WorldWideScience

Sample records for quantized electromagnetic field

  1. Quantization of Electromagnetic Fields in Cavities

    Science.gov (United States)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  2. Electronic Wave Packet in a Quantized Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    程太旺; 薛艳丽; 李晓峰; 吴令安; 傅盘铭

    2002-01-01

    We study a non-stationary electronic wave packet in a quantized electromagnetic field. Generally, the electron and field become entangled as the electronic wave packet evolves. Here we find that, when the initial photon state is a coherent one, the wavefunction of the system can be factorized if we neglect the transferred photon number. In this case, the quantized-field calculation is equivalent to the semi-classical calculation.

  3. A physically motivated quantization of the electromagnetic field

    Science.gov (United States)

    Bennett, Robert; Barlow, Thomas M.; Beige, Almut

    2016-01-01

    The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field.

  4. Stochastic Variational Method as a Quantization Scheme II: Quantization of Electromagnetic Fields

    CERN Document Server

    Kodama, T Koide T

    2014-01-01

    Quantization of electromagnetic fields is investigated in the framework of stochastic variational method (SVM). Differently from the canonical quantization, this method does not require canonical form and quantization can be performed directly from the gauge invariant Lagrangian. The gauge condition is used to choose dynamically independent variables. We verify that, in the Coulomb gauge condition, SVM result is completely equivalent to the traditional result. On the other hand, in the Lorentz gauge condition, SVM quantization can be performed without introducing the indefinite metric. The temporal and longitudinal components of the gauge filed, then, behave as c-number functionals affected by quantum fluctuation through the interaction with charged matter fields. To see further the relation between SVM and the canonical quantization, we quantize the usual gauge Lagrangian with the Fermi term and argue a stochastic process with a negative second order correlation is introduced to reproduce the indefinite metr...

  5. Quantization of electromagnetic field and analysis of Purcell effect based on formalism of scattering matrix

    Science.gov (United States)

    Kaliteevski, M. A.; Gubaydullin, A. R.; Ivanov, K. A.; Mazlin, V. A.

    2016-09-01

    We have developed a rigorous self-consistent approach for the quantization of electromagnetic field in inhomogeneous structures. The approach is based on utilization of the scattering matrix of the system. Instead of the use of standard periodic Born-Karman boundary conditions, we use the quantization condition implying equating eigenvalues of the scattering matrix (S-matrix) of the system to unity (S-quantization). In the trivial case of uniform medium boundary condition for S-quantization is nothing but periodic boundary condition. S-quantization allows calculating modification of the spontaneous emission rate for arbitrary inhomogeneous structure and direction of the emitted radiation. S-quantization solves the long-standing problem coupled to normalization of the quasi-stationary electromagnetic modes. Examples of application of S-quantization for the calculation of spontaneous emission rate for the cases of Bragg reflector and microcavity are demonstrated.

  6. Improved Faddeev-Jackiw quantization of the electromagnetic field and Lagrange multiplier fields

    Institute of Scientific and Technical Information of China (English)

    YANG Jin-Long; HUANG Yong-Chang

    2008-01-01

    We use the improved Faddeev-Jackiw quantization method to quantize the electromagnetic field and its Lagrange multiplier fields.The method's comparison with the usual Faddeev-Jackiw method and the Dirac method is given.We show that this method is equivalent to the Dirac method and also retains all the merits of the usual Faddeev-Jackiw method.Moreover,it is simpler than the usual one if one needs to obtain new secondary constraints.Therefore,the improved Faddeev-Jackiw method is essential.Meanwhile,we find the new meaning of the Lagrange multipliers and explain the Faddeev-Jackiw generalized brackets concerning the Lagrange multipliers.

  7. Canonical quantization of macroscopic electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.u [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2010-12-15

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  8. Canonical quantization of macroscopic electromagnetism

    CERN Document Server

    Philbin, T G

    2010-01-01

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetoelectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  9. A canonical approach to electromagnetic field quantization in a nonhomogeneous and anisotropic magnetodielectric medium

    Energy Technology Data Exchange (ETDEWEB)

    Kheirandish, Fardin; Amooshahi, Majid; Soltani, Morteza [Department of Physics, University of Isfahan, Hezar Jarib Ave., Isfahan (Iran, Islamic Republic of)], E-mail: fardinkh@phys.ui.ac.ir, E-mail: amooshahi@phys.ui.ac.ir, E-mail: m.soltani@phys.ui.ac.ir

    2009-04-14

    In this paper, by extending the Lagrangian of the Huttner-Barnett model an electromagnetic field in a nonhomogeneous and anisotropic magnetodielectric medium is quantized canonically. In this model, Maxwell equations in the medium are obtained and solved using the Green function technique. The noise operators are found and the results are compared with the phenomenological method.

  10. Finite-temperature electromagnetic-field quantization in a medium: The thermofield approach

    Energy Technology Data Exchange (ETDEWEB)

    Kheirandish, F.; Soltani, M.; Jafari, M. [Department of Physics, Faculty of Science, University of Isfahan, Hezar-Jarib Street, 81746-73441, Isfahan (Iran, Islamic Republic of)

    2011-12-15

    Starting from a Lagrangian, an electromagnetic field is quantized in the presence of a medium in thermal equilibrium and also in a medium with time-varying temperature. The vector potential for both equilibrium and nonequilibrium cases is obtained and vacuum fluctuations of the fields are calculated. As an illustrative example, the finite-temperature decay rate and level shift of an atom in a polarizable medium are calculated in this approach.

  11. Second Quantized Scalar QED in Homogeneous Time-Dependent Electromagnetic Fields

    CERN Document Server

    Kim, Sang Pyo

    2014-01-01

    We formulate the second quantized scalar quantum electrodynamics in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian for a charged scalar field is an infinite system of decoupled time-dependent oscillators for electric fields but of coupled time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator plays the role of the time-dependent annihilation and creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally the quantum state and pair production is discussed when a time-dependent electric field is present in parallel to t...

  12. Noise-free scattering of the quantized electromagnetic field from a dispersive linear dielectric

    CERN Document Server

    Hillery, M; Hillery, Mark; Drummond, Peter D.

    2000-01-01

    We study the scattering of the quantized electromagnetic field from a linear, dispersive dielectric using the scattering formalism for quantum fields. The medium is modeled as a collection of harmonic oscillators with a number of distinct resonance frequencies. This model corresponds to the Sellmeir expansion, which is widely used to describe experimental data for real dispersive media. The integral equation for the interpolating field in terms of the in field is solved and the solution used to find the out field. The relation between the in and out creation and annihilation operators is found which allows one to calculate the S-matrix for this system. In this model, we find that there are absorption bands, but the input-output relations are completely unitary. No additional quantum noise terms are required.

  13. Canonical quantization of the D=2n dimensional relativistic spinning particle with anomalous magnetic moment in the external electromagnetic field

    CERN Document Server

    Grigoriyn, G V

    1995-01-01

    The pseudoclassical hamiltonian and action of the $D=2n$ dimensional Dirac particle with anomalous magnetic moment interacting with the external electromagnetic field is found. The Bargmann-Michel-Telegdi equation of motion for the Pauli-Lubanski vector is deduced. The canonical quantization of $D=2n$ dimensional Dirac spinning particle with anomalous magnetic moment in the external electromagnetic field is carried out in the gauge which allows to describe simultaneously particles and antiparticles (massive and massless) already at the classical level. Pseudoclassical Foldy-Wouthuysen transformation is used to obtain canonical (Newton-Wigner) coordinates and in terms of this variables the theory is quantized. The connection of this quantization with the deGroot and Suttorp's description of Dirac particle with anomalous magnetic moment in the external electromagnetic field is discussed.

  14. Second quantized scalar QED in homogeneous time-dependent electromagnetic fields

    Science.gov (United States)

    Kim, Sang Pyo

    2014-12-01

    We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infinite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.

  15. An introduction to field quantization

    CERN Document Server

    Takahashi, Yasushi

    1969-01-01

    An Introduction to Field Quantization is an introductory discussion of field quantization and problems closely related to it. Field quantization establishes a commutation relation of the field and finds an operator in such a manner that the Heisenberg equation of motion is satisfied. This book contains eight chapters and begins with a review of the quantization of the Schroedinger field and the close relation between quantized field theory and the many-body theory in quantum mechanics. These topics are followed by discussions of the quantization of the radiation field and the field of lattice

  16. Field quantization in inhomogeneous absorptive dielectrics

    NARCIS (Netherlands)

    Suttorp, L.G.; Wubs, Martijn

    2004-01-01

    The quantization of the electromagnetic field in a three-dimensional inhomogeneous dielectric medium with losses is carried out in the framework of a damped-polariton model with an arbitrary spatial dependence of its parameters. The equations of motion for the canonical variables are solved explicit

  17. BRST quantization and canonical Ward identity of the supersymmetric electromagnetic interaction system

    Institute of Scientific and Technical Information of China (English)

    HUANG YongChang; JIANG YunGuo; LI XinGuo

    2007-01-01

    According to the method of path integral quantization for the canonical constrained system in Becchi-Rouet-Stora-Tyutin scheme, the supersymmetric electromagnetic interaction system was quantized. Both the Hamiltonian of the supersymmetric electromagnetic interaction system in phase space and the quantization procedure were simplified. The BRST generator was constructed, and the BRST transformations of supersymmetric fields were gotten; the effective action was calculated, and the generating functional for the Green function was achieved; also, the gauge generator was constructed, and the gauge transformation of the system was obtained. Finally, the Ward-Takahashi identities based on the canonical Noether theorem were calculated, and two relations between proper vertices and propagators were obtained.

  18. Discrete Classical Electromagnetic Fields

    CERN Document Server

    De Souza, M M

    1997-01-01

    The classical electromagnetic field of a spinless point electron is described in a formalism with extended causality by discrete finite transverse point-vector fields with discrete and localized point interactions. These fields are taken as a classical representation of photons, ``classical photons". They are all transversal photons; there are no scalar nor longitudinal photons as these are definitely eliminated by the gauge condition. The angular distribution of emitted photons coincides with the directions of maximum emission in the standard formalism. The Maxwell formalism and its standard field are retrieved by the replacement of these discrete fields by their space-time averages, and in this process scalar and longitudinal photons are necessarily created and added. Divergences and singularities are by-products of this averaging process. This formalism enlighten the meaning and the origin of the non-physical photons, the ones that violate the Lorentz condition in manifestly covariant quantization methods.

  19. Quantized Fields in a Nonlinear Dielectric Medium A Microscopic Approach

    CERN Document Server

    Hillery, M; Hillery, Mark; Mlodinow, Leonard

    1997-01-01

    Theories which have been used to describe the quantized electromagnetic field interacting with a nonlinear dielectric medium are either phenomenological or derived by quantizing the macroscopic Maxwell equations. Here we take a different approach and derive a Hamiltonian describing interacting fields from one which contains both field and matter degrees of freedom. The medium is modelled as a collection of two-level atoms, and these interact with the electromagnetic field. The atoms are grouped into effective spins and the Holstein- Primakoff representation of the spin operators is used to expand them in one over the total spin. When the lowest-order term is combined with the free atomic and field Hamiltonians, a theory of noninteracting polaritons results. When higher-order terms are expressed in terms of polariton operators, standard nonlinear optical interactions emerge.

  20. Quantization of massive Weyl fields in vacuum

    CERN Document Server

    Dvornikov, Maxim

    2013-01-01

    We briefly review the main methods for the description of massive Weyl fields in vacuum. On the classical level we discuss Weyl fields expressed through Grassmann variables as well as having spinors with commuting components. In both approaches we quantize the system. We get the correct anticommutation relations between creation and annihilation operators, which result in the proper form of the total energy of the field. However, the commuting classical Weyl fields require the new method of quantization.

  1. BRST quantization and canonical Ward identity of the supersymmetric electromagnetic interaction system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the method of path integral quantization for the canonical constrained system in Becchi-Rouet-Stora-Tyutin scheme, the supersymmetric electromagnetic interaction system was quantized. Both the Hamiltonian of the supersymmetric electromagnetic interaction system in phase space and the quantization procedure were simplified. The BRST generator was constructed, and the BRST transforma- tions of supersymmetric fields were gotten; the effective action was calculated, and the generating functional for the Green function was achieved; also, the gauge generator was constructed, and the gauge transformation of the system was ob- tained. Finally, the Ward-Takahashi identities based on the canonical Noether theorem were calculated, and two relations between proper vertices and propaga- tors were obtained.

  2. Electromagnetic Fields

    Science.gov (United States)

    ... causes cancer. Some people worry that wireless and cellular phones cause cancer or other health problems. The phones do give off radio-frequency energy (RF), a form of electromagnetic radiation. So far, scientific evidence has not found a ...

  3. What Are Electromagnetic Fields?

    Science.gov (United States)

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  4. Features of multiphoton-stimulated bremsstrahlung in a quantized field

    Science.gov (United States)

    Burenkov, Ivan A.; Tikhonova, Olga V.

    2010-12-01

    The process of absorption and emission of external field quanta by a free electron during the scattering on a potential centre is investigated in the case of interaction with a quantized electromagnetic field. The analytical expression for differential cross-sections and probabilities of different multiphoton channels are obtained. We demonstrate that in the case of a non-classical 'squeezed vacuum' initial field state the probability for the electron to absorb a large number of photons appears to be larger by several orders of magnitude in comparison to the classical field and leads to the formation of the high-energy plateau in the electron energy spectrum. The generalization of the Marcuse effect to the case of the quantized field is worked out. The total probability of energy absorption by electron from the non-classical light is analysed.

  5. Features of multiphoton-stimulated bremsstrahlung in a quantized field

    Energy Technology Data Exchange (ETDEWEB)

    Burenkov, Ivan A; Tikhonova, Olga V, E-mail: ovtikhonova@mail.r [Institute of Nuclear Physics, Moscow State University, Leninskie Gory 1, Moscow, 119991 (Russian Federation)

    2010-12-14

    The process of absorption and emission of external field quanta by a free electron during the scattering on a potential centre is investigated in the case of interaction with a quantized electromagnetic field. The analytical expression for differential cross-sections and probabilities of different multiphoton channels are obtained. We demonstrate that in the case of a non-classical 'squeezed vacuum' initial field state the probability for the electron to absorb a large number of photons appears to be larger by several orders of magnitude in comparison to the classical field and leads to the formation of the high-energy plateau in the electron energy spectrum. The generalization of the Marcuse effect to the case of the quantized field is worked out. The total probability of energy absorption by electron from the non-classical light is analysed.

  6. Space-Time Quantization and Nonlocal Field Theory -Relativistic Second Quantization of Matrix Model

    CERN Document Server

    Tanaka, S

    2000-01-01

    We propose relativistic second quantization of matrix model of D particles in a general framework of nonlocal field theory based on Snyder-Yang's quantized space-time. Second-quantized nonlocal field is in general noncommutative with quantized space-time, but conjectured to become commutative with light cone time $X^+$. This conjecture enables us to find second-quantized Hamiltonian of D particle system and Heisenberg's equation of motion of second-quantized {\\bf D} field in close contact with Hamiltonian given in matrix model. We propose Hamilton's principle of Lorentz-invariant action of {\\bf D} field and investigate what conditions or approximations are needed to reproduce the above Heisenberg's equation given in light cone time. Both noncommutativities appearing in position coordinates of D particles in matrix model and in quantized space-time will be eventually unified through second quantization of matrix model.

  7. Discrete phase space - II: The second quantization of free relativistic wave fields

    CERN Document Server

    Das, A

    2008-01-01

    The Klein-Gordon equation, the Maxwell equation, and the Dirac equation are presented as partial difference equations in the eight-dimensional covariant discrete phase space. These equations are also furnished as difference-differential equations in the arena of discrete phase space and continuous time. The scalar field and electromagnetic fields are quantized with commutation relations. The spin-1/2 field is quantized with anti-commutation relations. Moreover, the total momentum, energy and charge of these free relativisitic quantized fields in the discrete phase space and continuous time are computed exactly. The results agree completely with those computed from the relativisitic fields defned on the space-time continuum.

  8. Relating field theories via stochastic quantization

    Science.gov (United States)

    Dijkgraaf, Robbert; Orlando, Domenico; Reffert, Susanne

    2010-01-01

    This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.

  9. Relating field theories via stochastic quantization

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Robbert [KdV Institute for Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam (Netherlands); Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Orlando, Domenico [Institute for the Mathematics and Physics of the Universe, University of Tokyo, Kashiwa-no-Ha 5-1-5, Kashiwa-shi, 277-8568 Chiba (Japan); Reffert, Susanne, E-mail: susanne.reffert@impu.j [Institute for the Mathematics and Physics of the Universe, University of Tokyo, Kashiwa-no-Ha 5-1-5, Kashiwa-shi, 277-8568 Chiba (Japan)

    2010-01-11

    This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.

  10. Relating Field Theories via Stochastic Quantization

    CERN Document Server

    Dijkgraaf, Robbert; Reffert, Susanne

    2009-01-01

    This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.

  11. Theory of electromagnetic fields

    CERN Document Server

    Wolski, Andrzej

    2011-01-01

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  12. The Theory of Quantized Fields. II

    Science.gov (United States)

    Schwinger, J.

    1951-01-01

    The arguments leading to the formulation of the Action Principle for a general field are presented. In association with the complete reduction of all numerical matrices into symmetrical and anti-symmetrical parts, the general field is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of fields is inferred from the time reflection invariance requirement. The consistency of the theory is verified in terms of a criterion involving the various generators of infinitesimal transformations. Following a discussion of charged fields, the electromagnetic field is introduced to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the electromagnetic field and charged fields are not kinematically independent. After a discussion of the field-strength commutation relations, the independent dynamical variable of the electromagnetic field are exhibited in terms of a special gauge.

  13. Light-Front quantization of field theory

    CERN Document Server

    Srivastava, P P

    1996-01-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincarè algebra and the LF Spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons.

  14. Entropic quantization of scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Ipek, Selman; Caticha, Ariel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States)

    2015-01-13

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.

  15. Introducing Electromagnetic Field Momentum

    Science.gov (United States)

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  16. On field theory quantization around instantons

    CERN Document Server

    Anselmi, D

    2009-01-01

    With the perspective of looking for experimentally detectable physical applications of the so-called topological embedding, a procedure recently proposed by the author for quantizing a field theory around a non-discrete space of classical minima (instantons, for example), the physical implications are discussed in a ``theoretical'' framework, the ideas are collected in a simple logical scheme and the topological version of the Ginzburg-Landau theory of superconductivity is solved in the intermediate situation between type I and type II superconductors.

  17. Quantization of light energy directly from classical electromagnetic theory in vacuum

    Institute of Scientific and Technical Information of China (English)

    She Wei-Long

    2005-01-01

    It is currently believed that light quantum or the quantization of light energy is beyond classical physics, and the picture of wave-particle duality, which was criticized by Einstein but has attracted a number of experimental researches, is necessary for the description of light. It is shown in this paper, however, that the quantization of light energy in vacuum, which is the same as that in quantum electrodynamics, can be derived directly from the classical electromagnetic theory through the consideration of statistics based on classical physics. Therefore, the quantization of energy is an intrinsic property of light as a classical electromagnetic wave and has no need of being related to particles.

  18. Phase-space quantization of field theory.

    Energy Technology Data Exchange (ETDEWEB)

    Curtright, T.; Zachos, C.

    1999-04-20

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.

  19. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  20. Enhanced quantization particles, fields and gravity

    CERN Document Server

    Klauder, John R

    2015-01-01

    This pioneering book addresses the question: Are the standard procedures of canonical quantization fully satisfactory, or is there more to learn about assigning a proper quantum system to a given classical system? As shown in this book, the answer to this question is: The standard procedures of canonical quantization are not the whole story! This book offers alternative quantization procedures that complete the story of quantization. The initial chapters are designed to present the new procedures in a clear and simple manner for general readers. As is necessary, systems that exhibit acceptable results with conventional quantization lead to the same results when the new procedures are used for them. However, later chapters examine selected models that lead to unacceptable results when quantized conventionally. Fortunately, these same models lead to acceptable results when the new quantization procedures are used.

  1. Path Integrals and Lorentz Violation in Polymer Quantized Scalar Fields

    CERN Document Server

    Kajuri, Nirmalya

    2014-01-01

    We obtain a path integral formulation of polymer quantized scalar field theory, starting from the Hilbert Space framework. This brings the polymer quantized scalar field theory under the ambit of Feynman diagrammatic techniques. The path integral formulation also shows that Lorentz invariance is lost for the Klein-Gordon field.

  2. Path integral quantization of parametrised field theory

    CERN Document Server

    Varadarajan, M

    2004-01-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrised field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrised field theory in order to analyse issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is non-trivial and is the analog of the Fradkin- Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrised field theory using key ideas of Schleich and show that our constructions imply the existence of non-standard `Wick rotations' of the standard free scalar field 2 point function. We develop a framework to study the problem of time through computations of scalar field 2 point functions. We illustra...

  3. Electromagnetic fields and waves

    CERN Document Server

    Rojansky, Vladimir

    2012-01-01

    This comprehensive introduction to classical electromagnetic theory covers the major aspects, including scalar fields, vectors, laws of Ohm, Joule, Coulomb, Faraday, Maxwell's equation, and more. With numerous diagrams and illustrations.

  4. From topological field theory to deformation quantization and reduction

    CERN Document Server

    Cattaneo, Alberto S

    2016-01-01

    This note describes the functional-integral quantization of two-dimensional topological field theories together with applications to problems in deformation quantization of Poisson manifolds and reduction of certain submanifolds. A brief introduction to smooth graded manifolds and to the Batalin-Vilkovisky formalism is included.

  5. Electromagnetic fields and interactions

    CERN Document Server

    Becker, Richard

    1982-01-01

    For more than a century, ""Becker"" and its forerunner, ""Abraham-Becker,"" have served as the bible of electromagnetic theory for countless students. This definitive translation of the physics classic features both volumes of the original text.Volume I, on electromagnetic theory, includes an introduction to vector and tensor calculus, the electrostatic field, electric current and the field, and the theory of relativity. The second volume comprises a self-contained introduction to quantum theory that covers the classical principles of electron theory and quantum mechanics, problems involving

  6. Rarita-Schwinger Quantum Free Field Via Deformation Quantization

    CERN Document Server

    Perez, B Carballo

    2011-01-01

    Rarita-Schwinger (RS) quantum free field is reexamined in the context of deformation quantization. It is found out that the subsidiary condition does not introduce any change either in the Wigner function or in other aspects of the deformation quantization formalism, in relation to the Dirac field case. This happens because the vector structure of the RS field imposes constraints on the space of wave function solutions and not on the operator structure. The RS propagator was also calculated within this formalism.

  7. A topological model of electromagnetism: quantization of the electric change

    Energy Technology Data Exchange (ETDEWEB)

    Ranada, A.F.

    1991-01-01

    It is shown that a topological structure which underlies the Maxwell equations gives a mechanism of quantization of the electric charge, the fundamental charge being equal to 1/4 pi in natural units. This value is very close to 14/15 times the electron charge, the corresponding fine structure constant being equal to 1/157.9. (author)

  8. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  9. Electromagnetic fields and waves

    CERN Document Server

    Iskander, Magdy F

    2013-01-01

    The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...

  10. Electromagnetic Field Penetration Studies

    Science.gov (United States)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  11. The Indispensability of Ghost Fields in the Light-Cone Gauge Quantization of Gauge Fields

    CERN Document Server

    Nakawaki, Y; Nakawaki, Yuji; Cartor, Gary Mc

    1999-01-01

    We continue McCartor and Robertson's recent demonstration of the indispensability of ghost fields in the light-cone gauge quantization of gauge fields. It is shown that the ghost fields are indispensable in deriving well-defined antiderivatives and in regularizing the most singular component of gauge field propagator. To this end it is sufficient to confine ourselves to noninteracting abelian fields. Furthermore to circumvent dealing with constrained systems, we construct the temporal gauge canonical formulation of the free electromagnetic field in auxiliary coordinates $x^{\\mu}=(x^-,x^+,x^1,x^2)$ where $x^-=x^0 cos{\\theta}-x^3 sin{\\theta}, x^+=x^0 sin{\\theta}+x^3 cos{\\theta}$ and $x^-$ plays the role of time. In so doing we can quantize the fields canonically without any constraints, unambiguously introduce "static ghost fields" as residual gauge degrees of freedom and construct the light-cone gauge solution in the light-cone representation by simply taking the light-cone limit (${\\theta}\\to \\pi/4$). As a by...

  12. The Indispensability of Ghost Fields in the Light-Cone Gauge Quantization of Gauge Fields

    Science.gov (United States)

    Nakawaki, Y.; McCartor, G.

    1999-07-01

    We continue McCartor and Robertson's recent demonstration of the indispensability of ghost fields in the light-cone gauge quantization of gauge fields. It is shown that the ghost fields are indispensable in deriving well-defined antiderivatives and in regularizing the most singular component of the gauge field propagator. To this end it is sufficient to confine ourselves to noninteracting abelian fields. Furthermore, to circumvent dealing with constrained systems, we construct the temporal gauge canonical formulation of the free electromagnetic field in auxiliary coordinates xμ=(x-, x+, x1, x2), where x- = x0 cos {θ}-x3 sin θ x+ = x0 sin θ +x3 cos θ and x- plays the role of time. In so doing we can quantize the fields canonically without any constraints, unambiguously introduce ``static ghost fields" as residual gauge degrees of freedom and construct the light-cone gauge solution in the light-cone representation by simply taking the light-cone limit (θ --> (π / 4) ). As a by product we find that, with a suitable choice of vacuum, the Mandelstam-Leibbrandt form of the propagator can be derived in the θ=0 case (the temporal gauge formulation in the equal-time representation).

  13. Childhood Leukemia and Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Alpaslan Türkkan

    2009-12-01

    Full Text Available In this review, the relationship between very low frequency electromagnetic fields, originating from high voltage powerlines, and childhood leukemia was evaluated. Electromagnetic fields have biological effects. Whole populations are effected by different levels of electromagnetic fields but children are more sensible. In urban areas high voltage powerlines are the main sources of electromagnetic fields. The relation of electromagnetic fields due to high voltage powerlines and leukemia with consideration of dose-response and distance is investigated in several studies. There are different opinions on the effects of electromagnetic fields on general health. The relation between electromagnetic fields and childhood leukemia must be considered separately. Although there is no limit value, it is generally accepted that exposure to 0.4 µT and over doubles the risk of leukemia in children 15 years and younger. (Journal of Current Pediatrics 2009; 7: 137-41

  14. Precise quantization of anomalous Hall effect near zero magnetic field

    Science.gov (United States)

    Bestwick, Andrew; Fox, Eli; Kou, Xufeng; Pan, Lei; Wang, Kang; Goldhaber-Gordon, David

    2015-03-01

    The quantum anomalous Hall effect (QAHE) has recently been of great interest due to its recent experimental realization in thin films of Cr-doped (Bi, Sb)2Te3, a ferromagnetic 3D topological insulator. The presence of ferromagnetic exchange breaks time-reversal symmetry, opening a gap in the surface states, but gives rise to dissipationless chiral conduction at the edge of a magnetized film. Ideally, this leads to vanishing longitudinal resistance and Hall resistance quantized to h /e2 , where h is Planck's constant and e is the electron charge, but perfect quantization has so far proved elusive. Here, we study the QAHE in the limit of zero applied magnetic field, and measure Hall resistance quantized to within one part per 10,000. Deviation from quantization is due primarily to thermally activated carriers, which can be nearly eliminated through adiabatic demagnetization cooling. This result demonstrates an important step toward dissipationless electron transport in technologically relevant conditions.

  15. Polymer-Fourier quantization of the scalar field revisited

    Science.gov (United States)

    Garcia-Chung, Angel; Vergara, J. David

    2016-10-01

    The polymer quantization of the Fourier modes of the real scalar field is studied within algebraic scheme. We replace the positive linear functional of the standard Poincaré invariant quantization by a singular one. This singular positive linear functional is constructed as mimicking the singular limit of the complex structure of the Poincaré invariant Fock quantization. The resulting symmetry group of such polymer quantization is the subgroup SDiff(ℝ4) which is a subgroup of Diff(ℝ4) formed by spatial volume preserving diffeomorphisms. In consequence, this yields an entirely different irreducible representation of the canonical commutation relations, nonunitary equivalent to the standard Fock representation. We also compared the Poincaré invariant Fock vacuum with the polymer Fourier vacuum.

  16. Polymer-Fourier quantization of the scalar field revisited

    CERN Document Server

    Garcia-Chung, Angel

    2016-01-01

    The Polymer Quantization of the Fourier modes of the real scalar field is studied within algebraic scheme. We replace the positive linear functional of the standard Poincar\\'e invariant quantization by a singular one. This singular positive linear functional is constructed as mimicking the singular limit of the complex structure of the Poincar\\'e invariant Fock quantization. The resulting symmetry group of such Polymer Quantization is the subgroup $\\mbox{SDiff}(\\mathbb{R}^4)$ which is a subgroup of $\\mbox{Diff}(\\mathbb{R}^4)$ formed by spatial volume preserving diffeomorphisms. In consequence, this yields an entirely different irreducible representation of the Canonical Commutation Relations, non-unitary equivalent to the standard Fock representation. We also compared the Poincar\\'e invariant Fock vacuum with the Polymer Fourier vacuum.

  17. Loop Quantization Versus Fock Quantization Of P-form Electromagnetism On Static Spacetimes

    CERN Document Server

    Carrion Alvarez, M

    2004-01-01

    As a warmup for studying dynamics and gravitons in loop quantum gravity. Varadajan showed that Wilson loops give operators on the Fock space for electromagnetism in Minkowski spacetime—but only after regularizing the loops by smearing them with a Gaussian. Unregularized Wilson loops are too singular to give densely defined operators. Here we present a rigorous treatment of unsmeared Wilson loops for vacuum electromagnetism on an arbitrary globally hyperbolic static spacetime. Our Wilson loops are not operators, but “quasioperators”: sesquilinear forms on the dense subspace of Fock space spanned by coherent states corresponding to smooth classical solutions. To obtain this result we begin by carefully treating electromagnetism on globally hyperbolic static spacetimes, addressing various issues that are usually ignored, such as the definition of Aharonov-Bohm modes when space is noncompact. We then use a new construction of Fock space based on coherent states to define Wilson loop ...

  18. Electromagnetic potential in pre-metric electrodynamics: Causal structure, propagators and quantization

    Science.gov (United States)

    Pfeifer, Christian; Siemssen, Daniel

    2016-05-01

    An axiomatic approach to electrodynamics reveals that Maxwell electrodynamics is just one instance of a variety of theories for which the name electrodynamics is justified. They all have in common that their fundamental input are Maxwell's equations d F =0 (or F =d A ) and d H =J and a constitutive law H =#F which relates the field strength two-form F and the excitation two-form H . A local and linear constitutive law defines what is called local and linear pre-metric electrodynamics whose best known application is the effective description of electrodynamics inside media including, e.g., birefringence. We analyze the classical theory of the electromagnetic potential A before we use methods familiar from mathematical quantum field theory in curved spacetimes to quantize it in a locally covariant way. Our analysis of the classical theory contains the derivation of retarded and advanced propagators, the analysis of the causal structure on the basis of the constitutive law (instead of a metric) and a discussion of the classical phase space. This classical analysis sets the stage for the construction of the quantum field algebra and quantum states. Here one sees, among other things, that a microlocal spectrum condition can be formulated in this more general setting.

  19. Canonical quantization of gauge fields in static space-times with applications to Rindler spaces

    CERN Document Server

    Lenz, F; Yazaki, K

    2008-01-01

    The canonical quantization in Weyl gauge of gauge fields in static space-times is presented. With an appropriate definition of transverse and longitudinal components of gauge fields, the Gauss law constraint is resolved explicitly for scalar and spinor QED and a complete non-perturbative solution is given for the quantized Maxwell-field coupled to external currents. The formalism is applied in investigations of the electromagnetic field in Rindler spaces. The relation of creation and annihilation operators in Minkowski and Rindler spaces is established and initial value problems associated with bremsstrahlung of a uniformly accelerated charge are studied. The peculiar scaling properties of scalar and gauge theories in Rindler spaces are discussed and various quantities such as the photon condensate or the interaction energy of static charges or scalar sources are computed.

  20. Light-front Quantized Field Theory Some New Results

    CERN Document Server

    Srivastava, P P

    1999-01-01

    A review is made on some recent studies which support the point of view that the relativistic field theory quantized on the light-front (LF) is more transparent compared to the conventional equal-time one. The discussion may be of relevance in the context of the quantization of gravitation theory. The LF quantization is argued to be equally appropriate as the conventional equal-time one. The description on the LF of the spontaneous symmetry breaking and the (tree level) Higgs mechanism, the emergence of the $\\theta$-vacua in the Schwinger model, the absence of such vacua in the Chiral SM, the BRS-BFT quantization of the latter on the LF are among the topics discussed. Comments on the irrelevance, in the quantized theory, of the fact that the hyperplanes $x^{\\pm}=0$ constitute characteristic surfaces of the hyperbolic partial differential equation are also made. The LF theory quantized on, say, the $x^{+}=const.$ hyperplanes seems to already contain in it the information on the equal-$x^{-}$ commutators as wel...

  1. Electromagnetic fields and life

    CERN Document Server

    Presman, A S

    1970-01-01

    A broad region of the electromagnetic spectrum long assumed to have no influence on living systems under natural conditions has been critically re-examined over the past decade. This spectral region extends from the superhigh radio frequencies, through de­ creasing frequencies, to and including essentially static electric and magnetic fields. The author of this monograph, A. S. Presman, has reviewed not only the extensive Russian literatur!;"l, but also al­l most equally comprehensively the non-Russian literature, dealing with biological influences of these fields. Treated also is literature shedding some light on possible theoretical foundations for these phenomena. A substantial, rapidly increasing number of studies in many laboratories and countries has now clearly established bio­ logical influences which are independent of the theoretically predictable, simple thermal effects. Indeed many of the effects are produced by field strengths very close to those within the natural environment. The author has,...

  2. Quantization of the radiation field in an anisotropic dielectric medium

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Liu Shi-Bing; Yang Wei

    2009-01-01

    There are both loss and dispersion characteristics for most dielectric media. In quantum theory the loss in medium is generally described by Langevin force in the Langevin noise (LN) scheme by which the quantization of the radiation field in various homogeneous absorbing dielectrics can be successfully actualized. However, it is invalid for the anisotropic dispersion medium. This paper extends the LN theory to an anisotropic dispersion medium and presented the quantization of the radiation field as well as the transformation relation between the homogeneous and anisotropic dispersion media.

  3. Polarization-free Quantization of Linear Field Theories

    CERN Document Server

    Lanéry, Suzanne

    2016-01-01

    It is well-known that there exist infinitely-many inequivalent representations of the canonical (anti)-commutation relations of Quantum Field Theory (QFT). A way out, suggested by Algebraic QFT, is to instead define the quantum theory as encompassing all possible (abstract) states. In the present paper, we describe a quantization scheme for general linear (aka. free) field theories that can be seen as intermediate between traditional Fock quantization and full Algebraic QFT, in the sense that: * it provides a constructive, explicit description of the resulting space of quantum states; * it does not require the choice of a polarization, aka. the splitting of classical solutions into positive vs. negative-frequency modes: in fact, any Fock representation corresponding to a "reasonable" choice of polarization is naturally embedded; * it supports the implementation of a "large enough" class of linear symplectomorphisms of the classical, infinite-dimensional phase space. The proposed quantization (like Algebraic Q...

  4. Quantization of gauge fields, graph polynomials and graph homology

    Energy Technology Data Exchange (ETDEWEB)

    Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de [Humboldt University, 10099 Berlin (Germany); Sars, Matthias [Humboldt University, 10099 Berlin (Germany); Suijlekom, Walter D. van [Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands)

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  5. Electromagnetic field and cosmic censorship

    CERN Document Server

    Düztaş, Koray

    2013-01-01

    We construct a gedanken experiment in which an extremal Kerr black hole interacts with a test electromagnetic field. Using Teukolsky's solutions for electromagnetic perturbations in Kerr spacetime, and the conservation laws imposed by the energy momentum tensor of the electromagnetic field and the Killing vectors of the spacetime, we prove that this interaction cannot convert the black hole into a naked singularity, thus cosmic censorship conjecture is not violated in this case.

  6. Biological effects of electromagnetic fields.

    Science.gov (United States)

    Macrì, M. A.; Di Luzio, Sr.; Di Luzio, S.

    2002-01-01

    Nowadays, concerns about hazards from electromagnetic fields represent an alarming source for human lives in technologically developed countries. We are surrounded by electromagnetic fields everywhere we spend our working hours, rest or recreational activities. The aim of this review is to summarize the biological effects due to these fields arising from power and transmission lines, electrical cable splices, electronic devices inside our homes and work-places, distribution networks and associated devices such as cellular telephones and wireless communication tower, etc. Special care has been reserved to study the biological effects of electromagnetic fields on cell lines of the mammalian immune system about which our research group has been working for several years.

  7. Radial Quantization for Conformal Field Theories on the Lattice

    CERN Document Server

    Brower, Richard C; Neuberger, Herbert

    2012-01-01

    We consider radial quantization for conformal quantum field theory with a lattice regulator. A Euclidean field theory on $\\mathbb R^D$ is mapped to a cylindrical manifold, $\\mathbb R\\times \\mathbb S^{D-1}$, whose length is logarithmic in scale separation. To test the approach, we apply this to the 3D Ising model and compute $\\eta$ for the first $Z_2$ odd primary operator.

  8. First-Quantized Theory of Expanding Universe from Field Quantization in Mini-Superspace

    CERN Document Server

    Ida, Daisuke

    2013-01-01

    We propose a new quantization scheme, which conceptually resembles the third-quantization scheme, for the spatially homogeneous and isotropic cosmological models in Einstein gravity coupled with a neutral massless scalar field. Our strategy is to specify a semi-Riemannian structure on the mini-superspace and to consider the quantum Klein-Gordon field on the mini-superspace. Then, the Hilbert space of this quantum system becomes inseparable, which causes the creation of infinite number of universes. To overcome this issue, we introduce a vector bundle structure on the Hilbert space and the connection of the vector bundle. Then, we can define a consistent unitary time evolution of the quantum universe in terms of the connection field on the vector bundle. By doing this, we are able to treat the quantum dynamics of a single-universe state. We also find an appropriate observable set constituting the CCR-algebra, and obtain the Schr\\"odinger equation for the wave function of the single-universe state. We show that...

  9. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  10. The classical electromagnetic field

    CERN Document Server

    Eyges, Leonard

    2010-01-01

    This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.

  11. Nonlinear properties of gated graphene in a strong electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am [Yerevan State University, Department of Physics (Armenia); Moulopoulos, K., E-mail: cos@ucy.ac.cy [University of Cyprus, Department of Physics (Cyprus)

    2017-03-15

    We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.

  12. Electromagnetic field theories for engineering

    CERN Document Server

    Salam, Md Abdus

    2014-01-01

    A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.

  13. Electromagnetic fields in biological systems

    CERN Document Server

    Lin, James C

    2016-01-01

    As wireless technology becomes more sophisticated and accessible to more users, the interactions of electromagnetic fields with biological systems have captured the interest not only of the scientific community but also the general public. Unintended or deleterious biological effects of electromagnetic fields and radiation may indicate grounds for health and safety precautions in their use. Spanning static fields to terahertz waves, Electromagnetic Fields in Biological Systems explores the range of consequences these fields have on the human body. With contributions by an array of experts, topics discussed include: Essential interactions and field coupling phenomena, highlighting their importance in research on biological effects and in scientific, industrial, and medical applications Electric field interactions in cells, focusing on ultrashort, pulsed high-intensity fields The effect of exposure to naturally occurring and human-made static, low-frequency, and pulsed magnetic fields in biological systems Dosi...

  14. Precise quantization of anomalous Hall effect near zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bestwick, A. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fox, E. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kou, Xufeng [Univ. of California, Los Angeles, CA (United States); Pan, Lei [Univ. of California, Los Angeles, CA (United States); Wang, Kang L. [Univ. of California, Los Angeles, CA (United States); Goldhaber-Gordon, D. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  15. A Third-Quantized Approach to the Large-N Field Models

    CERN Document Server

    Maslov, V P

    1998-01-01

    Large-N field systems are considered from an unusual point of view. The Hamiltonian is presented in a third-quantized form analogously to the second-quantized formulation of the quantum theory of many particles. The semiclassical approximation is applied to the third-quantized Hamiltonian. The advantages of this approach in comparison with 1/N-expansion are discussed.

  16. A primer on electromagnetic fields

    CERN Document Server

    Frezza, Fabrizio

    2015-01-01

    This book is a concise introduction to electromagnetics and electromagnetic fields that covers the aspects of most significance for engineering applications by means of a rigorous, analytical treatment. After an introduction to equations and basic theorems, topics of fundamental theoretical and applicative importance, including plane waves, transmission lines, waveguides, and Green's functions, are discussed in a deliberately general way. Care has been taken to ensure that the text is readily accessible and self-consistent, with conservation of the intermediate steps in the analytical derivations. The book offers the reader a clear, succinct course in basic electromagnetic theory. It will also be a useful lookup tool for students and designers.

  17. Quantization of field systems coupled to point-masses

    CERN Document Server

    G., J Fernando Barbero; Margalef-Bentabol, Juan; Villaseñor, Eduardo J S

    2015-01-01

    We study the Fock quantization of a compound classical system consisting of point masses and a field. We start by studying the details of the Hamiltonian formulation of the model by using the geometric constraint algorithm of Gotay, Nester and Hinds. By relying on this Hamiltonian description, we characterize in a precise way the real Hilbert space of classical solutions to the equations of motion and use it to rigorously construct the Fock space of the system. We finally discuss the structure of this space, in particular the impossibility of writing it in a natural way as a tensor product of Hilbert spaces associated with the point masses and the field, respectively.

  18. The First-Quantized Theory of Photons

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-Yong; XIONG Cai-Dong; Keller Ole

    2007-01-01

    In near-field optics and optical tunnelling theory, photon wave mechanics, I.e. The first-quantized theory of photons, allows us to address the spatial field localization problem in a flexible manner which links smoothly to classical electromagnetics. We develop photon wave mechanics in a rigorous and unified way, based on which field quantization is obtained in a new way.

  19. Moving Manifolds in Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2017-08-01

    Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.

  20. Gauge Invariant Fractional Electromagnetic Fields

    CERN Document Server

    Lazo, Matheus Jatkoske

    2011-01-01

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.

  1. Second Quantization of the Stueckelberg Relativistic Quantum Theory and Associated Gauge Fields

    CERN Document Server

    Horwitz, L P

    1998-01-01

    The gauge compensation fields induced by the differential operators of the Stueckelberg-Schrödinger equation are discussed, as well as the relation between these fields and the standard Maxwell fields. An action is constructed and the second quantization of the fields carried out using a constraint procedure. Some remarks are made on the properties of the second quantized matter fields.

  2. Electromagnetic Fields and Bioenergy Phenomenon

    Directory of Open Access Journals (Sweden)

    İlhan Koşalay

    2014-08-01

    Full Text Available Electromagnetic energy is defined in the large frequency range and it shows its existence in different manners for every frequency range. When considering history of mankind, discovery of the electricity and presence of electrical and electronics based equipments is not very old. Human beings are exposed to electromagnetic fields and waves which they aren't used to live with those fields for ages. In this connection, lots of studies were done for the thesis of that these fields can produce harmful effects on people. Although results of the studies which were done in this area point out important subjects, sufficient outputs and judgments haven't been appeared yet in general meaning. This study was done to introduce findings which support that electromagnetic energy in some frequency can have beneficial effects on the living being.

  3. Elements of Geometric Quantization and Applications to Fields and Fluids

    CERN Document Server

    Nair, V P

    2016-01-01

    These lecture notes (from the Second Autumn School in High Energy Physics and Quantum Field Theory, Yerevan 2014) cover a number of topics related to geometric quantization. Most of the material is presented from a physicist's point of view. The original notes are posted at \\verb+http://theorphyslab-ysu.info/VW_ASW-2014/uploads/ArmeniaLectures.pdf+. The have been revised with some additions and changes, although referencing is still somewhat dated. These notes are posted here as they may be good background material for some recent papers.

  4. Traditional beliefs and electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Colin A. Ross

    2011-09-01

    Full Text Available The author proposes that a wide range of traditional beliefs and practices may provide clues to real electromagnetic field interactions in the biosphere. For instance, evil eye beliefs may be a cultural elaboration of the sense of being stared at, which in turn may have a basis in real electromagnetic emissions through the eye. Data to support this hypothesis are presented. Other traditional beliefs such as remote sensing of game and the importance of connection to the Earth Mother may also contain a kernel of truth. A series of testable scientific hypotheses concerning traditional beliefs and electromagnetic fields is presented. At this stage, the theory does not have sufficient evidence to be accepted as proven; its purpose is to stimulate thought and research

  5. Scalar field quantization without divergences in all spacetime dimensions

    Science.gov (United States)

    Klauder, John R.

    2011-07-01

    Covariant, self-interacting scalar quantum field theories admit solutions for low enough spacetime dimensions, but when additional divergences appear in higher dimensions, the traditional approach leads to results, such as triviality, that are less than satisfactory. Guided by idealized but soluble nonrenormalizable models, a nontraditional proposal for the quantization of covariant scalar field theories is advanced, which achieves a term-by-term, divergence-free, perturbation analysis of interacting models expanded about a suitable pseudofree theory, which differs from a free theory by an O(planck2) counterterm. These positive features are realized within a functional integral formulation by a local, nonclassical, counterterm that effectively transforms parameter changes in the action from generating mutually singular measures, which are the basis for divergences, to equivalent measures, thereby removing all divergences. The use of an alternative model about which to perturb is already supported by properties of the classical theory and is allowed by the inherent ambiguity in the quantization process itself. This procedure not only provides acceptable solutions for models for which no acceptable, faithful solution currently exists, e.g. phiv4n, for spacetime dimensions n >= 4, but offers a new, divergence-free solution for less-singular models as well, e.g. phiv4n, for n = 2, 3. Our analysis implies similar properties for multicomponent scalar models, such as those associated with the Higgs model.

  6. Explanations, Education, and Electromagnetic Fields.

    Science.gov (United States)

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  7. Fast electromagnetic field strength probes

    NARCIS (Netherlands)

    Leferink, Frank; Serra, Ramiro

    2013-01-01

    Diode detectors and thermocouple detectors are conventionally used to measure electromagnetic field strength. Both detectors have some disadvantages for applications where a fast response and a high dynamic range is required. The diode detector is limited in dynamic range. The dynamic range is impor

  8. Biological effects of electromagnetic fields

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... cell level studies have shown that electromagnetic fields do not have a directly .... The ionic flows, which can be formed in case these molecules are affected from ...... Electr Magn Biol Med 1st Orlando FL. 13. Magnusson M ...

  9. Electromagnetic Fields and Cancer

    Science.gov (United States)

    ... magnetic fields and the risk of brain tumors. Neuro-Oncology 2009; 11(3):242-249. [PubMed Abstract] ... Websites POLICIES Accessibility Comment Policy Disclaimer FOIA Privacy & Security Reuse & Copyright Syndication Services Website Linking U.S. Department ...

  10. Quantization of Emergent Gravity

    CERN Document Server

    Yang, Hyun Seok

    2013-01-01

    Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as spacetime admits a symplectic structure, in other words, a microscopic spacetime becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC spacetime, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing spacetime itself, leading to a dynamical NC spacetime. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background independent formulation where spacetime as well as matter fields is equally emergent from a universal vacuum of quantum gravity.

  11. Quantization of emergent gravity

    Science.gov (United States)

    Yang, Hyun Seok

    2015-02-01

    Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as space-time admits a symplectic structure, in other words, a microscopic space-time becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC space-time, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing space-time itself, leading to a dynamical NC space-time. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background-independent formulation where space-time and matter fields are equally emergent from a universal vacuum of quantum gravity.

  12. Scalar Field Quantization Without Divergences In All Spacetime Dimensions

    CERN Document Server

    Klauder, John R

    2011-01-01

    Covariant, self-interacting scalar quantum field theories admit solutions for low enough spacetime dimensions, but when additional divergences appear in higher dimensions, the traditional approach leads to results, such as triviality, that are less than satisfactory. Guided by idealized but soluble nonrenormalizable models, a nontraditional proposal for the quantization of covariant scalar field theories is advanced, which achieves a term-by-term, divergence-free, perturbation analysis of interacting models expanded about a suitable pseudofree theory, which differs from a free theory by an O(\\hbar^2) counterterm. These positive features are secured within a functional integral formulation by a local, nonclassical, counterterm that effectively transforms parameter changes in the action from generating mutually singular measures, which are the basis for divergences, to equivalent measures, thereby removing all divergences. The use of an alternative model about which to perturb is already supported by properties...

  13. Electromagnetic Fields and Public Health: Mobile Phones

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Electromagnetic fields and public health: mobile phones Fact sheet N° ... an estimated 6.9 billion subscriptions globally. The electromagnetic fields produced by mobile phones are classified by the ...

  14. A System for Electromagnetic Field Conversion

    DEFF Research Database (Denmark)

    2003-01-01

    A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...

  15. Relativistic diffusion equation from stochastic quantization

    CERN Document Server

    Kazinski, P O

    2007-01-01

    The new scheme of stochastic quantization is proposed. This quantization procedure is equivalent to the deformation of an algebra of observables in the manner of deformation quantization with an imaginary deformation parameter (the Planck constant). We apply this method to the models of nonrelativistic and relativistic particles interacting with an electromagnetic field. In the first case we establish the equivalence of such a quantization to the Fokker-Planck equation with a special force. The application of the proposed quantization procedure to the model of a relativistic particle results in a relativistic generalization of the Fokker-Planck equation in the coordinate space, which in the absence of the electromagnetic field reduces to the relativistic diffusion (heat) equation. The stationary probability distribution functions for a stochastically quantized particle diffusing under a barrier and a particle in the potential of a harmonic oscillator are derived.

  16. The Indispensability of Ghost Fields in the Light-Cone Gauge Quantization of Gauge Fields

    OpenAIRE

    Nakawaki, Yuji; McCartor, Gary

    1999-01-01

    We continue McCartor and Robertson's recent demonstration of the indispensability of ghost fields in the light-cone gauge quantization of gauge fields. It is shown that the ghost fields are indispensable in deriving well-defined antiderivatives and in regularizing the most singular component of gauge field propagator. To this end it is sufficient to confine ourselves to noninteracting abelian fields. Furthermore to circumvent dealing with constrained systems, we construct the temporal gauge c...

  17. Gallilei covariant quantum mechanics in electromagnetic fields

    Directory of Open Access Journals (Sweden)

    H. E. Wilhelm

    1985-01-01

    Full Text Available A formulation of the quantum mechanics of charged particles in time-dependent electromagnetic fields is presented, in which both the Schroedinger equation and wave equations for the electromagnetic potentials are Galilei covariant, it is shown that the Galilean relativity principle leads to the introduction of the electromagnetic substratum in which the matter and electromagnetic waves propagate. The electromagnetic substratum effects are quantitatively significant for quantum mechanics in reference frames, in which the substratum velocity w is in magnitude comparable with the velocity of light c. The electromagnetic substratum velocity w occurs explicitly in the wave equations for the electromagnetic potentials but not in the Schroedinger equation.

  18. Particle Physics in Intense Electromagnetic Fields

    CERN Document Server

    Kurilin, A V

    1999-01-01

    The quantum field theory in the presence of classical background electromagnetic fields is reviewed. We give a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. We also discuss the possibilities of searching new physics through the investigations of quantum phenomena induced by the strong electromagnetic environment.

  19. Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution

    Directory of Open Access Journals (Sweden)

    Luis Amilca Andrade-Morales

    2016-09-01

    Full Text Available We study the entropy of a quantized field in interaction with a two-level atom (in a pure state when the field is initially in a mixture of two number states. We then generalise the result for a thermal state; i.e., an (infinite statistical mixture of number states. We show that for some specific interaction times, the atom passes its purity to the field and therefore the field entropy decreases from its initial value.

  20. Wireless Phones Electromagnetic Field Radiation Exposure Assessment

    OpenAIRE

    A. D. Usman; W. F.W. Ahmad; M. Z. A. A. Kadir; M. Mokhtar

    2009-01-01

    Problem statement: Inadequate knowledge of electromagnetic field emitted by mobile phones and increased usage at close proximity, created a lot of skepticism and speculations among end users on its safety or otherwise. Approach: In this study, near field electromagnetic field radiation measurements were conducted on different brand of mobile phones in active mode using a tri-axis isotropic probe and electric field meter. Results: The highest electromagnetic field exposure was recorded when th...

  1. Electromagnetic field anomalies above an isometric depression

    Science.gov (United States)

    Golubtsova, N. S.

    1981-12-01

    The paper examines the three-dimensional simulation of the electromagnetic field above an isometric depression with conducting deposits. The model makes it possible to study the development of electromagnetic anomalies over such a depression and to make qualitative as well as quantitative assessments of the dependence of electromagnetic anomalies on field frequency, the dimensions of geoelectric inhomogeneities, and the specific resistance of the foundation of the depression. The present approach can be used in geoelectric and magnetotelluric studies of electromagnetic anomalies.

  2. Response of two-band systems to a single-mode quantized field

    Science.gov (United States)

    Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.

    2016-03-01

    The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.

  3. Cotangent bundle quantization: Entangling of metric and magnetic field

    CERN Document Server

    Karasev, M V

    2005-01-01

    For manifolds $\\M$ of noncompact type endowed with an affine connection (for example, the Levi-Civita connection) and a closed 2-form (magnetic field) we define a Hilbert algebra structure in the space $L^2(\\TB)$ and construct an irreducible representation of this algebra in $L^2(\\M)$. This algebra is automatically extended to polynomial in momenta functions and distributions. Under some natural conditions this algebra is unique. The non-commutative product over $\\TB$ is given by an explicit integral formula. This product is exact (not formal) and is expressed in invariant geometrical terms. Our analysis reveals this product has a front, which is described in terms of geodesic triangles in $\\M$. The quantization of $\\delta$-functions induces a family of symplectic reflections in $\\TB$ and generates a magneto-geodesic connection $\\Gamma$ on $T^*\\M$. This symplectic connection entangles, on the phase space level, the original affine structure on $\\M$ and the magnetic field. In the classical approximation, the $...

  4. Electromagnetic Quantum Field Theory on Kerr-Newman Black Holes

    CERN Document Server

    Casals, Marc

    2004-01-01

    We study classical and quantum aspects of electromagnetic perturbations on black hole space-times. We develop an elegant formalism introduced by Wald, which sets up the theory of linear perturbations in a Type-D background in a compact and transparent manner. We derive expressions for the electromagnetic potential in terms of the single Newman-Penrose scalar \\phi_0.This enables the formulation of the quantum theory of the electromagnetic field as that of a complex scalar field. We study the separable field equations obeyed by the various Newman-Penrose scalars in the Kerr-Newman background and find, for various limits, the asymptotic behaviour of the radial and angular solutions. We correct and build on a study by Breuer, Ryan and Waller to find a uniformly valid asymptotic behaviour for large frequency of the angular solutions and the eigenvalues. We follow Candelas, Chrzanowski and Howard (CCH) in their canonical quantization of the electromagnetic potential and field. We perform an asymptotic analysis of t...

  5. Electromagnetic fields, environment and health

    CERN Document Server

    Perrin, Anne

    2013-01-01

    A good number of false ideas are circulating on the effects of non-ionizing radiations on our health, which can lead to an oversimplification of the issue, to potentially dangerous misconceptions or to misleading data analysis. Health effects may be exaggerated, or on the contrary underplayed. The authors of this work (doctors, engineers and researchers) have endeavored to supply validated and easily understandable scientific information on the electromagnetic fields and their biological and health effects. After a general review of the physics of the waves and a presentation of non-ionizing r

  6. Sensing Random Electromagnetic Fields and Applications

    Science.gov (United States)

    2015-06-23

    AFRL-OSR-VA-TR-2015-0172 SENSING RANDOM ELECTROMAGNETIC FIELDS AND APPLICATIONS Aristide Dogariu UNIVERSITY OF CENTRAL FLORIDA Final Report 06/23... Electromagnetic Fields and Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...14. ABSTRACT Random electromagnetic fields (REF) exist in all forms and one common origin is a result of the interaction of coherent fields with

  7. Communication between osteoblasts stimulated by electromagnetic fields

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBao; ZHANG XiaoJun

    2007-01-01

    Pulsed electromagnetic field can affect the proliferation of osteoblasts, but the mechanism is obscure yet. The communication between osteoblasts, isolated from calvaria bone of newborn SD rats and stimulated with the rectangular electromagnetic field of 15 Hz and 4 mT, was studied. Our results showed that the osteoblasts radiated a kind of light after they were stimulated with the electromagnetic field and it is the light that promotes the proliferation of un-stimulated osteoblasts.

  8. [Electromagnetic field intolerance: a nonexistent disease?].

    Science.gov (United States)

    Safářová, Sárka

    2014-01-01

    Idiopathic Environmental Intolerance Attributed to Electromagnetic Fields is a relatively new phenomenon, which is not fully understood. Extensive research has been carried out to exclude or confirm out that symptoms reported by sufferers are caused by electromagnetic field. This article describes outcomes of recent experiments and meta-analyses. The article may answer to the question if electromagnetic field does really cause reported symptoms, furthermore, it provides hypothetical explanation of this phenomenon.

  9. Electromagnetic fields in stratified media

    CERN Document Server

    Li, Kai

    2009-01-01

    Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.

  10. SL(2,C) Gauge Theory of Gravitation and the Quantization of the Gravitational Field

    CERN Document Server

    Carmeli, M; Carmeli, Moshe; Malin, Shimon

    1998-01-01

    A new approach to quantize the gravitational field is presented. It is based on the observation that the quantum character of matter becomes more significant as one gets closer to the big bang. As the metric loses its meaning, it makes sense to consider Schrodinger's three generic types of manifolds - unconnected differentiable, affinely connected, and metrically connected - as a temporal sequence following the big bang. Hence one should quantize the gravitational field on general differentiable manifolds or on affinely connected manifolds. The SL(2,C) gauge theory of gravitation is employed to explore this possibility. Within this framework, the quantization itself may well be canonical.

  11. On the Implementation of General Background Electromagnetic Fields on a Periodic Hypercubic Lattice

    CERN Document Server

    Davoudi, Zohreh

    2015-01-01

    Nonuniform background electromagnetic fields, once implemented in lattice quantum chromodynamics calculations of hadronic systems, provide a means to constrain a large class of electromagnetic properties of hadrons and nuclei, from their higher electromagnetic moments and charge radii to their electromagnetic form factors. We show how nonuniform fields can be constructed on a periodic hypercubic lattice under certain conditions and determine the precise form of the background U(1) gauge links that must be imposed on the quantum chromodynamics gauge-field configurations to maintain periodicity. Once supplemented by a set of quantization conditions on the background-field parameters, this construction guarantees that no nonuniformity occurs in the hadronic correlation functions across the boundary of the lattice. The special cases of uniform electric and magnetic fields, a nonuniform electric field that varies linearly in one spatial coordinate (relevant to the determination of quadruple moment and charge radii...

  12. Determination of the Density of Energy States in a Quantizing Magnetic Field for Model Kane

    Directory of Open Access Journals (Sweden)

    G. Gulyamov

    2016-01-01

    Full Text Available For nonparabolic dispersion law determined by the density of the energy states in a quantizing magnetic field, the dependence of the density of energy states on temperature in quantizing magnetic fields is studied with the nonquadratic dispersion law. Experimental results obtained for PbTe were analyzed using the suggested model. The continuous spectrum of the energy density of states at low temperature is transformed into discrete Landau levels.

  13. Electromagnetic field and brain development.

    Science.gov (United States)

    Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra

    2016-09-01

    Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system.

  14. Inequivalent quantization in the field of a ferromagnetic wire

    CERN Document Server

    Giri, Pulak Ranjan

    2007-01-01

    We argue that it is possible to bind neutral atom (NA) to the ferromagnetic wire (FW) by inequivalent quantization of the Hamiltonian. We follow the well known von Neumann's method of self-adjoint extensions (SAE) to get this inequivalent quantization, which is characterized by a parameter \\Sigma\\in\\mathbb{R}({mod}2\\pi). There exists a single bound state for the coupling constant \\eta^2\\in[0,1). Although this bound state should not occur due to the existence of classical scale symmetry in the problem. But since quantization procedure breaks this classical symmetry, bound state comes out as a scale in the problem leading to scaling anomaly. We also discuss the strong coupling region \\eta^2< 0, which supports bound state making the problem re-normalizable.

  15. Effective Field Theory of Fractional Quantized Hall Nematics

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, Michael; /MIT, LNS; Nayak, Chetan; /Station Q, UCSB; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC

    2012-06-06

    We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.

  16. Medical applications of electromagnetic fields

    Science.gov (United States)

    Lai, Henry C.; Singh, Narendra P.

    2010-04-01

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  17. Medical applications of electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Henry C; Singh, Narendra P, E-mail: hlai@u.washington.ed [Department of Bioengineering, University of Washington, Seattle, WA 98195-5061 (United States)

    2010-04-15

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  18. BRST quantization of a sixth-order derivative scalar field theory

    OpenAIRE

    Kim, Yong-Wan; Myung, Yun Soo; Park, Young-Jai

    2013-01-01

    We study a sixth order derivative scalar field model in Minkowski spacetime as a toy model of higher-derivative critical gravity theories. This model is consistently quantized when using the Becchi-Rouet-Stora-Tyutin (BRST) quantization scheme even though it does not show gauge symmetry manifestly. Imposing a BRST quartet generated by two scalars and ghosts, there remains a non-trivial subspace with positive norm. This might be interpreted as a Minkowskian dual version of the unitary truncati...

  19. Solidification of Al alloys under electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    崔建忠

    2003-01-01

    New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, I.e, effects of the electromagnetic field on solidus and liquidus, macrosegregation of the main alloying elements, microstructures, content of alloying elements in grains and grain size after solidification under electromagnetic field, and also including a new process-DC casting under low frequency electromagnetic field(LFEMC), which can refine microstructure, eliminate macrosegregation, increase the content of alloying elements within grains, decrease the residual stress, avoid cracks and improve surface quality, and another new process-DC casting under low frequency electromagnetic vibration(LFEVC), which is a high effective method for grain refining.

  20. Composite Vector Particles in External Electromagnetic Fields

    CERN Document Server

    Davoudi, Zohreh

    2015-01-01

    Lattice quantum chromodynamics (QCD) studies of electromagnetic properties of hadrons and light nuclei, such as magnetic moments and polarizabilities, have proven successful with the use of background field methods. With an implementation of nonuniform background electromagnetic fields, properties such as charge radii and higher electromagnetic multipole moments (for states of higher spin) can be additionally obtained. This can be achieved by matching lattice QCD calculations to a corresponding low-energy effective theory that describes the static and quasi-static response of hadrons and nuclei to weak external fields. With particular interest in the case of vector mesons and spin-1 nuclei such as the deuteron, we present an effective field theory of spin-1 particles coupled to external electromagnetic fields. To constrain the charge radius and the electric quadrupole moment of the composite spin-1 field, the single-particle Green's functions in a linearly varying electric field in space are obtained within t...

  1. Interactions between electromagnetic fields and matter

    CERN Document Server

    Steiner, Karl-Heinz

    2013-01-01

    Interactions between Electromagnetic Fields and Matter deals with the principles and methods that can amplify electromagnetic fields from very low levels of signals. This book discusses how electromagnetic fields can be produced, amplified, modulated, or rectified from very low levels to enable these for application in communication systems. This text also describes the properties of matter and some phenomenological considerations to the reactions of matter when an action of external fields results in a polarization of the particle system and changes the bonding forces existing in the matter.

  2. [Health effects of electromagnetic fields].

    Science.gov (United States)

    Röösli, Martin

    2013-12-01

    Use of electricity causes extremely low frequency magnetic fields (ELF-MF) and wireless communication devices emit radiofrequency electromagnetic fields (RF-EMF). Average ELF-MF exposure is mainly determined by high voltage power lines and transformers at home or at the workplace, whereas RF-EMF exposure is mainly caused by devices operating close to the body (mainly mobile and cordless phones). Health effects of EMF are controversially discussed. The IARC classified ELF-MF and RF-EMF as possible carcinogenic. Most consistent epidemiological evidence was found for an association between ELF-MF and childhood leukaemia. If causal, 1 - 4 percent of all childhood leukaemia cases could be attributed to ELF-MF. Epidemiological research provided some indications for an association between ELF-MF and Alzheimer's diseases as well as amyotrophic lateral sclerosis, although not entirely consistent. Regarding mobile phones and brain tumours, some studies observed an increased risk after heavy or long term use on the one hand. On the other hand, brain tumour incidence was not found to have increased in the last decade in Sweden, England or the US. Acute effects of RF-EMF on non-specific symptoms of ill health seem unlikely according to randomized and double blind provocation studies. However, epidemiological research on long term effects is still limited. Although from the current state of the scientific knowledge a large individual health risk from RF-EMF exposure is unlikely, even a small risk would have substantial public health relevance because of the widespread use of wireless communication technologies.

  3. Quantized Conductance in InSb nanowires at zero magnetic field

    Science.gov (United States)

    Kammhuber, Jakob; Cassidy, Maja; Zhang, Hao; Gül, Önder; Pei, Fei; de Moor, Michiel; Watanabe, Kenji; Taniguchi, Takashi; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo

    We present measurements of InSb nanowires in the ballistic transport regime. In 1D materials such as nanowires, electron scattering has an increased chance of back-reflection, obscuring the observation of quantized conductance at low magnetic fields. By improving the contacts to the nanowire as well as its dielectric environment backscattering events are minimized and conductance quantization is observable at zero magnetic field with high device yield. We study the evolution of individual sub-bands in an external magnetic field, observing a degeneracy between the 2nd and 3rd sub-band when the magnetic field is orientated perpendicular to the nanowire axis.

  4. Indispensability of Ghost Fields and Extended Hamiltonian Formalism in Axial Gauge Quantization of Gauge Fields

    CERN Document Server

    Nakawaki, Y

    2000-01-01

    It is shown that ghost fields are indispensable in deriving well-defined antiderivatives in pure space-like axial gauge quantizations of gauge fields. To avoid inessential complications we confine ourselves to noninteracting abelian fields and incorporate their quantizations as a continuous deformation of those in light-cone gauge. We attain this by constructing an axial gauge formulation in auxiliary coordinates $x^{\\mu}= (x^+,x^-,x^1,x^2)$, where $x^+=x^0{\\rm sin}{\\theta}+x^3{\\rm cos}{\\theta}, x^-=x^0{\\rm cos}{\\theta}-x^3{\\rm sin}{\\theta}$ and $x^+$ and $A_-=A^0{\\rm cos} {\\theta}+A^3{\\rm sin}{\\theta}=0$ are taken as the evolution parameter and the gauge fixing condition, respectively. We introduce $x^-$-independent residual gauge fields as ghost fields and accomodate them to the Hamiltonian formalism by applying McCartor and Robertson's method. As a result, we obtain conserved translational generators $P_{\\mu}$, which retain ghost degrees of freedom integrated over the hyperplane $x^-=$ constant. They enabl...

  5. Faddeev–Jackiw quantization of non-autonomous singular systems

    Energy Technology Data Exchange (ETDEWEB)

    Belhadi, Zahir [Laboratoire de physique théorique, Faculté des sciences exactes, Université de Bejaia, 06000 Bejaia (Algeria); Equipe BioPhyStat, ICPMB, IF CNRS N 2843, Université de Lorraine, 57070 Metz Cedex (France); Bérard, Alain [Equipe BioPhyStat, ICPMB, IF CNRS N 2843, Université de Lorraine, 57070 Metz Cedex (France); Mohrbach, Hervé, E-mail: herve.mohrbach@univ-lorraine.fr [Equipe BioPhyStat, ICPMB, IF CNRS N 2843, Université de Lorraine, 57070 Metz Cedex (France)

    2016-10-07

    We extend the quantization à la Faddeev–Jackiw for non-autonomous singular systems. This leads to a generalization of the Schrödinger equation for those systems. The method is exemplified by the quantization of the damped harmonic oscillator and the relativistic particle in an external electromagnetic field.

  6. Stress-energy of a quantized scalar field in static wormhole spacetimes

    CERN Document Server

    Taylor, B E; Anderson, P R; Taylor, Brett E.; Hiscock, William A.; Anderson, Paul R.

    1997-01-01

    Static traversable wormhole solutions of the Einstein equations require ``exotic'' matter which violates the weak energy condition. The vacuum stress-energy of quantized fields has been proposed as the source for this matter. Using the Dewitt-Schwinger approximation, analytic expressions for the stress-energy of a quantized massive scalar field are calculated in five static spherically symmetric Lorentzian wormhole spacetimes. We find that in all cases, for both minimally and conformally coupled scalar fields, the stress-energy does not have the properties needed to support the wormhole geometry.

  7. Conductance Quantization at Zero Magnetic Field in InSb Nanowires

    Science.gov (United States)

    Kammhuber, Jakob; Cassidy, Maja C.; Zhang, Hao; Gül, Önder; Pei, Fei; de Moor, Michiel W. A.; Nijholt, Bas; Watanabe, Kenji; Taniguchi, Takashi; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Kouwenhoven, Leo P.

    2016-06-01

    Ballistic electron transport is a key requirement for existence of a topological phase transition in proximitized InSb nanowires. However, measurements of quantized conductance as direct evidence of ballistic transport have so far been obscured due to the increased chance of backscattering in one dimensional nanowires. We show that by improving the nanowire-metal interface as well as the dielectric environment we can consistently achieve conductance quantization at zero magnetic field. Additionally, studying the sub-band evolution in a rotating magnetic field reveals an orbital degeneracy between the second and third sub-bands for perpendicular fields above 1T.

  8. Electromagnetic measurements in the near field

    CERN Document Server

    Bienkowski, Pawel

    2012-01-01

    This book is devoted to the specific problems of electromagnetic field (EMF) measurements in the near field and to the analysis of the main factors which impede accuracy in these measurements. It focuses on careful and accurate design of systems to measure in the near field based on a thorough understanding of the fundamental engineering principles and on an analysis of the likely system errors. Beginning with a short introduction to electromagnetic fields with an emphasis on the near field, it them presents methods of EMF measurements in near field conditions. It details the factors limiting

  9. Electromagnetic Field Theory A Collection of Problems

    CERN Document Server

    Mrozynski, Gerd

    2013-01-01

    After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...

  10. Electromagnetic field computation by network methods

    CERN Document Server

    Felsen, Leopold B; Russer, Peter

    2009-01-01

    This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.

  11. Polymer quantization of the free scalar field and its classical limit

    CERN Document Server

    Laddha, Alok

    2010-01-01

    Building on prior work, a generally covariant reformulation of free scalar field theory on the flat Lorentzian cylinder is quantized using Loop Quantum Gravity (LQG) type `polymer' representations. This quantization of the {\\em continuum} classical theory yields a quantum theory which lives on a discrete spacetime lattice. We explicitly construct a state in the polymer Hilbert space which reproduces the standard Fock vacuum- two point functions for long wavelength modes of the scalar field. Our construction indicates that the continuum classical theory emerges under coarse graining. All our considerations are free of the "triangulation" ambiguities which plague attempts to define quantum dynamics in LQG. Our work constitutes the first complete LQG type quantization of a generally covariant field theory together with a semi-classical analysis of the true degrees of freedom and thus provides a perfect infinite dimensional toy model to study open issues in LQG, particularly those pertaining to the definition of ...

  12. BRST Quantization of a Sixth-Order Derivative Scalar Field Theory

    Science.gov (United States)

    Kim, Yong-Wan; Myung, Yun Soo; Park, Young-Jai

    2013-12-01

    We study a sixth-order derivative scalar field model in Minkowski spacetime as a toy model of higher-derivative critical gravity theories. This model is consistently quantized when using the Becchi-Rouet-Stora-Tyutin (BRST) quantization scheme even though it does not show gauge symmetry manifestly. Imposing a BRST quartet generated by two scalars and ghosts, there remains a nontrivial subspace with positive norm. This might be interpreted as a Minkowskian dual version of the unitary truncation in the logarithmic conformal field theory.

  13. BRST quantization of a sixth-order derivative scalar field theory

    CERN Document Server

    Kim, Yong-Wan; Park, Young-Jai

    2013-01-01

    We study a sixth order derivative scalar field model in Minkowski spacetime as a toy model of higher-derivative critical gravity theories. This model is consistently quantized when using the Becchi-Rouet-Stora-Tyutin (BRST) quantization scheme even though it does not show gauge symmetry manifestly. Imposing a BRST quartet generated by two scalars and ghosts, there remains a non-trivial subspace with positive norm. This might be interpreted as a Minkowskian dual version of the unitary truncation in the logarithmic conformal field theory.

  14. Fluid/Gravity Correspondence with Scalar Field and Electromagnetic Field

    CERN Document Server

    Chou, Chia-Jui; Yang, Yi; Yuan, Pei-Hung

    2016-01-01

    We consider fluid/gravity correspondence in a general rotating black hole background with scalar and electromagnetic fields. Using the method of Petrov-like boundary condition, we show that the scalar and the electromagnetic fields contribute external forces to the dual Navier-Stokes equation and the rotation of black hole induces the Coriolis force.

  15. Calculating Electromagnetic Fields Of A Loop Antenna

    Science.gov (United States)

    Schieffer, Mitchell B.

    1987-01-01

    Approximate field values computed rapidly. MODEL computer program developed to calculate electromagnetic field values of large loop antenna at all distances to observation point. Antenna assumed to be in x-y plane with center at origin of coordinate system. Calculates field values in both rectangular and spherical components. Also solves for wave impedance. Written in MicroSoft FORTRAN 77.

  16. Program For Displaying Computed Electromagnetic Fields

    Science.gov (United States)

    Hom, Kam W.

    1995-01-01

    EM-ANIMATE computer program specialized visualization displays and animates output data on near fields and surface currents computed by electromagnetic-field program - in particular MOM3D (LAR-15074). Program based on windows and contains user-friendly, graphical interface for setting viewing options, selecting cases, manipulating files, and like. Written in FORTRAN 77. EM-ANIMATE also available as part of package, COS-10048, includes MOM3D, IRIS program computing near-field and surface-current solutions of electromagnetic-field equations.

  17. Electromagnetic currents induced by color fields

    CERN Document Server

    Tanji, Naoto

    2015-01-01

    The quark production in classical color fields is investigated with a focus on the induction of an electromagnetic current by produced quarks. We show that the SU(2) and the SU(3) theories lead significantly different results for the electromagnetic current. In uniform SU(2) color fields, the net electromagnetic current is not generated, while for SU(3) the net current is induced depending on the color direction of background fields. Also the numerical study of the quark production in inhomogeneous color fields is done. Motivated by gauge field configurations provided by the color glass condensate framework, we introduce an ensemble of randomly distributed color electric fluxtubes. The spectrum of photons emitted from the quarks by a classical process is shown.

  18. The electromagnetic field in accelerated frames

    CERN Document Server

    Maluf, J W

    2011-01-01

    We develop a geometrical framework that allows to obtain the electromagnetic field quantities in accelerated frames. The frame of arbitrary accelerated observers in space-time is defined by a suitable set of tetrad fields, whose timelike components are adapted to the worldlines of a field of observers. We consider the Faraday tensor and Maxwell's equations as abstract tensor quantities in space-time, and make use of tetrad fields to project the electromagnetic field quantities in the accelerated frames. As an application, plane and spherical electromagnetic waves are projected in linearly accelerated frames in Minkowski space-time. We show that the amplitude, frequency and the wave vector of the plane wave in the accelerated frame vary with time, while the light speed remains constant. We also obtain the variation of the Poynting vector with time in the accelerated frame.

  19. Reduced Loop Quantization with four Klein-Gordon Scalar Fields as Reference Matter

    CERN Document Server

    Giesel, Kristina

    2016-01-01

    In this paper we perform a reduced phase space quantization of gravity using four Klein-Gordon scalar fields as reference matter as an alternative to the Brown-Kucha\\v{r} dust model in [1] where eight (dust) scalar fields are used. We compare our results to an earlier model by Domagala et. al. [2] where only one Klein-Gordon scalar field was considered as reference matter for the Hamiltonian constraint. As a result we find that the choice of four Klein-Gordon scalar fields as reference matter leads to a reduced dynamical model that cannot be quantized using loop quantum gravity techniques. However, we further discuss a slight generalization of the action for the four Klein-Gordon scalar fields and show that this leads to a model which can be quantized in the framework of loop quantum gravity. Particularly, considering the model by Domagala et. al. [2] and the one introduced in this work we are able to compare Dirac and reduced phase space quantization.

  20. Evolution of a dense neutrino gas in matter and electromagnetic field

    CERN Document Server

    Dvornikov, Maxim

    2011-01-01

    We describe the system of massive Weyl fields propagating in background matter and interacting with an external electromagnetic field. The interaction with an electromagnetic field is due to the presence of anomalous magnetic moments. To canonically quantize this system first we develop the classical field theory treatment of Weyl spinors in frames of the Hamilton formalism which accounts for the external fields. Then, on the basis of the exact solution of the wave equation for a massive Weyl field in background matter we obtain the effective Hamiltonian for the description of spin-flavor oscillations of Majorana neutrinos in matter and a magnetic field. Finally, we incorporate in our analysis the neutrino self-interaction which is essential when the neutrino density is sufficiently high. We also discuss the applicability of our results for the studies of collective effects in spin-flavor oscillations of supernova neutrinos in dense matter and strong magnetic field.

  1. THE EXACT SOLUTION OF A TWO-LEVEL ATOM MOVING IN A QUANTIZED TRAVELLING LIGHT FIELD AND A GRAVITATIONAL FIELD

    Institute of Scientific and Technical Information of China (English)

    邹旭波; 许晶波; 高孝纯; 符建

    2001-01-01

    We adopt a dynamical algebraic approach to study the system of a two-level atom moving in a quantized travelling light field and a gravitational field with a multiphoton interaction. The exact solution of the system is obtained and used to discuss the influence of the gravitational field on the collapses and revivals of atomic population, sub-Poissonian statistics.

  2. Controlling the Electromagnetic Field Confinement with Metamaterials

    Science.gov (United States)

    Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran

    2016-11-01

    The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained.

  3. New aspects of quantization of Jackiw-Pi model: field-antifield formalism and noncommutativity

    CERN Document Server

    Nikoofard, Vahid

    2016-01-01

    The so-callled Jackiw-Pi (JP) model for massive vector fields is a three dimensional, gauge invariant and parity preserving model which was discussed in several contexts. In this paper we have discussed its quantum aspects through the introduction of Planck scale objects, i.e., via noncommutativity and the well known BV quantization. Namely, we have constructed the JP noncommutative space-time version and we have provided the BV quantization of the commutative JP model and we have discussed its features. The noncommutativity has introduced interesting new objects in JP's Planck scale framework. The anomaly issue was discussed.

  4. Effect of Quantizing Magnetic Field on Cyclotron Energy and Cyclotron Effective Mass in Size Quantized Films with Non-Parabolic Energy Band

    Institute of Scientific and Technical Information of China (English)

    B.(I). GUL(I)YEV; R. F. EM(I)NBEYL(I); A. KORKUT

    2007-01-01

    The Fermi energy, cyclotron energy and cyclotron effective mass of degenerate electron gas in a size-quantized semiconductor thin film with non-parabolic energy bands are studied. The influences of quantizing magnetic field on these quantities in two-band approximation of the Kane model are investigated. It is shown that the Fermi energy oscillates in a magnetic field. The period and positions of these oscillations are found as a function of film thickness and concentration of electrons. Cyclotron energy and cyclotron effective mass are investigated as a function of film thickness in detail. The results obtained here are compared with experimental data on GaAs quantum wells.

  5. Canonical quantization of lattice Higgs-Yang-Mills fields: Krein essential selfadjointness of the Hamiltonian

    Science.gov (United States)

    Challifour, John L.; Timko, Edward J.

    2016-06-01

    Using a Krein indefinite metric in Fock space, the Hamiltonian for cut-off models of canonically quantized Higgs-Yang-Mills fields interpolating between the Gupta-Bleuler-Feynman and Landau gauges is shown to be essentially maximal accretive and essentially Krein selfadjoint.

  6. Stochastic quantization of topological field theory: generalized Langevin equation with memory kernel

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, G.; Svaiter, N.F. E-mail: gsm@cbpf.br; nfuxsvai@cbpf.br

    2006-04-15

    We use the method of stochastic quantization in a topological field theory defined in an Euclidean space, assuming a Langevin equation with a memory kernel. We show that our procedure for the Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient. (author)

  7. Phase space quantization, non-commutativity and the gravitational field

    CERN Document Server

    Chatzistavrakidis, Athanasios

    2014-01-01

    In this paper we study the structure of the phase space in non-commutative geometry in the presence of a non-trivial frame. Our basic assumptions are that the underlying space is a symplectic and parallelizable manifold. Furthermore, we assume the validity of the Leibniz rule and the Jacobi identities. We consider non-commutative spaces due to the quantization of the symplectic structure and determine the momentum operators that guarantee a set of canonical commutation relations, appropriately extended to include the non-trivial frame. We stress the important role of left vs. right acting operators and of symplectic duality. This enables us to write down the form of the full phase space algebra on these non-commutative spaces, both in the non-compact and in the compact case. We test our results against the class of 4D and 6D symplectic nilmanifolds, thus presenting a large set of non-trivial examples that realize the general formalism.

  8. Composite vector particles in external electromagnetic fields

    Science.gov (United States)

    Davoudi, Zohreh; Detmold, William

    2016-01-01

    Lattice quantum chromodynamics (QCD) studies of electromagnetic properties of hadrons and light nuclei, such as magnetic moments and polarizabilities, have proven successful with the use of background field methods. With an implementation of nonuniform background electromagnetic fields, properties such as charge radii and higher electromagnetic multipole moments (for states of higher spin) can additionally be obtained. This can be achieved by matching lattice QCD calculations to a corresponding low-energy effective theory that describes the static and quasistatic responses of hadrons and nuclei to weak external fields. With particular interest in the case of vector mesons and spin-1 nuclei such as the deuteron, we present an effective field theory of spin-1 particles coupled to external electromagnetic fields. To constrain the charge radius and the electric quadrupole moment of the composite spin-1 field, the single-particle Green's functions in a linearly varying electric field in space are obtained within the effective theory, providing explicit expressions that can be used to match directly onto lattice QCD correlation functions. The viability of an extraction of the charge radius and the electric quadrupole moment of the deuteron from the upcoming lattice QCD calculations of this nucleus is discussed.

  9. Response of a rotating detector coupled to a polymer quantized field

    Science.gov (United States)

    Jaffino Stargen, D.; Kajuri, Nirmalya; Sriramkumar, L.

    2017-09-01

    Assuming that high-energy effects may alter the standard dispersion relations governing quantized fields, the influence of such modifications on various phenomena has been studied extensively in the literature. In different contexts, it has generally been found that, while superluminal dispersion relations hardly affect the standard results, subluminal relations can lead to (even substantial) modifications to the conventional results. A polymer quantized scalar field is characterized by a series of modified dispersion relations along with suitable changes to the standard measure of the density of modes. Amongst the modified dispersion relations, one finds that the lowest in the series can behave subluminally over a small domain in wave numbers. In this work, we study the response of a uniformly rotating Unruh-DeWitt detector that is coupled to a polymer quantized scalar field. While certain subluminal dispersion relations can alter the response of the rotating detector considerably, in the case of polymer quantization, due to the specific nature of the dispersion relations, the modification to the transition probability rate of the detector does not prove to be substantial. We discuss the wider implications of the result.

  10. Quantization of massive scalar fields over axis symmetric space-time backgrounds

    CERN Document Server

    Piedra, O P F; Oca, Alejandro Cabo Montes de; Piedra, Owen Pavel Fernandez

    2007-01-01

    The renormalized mean value of the quantum Lagrangian and the Energy-Momentum tensor for scalar fields coupled to an arbitrary gravitational field configuration are analytically evaluated in the Schwinger-DeWitt approximation, up to second order in the inverse mass value. The cylindrical symmetry situation is considered. The results furnish the starting point for investigating iterative solutions of the back-reaction problem related with the quantization of cylindrical scalar field configurations. Due to the homogeneity of the equations of motion of the Klein-Gordon field, the general results are also valid for performing the quantization over either vanishing or non-vanishing mean field configurations. As an application, compact analytical expressions are derived here for the quantum mean Lagrangian and Energy-Momentum tensor in the particular background given by the Black-String space-time.

  11. Berry phases in the three-level atoms driven by quantized light fields

    Indian Academy of Sciences (India)

    Mai-Lin Liang; Zong-Cheng Xu; Bing Yuan

    2008-03-01

    A theoretical analysis of Berry's phases is given for the three-level atoms interacting with external one-mode and two-mode quantized light fields. Three main results are obtained: (i) There is a Berry phase which vanishes in the classical limit or this Berry phase is completely induced by the field quantization; (ii) Berry's phases for the one-mode field and the two-mode field can be equal so long as the photon numbers of the two-mode field are properly chosen; (iii) In the two-mode case, Berry phases of the atom interacting with one mode is affected by the other mode even if the photon number of the other mode is zero.

  12. Electromagnetic field standards and exposure systems

    CERN Document Server

    Grudzinski, Eugeniusz

    2013-01-01

    When measuring electromagnetic fields (EMF), there are multiple factors that affect accuracy. Everything from proper instrument calibration, to external environmental factors, and even the competence and training of the instrument operator can bring precision into question. This book discusses factors that limit accuracy of electromagnetic field standards. These standards are one of the least accurate among the standards of physical magnitudes. They limit the accuracy of the EMF measurements, as well as the accuracy of the standards' use as exposure systems in a wide range of experiments in el

  13. Quantum Entropy of a Single Cooper-Pair Box Interacting with Two Electromagnetic Fields

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A Hamiltonian which represents the interaction between a single Cooper-pair box and two quantized electromagnetic fields is considered in order to find new ways for quantum information. The wave function in Schrdinger picture is obtained. The evolution of the entropy of the box as a function of the scaled time is ploted to measure the entanglement between the box and the fields. It is found that the entanglement is sensitive to the detuning between the Josephson energy and the fields frequency, increasing the detuning can decrease the entanglement.

  14. Electromagnetic field representation in inhomogeneous anisotropic media

    Science.gov (United States)

    Mohsen, A.

    1973-01-01

    Some of the basic developments in the theory of electromagnetic field representation in terms of Hertz vectors are reviewed. A solution for the field in an inhomogeneous anisotropic medium is given in terms of the two Hertz vectors. Conditions for presentation of the field in terms of uncoupled transverse electric and transverse magnetic modes, in a general orthogonal coordinate system, are derived when the permeability and permittivity tensors have only diagonal components. These conditions are compared with some known special cases.

  15. Exact plane gravitational waves and electromagnetic fields

    CERN Document Server

    Montanari, E; Montanari, Enrico; Calura, Mirco

    2000-01-01

    The behaviour of a "test" electromagnetic field in the background of an exactgravitational plane wave is investigated in the framework of Einstein's generalrelativity. We have expressed the general solution to the de Rham equations asa Fourier-like integral. In the general case we have reduced the problem to aset of ordinary differential equations and have explicitly written the solutionin the case of linear polarization of the gravitational wave. We have expressedour results by means of Fermi Normal Coordinates (FNC), which define the properreference frame of the laboratory. Moreover we have provided some "gedankenexperiments", showing that an external gravitational wave induces measurableeffects of non tidal nature via electromagnetic interaction. Consequently it isnot possible to eliminate gravitational effects on electromagnetic field, evenin an arbitrarily small spatial region around an observer freely falling in thefield of a gravitational wave. This is opposite to the case of mechanicalinteraction invo...

  16. Near-field thermal electromagnetic transport

    CERN Document Server

    Edalatpour, Sheila

    2015-01-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added into Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres exchanging thermal radiation, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. The forma...

  17. Effect of field quantization on Rabi oscillation of equidistant cascade four-level system

    Indian Academy of Sciences (India)

    Mihir Ranjan Nath; Tushar Kanti Dey; Surajit Sen; Gautam Gangopadhyay

    2008-01-01

    We have exactly solved a model of equidistant cascade four-level system interacting with a single-mode radiation field both semiclassically and quantum mechanically by exploiting its similarity with Jaynes-Cummings model. For the classical field, it is shown that the Rabi oscillation of the system initially in the first level (second level) is similar to that of the system when it is initially in the fourth level (third level). We then proceed to solve the quantized version of the model where the dressed state is constructed using a six-parameter four-dimensional matrix and show that the symmetry exhibited in the Rabi oscillation of the system for the semiclassical model is completely destroyed on the quantization of the cavity field. Finally, we have studied the collapse and revival of the system for the cavity field-mode in a coherent state to discuss the restoration of symmetry and its implication is discussed.

  18. Photon Propagation in Slowly Varying Electromagnetic Fields

    Science.gov (United States)

    Karbstein, F.

    2017-03-01

    Effective theory of soft photons in slowly varying electromagnetic background fields is studied at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counterpropagating pulsed Gaussian laser beams. Treating the peak field strengths of both laser beams as free parameters, this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set equal to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.

  19. Photon propagation in slowly varying electromagnetic fields

    CERN Document Server

    Karbstein, Felix

    2016-01-01

    We study the effective theory of soft photons in slowly varying electromagnetic background fields at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counter-propagating pulsed Gaussian laser beams. As we treat the peak field strengths of both laser beams as free parameters this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.

  20. Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Gomar, Laura Castelló [Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Cortez, Jerónimo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico D.F. 04510 (Mexico); Blas, Daniel Martín-de; Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: laucaste@estumail.ucm.es, E-mail: jacq@ciencias.unam.mx, E-mail: daniel.martin@iem.cfmac.csic.es, E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D' Ávila e Bolama, 6201-001 Covilhã (Portugal)

    2012-11-01

    We study the Fock quantization of scalar fields in (generically) time dependent scenarios, focusing on the case in which the field propagation occurs in –either a background or effective– spacetime with spatial sections of flat compact topology. The discussion finds important applications in cosmology, like e.g. in the description of test Klein-Gordon fields and scalar perturbations in Friedmann-Robertson-Walker spacetime in the observationally favored flat case. Two types of ambiguities in the quantization are analyzed. First, the infinite ambiguity existing in the choice of a Fock representation for the canonical commutation relations, understandable as the freedom in the choice of inequivalent vacua for a given field. Besides, in cosmological situations, it is customary to scale the fields by time dependent functions, which absorb part of the evolution arising from the spacetime, which is treated classically. This leads to an additional ambiguity, this time in the choice of a canonical pair of field variables. We show that both types of ambiguities are removed by the requirements of (a) invariance of the vacuum under the symmetries of the three-torus, and (b) unitary implementation of the dynamics in the quantum theory. In this way, one arrives at a unique class of unitarily equivalent Fock quantizations for the system. This result provides considerable robustness to the quantum predictions and renders meaningful the confrontation with observation.

  1. Electromagnetic field reduction; Riduzione del campo magnetico

    Energy Technology Data Exchange (ETDEWEB)

    Conti, R. [Cesi SpA, Milan (Italy)

    2001-12-01

    The consistent reduction of electromagnetic fields requested in according to the italian 36/01 law are difficult to obtain a simple and low cost one. [Italian] Le considerevoli riduzioni dei campi magnetici che potrebbero essere richieste dalla legge 36/01 sono difficilmente ottenibili con metodi semplici e poco costosi.

  2. Electromagnetic Fields Restrictions and Approximation

    CERN Document Server

    Katsenelenbaum, Boris Z

    2003-01-01

    The fields scattered by metallic bodies or radiated by some types of antennas are created by the surfaces currents and therefore they are subject to some restrictions. The book is the first one where the properties of these fields are investigated in details. The properties have the important significance for the antenna synthesis, body shape reconstruction and other diffraction problems. The material of the book lies in the meetingpoint of the antenna theory, highfrequency electrodynamics and inverse scattering problems. The author is an internationally renowned investigator in the field of e

  3. Collapse and revival of a single-Cooper-pair box in a single-mode quantized field

    Institute of Scientific and Technical Information of China (English)

    姚延荪; 邹健; 邵彬

    2003-01-01

    We study the quantum dynamics of a single-Cooper-pair box biased by a classical voltage and also irradiated by a single-mode quantized field.We demonstrate that under weak damping of the quantized field,the collapse-revival phenomena can exist in this system,and the oscillations of the collapse and revival depend sensitively on the initial state of the single-mode quantized field and the damping rate κ.We also demonstrate that this system can show the beats phenomena.

  4. Contribution of Electromagnetic Field to Atomic Spin

    Institute of Scientific and Technical Information of China (English)

    DU Tao; LIANG Wen-Feng; WU Xiao-Hua

    2011-01-01

    We examine the contribution of electromagnetic field to the atomic spin, by adopting two different, both gauge invariant definitions of the electromagnetic angular momentum: →JI≡ ∫ d3x∈0→γ× (→E × →B) and →JII ≡ ∫ d3x(∈0→E × A→⊥ + ∈0Ei→ γ× ▽A⊥i). Notably, at the classical level, J→II gives an exactly null result while →JI gives a finite value.This suggests that JII leads to a simpler and more reasonable picture of the atomic spin, therefore qualifies as a more appropriate definition of the electromagnetic angular momentum. Our observation gives important hint on the delicate issue of gluon contribution to the nucleon spin.

  5. Polarizable vacuum analysis of electromagnetic fields

    CERN Document Server

    Ye, Xing-Hao

    2009-01-01

    By examining the electric displacement in a dielectric medium and in a vacuum, the polarization property of quantum vacuum is discussed. Both the electric and magnetic fields are analysed in the framework of polarizable vacuum. It is found that the energy and force generated by the electric and magnetic fields can then be understood in a natural way. As an application, the electromagnetic wave is also investigated, which reaches a polarizable vacuum interpretation of the energy and spin of a photon.

  6. Relativistic diffusive motion in random electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Z, E-mail: zhab@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Plac Maxa Borna 9 (Poland)

    2011-08-19

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Juettner equilibrium at the inverse temperature {beta}{sup -1} = mc{sup 2}. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  7. The Electromagnetic Field as a Synchrony Gauge Field

    CERN Document Server

    Bock, Robert D

    2015-01-01

    Building on our previous work, we investigate the identification of the electromagnetic field as a local gauge field of a restricted group of synchrony transformations. We begin by arguing that the inability to measure the one-way speed of light independent of a synchronization scheme necessitates that physical laws must be reformulated without distant simultaneity. As a result, we are forced to introduce a new operational definition of time which leads to a fundamental space-time invariance principle that is related to a subset of the synchrony group. We identify the gauge field associated with this new invariance principle with the electromagnetic field. Consequently, the electromagnetic field acquires a space-time interpretation, as suggested in our previous work. In addition, we investigate the static, spherically symmetric solution of the resulting field equations. Also, we discuss implications of the present work for understanding the tension between classical and quantum theory.

  8. Wigner function and the entanglement of a quantized Bessel-Gaussian vortex state of a quantized radiation field

    Institute of Scientific and Technical Information of China (English)

    Zhu Kai-Cheng; Li Shao-Xin; Tang Ying; Zheng Xiao-Juan; Tang Hui-Qin

    2012-01-01

    A new kind of quantum non-Gaussian state with a vortex structure,termed a Bessel-Gaussian vortex state,is constructed,which is an eigenstate of the sum of squared annihilation operators a2 + b2.The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality.It is also found that a quantized vortex state is always in entanglement.And a scheme for generating such quantized vortex states is proposed.

  9. Visualization of circuit card electromagnetic fields

    Science.gov (United States)

    Zwillinger, Daniel

    1995-01-01

    Circuit boards are used in nearly every electrical appliance. Most board failures cause differing currents in the circuit board traces and components. This causes the circuit board to radiate a differing electromagnetic field. Imaging this radiated field, which is equivalent to measuring the field, could be used for error detection. Using estimates of the fields radiated by a low power digital circuit board, properties of known materials, and available equipment, we determined how well the following technologies could be used to visualize circuit board electromagnetic fields (prioritized by promise): electrooptical techniques, magnetooptical techniques, piezoelectric techniques, thermal techniques, and electrodynamic force technique. We have determined that sensors using the electrooptical effect (Pockels effect) appear to be sufficiently sensitive for use in a circuit board imaging system. Sensors utilizing the magnetooptical effect may also be adequate for this purpose, when using research materials. These sensors appear to be capable of achieving direct broadband measurements. We also reviewed existing electromagnetic field sensors. Only one of the sensors (recently patented) was specifically designed for circuit board measurements.

  10. Quantization of the minimal and non-minimal vector field in curved space

    CERN Document Server

    Toms, David J

    2015-01-01

    The local momentum space method is used to study the quantized massive vector field (the Proca field) with the possible addition of non-minimal terms. Heat kernel coefficients are calculated and used to evaluate the divergent part of the one-loop effective action. It is shown that the naive expression for the effective action that one would write down based on the minimal coupling case needs modification. We adopt a Faddeev-Jackiw method of quantization and consider the case of an ultrastatic spacetime for simplicity. The operator that arises for non-minimal coupling to the curvature is shown to be non-minimal in the sense of Barvinsky and Vilkovisky. It is shown that when a general non-minimal term is added to the theory the result is not renormalizable with the addition of a local Lagrangian counterterm.

  11. Complex Relativity: Gravity and Electromagnetic Fields

    CERN Document Server

    Teisseyre, R; Teisseyre, Roman; Bialecki, Mariusz

    2005-01-01

    We present new aspects of the electromagnetic field by introducting the natural potentials. These natural potentials are suitable for constructing the first order distortions of the metric tensor of Complex Relativity - the theory combining the General Relativity with the electromagnetic equations. A transition from antisymmetric tensors to the symmetric ones helps to define the natural potentials; their form fits a system of the Dirac matrices and this representation leads to distortion of the metric tensor. Our considerations have originated from the recent progresses in the asymmetric continuum theories. One version of such theories assumes an existence of the antisymmetric strain and stress fields; these fields originate due to some kind of internal friction in a continuum medium which have elastic bonds related to rotations of the particles.

  12. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    CERN Document Server

    Palenzuela, Carlos; Yoshida, Shin

    2009-01-01

    In addition to producing loud gravitational waves (GW), the dynamics of a binary black hole system could induce emission of electromagnetic (EM) radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  13. Orbital quantization in the high-magnetic-field state of a charge-density-wave system

    Science.gov (United States)

    Andres, D.; Kartsovnik, M. V.; Grigoriev, P. D.; Biberacher, W.; Müller, H.

    2003-11-01

    A superposition of the Pauli and orbital couplings of a high magnetic field to charge carriers in a charge-density-wave (CDW) system is proposed to give rise to transitions between subphases with quantized values of the CDW wave vector. By contrast to the purely orbital field-induced density-wave effects which require a strongly imperfect nesting of the Fermi surface, the new transitions can occur even if the Fermi surface is well nested at zero field. We suggest that such transitions are observed in the organic metal α-(BEDT-TTF)2KHg(SCN)4 under a strongly tilted magnetic field.

  14. Electromagnetic field of a linear antenna

    Science.gov (United States)

    Derby, Norman; Olbert, Stanislaw

    2008-11-01

    Animated computer simulations of the electric field of a radiating antenna can capture the attention of students in introductory electromagnetism courses and stimulate active discussions. The simulations raise questions not usually addressed in textbooks. In certain cases, some of the field lines appear to move toward the antenna, the speed of the field lines can change as they move, and the field lines exhibit strange behavior (circling or splitting) at certain points. Because their fields can be expressed in terms of elementary functions, animations of point dipole antennas are common, but animations showing the fields of antennas with more realistic lengths are not as common because analytical expressions for these fields are not as well known. We show that it is possible to derive analytical expressions in terms of elementary functions for the electromagnetic field of linear antennas of finite length. We draw attention to an open-source method for displaying the fine details within the field patterns and then give a general discussion of singular points and their motions, derive expressions for their location and phase velocity, and apply these results to some of the phenomena that are visible in visualizations of the fields of various antennas.

  15. Energy Quantization and Probability Density of Electron in Intense-Field-Atom Interactions

    Institute of Scientific and Technical Information of China (English)

    敖淑艳; 程太旺; 李晓峰; 吴令安; 付盘铭

    2003-01-01

    We find that, due to the quantum correlation between the electron and the field, the electronic energy becomes quantized also, manifesting the particle aspect of light in the electron-light interaction. The probability amplitude of finding electron with a given energy is given by a generalized Bessel function, which can be represented as a coherent superposition of contributions from a few electronic quantum trajectories. This concept is illustrated by comparing the spectral density of the electron with the laser assisted recombination spectrum.

  16. Longitudinal magnetoresistance of layered crystals in a quantizing magnetic field taking into account the spin splitting

    Science.gov (United States)

    Askerov, B. M.; Figarova, S. R.; Mahmudov, M. M.

    2006-07-01

    The magnetoresistance of layered crystals in a longitudinal quantizing magnetic field by taking into account the spin splitting is theoretically investigated. The general expression for the electrical conductivity of a quasi two-dimensional electron gas at the deformation-potential scattering has been obtained. In the behavior of the specific resistance, peaks have been revealed, and a number and positions of the peaks are dictated by the spin splitting magnitude.

  17. Group field theory as the 2nd quantization of Loop Quantum Gravity

    OpenAIRE

    Oriti, Daniele

    2013-01-01

    We construct a 2nd quantized reformulation of canonical Loop Quantum Gravity at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the Group Field Theory formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specifi...

  18. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  19. Quantization of massive scalar fields over static black string backgrounds

    CERN Document Server

    Piedra, Owen Pavel Fernandez

    2007-01-01

    The renormalized mean value of the corresponding components of the Energy-Momentum tensor for massive scalar fields coupled to an arbitrary gravitational field configuration having cylindrical symmetry are analytically evaluated using the Schwinger-DeWitt approximation, up to second order in the inverse mass value. The general results are employed to explicitly derive compact analytical expressions for the Energy-Momentum tensor in the particular background of the Black-String spacetime. In the case of the Black String considered in this work, we proof that a violation of the weak energy condition occur at the horizon of the space-time for values of the coupling constant, that include as particular cases the most interesting of minimal and conformal coupling.

  20. Anderson Localization with Second Quantized Fields: Quantum Statistical Aspects

    CERN Document Server

    Thompson, Clinton; Agarwal, G S

    2010-01-01

    We report a theoretical study of Anderson localization of nonclassical light with emphasis on the quantum statistical aspects of localized light. We demonstrate, from the variance in mean intensity of localized light, as well as site-to-site correlations, that the localized light carries signatures of quantum statistics of input light. For comparison, we also present results for input light with coherent field statistics and thermal field statistics. Our results show that there is an enhancement in fluctuations of localized light due to the medium's disorder. We also find superbunching of the localized light, which may be useful for enhancing the interaction between radiation and matter. Another important consequence of sub-Poissonian statistics of the incoming light is to quench the total fluctuations at the output. Finally, we compare the effects of Gaussian and Rectangular distributions for the disorder, and show that Gaussian disorder accelerates the localization of light.

  1. Time-Machine Solutions of Einstein's Equations with Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    SHEN Ming; SUN Qing-You

    2011-01-01

    In this paper we investigate the time-machine problem in the electromagnetic field.Based on a metric which is a more general form of Ori's, we solve the Einstein's equations with the energy-momentum tensors for electromagnetic field, and construct the time-machine solutions, which solve the time machine problem in electromagnetic field.

  2. Exact plane gravitational waves and electromagnetic fields

    OpenAIRE

    Enrico MontanariUniversity of Ferrara and INFN sezione di Ferrara, Italy; Mirco Calura(University of Ferrara and INFN sezione di Ferrara, Italy)

    2000-01-01

    The behaviour of a "test" electromagnetic field in the background of an exact gravitational plane wave is investigated in the framework of Einstein's general relativity. We have expressed the general solution to the de Rham equations as a Fourier-like integral. In the general case we have reduced the problem to a set of ordinary differential equations and have explicitly written the solution in the case of linear polarization of the gravitational wave. We have expressed our ...

  3. Charged Scalars in Transient Stellar Electromagnetic Fields

    Institute of Scientific and Technical Information of China (English)

    Marina-Aura Dariescu; Ciprian Dariescu; Ovidiu Buhucianu

    2011-01-01

    We consider a non-rotating strongly magnetized object, whose magnetic induction isof the form Bx = Bo{t)sin kz. In the electromagnetic field generated by only one component of the four-vector potential, we solve the Klein-Gordon equation and discuss the sudden growth of the scalar wave functions for wavenumbers inside computable ranges. In the case of unexcited transversal kinetic degrees, we write down the recurrent differential system for the amplitude functions and compute the respective conserved currents.

  4. Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field

    Science.gov (United States)

    Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.

    2015-05-01

    We report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10 000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  5. Stirring, not shaking: binary black holes' effects on electromagnetic fields

    CERN Document Server

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L; Neilsen, David

    2009-01-01

    In addition to producing gravitational waves (GW), the dynamics of a binary black hole system could induce emission of electromagnetic (EM) radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  6. [Safety and electromagnetic compatibility in sanitary field].

    Science.gov (United States)

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  7. Massless Scalar Field Propagator in a Quantized Space-Time

    CERN Document Server

    Elias, V

    2006-01-01

    We consider in detail the analytic behaviour of the non-interacting massless scalar field two-point function in H.S. Snyder's discretized non-commuting spacetime. The propagator we find is purely real on the Euclidean side of the complex $p^2$ plane and goes like $1/p^2$ as $p^2\\to 0$ from either the Euclidean or Minkowski side. The real part of the propagator goes smoothly to zero as $p^2$ increases to the discretization scale $1/a^2$ and remains zero for $p^2>1/a^2$. This behaviour is consistent with the termination of single-particle propagation on the ultraviolet side of the discretization scale. The imaginary part of the propagator, consistent with a multiparticle-production branch discontinuity, is finite and continuous on the Minkowski side, slowly falling to zero when $1/a^2

  8. D-Theory: Field Quantization by Dimensional Reduction of Discrete Variables

    CERN Document Server

    Brower, R; Riederer, S; Wiese, U J

    2003-01-01

    D-theory is an alternative non-perturbative approach to quantum field theory formulated in terms of discrete quantized variables instead of classical fields. Classical scalar fields are replaced by generalized quantum spins and classical gauge fields are replaced by quantum links. The classical fields of a d-dimensional quantum field theory reappear as low-energy effective degrees of freedom of the discrete variables, provided the (d+1)-dimensional D-theory is massless. When the extent of the extra Euclidean dimension becomes small in units of the correlation length, an ordinary d-dimensional quantum field theory emerges by dimensional reduction. The D-theory formulation of scalar field theories with various global symmetries and of gauge theories with various gauge groups is constructed explicitly and the mechanism of dimensional reduction is investigated.

  9. On electromagnetic field problems in inhomogeneous media

    Science.gov (United States)

    Mohsen, A.

    1973-01-01

    Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.

  10. Hamiltonian dynamics of the parametrized electromagnetic field

    CERN Document Server

    G., J Fernando Barbero; Villaseñor, Eduardo J S

    2015-01-01

    We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.

  11. Hamiltonian dynamics of the parametrized electromagnetic field

    Science.gov (United States)

    Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.

    2016-06-01

    We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.

  12. A New Theory of the Electromagnetic Field

    Science.gov (United States)

    Kriske, Richard

    2017-01-01

    This author has previously introduced a new theory of the Electromagnetic Field and its interaction with matter. There was from the start a problem with Einstein's formulation of Invariants and its use in describing The EM field. The photon produced by first varying a stationary Electric field in one observer's reference frame is not the same as a photon produced from varying the a stationary Magnetic Field. The Magnetic field photon is thought of as being ``off the mass shell''. The Quantum information seems to carry with it an ordering of these events. You see this ordering in Wick's theory and in Feynman diagrams. This author is proposing that other fields can vary first in another Observers reference frame, not just the ``Scalar Field'' or the ``Fermion Field'', but many other forms of Energy. If the ``Nuclear Field'' varies first, it results in Quantum information that produces a photon that has the Nuclear Field in it and also the Magnetic Field, this is the strange effect seen in Nuclear Magnetic Resonance. This author proposed that there is a large number of photons with different properties, because of this ordering of events that occurs in Quantum Information. One of these photons is the Neutrino which appears to be a three field photon. This is Kriske's Field Theory.

  13. Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field

    Science.gov (United States)

    Das, Praloy; Pramanik, Souvik; Ghosh, Subir

    2016-11-01

    Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac's Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein-Brillouin-Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr-Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.

  14. Field-induced diverse quantizations in monolayer and bilayer black phosphorus

    Science.gov (United States)

    Wu, Jhao-Ying; Chen, Szu-Chao; Gumbs, Godfrey; Lin, Ming-Fa

    2017-03-01

    This report provides a comprehensive understanding of the magnetic quantization effects in phosphorene with the use of the generalized tight-binding model. Especially for bilayer systems, a composite magnetic and electric field can induce the feature-rich LL spectrum. We demonstrate the existence of two subgroups of Landau levels (LLs) near the Fermi level according to their distinguishable localization centers. The strong competition between the two subgroups induces unusual quantization behaviors, such as multiple anticrossings for the Bz- and Ez-dependent energy spectra. These results are clearly explained by the spatial distributions of subenvelope functions from which two types of LLs are characterized by being either the usual or the perturbed distribution modes. The detailed analysis of the diverse magnetic quantizations is quite important in understanding other physical properties, such as the dispersion relations of magnetoplasmons, magneto-optical selection rules, as well as electron transport properties. The unusual energy spectra are directly revealed by the special features of the density of states, which could be further validated by measurements employing scanning tunneling spectroscopy.

  15. Bianchi Class B Spacetimes with Electromagnetic Fields

    CERN Document Server

    Yamamoto, Kei

    2011-01-01

    We carry out a thorough analysis on a class of cosmological spacetimes which admit three space-like Killing vectors of Bianchi class B and contain electromagnetic fields. Using dynamical system analysis, we show that a family of vacuum plane-wave solutions of the Einstein-Maxwell equations is the stable attractor for expanding universes. Phase dynamics are investigated in detail for particular symmetric models. We integrate the system exactly for some special cases to confirm the qualitative features. Some of the obtained solutions have not been presented previously to the best of our knowledge. Finally, based on those solutions, we discuss the relation between those homogeneous models and perturbations of open FLRW universes. We argue that the vacuum plane-wave modes correspond to a certain long-wavelength limit of electromagnetic perturbations.

  16. Electromagnetic fields, pacemakers and defibrillators; Champs electromagnetiques, cardiostimulateurs et defibrillateurs

    Energy Technology Data Exchange (ETDEWEB)

    Guiguet, J.C. [Agence Nationale des Frequences (ANFR), 94 - Maisons Alfort (France); Dodinot, B.; Sadoul, N.; Blangy, H. [Centre Hospitalier Universitaire Nancy-Brabois, Clinique Cardiologique, 54 - Vandoeuvre Brabois (France); Nadi, M.; Hedjiedj, A.; Schmitt, P. [Universite Henri Poincare-Nancy, Lab. d' Instrumentation Electronique de Nancy, Faculte des Sciences, 54 - Vandoeuvre les Nancy (France); Joly, L.; Dodinot, B.; Aliot, E. [Centre Hospitalier Universitaire Nancy-Brabois, Service de Cardiologie, 54 - Vandoeuvre-les-Nancy (France); Silny, J. [Aachen University (Germany); Franck, R.; Himbert, C.; Hidden-Lucet, F.; Petitot, J.C.; Fontaine, G. [Hopital Pitie-Salpetriere, Institut de Cardiologie, Service de Rythmologie, 75 - Paris (France); Souques, M.; Lambrozo, J. [Electricite de France (EDF-Gaz de France), Service des Etudes Medicales, 75 - Paris (France); Magne, I.; Bailly, J.M. [Electricite de France (EDF-Gaz de France), Div. Recherche Developpement, 77 - Moret sur Loing (France); Trigano, J.A. [Centre Hospitalier Universitaire, Hopital Nord, 13 - Marseille (France); Burais, N. [CEGELY, Ecole Centrale de Lyon, 69 - Ecully (France); Gaspard, J.Y. [Magtech, 69 - Ecully (France); Andrivet, Ph. [Societe Medtronic France, 92 - Boulogne-Billancourt (France)

    2004-07-01

    Presentation of electromagnetic sources constituted by various radio transmitters contributing to different radio communication services in the environment. Results of a measures campaign to assess the electromagnetic field in the close neighbourhood of various stations. Analysis by frequency domains. (author)

  17. Electromagnetic Fields and Waves in Fractional Dimensional Space

    CERN Document Server

    Zubair, Muhammad; Naqvi, Qaisar Abbas

    2012-01-01

    This book presents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves. It provides demonstrates the advantages in studying the behavior of electromagnetic fields and waves in fractal media. The book presents novel fractional space generalization of the differential electromagnetic equations is provided as well as a new form of vector differential operators is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell's electromagnetic equations are worked out. The Laplace's, Poisson's and Helmholtz's

  18. Description of Atom-Field Interaction via Quantized Caldirola-Kanai Hamiltonian

    Science.gov (United States)

    Daneshmand, Roohollah; Tavassoly, Mohammad Kazem

    2017-01-01

    In this paper we outline an approach to the study of atom-field interacting systems, where the Hamiltonian of the field is simply inspired from the quantized Caldirola-Kanai Hamiltonian. As a simple physical realization of the model, the interaction between a two-level atom with such a single-mode field is studied. The explicit form of the atom-field entangled state associated with the considered system is analytically deduced and the dynamics of a few of its physical properties is numerically evaluated. To achieve the latter purposes, the temporal behavior of the degree of entanglement, atomic population inversion as well as sub-Poissonian statistics and quadrature squeezing of the field are evaluated. Moreover, the effects of the intensity of initial field and the damping parameter within the Caldirola-Kanai Hamiltonian on the above-mentioned criteria are investigated. As is shown, by adjusting the latter evolved parameters one can appropriately tune the discussed physical quantities.

  19. Radiation (absorbing) boundary conditions for electromagnetic fields

    Science.gov (United States)

    Bevensee, R. M.; Pennock, S. T.

    1987-01-01

    An important problem in finite difference or finite element computation of the electromagnetic field obeying the space-time Maxwell equations with self-consistent sources is that of truncating the outer numerical boundaries properly to avoid spurious numerical reflection. Methods for extrapolating properly the fields just beyond a numerical boundary in free space have been treated by a number of workers. This report avoids plane wave assumptions and derives boundary conditions more directly related to the source distribution within the region. The Panofsky-Phillips' relations, which enable one to extrapolate conveniently the vector field components parallel and perpendicular to a radial from the coordinate origin chosen near the center of the charge-current distribution are used to describe the space-time fields.

  20. Spatial bandlimitedness of scattered electromagnetic fields

    CERN Document Server

    Khankhoje, Uday K

    2015-01-01

    In this tutorial paper, we consider the problem of electromagnetic scattering by a bounded dielectric object, and discuss certain interesting properties of the scattered field. Using the electric field integral equation, along with the techniques of Fourier theory and the properties of Bessel functions, we show analytically and numerically, that the scattered fields are spatially bandlimited. Further, we derive an upper bound on the number of incidence angles that are useful as constraints in an inverse problem setting (determining permittivity given measurements of the scattered field). We also show that the above results are independent of the dielectric properties of the scattering object and depend only on geometry. Though these results have previously been derived in the literature using the framework of functional analysis, our approach is conceptually far easier. Implications of these results on the inverse problem are also discussed.

  1. [Biological effects of electromagnetic fields (author's transl)].

    Science.gov (United States)

    Bernhardt, J

    1979-08-01

    This résumé deals with thermal and nonthermal effects of electromagnetic fields on man. In consideration of two aspects a limitation is necessary. Firstly, there will be discussed only direct and immediate influences on biological cells and tissues, secondly, the treatment is limited to such phenomena, for which biophysical aproximations, based on experimental data, could be developed. Hazards for the human being may occur only by thermal effects within the microwave range. Regarding frequencies below approximately 30 kHz, excitation processes cannot be excluded in exceptional cases. Thermal effects are predominant, between 30 kHz and 100 kHz, before excitations can appear. Furthermore, by comparing the electrically and magnetically induced currents with the naturally flowing currents in man caused by the brain's and heart's electrical activity, a "lower boundaryline" was estimated. Regarding electric or magnetic field strengths undercutting this boundary-line, direct effects on the central nervous system may be excluded; other mechanisms should be responsible for demonstrated biological effects. The paper closes referring to some reports--presently discussed--on experimental findings of biological effects, which are observed as a result of the influence of electromagnetic fields of small field strengths.

  2. Electromagnetic fields on a quantum scale. I.

    Science.gov (United States)

    Grimes, Dale M; Grimes, Craig A

    2002-10-01

    This is the first in a series of two articles, the second of which provides an exact electro-magnetic field description of photon emission, absorption, and radiation pattern. Photon energy exchanges are analyzed and shown to be the triggered, regenerative response of a non-local eigenstate electron. This first article presents a model-based, hidden variable analysis of quantum theory that provides the statistical nature of wave functions. The analysis uses the equations of classical electro-magnetism and conservation of energy while modeling an eigenstate electron as a nonlocal entity. Essential to the analysis are physical properties that were discovered and analyzed only after the historical interpretation of quantum mechanics was established: electron non-locality and the standing electro-magnetic energy that accompanies and encompasses an active, electrically small volume. The standing energy produces a driving radiation reaction force that, under certain circumstances, is many orders of magnitude larger than currently accepted values. These properties provide a sufficient basis for the Schrödinger equation as a descriptor of non-relativistic eigenstate electrons in or near equilibrium. The uncertainty principle follows, as does the exclusion principle. The analysis leads to atomic stability and causality in the sense that the status of physical phenomena at any instant specifies the status an instant later.

  3. Higher Spin Fermionic Quantum Fields on Curved Spacetimes and their Algebraic Quantization

    CERN Document Server

    Muehlhoff, Rainer

    2011-01-01

    A first order linear differential operator for Fermionic spinor fields of arbitrary half integral spin on globally hyperbolic Lorentzian spacetime manifolds is constructed. The Cauchy problem for the resulting field equation (massive as well as massless) is shown to have unique solutions. On the spinor bundle, a natural Hermitian scalar product is constructed with respect to which the differential operator is of positive-definite type. This leads to a construction of C*-algebra representation of the canonical anti-commutation relations and thus to a quantization of the higher spin system, which does not depend on further choices. Hence, these considerations show that the well-known CAR-algebraic quantization construction by Dimock (1982) for the spin 1/2 Dirac field can naturally be generalized to Fermionic fields of higher spin, which was as yet an open question. This document is equipped with a solid introduction to the formalism of 2-spinors on curved spacetimes in an invariant fashion using abstract index...

  4. Covariant Quantization of "Massive" Spin-3/2 Fields in the de Sitter Space

    CERN Document Server

    Takook, M V; Babaian, E

    2012-01-01

    We present a covariant quantization of the free "massive" spin-3/2 fields in four-dimensional de Sitter space-time based on analyticity in the complexified pseudo-Riemannian manifold. The field equation is obtained as an eigenvalue equation of the Casimir operator of the de Sitter group. The solutions are calculated in terms of coordinate-independent de Sitter plane-waves in tube domains and the null curvature limit is discussed. We give the group theoretical content of the field equation. The Wightman two-point function $S^{i \\bar j}_{\\alpha\\alpha'}(x,x')$ is calculated. We introduce the spinor-vector field operator $\\Psi_\\alpha(f)$ and the Hilbert space structure. A coordinate-independent formula for the field operator $\\Psi_\\alpha(x)$ is also presented.

  5. Degassing of Bioliquids in Low Electromagnetic Fields

    CERN Document Server

    Shatalov, Vladimir; Zinchenko, Alina

    2011-01-01

    A similarity of changes in physical-chemical properties of pure water induced by low electromagnetic fields (EMF) and by degassing treatment brought us to a conclusion that EMF produces some degassing of water. Degassing in turn gives rise to some biological effects by increasing the surface tension and activity of dissolved ions. In such a way the degassing can modify conformations of proteins and others biomolecules in bioliquids. That was confirmed in our observation of changes in the erythrocyte sedimentation rate and the prothrombinase activity in blood clotting processes.

  6. Semi-Classical and Quantized-Field Descriptions of Light Propagation in General Non-Local and Non-Stationary Dispersive and Absorbing Media

    Science.gov (United States)

    Jacobs, Verne

    2016-05-01

    Semi-classical and quantum-field descriptions for the interaction of light with matter are systematically discussed. Applications of interest include resonant pump-probe optical phenomena, such as electromagnetically induced transparency. In the quantum-mechanical description of matter systems, we introduce a general reduced-density-matrix framework. Time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are developed in a unified and self-consistent manner, using a Liouville-space operator representation. In the semi-classical description, the electromagnetic field is described as a classical field satisfying the Maxwell equations. Compact Liouville-space operator expressions are derived for the linear and the general (n'th order) non-linear electromagnetic-response tensors describing moving many-electron systems. The tetradic matrix elements of the Liouville-space self-energy operators are evaluated for environmental collisional and radiative interactions. The quantized-field approach is essential for a fully self-consistent quantum-mechanical description. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  7. Group field theory as the second quantization of loop quantum gravity

    Science.gov (United States)

    Oriti, Daniele

    2016-04-01

    We construct a second quantized reformulation of canonical loop quantum gravity (LQG) at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the group field theory (GFT) formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specific example of 3d quantum gravity. The correspondence between canonical LQG and covariant spin foam models is obtained via the GFT definition of the latter.

  8. On the Irreducible BRST Quantization of Spin-5/2 Gauge Fields

    CERN Document Server

    Bizdadea, C; Timneanu, E N

    1998-01-01

    Spin-5/2 gauge fields are quantized in an irreducible way within both the BRST and BRST-anti-BRST manners. To this end, we transform the reducible generating set into an irreducible one, such that the physical observables corresponding to these two formulations coincide. The gauge-fixing procedure emphasizes on the one hand the differences among our procedure and the results obtained in the literature, and on the other hand the equivalence between our BRST and BRST-anti-BRST approaches.

  9. Group field theory as the 2nd quantization of Loop Quantum Gravity

    CERN Document Server

    Oriti, Daniele

    2013-01-01

    We construct a 2nd quantized reformulation of canonical Loop Quantum Gravity at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the Group Field Theory formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specific example of 3d quantum gravity. The correspondence between canonical LQG and covariant spin foam models is obtained via the GFT definition of the latter.

  10. Stückelberg Field Shiftting Quantization of Free-Particle on D-Dimensional Sphere

    CERN Document Server

    Neves, C

    2000-01-01

    In this paper we quantize the free-particle on a D-dimensional sphere in an unambiguous way by converting the second-class constraint using St\\"uckelberg field shiftting formalism. Further, we argument that this formalism is equivalent to the BFFT constraint conversion method and show that the energy spectrum is identical to the pure Laplace-Beltrami operator without additional terms arising from the curvature of the sphere. We work out the gauge symmetry generators with results consistent with those obtained through the nonlinear implementation of the gauge symmetry

  11. Electromagnetic Processes in strong Crystalline Fields

    CERN Multimedia

    Uggerhoj, U I; Mikkelsen, F K

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  12. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    CERN Document Server

    Karbstein, Felix; Reuter, Maria; Zepf, Matt

    2015-01-01

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of non-linear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generatio...

  13. Near-field radiofrequency electromagnetic exposure assessment.

    Science.gov (United States)

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields.

  14. The Casimir effect with quantized charged spinor matter in background magnetic field

    CERN Document Server

    Sitenko, Yu A

    2014-01-01

    We study the influence of a background uniform magnetic field and boundary conditions on the vacuum of a quantized charged spinor matter field confined between two parallel neutral plates; the magnetic field is directed orthogonally to the plates. The admissible set of boundary conditions at the plates is determined by the requirement that the Dirac hamiltonian operator be self-adjoint. It is shown that, in the case of a sufficiently strong magnetic field and a sufficiently large separation of the plates, the Casimir force is repulsive, being independent of the choice of a boundary condition, as well as of the distance between the plates. The detection of this effect seems to be feasible in a foreseen future.

  15. Criteria for the determination of time dependent scalings in the Fock quantization of scalar fields

    CERN Document Server

    Cortez, Jerónimo; Olmedo, Javier; Velhinho, José M

    2012-01-01

    The quantization of scalar fields in nonstationary spacetimes is plagued with ambiguities that undermine the significance of physical predictions. A context in which this kind of ambiguities arises and prevents the derivation of robust results is, e.g., in the quantum analysis of cosmological perturbations. In these situations, typically, a suitable scaling of the field by a time dependent function leads to a description in an auxiliary static background, though the nonstationarity still shows up in a time dependent mass. For such a field description, and assuming the compactness of the spatial sections, we recently proved in three or less spatial dimensions that the criteria of a natural implementation of the spatial isometries and of a unitary time evolution are able to select a unique class of unitarily equivalent vacua, and hence of Fock representations. In this work, we extend our uniqueness result to the consideration of all possible field descriptions that can be reached by a time dependent canonical t...

  16. Electromagnetic multipole fields of neutron stars

    Science.gov (United States)

    Roberts, W. J.

    1979-01-01

    A formalism is developed for treating general multipole electromagnetic fields of neutron stars. The electric multipoles induced in a neutron star by its rotation with an arbitrary magnetic multipole at its center are presented. It is shown how to express a family of off-centered multipoles having the same l weight as an infinite array of centered multipoles of increasing l weight referred to the rotational axis. General expressions are given for the linear momentum present in the superposition of arbitrary multipole fields, and the results are combined to compute the radiation rate of linear momentum by an off-centered dipole to zeroth order in the parameter Omega x R/c. The general Deutsch (1955) solution is then rederived in a clear consistent manner, and some minor additions and corrections are provided.

  17. Electromagnetic field patterning or crystal light

    Science.gov (United States)

    Słupski, Piotr; Wymysłowski, Artur; Czarczyński, Wojciech

    2016-12-01

    Using the orbital angular momentum of light for the development of a vortex interferometer, the underlying physics requires microwave/RF models,1 as well as quantum mechanics for light1, 2 and fluid flow for semiconductor devices.3, 4 The combination of the aforementioned physical models yields simulations and results such as optical lattices,1 or an Inverse Farday effect.5 The latter is explained as the absorption of optical angular momentum, generating extremely high instantenous magnetic fields due to radiation friction. An algorithmic reduction across the computational methods used in microwaves, lasers, quantum optics and holography is performed in order to explain electromagnetic field interactions in a single computational framework. This work presents a computational model for photon-electron interactions, being a simplified gauge theory described using differentials or disturbances (photons) instead of integrals or fields. The model is based on treating the Z-axis variables as a Laplace fluid with spatial harmonics, and the XY plane as Maxwell's equations on boundaries. The result is a unified, coherent, graphical computational method of describing the photon qualitatively, quantitatively and with proportion. The model relies on five variables and is described using two equations, which use emitted power, cavity wavelength, input frequency, phase and time. Phase is treated as a rotated physical dimension under gauge theory of Feynmann's QED. In essence, this model allows the electromagnetic field to be treated with it's specific crystallography. The model itself is described in Python programming language. PACS 42.50.Pq, 31.30.J-, 03.70.+k, 11.10.-z, 67.10.Hk

  18. Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi-Shi; XIE Bai-Song; TIAN Miao; YIN Xin-Tao; ZHANG Xin-Hui

    2008-01-01

    Stable propagating waves and wake fields in relativistic electromagnetic plasma are investigated. The incident electromagnetic field has a finite initial constant amplitude meanwhile the longitudinal momentum of electrons is taken into account in the problem. It is found that in the moving frame with transverse wave group velocity the stable propagating transverse electromagnetic waves and longitudinal plasma wake fields can exist in the appropriate regime of plasma.

  19. Vector Potential Quantization and the Quantum Vacuum

    Directory of Open Access Journals (Sweden)

    Constantin Meis

    2014-01-01

    Full Text Available We investigate the quantization of the vector potential amplitude of the electromagnetic field to a single photon state starting from the fundamental link equations between the classical electromagnetic theory and the quantum mechanical expressions. The resulting wave-particle formalism ensures a coherent transition between the classical electromagnetic wave theory and the quantum representation. A quantization constant of the photon vector potential is defined. A new quantum vacuum description results directly in having very low energy density. The calculated spontaneous emission rate and Lambs shift for the nS states of the hydrogen atom are in agreement with quantum electrodynamics. This low energy quantum vacuum state might be compatible with recent astrophysical observations.

  20. Uniqueness of the Fock quantization of scalar fields in a Bianchi I cosmology with unitary dynamics

    CERN Document Server

    Cortez, Jerónimo; Martín-Benito, Mercedes; Marugán, Guillermo A Mena; Olmedo, Javier; Velhinho, José M

    2016-01-01

    The Fock quantization of free scalar fields is subject to an infinite ambiguity when it comes to choosing a set of annihilation and creation operators, choice that is equivalent to the determination of a vacuum state. In highly symmetric situations, this ambiguity can be removed by asking vacuum invariance under the symmetries of the system. Similarly, in stationary backgrounds, one can demand time-translation invariance plus positivity of the energy. However, in more general situations, additional criteria are needed. For the case of free (test) fields minimally coupled to a homogeneous and isotropic cosmology, it has been proven that the ambiguity is resolved by introducing the criterion of unitary implementability of the quantum dynamics, as an endomorphism in Fock space. This condition determines a specific separation of the time dependence of the field, so that this splits into a very precise background dependence and a genuine quantum evolution. Furthermore, together with the condition of vacuum invaria...

  1. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    Science.gov (United States)

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  2. The classical theory of fields electromagnetism

    CERN Document Server

    Helrich, Carl S

    2012-01-01

    The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...

  3. Plant Responses to High Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Alain Vian

    2016-01-01

    Full Text Available High frequency nonionizing electromagnetic fields (HF-EMF that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc. are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor, and growth reduced (stem elongation and dry weight after low power (i.e., nonthermal HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism.

  4. Solitary structures in a spatially nonuniform degenerate plasma in the presence of quantizing magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Center for Physics (NCP), Islamabad 44000 (Pakistan); Shaukat, Muzzamal I. [University of Engineering and Technology, Lahore (RCET Campus) 54000 (Pakistan); Theoretical Plasma Physics Group, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Lahore 54000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2015-03-15

    In the present investigation, linear and nonlinear propagation of low frequency (ω≪Ω{sub ci}) electrostatic waves have been studied in a spatially inhomogeneous degenerate plasma with one dimensional electron trapping in the presence of a quantizing magnetic field and finite temperature effects. Using the drift approximation, formation of 1 and 2D drift ion solitary structures have been studied both for fully and partially degenerate plasmas. The theoretical results obtained have been analyzed numerically for the parameters typically found in white dwarfs for illustrative purpose. It is observed that the inclusion of Landau quantization significantly changes the expression of the electron number density of a dense degenerate plasma which affects the linear and nonlinear propagation of drift acoustic solitary waves in such a system. The present work may be beneficial to understand the propagation of drift solitary structures with weak transverse perturbation in a variety of physical situations, such as white dwarfs and laser-induced plasmas, where the quantum effects are expected to dominate.

  5. Consistent quantization of massless fields of any spin and the generalized Maxwell's equations

    CERN Document Server

    Gersten, Alexander

    2016-01-01

    A simplified formalism of first quantized massless fields of any spin is presented. The angular momentum basis for particles of zero mass and finite spin s of the D^(s-1/2,1/2) representation of the Lorentz group is used to describe the wavefunctions. The advantage of the formalism is that by equating to zero the s-1 components of the wave functions, the 2s-1 subsidiary conditions (needed to eliminate the non-forward and non-backward helicities) are automatically satisfied. Probability currents and Lagrangians are derived allowing a first quantized formalism. A simple procedure is derived for connecting the wave functions with potentials and gauge conditions. The spin 1 case is of particular interest and is described with the D^(1/2,1/2) vector representation of the well known self-dual representation of the Maxwell's equations. This representation allows us to generalize Maxwell's equations by adding the E_0 and B_0 components to the electric and magnetic four-vectors. Restrictions on their existence are dis...

  6. The quantization of gravity an introduction

    CERN Document Server

    Wallace, D

    2000-01-01

    This is an introduction to quantum gravity, aimed at a fairly general audience and concentrating on what have historically two main approaches to quantum gravity: the covariant and canonical programs (string theory is not covered). The quantization of gravity is discussed by analogy with the quantization of the electromagnetic field. The conceptual and technical problems of both approaches are discussed, and the paper concludes with a discussion of evidence for quantum gravity from the rest of physics. The paper assumes some familiarity with non-relativistic quantum mechanics, special relativity, and the Lagrangian and Hamiltonian formulations of classical mechanics; some experience with classical field theory, quantum electrodynamics and the gauge principle in electromagnetism might be helpful but is not required. No knowledge of general relativity or of quantum field theory in general is assumed.

  7. Electromagnetic fields produced by simulated spacecraft discharges

    Science.gov (United States)

    Nonevicz, J. E.; Adamo, R. C.; Beers, B. L.; Delmer, T. N.

    1980-01-01

    The initial phase of a broader, more complete program for the characterization of electrical breakdowns on spacecraft insulating materials is described which consisted of the development of a discharge simulator and characterization facility and the performance of a limited number of discharge measurements to verify the operation of the laboratory setup and to provide preliminary discharge transient field data. A preliminary model of the electromagnetic characteristics of the discharge was developed. It is based upon the "blow off" current model of discharges, with the underlying assumption of a propagating discharge. The laboratory test facility and discharge characterization instrumentation are discussed and the general results of the "quick look" tests are described on quartz solar reflectors aluminized Kapton and silver coated Teflon are described.

  8. Uniqueness of the Fock quantization of Dirac fields in 2+1 dimensions

    CERN Document Server

    Cortez, Jerónimo; Martín-Benito, Mercedes; Marugán, Guillermo A Mena; Velhinho, José M

    2016-01-01

    We study the Fock quantization of a free Dirac field in 2+1-dimensional backgrounds which are conformally ultrastatic, with a time-dependent conformal factor. As it is typical for field theories, there is an infinite ambiguity in the Fock representation of the canonical anticommutation relations. Different choices may lead to unitarily inequivalent theories that describe different physics. To remove this ambiguity one usually requires that the vacuum be invariant under the unitary transformations that implement the symmetries of the equations of motion. However, in non-stationary backgrounds, where time translation is not a symmetry transformation, the requirement of vacuum invariance is in general not enough to fix completely the Fock representation. We show that this problem is overcome in the considered scenario by demanding, in addition, a unitarily implementable quantum dynamics. The combined imposition of these conditions selects a unique family of equivalent Fock representations. Moreover, one also obt...

  9. Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization

    CERN Document Server

    Cortez, Jerónimo; Martín-Benito, Mercedes; Marugán, Guillermo A Mena; Velhinho, José M

    2016-01-01

    We address the issue of the infinite ambiguity that affects the construction of a Fock quantization of a Dirac field propagating in a cosmological spacetime with flat compact sections. In particular, we discuss a physical criterion that restricts to a unique possibility (up to unitary equivalence) the infinite set of available vacua. We prove that this desired uniqueness is guaranteed, for any possible choice of spin structure on the spatial sections, if we impose two conditions. The first one is that the symmetries of the classical system must be implemented quantum mechanically, so that the vacuum is invariant under the symmetry transformations. The second and more important condition is that the constructed theory must have a quantum dynamics that is implementable as a (non-trivial) unitary operator in Fock space. Actually, this unitarity of the quantum dynamics leads us to identify as explicitly time dependent some very specific contributions of the Dirac field. In doing that, we essentially characterize ...

  10. Motion of charged particles in a knotted electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2010-06-11

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  11. Inelastic deformation of conductive bodies in electromagnetic fields

    Science.gov (United States)

    Altenbach, Holm; Morachkovsky, Oleg; Naumenko, Konstantin; Lavinsky, Denis

    2016-09-01

    Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic-plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor-workpiece system within a realistic electromagnetic forming process.

  12. Covariant canonical quantization

    Energy Technology Data Exchange (ETDEWEB)

    Hippel, G.M. von [University of Regina, Department of Physics, Regina, Saskatchewan (Canada); Wohlfarth, M.N.R. [Universitaet Hamburg, Institut fuer Theoretische Physik, Hamburg (Germany)

    2006-09-15

    We present a manifestly covariant quantization procedure based on the de Donder-Weyl Hamiltonian formulation of classical field theory. This procedure agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and we apply the formalism to a number of simple examples. These show that covariant canonical quantization produces both the Klein-Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses. Covariant canonical quantization can thus be understood as a ''first'' or pre-quantization within the framework of conventional QFT. (orig.)

  13. Electromagnetic Field in de Sitter Expanding Universe: Majorana--Oppenheimer Formalism, Exact Solutions in non-Static Coordinates

    CERN Document Server

    Veko, O V; Sitenko, Yu A; Ovsiyuk, E M; Red'kov, V M

    2014-01-01

    Tetrad-based generalized complex formalism by Majorana--Oppenheimer is applied to treat electromagnetic field in extending de Sitter Universe in on-static spherically-symmetric coordinates. With the help of Wigner D-functions, we separate angular dependence in the complex vector field E_{j}(t,r)+i B_{j}(t,r) from (t,r)-dependence. The separation parameter arising here instead of frequency \\omega in Minkowski space-time is quantized, non-static geometry of the de Sitter model leads to definite dependence of electromagnetic modes on the time variable. Relation of 3-vector complex approach to 10-dimensional Duffin-Kemmer-Petiau formalism is considered. On this base, the electromagnetic waves of magnetic and electric type have been constructed in both approaches. In Duffin-Kemmer-Petiau approach, there are constructed gradient-type solutions in Lorentz gauge.

  14. Cosmic Electromagnetic Fields due to Perturbations in the Gravitational Field

    CERN Document Server

    Mongwane, Bishop; Osano, Bob

    2012-01-01

    We use non-linear gauge-invariant perturbation theory to study the interaction of an inflation produced seed magnetic field with density and gravitational wave perturbations in an almost Friedmann-Lema\\^itre-Robertson-Walker (FLRW) spacetime. We compare the effects of this coupling under the assumptions of poor conductivity, infinite conductivity and the case where the electric field is sourced via the coupling of velocity perturbations to the seed field in the ideal magnetohydrodynamic (MHD) regime, thus generalizing, improving on and correcting previous results. We solve our equations for long wavelength limits and numerically integrate the resulting equations to generate power spectra for the electromagnetic field variables, showing where the modes cross the horizon. We find that the rotation of the electric field dominates the power spectrum on small scales, in agreement with previous arguments.

  15. Electromagnetic field at Finite Temperature: A new view

    CERN Document Server

    Casana, R; Valverde, J S

    2005-01-01

    In this work we study the electromagnetic field at Finite Temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

  16. Electromagnetic field at finite temperature: A first order approach

    Science.gov (United States)

    Casana, R.; Pimentel, B. M.; Valverde, J. S.

    2006-10-01

    In this work we study the electromagnetic field at finite temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

  17. Path integral quantization of the relativistic Hopfield model

    CERN Document Server

    Belgiorno, F; Piazza, F Dalla; Doronzo, M

    2016-01-01

    The path integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quantum matter, with particular reference to the context of analogue gravity. In order to take into account the constraints occurring in the model, we adopt the Faddeev-Jackiw approach to constrained quantization in the path integral formalism. In particular we demonstrate that the propagator obtained with the Faddeev-Jackiw approach is equivalent to the one which, in the framework of Dirac canonical quantization for constrained systems, can be directly computed as the vacuum expectation value of the time ordered product of the fields. Our analysis also provides an explicit example of quantization of the electromagnetic field in a covariant gauge and coupled with the polarization field, which is a novel contribution to the literature on the Faddeev-Jackiw procedure.

  18. Sensing network for electromagnetic fields generated by seismic activities

    Science.gov (United States)

    Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.

    2014-06-01

    The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.

  19. Assessment of Electromagnetic Fields at NASA Langley Research Center

    Science.gov (United States)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  20. Intrinsic decoherence of entanglement of a single quantized field interacting with a two-level atom

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    How the mean photon number, the probability of excited state and intrinsic decoherence coefficient influence the time evolution of entanglement is unknown, when a single-mode quantized optic field and a two-level atom coupling system is governed by Milburn equation. The Jaynes-Cummings model is considered. A lower bound of concurrence is proposed to calculate the entanglement. Simulation results indicate that the entanglement of system increases following the increasing of intrinsic decoherence coefficient or the decreasing of the mean photon number. Besides that, the entanglement of system decreases, while the probability of exited state increases from 0 to 0.1, and increases, while the probability of exited state increases from 0.1 to 1.

  1. Supersymmetric gauge theories, quantization of M{sub flat}, and conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Teschner, J.; Vartanov, G.S.

    2013-02-15

    We propose a derivation of the correspondence between certain gauge theories with N=2 supersymmetry and conformal field theory discovered by Alday, Gaiotto and Tachikawa in the spirit of Seiberg-Witten theory. Based on certain results from the literature we argue that the quantum theory of the moduli spaces of flat SL(2,R)-connections represents a nonperturbative ''skeleton'' of the gauge theory, protected by supersymmetry. It follows that instanton partition functions can be characterized as solutions to a Riemann-Hilbert type problem. In order to solve it, we describe the quantization of the moduli spaces of flat connections explicitly in terms of two natural sets of Darboux coordinates. The kernel describing the relation between the two pictures represents the solution to the Riemann Hilbert problem, and is naturally identified with the Liouville conformal blocks.

  2. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Claudia Consales

    2012-01-01

    Full Text Available Electromagnetic fields (EMFs originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system.

  3. Electromagnetism

    CERN Multimedia

    Without the electromagnetic force, you would not be solid. The atoms of your body are held together by electromagnetism: negatively charged electrons are held around the positively charged nucleus. Atoms share electrons to form molecules, so building up the structure of matter. As its name suggests, electromagnetism has a double nature: a moving electric charge creates a magnetic field. This intimate connection between electricity and magnetism was described by James Maxwell in 1864. The electromagnetic force can be both positive and negative : opposite charges attract, whereas like charges repel. Electromagnetic radiation, such as radio, microwaves, light and X-rays, is emitted by charges when they are made to move. For example, an oscillating current in a wire emits radio waves. Text for the interactive: Why do the needles move when you switch on the current ?

  4. Dynamical symmetry breaking of lambda- and vee-type three-level systems on quantization of the field modes

    Indian Academy of Sciences (India)

    Mihir Ranjan Nath; Surajit Sen; Asoke Kumar Sen; Gautam Gangopadhyay

    2008-07-01

    We develop a scheme to construct the Hamiltonians of the lambda-, vee- and cascade-type three-level configurations using the generators of (3) group. It turns out that this approach provides a well-defined selection rule to give different Hamiltonians for each configuration. The lambda- and vee-type configurations are exactly solved with different initial conditions while taking the two-mode classical and quantized fields. For the classical field, it is shown that the Rabi oscillation of the lambda model is similar to that of the vee model and the dynamics of the vee model can be recovered from lambda model and vice versa simply by inversion. We then proceed to solve the quantized version of both models by introducing a novel Euler matrix formalism. It is shown that this dynamical symmetry exhibited in the Rabi oscillation of two configurations for the semiclassical models is completely destroyed on quantization of the field modes. The symmetry can be restored within the quantized models when both field modes are in the coherent states with large average photon number which is depicted through the collapse and revival of the Rabi oscillations.

  5. Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces

    OpenAIRE

    Сaputo J.G; Gabitov I.R.; Kudyshev Zh.; Kupaev T.; Maimistov A.I.

    2015-01-01

    Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability). In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a “thin film”, whose thickness ...

  6. Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces

    Science.gov (United States)

    Raputo, J. G.; Gabitov, I. R.; Kudyshev, Zh.; Kupaev, T.; Maimistov, A. I.

    2015-09-01

    Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability). In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a "thin film", whose thickness is much smaller than the wavelength.

  7. New foundations for applied electromagnetics the spatial structure of fields

    CERN Document Server

    Mikki, Said

    2016-01-01

    This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.

  8. Electromagnetic field analysis of inductor-robot-work-piece system

    Directory of Open Access Journals (Sweden)

    A. Smalcerz

    2013-04-01

    Full Text Available The paper presents an analysis of the influence of the industrial robot located nearby an induction heater on the electromagnetic field distribution. The experiment consisted of numerical analysis and measurement verification. The analysis of the electromagnetic field distribution was conducted for low frequency (50 Hz heater. Two variants which differed in the presence (or absence of the robot were considered. As a result, the distributions of the electromagnetic field around the heater were obtained. The evaluation of the influence of the industrial robot location on the magnetic field intensity was presented and discussed.

  9. A transition in the spectral statistics of quantum optical model by different electromagnetic fields

    Science.gov (United States)

    Sabri, Hadi; Ezzati, Ahad ollah

    2017-02-01

    In this paper, we have considered the effects of different quantized electromagnetic fields on the spectral statistics of two-level atoms. The Berry-Robnik distribution and the maximum likelihood estimation technique are used to analyze the effect of the mean photon numbers, the two level atoms numbers and also the quantum number of considered states on the fluctuation properties of different systems which are described by different sets of the Dicke Hamiltonian's parameters. Our results describe the obvious effect of mean photon number on the spectral statistics and show more regular dynamics when this quantity reaches 700. Also, we observed universality in the spectral statistics of considered systems when the number of two level atoms approaches an unrealistic limit ( N A 200) and there are some suggestions about the effect of the quantum number of selected levels and the atom-field coupling constant on level statistics.

  10. Uniqueness of the Fock quantization of scalar fields in a Bianchi I cosmology with unitary dynamics

    Science.gov (United States)

    Cortez, Jerónimo; Navascués, Beatriz Elizaga; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.

    2016-11-01

    The Fock quantization of free scalar fields is subject to an infinite ambiguity when it comes to choosing a set of annihilation and creation operators, a choice that is equivalent to the determination of a vacuum state. In highly symmetric situations, this ambiguity can be removed by asking vacuum invariance under the symmetries of the system. Similarly, in stationary backgrounds, one can demand time-translation invariance plus positivity of the energy. However, in more general situations, additional criteria are needed. For the case of free (test) fields minimally coupled to a homogeneous and isotropic cosmology, it has been proven that the ambiguity is resolved by introducing the criterion of unitary implementability of the quantum dynamics, as an endomorphism in Fock space. This condition determines a specific separation of the time dependence of the field, so that this splits into a very precise background dependence and a genuine quantum evolution. Furthermore, together with the condition of vacuum invariance under the spatial Killing symmetries, unitarity of the dynamics selects a unique Fock representation for the canonical commutation relations, up to unitary equivalence. In this work, we generalize these results to anisotropic spacetimes with shear, which are therefore not conformally symmetric, by considering the case of a free scalar field in a Bianchi I cosmology.

  11. 78 FR 33654 - Reassessment of Exposure to Radiofrequency Electromagnetic Fields Limits and Policies

    Science.gov (United States)

    2013-06-04

    ... Electromagnetic Fields Limits and Policies AGENCY: Federal Communications Commission. ACTION: Proposed rule... electromagnetic fields. The Commission's further proposals reflect an effort to provide more efficient, practical... RF electromagnetic fields. The Commission underscores that in conducting this review it will...

  12. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    Science.gov (United States)

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  13. Design method of electromagnetic field applied to Al-alloy electromagnetic casting

    Institute of Scientific and Technical Information of China (English)

    YANG Jing; DANG Jing-zhi; PENG You-gen; CHENG Jun

    2006-01-01

    The electromagnetic pump imposes the electromagnetic motive force (Lorentz force) on the liquid metal directly and makes it move along the definite direction by using the function of electric current and magnetic field in the conducting fluid.Compared with the traditional die casting, the system of counter-gravity casting can effectively control the speed of fillingto make Al-alloy liquid fill steadily by adjusting controlled-current. So the foundry defects can be decreased or avoided effectively by this system. Based on the theory of electromagnetic pump, the design method of electromagnetic field in electromagnetic pump was investigated emphatically. The rule of magnetic induction intensity B influenced by the divided electromagnet airgap's size was founded. Furthermore, the empirical formula of magnetic induction intensity B in a magnetic airgap for an open magnet in the saturated state was deduced by mathematics regression analysis. Counter-gravity casting applied to the Al-alloy electromagnetic filling was developed with this method. Besides, the electromagnetism filling counter-gravity casting process of the turbo-charge blade wheel was also fixed. The eligibility rate of blade wheel produced by such technique can be increased to 98%. The casts have compact structure and excellent capability.

  14. On necessary and sufficient conditions of the BV quantization of a generic Lagrangian field system

    CERN Document Server

    Bashkirov, D; Mangiarotti, L; Sardanashvily, G

    2005-01-01

    We address the problem of extending an original field Lagrangian to ghosts and antifields in order to satisfy the master equation in the framework of the BV quantization of Lagrangian field systems. This extension essentially depends on the degeneracy of an original Lagrangian. A generic Lagrangian system of even and odd fields on an arbitrary smooth manifold is examined in the algebraic terms of the Grassmann-graded variational bicomplex. Its Euler-Lagrange operator obeys the Noether identities which need not be independent, but satisfy the first-stage Noether identities, and so on. We state the necessary and sufficient condition of the existence of the exact antifield Koszul-tate complex with the boundary operator whose nilpotency property provides all the Noether and higher-stage Noether identities of an original Lagrangian system. The Noether inverse second theorem that we prove associates to this Koszul-Tate complex the sequence graded in ghosts whose ascent operator provides the gauge and higher-stage g...

  15. Field-induced Gap and Quantized Charge Pumping in Nano-helix

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; /Stanford U., Phys. Dept. /Tsinghua U., Beijing; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-02-15

    We propose several novel physical phenomena based on nano-scale helical wires. Applying a static electric field transverse to the helical wire induces a metal to insulator transition, with the band gap determined by the applied voltage. Similar idea can be applied to 'geometrically' constructing one-dimensional systems with arbitrary external potential. With a quadrupolar electrode configuration, the electric field could rotate in the transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a device could be used as a new standard for the high precession measurement of the electric current. The inverse effect implies that passing an electric current through a helical wire in the presence of a transverse static electric field can lead to a mechanical rotation of the helix. This effect can be used to construct nano-scale electro-mechanical motors. Finally, our methodology also enables new ways of controlling and measuring the electronic properties of helical biological molecules such as the DNA.

  16. An eigen theory of static electromagnetic field for anisotropic media

    Institute of Scientific and Technical Information of China (English)

    Shao-hua GUO

    2009-01-01

    Static electromagnetic fields are studied based on standard spaces of the physical presentation,and the modal equations of static electromagnetic fields for anisotropic media are derived. By introducing a new set of first-order potential functions,several novel theoretical results are obtained. It is found that,for isotropic media,electric or magnetic potentials are scalar; while for anisotropic media,they are vectors. Magnitude and direction of the vector potentials are related to the anisotropic subspaces. Based on these results,we discuss the laws of static electromagnetic fields for anisotropic media.

  17. The Potential-Vortex Theory of the Electromagnetic Field

    CERN Document Server

    Tomilin, A K

    2010-01-01

    Maxwell-Lorenz theory describes only vortex electromagnetic processes. Potential component of the magnetic field is usually excluded by the introduction of mathematical terms: Coulomb and Lorenz gauges. Proposed approach to the construction of the four-dimensional electrodynamics based on the total (four-dimensional) field theory takes into account both vortex and potential components of its characteristics. It is shown that potential components of the electromagnetic field have physical content. System of modified (generalized) Maxwell equations is written. With their help contradictions usually appearing while describing the distribution of electromagnetic waves, are eliminated. Works of other authors obtained similar results are presented and analyzed.

  18. The plane wave spectrum representation of electromagnetic fields

    CERN Document Server

    Clemmow, P C

    1966-01-01

    The Plane Wave Spectrum Representation of Electromagnetic Fields presents the theory of the electromagnetic field with emphasis to the plane wave. This book explains how fundamental electromagnetic fields can be represented by the superstition of plane waves traveling in different directions. Organized into two parts encompassing eight chapters, this book starts with an overview of the methods whereby plane wave spectrum representation can be used in attacking different characteristic problems belonging to the theories of radiation, diffraction, and propagation. This book then discusses the co

  19. Covariant canonical quantization

    CERN Document Server

    Von Hippel, G M; Hippel, Georg M. von; Wohlfarth, Mattias N.R.

    2006-01-01

    We present a manifestly covariant quantization procedure based on the de Donder-Weyl Hamiltonian formulation of classical field theory. Covariant canonical quantization agrees with conventional canonical quantization only if the parameter space is d=1 dimensional time. In d>1 quantization requires a fundamental length scale, and any bosonic field generates a spinorial wave function, leading to the purely quantum-theoretical emergence of spinors as a byproduct. We provide a probabilistic interpretation of the wave functions for the fields, and apply the formalism to a number of simple examples. These show that covariant canonical quantization produces both the Klein-Gordon and the Dirac equation, while also predicting the existence of discrete towers of identically charged fermions with different masses.

  20. Resolving-Power Quantization

    CERN Document Server

    Neuberger, Herbert

    2016-01-01

    Starting with a general discussion, a program is sketched for a quantization based on dilations. This resolving-power quantization is simplest for scalar field theories. The hope is to find a way to relax the requirement of locality so that the necessity to fine tune mass parameters is eliminated while universality is still preserved.

  1. Research on the ElectromagneticScattering Near the Field

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We calculate and analyze the scattering near the field from some simple and complex targets using the method of picture elements (PEL), based upon the method of high-frequency approximation. It introduces the critical distance of the near field and the far field which is related with the dimension of the target. The problem of the EMS near field from large size objects can be transformed to the problem of the far field by parting it to many very small size elements. By calculating the EMS near fields of some simple and complex targets based on the SCTE (scattering from complex targets and environments) system, the results show that there are much difference between the near field and the far field. And the characteristics of the near field are more complicated. This work has practical engineering value in the area of the electromagnetic compatibility (EMC), electromagnetic interference (EMI) prediction and electromagnetic scattering (EMS).

  2. A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.

  3. A Unified Field Theory of Gravity, Electromagnetism, and theA Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.

  4. Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Elizaga Navascués, Beatriz, E-mail: beatriz.elizaga@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Martín-Benito, Mercedes, E-mail: m.martin@hef.ru.nl [Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics, Heyendaalseweg 135, NL-6525 AJ Nijmegen (Netherlands); Mena Marugán, Guillermo A., E-mail: mena@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: jvelhi@ubi.pt [Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001, Covilhã (Portugal)

    2017-01-15

    We address the issue of the infinite ambiguity that affects the construction of a Fock quantization of a Dirac field propagating in a cosmological spacetime with flat compact sections. In particular, we discuss a physical criterion that restricts to a unique possibility (up to unitary equivalence) the infinite set of available vacua. We prove that this desired uniqueness is guaranteed, for any possible choice of spin structure on the spatial sections, if we impose two conditions. The first one is that the symmetries of the classical system must be implemented quantum mechanically, so that the vacuum is invariant under the symmetry transformations. The second and more important condition is that the constructed theory must have a quantum dynamics that is implementable as a (non-trivial) unitary operator in Fock space. Actually, this unitarity of the quantum dynamics leads us to identify as explicitly time dependent some very specific contributions of the Dirac field. In doing that, we essentially characterize the part of the dynamics governed by the Dirac equation that is unitarily implementable. The uniqueness of the Fock vacuum is attained then once a physically motivated convention for the concepts of particles and antiparticles is fixed.

  5. Accelerating electromagnetic magic field from the C-metric

    CERN Document Server

    Bicak, Jiri; 10.1007/s10714-009-0816-8

    2009-01-01

    Various aspects of the C-metric representing two rotating charged black holes accelerated in opposite directions are summarized and its limits are considered. A particular attention is paid to the special-relativistic limit in which the electromagnetic field becomes the "magic field" of two oppositely accelerated rotating charged relativistic discs. When the acceleration vanishes the usual electromagnetic magic field of the Kerr-Newman black hole with gravitational constant set to zero arises. Properties of the accelerated discs and the fields produced are studied and illustrated graphically. The charges at the rim of the accelerated discs move along spiral trajectories with the speed of light. If the magic field has some deeper connection with the field of the Dirac electron, as is sometimes conjectured because of the same gyromagnetic ratio, the "accelerating magic field" represents the electromagnetic field of a uniformly accelerated spinning electron. It generalizes the classical Born's solution for two u...

  6. The Research on Anti-scaling Based on Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Chunjie Han

    2014-05-01

    Full Text Available Electromagnetic scaling is a kind of physics method of anti-scaling. An Anti-scaling instrument that generates electromagnetic fields to prevent scaling is designed in this study. The two important functions of the instrument are as follows: The output of a single frequency signal and its frequency and voltage can be changed manually; the output of a swept-frequency signal, from 0 to 21 kHz. The instrument is composed of a signal generator and coils in which electromagnetic fields are induced. The production of the signal mainly depends on the chip of CD4046B CMOS Micro power Phase-Locked Loop. According to the principle of electromagnetic induction, the signal from the signal generator flows though coils which induce changed magnetic fields, then the magnetic fields effect the microstructure of water, the aim of anti-scaling is achieved. The experiment shows that the equipment effectively reduces scaling.

  7. Effect of electromagnetic field exposure on spermatogenesis and sexual activity

    Institute of Scientific and Technical Information of China (English)

    Ahmed Shafik

    2005-01-01

    @@ Dear Sir, We read with interest the paper by Lee et al. [1].They reported that continuous exposure to an electromagnetic field with extremely low frequency may induce testicular germ cell apoptosis in mice.

  8. Parametric excitation of electromagnetic fields by two pump waves

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, G.; Lundberg, J.; Stenflo, L. (Umeaa Univ. (Sweden). Dept. of Plasma Physics)

    1991-01-01

    A collisionless plasma in the presence of two monochromatic electric fields is considered. By means of a kinetic analysis, a dispersion relation that governs the excitation of transverse electromagnetic fluctuations is derived and analysed. (orig.).

  9. Influence of storm electromagnetic field on the aircraft crew

    Directory of Open Access Journals (Sweden)

    Э. Г. Азнакаев

    2000-12-01

    Full Text Available Considered is the biophysical influence of alternative electromagnetic fields, caused by electrical discharges in atmosphere. Analyzed are conditions which may provoke inadequate actions and errors of the crew in airplane flight control

  10. Anisotropic Harmonic Oscillator in a Static Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    LIN Qiong-Gui

    2002-01-01

    A nonrelativistic charged particle moving in an anisotropic harmonic oscillator potential plus a homogeneousstatic electromagnetic field is studied. Several configurations of the electromagnetic field are considered. The Schrodingerequation is solved analytically in most of the cases. The energy levels and wave functions are obtained explicitly. Insome of the cases, the ground state obtained is not a minimum wave packet, though it is of the Gaussian type. Coherentand squeezed states and their time evolution axe discussed in detail.

  11. Multiband sensors for wireless electromagnetic field monitoring system - SEMONT

    OpenAIRE

    Milutinov, Miodrag; id_orcid 0000-0002-1725-3405; Đurić, Nikola; Pekarić-Nađ, Neda; Mišković, Dragiša; Knežević, Dragan

    2012-01-01

    Substantial effort has been made to employ wireless sensor network and Internet technologies for environmental and habitat protection. Several monitoring systems are designed to collect data regarding temperature, humidity, pressure and some other environmental parameters, amongst which recently there is the exposure to electromagnetic field. In this paper, some basic features of the multiband sensors that are incorporated into the Serbian electromagnetic field monitoring network - SEMONT are...

  12. A new dynamical variable for the electromagnetic field

    CERN Document Server

    Rodríguez-Lara, B M

    2008-01-01

    Taking into account the characteristics of a free scalar field in elliptic coordinates, a new dynamical variable is found for the free electromagnetic field. The conservation law associated to this variable cannot be obtained by a direct application of standard Noether theorem since the symmetry generator is of second order. Consequences on the expected mechanical behavior of a particle interacting with electromagnetic waves exhibiting such a symmetry are also discussed.

  13. Effects of Electromagnetic Fields on Fish and Invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  14. Effects of Electromagnetic Fields on Fish and Invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  15. The power and beauty of electromagnetic fields

    CERN Document Server

    Morgenthaler, Frederic R

    2011-01-01

    Unique, multi-level textbook is adaptable to introductory, intermediate, and advanced levels This revolutionary textbook takes a unique approach to electromagnetic theory, comparing both conventional and modern theories. It explores both the Maxwell-Poynting representation as well as the Alternate representation, which the author demonstrates is generally simpler and more suitable for analyzing modern electromagnetic environments. Throughout the text, students and researchers have the opportunity to examine both of these theories and discover how each one can be applied to solve problems.

  16. Quantized beam shifts

    CERN Document Server

    Kort-Kamp, W J M; Dalvit, D A R

    2015-01-01

    We predict quantized Imbert-Fedorov, Goos-H\\"anchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant $\\alpha$, while the Goos- H\\"anchen ones in multiples of $\\alpha^2$. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  17. Electromagnetic fields and potentials generated by massless charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Azzurli, Francesco, E-mail: francesco.azzurli@gmail.com [Scuola Galileiana di Studi Superiori, Università degli Studi di Padova (Italy); Lechner, Kurt, E-mail: lechner@pd.infn.it [Dipartimento di Fisica e Astronomia, Università degli Studi di Padova (Italy); INFN, Sezione di Padova, Via F. Marzolo, 8, 35131 Padova (Italy)

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  18. Transformation media that rotate electromagnetic fields

    CERN Document Server

    Chen, H; Chen, Huanyang

    2007-01-01

    We suggest a way to manipulate electromagnetic wave by introducing a rotation mapping of coordinates that can be realized by a specific transformation of permittivity and permeability of a shell surrounding an enclosed domain. Inside the enclosed domain, the information from outside will appear as if it comes from a different angle. Numerical simulations were performed to illustrate these properties.

  19. Electromagnetic fields and potentials generated by massless charged particles

    CERN Document Server

    Azzurli, Francesco

    2014-01-01

    We provide for the first time the exact solution of Maxwell's equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Lienard-Wiechert field the electromagnetic field acquires singular delta-like contributions whose support and dimensionality depend crucially on whether the motion is a) linear, b) accelerated unbounded, c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a delta-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a re...

  20. Finding of electromagnetic field by energy-momentum tensor

    CERN Document Server

    Mitrofanova, T G

    2002-01-01

    One of the reverse problems on the electrodynamics consists in reducing the electromagnetic field by the known energy-momentum tensor of this field. The energy-momentum tensor aspect is of essential importance by developing new methods for analytical integration of field equations. Thereby there appears the question, whether the energy-momentum tensor corresponds to any physical system and if so - to which one namely. The formulated reverse problem in this paper is solved as applied to the electromagnetic field in the absence of charges and currents

  1. [The influence of electromagnetic fields on flora and fauna].

    Science.gov (United States)

    Rochalska, Małgorzata

    2009-01-01

    This paper presents the influence of natural and artificial electromagnetic fields (EMF) on fauna and flora. The mechanisms of Earth's magnetic field detection and the use of this skill by migratory animals to faultlessly reach the destination of their travel are discussed, as well as the positive effects of electric and magnetic fields on plants relative to their physiology, yielding and health. EMF influence on social insects and animal organisms, including possible DNA damages and DNA repair systems, is presented. The influence of high frequency electromagnetic fields on birds nesting is also discussed.

  2. Deformation quantization and Nambu mechanics

    CERN Document Server

    Dito, G; Sternheimer, D; Takhtajan, L A; Dito, Giuseppe; Flato, Moshe; Sternheimer, Daniel; Takhtajan, Leon

    1996-01-01

    Starting from deformation quantization (star-products), the quantization problem of Nambu Mechanics is investigated. After considering some impossibilities and pushing some analogies with field quantization, a solution to the quantization problem is presented in what we call the Zariski quantization of fields (observables, functions, in this case polynomials). This quantization is based on the factorization over {\\Bbb R} of polynomials in several real variables. We quantize the algebra of fields generated by the polynomials by defining a deformation of this algebra which is Abelian, associative and distributive. This procedure is then adapted to derivatives (needed for the Nambu brackets), which ensures the validity of the Fundamental Identity of Nambu Mechanics also at the quantum level. Our construction is in fact more general than the particular case considered here: it can be utilized for quite general defining identities and for much more general star-products.

  3. Nonlinear Electromagnetic Fields As a Source of Universe Acceleration

    CERN Document Server

    Kruglov, S I

    2016-01-01

    A model of nonlinear electromagnetic fields with a dimensional parameter $\\beta$ is proposed. From PVLAS experiment the bound on the parameter $\\beta$ was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the PLANCK, WMAP, and BICEP2 data.

  4. Electromagnetic Field Scattering on rf-SQUID Based Metasurfaces

    Directory of Open Access Journals (Sweden)

    Сaputo J.G

    2015-01-01

    Full Text Available Electromagnetic field scattering on a 2D array of rf-SQUIDs is considered. We show that the scattering changes for large amplitudes of the incident electromagnetic wave; above a critical amplitude, two different refraction states occur (bistability. In particular, for these two states, the transmitted wave polarization and angle of refraction are different. One could then switch the direction of propagation of the electromagnetic wave and its polarization with a “thin film”, whose thickness is much smaller than the wavelength.

  5. Suppression and control of leakage field in electromagnetic helical microwiggler

    Energy Technology Data Exchange (ETDEWEB)

    Ohigashi, N. [Kansai Univ., Osaka (Japan); Tsunawaki, Y. [Osaka Sangyo Univ. (Japan); Imasaki, K. [Institute for Laser Technology, Osaka (Japan)] [and others

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  6. Electromagnetic field in matter. Surface enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Marian Apostol

    2013-07-01

    Full Text Available The polarization and magnetization degrees of freedom are included in the general treatment of the electromagnetic field in matter, and their governing equations are given. Particular cases of solutions are discussed for polarizable, non-magnetic matter, including quasi-static fields, surface plasmons, propagation, zero-point fluctuations of the eigenmodes, especially for a semi-infinite homogeneous body (half-space. The van der Waals London-Casimir force acting between a neutral nano-particle and a half-space is computed and the response of this electromagnetically coupled system to an external field is given, with relevance for the surface enhanced Raman scattering.

  7. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  8. Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization.

    Science.gov (United States)

    De Ninno, Antonella; Pregnolato, Massimo

    2017-01-01

    The appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.

  9. Reasearch and Evaluation of Electromagnetic Fields of Refrigerators

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2013-12-01

    Full Text Available The use of refrigerators causes the occurence of electromagnetic fields that are invisible and intangible, which therefore makes difficulties in protecting ourselves from them. A refrigerator is an irreplaceable item in domestic household and thus can be hardly ignored by a modern way of human life. In order to preserve the characteristics of products, the refrigerator must operate continuously (24 hrs a day, regardless of the time of the year. This results in a huge increase in electricity consumption, which leads to energy consumption related pollution of the environment emitting CO2 gas. On these grounds, it is necessary to assess electromagnetic fields created by the refrigerator. Studies on electromagnetic fields produced by refrigerators were conducted in domestic premises where people spent a significant part of the day. For comparison purposes, five different power refrigerators were chosen (1 – 0.20 kW; 2 – 0.25 kW; 3 – 0.30 kW; 4 – 0.35 kW; 5 – 0.40 kW. The obtained results, according to the parameters of their electromagnetic fields, were presented in graphs and charts and showed that the values of electric and magnetic intensity of refrigerators depended on the distance and the power of the refrigerator. The conducted research also disclosed that none of tested refrigerators exceeded the permissible limits of electromagnetic fields.Article in Lithuanian

  10. Health Effects of Electromagnetic Fields: A Review of Literature.

    Science.gov (United States)

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  11. Pregnancy and electromagnetic fields; Grossesse et champs electromagnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Bisseriex, Ch. [CARSAT Auvergne (France); Laurent, P. [Caisse d' Assurance Retraite et de la Sante au Travail - CARSAT Centre-Ouest (France); Cabaret, Ph. [CARSAT Languedoc-Roussillon (France); Bonnet, C. [CARSAT Centre (France); Marteau, E. [CRAM ile-de-France (France); Le Berre, G. [CARSAT Bretagne (France); Tirlemont, S. [CARSAT Nord-Picardie (France); Castro, H. [CARSAT Midi-Pyrenees (France); Becker, A.; Demaret, Ph.; Donati, M. [INRS Lorraine (France); Ganem, Y.; Moureaux, P. [INRS Paris (France)

    2011-07-15

    This document briefly indicates the status of knowledge regarding the effect of magnetic fields on biological tissues and pregnancy, outlines the lack of data on some frequencies and the weakness of studies on long term effects on child development. It evokes the issue of exposure assessment and that of identification of workstations exposed to electromagnetic fields

  12. Electromagnetic and gravitational fields in a Schwarzschild space-time

    Energy Technology Data Exchange (ETDEWEB)

    Porrill, J.; Stewart, J.M. (Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics)

    1981-05-19

    The propagation of electromagnetic fields and linearized perturbations of the vacuum Einstein equations on a Schwarzchild background space-time are discussed, and relations between the asymptotic form of the fields at null infinity and the data are established. Without suitable restrictions on the data, perturbations of a Schwarzschild space-time need not be weakly asymptotically simple.

  13. On guided versus deflected fields in controlled-source electromagnetics

    Science.gov (United States)

    Swidinsky, Andrei

    2015-06-01

    The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.

  14. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    Science.gov (United States)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.

  15. Cosmological Electromagnetic Fields due to Gravitational Wave Perturbations

    CERN Document Server

    Marklund, M; Brodin, G; Marklund, Mattias; Dunsby, Peter K. S.; Brodin, Gert

    2000-01-01

    We consider the dynamics of electromagnetic fields in an almost-Friedmann-Robertson-Walker universe using the covariant and gauge-invariant approach of Ellis and Bruni. Focusing on the situation where deviations from the background model are generated by tensor perturbations only, we demonstrate that the coupling between gravitational waves and a weak magnetic test field can generate electromagnetic waves. We show that this coupling leads to an initial pulse of electromagnetic waves whose width and amplitude is determined by the wavelengths of the magnetic field and gravitational waves. A number of implications for cosmology are discussed, in particular we calculate an upper bound of the magnitude of this effect using limits on the quadrapole anisotropy of the Cosmic Microwave Background.

  16. Quantum processes in short and intensive electromagnetic fields

    CERN Document Server

    Titov, Alexander I; Hosaka, Atsushi; Takabe, Hideaki

    2015-01-01

    This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g.\\ laser) wave field or generalized Breit-Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields

  17. Quantum processes in short and intensive electromagnetic fields

    Science.gov (United States)

    Titov, A. I.; Kämpfer, Burkhard; Hosaka, Atsushi; Takabe, Hideaki

    2016-05-01

    This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g. laser) wave field or generalized Breit-Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields.

  18. Electromagnetic Propulsion System for Spacecraft using Geomagnetic fields and Superconductors

    Science.gov (United States)

    Dadhich, Anang

    This thesis concentrates on developing an innovative method to generate thrust force for spacecraft in localized geomagnetic fields by various electromagnetic systems. The proposed electromagnetic propulsion system is an electromagnet, like normal or superconducting solenoid, having its own magnetic field which interacts with the planet's magnetic field to produce a reaction thrust force. The practicality of the system is checked by performing simulations in order the find the varying radius, velocity, and acceleration changes. The advantages, challenges, various optimization techniques, and viability of such a propulsion system in present day and future are discussed. The propulsion system such developed is comparable to modern MPD Thrusters and electric engines, and has various applications like spacecraft propulsion, orbit transfer and stationkeeping.

  19. Effect of pulsed electromagnetic fields on orthodontic tooth movement.

    Science.gov (United States)

    Stark, T M; Sinclair, P M

    1987-02-01

    The purpose of this study was to determine whether the application of a simple surgically noninvasive, pulsed electromagnetic field could increase both the rate and amount of orthodontic tooth movement observed in guinea pigs. In addition, the objective was to evaluate the electromagnetic field's effects on bony physiology and metabolism and to search for possible systemic side effects. Laterally directed orthodontic force was applied to the maxillary central incisors of a sample of 40 young male, Hartley guinea pigs (20 experimental, 20 control) by means of a standardized intraoral coil spring inserted under constricting pressure into holes drilled in the guinea pigs' two maxillary central incisors. During the experimental period, the guinea pigs were placed in specially constructed, plastic animal holders with their heads positioned in an area of uniform electromagnetic field. Control animals were placed in similar plastic holders that did not carry the electrical apparatus. The application of a pulsed electromagnetic field to the experimental animals significantly increased both the rate and final amount of orthodontic tooth movement observed over the 10-day experimental period. The experimental animals also demonstrated histologic evidence of significantly greater amounts of bone and matrix deposited in the area of tension between the orthodontically moved maxillary incisors. This increase in cellular activity was also reflected by the presence of significantly greater numbers of osteoclasts in the alveolar bone surrounding the maxillary incisors of the experimental animals. After a 10-day exposure to pulsed electromagnetic field, minor changes in serologic parameters relating to protein metabolism and muscle activity were noted. The results of this study suggest that it is possible to increase the rate of orthodontic tooth movement and bone deposition through the application of a noninvasive, pulsed electromagnetic field.

  20. Anisotropic Harmonic Oscillator in s Static Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    LINQiong-Gui

    2002-01-01

    A nonrelativistic charged particle moving in an anisotropic harmonic oscillator potential plus a homogeneous static electromagnetic field is studied.Several configurations of the electromagnetic field are considered.The Schoedinger equation is solved analytically in most of the cases.The energy levels and wave functions are obtained explicitly.In some of the cases,the ground state obtained is not a minimum wave packet,though it is of the Gaussian type.Coherent and squeezed states and their time evolution are discussed in detail.

  1. Lightning electromagnetic field generated by grounding electrode considering soil ionization

    Institute of Scientific and Technical Information of China (English)

    ZENG Rong; HE Jinliang; ZHANG Bo; GAO Yanqing

    2006-01-01

    A circuit model with lumped time-variable parameter is proposed to calculate the transient characteristic of grounding electrode under lightning current, which takes into consideration the dynamic and nonlinear effect of soil ionization around the grounding electrode. The ionization phenomena in the soil are simulated by means of time-variable parameters under appropriate conditions. The generated electromagnetic field in the air is analyzed by using electrical dipole theory and image theory when the lightning current flows into the grounding electrode. The influence of soil ionization on the electromagnetic field is investigated.

  2. Calculation of the Electromagnetic Field Around a Microtubule

    Directory of Open Access Journals (Sweden)

    D. Havelka

    2009-01-01

    Full Text Available Microtubules are important structures in the cytoskeleton which organizes the cell. A single microtubule is composed of electrically polar structures, tubulin heterodimers, which have a strong electric dipole moment. Vibrations are expected to be generated in microtubules, thus tubulin heterodimers oscillate as electric dipoles. This gives rise to an electromagnetic field which is detected around the cells. We calculate here the electromagnetic field of microtubules if they are excited at 1 GHz. This paper includes work done for the bachelor thesis of the first author. 

  3. Transmission-line networks cloaking objects from electromagnetic fields

    CERN Document Server

    Alitalo, Pekka; Jylhä, Liisi; Venermo, Jukka; Tretyakov, Sergei

    2007-01-01

    We consider a novel method of cloaking objects from the surrounding electromagnetic fields in the microwave region. The method is based on transmission-line networks that simulate the wave propagation in the medium surrounding the cloaked object. The electromagnetic fields from the surrounding medium are coupled into the transmission-line network that guides the waves through the cloak thus leaving the cloaked object undetected. The cloaked object can be an array or interconnected mesh of small inclusions that fit inside the transmission-line network.

  4. RESEARCH ON INDOOR ELECTROMAGNETIC RADIATION FIELD OF MULTIPLE ANTENNA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Ma Li; Lu Yanhui; Zou Peng; Zhou Xiaoping

    2012-01-01

    The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems.Based on the Finite Difference Time Domain (FDTD) algorithm,using the mobile phone shielding device as the multiple antenna systems example,the mobile phone shielding device's indoor electromagnetic radiation field is researched by measurment method and simulation method.The effectivity of prediction method is verified by comparing the prediciton results with the measurment results.About 80% of the error can be controlled less than ±4 dB.The quantitative research has certain guiding significance to the prediction of the multiple antenna systems radio wave propagation.

  5. BRST quantization of cosmological perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Armendariz-Picon, Cristian [Physics Department, St. Lawrence University,Canton, NY 13617 (United States); Şengör, Gizem [Department of Physics, Syracuse University,Syracuse, NY 13244 (United States)

    2016-11-08

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  6. BRST Quantization of Cosmological Perturbations

    CERN Document Server

    Armendariz-Picon, Cristian

    2016-01-01

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to the perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas quantization in synchronous gauge, which amounts to Dirac quantization, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  7. Background Electromagnetic Fields and NRQED Matching: Scalar Case

    CERN Document Server

    Lee, Jong-Wan

    2013-01-01

    The low-energy structure of hadrons can be described systematically using effective field theory, and the parameters of the effective theory can be determined from lattice QCD computations. Recent work, however, points to inconsistencies between the background field method in lattice QCD and effective field theory matching conditions. We show that the background field problem necessitates inclusion of operators related by equations of motion. In the presence of time-dependent electromagnetic fields, for example, such operators modify Green's functions, thereby complicating the isolation of hadronic parameters which enter on-shell scattering amplitudes. The particularly simple case of a scalar hadron coupled to uniform electromagnetic fields is investigated in detail. At the level of the relativistic effective theory, operators related by equations of motion are demonstrated to be innocuous. The same result does not hold in the non-relativistic effective theory, and inconsistencies in matching are resolved by ...

  8. Quantum description of electromagnetic fields in waveguides

    CERN Document Server

    Kitagawa, Akira

    2015-01-01

    Using quantum theory, we study the propagation of an optical field in an inhomogeneous dielectric, and apply this scheme to traveling optical fields in a waveguide. We introduce a field-atom interaction Hamiltonian and derive the refractive index using quantum optics. We show that the transmission and reflection of optical fields at an interface between different materials can be described with normalized Fresnel coefficients and that this representation is related to the beam splitter operator. We then study the propagation properties of the optical fields for two types of slab waveguides: step-index and graded-index. The waveguides are divided into multiple layers to represent the spatial dependence of the optical field. We can evaluate the number of photons in an arbitrary volume in the waveguide using this procedure. Using the present method, the quantum properties of weak optical fields in a waveguide are revealed, while coherent states with higher amplitudes reduces to representation of classical wavegu...

  9. Optimal control of electromagnetic field using metallic nanoclusters

    Science.gov (United States)

    Grigorenko, Ilya; Haas, Stephan; Balatsky, Alexander; Levi, A. F. J.

    2008-04-01

    The dielectric properties of metallic nanoclusters in the presence of an applied electromagnetic field are investigated using the non-local linear response theory. In the quantum limit we find a nontrivial dependence of the induced field and charge distributions on the spatial separation between the clusters and on the frequency of the driving field. Using a genetic algorithm, these quantum functionalities are exploited to custom-design sub-wavelength lenses with a frequency-controlled switching capability.

  10. Metrical Quantization

    CERN Document Server

    Klauder, J R

    1998-01-01

    Canonical quantization may be approached from several different starting points. The usual approaches involve promotion of c-numbers to q-numbers, or path integral constructs, each of which generally succeeds only in Cartesian coordinates. All quantization schemes that lead to Hilbert space vectors and Weyl operators---even those that eschew Cartesian coordinates---implicitly contain a metric on a flat phase space. This feature is demonstrated by studying the classical and quantum ``aggregations'', namely, the set of all facts and properties resident in all classical and quantum theories, respectively. Metrical quantization is an approach that elevates the flat phase space metric inherent in any canonical quantization to the level of a postulate. Far from being an unwanted structure, the flat phase space metric carries essential physical information. It is shown how the metric, when employed within a continuous-time regularization scheme, gives rise to an unambiguous quantization procedure that automatically ...

  11. Coulomb field in a constant electromagnetic background

    CERN Document Server

    Adorno, T C; Shabad, A E

    2016-01-01

    Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with Euler-Heisenberg effective Lagrangian. Linear electric response to imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field, corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants.

  12. Ultrarelativistic electron states in a general background electromagnetic field

    CERN Document Server

    Di Piazza, A

    2013-01-01

    The feasibility of obtaining analytical results in the realm of QED in the presence of a background electromagnetic field is almost exclusively limited to a few tractable cases, where the Dirac equation can be solved exactly in the corresponding background field. This circumstance has restricted, in particular, the theoretical analysis of QED processes in intense laser fields to within the plane-wave approximation even at those high intensities, achievable experimentally only by tightly focusing the laser energy in space. Here, we construct analytically quasiclassical one-particle electron states in the presence of a background electromagnetic field of general space-time structure in the realistic assumption that the initial energy of the electron is the largest scale in the problem. The relatively compact expression of these states opens, in particular, the possibility of investigating analytically strong-field QED processes in the presence of spatially focused laser beams, which is of particular relevance i...

  13. Electromagnetic fields and Green functions in elliptical vacuum chambers

    CERN Document Server

    Persichelli, Serena; Migliorati, Mauro; Palumbo, Luigi; Vaccaro, Vittorio; CERN. Geneva. ATS Department

    2017-01-01

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be diffe...

  14. Uniqueness of time-independent electromagnetic fields

    DEFF Research Database (Denmark)

    Karlsson, Per W.

    1974-01-01

    As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics......As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics...

  15. Ion Plasma Responses to External Electromagnetic Fields

    NARCIS (Netherlands)

    Naus, H.W.L.

    2010-01-01

    The response of ion plasmas to external radiation fields is investigated in a quantum mechanical formalism.We focus on the total electric field within the plasma. For general bandpass signals three frequency regions can be distinguished in terms of the plasma frequency. For low frequencies, the exte

  16. Electromagnetic time reversal focusing of near field waves in metamaterials

    Science.gov (United States)

    Chabalko, Matthew J.; Sample, Alanson P.

    2016-12-01

    Precise control of electromagnetic energy on a deeply subwavelength scale in the near field regime is a fundamentally challenging problem. In this letter we demonstrate the selective focusing of electromagnetic energy via the electromagnetic time reversal in the near field of a metamaterial. Our analysis begins with fundamental mathematics, and then is extended to the experimental realm where focusing in space and time of the magnetic fields in the near field of a 1-Dimensional metamaterial is shown. Under time reversal focusing, peak instantaneous fields at receiver locations are at minimum ˜200% greater than other receivers. We then leverage the strong selective focusing capabilities of the system to show individual and selective powering of light emitting diodes connected to coil receivers placed in the near field of the metamaterial. Our results show the possibility of improving display technologies, near field imaging systems, increasing channel capacity of near field communication systems, and obtaining a greater control of energy delivery in wireless power transfer systems.

  17. Transcranial pulsed electromagnetic fields for multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Tran, Marie Thi Dao; Skovbjerg, Sine; Arendt-Nielsen, Lars

    2013-01-01

    . The symptoms may have severe impact on patients' lives, but an evidence-based treatment for the condition is nonexisting. The pathophysiology is unclarified, but several indicators point towards abnormal processing of sensory signals in the central nervous system. Pulsed electromagnetic fields (PEMF) offer...

  18. What Message Should Health Educators Give regarding Electromagnetic Fields?

    Science.gov (United States)

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  19. Generation of a Desired Three-Dimensional Electromagnetic Field

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to a method and a system for synthesizing a prescribed three-dimensional electromagnetic field based on generalized phase contrast imaging. Such a method and apparatus may be utilized in advanced optical micro and nano-manipulation, such as by provision of a multiple...

  20. The Mathematics of Charged Particles interacting with Electromagnetic Fields

    DEFF Research Database (Denmark)

    Petersen, Kim

    In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...

  1. Impact of high electromagnetic field levels on childhood leukemia incidence

    NARCIS (Netherlands)

    Teepen, J.C.; Dijck, J.A. van

    2012-01-01

    The increasing exposure to electromagnetic fields (EMFs) has raised concern, as increased exposure may result in an increased risk of childhood leukemia (CL). Besides a short introduction of CL and EMF, our article gives an evaluation of the evidence of a causal relation between EMF and CL by critic

  2. The Mathematics of Charged Particles interacting with Electromagnetic Fields

    DEFF Research Database (Denmark)

    Petersen, Kim

    In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...

  3. Electromagnetic Field in Lyra Manifold: A First Order Approach

    Science.gov (United States)

    Casana, R.; de Melo, C. A. M.; Pimentel, B. M.

    2005-12-01

    We discuss the coupling of the electromagnetic field with a curved and torsioned Lyra manifold using the Duffin-Kemmer-Petiau theory. We will show how to obtain the equations of motion and energy-momentum and spin density tensors by means of the Schwinger Variational Principle.

  4. 78 FR 33633 - Human Exposure to Radiofrequency Electromagnetic Fields

    Science.gov (United States)

    2013-06-04

    ... Electromagnetic Fields), 18 FCC Rcd 13187 (2003). \\3\\ See 5 U.S.C. 604. A. Need for, and Objectives of, the Report... FCC Rcd 2732, 2811-2812, paras. 178-181 (``Paging Second Report and Order''); see also Revision of..., Memorandum Opinion and Order on Reconsideration, 14 FCC Rcd 10030, 10085-10088, paras. 98-107 (1999). \\38...

  5. Transcranial pulsed electromagnetic fields for multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Tran, Marie Thi Dao; Skovbjerg, Sine; Arendt-Nielsen, Lars

    2013-01-01

    . The symptoms may have severe impact on patients' lives, but an evidence-based treatment for the condition is nonexisting. The pathophysiology is unclarified, but several indicators point towards abnormal processing of sensory signals in the central nervous system. Pulsed electromagnetic fields (PEMF) offer...

  6. Electromagnetic Field in Lyra Manifold: A First Order Approach

    CERN Document Server

    Casana, R; Pimentel, B M

    2016-01-01

    We discuss the coupling of the electromagnetic field with a curved and torsioned Lyra manifold using the Duffin-Kemmer-Petiau theory. We will show how to obtain the equations of motion and energy-momentum and spin density tensors by means of the Schwinger Variational Principle.

  7. Electromagnetic Effects in Superconductors in Gravitational Field

    CERN Document Server

    Ahmedov, B J

    2005-01-01

    The general relativistic modifications to the resistive state in superconductors of second type in the presence of a stationary gravitational field are studied. Some superconducting devices that can measure the gravitational field by its red-shift effect on the frequency of radiation are suggested. It has been shown that by varying the orientation of a superconductor with respect to the earth gravitational field, a corresponding varying contribution to AC Josephson frequency would be added by gravity. A magnetic flux (being proportional to angular velocity of rotation $\\Omega$) through a rotating hollow superconducting cylinder with the radial gradient of temperature $\

  8. Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; XU Jing-Bo

    2011-01-01

    We investigate the quantum discord dynamics of two effective two-level atoms independently interacting with two quantized field modes through a Raman interaction in the presence of phase decoherence.The influence of the phase decoherence and detuning on the evolution of the quantum discord and entanglement between two atoms is discussed.It is found that the quantum discord is more robust than the entanglement under the phase decoherence,and the amount of discord and entanglement between two atoms can be increased by adjusting the detuning.

  9. A Field-motion tautological approach and the role of the acceleration in setting a quantization condition

    CERN Document Server

    Nascimento, Daniel Lima

    2013-01-01

    In this work is made a reanalysis of the central problem of electrodynamics, i.e., finding the conditions under which an electromagnetic field generates a stable mechanical motion and conversely the existence of this field itself can be consistent with that motion.

  10. Effects of pulsed electromagnetic fields on benign prostate hyperplasia.

    Science.gov (United States)

    Giannakopoulos, Xenophon K; Giotis, Christos; Karkabounas, Spyridon Ch; Verginadis, Ioannis I; Simos, Yannis V; Peschos, Dimitrios; Evangelou, Angelos M

    2011-12-01

    Benign prostate hyperplasia (BPH) has been treated with various types of electromagnetic radiation methods such as transurethral needle ablation (TUNA), interstitial laser therapy (ILC), holmium laser resection (HoLRP). In the present study, the effects of a noninvasive method based on the exposure of patients with BPH to a pulsative EM Field at radiofrequencies have been investigated. Twenty patients with BPH, aging 68-78 years old (y.o), were enrolled in the study. Patients were randomly divided into two groups: the treatment group (10 patients, 74.0 ± 5.7 y.o) treated with the α-blocker Alfusosin, 10 mg/24 h for at least 4 weeks, and the electromagnetic group (10 patients, 73.7 ± 6.3 y.o) exposed for 2 weeks in a very short wave duration, pulsed electromagnetic field at radiofrequencies generated by an ion magnetic inductor, for 30 min daily, 5 consecutive days per week. Patients of both groups were evaluated before and after drug and EMF treatment by values of total PSA and prostatic PSA fraction, acid phosphate, U/S estimation of prostate volume and urine residue, urodynamic estimation of urine flow rate, and International Prostate Symptom Score (IPSS). There was a statistically significant decrease before and after treatment of IPSS (P < 0.02), U/S prostate volume (P < 0.05), and urine residue (P < 0.05), as well as of mean urine flow rate (P < 0.05) in patients of the electromagnetic group, in contrast to the treatment group who had only improved IPSS (P < 0.05). There was also a significant improvement in clinical symptoms in patients of the electromagnetic group. Follow-up of the patients of this group for one year revealed that results obtained by EMFs treatment are still remaining. Pulsed electromagnetic field at radiofrequencies may benefit patients with benign prostate hyperplasia treated by a non-invasive method.

  11. The electromagnetic field for an open magnetosphere

    Science.gov (United States)

    Heikkila, W. J.

    1984-01-01

    The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions.

  12. Flows and chemical reactions in an electromagnetic field

    CERN Document Server

    Prud'homme, Roger

    2014-01-01

    This book - a sequel of previous publications 'Flows and Chemical Reactions', 'Chemical Reactions Flows in Homogeneous Mixtures' and 'Chemical Reactions and Flows in Heterogeneous Mixtures' - is devoted to flows with chemical reactions in the electromagnetic field. The first part, entitled basic equations, consists of four chapters. The first chapter provides an overview of the equations of electromagnetism in Minkowski spacetime. This presentation is extended to balance equations, first in homogeneous media unpolarized in the second chapter and homogeneous fluid medium polarized in the thir

  13. Electromagnetic fields from mobile phone base station - variability analysis.

    Science.gov (United States)

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  14. Electromagnetic Hydrophone with Tomographic System for Absolute Velocity Field Mapping

    CERN Document Server

    Grasland-Mongrain, Pol; Mari, Jean-Martial; Chapelon, Jean-Yves; Lafon, Cyril; 10.1063/1.4726178

    2012-01-01

    The velocity and pressure of an ultrasonic wave can be measured by an electromagnetic hydrophone made of a thin wire and a magnet. The ultrasonic wave vibrates the wire inside a magnetic field, inducing an electrical current. Previous articles reported poor spatial resolution of comparable hydrophones along the axis of the wire. In this study, submillimetric spatial resolution has been achieved by using a tomographic method. Moreover, a physical model is presented for obtaining absolute measurements. A pressure differential of 8% has been found between piezoelectric and electromagnetic hydrophone measurements. These characteristics show this technique as an alternative to standard hydrophones.

  15. Beta decay and other processes in strong electromagnetic fields

    CERN Document Server

    Akhmedov, Evgeny

    2011-01-01

    We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of non-relativistic charged particles. Using nuclear beta-decay as an example, we study the weak and strong field limits, as well as the field-induced beta-decay of nuclei stable in the absence of the external fields, both in the tunneling and multi-photon regimes. We also consider the possibility of accelerating forbidden nuclear beta-decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total beta-...

  16. On Huygens' principle for Dirac operators associated to electromagnetic fields

    Directory of Open Access Journals (Sweden)

    CHALUB FABIO A.C.C.

    2001-01-01

    Full Text Available We study the behavior of massless Dirac particles, i.e., solutions of the Dirac equation with m = 0 in the presence of an electromagnetic field. Our main result (Theorem 1 is that for purely real or imaginary fields any Huygens type (in Hadamard's sense Dirac operators is equivalent to the free Dirac operator, equivalence given by changes of variables and multiplication (right and left by nonzero functions.

  17. Classical Electromagnetic Field Theory in the Presence of Magnetic Sources

    Institute of Scientific and Technical Information of China (English)

    LI Kang(李康); CHEN Wen-Jun(陈文俊); NAON Carlos M.

    2003-01-01

    Using two new well-defined four-dimensional potential vectors, we formulate the classical Maxwell field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources.We set up a consistent Lagrangian for the theory. Then from the action principle we obtain both Maxwell's equation and the equation of motion of a dyon moving in the electromagnetic field.

  18. Electromagnetic Fields Radiated by a Circular Loop with Arbitrary Current

    CERN Document Server

    Salem, Mohamed A

    2014-01-01

    We present a rigorous approach to compute the electromagnetic fields radiated by a thin circular loop with arbitrary current. We employ a polar transmission representation along with a Kontorovich-Lebedev transform to derive integral representations of the field in the interior and exterior regions of a sphere circumscribing the loop. The convergence of the obtained expressions is discussed and comparison with full-wave simulation and other methods are shown.

  19. Neutral Spinning Particles in Electromagnetic Fields and Neutron Interference

    Institute of Scientific and Technical Information of China (English)

    丁秀香; 梁九卿

    1994-01-01

    The dynamics of neutral spinning particles in electromagnetic fields is investigated. The phase interference of unpolarized neutron beams is reasonably interpreted as the observed spin precession in external fields instead of potential effects in the quantum physics; namely, the Aharonov-Bohm and Aharonov-Casher effects. It is also pointed out that the recent experiment claimed to be the verification of Aharonov-Casher phase with neutron interferometry, however, can be considered as a test of new anyon model.

  20. Classical electromagnetic field theory in the presence of magnetic sources

    CERN Document Server

    Chen, W J; Naón, C M; Chen, Wen-Jun; Li, Kang

    2001-01-01

    Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.

  1. Fourth quantization

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir

    2013-12-18

    In this Letter we will analyze the creation of the multiverse. We will first calculate the wave function for the multiverse using third quantization. Then we will fourth-quantize this theory. We will show that there is no single vacuum state for this theory. Thus, we can end up with a multiverse, even after starting from a vacuum state. This will be used as a possible explanation for the creation of the multiverse. We also analyze the effect of interactions in this fourth-quantized theory.

  2. Kinematical Quantization

    CERN Document Server

    Anderson, Edward

    2016-01-01

    We consider here kinematical quantization: a first and often overlooked step in quantization procedures. $\\mathbb{R}$, $\\mathbb{R}_+$ and the interval are considered, as well as direct (Cartesian) products thereof. Some simple minisuperspace models, and mode by mode consideration of slightly inhomogeneous cosmology, have indefinite signature versions of such kinematical quantizations. The examples in the current paper build in particular toward the case of vacuum $\\mathbb{S}^3$ slightly inhomogeneous cosmology's mode configuration space, which is mathematically a finite time interval slab of Minkowski spacetime.

  3. Weak gauge principle and electric charge quantization

    CERN Document Server

    Minguzzi, E; Almorox, A L

    2006-01-01

    We review the argument that relates the quantization of electric charge to the topology of the spacetime manifold starting from the gauge principle. We formulate it in the language of Cech cohomology so that its generalization to cases that do not involve a monopole field becomes straightforward. We consider two different formulations of the gauge principle, the usual (strong) version and a weaker version in which the transition functions can differ from matter field to matter field. From both versions it follows that the charges are quantized if the electromagnetic field is not exact. The weak case is studied in detail. To each pair of particles there corresponds an interference class $k \\in H^{1}(M,U(1))$ that controls the different behavior of the particles under topological Aharonov-Bohm experiments. If this class is trivial the phenomenology reduces to that of the usual strong gauge principle case. It is shown that the theory may give rise to two natural quantization units that we identify with the quant...

  4. Alterations in Adenylate Kinase Activity in Human PBMCs after In Vitro Exposure to Electromagnetic Field: Comparison between Extremely Low Frequency Electromagnetic Field (ELF) and Therapeutic Application of a Musically Modulated Electromagnetic Field (TAMMEF)

    OpenAIRE

    Antonietta Albanese; Emilio Battisti; Daniela Vannoni; Emilia Aceto; Gianmichele Galassi; Stefania Giglioni; Valentina Tommassini; Nicola Giordano

    2009-01-01

    This study investigated the effects of electromagnetic fields on enzymes involved in purine metabolism in human peripheral blood mononuclear cells in vitro. Cells were obtained from 20 volunteers. We tested both low-energy, extremely low frequency (ELF; 100-Hz) electromagnetic fields and the Therapeutic Application of Musically Modulated Electromagnetic Fields (TAMMEFs); the latter is characterized by variable frequencies, intensities, and wave shapes. Adenylate kinase activity was increas...

  5. Occupational exposure to electromagnetic fields in physiotherapy departments.

    Science.gov (United States)

    Maccà, I; Scapellato, M L; Carrieri, M; Pasqua di Bisceglie, A; Saia, B; Bartolucci, G B

    2008-01-01

    To assess occupational exposure to electromagnetic fields, 11 microwave (MW), 4 short-wave diathermy and 15 magneto therapy devices were analysed in eight physiotherapy departments. Measurements taken at consoles and environmental mapping showed values above European Directive 2004/40/EC and ACGIH exposure limits at approximately 50 cm from MW applicators (2.45 GHz) and above the Directive magnetic field limit near the diathermy unit (27.12 MHz). Levels in front of MW therapy applicators decreased rapidly with distance and reduction in power; this may not always occur in work environments where nearby metal structures (chairs, couches, etc.) may reflect or perturb electromagnetic fields. Large differences in stray field intensities were found for various MW applicators. Measurements of power density strength around MW electrodes confirmed radiation fields between 30 degrees and 150 degrees , with a peak at 90 degrees , in front of the cylindrical applicator and maximum values between 30 degrees and 150 degrees over the whole range of 180 degrees for the rectangular parabolic applicator. Our results reveal that although most areas show substantially low levels of occupational exposure to electromagnetic fields in physiotherapy units, certain cases of over-occupational exposure limits do exist.

  6. System Identification with Quantized Observations

    CERN Document Server

    Wang, Le Yi; Zhang, Jifeng; Zhao, Yanlong

    2010-01-01

    This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification,

  7. Electromagnetic Field Effects in Semiconductor Crystal Growth

    Science.gov (United States)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  8. Basic Materials for Electromagnetic Field Standards

    Science.gov (United States)

    2003-03-04

    UHF bio- logical effects. VIEM, 1937. 8. Anikin M.M., Varshaver G.S. Basics of a physiotherapy . Medgiz. 1950. 9. Osipov You.A., Ushinskaya O.F. On... strokes a 1 minute. Table. Frequency drift of frog heart beats in dependence from modulations of microwave field and initial frequency of heart...hearts with frequency of beats of 20–30 strokes a 1 minute. 23 EXAMINATIONS IN VIVO It was supposed, that the role of modulation in

  9. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    Science.gov (United States)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  10. DATA ACQUISITION AND ANALYSIS OF LOW FREQUENCY ELECTROMAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    PETRICA POPOV

    2016-06-01

    Full Text Available In recent years more and more studies have shown that, the low frequency field strength (particularly magnetic, 50 / 60Hz are a major risk factor; according to some specialists - even more important as the radiation field. As a result, the personnel serving equipment and facilities such as: electric generators, synchronous, the motors, the inverters or power transformers is subjected continually to intense fields, in their vicinity, with possible harmful effects in the long term by affecting metabolism cell, espectively, the biological mechanisms.Therefore, finding new methods and tools for measurement and analysis of low frequency electromagnetic fields may lead to improved standards for exposure limits of the human body.

  11. Mapping individual electromagnetic field components inside a photonic crystal

    CERN Document Server

    Denis, T; Lee, J H H; van der Slot, P J M; Vos, W L; Boller, K -J

    2012-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing waves and a subwavelength spherical scatterer is scanned inside the resulting resonator. The resonant Bloch frequencies shift depending on the electric field at the position of the scatterer. To map the electric field component Ez we measure the frequency shift in the reflection and transmission spectrum of the slab versus the scatterer position. Very good agreement is found between measurements and calculations without any adjustable parameters.

  12. STATIC SPHERICALLY SYMMETRIC SOLUTION OF EINSTEIN GRAVITY COUPLED TO ELECTROMAGNETIC AND SCALAR FIELDS

    Institute of Scientific and Technical Information of China (English)

    陈光

    2001-01-01

    The static spherically symmetric solution of Einstein gravity coupled to electromagnetic and scalar fields is obtained under the consideration of the self-gravitational interaction of the electromagnetic and scalar fields, which is singularityfree and stable.

  13. Proton Radiography as an electromagnetic field and density perturbation diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Patel, P; Town, R; Edwards, M; Phillips, T; Lerner, S; Price, D; Hicks, D; Key, M; Hatchett, S; Wilks, S; King, J; Snavely, R; Freeman, R; Boehlly, T; Koenig, M; Martinolli, E; Lepape, S; Benuzzi-Mounaix, A; Audebert, P; Gauthier, J; Borghesi, M; Romagnani, L; Toncian, T; Pretzler, G; Willi, O

    2004-04-15

    Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with MeV protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter . PACS numbers: 52.50.Jm, 52.40.Nk, 52.40.Mj, 52.70.Kz

  14. Laser photon merging in an electromagnetic field inhomogeneity

    CERN Document Server

    Gies, Holger; Shaisultanov, Rashid

    2014-01-01

    We study the effect of laser photon merging, or equivalently high harmonic generation, in the quantum vacuum subject to inhomogeneous electromagnetic fields. Such a process is facilitated by the effective nonlinear couplings arising from charged particle-antiparticle fluctuations in the quantum vacuum subject to strong electromagnetic fields. We derive explicit results for general kinematic and polarization configurations involving optical photons. Concentrating on merged photons in reflected channels which are preferable in experiments for reasons of noise suppression, we demonstrate that photon merging is typically dominated by the competing nonlinear process of quantum reflection, though appropriate polarization and signal filtering could specifically search for the merging process. As a byproduct, we devise a novel systematic expansion of the photon polarization tensor in plane wave fields.

  15. Momentum of the Electromagnetic Field in Transparent Dielectric Media

    CERN Document Server

    Mansuripur, Masud

    2012-01-01

    We present arguments in favor of the proposition that the momentum of light inside a transparent dielectric medium is the arithmetic average of the Minkowski and Abraham momenta. Using the Lorentz transformation of the fields (and of the coordinates) from a stationary to a moving reference frame, we show the consistent transformation of electromagnetic energy and momentum between the two frames. We also examine the momentum of static (i.e., time-independent) electromagnetic fields, and show that the close connection that exists between the Poynting vector and the momentum density extends all the way across the frequency spectrum to this zero-frequency limit. In the specific example presented in this paper, the static field inside a non-absorbing dielectric material turns out to have the Minkowski momentum.

  16. The wave-function description of the electromagnetic field

    CERN Document Server

    Friedman, Yaakov

    2013-01-01

    For an arbitrary electromagnetic field, we define a prepotential $S$, which is a complex-valued function of spacetime. The prepotential is a modification of the two scalar potential functions introduced by E. T. Whittaker. The prepotential is Lorentz covariant under a spin half representation. For a moving charge and any observer, we obtain a complex dimensionless scalar. The prepotential is a function of this dimensionless scalar. The prepotential $S$ of an arbitrary electromagnetic field is described as an integral over the charges generating the field. The Faraday vector at each point may be derived from $S$ by a convolution of the differential operator with the alpha matrices of Dirac. Some explicit examples will be calculated. We also present the Maxwell equations for the prepotential.

  17. [Operational aspects of risk perception in the electromagnetic fields exposition].

    Science.gov (United States)

    Pennarola, E; Barletta, R; Quarto, E; Pennarola, R

    2007-01-01

    The increase of electromagnetic fields exposition is being associated with the increase of risk perception in the people exposed due to the uncertainty of the biological and sanitary effects. Research is being carried out on the symptomatology shown by the 45 people living near power-lines in the Benevento area and consequently exposed to electromagnetic fields. The measure of the magnetic and electric field was in the normal range while the people showed most symptoms in the subjective and behavioural sphere. The research findings suggest that risk assessement should take into account the subjectivity of the people exposed as shown in the special questionnaires with the aim of reducing the subjective and behavioural symptomatology for developing a new environmental medicine.

  18. Third quantization: modeling the universe as a 'particle' in a quantum field theory of the minisuperspace

    CERN Document Server

    Robles-Pérez, S J

    2012-01-01

    The third quantization formalism of quantum cosmology adds simplicity and conceptual insight into the quantum description of the multiverse. Within such a formalism, the existence of squeezed and entangled states raises the question of whether the complementary principle of quantum mechanics has to be extended to the quantum description of the whole space-time manifold. If so, the 'particle' description entails the consideration of a multiverse scenario and the 'wave' description induces us to consider as well correlations and interactions among the universes of the multiverse.

  19. Influence of electromagnetism field on the flame transmission and shock wave in gas explosion

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [Anhui University of Technology, Maanshan (China). College of Metallurgy and Resources

    2008-01-15

    The influence of electromagnetic field on flame transmission and explosion wave overpressure in gas explosions was investigated. The research results show that the velocity of flame propagation and the explosion wave overpressure in an electromagnetic field is much higher than that in plain tube, and the stronger the electromagnetic field, the greater the influence. Based on experimental results, the influence of electromagnetic field on gas explosion propagation was analyzed and a reasonable explanation was put forward. The influence of electromagnetic field is not equal to the sum of the electric field and the magnetic field. 7 refs., 4 figs., 2 tabs.

  20. Controlling Electromagnetic Field by Graded Meta-materials

    Science.gov (United States)

    Sun, Lei

    Metamaterials , i.e. artificial materials with electromagnetic properties not readily available in nature, have become a major research topic in both scientific and engineering communities. Being different from conventional materials, metamaterials possess peculiar electromagnetic properties, e.g. negative refractive index, depending on their structures. In particular, metamaterials form a basis for achieving cloaking device that makes an object invisible or transparency to the probing electromagnetic wave. This topic has significant impact on various fields ranging from optics, medicine, biology to nanotechnology. Several cloaking techniques have been proposed by different research groups, namely, anomalous localized resonance, transformation optics, and scattering cancellation, etc. Each of them has its own advantages and disadvantages. For instance, the limitation in working frequency is a primary disadvantage of them. This thesis is concentrated on controlling electromagnetic field by graded metamaterials, i.e, metamaterials with graded structures, with the objective to realize the broadband electromagnetic transparency by extending the working frequency. Regarding the limitations of existing cloaking techniques, we propose the graded model based on the scattering cancellation technique, because it does not rely on resonant phenomena, and is fairly robust to relatively high variations of the shape and electromagnetic properties of the cloaked object. We modify the original Mie theory and Rayleigh scattering theory to deal with the graded metamaterial structures, and calculate the scattering cross section of graded isotropic and anisotropic spherical structures, an alytically and numerically. For the graded isotropic spherical structure, we achieve the exact analytic expressions for both full-wave and Rayleigh scattering cross sections, within our modified Mie theory and Rayleigh scattering theory. The numerical studies on the scattering cross sections clearly

  1. Consequences of Coupled Electromagnetic-Gravitational Fields

    Science.gov (United States)

    Smalley, Larry

    2002-01-01

    In the late 1980s there was a flurry of activities involving the newly discovered high Tc superconductors in the development of new devices such as more efficient current transmission, transformers, generators, and motors. One such developmental project by Podkletnov in 1992 noted some small, anomalous gravitational behaviors. A following unpublished paper by Podkletnov 1995 provided data with larger effects using a larger (approx. 25 cm) superconducting disk. Unfortunately this disk was extremely fragile and was broken beyond repair. To date, these experiments have not been successfully repeated because of the difficulties of producing stable, durable (and fired) superconducting disks. This problem with firing these disks has been solved by Li. What remains is to install the disk in "motor", at superconducting temperatures in the presence of appropriately tailored magnetic fields.

  2. ELECTROMAGNETIC PROCESSES IN STRONG CRYSTALLINE FIELDS

    CERN Document Server

    Uggerhoj, U I; Esberg, J; Knudsen, H; Lund, M; Møller, S P; Sørensen, A H; Thomsen, A H; Uggerhøj, U I; Geissel, H; Scheidenberger, C; Weick, H; Winfield, J; Sona, P; Connell S; Ballestrero, S; Ketel, T; Dizdar, A; Mangiarotti, A

    2009-01-01

    As an addendum to the NA63 proposal cite{Ande05}, we propose to measure 1) the Landau-Pomeranchuk-Migdal (LPM) effect in low-$Z$ targets, 2) Magnetic suppression of incoherent bremsstrahlung resulting from exposure to an external field during the emission event, and 3) the bremsstrahlung emission from relativistic ($gamma=170$), fully stripped Pb nuclei penetrating various amorphous targets. Concerning the LPM effect, both the 'traditional' Migdal approach and the modern treatment by Baier and Katkov display inaccuracies, i.e. a possible lack of applicability in low-$Z$ targets. Moreover, the LPM effect has been shown to have a significant impact on giant air showers for energies in the EeV range - evidently processes in a low-$Z$ material. A measurement of magnetic suppression is demanding in terms of necessary accuracy (an expected $lesssim$15% effect), but would prove the existence of a basic interplay between coherent and incoherent processes, also believed to be significant in beamstrahlung emission. For...

  3. Electromagnetic fields in the exterior of an oscillating relativistic star - II. Electromagnetic damping

    Science.gov (United States)

    Rezzolla, Luciano; Ahmedov, Bobomurat J.

    2016-07-01

    An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes, these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way, we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electromagnetic damping time-scales that are at least one order of magnitude smaller than in Newtonian gravity. Furthermore, with the only exception of g (gravity) modes, we find that f (fundamental), p (pressure), i (interface) and s (shear) modes are suppressed more efficiently by gravitational losses than by electromagnetic ones.

  4. Steady electric fields and currents elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    2013-01-01

    Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr

  5. Invariant superoscillatory electromagnetic fields in 3D-space

    Science.gov (United States)

    Makris, K. G.; Papazoglou, D. G.; Tzortzakis, S.

    2017-01-01

    We derive exact solutions of Maxwell’s equations based on superoscillatory superpositions of vectorial Bessel beams. These novel beams are diffraction-free and can support subwavelength features in their transverse electromagnetic fields, without the presence of any evanescent waves. These features can be propagated into the far field. Approximate solutions in closed form are also derived based on asymptotic expansions of Bessel functions for simple prescribed subwavelength patterns. The superoscillatory characteristics of both electric, magnetic field components (transverse and longitudinal), and the Poynting vector, as well as, the effect of nonparaxiality are systematically investigated.

  6. High Dynamic Range Electric Field Sensor for Electromagnetic Pulse Detection

    CERN Document Server

    Lin, Che-Yun; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T

    2014-01-01

    We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.

  7. Z-Boson Decays in a Strong Electromagnetic Field

    CERN Document Server

    Kurilin, Alexander V

    2013-01-01

    The probability of Z-boson decay to a pair of charged fermions in a strong electromagnetic field, is calculated. On the basis of a method that employs exact solutions to relativistic wave equations for charged particles, analytic expressions for the partial decay widths of Z-boson are obtained at an arbitrary value the external-field strength. The total Z-boson decay width in an intense electromagnetic field, is calculated by summing these results over all known generations of charged leptons and quarks. It is found that, in the region of relatively weak fields, the field-induced corrections to the standard Z-boson decay width in a vacuum do not exceed 2%. As the external-field strength increases, the total decay width develops oscillations against the background of its gradual decrease to the absolute-minimum point. In the region of strong fields the total decay width of Z-boson grows monotonically. In this case the t-quark-production process, which is forbidden in the absence of an external field, begins co...

  8. Soft hairs on isolated horizon implanted by electromagnetic fields

    CERN Document Server

    Mao, Pujian; Zhang, Hongbao

    2016-01-01

    Inspired by the recent proposal of soft hair on black holes in arXiv:1601.00921, we have shown that an isolated horizon carries soft hairs implanted by electromagnetic fields. The solution space and the asymptotic symmetries of coupled Einstein-Maxwell theory have been worked out explicitly near isolated horizon. The conserved current has been computed and an infinite number of near horizon charges have been introduced from the electromagnetic fields associated to the asymptotic $U(1)$ symmetry near the horizon, which indicates the fact that isolated horizon carries a large amount of soft electric hairs. The soft electric hairs, i.e. asymptotic $U(1)$ charges, are shown to be equivalent to the electric multipole moments of isolated horizons. It is further argued that the isolated horizon supertranslation is from the ambiguity of its foliation and an analogue of memory effect on horizon can be expected.

  9. Radiofrequency electromagnetic fields in the Cookridge area of Leeds

    CERN Document Server

    Fuller, K; Judd, P M; Lowe, A J; Shaw, J

    2002-01-01

    On the 8 and 9 May 2002 representatives of the National Radiological Protection Board (NRPB) performed a radiofrequency electromagnetic field survey in the Cookridge area of Leeds in order to assess exposure to radio signals from transmitters mounted on a water tower/a lattice tower and a radio station tower. Guidelines on limiting exposure to radio signals have been published by NRPB and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These guidelines are designed to prevent established adverse effects on human health. During this survey, the total exposures due to all radio signals from 30 MHz to 18000 MHz (18 GHz) were measured. This frequency range was chosen as it includes mobile phone base station transmissions, which are at around 900 and 1800 MHz and super high frequency (SHF) transmissions from most of the large microwave dish antennas mounted on the towers. In addition, other major sources of radiofrequency electromagnetic fields in the environment such as broadcast radio...

  10. Modern Classical Electrodynamics and Electromagnetic Radiation - Vacuum Field Theory Aspects

    CERN Document Server

    Bogolubov, N N

    2012-01-01

    The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and related with them physical aspects. Based on the vacuum field theory no-geometry approach, developed in \\cite{BPT,BPT1}, the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. A problem closely related to the radiation reaction force is analyzed aiming to explain the Wheeler and Feynman reaction radiation mechanism, well known as the absorption radiation theory, and strongly dependent on the Mach type interaction of a charged point particle in an ambient vacuum electromagnetic medium. There are discussed some relationships between this problem and the one derived within the context of the vacuum field theory approach. The R. \\ Feynman's \\textquotedblleft heretical\\textquotedblright\\ approach \\cite{Dy1,Dy2} to deriving the Lorentz force based Maxwell electromagnetic equations is also revisited, its complete legacy is argued both by means o...

  11. Soft hairs on isolated horizon implanted by electromagnetic fields

    Science.gov (United States)

    Mao, Pujian; Wu, Xiaoning; Zhang, Hongbao

    2017-03-01

    Inspired by the recent proposal of soft hair on black holes in Hawking et al (2016 Phys. Rev. Lett. 116 231301), we have shown that an isolated horizon carries soft hairs implanted by electromagnetic fields. The solution space and the asymptotic symmetries of Einstein–Maxwell theory have been worked out explicitly near the isolated horizon. The conserved current has been computed and an infinite number of near horizon charges have been introduced from the electromagnetic fields associated with the asymptotic U(1) symmetry near the horizon, which indicates the fact that the isolated horizon carries a large amount of soft electric hairs. The soft electric hairs, i.e. asymptotic U(1) charges, are shown to be equivalent to the electric multipole moments of isolated horizons. It is further argued that the isolated horizon supertranslation is from the ambiguity of its foliation and an analogue of memory effect on horizon can be expected.

  12. Numerical Modeling of Electromagnetic Field Effects on the Human Body

    Directory of Open Access Journals (Sweden)

    Zuzana Psenakova

    2006-01-01

    Full Text Available Interactions of electromagnetic field (EMF with environment and with tissue of human beings are still under discussion and many research teams are investigating it. The human simulation models are used for biomedical research in a lot of areas, where it is advantage to replace real human body (tissue by the numerical model. Biological effects of EMF are one of the areas, where numerical models are used with many advantages. On the other side, this research is very specific and it is always quite hard to simulate realistic human tissue. This paper deals with different possibilities of numerical modelling of electromagnetic field effects on the human body (especially calculation of the specific absorption rate (SAR distribution in human body and thermal effect.

  13. Electromagnetic Waves in a Uniform Gravitational Field and Planck's Postulate

    CERN Document Server

    Acedo, L

    2015-01-01

    The gravitational redshift forms the central part of the majority of the classical tests for the general theory of relativity. It could be successfully checked even in laboratory experiments on the earth's surface. The standard derivation of this effect is based on the distortion of the local structure of spacetime induced by large masses. The resulting gravitational time-dilation near these masses gives rise to a frequency change of any periodic process, including electromagnetic oscillations as the wave propagates across the gravitational field. This phenomenon can be tackled with classical electrodynamics assuming a curved spacetime background and Maxwell's equations in a generally covariant form. In the present paper, we show that in a classical field-theoretical context the gravitational redshift can be interpreted as the propagation of electromagnetic waves in a medium with corresponding conductivity $\\sigma=g/(\\mu_0 c^3)$, where $g$ is the gravitational acceleration and $\\mu_0$ is the vacuum magnetic p...

  14. Time dependent electromagnetic fields and 4-dimensional Stokes' theorem

    CERN Document Server

    Andosca, Ryan

    2016-01-01

    Stokes' theorem is central to many aspects of physics -- electromagnetism, the Aharonov-Bohm effect, and Wilson loops to name a few. However, the pedagogical examples and research work almost exclusively focus on situations where the fields are time-independent so that one need only deal with purely spatial line integrals ({\\it e.g.} $\\oint {\\bf A} \\cdot d{\\bf x}$) and purely spatial area integrals ({\\it e.g.} $\\int (\

  15. Effect of electromagnetic field exposure on the reproductive system

    OpenAIRE

    Gye, Myung Chan; Park, Chan Jin

    2012-01-01

    The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has become a public health issue. To date, many in vivo and in vitro studies have revealed that EMF exposure can alter cellular homeostasis, endocrine function, reproductive function, and fetal development in animal systems. Reproductive parameters reported to be altered by EMF exposure include male germ cell death, the estrous cycle, reproductive endocrine h...

  16. Detachment of Conductive Coatings by Pulsed Electromagnetic Field

    OpenAIRE

    Mironov, V.; Tatarinov, A.; Kolbe, M; Gluschenkov, V.

    2016-01-01

    The paper presents results of studies on the detachment of conductive coatings from the metal substrate by pulsed electromagnetic field (PEMF). It is known that at the boundary of a metal substrate and an electrically conductive coating having different electrical conductivities sharp changes of PEMF strength arise. This effect has been used to remove a copper layer from a steel substrate. Experimental studies were carried out in the Riga Technical University (Latvia), West Sax...

  17. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    Science.gov (United States)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  18. [Biological action of electromagnetic fields of 4 MHz decametric waves].

    Science.gov (United States)

    Bezdol'naia, I S

    2000-01-01

    Exposure to the amplitude-modulated electromagnetic field, 4 MHZ, 400, 200, and 100 V/m over two months for 16 hours a day was found out to bring low the adaptation potential of a number of bodily physiological systems in animals (non-linebred rats). Changes in the brain functional activity, cell-bound, and humoral immunity were ascertained to be the structural-and-functional basis of reorganization of physiological prosesses.

  19. Low-frequency electromagnetic field in a Wigner crystal

    CERN Document Server

    Stupka, Anton

    2016-01-01

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  20. Electromagnetic and transient shielding effectiveness for near-field sources

    Directory of Open Access Journals (Sweden)

    C. Möller

    2007-06-01

    Full Text Available The contribution deals with an investigation of the recently proposed definitions for the electromagnetic and transient shielding effectiveness (SE in the case of an electric-dipole near-field source. To this end, new factors are introduced which depend on the distance between the dipole source and the measurement point inside the shield and which are valid for perpendicularly (with respect to the distance vector polarized dipoles. Numerical results support and confirm the theoretical derivations.

  1. Positron extraction to an electromagnetic field free region

    CERN Document Server

    Cooke, D A; Vergani, S; Brown, B; Rubbia, A; Crivelli, P

    2015-01-01

    We describe a scheme for high efficiency (about 90%) extraction of 50 ns positron bunches from a buffer gas trap in an electromagnetic field free region. The positrons are time bunched to approximately 1 ns (FWHM) and focussed to less than 1 mm ({\\sigma}). The target is kept at ground potential which is an advantage for many applications. The results compare well with SIMION simulations.

  2. Opinion on potential health effects of exposure to electromagnetic fields.

    Science.gov (United States)

    2015-09-01

    In January 2015, the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) published its final opinion on "Potential health effects of exposure to electromagnetic fields." The purpose of this document was to update previous SCENIHR opinions in the light of recently available information since then, and to give special consideration to areas that had not been dealt with in the previous opinions or in which important knowledge gaps had been identified.

  3. Electromagnetic field interacting with a semi-infinite plasma.

    Science.gov (United States)

    Apostol, M; Vaman, G

    2009-07-01

    Plasmon and polariton modes are derived for an ideal semi-infinite (half-space) plasma by using a general, unifying procedure based on the equation of motion of the polarization and the electromagnetic potentials. Known results are reproduced in a much more direct manner, and new ones are derived. The approach consists of representing the charge disturbances by a displacement field in the positions of the moving particles (electrons). The propagation of an electromagnetic wave in this plasma is treated by using the retarded electromagnetic potentials. The resulting integral equations are solved, and the reflected and refracted fields are computed, as well as the reflection coefficient. Generalized Fresnel relations are thereby obtained for any incidence angle and polarization. Bulk and surface plasmon-polariton modes are identified. As is well known, the field inside the plasma is either damped (evanescent) or propagating (transparency regime), and the reflection coefficient exhibits an abrupt enhancement on passing from the propagating regime to the damped one (total reflection).

  4. Effects of Pulsed Electromagnetic Fields on Osteoporosis Model

    Science.gov (United States)

    Xiaowei, Yang; Liming, Wang; Guan, Z. C.; Yaou, Zhang; Xiangpeng, Wang

    The purpose of this paper was to investigate the preventive effects and long term effects of extremely low frequency pulsed electromagnetic fields (PEMFs), generated by circular coils and pulsed electromagnetic fields stimulators, on osteoporosis in bilaterally ovariectomized rats. In preventive experiment, thirty three-month old female Sprague-Dawley rats were randomly divided into three different groups: sham (SHAM), ovariectomy (OVX), PEMFs stimulation (PEMFs). All rats were subjected to bilaterally ovariectomy except those in SHAM group. The PEMFs group was exposed to pulsed electromagnetic fields with frequency 15 Hz, peak magnetic induction density 2.2mT and exposure time 2 hours per day. The bone mineral density (BMD) of vertebra and left femur were measured by dual energy X-ray absorptiometry at eighth week, twelfth week and sixteenth week after surgery. In long term effects experiment, forty four rats were randomly divided into sham (14 rats, SHAM), ovariectomy group (10 rats, OVX), 15Hz PEMFs group(10 rats, 15Hz) and 30Hz PEMFs group(10 rats, 30Hz) at twenty-sixth week after surgery. Rats in PEMFs groups were stimulated sixteen weeks. In preventive experiment, the Corrected BMD of vertebra and femur was significantly higher than that of OVX group after 16 weeks (Ptreatment of osteoporosis.

  5. Nonstationary random acoustic and electromagnetic fields as wave diffusion processes

    CERN Document Server

    Arnaut, L R

    2007-01-01

    We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin--It\\^{o} and Fokker--Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general n...

  6. Coherent state quantization of quaternions

    Energy Technology Data Exchange (ETDEWEB)

    Muraleetharan, B., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com [Department of Mathematics and Statistics, University of Jaffna, Thirunelveli (Sri Lanka); Thirulogasanthar, K., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com [Department of Computer Science and Software Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8 (Canada)

    2015-08-15

    Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.

  7. Influence of electromagnetic signal of antibiotics excited by low-frequency pulsed electromagnetic fields on growth of Escherichia coli.

    Science.gov (United States)

    Ke, Yin-Lung; Chang, Fu-Yu; Chen, Ming-Kun; Li, Shun-Lai; Jang, Ling-Sheng

    2013-01-01

    Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08%, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.

  8. Lattice radial quantization by cubature

    CERN Document Server

    Neuberger, Herbert

    2014-01-01

    Basic aspects of a program to put field theories quantized in radial coordinates on the lattice are presented. Only scalar fields are discussed. Simple examples are solved to illustrate the strategy when applied to the 3D Ising model.

  9. Force-Free Electromagnetic Fields within Spinor Framework

    Directory of Open Access Journals (Sweden)

    V. N. Trishin

    2016-01-01

    Full Text Available The article deals with spinor representation of the force-free electrodynamics. The equations of the force-free electromagnetic field describe the physics of pulsars and black holes whose magnetospheres are filled with magnetically dominated relativistic plasma.The paper is a brief pedagogical introduction to the mathematics of the subject, based on 2-spinor calculi. The objective is to present the nonlinear theory of force-free fields in a compact and elegant form that the spinor framework provides. First, the algebraic classification of the Maxwell tensor is presented. Then, the reduced system of differential equations is obtained for two types of electromagnetic field and the basic features of the solutions are described.  The null force-free field is connected with the shear-free geodesic null congruence in a space-time and is derived from a linear equation for a complex function. The magnetic force-free field is associated with the time-like 2-surface that represents the world-sheet of magnetic field line. The simplified system includes 4 linear differential equations for a real function. The article is educational in nature and there are no new solutions of force-free equations obtained.

  10. Time-Domain Computation Of Electromagnetic Fields In MMICs

    Science.gov (United States)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1995-01-01

    Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.

  11. Photon propagation in slowly varying inhomogeneous electromagnetic fields

    CERN Document Server

    Karbstein, Felix

    2015-01-01

    Starting from the Heisenberg-Euler effective Lagrangian, we determine the photon current and photon polarization tensor in inhomogeneous, slowly varying electromagnetic fields. To this end, we consider background field configurations varying in both space and time, paying special attention to the tensor structure. As a main result, we obtain compact analytical expressions for the photon polarization tensor in realistic Gaussian laser pulses, as generated in the focal spots of high-intensity lasers. These expressions are of utmost importance for the investigation of quantum vacuum nonlinearities in realistic high-intensity laser experiments.

  12. Electromagnetic fields of a massless particle and the eikonal

    CERN Document Server

    Jackiw, Roman W; Ortiz, M; Jackiw, Roman; Kabat, Dan; Ortiz, Miguel

    1992-01-01

    Electromagnetic fields of a massless charged particle are described by a gauge potential that is almost everywhere pure gauge. Solution of quantum mechanical wave equations in the presence of such fields is therefore immediate and leads to a new derivation of the quantum electrodynamical eikonal approximation. The elctromagnetic action in the eikonal limit is localised on a contour in a two-dimensional Minkowski subspace of four-dimensional space-time. The exact S-matrix of this reduced theory coincides with the eikonal approximation, and represents the generalisatin to electrodynamics of the approach of 't Hooft and the Verlinde's to Planckian scattering.

  13. Spectrum of classes of point emitters of electromagnetic wave fields.

    Science.gov (United States)

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  14. Synergistic health effects between chemical pollutants and electromagnetic fields.

    Science.gov (United States)

    Ledoigt, Gérard; Sta, Chaima; Goujon, Eric; Souguir, Dalila; El Ferjani, Ezzeddine

    2015-01-01

    Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations.

  15. Electromagnetic field occupational exposure: non-thermal vs. thermal effects.

    Science.gov (United States)

    Israel, M; Zaryabova, V; Ivanova, M

    2013-06-01

    There are a variety of definitions for "non-thermal effects" included in different international standards. They start by the simple description that they are "effects of electromagnetic energy on a body that are not heat-related effects", passing through the very general definition related to low-level effects: "biological effects ascribed to exposure to low-level electric, magnetic and electromagnetic fields, i.e. at or below the corresponding dosimetric reference levels in the frequency range covered in this standard (0 Hz-300 GHz)", and going to the concrete definition of "the stimulation of muscles, nerves, or sensory organs, vertigo or phosfenes". Here, we discuss what kind of effect does the non-thermal one has on human body and give data of measurements in different occupations with low-frequency sources of electromagnetic field such as electric power distribution systems, transformers, MRI systems and : video display units (VDUs), whereas thermal effects should not be expected. In some of these workplaces, values above the exposure limits could be found, nevertheless that they are in the term "non-thermal effects" on human body. Examples are workplaces in MRI, also in some power plants. Here, we will not comment on non-thermal effects as a result of RF or microwave exposure because there are not proven evidence about the existance of such effects and mechanisms for them are not clear.

  16. Noise induced calcium oscillations in a cell exposed to electromagnetic fields.

    Science.gov (United States)

    Zhang, Yuhong; Zhao, Yongli; Chen, Yafei; Yuan, Changqing; Zhan, Yong

    2015-01-01

    The effects of noise on the calcium oscillations in a cell exposed to electromagnetic fields are described by a dynamic model. Noise is a very important factor to be considered in the dynamic research on the calcium oscillations in a cell exposed to electromagnetic fields. Some meaningful results have been obtained here based on the discussion. The results show that the pattern of intracellular calcium oscillations exposure to electromagnetic fields can be influenced by noise. Furthermore, the intracellular calcium oscillations exposure to electromagnetic fields can also be induced by noise. And the work has also studied the relationships between the voltage sensitive calcium channel's open probability and electromagnetic field. The result can provide new insights into constructive roles and potential applications of selecting appropriate electromagnetic field frequency during the research of biological effect of electromagnetic field.

  17. Influence of different types of electromagnetic fields on skin reparatory processes in experimental animals.

    Science.gov (United States)

    Matic, Milan; Lazetic, Bogosav; Poljacki, Mirjana; Djuran, Verica; Matic, Aleksandra; Gajinov, Zorica

    2009-05-01

    Wound healing is a very complex process, some phases of which have only recently been explained. Magnetic and electromagnetic fields can modulate this process in a non-thermal way. The aim of this research was to compare the influence of constant and pulsed electromagnetic fields and low-level laser therapy (LLLT) on wound healing in experimental animals. The experiment was conducted on 120 laboratory rats divided into four groups of 30 animals each (constant electromagnetic field, pulsed electromagnetic field, LLLT and control group). It lasted for 21 days. Under the influence of the constant electromagnetic field the healing of the skin defect was accelerated in comparison with the control group. The difference was statistically significant in all the weeks of the experiment at the P electromagnetic field (P electromagnetic fields have a promoting effect on the wound healing process.

  18. Seminal magnetic fields from inflato-electromagnetic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Membiela, Federico Agustin; Bellini, Mauricio [Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Buenos Aires (Argentina)

    2012-10-15

    We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B{sub ij} in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance. (orig.)

  19. Plasma effects in electromagnetic field interaction with biological tissue

    Science.gov (United States)

    Sharma, R. P.; Batra, Karuna; Excell, Peter S.

    2011-02-01

    Theoretical analysis is presented of the nonlinear behavior of charge carriers in biological tissue under the influence of varying low-intensity electromagnetic (EM) field. The interaction occurs because of the nonlinear force arising due to the gradient of the EM field intensity acting on free electrons in the conduction band of proteins in metabolically active biological cell membrane receptors leading to a redistribution of charge carriers. Field dependence of the resulting dielectric constant is investigated by a suitable modification to include an additional electronic contribution term to the three-term Debye model. The exogenous EM field propagating in this nonlinear cellular medium satisfies the nonlinear Schrödinger equation and can be affected significantly. Resulting field effect can be substantially augmented and effective rectification/demodulation can occur. Possible implications of this modification on biological processes in white and grey matter are discussed.

  20. The electron propagator in external electromagnetic fields in low dimensions

    Science.gov (United States)

    Murguía, Gabriela; Raya, Alfredo; Sánchez, Ángel; Reyes, Edward

    2010-07-01

    We study the electron propagator in quantum electrodynamics in one and two spatial dimensions in the presence of external electromagnetic fields. In this case, the propagator is not diagonal in momentum space. We obtain the propagator on the basis of the eigenfunctions of the operator (γ ṡΠ)2 in terms of which the propagator acquires a free form. Πμ is the canonical momentum operator and γμ are the Dirac matrices. In two dimensions, we work with an irreducible representation of the Clifford algebra and consider to all orders the effects of an arbitrary magnetic field perpendicular to the plane of motion of the electrons. We then discuss the special cases of a uniform magnetic field and an exponentially damped static magnetic field. These cases are relevant to graphene in the massless limit. We further consider the electron propagator for the massive Schwinger model and incorporate the effects of a constant electric field to all orders.

  1. Effects of Bluetooth device electromagnetic field on hearing: pilot study.

    Science.gov (United States)

    Balachandran, R; Prepageran, N; Prepagaran, N; Rahmat, O; Zulkiflee, A B; Hufaida, K S

    2012-04-01

    The Bluetooth wireless headset has been promoted as a 'hands-free' device with a low emission of electromagnetic radiation. To evaluate potential changes in hearing function as a consequence of using Bluetooth devices, by assessing changes in pure tone audiography and distortion production otoacoustic emissions. Prospective study. Thirty adult volunteers were exposed to a Bluetooth headset device (1) on 'standby' setting for 6 hours and (2) at full power for 10 minutes. Post-exposure hearing was evaluated using pure tone audiography and distortion production otoacoustic emission testing. There were no statistically significant changes in hearing, as measured above, following either exposure type. Exposure to the electromagnetic field emitted by a Bluetooth headset, as described above, did not decrease hearing thresholds or alter distortion product otoacoustic emissions.

  2. Spin light of neutrino in matter and electromagnetic fields

    CERN Document Server

    Lobanov, A

    2003-01-01

    A new type of electromagnetic radiation by a neutrino with non-zero magnetic (and/or electric) moment moving in background matter and electromagnetic field is considered. We have named this radiation as "spin light of neutrino". The total power of the spin light of neutrino, in contrast to the Cherenkov or transition radiation of neutrino in matter, does not vanish in the case of the refractive index of matter is equal to unit. The specific features of this new phenomenon are: (i) the total power of the radiation is proportional to $\\gamma ^{4}$, and (ii) the radiation is beamed within a small angle $\\delta \\gamma \\sim \\gamma^{-1}$, where $\\gamma$ is the neutrino Lorentz factor. Applications of this new type of neutrino radiation to astrophysics, in particular to gamma-ray bursts, should be important.

  3. Biological effects from electromagnetic field exposure and public exposure standards.

    Science.gov (United States)

    Hardell, Lennart; Sage, Cindy

    2008-02-01

    During recent years there has been increasing public concern on potential health risks from power-frequency fields (extremely low frequency electromagnetic fields; ELF) and from radiofrequency/microwave radiation emissions (RF) from wireless communications. Non-thermal (low-intensity) biological effects have not been considered for regulation of microwave exposure, although numerous scientific reports indicate such effects. The BioInitiative Report is based on an international research and public policy initiative to give an overview of what is known of biological effects that occur at low-intensity electromagnetic fields (EMFs) exposure. Health endpoints reported to be associated with ELF and/or RF include childhood leukaemia, brain tumours, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, breast cancer, miscarriage and some cardiovascular effects. The BioInitiative Report concluded that a reasonable suspicion of risk exists based on clear evidence of bioeffects at environmentally relevant levels, which, with prolonged exposures may reasonably be presumed to result in health impacts. Regarding ELF a new lower public safety limit for habitable space adjacent to all new or upgraded power lines and for all other new constructions should be applied. A new lower limit should also be used for existing habitable space for children and/or women who are pregnant. A precautionary limit should be adopted for outdoor, cumulative RF exposure and for cumulative indoor RF fields with considerably lower limits than existing guidelines, see the BioInitiative Report. The current guidelines for the US and European microwave exposure from mobile phones, for the brain are 1.6 W/Kg and 2 W/Kg, respectively. Since use of mobile phones is associated with an increased risk for brain tumour after 10 years, a new biologically based guideline is warranted. Other health impacts associated with exposure to

  4. The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields

    Science.gov (United States)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2017-02-01

    Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.

  5. Nonlinear optical field sensors in extreme electromagnetic and acoustic environments

    Science.gov (United States)

    Garzarella, Anthony; Wu, Dong Ho

    2014-03-01

    Sensors based on electro-optic (EO) and magneto-optic (MO) crystals measure external electric and magnetic fields through changes in birefringence which the fields induce on the nonlinear crystals. Due to their small size and all-dielectric structure, EO and MO sensors are ideal in environments involving very large electromagnetic powers. Conventional antennas and metallic probes not only present safety hazards, due to their metallic structure and the presence of large currents, but they can also perturb the very fields they intend to measure. In the case of railguns, the large electromagnetic signals are also accompanied by tremendous acoustic noise, which presents a noise background that the sensors must overcome. In this presentation, we describe extensive data obtained from fiber optic EO and MO sensors used in the railgun of the Naval Research Laboratory. Along with the field measurements obtained, we will describe the interactions between the acoustic noise and the nonlinear crystals (most notably, photoelastic effects), the noise equivalent fields they produce, and methods they could be suppressed through the optical and geometrical configurations of the sensor so that the signal to noise ratio can be maximized.

  6. Effects of electromagnetic fields on fecundity in the chicken.

    Science.gov (United States)

    Krueger, W F; Giarola, A J; Bradley, J W; Shrekenhamer, A

    1975-02-28

    Egg production was reduced when young laying hens were kept in contact with metal cages while being continuously exposed to the following cw fields: a vhf field at a frequency of 260 MHz, with an incident power that decreased from 100 to 4mW during the experiment; a uhf field at a frequency of 915 MHz, with an incident power of 800 mW during the first 2.5 weeks, zero during the following week, and 200 mW for the remainder of the experiment; a uhf field at 2.435 GHz, with an incident power of 800 mW; an elf electric field at a frequency of 60 Hz, with a calculated value of field strength of 1600 V/m; an elf magnetic field at 60 Hz, with a value of magnetic flux density of 1.4G. With the exception of the hens exposed to the uhf field at 915 MHz, all other treated groups laid significantly less eggs than the controls (p smaller than or equal to 0.01). This reduction (similar 15% less than the controls) began with the first 4-week production period. The egg production curves for the hens exposed to the vhf field at 260 MHz and to the uhf field at 2.435 GHz were approximately the same beginning with the sixth week of production, and they maintained comparable production levels for the remainder of the experiment. An 8% total drop in production also was experienced in the group of birds exposed to the 915-MHz field, which pulsed because of equipment failure. Egg production rate curves for the birds in the elf electric and magnetic fields were substantially different from those exhibited by birds in the other electromagnetic fields. The birds in the E-field regained a production level comparable to the controls after 11 weeks production, whereas those in the B-field dropped to 31% production, which was approximately 40% poorer than the controls by the twelfth week of production. Fertility of cocks and hens was not affected by continuous low-power vhf and uhf near-zone electromagnetic exposure or elf electric or magnetic field treatment. Fertility was exceptionally good

  7. Vafa-Witten theorem, vector meson condensates and magnetic-field-induced electromagnetic superconductivity of vacuum

    CERN Document Server

    Chernodub, M N

    2012-01-01

    We show that the electromagnetic superconductivity of vacuum in strong magnetic field background is consistent with the Vafa-Witten theorem because the charged vector meson condensates lock relevant internal global symmetries of QCD with the electromagnetic gauge group.

  8. Do the standard expressions for the electromagnetic field-momentum need any modifications?

    CERN Document Server

    Singal, Ashok K

    2016-01-01

    We investigate here the question raised in literature about the correct expression for the electromagnetic field-momentum, especially when static fields are involved. For this we examine a couple of simple but intriguing cases. First we consider a system configuration in which electromagnetic field momentum is present even though the system is static. We trace the electromagnetic momentum to be present in the form of a continuous transport of electromagnetic energy from one part of the system to another, without causing any net change in the energy of the system. In a second case we show that the electromagnetic momentum is nil irrespective of whether the charged system is stationary or in motion, even though the electromagnetic energy is present throughout. We demonstrate that the conventional formulation of electromagnetic field-momentum describes the systems consistently without any real contradictions. Here we also make exposition of a curiosity where electromagnetic energy decreases when the charged syst...

  9. Application of nano material for shielding power-frequency electromagnetic field

    Science.gov (United States)

    Li, Hualiang; Li, Li; Liu, Jiawen

    2015-07-01

    Only limited data are available on shielding electromagnetic field exposure in professional work. In our paper, we studied the electromagnetic field intensity in 500 kV substations, and explored influence of nanomaterial in high voltage laboratory simulation. Moreover, the results of nano-fabrics material for shielding power frequency electromagnetic field indicated that, both shielding fabrics can almost completely shield the electric field, but have weak shielding effectiveness against magnetic field.

  10. Quantized beam shifts in graphene

    Energy Technology Data Exchange (ETDEWEB)

    de Melo Kort-Kamp, Wilton Junior [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinitsyn, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego Alejandro Roberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-08

    We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α2. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.

  11. Electric charge quantization in SU(3)_c X SU(3)_L X U(1)_X model

    CERN Document Server

    Abdinov, O B; Rzaeva, S S

    2010-01-01

    Basing on the general photon eigenstate and anomaly cancellation, it is shown that the electric charge quantization in SU(3)_c X SU(3)_L X U(1)_X model with exotic particles can be obtained independently on parameters alpha and betta. The fixation of hypercharges of fermions fields by the Higgs fields and dependence of the electric charges quantization conditions from the hypercharges of Higgs fields leads to the fact that the electric charge in the considered model can be quantized and fixed only in the presence of Higgs fields. In addition, we have shown that in the considered model the classical constraints following from the Yukawa interactions are equivalent to the conditions following from the parity invariance of electromagnetic interaction. The most general expressions for the gauge bosons masses, eigenstates of neutral fields and the interactions of leptons and quarks with gauge bosons have been derived in the arbitrary case

  12. Electromagnetic superconductivity of vacuum induced by strong magnetic field

    CERN Document Server

    Chernodub, M N

    2012-01-01

    The quantum vacuum may become an electromagnetic superconductor in the presence of a strong external magnetic field of the order of 10^{16} Tesla. The magnetic field of the required strength (and even stronger) is expected to be generated for a short time in ultraperipheral collisions of heavy ions at the Large Hadron Collider. The superconducting properties of the new phase appear as a result of a magnetic-field-assisted condensation of quark-antiquark pairs with quantum numbers of electrically charged rho mesons. We discuss similarities and differences between the suggested superconducting state of the quantum vacuum, a conventional superconductivity and the Schwinger pair creation. We argue qualitatively and quantitatively why the superconducting state should be a natural ground state of the vacuum at the sufficiently strong magnetic field. We demonstrate the existence of the superconducting phase using both the Nambu-Jona-Lasinio model and an effective bosonic model based on the vector meson dominance (th...

  13. Human disease resulting from exposure to electromagnetic fields.

    Science.gov (United States)

    Carpenter, David O

    2013-01-01

    Electromagnetic fields (EMFs) include everything from cosmic rays through visible light to the electric and magnetic fields associated with electricity. While the high frequency fields have sufficient energy to cause cancer, the question of whether there are human health hazards associated with communication radiofrequency (RF) EMFs and those associated with use of electricity remains controversial. The issue is more important than ever given the rapid increase in the use of cell phones and other wireless devices. This review summarizes the evidence stating that excessive exposure to magnetic fields from power lines and other sources of electric current increases the risk of development of some cancers and neurodegenerative diseases, and that excessive exposure to RF radiation increases risk of cancer, male infertility, and neurobehavioral abnormalities. The relative impact of various sources of exposure, the great range of standards for EMF exposure, and the costs of doing nothing are also discussed.

  14. Behavior of radon progeny in low frequency electromagnetic fields

    CERN Document Server

    Oda, K; Yamamoto, T

    1999-01-01

    Whether the electro-magnetic (EM) fields are carcinogenic or not still remains to be discussed from scientific point of view. Recently a possibility was pointed out that increased deposition of radon progeny in the EM-fields should enhance exposure dose to internal body. We investigated the behavior of charged sup 2 sup 2 sup 2 Rn progeny and aerosols containing them by measuring the pattern and the magnitude of the deposition rate of decay products on both CR-39 track detectors and imaging plates under various conditions. We concluded that the attachment to wire cables should be increased mainly by electric component of low frequency EM-fields and possibly by electric field induced by strong changing magnetic ones.

  15. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    Energy Technology Data Exchange (ETDEWEB)

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  16. Dynamics of Cometary Dust Particles in Electromagnetic Radiation Fields

    Science.gov (United States)

    Herranen, Joonas; Markkanen, Johannes; Penttilä, Antti; Muinonen, Karri

    2016-10-01

    The formation of cometary dust tails and comae is based on solar radiation pressure. The pressure effects of electromagnetic radiation were originally conceptualized in Kepler's observations of the tails of comets and formulated mathematically by Maxwell in 1873. Today, the dynamics of cometary dust are known to be governed by gravity, electromagnetic forces, drag, solar wind, and solar radiation pressure.Solar radiation pressure has its roots in absorption, emission, and scattering of electromagnetic radiation. Due to modern advances in so-called integral equation methods in electromagnetics, a new approach of studying the effect of radiation pressure on cometary dust dynamics can be constructed. We solve the forces and torques due to radiation pressure for an arbitrarily shaped dust particle using volume integral equation methods.We then present a framework for solving the equations of motion of cometary dust particles due to radiative interactions. The solution is studied in a simplified cometary environment, where the radiative effects are studied at different orbits. The rotational and translational equations of motion are solved directly using a quaternion-based integrator. The rotational and translational equations of motion affect dust particle alignment and concentration. This is seen in the polarization of the coma. Thus, our direct dynamical approach can be used in modelling the observed imaging photo-polarimetry of the coma.In future studies, the integrator can be further extended to an exemplary comet environment, taking into account the drag, and the electric and magnetic fields. This enables us to study the dynamics of a single cometary dust particle based on fundamental physics.Acknowledgments. Research supported, in part, bythe European Research Council (ERC, grant Nr. 320773).

  17. THREE-DIMENSIONAL CHARACTERISTICS AND HOMOGENIZATION OF ELECTROMAGNETIC FIELD IN SOFT-CONTACT CONTINUOUS CASTING MOLD

    Institute of Scientific and Technical Information of China (English)

    A.Y. Deng; G.L. Jia; J.C. He

    2001-01-01

    The three-dimensional electromagnetic characteristics and non-uniform distribution of electromagnetic field in soft-contact mold have been analyzed by numerical simulation. The results show that the maximum electromagnetic flux density is found in front of slit; the electromagnetic flux density becomes large as coil current and slit number increase. In a certain frequency range, the electromagnetic flux density increases with increasing frequency; and the frequency range is different with changing of azimuthal position along inner wall of mold. The uniformity of electromagnetic field is effected mainly by frequency and mold structure parameters. Increasing slit number and adjusting slit arrangement position can improve the electromagnetic flux density and the uniformity of electromagnetic field. For a soft-contact mold with 16 slits, when frequency is 20kHz, the optimal slit arrangement parameter is a: b = 1: 2.c=0.

  18. An Optimization of Pulsed ElectroMagnetic Fields Study

    Science.gov (United States)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  19. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields.

    Science.gov (United States)

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers' exposure to the electromagnetic field have been considered: workers' body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards.

  20. Mapping the absolute electromagnetic field strength of individual field components inside a photonic crystal

    NARCIS (Netherlands)

    Denis, T.; Reijnders, B.; Lee, J.H.H.; Vos, Willem L.; Boller, Klaus J.; van der Slot, Petrus J.M.

    2013-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We demonstrate our method by applying it to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to create a

  1. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    Science.gov (United States)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  2. Nonlinear interaction of electromagnetic field with quantum plasma

    CERN Document Server

    Latyshev, A V

    2014-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with quantum collisionless plasma is carried out. Formulas for calculation electric current in quantum collisionless plasma at any temperature are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal classical current, received at the classical linear analysis. The case of degenerate electronic plasma is considered. It is shown, that for degenerate plasmas the electric current is calculated under the formula, not containing quadratures.

  3. Healing of Chronic Wounds through Systemic Effects of Electromagnetic Fields

    Science.gov (United States)

    Cañedo, L.; Trigos, I.; García-Cantú, R.; Godina-Nava, J. J.; Serrano, G.

    2002-08-01

    Extremely low frequency electromagnetic fields (ELF) were configured to interact with peripheral blood mononuclear cells (PBMC). These ELF were applied in the arm to five patients with chronic wounds resistant to medical and surgical treatment. Wound healing began in all patients during the first two weeks after ELF exposure permiting their previously unresponsive chronic wounds to function as internal controls. All lesions were cured or healed >70% in less than four months. Systemic effects were explained by ELF activation of PBMC and their transportation through the blood to the affected site. This therapy is effective in selected patients with chronic wounds.

  4. RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers

    Science.gov (United States)

    Semenenko, Mykola O.; Babichuk, Ivan S.; Kyriienko, Oleksandr; Bodnar, Ivan V.; Caballero, Raquel; Leon, Maximo

    2017-06-01

    In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure.

  5. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    Science.gov (United States)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  6. Clinical update of pulsed electromagnetic fields on osteoporosis

    Institute of Scientific and Technical Information of China (English)

    HUANG Li-qun; HE Hong-chen; HE Cheng-qi; CHEN Jian; YANG Lin

    2008-01-01

    Objective To understand the effects of low-frequency pulsed electromagnetic fields (PEMFs) on chronic bony pain,bone mineral density (BMD), bone strength and biochemical markers of bone metabolism in the patients of osteoporosis.Data sources Using the key words "pulsed electromagnetic fields" and "osteoporosis", we searched the PubMed for related studies published in English from January 1996 to December 2007. We also searched the China National Knowledge Infrastructure (CNKI) for studies published in Chinese from January 1996 to December 2007.Study selection Inclusion criteria: (1) all articles which referred to the effects of low-frequency pulsed magnetic fields on osteoporosis either in primary osteoporosis or secondary osteoporosis; (2) either observational studies or randomized controlled studies. Exclusion criteria: (1) articles on experimental studies about osteoporosis; (2) repetitive studies; (3)case reports; (4) meta analysis.Results Totally 111 related articles were collected, 101 of them were published in Chinese, 10 were in English.Thirty-four were included and the remaining 84 were excluded.Conclusions Low-frequency PEMFs relieves the pain of primary osteoporosis quickly and efficiently, enhances bone formation and increases BMD of secondary osteoporosis. But the effects of PEMFs on bone mineral density of primary osteoporosis and bone resorption were controversial.

  7. Motion of macroscopic bodies in the electromagnetic field

    CERN Document Server

    Horsley, S A R

    2013-01-01

    A theory is presented for calculating the effect of the electromagnetic field on the centre of mass of a macroscopic dielectric body that is valid in both quantum and classical regimes. We apply the theory to find the classical equation of motion for the centre of mass of a macroscopic object in a classical field, and the spreading of an initially localized wave-packet representing the centre of mass of a small object, in a quantum field. The classical force is found to be consistent with the identification of the Abraham momentum with the mechanical momentum of light, and the motion of the wave-packet is found to be subject to an acceleration due to the Casimir force, and a time dependent fluctuating motion due the creation of pairs of excitations within the object. The theory is valid for any dielectric that has susceptibilities satisfying the Kramers-Kronig relations, and is not subject to arguments regarding the form of the electromagnetic energy-momentum tensor within a medium.

  8. Quantum backreaction (Casimir) effect. II. Scalar and electromagnetic fields

    CERN Document Server

    Herdegen, A

    2005-01-01

    Casimir effect in most general terms may be understood as a backreaction of a quantum system causing an adiabatic change of the external conditions under which it is placed. This paper is the second installment of a work scrutinizing this effect with the use of algebraic methods in quantum theory. The general scheme worked out in the first part is applied here to the discussion of particular models. We consider models of the quantum scalar field subject to external interaction with ``softened'' Dirichlet or Neumann boundary conditions on two parallel planes. We show that the case of electromagnetic field with softened perfect conductor conditions on the planes may be reduced to the other two. The ``softening'' is implemented on the level of the dynamics, and is not imposed ad hoc, as is usual in most treatments, on the level of observables. We calculate formulas for the backreaction energy in these models. We find that the common belief that for electromagnetic field the backreaction force tends to the strict...

  9. Conserved currents for electromagnetic fields in the Kerr spacetime

    Science.gov (United States)

    Grant, Alexander; Flanagan, Eanna

    2017-01-01

    For any classical linear Lagrangian field theory, the symplectic product provides a conserved current that is bilinear on the space of solutions. Given a linear mapping from the space of solutions into itself, a ``symmetry operator'', one can therefore generate quadratic conserved currents for any linear classical field theory. We apply this procedure to the case of electromagnetism on a Kerr background, showing that this procedure can generate the conserved currents given by Andersson, Bäckdahl, and Blue, as well as two new conserved currents. These currents reduce to the sum of (positive powers of) the Carter constants of the photons in the geometric optics limit, and generalize the current for scalar fields discovered by Carter. We furthermore show that the fluxes of these new currents through null infinity and the horizon are finite.

  10. Variational Principles for Constrained Electromagnetic Field and Papapetrou Equation

    CERN Document Server

    Muminov, A T

    2007-01-01

    In our previous article [4] an approach to derive Papapetrou equations for constrained electromagnetic field was demonstrated by use of field variational principles. The aim of current work is to present more universal technique of deduction of the equations which could be applied to another types of non-scalar fields. It is based on Noether theorem formulated in terms of Cartan' formalism of orthonormal frames. Under infinitesimal coordinate transformation the one leads to equation which includes volume force of spin-gravitational interaction. Papapetrou equation for vector of propagation of the wave is derived on base of the equation. Such manner of deduction allows to formulate more accurately the constraints and clarify equations for the potential and for spin.

  11. Numerical simulation of electromagnetic and flow fields of TiAI melt under electric field

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Ding Hongsheng; Jiang Sanyong; Chen Ruirun; Guo Jingjie

    2010-01-01

    This article aims at building an electromagnetic and fluid model, based on the Maxwell equations and Navier-Stokes equations, in TiAI melt under two electric fields. FEM (Finite Element Method) and APDL (ANSYS Parametric Design Language) were employed to perform the simulation, model setup, loading and problem solving. The melt in molds of same cross section area with different flakiness ratio (i.e. width/depth) under the load of sinusoidal current or pulse current was analyzed to obtain the distribution of electromagnetic field and flow field. The results show that the induced magnetic field occupies sufficiently the domain of the melt in the mold with a flakiness ratio of 5:1. The melt is driven bipolarly from the center in each electric field. It is also found that the pulse electric field actuates the TiAI melt to flow stronger than what the sinusoidal electric field does.

  12. Entropy and Entanglement of the Electromagnetically Induced Transparency System

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Juan; FANG Mao-Fa; ZHOU Qing-Ping

    2004-01-01

    @@ We study the entropy and the entanglement of an electromagnetically induced transparency system. The quantum entanglement between the atom and the two quantized laser fields is discussed by using quantum reduced entropy and that between the two quantized laser fields by using quantum relative entropy. We also examine whether influences of EIT on entropy and quantum entanglement of the system considered occur or not. Our results show that the minimum value of the atomic reduced entropy may be regarded as an entropy criterion on the electromagnetically induced transparency occurring.

  13. Robust multiscale field-only formulation of electromagnetic scattering

    Science.gov (United States)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2017-01-01

    We present a boundary integral formulation of electromagnetic scattering by homogeneous bodies that are characterized by linear constitutive equations in the frequency domain. By working with the Cartesian components of the electric E and magnetic H fields and with the scalar functions (r .E ) and (r .H ) where r is a position vector, the problem can be cast as having to solve a set of scalar Helmholtz equations for the field components that are coupled by the usual electromagnetic boundary conditions at material boundaries. This facilitates a direct solution for the surface values of E and H rather than having to work with surface currents or surface charge densities as intermediate quantities in existing methods. Consequently, our formulation is free of the well-known numerical instability that occurs in the zero-frequency or long-wavelength limit in traditional surface integral solutions of Maxwell's equations and our numerical results converge uniformly to the static results in the long-wavelength limit. Furthermore, we use a formulation of the scalar Helmholtz equation that is expressed as classically convergent integrals and does not require the evaluation of principal value integrals or any knowledge of the solid angle. Therefore, standard quadrature and higher order surface elements can readily be used to improve numerical precision for the same number of degrees of freedom. In addition, near and far field values can be calculated with equal precision, and multiscale problems in which the scatterers possess characteristic length scales that are both large and small relative to the wavelength can be easily accommodated. From this we obtain results for the scattering and transmission of electromagnetic waves at dielectric boundaries that are valid for any ratio of the local surface curvature to the wave number. This is a generalization of the familiar Fresnel formula and Snell's law, valid at planar dielectric boundaries, for the scattering and transmission

  14. Casimir energy-momentum tensor for a quantized bulk scalar field in Friedmann-Robertson-Walker space-time

    CERN Document Server

    Pejhan, Hamed

    2016-01-01

    In a previous work [S. Rahbardehghan et al. in Phys. Lett. B 750, 627 (2015)], we considered a simple brane-world model; a single $4$-dimensional brane embedded in a $5$-dimensional de Sitter (dS) space-time. Then, by including a conformally coupled scalar field in the bulk, we studied the induced Casimir energy-momentum tensor. Technically, the Krein-Gupta-Bleuler (KGB) quantization scheme as a covariant and renormalizable quantum field theory in dS space was used to perform the calculations. In the present paper, we generalize this study to a less idealized, but physically motivated, scenario, namely we consider Friedmann-Robertson-Walker (FRW) space-time which behaves asymptotically as a dS space-time. More precisely, we evaluate Casimir energy-momentum tensor for a system with two $D$-dimensional curved branes on background of $D+1$-dimensional FRW space-time with negative spatial curvature and a bulk conformally coupled scalar field that satisfies Dirichlet boundary condition on the branes.

  15. Frequency-domain electromagnetic sounding with combination wave in near-field zone

    Institute of Scientific and Technical Information of China (English)

    苏发; 何继善

    1996-01-01

    By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sounding in near-field zone difficult are discussed.Based on the theory of near source field,a new method of dual-frequency electromagnetic sounding of combination wave in near-field zone is advanced.Meanwhile,the method of measurement of fields,the definition of apparent resistivity and the numerical algorithm are approached.

  16. Permanent Underdetermination from Approximate Empirical Equivalence in Field Theory: Massless and Massive Scalar Gravity, Neutrino, Electromagnetic, Yang-Mills and Gravitational Theories

    CERN Document Server

    Pitts, J Brian

    2016-01-01

    Classical and quantum field theory provide not only realistic examples of extant notions of empirical equivalence, but also new notions of empirical equivalence, both modal and occurrent. A simple but modern gravitational case goes back to the 1890s, but there has been apparently total neglect of the simplest relativistic analog, with the result that an erroneous claim has taken root that Special Relativity could not have accommodated gravity even if there were no bending of light. The fairly recent acceptance of nonzero neutrino masses shows that widely neglected possibilities for nonzero particle masses have sometimes been vindicated. In the electromagnetic case, there is permanent underdetermination at the classical and quantum levels between Maxwell's theory and the one-parameter family of Proca's electromagnetisms with massive photons, which approximate Maxwell's theory in the limit of zero photon mass. While Yang-Mills theories display similar approximate equivalence classically, quantization typically ...

  17. Generation of infant anatomical models for evaluating electromagnetic field exposures.

    Science.gov (United States)

    Li, Congsheng; Chen, Zhiye; Yang, Lei; Lv, Bin; Liu, Jianzhe; Varsier, Nadège; Hadjem, Abdelhamid; Wiart, Joe; Xie, Yi; Ma, Lin; Wu, Tongning

    2015-01-01

    Realistic anatomical modeling is essential in analyzing human exposure to electromagnetic fields. Infants have significant physical and anatomical differences compared with other age groups. However, few realistic infant models are available. In this work, we developed one 12-month-old male whole body model and one 17-month-old male head model from magnetic resonance images. The whole body and head models contained 28 and 30 tissues, respectively, at spatial resolution of 1 mm × 1 mm × 1 mm. Fewer identified tissues in the whole body model were a result of the low original image quality induced by the fast imaging sequence. The anatomical and physical parameters of the models were validated against findings in published literature (e.g., a maximum deviation as 18% in tissue mass was observed compared with the data from International Commission on Radiological Protection). Several typical exposure scenarios were realized for numerical simulation. Dosimetric comparison with various adult and child anatomical models was conducted. Significant differences in the physical and anatomical features between adult and child models demonstrated the importance of creating realistic infant models. Current safety guidelines for infant exposure to radiofrequency electromagnetic fields may not be conservative.

  18. Nonthermal electromagnetic fields: from first messenger to therapeutic applications.

    Science.gov (United States)

    Pilla, Arthur A

    2013-06-01

    Nonthermal pulsed electromagnetic fields, from low frequency to pulse-modulated radio frequency, have been successfully employed as adjunctive therapy for the treatment of delayed and non-union fractures, fresh fractures and chronic wounds. Recent increased understanding of the mechanism of action of electromagnetic fields (EMF) has permitted technologic advances allowing the development of EMF devices which are portable and disposable, can be incorporated into dressings, supports and casts, and can be used over clothing. This broadens the use of non-pharmacological, non-invasive EMF therapy to the treatment of postoperative pain and edema to enhance surgical recovery. EMF therapy is rapidly becoming a standard part of surgical care, and new, more significant, clinical applications for osteoarthritis, brain and cardiac ischemia and traumatic brain injury are in the pipeline. This study reviews recent evidence which suggests that calmodulin (CaM)-dependent nitric oxide signaling is involved in cell and tissue response to weak nonthermal EMF signals. There is abundant evidence that EMF signals can be configured a priori to increase the rate of CaM activation, which, in turn, can modulate the biochemical cascades living cells and tissues employ in response to external insult. Successful applications in pilot clinical trials, coupled with evidence at the cellular and animal levels, provide support that EMF is a first messenger that can modulate the response of challenged biological systems.

  19. Radio frequency electromagnetic fields: cancer, mutagenesis, and genotoxicity.

    Science.gov (United States)

    Heynick, Louis N; Johnston, Sheila A; Mason, Patrick A

    2003-01-01

    We present critiques of epidemiologic studies and experimental investigations, published mostly in peer-reviewed journals, on cancer and related effects from exposure to nonionizing electromagnetic fields in the nominal frequency range of 3 kHz to 300 GHz of interest to Subcommittee 4 (SC4) of the International Committee on Electromagnetic Safety (ICES). The major topics discussed are presented under the headings Epidemiologic and Other Findings on Human Exposure, Mammals Exposed In Vivo, Mammalian Live Tissues and Cell Preparations Exposed In Vitro, and Mutagenesis and Genotoxicity in Microorganisms and Fruit Flies. Under each major topic, we present minireviews of papers on various specific endpoints investigated. The section on Epidemiologic and Other Findings on Human Exposure is divided into two subsections, the first on possible carcinogenic effects of exposure from emitters not in physical contact with the populations studied, for example, transmitting antennas and other devices. Discussed in the second subsection are studies of postulated carcinogenic effects from use of mobile phones, with prominence given to brain tumors from use of cellular and cordless telephones in direct physical contact with an ear of each subject. In both subsections, some investigations yielded positive findings, others had negative findings, including papers directed toward experimentally verifying positive findings, and both were reported in a few instances. Further research on various important aspects may resolve such differences. Overall, however, the preponderance of published epidemiologic and experimental findings do not support the supposition that in vivo or in vitro exposures to such fields are carcinogenic.

  20. Quantum Mechanics Action of ELF Electromagnetic Fields on Living Organisms

    Science.gov (United States)

    Godina-Nava, J. J.

    2010-10-01

    There is presently an intense discussion if extremely low frequency electromagnetic field (ELF-EMF) exposure has consequences for human health. This include exposure to structures and appliances from this range of frequency in the electromagnetic (EM) spectrum. Biological effects of such exposures have been noted frequently, although the implications for specific health effects is not that clear. The basic interactions mechanisms between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. Even more, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. The aim of this letter is present the hypothesis of a possible quantum mechanic effect generated by the exposure of ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation restructuring the electronic level of occupancy of free radicals in molecules interacting with DNA structures.

  1. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    Science.gov (United States)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  2. Exposure assessment of electromagnetic fields near electrosurgical units.

    Science.gov (United States)

    Wilén, Jonna

    2010-10-01

    Electrosurgical units (ESU) are widely used in medical health services. By applying sinusoidal or pulsed voltage in the frequency range of 0.3-5 MHz to the electrode tip, the desired mixture of coagulation and cutting are achieved. Due to the high voltage and current in the cable, strong electromagnetic fields appear near the ESU. The surgeon and others inside the operating room such as nurses, anesthesiologists, etc., will be highly exposed to these fields. The stray fields surrounding the ESU have previously been measured, but now a deeper analysis has been made of the curve shape of the field and the implication of this when assessing exposure from a commonly used ESU in accordance with the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The result showed that for some of the modes, especially those using high-pulsed voltage with only a few sinusoidal periods, the E-field close to the cable could reach linear spatially averaged values of 20 kV/m compared to the 2.1 kV/m stated in ICNIRP guidelines. Assessing the E- and B-field from ESU is not straightforward since in this frequency range, both induced current density and specific absorption rate are restricted by the ICNIRP guidelines. Nevertheless, work needs to be done to reduce the stray fields from ESU.

  3. Public Protection from Electromagnetic Fields of Industry Frequency

    Directory of Open Access Journals (Sweden)

    Kazimieras Vytautas Maceika

    2006-01-01

    Full Text Available Lithuania introduced normative of public protection from 50 Hz frequency electric field. It proposed permissible intensity of this field – 0,5 kV/m inside buildings and 1 kV/m in their territory. Separate normative is prepared for industry frequency electric and magnetic fields in work places. Permitted values of fields depend on exposure duration, but cannot exceed 25 kV/m and 5,1 kA/m. Russian, Swedish and American scientists declare that long time exposure of 50 Hz magnetic field with intensity more than 0,2-0,3 µT is dangerous for carcinogenic risk. International Agency for research on Cancer (IARC initiated a program to evaluate the carcinogenic risk of low frequency electromagnetic fields to humans and till 2002 year collected a lot of information for different countries with quantitative analysis of epidemic data. Standardized incidents ratio (SIR was proposed for evaluation of leukaemia in humans and especially children. Exposure of children in magneticfields > 0,4 µT showed a twofold SIR increasing. Data concerning the subject of an evaluation did not disclose inadequate evidence in humans and experimental animals for the carcinogenicity of magnetic fields of industry frequency, but they are classified as “possibly carcinogenic to humans”.

  4. Mathematical quantization

    CERN Document Server

    Weaver, Nik

    2001-01-01

    With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a variety of topics.Detailed here for the first time, the fundamental idea of mathematical quantization is that sets are replaced by Hilbert spaces. Building on this idea, and most importantly on the fact that scalar-valued functions on a set correspond to operators on a Hilbert space, one can determine quantum analogs of a variety of classical structures. In particular, because topologies and measure classes on a set can be treated in terms of scalar-valued functions, we can transfer these constructions to the quantum realm, giving rise to C*- and von Neumann algebras.In the first half of the book, the author quickly builds the operator algebra setting. He uses this ...

  5. Effects of Electromagnetic Field and Basic Fibroblast Growth Factor on Osteoblast's Growth

    Institute of Scientific and Technical Information of China (English)

    GUOYong; ZHANGXi-zheng; WANGHao; LIBin; LIRui-xin; WUJin-hui; ZHAOYun-shan; WUJi-min

    2004-01-01

    Osteoblasts of rat cultured in vitro were stimulated with pulsed 50 Hz electromagnetic field and basic fibroblast growth factor(bFGF). The MTT method, flow cytometry and histochemistry staining were used to detect cell proliferation, cell cycle and alkaline phosphatase. The results indicated : after stimulated by 1 mT electromagnetic field, the cells are more abundant,have more S phase percentages, 2 mT electromagnetic field have no evident effect on cells' growth;compared with electromagnetic field, the cells stimulated by bFGF are more abundant and have larger S phase ratios. Electromagnetic field and bFGF have no effect on cells, alkaline phosphatase. Therefore ,we concluded that electromagnetic field can enhance osteoblasts growth like some growth factor such as basic fibroblast growth factor, and the osteoblasts', characteristics was not changed.

  6. Consistency of certain constitutive relations with quantum electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, S. A. R. [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom)

    2011-12-15

    Recent work by Philbin [New J. Phys. 12, 123008 (2010)] has provided a Lagrangian theory that establishes a general method for the canonical quantization of the electromagnetic field in any dispersive, lossy, linear dielectric. Working from this theory, we extend the Lagrangian description to reciprocal and nonreciprocal magnetoelectric (bianisotropic) media, showing that some versions of the constitutive relations are inconsistent with a real Lagrangian, and hence with quantization. This amounts to a restriction on the magnitude of the magnetoelectric coupling. Moreover, from the point of view of quantization, moving media are shown to be fundamentally different from stationary magnetoelectrics, despite the formal similarity in the constitutive relations.

  7. Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor

    Energy Technology Data Exchange (ETDEWEB)

    Kholmetskii, A L [Department of Physics, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus); Missevitch, O V [Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya Street, 220030 Minsk (Belarus); Yarman, T, E-mail: khol123@yahoo.com [Department of Engineering, Okan University, Akfirat, Istanbul, Turkey and Savronik, Eskisehir (Turkey)

    2011-05-01

    We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j{center_dot}E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.

  8. MINERAL HORIZONS, ELECTROMAGNETIC FIELDS AND CIRCULAR SHAPES IN THE GRASS

    Directory of Open Access Journals (Sweden)

    Valentino Straser

    2009-12-01

    Full Text Available The occasional appearance of circular shapes in meadows and farmland located on slopes usually affected by gravitational phenomena, offered an occasion for verifying the possible relation between the position of the circles in the grass, the gravitational movement of the slope affecting its mineral horizons and the variations of electric and static magnetic fields close to the circular shapes and in the surrounding area. The stress caused by the “creeping” movement in the uderlying ground turned out to be in direct relation with the variation in the electric and magnetic fields caused by piezoelectric and piezomagnetic minerals such as quartz. The onset of the electromagnetic process involves the conversion of electric energy on the surface into an area of spherical shape which is linked with a different growth of herbaceous species compared to the surrounding vegetation.

  9. Theory of a ring laser. [electromagnetic field and wave equations

    Science.gov (United States)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  10. The dielectric response to the magnetic field of electromagnetic radiation

    Science.gov (United States)

    Mukherjee, Shouvik; Mukhopadhyay, Sourabh; Datta, Prasanta Kumar

    2017-04-01

    Light–matter interaction in transparent dielectrics is revisited, including the magnetic force on bound charges in the Lorentz oscillator model. The parameter ranges of incident radiation and the medium on which the magnetic field of the electromagnetic radiation will have a significant effect are traced using Floquet theory. The analysis reveals that the threshold intensity for a significant response of the magnetic field of the radiation at the second harmonic of the incident radiation can be reduced to {10}12 {{W}}{{cm}}-2 for off resonant and even lower for resonant interaction. This phenomenon has already been observed indirectly in experiments [1, 2]. Induced magnetizing current due to the magnetic force is shown to originate from a modified dielectric response, which may be useful in future magneto-optic devices, solar energy harvesting, and studying the ultrafast dynamics in doped dielectrics.

  11. Geometric entropy and edge modes of the electromagnetic field

    Science.gov (United States)

    Donnelly, William; Wall, Aron C.

    2016-11-01

    We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar fields, constant electric and magnetic fluxes, and a contact term, whose leading-order divergence was discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of entanglement entropy that includes edge modes: classical solutions determined by their boundary values on the entangling surface. This resolves a long-standing puzzle about the statistical interpretation of the contact term in the entanglement entropy. We discuss the implications of this negative term for black hole thermodynamics and the renormalization of Newton's constant.

  12. Electromagnetic field limits set by the V-Curve.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jorgenson, Roy Eberhardt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hudson, Howard Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

  13. Geometric entropy and edge modes of the electromagnetic field

    CERN Document Server

    Donnelly, William

    2015-01-01

    We calculate the vacuum entanglement entropy of Maxwell theory in a class of curved spacetimes by Kaluza-Klein reduction of the theory onto a two-dimensional base manifold. Using two-dimensional duality, we express the geometric entropy of the electromagnetic field as the entropy of a tower of scalar fields, constant electric and magnetic fluxes, and a contact term, whose leading order divergence was discovered by Kabat. The complete contact term takes the form of one negative scalar degree of freedom confined to the entangling surface. We show that the geometric entropy agrees with a statistical definition of entanglement entropy that includes edge modes: classical solutions determined by their boundary values on the entangling surface. This resolves a longstanding puzzle about the statistical interpretation of the contact term in the entanglement entropy. We discuss the implications of this negative term for black hole thermodynamics and the renormalization of Newton's constant.

  14. Adaptive framework for uncertainty analysis in electromagnetic field measurements.

    Science.gov (United States)

    Prieto, Javier; Alonso, Alonso A; de la Rosa, Ramón; Carrera, Albano

    2015-04-01

    Misinterpretation of uncertainty in the measurement of the electromagnetic field (EMF) strength may lead to an underestimation of exposure risk or an overestimation of required measurements. The Guide to the Expression of Uncertainty in Measurement (GUM) has internationally been adopted as a de facto standard for uncertainty assessment. However, analyses under such an approach commonly assume unrealistic static models or neglect relevant prior information, resulting in non-robust uncertainties. This study proposes a principled and systematic framework for uncertainty analysis that fuses information from current measurements and prior knowledge. Such a framework dynamically adapts to data by exploiting a likelihood function based on kernel mixtures and incorporates flexible choices of prior information by applying importance sampling. The validity of the proposed techniques is assessed from measurements performed with a broadband radiation meter and an isotropic field probe. The developed framework significantly outperforms GUM approach, achieving a reduction of 28% in measurement uncertainty.

  15. Circadian neuroendocrine physiology and electromagnetic field studies: Precautions and complexities

    Energy Technology Data Exchange (ETDEWEB)

    Warman, G.R.; Tripp, H.M.; Harman, V.L.; Arendt, J

    2003-07-01

    The suppression of melatonin by exposure to low frequency electromagnetic fields (EMFs) 'the melatonin hypothesis' has been invoked as a possible mechanism through which exposure to these fields may result in an increased incidence of cancer. While the effect of light on melatonin is well established, data showing a similar effect due to EMF exposure are sparse and, where present, are often poorly controlled. The current review focuses on the complexities associated with using melatonin as a marker and the dynamic nature of normal melatonin regulation by the circadian neuroendocrine axis. These are issues which the authors believe contribute significantly to the lack of consistency of results in the current literature. Recommendations on protocol design are also made which, if followed, should enable researchers to eliminate or control for many of the confounding factors associated with melatonin being an output from the circadian clock. (author)

  16. The assessment of electromagnetic field radiation exposure for mobile phone users

    OpenAIRE

    Buckus Raimondas; Strukcinskiene Birute; Raistenskis Juozas

    2014-01-01

    Background/Aim. During recent years, the widespread use of mobile phones has resulted in increased human exposure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the...

  17. Proposal for magnetic/electromagnetic fields protection norms on national level

    OpenAIRE

    Đorđević Drago; Raković Dejan

    2008-01-01

    Introduction The modern life is not possible without application of magnetic/electromagnetic fields, which can be both helpful and harmful for human body. Influence of magnetic/electromagnetic fields on biological systems The non-ionizing radiation, especially magnetic/electromagnetic fields of all frequencies (0-300 GHz), can have many harmful effects on the human health that is confirmed by numerous epidemiological studies, studies with volunteers, animal studies, and in vitro studies. Prop...

  18. Effect of Low Frequency Electromagnetic Field on Macrosegregation of Horizontal Direct Chill Casting Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Zhihao ZHAO; Jianzhong CUI; Jie DONG; Beijiang ZHANG

    2005-01-01

    The horizontal direct chill (HDC) casting process is a well-established production route for aluminum alloy ingot but the ingot may suffer from macrosegregation sometimes. In order to control the defect, a low frequency electromagnetic field has been applied in HDC casting process and the relevant influence has been studied. The results show that application of low frequency electromagnetic field can reduce macrosegregation in HDC casting process; and two main parameters of electromagnetic field density and frequency, have great influences on the solution distribution along the diameter of ingot. Moreover, the mechanisms of reduction of macrosegregation by electromagnetic field have been discussed.

  19. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    CERN Document Server

    Galilo, Bogdan V

    2011-01-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalysing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions ...

  20. On the gravitational fields created by the electromagnetic waves

    OpenAIRE

    Loinger, A.; Marsico, T.

    2011-01-01

    We show that the Maxwell equations describing an electromagnetic wave are a mathematical consequence of the Einstein equations for the same wave. This fact is significant for the problem of the Einsteinian metrics corresponding to the electromagnetic waves.

  1. STATISTICAL-MECHANICAL ENTROPY OF THE GENERAL STATIC BLACK HOLE DUE TO ELECTROMAGNETIC FIELD

    Institute of Scientific and Technical Information of China (English)

    JING JI-LIANG; YAN MU-LIN

    2000-01-01

    Statistical-mechanical entropy arising from the electromagnetic field in the general four-dimensional static blackhole spacetime is investigated by means of the "brick wall" model. An expression for the entropy is obtained and some examples are considered. The results show that the entropy arising from the electromagnetic field is exactly twice the one for a massless scalar field.

  2. The electromagnetic fields and the radiation of a spatio-temporally varying electric current loop

    CERN Document Server

    Lazar, Markus

    2013-01-01

    The electric and magnetic fields of a spatio-temporally varying electric current loop are calculated using the Jefimenko equations. The radiation and the nonradiation parts of the electromagnetic fields are derived in the framework of Maxwell's theory of electromagnetic fields. In this way, a new, exact, analytical solution of the Maxwell equation is found.

  3. Quantum diffusion of electromagnetic fields of ultrarelativistic spin-half particles

    Science.gov (United States)

    Peroutka, Balthazar; Tuchin, Kirill

    2017-10-01

    We compute electromagnetic fields created by a relativistic charged spin-half particle in empty space at distances comparable to the particle Compton wavelength. The particle is described as a wave packet evolving according to the Dirac equation. It produces the electromagnetic field that is essentially different from the Coulomb field due to the quantum diffusion effect.

  4. Line geometry and electromagnetism IV: electromagnetic fields as infinitesimal Lorentz transformations

    CERN Document Server

    Delphenich, D H

    2016-01-01

    It is first shown that the scalar product on any orthogonal space (V, g) allows one to define linear isomorphisms of the vector spaces of bivectors and 2-forms on V with the underlying vector spaces of the Lie algebra so(p, q) and its dual, respectively. When those isomorphisms are applied to the electromagnetic excitation bivector and field strength 2-form, resp., one can associate various algebraic constructions that pertain to them as bivector fields and 2-forms with corresponding constructions in terms of so(1, 3) and its dual. The subsequent association with corresponding things in line geometry will then become straightforward. In particular, the fields can be represented by motors, such as screws and wrenches, while the Cartan-Killing form on so(1, 3) is isometric to the scalar product on bivectors that gives the Klein quadric. When the space of bivectors (and therefore the space of 2-forms) is given an almost-complex structure (and therefore, a complex structure), one can also represent most of the co...

  5. Quantum Energy Teleportation with Electromagnetic Field: Discrete vs. Continuous Variables

    CERN Document Server

    Hotta, Masahiro

    2009-01-01

    Local measurements of quantum fluctuation in the vacuum state of electromagnetic field require energy infusion to the field. The infused energy is diffused to spatial infinity with light velocity and the state of the field soon becomes a local vacuum with zero energy around the measurement area. Of cource we cannot retrieve energy from this measurement area if we do not know the measurement result of the fluctuation. However, if the measurement result is available for us, we are able to extract energy from the local vacuum of the field, applying the protocol of quantum energy teleportation recently proposed. By performing a local unitary operation around the measurement area dependent on the measurement result, the fluctuaion of zero-point oscillation is squeezed and negative energy density appears around the area, accompanied by extraction of positive energy from the field. In this paper, we compare two different protocols of the energy retrieval. In the first protocol, a 1/2 spin is coupled with the fluctua...

  6. Equations of a Moving Mirror and the Electromagnetic Field

    CERN Document Server

    Castaños, Luis Octavio

    2014-01-01

    We consider a slab of a material that is linear, isotropic, non-magnetizable, ohmic, and electrically neutral when it is at rest. The slab interacts with the electromagnetic field through radiation pressure. Using a relativistic treatment, we deduce the exact equations governing the dynamics of the field and of the slab, as well as, approximate equations to first order in the velocity and the acceleration of the slab. As a consequence of the motion of the slab, the field must satisfy a wave equation with damping and slowly varying coefficients plus terms that are small when the time-scale of the evolution of the mirror is much smaller than that of the field. Moreover, the dynamics of the mirror involve a time-dependent mass arising from the interaction with the field and it is related to the effective mass of mechanical oscillators used in optomechanics. By the same reason, the mirror is subject to a velocity dependent force which is related to the much sought cooling of mechanical oscillators in optomechanic...

  7. Probing Intergalactic Magnetic Fields with Simulations of Electromagnetic Cascades

    CERN Document Server

    Batista, Rafael Alves; Sigl, Guenter; Vachaspati, Tanmay

    2016-01-01

    We determine the effect of intergalactic magnetic fields on the distribution of high energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called 'Large Sphere Observer' method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the $Q$-statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the $S$-statistics. Both methods provide a quantative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths...

  8. Setting prudent public health policy for electromagnetic field exposures.

    Science.gov (United States)

    Carpenter, David O; Sage, Cindy

    2008-01-01

    Electromagnetic fields (EMF) permeate our environment, coming both from such natural sources as the sun and from manmade sources like electricity, communication technologies and medical devices. Although life on earth would not be possible without sunlight, increasing evidence indicates that exposures to the magnetic fields associated with electricity and to communication frequencies associated with radio, television, WiFi technology, and mobile cellular phones pose significant hazards to human health. The evidence is strongest for leukemia from electricity-frequency fields and for brain tumors from communication-frequency fields, yet evidence is emerging for an association with other diseases as well, including neurodegenerative diseases. Some uncertainty remains as to the mechanism(s) responsible for these biological effects, and as to which components of the fields are of greatest importance. Nevertheless, regardless of whether the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Inaction is not compatible with the Precautionary Principle, as enunciated by the Rio Declaration. Because of ubiquitous exposure, the rapidly expanding development of new EMF technologies and the long latency for the development of such serious diseases as brain cancers, the failure to take immediate action risks epidemics of potentially fatal diseases in the future.

  9. On a third S-matrix in the theory of quantized fields on curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, H. [Bonn Univ. (Germany). Physikalisches Inst.; Hack, T. [Bonn Univ. (Germany). Inst. fuer Angewandte Mathematik

    2007-01-15

    Wightman functions for interacting quantum fields on curved space times are calculated via the perturbation theory of the Yang-Feldman equations, where the incoming field is a free field in a quasifree representation. We show that these Wightman functions that are obtained as a sum over extended Feynman graphs fulfill the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity and locality (the latter property is shown up to second order in the loop expansion). In the case of non-stationary spacetimes, the outgoing field in general is in a non-quasifree representation of the CCR. This makes it necessary to develop a method to calculate the unitary transformation between a non quasifree representation and a quasifree one. This is carried out using *-calculus on the dual of the Borchers algebra with a combinatorial co-product. Given that preferred quasifree representations for early and late times exist, we thus obtain a complete scattering description using three S-matrices: The first is determined by vacuum expectation values between incoming and outgoing fields. The second is a unitary transformation between the non-quasifree representation for the ''out''-fields and the quasifree representation for the ''in''-field. The last one is the Bogoliubov transformation between the preferred representation at early times (i.e. the ''in''-field representation) and the preferred representation at late times. (orig.)

  10. Quantizing Weierstrass

    CERN Document Server

    Bouchard, Vincent; Dauphinee, Tyler

    2016-01-01

    We study the connection between the Eynard-Orantin topological recursion and quantum curves for the family of genus one spectral curves given by the Weierstrass equation. We construct quantizations of the spectral curve that annihilate the perturbative and non-perturbative wave-functions. In particular, for the non-perturbative wave-function, we prove, up to order hbar^5, that the quantum curve satisfies the properties expected from matrix models. As a side result, we obtain an infinite sequence of identities relating A-cycle integrals of elliptic functions and quasi-modular forms.

  11. There is no "First" Quantization

    CERN Document Server

    Zeh, H D

    2003-01-01

    The appearance of spinor fields as operators or arguments of field functionals in quantum field theory is often regarded as a second quantization, since fermion wave functions were themselves discovered by quantizing mass points (``particles''). I argue that this language, though reflecting the historical development, is misleading. Field amplitudes always represent the true physical variables (in quantum theory the arguments of a fundamental wave functional), including fields which never appear classical, while apparent particles are no more than the result of decoherence in the measuring device, without playing any fundamental role in the theory or its interpretation. A remark on gauge fields is added.

  12. Using strong electromagnetic fields to control x-ray processes

    CERN Document Server

    Young, Linda; Dunford, Robert W; Ho, Phay J; Kanter, Elliot P; Krässig, Bertold; Peterson, Emily R; Rohringer, Nina; Santra, Robin; Southworth, Stephen H

    2008-01-01

    Exploration of a new ultrafast-ultrasmall frontier in atomic and molecular physics has begun. Not only is is possible to control outer-shell electron dynamics with intense ultrafast optical lasers, but now control of inner-shell processes has become possible by combining intense infrared/optical lasers with tunable sources of x-ray radiation. This marriage of strong-field laser and x-ray physics has led to the discovery of methods to control reversibly resonant x-ray absorption in atoms and molecules on ultrafast timescales. Using a strong optical dressing field, resonant x-ray absorption in atoms can be markedly suppressed, yielding an example of electromagnetically induced transparency for x rays. Resonant x-ray absorption can also be controlled in molecules using strong non-resonant, polarized laser fields to align the framework of a molecule, and therefore its unoccupied molecular orbitals to which resonant absorption occurs. At higher laser intensities, ultrafast field ionization produces an irreversible...

  13. [Effects of radiofrequency electromagnetic fields on mammalian spermatogenesis].

    Science.gov (United States)

    Susa, Martina; Pavicić, Ivan

    2007-12-01

    This article reviews studies about the effects of radiofrequency electromagnetic (RF EM) fields on male reproductive system and reproductive health in mammals. According to current data, there are almost 4 million active mobile phone lines in Croatia while this number has risen to 2 billion in the world. Increased use of mobile technology raises scientific and public concern about possible hazardous effects of RF fields on human health. The effects of radiofrequencies on reproductive health and consequences for the offspring are still mainly unknown. A number of in vivo and in vitro studies indicated that RF fields could interact with charged intracellular macromolecular structures. Results of several laboratory studies on animal models showed how the RF fields could affect the mammalian reproductive system and sperm cells. Inasmuch as, in normal physiological conditions spermatogenesis is a balanced process of division, maturation and storage of cells, it is particularly vulnerable to the chemical and physical environmental stimuli. Especially sensitive could be the cytoskeleton, composed of charged proteins; actin, intermedial filaments and microtubules. Cytoskeleton is a functional and structural part of the cell that has important role in the sperm motility, and is actively involved in the morphologic changes that occur during mammalian spermiogenesis.

  14. Finite element modeling of electromagnetic fields and waves using NASTRAN

    Science.gov (United States)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  15. Observation of electromagnetically induced transparency in evanescent fields

    CERN Document Server

    Thomas, R; Agarwal, G S; Lvovsky, A I

    2012-01-01

    We observe and investigate, both experimentally and theoretically, electromagnetically-induced transparency experienced by evanescent fields arising due to total internal reflection from an interface of glass and hot rubidium vapor. This phenomenon manifests itself as a non-Lorentzian peak in the reflectivity spectrum, which features a sharp cusp with a sub-natural width of about 1 MHz. The width of the peak is independent of the thickness of the interaction region, which indicates that the main source of decoherence is likely due to collisions with the cell walls rather than diffusion of atoms. With the inclusion of a coherence-preserving wall coating, this system could be used as an ultra-compact frequency reference.

  16. Electromagnetic field energy density in homogeneous negative index materials.

    Science.gov (United States)

    Shivanand; Webb, Kevin J

    2012-05-07

    An exact separation of both electric and magnetic energies into stored and lost energies is shown to be possible in the special case when the wave impedance is independent of frequency. A general expression for the electromagnetic energy density in such a dispersive medium having a negative refractive index is shown to be accurate in comparison with numerical results. Using an example metamaterial response that provides a negative refractive index, it is shown that negative time-averaged stored energy can occur. The physical meaning of this negative energy is explained as the energy temporarily borrowed by the field from the material. This observation for negative index materials is of interest when approaching properties for a perfect lens. In the broader context, the observation of negative stored energy is of consequence in the study of dispersive materials.

  17. Cosmic magnetic fields and dark energy in extended electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Beltran Jimenez, Jose; Maroto, Antonio L, E-mail: Jose.Beltran@unige.ch, E-mail: maroto@fis.ucm.es [Departamento de Fisica Teorica, Universidad Complutense de Madrid, 28040, Madrid (Spain)

    2011-09-22

    We discuss an extended version of electromagnetism in which the usual gauge fixing term is promoted into a physical contribution that introduces a new scalar state in the theory. This new state can be generated from vacuum quantum fluctuations during an inflationary era and, on super-Hubble scales, gives rise to an effective cosmological constant. The value of such a cosmological constant coincides with the one inferred from observations as long as inflation took place at the electroweak scale. On the other hand, the new state also generates an effective electric charge density on sub-Hubble scales that produces both vorticity and magnetic fields with coherent lengths as large as the present Hubble horizon.

  18. Separation of inclusions from aluminum melt using alternating electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    李克; 王俊; 疏达; 李天晓; 孙宝德; 周尧和

    2002-01-01

    Effects of processing variables such as frequency of imposed magnetic field, imposed magnetic flux density, processing time, diameter of inclusions, and value of r1/δ on the electromagnetic separating(EMS) removal efficiency were analyzed theoretically. The higher the frequency, the wider the range of r1/δ will be. Removal efficiency reaches the maximum while r1/δ ranges from 1.5 to 2. And the experimental results on aluminum melt show that higher frequency and magnetic flux density make for higher removal efficiency, matching well with the theoretical results. When f is 15.6kHz, Be is 0.1T, and imposed time is 10s, more than 80% inclusion particles with 6μm diameter can be removed.

  19. Mechanism of interaction between electromagnetic fields and living organisms

    Institute of Scientific and Technical Information of China (English)

    Fritz-Albert; Popp; 张锦珠

    2000-01-01

    Based on nonlinear phenomena of biophoton emission observed in the past, an interference model concerning with the mechanism of interaction between living organisms and electromagnetic fields was raised. Caused by biological nonlinearly polarizable double layer, destructive interference of incoming and reflected waves establishes in the outside. As a consequence, in the inside constructive interference takes place at the same time. The interference patterns may play an important role in biological self organization and in biological functions. We investigate the boundary conditions necessary for explaining these non-linear optical effects in terms of the phase conjugation. It turns out that there are solutions of the Maxwell equations which satisfy destructive interference of biophotons in agreement with the experimental results. Necessary provisions are nonlinearly polarizable optically active double layers of distances which are small compared to the wavelength of light. In addition, they have to be a

  20. Electromagnetic fields, size, and copy of a single photon

    CERN Document Server

    Liu, Shan-Liang

    2016-01-01

    We propose the expressions of electromagnetic fields of a single photon which properly describe the known characteristics of a photon, derive the relations between the photon size and wavelength on basis of the expressions, reveal the differences between a photon and its copy, and give the specific expressions of annihilation and creation operators of a photon. The results show that a photon has length of half the wavelength, and its radius is proportional to square root of the wavelength; a photon and its copy have the phase difference of {\\pi} and constitute a phase-entangled state; the N-photon phase-entangled state, which is formed by the sequential stimulated emission and corresponds to the wave train in optics, is not a coherent state, but it is the eigenstate of the number operator of photons.

  1. Retraction: Evaluation of carcinogenic effects of electromagnetic fields (EMF).

    Science.gov (United States)

    Mehic, Bakir

    2010-11-01

    The Editor-in-chief of the Bosnian Journal of Basic Medical Sciences has decided to retract the article from Bayazit V et al. [1] entitled as: "Evaluation of carcinogenic effects of electromagnetic fields (EMF)" published in Bosn J Basic Med Sci. 2010 Aug;10(3):245-50. After the editorial office was alerted of possible plagiarism in the article, it conducted thorough investigation and concluded that the article apparently represents plagiarized material from two World Health Organization reports, one European Commission report and other sources. Since this is considered scientific plagiarism and scientific misconduct, Editor-in-chief has decided to withdraw the article. The authors have agreed with the editorial office decision.

  2. The role of electromagnetic fields in neurological disorders.

    Science.gov (United States)

    Terzi, Murat; Ozberk, Berra; Deniz, Omur Gulsum; Kaplan, Suleyman

    2016-09-01

    In the modern world, people are exposed to electromagnetic fields (EMFs) as part of their daily lives; the important question is "What is the effect of EMFs on human health?" Most previous studies are epidemiological, and we still do not have concrete evidence of EMF pathophysiology. Several factors may lead to chemical, morphological, and electrical alterations in the nervous system in a direct or indirect way. It is reported that non-ionizing EMFs have effects on animals and cells. The changes they bring about in organic systems may cause oxidative stress, which is essential for the neurophysiological process; it is associated with increased oxidization in species, or a reduction in antioxidant defense systems. Severe oxidative stress can cause imbalances in reactive oxygen species, which may trigger neurodegeneration. This review aims to detail these changes. Special attention is paid to the current data regarding EMFs' effects on neurological disease and associated symptoms, such as headache, sleep disturbances, and fatigue.

  3. High Frequency Electromagnetic Field Induces Lipocalin 2 Expression in

    Directory of Open Access Journals (Sweden)

    Amaneh Mohammadi Roushandeh

    2010-06-01

    Full Text Available Objective(sNeutrophil gelatinase-associated lipocalin (NGAL/Lcn2, comprise a group of small extracellular proteins with a common β-sheet-dominated 3-dimensional structure. In the past, it was assumed that the predominant role of lipocalin was acting as transport proteins. Recently it has been found that oxidative stress induces Lcn2 expression. It has been also proved that electromagnetic field (EMF produces reactive oxygen species (ROS in different tissues. Expression of Lcn2 following exposure to electromagnetic field has been investigated in this study. Materials and MethodsBalb/c mice (8 weeks old were exposed to 3 mT, 50 HZ EMF for 2 months, 4 hr/day. Afterwards, the mice were sacrificed by cervical dislocation and livers were removed. The liver specimens were stained with Haematoxylin- Eosin (H&E and analyzed under an optical microscope. Total RNA was extracted from liver and reverse transcription was performed by SuperScript III reverse transcriptase with 1 µg of total RNA. Assessment of Lcn2 expression was performed by semiquantitative and real time- PCR.ResultsThe light microscopic studies revealed that the number of lymphocyte cells was increased compared to control and dilation of sinosoids was observed in the liver. Lcn2 was up-regulated in the mice exposed to EMF both in mRNA and protein levels.ConclusionTo the extent of our knowledge, this is the first report dealing with up-regulation of Lcn2 in liver after exposure to EMF. The up-regulation might be a compensatory response that involves cell defense pathways and protective effects against ROS. However, further and complementary studies are required in this regards.

  4. Electromagnetic fields in the exterior of an oscillating relativistic star -- II. Electromagnetic damping

    CERN Document Server

    Rezzolla, Luciano

    2016-01-01

    An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electro...

  5. Electromagnetically-induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing

    CERN Document Server

    Acosta, Victor M; Santori, Charles; Budker, Dmitry; Beausoleil1, Rymond G

    2013-01-01

    We use electromagnetically-induced transparency (EIT) to probe the narrow electron-spin resonance of nitrogen-vacancy centers in diamond. Working with a multi-pass diamond chip at temperatures 6-30 K, the zero-phonon absorption line (637 nm) exhibits an optical depth of 6 and inhomogenous linewidth of ~30 GHz full-width-at-half-maximum (FWHM). Simultaneous optical excitation at two frequencies separated by the ground-state zero-field splitting (2.88 GHz), reveals EIT resonances with a contrast exceeding 6% and FWHM down to 0.4 MHz. The resonances provide an all-optical probe of external electric and magnetic fields with a projected photon-shot-noise-limited sensitivity of 0.2 V/cm/sqrt(Hz) and 0.1 nT/sqrt(Hz), respectively. Operation of a prototype diamond-EIT magnetometer measures a noise floor of less than 1 nT/sqrt(Hz) for frequencies above 10 Hz and Allan deviation of 1.3 +/- 1.1 nT for 100 s intervals. The results demonstrate the potential of diamond-EIT devices for applications ranging from quantum-opti...

  6. Quantized photonic spin Hall effect in graphene

    Science.gov (United States)

    Cai, Liang; Liu, Mengxia; Chen, Shizhen; Liu, Yachao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun

    2017-01-01

    We examine the photonic spin Hall effect (SHE) in a graphene-substrate system with the presence of an external magnetic field. In the quantum Hall regime, we demonstrate that the in-plane and transverse spin-dependent splittings in the photonic SHE exhibit different quantized behaviors. The quantized SHE can be described as a consequence of a quantized geometric phase (Berry phase), which corresponds to the quantized spin-orbit interaction. Furthermore, an experimental scheme based on quantum weak value amplification is proposed to detect the quantized SHE in the terahertz frequency regime. By incorporating the quantum weak measurement techniques, the quantized photonic SHE holds great promise for detecting quantized Hall conductivity and the Berry phase. These results may bridge the gap between the electronic SHE and photonic SHE in graphene.

  7. Faddeev-Senjanovic quantization of SU(n) N=2 supersymmetric gauge field system with a non-Abelian Chern-Simons topological term and its fractional spin

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yongchang [Institute of Theoretical Physics, Beijing University of Technology, Beijing 100022 (China); CCAST (World Laboratory), Beijing 100080 (China)], E-mail: ychuang@bjut.edu.cn; Huo Qiuhong [Institute of Theoretical Physics, Beijing University of Technology, Beijing 100022 (China)

    2008-04-24

    Using Faddeev-Senjanovic path integral quantization for constrained Hamilton system, we quantize SU(n) N=2 supersymmetric gauge field system with non-Abelian Chern-Simons topological term in 2+1 dimensions. We use consistency of Coulomb gauge condition to naturally deduce a new gauge condition. Furthermore, we obtain the generating functional of Green function in phase space, deduce the angular momentum based on the global canonical Noether theorem at quantum level, obtain the fractional spin of this supersymmetric system, and show that the total angular momentum is the sum of the orbital angular momentum and spin angular momentum of the non-Abelian gauge field. Finally, we obtain the anomalous fractional spin and discover that the fractional spin has the contributions of both the group superscript components and A{sub 0}{sup s}(x) charge.

  8. Quantized charged fields with t-electric potential step as external background

    CERN Document Server

    Adorno, T C; Gitman, D M

    2015-01-01

    We give a brief description of the generalized Furry picture with t-electric potential steps and use this basis to present nonperturbative calculations in three exactly solvable cases: Sauter-like (or adiabatic) electric field, T-constant electric field, and exponentially decaying electric field. Here, we provide some important and so far unpublished details. We show how these cases help to gain insight into the universal features of particle creation from vacuum. This survey of exactly solvable cases, presented on the same footing, can be used as introductory material for understanding a recent generalization of the Furry picture with x-electric potential steps [arXiv:1506.01156] and [arXiv:1511.02915].

  9. Quantized Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, M

    2003-11-19

    This paper discusses the problem of inflation in the context of Friedmann-Robertson-Walker Cosmology. We show how, after a simple change of variables, one can quantize the problem in a way which parallels the classical discussion. The result is that two of the Einstein equations arise as exact equations of motion; one of the usual Einstein equations (suitably quantized) survives as a constraint equation to be imposed on the space of physical states. However, the Friedmann equation, which is also a constraint equation and which is the basis of the Wheeler-DeWitt equation, acquires a welcome quantum correction that becomes significant for small scale factors. We then discuss the extension of this result to a full quantum mechanical derivation of the anisotropy ({delta}{rho}/{rho}) in the cosmic microwave background radiation and the possibility that the extra term in the Friedmann equation could have observable consequences. Finally, we suggest interesting ways in which these techniques can be generalized to cast light on the question of chaotic or eternal inflation. In particular, we suggest that one can put an experimental bound on how far away a universe with a scale factor very different from our own must be, by looking at its effects on our CMB radiation.

  10. Do the standard expressions for the electromagnetic field momentum need any modifications?

    Science.gov (United States)

    Singal, Ashok K.

    2016-10-01

    We investigate here the question raised in the literature about the correct expression for the electromagnetic field momentum, especially when static or stationary fields are involved. For this, we examine a couple of simple but intriguing cases. First, we consider a system configuration in which electromagnetic field momentum is present even though the system is stationary. We trace the electromagnetic momentum to be present in the form of a continuous transport of electromagnetic energy from one part of the system to another, without causing any net change in the energy of the system. In a second case, we show that the electromagnetic momentum is zero irrespective of whether the charged system is static or in motion, even though the electromagnetic energy is present throughout. We demonstrate that the conventional formulation of electromagnetic field momentum describes the systems consistently without any real contradictions. Here, we also make exposition of a curiosity where electromagnetic energy decreases when the charged system gains velocity. Then we discuss the more general question that has been raised: Are the conventional formulas for energy-momentum of electromagnetic fields valid for all cases? Specifically, in the case of so-called "bound fields," do we need to change to some modified definitions? We show that in all cases it is only the conventional formulas that lead to results consistent with the rest of physics, including the special theory of relativity, and that any proposed modifications are thus superfluous.

  11. Electromagnetic field exposure and health among RF plastic sealer operators.

    Science.gov (United States)

    Wilén, Jonna; Hörnsten, Rolf; Sandström, Monica; Bjerle, Per; Wiklund, Urban; Stensson, Olov; Lyskov, Eugene; Mild, Kjell Hansson

    2004-01-01

    Operators of RF plastic sealers (RF operators) are an occupational category highly exposed to radiofrequency electromagnetic fields. The aim of the present study was to make an appropriate exposure assessment of RF welding and examine the health status of the operators. In total, 35 RF operators and 37 controls were included. The leakage fields (electric and magnetic field strength) were measured, as well as induced and contact current. Information about welding time and productivity was used to calculate time integrated exposure. A neurophysiological examination and 24 h ECG were also carried out. The participants also had to answer a questionnaire about subjective symptoms. The measurements showed that RF operators were exposed to rather intense electric and magnetic fields. The mean values of the calculated 6 min, spatially averaged E and H field strengths, in line with ICNIRP reference levels, are 107 V/m and 0.24 A/m, respectively. The maximum measured field strengths were 2 kV/m and 1.5 A/m, respectively. The induced current in ankles and wrists varied, depending on the work situation, with a mean value of 101 mA and a maximum measured value of 1 A. In total, 11 out of 46 measured RF plastic sealers exceeded the ICNIRP reference levels. RF operators, especially the ready made clothing workers had a slightly disturbed two-point discrimination ability compared to a control group. A nonsignificant difference between RF operators and controls was found in the prevalence of subjective symptoms, but the time integrated exposure parameters seem to be of importance to the prevalence of some subjective symptoms: fatigue, headaches, and warmth sensations in the hands. Further, RF operators had a significantly lower heart rate (24 h registration) and more episodes of bradycardia compared to controls.

  12. Effects of microwave and radio frequency electromagnetic fields on lichens.

    Science.gov (United States)

    Urech, M; Eicher, B; Siegenthaler, J

    1996-01-01

    The effects of electromagnetic fields on lichens were investigated. Field experiments of long duration (1-3 years) were combined with laboratory experiments and theoretical considerations. Samples of the lichen species Parmelia tiliacea and Hypogymnia physodes were exposed to microwaves (2.45 GHz; 0.2, 5, and 50 mW/cm2; and control). Both species showed a substantially reduced growth rate at 50 mW/cm2. A differentiation between thermal and nonthermal effects was not possible. Temperature measurements on lichens exposed to microwaves (2.45 GHz, 50 mW/cm2) showed a substantial increase in the surface temperature and an accelerated drying process. The thermal effect of microwave on lichens was verified. The exposure of lichens of both species was repeated near a short-wave broadcast transmitter (9.5 MHz, amplitude modulated; maximum field strength 235 V/m, 332 mA/m). No visible effects on the exposed lichens were detected. At this frequency, no thermal effects were expected, and the experimental results support this hypothesis. Theoretical estimates based on climatic data and literature showed that the growth reductions in the initial experiments could very likely have been caused by drying of the lichens from the heating with microwaves. The results of the other experiments support the hypothesis that the response of the lichens exposed to microwaves was mainly due to thermal effects and that there is a low probability of nonthermal effects.

  13. The non-ionizing electromagnetic field: Derivation of valid biological exposure metrics from Maxwell's equations of electromagnetism

    Science.gov (United States)

    Lundquist, Marjorie

    2003-03-01

    Standards for protecting health from exposure to non-ionizing electromagnetic radiation treat the power density (magnitude of Poynting vector) as the biological exposure metric. For a static electric or magnetic field, the presumed metric is field strength. Scientifically valid expressions for such exposure metrics have been derived theoretically [1]. Three regimes exist for which different expressions are obtained: high frequencies (where electric and magnetic fields are tightly coupled), low frequencies (where these fields are separable), and static fields (where time derivatives are zero). Unexpected results are obtained: * There are two exposure metrics: one for thermal, another for athermal effects. * In general, these two metrics are different. Only for a plane wave is the same metric (power density) valid for both effects. * Exposure metrics used today for static fields are invalid! These findings also apply in the ionizing portion of the electromagnetic spectrum. [1] Wireless Phones and Health II: State of the Science. G. Carlo, ed. NY: Kluwer Academic Publishers, 2000; Chapter 4.

  14. Occupational exposure to electromagnetic fields and sex-differential risk of uveal melanoma

    DEFF Research Database (Denmark)

    Behrens, Thomas Flensted; Lynge, Elsebeth; Cree, Ian

    2010-01-01

    The association between occupational exposure to electromagnetic fields (EMF) and the risk of uveal melanoma was investigated in a case-control study in nine European countries.......The association between occupational exposure to electromagnetic fields (EMF) and the risk of uveal melanoma was investigated in a case-control study in nine European countries....

  15. The quantum vacuum in electromagnetic fields: From the Heisenberg-Euler effective action to vacuum birefringence

    CERN Document Server

    Karbstein, Felix

    2016-01-01

    The focus of these lectures is on the quantum vacuum subjected to classical electromagnetic fields. To this end we explicitly derive the renowned Heisenberg-Euler effective action in constant electromagnetic fields in a rather pedagogical and easy to conceive way. As an application, we use it to study vacuum birefringence constituting one of the most promising optical signatures of quantum vacuum nonlinearity.

  16. [Medical and biologic research of electromagnetic fields in radiofrequencies range. Results and prospects].

    Science.gov (United States)

    Kaliada, T V; Vishnevskiĭ, A M; Gorodetskiĭ, B N; Plekhanov, V P; Kuznetsov, A V

    2014-01-01

    The authors present research findings on the problem of technology-related electromagnetic fields as an occupational risk factor of workers health disturbances, and on the issue of prevention measures development against this adverse physical factor effects. Prospects for further research development in the field of electromagnetic safety are discussed.

  17. Quantum dynamics of a BEC interacting with a single-mode quantized field in the presence of interatom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemian, E. [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Tavassoly, M.K., E-mail: mktavassoly@yazd.ac.ir [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Photonics Research Group, Engineering Research Center, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of)

    2016-09-23

    In this paper, we consider a model in which N two-level atoms in a Bose–Einstein condensate (BEC) interact with a single-mode quantized laser field. Our goal is to investigate the quantum dynamics of atoms in the BEC in the presence of interatom interactions. To achieve the purpose, at first, using the collective angular momentum operators, we try to reduce the dynamical Hamiltonian of the system to a well-known Jaynes–Cummings like model (JCM). We also use the Dicke model to construct the state of atomic subsystem, by which the analytical solution of the system may be obtained. Then, we analyze the atomic population inversion, the degree of entanglement between the “atoms in BEC” and the “field” as well as the Mandel parameter. Numerical results show that, the atomic population inversion, atom-field entanglement and quantum statistics of photons are very sensitive to the evolved parameters in the model (and so can be well-adjusted), such as the number of atoms in BEC, the intensity of initial field, the interatom coupling constant and detuning. To investigate the entanglement properties, we pay attention to the entropy and linear entropy. It is shown that, oscillations in the two entropy criteria may be seen, with some maxima of entanglement at some moments of time. Finally, looking for the quantum statistics, we evaluate the Mandel parameter, by which we demonstrate the sub-Poissonian statistics and so the nonclassical characteristics of the field state of system. Collapse-revival phenomenon, which is a distinguishable nonclassical characteristic of the system, can be apparently observed in the atomic population inversion and the Mandel parameter. - Highlights: • N two-level atoms in a BEC interacting with a laser field in the presence of interatom interactions is considered. • The atomic population inversion, degree of entanglement between the “atoms in BEC” and the “field” and the Mandel parameter are investigated. • Collapse

  18. Quantization of Free Scalar Fields in the Presence of Natural Cutoffs

    Directory of Open Access Journals (Sweden)

    K. Nozari

    2012-01-01

    Full Text Available We construct a quantum theory of free scalar fields in (1+1-dimensions based on the deformed Heisenberg algebra x^,p^=iħ1-βp+2β2p2, that admits the existence of both a minimal measurable length and a maximal momentum, where β is a deformation parameter. We consider both canonical and path integral formalisms of the scenario. Finally a higher dimensional extension is easily performed in the path integral formalism.

  19. Quantization of Free Scalar Fields in the Presence of Natural Cutoffs

    OpenAIRE

    Nozari, K.; F. Moafi; Rezaee Balef, F.

    2012-01-01

    We construct a quantum theory of free scalar fields in (1+1)-dimensions based on the deformed Heisenberg algebra x^,p^=iħ1-βp+2β2p2, that admits the existence of both a minimal measurable length and a maximal momentum, where β is a deformation parameter. We consider both canonical and path integral formalisms of the scenario. Finally a higher dimensional extension is easily performed in the path integral formalism.

  20. Idiopathic environmental intolerance attributed to electromagnetic fields (formerly 'electromagnetic hypersensitivity'): An updated systematic review of provocation studies.

    Science.gov (United States)

    Rubin, G James; Nieto-Hernandez, Rosa; Wessely, Simon

    2010-01-01

    Idiopathic Environmental Intolerance attributed to electromagnetic fields (IEI-EMF; formerly 'electromagetic hypersensitivity') is a medically unexplained illness in which subjective symptoms are reported following exposure to electrical devices. In an earlier systematic review, we reported data from 31 blind provocation studies which had exposed IEI-EMF volunteers to active or sham electromagnetic fields and assessed whether volunteers could detect these fields or whether they reported worse symptoms when exposed to them. In this article, we report an update to that review. An extensive literature search identified 15 new experiments. Including studies reported in our earlier review, 46 blind or double-blind provocation studies in all, involving 1175 IEI-EMF volunteers, have tested whether exposure to electromagnetic fields is responsible for triggering symptoms in IEI-EMF. No robust evidence could be found to support this theory. However, the studies included in the review did support the role of the nocebo effect in triggering acute symptoms in IEI-EMF sufferers. Despite the conviction of IEI-EMF sufferers that their symptoms are triggered by exposure to electromagnetic fields, repeated experiments have been unable to replicate this phenomenon under controlled conditions. A narrow focus by clinicians or policy makers on bioelectromagnetic mechanisms is therefore, unlikely to help IEI-EMF patients in the long-term.