy landscape by partially canceling the out-of-plane demagnetizing field and the resultant change in the intrinsic magnetization dynamics to drive the nanomagnet towards a preferential final magnetization state. The remarkable increase in the probability of successful switching can be accounted for by the shift in the location of the saddle point in the energy landscape and a resultant change in the nature of the relaxation dynamics of the magnetization from a highly precessional to a fairly damped one and an increased dependence on the initial magnetization values, a crucial requirement for phase-dependent spin wave detection.
Spin polarization driven by a charge-density wave in monolayer 1T−TaS2
Zhang, Qingyun
2014-08-06
Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.
Propagation of pulsed surface spin-wave signals at millikelvin temperatures
van Loo, Arjan; Morris, Richard; Karenowska, Alexy
Propagating microwave-frequency magnons in magnetic films attract increasing attention on account of their potential interface with superconducting quantum circuit and qubit systems. Their rich dynamics and slow speeds make magnons an interesting addition to the circuit quantum electrodynamics toolbox and, at the same time, superconducting circuit technology promises to be a powerful tool in the investigation of their quantum properties. We have studied the propagation of pulsed surface spin-wave signals over millimeter distances in yttrium iron garnet waveguides at ~ 10 mK . Input microwave pulses and pulse trains with various envelope shapes were applied to an inductive input antenna, and the resulting magnons were detected by an output antenna of identical design. The shape of the output signal was observed to depend on the frequency content (carrier and pulse shape) of the input pulse. By performing measurements at varying frequencies and magnetic fields we have been able to map out the dispersion relation for surface magnon modes. These experiments were undertaken as a first step towards coupling propagating magnons in thin films to other quantum systems with microwave-frequency transition energies, and superconducting qubits in particular. The authors acknowledge support from the EPSRC (EP/K032690/1).
Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots
Energy Technology Data Exchange (ETDEWEB)
Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Dipartimento di Fisica e Geologia, Perugia (Italy); Gubbiotti, G.; Dey, H.; Csaba, G.; Porod, W. [Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)
2015-05-07
We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements has been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.
Search for double charmonium decays of the P-wave spin-triplet bottomonium states
Shen, C P; Iijima, T
2012-01-01
Using a sample of 158 million $\\Upsilon(2S)$ events collected with the Belle detector, we search for the first time for double charmonium decays of the $P$-wave spin-triplet bottomonium states ($\\Upsilon(2S) \\to \\gamma \\chi_{bJ}$, $\\chi_{bJ} \\to \\jpsi \\jpsi$, $\\jpsi \\psp$, $\\psp \\psp$ for J=0, 1, and 2). No significant $\\chi_{bJ}$ signal is observed in the double charmonium mass spectra, and we obtain the following upper limits, $\\BR(\\chi_{bJ} \\to \\jpsi \\jpsi)<7.1\\times 10^{-5}$, $2.7\\times 10^{-5}$, $4.5\\times 10^{-5}$, $\\BR(\\chi_{bJ} \\to \\jpsi \\psp)<1.2\\times 10^{-4}$, $1.7\\times 10^{-5}$, $4.9\\times 10^{-5}$, $\\BR(\\chi_{bJ} \\to \\psp \\psp)<3.1\\times 10^{-5}$, $6.2\\times 10^{-5}$, $1.6\\times 10^{-5}$ for J=0, 1, and 2, respectively, at the 90% confidence level. These limits are significantly lower than the central values (with uncertainties of 50% to 70%) predicted using the light cone formalism but are consistent with calculations using the NRQCD factorization approach.
Quantum critical properties of a metallic spin-density-wave transition
Gerlach, Max H.; Schattner, Yoni; Berg, Erez; Trebst, Simon
2017-01-01
We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z =2 , consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.
Dressed-state electromagnetically induced transparency for light storage in uniform-phase spin waves
Šibalić, N.; Kondo, J. M.; Adams, C. S.; Weatherill, K. J.
2016-09-01
We present, experimentally and theoretically, a scheme for dressed-state electromagnetically induced transparency (EIT) in a three-step cascade system in which a four-level system is mapped into an effective three-level system. Theoretical analysis reveals that the scheme provides coherent-state control via adiabatic following and a generalized protocol for light storage in uniform phase spin-waves that are insensitive to motional dephasing. The three-step driving enables a number of other features, including spatial selectivity of the excitation region within the atomic medium, and kick-free and Doppler-free excitation that produces narrow resonances in thermal vapor. As a proof of concept, we present an experimental demonstration of the generalized EIT scheme using the 6 S1 /2→6 P3 /2→7 S1 /2→8 P1 /2 excitation path in thermal cesium vapor. This technique could be applied to cold and thermal ensembles to enable longer storage times for Rydberg polaritons.
Impact of Higher Harmonics in Searching for Gravitational Waves from Non-Spinning Binary Black Holes
Capano, Collin; Buonanno, Alessandra
2013-01-01
Current searches for gravitational waves from coalescing binary black holes (BBH) use templates that only include the dominant harmonic. In this study we use effective-one-body multipolar waveforms calibrated to numerical-relativity simulations to quantify the effect of neglecting sub-dominant harmonics on the sensitivity of searches. We consider both signal-to-noise ratio (SNR) and the signal-based vetoes that are used to re-weight SNR. We find that neglecting sub-dominant modes when searching for non-spinning BBHs with component masses $3\\,M_{\\odot} \\leq m_1, m_2 \\leq 200\\,M_{\\odot}$ and total mass $M < 360\\,M_{\\odot}$ in advanced LIGO results in a negligible reduction of the re-weighted SNR at detection thresholds. Sub-dominant modes therefore have no effect on the detection rates predicted for advanced LIGO. Furthermore, we find that if sub-dominant modes are included in templates the sensitivity of the search becomes worse if we use current search priors, due to an increase in false alarm probability....
The spin density wave state in (TMTSF)2X under large electric and magnetic fields
Leone, Michael J.
We have developed a technique to study the conductivity of materials in the limit of large electric fields. The materials that this study focused on are susceptible to damage due to Joule heating in large DC currents. This technique allows the application of electric fields as large as several hundred volts/cm without sample destruction. The duration of the applied current pulses is user selectable and ranges from 10 mus to several hundred seconds. Measurements were conducted with square pulses of duration 300 mus. We have applied this technique to the study of the family of compounds known as the Bechgaard salts ((TMTSF)2X). The material (TMTSF)2PF6 at ambient pressure exhibits metallic behavior above 12 K. Below 12 K the material enters an insulating caused by the formation of a spin density wave (SDW). Below 12 K, it has been observed that the application of small electric fields causes an increase in the conductivity. We have observed that these materials exhibit negative differential resistance when subjected to large electric fields. We have shown that the observed effects are due to self heating of the sample.
Competition between itinerant ferromagnetism and spin-density wave antiferromagnetism in FeGa
Wu, Yan; Cao, Huibo; McCandles, Gregory; Chan, Julia; Karki, Amar; Jin, Rongying; Ditusa, John
2015-03-01
The metallic magnetFeGadisplays a rich magnetic behavior that includes transitions between a FM ground state to a AFM intermediate state at 68 K and back to a FM state at 360 K. The phase transition at 360 K is accompanied by a discontinuous hysteretic change in the electrical resistivity. In addition, the application of moderate magnetic fields cause a sharp transformation from the AFM to FM state with a critical Hthat grows dramatically with T.To explore the cause of this unusual competition of magnetic states, we investigated the magnetic structure of FeGavia extensive single crystal neutron diffraction measurements. These measurements revealed a FM ordering with magnetic moments lying along the crystallographic c-axis both below 68 K and above 360 K as well as incommensurate spin density wave order between these temperatures. Our refinement of the diffraction data has uncovered the existence of a small non-coplanar moment which may be the origin of our previously discovered topological Hall Effect.
Dressed-state electromagnetically induced transparency for light storage in uniform phase spin-waves
Šibalić, Nikola; Adams, Charles S; Weatherill, Kevin J
2016-01-01
We present, experimentally and theoretically, a scheme for dressed-state electromagnetically induced transparency (EIT) in a three-step cascade system where a four-level system is mapped into an effective three-level system. Theoretical analysis reveals that the scheme provides coherent state control via adiabatic following and provides a generalized protocol for light storage in uniform phase spin-waves that are insensitive to motional dephasing. The three-step driving enables a number of other features including spatial selectivity of the excitation region within the atomic medium, and kick-free and Doppler-free excitation that produces narrow resonances in thermal vapor. As a proof of concept we present an experimental demonstration of the generalized EIT scheme using the $6S_{1/2} \\rightarrow 6P_{3/2} \\rightarrow 7S_{1/2} \\rightarrow 8P_{1/2}$ excitation path in thermal cesium vapor. This technique could be applied to cold and thermal ensembles to enable longer storage times for Rydberg polaritons.
Commensurate and incommensurate spin-density waves in heavy electron systems
Directory of Open Access Journals (Sweden)
P. Schlottmann
2016-05-01
Full Text Available The nesting of the Fermi surfaces of an electron and a hole pocket separated by a nesting vector Q and the interaction between electrons gives rise to itinerant antiferromagnetism. The order can gradually be suppressed by mismatching the nesting and a quantum critical point (QCP is obtained as the Néel temperature tends to zero. The transfer of pairs of electrons between the pockets can lead to a superconducting dome above the QCP (if Q is commensurate with the lattice, i.e. equal to G/2. If the vector Q is not commensurate with the lattice there are eight possible phases: commensurate and incommensurate spin and charge density waves and four superconductivity phases, two of them with modulated order parameter of the FFLO type. The renormalization group equations are studied and numerically integrated. A re-entrant SDW phase (either commensurate or incommensurate is obtained as a function of the mismatch of the Fermi surfaces and the magnitude of |Q − G/2|.
Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke
2011-09-01
We study the merger of black hole-neutron star binaries with a variety of black hole spins aligned or antialigned with the orbital angular momentum, and with the mass ratio in the range MBH/MNS=2-5, where MBH and MNS are the mass of the black hole and neutron star, respectively. We model neutron-star matter by systematically parametrized piecewise polytropic equations of state. The initial condition is computed in the puncture framework adopting an isolated horizon framework to estimate the black hole spin and assuming an irrotational velocity field for the fluid inside the neutron star. Dynamical simulations are performed in full general relativity by an adaptive-mesh refinement code, SACRA. The treatment of hydrodynamic equations and estimation of the disk mass are improved. We find that the neutron star is tidally disrupted irrespective of the mass ratio when the black hole has a moderately large prograde spin, whereas only binaries with low mass ratios, MBH/MNS≲3, or small compactnesses of the neutron stars bring the tidal disruption when the black hole spin is zero or retrograde. The mass of the remnant disk is accordingly large as ≳0.1M⊙, which is required by central engines of short gamma-ray bursts, if the black hole spin is prograde. Information of the tidal disruption is reflected in a clear relation between the compactness of the neutron star and an appropriately defined “cutoff frequency” in the gravitational-wave spectrum, above which the spectrum damps exponentially. We find that the tidal disruption of the neutron star and excitation of the quasinormal mode of the remnant black hole occur in a compatible manner in high mass-ratio binaries with the prograde black hole spin. The correlation between the compactness and the cutoff frequency still holds for such cases. It is also suggested by extrapolation that the merger of an extremely spinning black hole and an irrotational neutron star binary does not lead to the formation of an overspinning
Harms, Enno; Bernuzzi, Sebastiano; Nagar, Alessandro
2015-01-01
We present a new computation of the asymptotic gravitational wave energy fluxes emitted by a {\\it spinning} particle in circular equatorial orbits about a Kerr black hole. The particle dynamics is computed in the pole-dipole approximation, solving the Mathisson-Papapetrou equations with the Tulczyjew spin-supplementary-condition. The fluxes are computed, for the first time, by solving the 2+1 Teukolsky equation in the time-domain using hyperboloidal and horizon-penetrating coordinates. Denoting by $M$ the black hole mass and by $\\mu$ the particle mass, we cover dimensionless background spins $a/M=(0,\\pm0.9)$ and dimensionless particle spins $-0.9\\leq S/\\mu^2 \\leq +0.9$. Our results span orbits of Boyer-Lindquist coordinate radii $4\\leq r/M \\leq 30$; notably, we investigate the strong-field regime, in some cases even beyond the last-stable-orbit. We confirm, numerically, the Tanaka {\\it et al.} [Phys.\\ Rev.\\ D 54, 3762] 2.5th order accurate Post-Newtonian (PN) predictions for the gravitational wave fluxes of a...
Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M A; Bayer, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Castaldi, G; Cepeda, C; Chalkley, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; De Bra, D; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S; Daz, M; Dickson, J; Di Credico, A; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L M; González, G; Gossler, S; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Günther, M; Gustafson, R; Hage, B; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McWilliams, S; Meier, T; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mudge, D; Müller, G; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Nash, T; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ramsunder, M; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Samidi, M; Sanchodela Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Taylor, R; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R; Watts, K; Weidner, A; Weinert, M; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F
2007-01-01
We report on the first dedicated search for gravitational waves emitted during the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection template family designed specially to capture the effects of spin-induced precession. The template bank we employed was found to yield high matches with our spin-modulated target waveform for binaries with masses in the asymmetric range 1.0 M_{\\odot} < m_1 < 3.0 M_{\\odot} and 12.0 M_{\\odot} < m_{2} < 20.0 M_{\\odot} which is where we would expect the spin of the binary's components to have significant effect. We find that our search of S3 LIGO data had good sensitivity to binaries in the Milky Way and to a small fraction of binaries in M31 and M33 with masses in the range 1.0 M_{\\odot} < m_{1}, m_{2} < 20.0 M_{\\odot}. No gravitational wave signals were identified during this search. Assuming a binary populati...
Iihama, S.; Sasaki, Y.; Sugihara, A.; Kamimaki, A.; Ando, Y.; Mizukami, S.
2016-07-01
Coherent spin-wave generation by focused ultrashort laser pulse irradiation was investigated for a permalloy thin film at micrometer scale using an all-optical space- and time-resolved magneto-optical Kerr effect microscope. The spin-wave packet propagating perpendicular to the magnetization direction was clearly observed; however, that propagating parallel to the magnetization direction was not observed. The propagation length, group velocity, center frequency, and packet width of the observed spin-wave packet were evaluated and quantitatively explained in terms of the propagation of a magnetostatic spin wave driven by the ultrafast change of an out-of-plane demagnetization field induced by the focused-pulse laser.
Andreev, Pavel A
2014-01-01
We discuss complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider contribution of the annihilation interaction in the quantum hydrodynamic equations and in spectrum of waves in magnetized electron-positron plasmas. We consider propagation of waves parallel and perpendicular to an external magnetic field. We also consider oblique propagation of longitudinal waves. We derive set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory for the linear wave behavior in absence of external fields. We calculate contribution of the Darwin...
Tunable spin-wave frequency gap in anisotropy-graded FePt films obtained by ion irradiation
Tacchi, S.; Pini, M. G.; Rettori, A.; Varvaro, G.; di Bona, A.; Valeri, S.; Albertini, F.; Lupo, P.; Casoli, F.
2016-07-01
The effect of graded anisotropy on static and dynamic magnetic properties of Ar+-irradiated FePt films has been investigated by static magnetometry, magnetic force microscopy, and Brillouin light scattering from thermally excited spin waves. A gradual variation of magnetic anisotropy with film thickness was obtained by Ar+ irradiation. The irradiation incidence angle influences the anisotropy profile: on decreasing α , a decreasing thickness of the hard L 10 phase and an increasing thickness of the soft A1 phase were obtained. Accordingly, the zero-field spin-wave frequency gap was found to decrease. In the sample with the highest soft-phase thickness the spin-wave frequency gap takes a substantial value (ν0≈6 GHz), which could be reproduced assuming the presence of a nonzero "rotatable" anisotropy (i.e., any direction in the film plane can be established as the easy axis by the application of a saturating magnetic field along this direction). The hypothesis is supported by both magnetometry and magnetic force microscopy data.
O'Brien, Paul
2017-01-01
Max Plank did not quantize temperature. I will show that the Plank temperature violates the Plank scale. Plank stated that the Plank scale was Natures scale and independent of human construct. Also stating that even aliens would derive the same values. He made a huge mistake, because temperature is based on the Kelvin scale, which is man-made just like the meter and kilogram. He did not discover natures scale for the quantization of temperature. His formula is flawed, and his value is incorrect. Plank's calculation is Tp = c2Mp/Kb. The general form of this equation is T = E/Kb Why is this wrong? The temperature for a fixed amount of energy is dependent upon the volume it occupies. Using the correct formula involves specifying the radius of the volume in the form of (RE). This leads to an inequality and a limit that is equivalent to the Bekenstein Bound, but using temperature instead of entropy. Rewriting this equation as a limit defines both the maximum temperature and Boltzmann's constant. This will saturate any space-time boundary with maximum temperature and information density, also the minimum radius and entropy. The general form of the equation then becomes a limit in BH thermodynamics T <= (RE)/(λKb) .
Coherent state quantization of quaternions
Energy Technology Data Exchange (ETDEWEB)
Muraleetharan, B., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com [Department of Mathematics and Statistics, University of Jaffna, Thirunelveli (Sri Lanka); Thirulogasanthar, K., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com [Department of Computer Science and Software Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8 (Canada)
2015-08-15
Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.
Quantization over boson operator spaces
Energy Technology Data Exchange (ETDEWEB)
Prosen, Tomaz [Department of Physics, FMF, University of Ljubljana, Ljubljana (Slovenia); Seligman, Thomas H [Instituto de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)
2010-10-01
The framework of third quantization-canonical quantization in the Liouville space-is developed for open many-body bosonic systems. We show how to diagonalize the quantum Liouvillean for an arbitrary quadratic n-boson Hamiltonian with arbitrary linear Lindblad couplings to the baths and, as an example, explicitly work out a general case of a single boson. (fast track communication)
Quantization over boson operator spaces
Prosen, Tomaz
2010-01-01
The framework of third quantization - canonical quantization in the Liouville space - is developed for open many-body bosonic systems. We show how to diagonalize the quantum Liouvillean for an arbitrary quadratic n-boson Hamiltonian with arbitrary linear Lindblad couplings to the baths and, as an example, explicitly work out a general case of a single boson.
Bustillo, Juan Calderón; Sintes, Alicia M; Püerrer, Michael
2015-01-01
Current template-based gravitational wave searches for compact binary coalescences (CBC) use waveform models that neglect the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar $(\\ell,|m|)=(2,2)$ modes. We study the effect of such a neglection for the case of aligned-spin CBC searches for equal-spin (and non-spinning) binary black holes in the context of two versions of Advanced LIGO: the upcoming 2015 version, known as early Advanced LIGO (eaLIGO) and its Zero-Detuned High Energy Power version, that we will refer to as Advanced LIGO (AdvLIGO). In addition, we study the case of a non-spinning search for initial LIGO (iLIGO). We do this via computing the effectualness of the aligned-spin SEOBNRv1 ROM waveform family, which only considers quadrupolar modes, towards hybrid post-Newtonian/Numerical Relativity waveforms which contain higher order modes. We find that for all LIGO versions, losses of more than $10\\%$ of events occur for mass ratio $q\\geq6$ and $M \\geq...
Sadi, Mohammad Abdullah; Liang, Gengchiau
2017-01-01
Carrier transport through a graphene zigzag nanoribbon (ZNR) is possible to be blocked by a p-n profile implemented along its transport direction. However, we found that in cases of analogous materials with significant intrinsic spin-orbit coupling (SOC), i.e. silicene and germanene, such a profile on ZNR of these materials allows transmission mostly through spin-orbit coupled energy window due to the loss of the parity of wave functions at different energies caused by SOC. Next, a p-i-n scheme on germanene ZNR is proposed to simultaneously permit edge transmission and decimate bulk transmission. The transmission spectrum is shown to mitigate the effect of thermal broadening on germanene and silicene ZNR based spin-separators by improving spin polarization yield by 400% and 785%, respectively, at 300 K. The importance of proper gate voltage and position for such performance is further elucidated. Finally, the modulation the current output of the proposed U-shape p-i-n device while maintaining its spin polarization is discussed. PMID:28091616
A Second Quantized Approach to the Rabi Problem
Baldiotti, M. C.; Molina, C.
2017-10-01
In the present work, the Rabi Problem, involving the response of a spin 1/2 particle subjected to a magnetic field, is considered in a second quantized approach. In this concrete physical scenario, we show that the second quantization procedure can be applied directly in a non-covariant theory. The proposed development explicits not only the relation between the full quantum treatment of the problem and the semiclassical Rabi model, but also the connection of these approaches with the Jaynes-Cummings model. The consistency of the method is checked in the semiclassical limit. The treatment is then extended to the matter component of the Rabi problem so that the Schrödinger equation is directly quantized. Considering the spinorial field, the appearance of a negative energy sector implies a specific identification between Schrödinger's and Maxwell's theories. The generalized theory is consistent, strictly quantum and non-relativistic.
Energy Technology Data Exchange (ETDEWEB)
Kostylev, M. [School of Physics, M013, University of Western Australia, Crawley, Perth 6009, Western Australia (Australia)
2014-06-21
In this work, we derive the interface exchange boundary conditions for the classical linear dynamics of magnetization in ferromagnetic layers with the interface Dzyaloshinskii-Moriya interaction (IDMI). We show that IDMI leads to pinning of dynamic magnetization at the interface. An unusual peculiarity of the IDMI-based pinning is that its scales as the spin-wave wave number. We incorporate these boundary conditions into an existing numerical model for the dynamics of the Damon-Eshbach spin wave in ferromagnetic films. IDMI affects the dispersion and the frequency non-reciprocity of the travelling Damon-Eshbach spin wave. For a broad range of film thicknesses L and wave numbers, the results of the numerical simulations of the spin wave dispersion are in a good agreement with a simple analytical expression, which shows that the contribution of IDMI to the dispersion scales as 1/L, similarly to the effect of other types of interfacial anisotropy. Suggestions to experimentalists how to detect the presence of IDMI in a spin wave experiment are given.
Matrix Quantization of Turbulence
Floratos, Emmanuel
2011-01-01
Based on our recent work on Quantum Nambu Mechanics $\\cite{af2}$, we provide an explicit quantization of the Lorenz chaotic attractor through the introduction of Non-commutative phase space coordinates as Hermitian $ N \\times N $ matrices in $ R^{3}$. For the volume preserving part, they satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Matrix Lorenz system develop fast decoherence to N independent Lorenz attractors. On the other hand there is a weak dissipation regime, where the quantum mechanical properties of the volume preserving non-dissipative sector survive for long times.
Second Quantized Mathieu Moonshine
Persson, Daniel
2013-01-01
We study the second quantized version of the twisted twining genera of generalized Mathieu moonshine, and verify that they give rise to Siegel modular forms with infinite product representations. Most of these forms are expected to have an interpretation as twisted partition functions counting 1/4 BPS dyons in type II superstring theory on K3\\times T^2 or in heterotic CHL-models. We show that all these Siegel modular forms, independently of their possible physical interpretation, satisfy an "S-duality" transformation and a "wall-crossing formula". The latter reproduces all the eta-products of an older version of generalized Mathieu moonshine proposed by Mason in the '90s. Surprisingly, some of the Siegel modular forms we find coincide with the multiplicative (Borcherds) lifts of Jacobi forms in umbral moonshine.
DEFF Research Database (Denmark)
Hutchings, M T; Als-Nielsen, Jens Aage; Lindgård, Per-Anker;
1981-01-01
The long-wavelength spin waves in Rb2CrCl4, a nearly two-dimensional ferromagnet, have been investigated at several temperatures below Tc=52.4K using neutron inelastic scattering techniques. The data have been analysed in terms of a Hartree-Fock theory using matching-matrix elements to give...... correctly the effects of anisotropy. Values for the parameters in the spin Hamiltonian have been found, and the theory accounts well for the energy renormalisation of the spin waves and for the transition temperature and variation of magnetic moment with temperature. Due to weak uniaxial anisotropy terms...
Pisarski, Andrzej
2013-01-01
We construct efficient banks of templates suitable for all-sky narrow-band searches of almost monochromatic gravitational waves originating from spinning neutron stars in our Galaxy in data collected by interferometric detectors. We thus assume that both the position of the gravitational-wave source in the sky and the wave's frequency together with spindown parameters are unknown. In the construction we employ simplified model of the signal with constant amplitude and phase which is a linear function of unknown parameters. All our template banks enable usage of the fast Fourier transform algorithm in the computation of the maximum-likelihood $\\mathcal{F}$-statistic for nodes of the grids defining the bank and fulfill an additional constraint needed to resample the data to barycentric time efficiently. Our template banks are suitable for larger range of search parameters than the banks previously proposed and compared to them they have smaller thicknesses for certain values of search parameters.
Lupo, P.; Haghshenasfard, Z.; Cottam, M. G.; Adeyeye, A. O.
2016-12-01
A systematic investigation is presented for the magnetization dynamics in trilayer nanowires, consisting of two permalloy (Ni80Fe20 ) layers separated by a nonmagnetic Ru spacer layer. The width of the wires ranges from 90 to 190 nm. By varying the Ru thickness between 0.7 and 2.0 nm, the interlayer coupling can be effectively controlled, modifying the corresponding magnetic ground state and the spin-wave dynamics. By contrast with previous work on coupled trilayer nanowires with larger widths (270 nm and more), the focus here is on nanowire arrays where the strong shape anisotropy competes with the Ruderman-Kittel-Kasuya-Yosida interactions and biquadratic exchange interactions across the Ru interface, as well as dipolar interactions and Zeeman energy. As a result, the spin-wave spectrum is found to be drastically modified. Ferromagnetic resonance and hysteresis loop measurements are reported over a wide range of applied magnetic fields, showing that the overall magnetization alignment between the permalloy layers may be parallel, antiparallel, or in a spin-flop state, depending on the overall interlayer coupling. The experimental results for different stripe widths are successfully analyzed using a microscopic dipole-dipole theory and micromagnetic simulations.
Grigoriev, S V; Deriglazov, V V; Okorokov, A I; Dijk, N H V; Brück, E; Klaasse, J C P; Eckerlebe, H; Kozik, G
2002-01-01
Spin dynamics in Fe sub 6 sub 5 Ni sub 3 sub 5 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below T sub C =485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping GAMMA were obtained by fitting the antisymmetrical contribution to the scattering. The spin-wave stiffness extrapolated by a (T/T sub C) sup 5 sup / sup 2 law to T=0 K is D sub 0 =117+-2 meVA sup 2 , which is somewhat smaller than the spin-wave stiffness obtained by triple-axis spectrometry. (orig.)
VLSI Processor For Vector Quantization
Tawel, Raoul
1995-01-01
Pixel intensities in each kernel compared simultaneously with all code vectors. Prototype high-performance, low-power, very-large-scale integrated (VLSI) circuit designed to perform compression of image data by vector-quantization method. Contains relatively simple analog computational cells operating on direct or buffered outputs of photodetectors grouped into blocks in imaging array, yielding vector-quantization code word for each such block in sequence. Scheme exploits parallel-processing nature of vector-quantization architecture, with consequent increase in speed.
Quantization Ambiguity, Ergodicity and Semiclassics
Kaplan, L
1999-01-01
A simple argument shows that eigenstates of a classically ergodic system are individually ergodic on coarse-grained scales. This has implications for the quantization ambiguity in ergodic systems: the difference between alternative quantizations is suppressed compared with the $O(\\hbar^2)$ ambiguity in the integrable case. For two-dimensional ergodic systems in the high-energy regime, individual eigenstates are independent of the choice of quantization procedure, in contrast with the regular case, where even the ordering of eigenlevels is ambiguous. Surprisingly, semiclassical methods are shown to be much more precise for chaotic than for integrable systems.
Quantization ambiguity, ergodicity and semiclassics
Energy Technology Data Exchange (ETDEWEB)
Kaplan, Lev [Institute for Nuclear Theory, University of Washington, Seattle, WA (United States)
2002-11-01
It is well known that almost all eigenstates of a classically ergodic system are individually ergodic on coarse-grained scales. This has important implications for the quantization ambiguity in ergodic systems: the difference between alternative quantizations is suppressed compared with the O( h-bar {sup 2}) ambiguity in the integrable or regular case. For two-dimensional ergodic systems in the high-energy regime, individual eigenstates are independent of the choice of quantization procedure, in contrast with the regular case, where even the ordering of eigenlevels is ambiguous. Surprisingly, semiclassical methods are shown to be much more precise in any dimension for chaotic than for integrable systems.
Image quantization: statistics and modeling
Whiting, Bruce R.; Muka, Edward
1998-07-01
A method for analyzing the effects of quantization, developed for temporal one-dimensional signals, is extended to two- dimensional radiographic images. By calculating the probability density function for the second order statistics (the differences between nearest neighbor pixels) and utilizing its Fourier transform (the characteristic function), the effect of quantization on image statistics can be studied by the use of standard communication theory. The approach is demonstrated by characterizing the noise properties of a storage phosphor computed radiography system and the image statistics of a simple radiographic object (cylinder) and by comparing the model to experimental measurements. The role of quantization noise and the onset of contouring in image degradation are explained.
Energy Technology Data Exchange (ETDEWEB)
Boudjedaa, T. [Ecole Normale Superieure, Jijel (Algeria). Dept. de Physique; Chetouani, L. [Dept. de Physique Theorique, Inst. de Physique, Univ. de Constantine (Algeria); Guechi, L. [Dept. de Physique Theorique, Inst. de Physique, Univ. de Constantine (Algeria); Hammann, T.F. [Lab. de Mathematiques et Physique Mathematique, Faculte des Sciences et Techniques, 68 Mulhouse (France)
1995-07-01
The Green`s functions for charged particles of spin zero and 1/2, subjected to the action of a Redmond field which is the combination of an electromagnetic plane wave plus a parallel constant magnetic field, are calculated via the Schwinger action principle. The Heisenberg equations are then exactly solved. The spectrum and the waves are deduced in both cases. (orig.).
Quantization of light energy directly from classical electromagnetic theory in vacuum
Institute of Scientific and Technical Information of China (English)
She Wei-Long
2005-01-01
It is currently believed that light quantum or the quantization of light energy is beyond classical physics, and the picture of wave-particle duality, which was criticized by Einstein but has attracted a number of experimental researches, is necessary for the description of light. It is shown in this paper, however, that the quantization of light energy in vacuum, which is the same as that in quantum electrodynamics, can be derived directly from the classical electromagnetic theory through the consideration of statistics based on classical physics. Therefore, the quantization of energy is an intrinsic property of light as a classical electromagnetic wave and has no need of being related to particles.
Conformal Loop quantization of gravity coupled to the standard model
Pullin, Jorge; Gambini, Rodolfo
2016-03-01
We consider a local conformal invariant coupling of the standard model to gravity free of any dimensional parameter. The theory is formulated in order to have a quantized version that admits a spin network description at the kinematical level like that of loop quantum gravity. The Gauss constraint, the diffeomorphism constraint and the conformal constraint are automatically satisfied and the standard inner product of the spin-network basis still holds. The resulting theory has resemblances with the Bars-Steinhardt-Turok local conformal theory, except it admits a canonical quantization in terms of loops. By considering a gauge fixed version of the theory we show that the Standard model coupled to gravity is recovered and the Higgs boson acquires mass. This in turn induces via the standard mechanism masses for massive bosons, baryons and leptons.
Effective Field Theory of Fractional Quantized Hall Nematics
Energy Technology Data Exchange (ETDEWEB)
Mulligan, Michael; /MIT, LNS; Nayak, Chetan; /Station Q, UCSB; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC
2012-06-06
We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.
Energy Technology Data Exchange (ETDEWEB)
Mandal, R.; Barman, S.; Saha, S.; Barman, A., E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Otani, Y. [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)
2015-08-07
Ferromagnetic antidot lattices are important systems for magnetic data storage and magnonic devices, and understanding their magnetization dynamics by varying their structural parameters is an important problems in magnetism. Here, we investigate the variation in spin wave spectrum in two-dimensional nanoscale Ni{sub 80}Fe{sub 20} antidot lattices with lattice symmetry. By varying the bias magnetic field values in a broadband ferromagnetic resonance spectrometer, we observed a stark variation in the spin wave spectrum with the variation of lattice symmetry. The simulated mode profiles showed further difference in the spatial nature of the modes between different lattices. While for square and rectangular lattices extended modes are observed in addition to standing spin wave modes, all modes in the hexagonal, honeycomb, and octagonal lattices are either localized or standing waves. In addition, the honeycomb and octagonal lattices showed two different types of modes confined within the honeycomb (octagonal) units and between two such consecutive units. Simulated internal magnetic fields confirm the origin of such a wide variation in the frequency and spatial nature of the spin wave modes. The tunability of spin waves with the variation of lattice symmetry is important for the design of future magnetic data storage and magnonic devices.
Das, Tanmoy
2016-07-01
We study directional dependent band gap evolutions and metal-insulator transitions (MITs) in model quantum wire systems within the spin-orbit density wave (SODW) model. The evolution of MIT is studied as a function of varying anisotropy between the intra-wire hopping ({{t}\\parallel} ) and inter-wire hopping ({{t}\\bot} ) with Rashba spin-orbit coupling. We find that as long as the anisotropy ratio (β ={{t}\\bot}/{{t}\\parallel} ) remains below 0.5, and the Fermi surface nesting is tuned to {{\\mathbf{Q}}1}=≤ft(π,0\\right) , an exotic SODW induced MIT easily develops, with its critical interaction strength increasing with increasing anisotropy. As β \\to 1 (2D system), the nesting vector switches to {{\\mathbf{Q}}2}=≤ft(π,π \\right) , making this state again suitable for an isotropic MIT. Finally, we discuss various physical consequences and possible applications of the directional dependent MIT.
Lattice radial quantization by cubature
Neuberger, Herbert
2014-01-01
Basic aspects of a program to put field theories quantized in radial coordinates on the lattice are presented. Only scalar fields are discussed. Simple examples are solved to illustrate the strategy when applied to the 3D Ising model.
Feedback Quantization in Crosscorrelation Predistorters
Kokkeler, Andre B.J.
2005-01-01
Amplification of signals with fluctuating envelopes inevitably leads to distortion because of nonlinear behavior of the power amplifier (PA). Digital predistortion can counteract these nonlinear effects. In this letter, the crosscorrelation predistorter is described and the effects of quantization i
Canonical quantization of constrained systems
Energy Technology Data Exchange (ETDEWEB)
Bouzas, A.; Epele, L.N.; Fanchiotti, H.; Canal, C.A.G. (Laboratorio de Fisica Teorica, Departamento de Fisica, Universidad Nacional de La Plata, Casilla de Correo No. 67, 1900 La Plata, Argentina (AR))
1990-07-01
The consideration of first-class constraints together with gauge conditions as a set of second-class constraints in a given system is shown to be incorrect when carrying out its canonical quantization.
Loop quantum gravity and black hole entropy quantization
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Using the spin networks and the asymptotic quasinormal mode frequencies of black holes given by loop quantum gravity,the minimum horizon area gap is obtained.Then the quantum area spectrum of black holes is derived and the black hole entropy is a realized quantization.The results show that the black hole entropy given by loop quantum gravity is in full accord with the Bekenstein-Hawking entropy with a suitable Immirzi.
Loop quantum gravity and black hole entropy quantization
Institute of Scientific and Technical Information of China (English)
LI ChuanAn; JIANG JiJian; SU JiuQing
2009-01-01
Using the spin networks and the asymptotic quasinormal mode frequencies of black holes given by loop quantum gravity, the minimum horizon area gap is obtained. Then the quantum area spectrum of black holes is derived and the black hole entropy is a realized quantization. The results show that the black hole entropy given by loop quantum gravity is in full accord with the Bekenstein-Hawking entropy with a suitable Immirzi.
Fuzzy de Sitter space-times via coherent states quantization
Gazeau, J P; Queva, J; Gazeau, Jean-Pierre; Mourad, Jihad; Queva, Julien
2006-01-01
A construction of the 2d and 4d fuzzy de Sitter hyperboloids is carried out by using a (vector) coherent state quantization. We get a natural discretization of the dS "time" axis based on the spectrum of Casimir operators of the respective maximal compact subgroups SO(2) and SO(4) of the de Sitter groups SO\\_0(1,2) and SO\\_0(1,4). The continuous limit at infinite spins is examined.
Generalized Surface Polaritons and their quantum spin Hall effect
Xu, Yadong; Chen, Huanyang
2016-01-01
Surface polaritons, e.g., surface plasmon polaritons, are invaluable tools in nanophotonics. However, considerable plasmon loss narrows the application regime of plasmonic devices. Here we reveal some general conditions for lossless surface polaritons to emerge at the interface of a gain and a loss media. The gain medium does not only compensate the energy loss, but also modifies surface wave oscillation mechanisms. A new type of surface polaritons induced by the sign switch of the imaginary part of the permittivity across the interface is discovered. The surface polaritons exhibit spin Hall effect due to spin-momentum locking and unique Berry phase. The spin Hall coefficient changes the sign across the parity-time symmetric limit and becomes quantized for perfect metal-dielectric interface and for dielectric-dielectric interface with very large permittivity contrast, carrying opposite topological numbers. Our study opens a new direction for manipulating light with surface polaritons in non-Hermitian optical ...
Canonical quantization of macroscopic electromagnetism
Energy Technology Data Exchange (ETDEWEB)
Philbin, T G, E-mail: tgp3@st-andrews.ac.u [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)
2010-12-15
Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.
Canonical quantization of macroscopic electromagnetism
Philbin, T G
2010-01-01
Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetoelectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.
The quantized D-transformation.
Saraceno, M.; Vallejos, R. O.
1996-06-01
We construct a new example of a quantum map, the quantized version of the D-transformation, which is the natural extension to two dimensions of the tent map. The classical, quantum and semiclassical behavior is studied. We also exhibit some relationships between the quantum versions of the D-map and the parity projected baker's map. The method of construction allows a generalization to dissipative maps which includes the quantization of a horseshoe. (c) 1996 American Institute of Physics.
Quantized conductance of a suspended graphene nanoconstriction
Tombros, Nikolaos; Junesch, Juliane; Guimarães, Marcos H D; Marun, Ivan J Vera; Jonkman, Harry T; van Wees, Bart J
2011-01-01
A yet unexplored area in graphene electronics is the field of quantum ballistic transport through graphene nanostructures. Recent developments in the preparation of high mobility graphene are expected to lead to the experimental verification and/or discovery of many new quantum mechanical effects in this field. Examples are effects due to specific graphene edges, such as spin polarization at zigzag edges of a graphene nanoribbon and the use of the valley degree of freedom in the field of graphene valleytronics8. As a first step in this direction we present the observation of quantized conductance at integer multiples of 2e^2/h at zero magnetic field and 4.2 K temperature in a high mobility suspended graphene ballistic nanoconstriction. This quantization evolves into the typical quantum Hall effect for graphene at magnetic fields above 60mT. Voltage bias spectroscopy reveals an energy spacing of 8 meV between the first two subbands. A pronounced feature at 0.6 2e^2/h present at a magnetic field as low as ~0.2T...
Kawaguchi, Genta; Maesato, Mitsuhiko; Komatsu, Tokutaro; Imakubo, Tatsuro; Kitagawa, Hiroshi
2016-02-01
We present the results of high-pressure transport measurements on the anion-mixed molecular conductors (DIETSe)2M Br2Cl2 [DIETSe = diiodo(ethylenedithio)tetraselenafulvalene; M =Fe , Ga]. They undergo a metal-insulator (M-I) transition below 9 K at ambient pressure, which is suppressed by applying pressure, indicating a spin-density-wave (SDW) transition caused by a nesting instability of the quasi-one-dimensional (Q1D) Fermi surface, as observed in the parent compounds (DIETSe)2M Cl4 (M =Fe , Ga). In the metallic state, the existence of the Q1D Fermi surface is confirmed by observing the Lebed resonance. The critical pressures of the SDW, Pc, of the M Br2Cl2 (M =Fe , Ga) salts are significantly lower than those of the the M Cl4 (M = Fe, Ga) salts, suggesting chemical pressure effects. Above Pc, field-induced SDW transitions appear, as evidenced by kink structures in the magnetoresistance (MR) in both salts. The FeBr2Cl2 salt also shows antiferromagnetic (AF) ordering of d spins at 4 K, below which significant spin-charge coupling is observed. A large positive MR change up to 150% appears above the spin-flop field at high pressure. At low pressure, in particular below Pc, a dip or kink structure appears in MR at the spin-flop field, which shows unconventionally large hysteresis at low temperature (T hysteresis region clearly decreases with increasing pressure towards Pc, strongly indicating that the coexisting SDW plays an important role in the enhancement of magnetic hysteresis besides the random exchange interaction.
Multi-frequency force-detected electron spin resonance in the millimeter-wave region up to 150 GHz
Ohmichi, E.; Tokuda, Y.; Tabuse, R.; Tsubokura, D.; Okamoto, T.; Ohta, H.
2016-07-01
In this article, a novel technique is developed for multi-frequency force-detected electron spin resonance (ESR) in the millimeter-wave region. We constructed a compact ESR probehead, in which the cantilever bending is sensitively detected by a fiber-optic Fabry-Perot interferometer. With this setup, ESR absorption of diphenyl-picrylhydrazyl radical (<1 μg) was clearly observed at multiple frequencies of up to 150 GHz. We also observed the hyperfine splitting of low-concentration Mn2+ impurities(˜0.2%) in MgO.
Altenbach, Christian; López, Carlos J; Hideg, Kálmán; Hubbell, Wayne L
2015-01-01
Structural and dynamical characterization of proteins is of central importance in understanding the mechanisms underlying their biological functions. Site-directed spin labeling (SDSL) combined with continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy has shown the capability of providing this information with site-specific resolution under physiological conditions for proteins of any degree of complexity, including those associated with membranes. This chapter introduces methods commonly employed for SDSL and describes selected CW EPR-based methods that can be applied to (1) map secondary and tertiary protein structure, (2) determine membrane protein topology, (3) measure protein backbone flexibility, and (4) reveal the existence of conformational exchange at equilibrium.
Multi-frequency force-detected electron spin resonance in the millimeter-wave region up to 150 GHz
Energy Technology Data Exchange (ETDEWEB)
Ohmichi, E., E-mail: ohmichi@harbor.kobe-u.ac.jp; Tokuda, Y.; Tabuse, R.; Tsubokura, D.; Okamoto, T. [Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan); Ohta, H. [Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501 (Japan)
2016-07-15
In this article, a novel technique is developed for multi-frequency force-detected electron spin resonance (ESR) in the millimeter-wave region. We constructed a compact ESR probehead, in which the cantilever bending is sensitively detected by a fiber-optic Fabry-Perot interferometer. With this setup, ESR absorption of diphenyl-picrylhydrazyl radical (<1 μg) was clearly observed at multiple frequencies of up to 150 GHz. We also observed the hyperfine splitting of low-concentration Mn{sup 2+} impurities(∼0.2%) in MgO.
Spin-Wave Analysis of Specific Heat and Magnetization in EuO and EuS
DEFF Research Database (Denmark)
Dietrich, O. W.; Henderson, A. J.; Meyer, H.
1975-01-01
Recent neutron scattering measurements of the spin-wave spectrum have shown that the second-nearest-neighbor exchange constant in EuO is ferromagnetic, in disagreement with previously published results from both specific-heat and magnetization measurements. We undertook a thorough study of the bulk...... data on both EuO and its isomorph EuS, including some previously unpublished specific-heat data. The new analysis resolved the controversy regarding the specific heat, which is actually in good agreement with the neutron scattering results. However, the NMR data are more sensitive to effects other than...
Wunderlich, Y; Tiator, L
2013-01-01
The ambiguity problem in the truncated partial wave analysis of pseudoscalar meson photoproduction with suppressed t-channel exchanges is investigated. More precisely, the focus is set to ambiguities of the four single spin observables, $\\sigma_0$, $\\Sigma$, $T$ and $P$. For this purpose, the approach and formalism already worked out by Omelaenko in 1981 is revisited in this work. A numerical study using multipoles of the PWA solution MAID2007 shows how, for ideal circumstances, only one additional double polarization observable can resolve all ambiguities.
Directory of Open Access Journals (Sweden)
W Alexander Escobar
2013-11-01
Full Text Available The proposed model holds that, at its most fundamental level, visual awareness is quantized. That is to say that visual awareness arises as individual bits of awareness through the action of neural circuits with hundreds to thousands of neurons in at least the human striate cortex. Circuits with specific topologies will reproducibly result in visual awareness that correspond to basic aspects of vision like color, motion and depth. These quanta of awareness (qualia are produced by the feedforward sweep that occurs through the geniculocortical pathway but are not integrated into a conscious experience until recurrent processing from centers like V4 or V5 select the appropriate qualia being produced in V1 to create a percept. The model proposed here has the potential to shift the focus of the search for visual awareness to the level of microcircuits and these likely exist across the kingdom Animalia. Thus establishing qualia as the fundamental nature of visual awareness will not only provide a deeper understanding of awareness, but also allow for a more quantitative understanding of the evolution of visual awareness throughout the animal kingdom.
Energy Technology Data Exchange (ETDEWEB)
Yi, M.
2010-06-02
Through a systematic high-resolution angle-resolved photoemission study of the iron pnictide compounds (Ba,Sr)Fe{sub 2}As{sub 2}, we show that the electronic structures of these compounds are significantly reconstructed across the spin density wave transition, which cannot be described by a simple folding scenario of conventional density wave ordering. Moreover, we find that LDA calculations with an incorporated suppressed magnetic moment of 0.5{mu}{sub B} can match well the details in the reconstructed electronic structure, suggesting that the nature of magnetism in the pnictides is more itinerant than local, while the origin of suppressed magnetic moment remains an important issue for future investigations.
Vitale, Salvatore
2010-01-01
In this paper we use a new methodology to calculate analytically the error for a maximum likelihood estimate (MLE) of physical parameters from Gravitational Wave (GW) signals, by applying it to IMR waves from non-spinning binary system. While the existing literature focuses on using the Cramer Rao Lower bound. (CRLB) as a mean to approximate the errors for large signal to noise ratios, taking into account only the fist derivative of the signal, we consider also the higher order derivatives, obtaining an improved estimation of parameters' errors. We see how the bias is in general non negligible for high mass systems (200 solar masses and above), due to the nonlinear dipendence of the signal on the parameters, where it can become the most important contributor to the parameters' errors. This new feature will require numerical injections to be proved true.
Energy Technology Data Exchange (ETDEWEB)
Pal, S.; Das, K.; Barman, A., E-mail: abarman@ybose.res.in [Thematic Unit of Excellence on Nanodevice Technology and Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Klos, J. W.; Gruszecki, P.; Krawczyk, M., E-mail: krawczyk@amu.edu.pl [Faculty of Physics, A. Mickiewicz University in Poznan, Umultowska 85, 61-614 Poznań (Poland); Hellwig, O. [San Jose Research Center, HGST, a Western Digital Company, 3403 Yerba Buena Rd., San Jose, California 95135 (United States)
2014-10-20
We present an all-optical time-resolved measurement of spin wave (SW) dynamics in a series of antidot lattices based on [Co(0.75 nm)/Pd(0.9 nm)]{sub 8} multilayer (ML) systems with perpendicular magnetic anisotropy. The spectra depend significantly on the areal density of the antidots. The observed SW modes are qualitatively reproduced by the plane wave method. The interesting results found in our measurements and calculations at small lattice constants can be attributed to the increase of areal density of the shells with modified magnetic properties probably due to distortion of the regular ML structure by the Ga ion bombardment and to increased coupling between localized modes. We propose and discuss the possible mechanisms for this coupling including exchange interaction, tunnelling, and dipolar interactions.
Andreev, Pavel A
2016-01-01
The dielectric permeability tensor for spin polarized plasmas is derived in terms of the spin-1/2 quantum kinetic model in six-dimensional phase space. Expressions for the distribution function and spin distribution function are derived in linear approximations on the path of dielectric permeability tensor derivation. The dielectric permeability tensor is derived the spin-polarized degenerate electron gas. It is also discussed at the finite temperature regime, where the equilibrium distribution function is presented by the spin-polarized Fermi-Dirac distribution. Consideration of the spin-polarized equilibrium states opens possibilities for the kinetic modeling of the thermal spin current contribution in the plasma dynamics.
Nielsen, Robert D; Canaan, Stephane; Gladden, James A; Gelb, Michael H; Mailer, Colin; Robinson, Bruce H
2004-07-01
The measurement of spin-lattice relaxation rates from spin labels, such as nitroxides, in the presence and absence of spin relaxants provides information that is useful for determining biomolecular properties such as nucleic acid dynamics and the interaction of proteins with membranes. We compare X-band continuous wave (CW) and pulsed or time domain (TD) EPR methods for obtaining spin-lattice relaxation rates of spin labels across the entire range of rotational motion to which relaxation rates are sensitive. Model nitroxides and spin-labeled biological species are used to illustrate the potential complications that arise in extracting relaxation data under conditions typical to biological experiments. The effect of super hyperfine (SHF) structure is investigated for both CW and TD spectra. First and second harmonic absorption and dispersion CW spectra of the nitroxide spin label, TEMPOL, are all fit simultaneously to a model of SHF structure over a range of microwave amplitudes. The CW spectra are novel because all harmonics and microwave phases were acquired simultaneously using our homebuilt CW/TD spectrometer. The effect of the SHF structure on the pulsed free induction decay (FID) and pulsed saturation recovery spectrum is shown for both protonated and deuterated TEMPOL. We present novel pulsed saturation recovery measurements on biological molecules, including spin-lattice relaxation rates of spin-labeled proteins and spin-labeled double-stranded DNA. The impact of structure and dynamics on relaxation rates are discussed in the context of each of these examples. Collisional relaxation rates with oxygen and transition metal paramagnetic relaxants are extracted using both continuous wave and time domain methods. The extent of the errors inherent in the CW method and the advantages of pulsed methods for unambiguously measuring collisional relaxation rates are discussed. Spin-lattice relaxation rates, determined by both CW and pulsed methods, are used to determine
Proximity effects on the spin density waves in X/Cr(001) multilayers (X = Sn, V, and Mn)
Energy Technology Data Exchange (ETDEWEB)
Amitouche, F. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Bouarab, S., E-mail: bouarab_said@mail.ummto.d [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Tazibt, S. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Vega, A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Prado de la Magdalena s/n, E-47011 Valladolid (Spain); Demangeat, C. [Institut de Physique, 3 rue de l' Universite 67000 Strasbourg (France)
2011-01-03
We present ab initio density functional calculations of the electronic structure and magnetic properties of X{sub 2}/Cr{sub 36}(001) and X{sub 1}/Cr{sub 37}(001) multilayers, with X = Sn, V and Mn, to investigate the impact of the proximity effects of the X layers on the spin density waves of the Cr slab. We find different magnetic profiles corresponding to the spin density wave and to the layered antiferromagnetic configurations. The nature of the different magnetic solutions is discussed in terms of the different interfacial environments in the proximity of Sn, V or Mn. The magnetic behavior at the interface is discussed in connection with the electronic structure through the density of electronic states projected at the interfacial X and Cr sites. We compare the results with those previously obtained for Fe{sub 3}/X{sub 1}/Cr{sub 37}/X{sub 1}(001) multilayers to analyze the role played by the ferromagnetic iron slab.
Energy Technology Data Exchange (ETDEWEB)
Ross, N., E-mail: rossn2282@gmail.com; Kostylev, M., E-mail: mikhail.kostylev@uwa.edu.au [School of Physics, University of Western Australia, Crawley, WA (Australia); Stamps, R. L. [School of Physics, University of Western Australia, Crawley, WA (Australia); SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)
2014-09-21
Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs in the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.
Energy Technology Data Exchange (ETDEWEB)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation)
2015-06-15
We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.
Andreev, Pavel A.
2015-06-01
We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.
Adorno, T C; Gitman, D M
2010-01-01
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a $\\theta$-modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the $\\theta$-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (\\`a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the $\\theta$-modified Pauli equation. Then, we extract $\\theta$-modified interaction between a nonrelativistic spin and a magnetic field from the $\\theta$-modified Pauli equation and construct a $\\theta$-modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal EPR (Einstein-Podolsky-Rosen) states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which...
Adorno, T C; Gitman, D M
2010-01-01
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a $\\theta$-modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the $\\theta$-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (\\`a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the $\\theta$-modified Pauli equation. We extract $\\theta$-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a $\\theta$-modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal EPR (Einstein-Podolsky-Rosen) states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the...