Staircase functions, spectral regidity and a rule for quantizing chaos
International Nuclear Information System (INIS)
Aurich, R.; Steiner, F.
1991-07-01
Considering the Selberg trace formula as an exact version of Gutzwiller's semiclassical periodic-orbit theory in the case of the free motion on compact Riemann surfaces with constant negative curvature (Hadamard-Gutzwiller model), we study two complementary basic problems in quantum chaology: the computation of the calssical staircase N(l), the number of periodic orbits with length shorter than l, in terms of the quantal energy spectrum {E n }, the computation of the spectral staircase N (E), the number of quantal energies below the energy E, in terms of the length spectrum {l n } of the classical periodic orbits. A formulation of the periodic-orbit theory is presented which is intrinsically unsmoothed, but for which an effective smoothing arises from the limited 'input data', i.e. from the limited knowledge of the periodic orbits in the case of N(E) and the limited knowledge of quantal energies in the case of N(l). Based on the periodic-orbit formula for N(E), we propose a new rule for quantizing chaos, which simply states that the quantal energies are determined by the zeros of the function ξ 1 (E) = cos (πN(E)). The formulas for N(l) and N(E) as well as the new quantization condition are tested numerically. Furthermore, it is shown that the staircase N(E) computed from the length spectrum yields (up to a constant) a good description of the spectral rigidity Δ 3 (L), being the first numerical attempt to compute a statistical property of the quantal energy spectrum of a chaotic system from classical periodic orbits. (orig.)
Quantum conductance staircase of holes in silicon nanosandwiches
Directory of Open Access Journals (Sweden)
Nikolay T. Bagraev
2017-03-01
Full Text Available The results of studying the quantum conductance staircase of holes in one-dimensional channels obtained by the split-gate method inside silicon nanosandwiches that are the ultra-narrow quantum well confined by the delta barriers heavily doped with boron on the n-type Si (100 surface are reported. Since the silicon quantum wells studied are ultra-narrow (~2 nm and confined by the delta barriers that consist of the negative-U dipole boron centers, the quantized conductance of one-dimensional channels is observed at relatively high temperatures (T>77 K. Further, the current-voltage characteristic of the quantum conductance staircase is studied in relation to the kinetic energy of holes and their sheet density in the quantum wells. The results show that the quantum conductance staircase of holes in p-Si quantum wires is caused by independent contributions of the one-dimensional (1D subbands of the heavy and light holes. In addition, the field-related inhibition of the quantum conductance staircase is demonstrated in the situation when the energy of the field-induced heating of the carriers become comparable to the energy gap between the 1D subbands. The use of the split-gate method made it possible to detect the effect of a drastic increase in the height of the quantum conductance steps when the kinetic energy of holes is increased; this effect is most profound for quantum wires of finite length, which are not described under conditions of a quantum point contact. In the concluding section of this paper we present the findings for the quantum conductance staircase of holes that is caused by the edge channels in the silicon nanosandwiches prepared within frameworks of the Hall geometry. This longitudinal quantum conductance staircase, Gxx, is revealed by the voltage applied to the Hall contacts, with the plateaus and steps that bring into correlation respectively with the odd and even fractional values.
Quantized Majorana conductance
Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Op Het Veld, Roy L. M.; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.; Sarma, S. Das; Kouwenhoven, Leo P.
2018-04-01
Majorana zero-modes—a type of localized quasiparticle—hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.
Quantized Majorana conductance
Zhang, Hao; Liu, Chun Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; Van Loo, Nick; Bommer, Jouri D.S.; De Moor, Michiel W.A.; Car, Diana; Op Het Veld, Roy L.M.; Van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P.A.M.; Sarma, S. Das; Kouwenhoven, Leo P.
2018-01-01
Majorana zero-modes - a type of localized quasiparticle - hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The
Quantized Hall conductance as a topological invariant
International Nuclear Information System (INIS)
Niu, Q.; Thouless, Ds.J.; Wu, Y.S.
1984-10-01
Whenever the Fermi level lies in a gap (or mobility gap) the bulk Hall conductance can be expressed in a topologically invariant form showing the quantization explicitly. The new formulation generalizes the earlier result by TKNN to the situation where many body interaction and substrate disorder are also present. When applying to the fractional quantized Hall effect we draw the conclusion that there must be a symmetry breaking in the many body ground state. The possibility of writing the fractionally quantized Hall conductance as a topological invariant is also carefully discussed. 19 references
Homotopy arguments for quantized Hall conductivity
Richter, T
2002-01-01
Using the strong localization bounds obtained by the Aizenman-Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling parameter vary in a region of strong localization of the corresponding two-dimensional phase diagram.
Dimensional quantization effects in the thermodynamics of conductive filaments
Niraula, D.; Grice, C. R.; Karpov, V. G.
2018-06-01
We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.
Conductance quantization suppression in the quantum Hall regime
DEFF Research Database (Denmark)
Caridad, José M.; Power, Stephen R.; Lotz, Mikkel R.
2018-01-01
Conductance quantization is the quintessential feature of electronic transport in non-interacting mesoscopic systems. This phenomenon is observed in quasi one-dimensional conductors at zero magnetic field B, and the formation of edge states at finite magnetic fields results in wider conductance...... conduction channels. Despite being a universal effect, this regime has proven experimentally elusive because of difficulties in realizing one-dimensional systems with sufficiently hard-walled, disorder-free confinement. Here, we experimentally demonstrate the suppression of conductance quantization within...
Scattering and conductance quantization in three-dimensional metal nanocontacts
DEFF Research Database (Denmark)
Brandbyge, Mads; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet
1997-01-01
The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance is with r...
Precision of quantization of the hall conductivity in a finite-size sample: Power law
International Nuclear Information System (INIS)
Greshnov, A. A.; Kolesnikova, E. N.; Zegrya, G. G.
2006-01-01
A microscopic calculation of the conductivity in the integer quantum Hall effect (IQHE) mode is carried out. The precision of quantization is analyzed for finite-size samples. The precision of quantization shows a power-law dependence on the sample size. A new scaling parameter describing this dependence is introduced. It is also demonstrated that the precision of quantization linearly depends on the ratio between the amplitude of the disorder potential and the cyclotron energy. The data obtained are compared with the results of magnetotransport measurements in mesoscopic samples
Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.
2018-01-01
We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.
Conduction quantization in monolayer MoS2
Li, T. S.
2016-10-01
We study the ballistic conduction of a monolayer MoS2 subject to a spatially modulated magnetic field by using the Landauer-Buttiker formalism. The band structure depends sensitively on the field strength, and its change has profound influence on the electron conduction. The conductance is found to demonstrate multi-step behavior due to the discrete number of conduction channels. The sharp peak and rectangular structures of the conductance are stretched out as temperature increases, due to the thermal broadening of the derivative of the Fermi-Dirac distribution function. Finally, quantum behavior in the conductance of MoS2 can be observed at temperatures below 10 K.
Quantized conductance in an atom-sized point contact
DEFF Research Database (Denmark)
Olesen, L.; Laegsgaard, E.; Stensgaard, I.
1994-01-01
We present direct measurements at room temperature of the conductance of a point contact between a scanning tunneling microscope tip and Ni, Cu, and Pt surfaces. As the contact is stretched the conductance jumps in units of 2e2/h. Atomistic simulations of the stretch of the contact combined...
Quantized conductance in atom-sized wires between two metals
DEFF Research Database (Denmark)
Brandbyge, Mads; Schiøtz, Jakob; Sørensen, Mads Reinholdt
1995-01-01
We present experimental and theoretical results for the conductance and mechanical properties of atom-sized wires between two metals. The experimental part is based on measurements with a scanning tunneling microscope (STM) where a point contact is created by indenting the tip into a gold surface...... is the origin of the scatter in the experimental data, and what is the origin of the scaling of the scattering with the number of conductance quanta? The theoretical discussion is based on a free-electron-like model where scattering from the boundary of the nanowire is included. The configurations...... of the nanowires are deduced from molecular dynamics simulations, which also give information about the mechanical properties of the system. We show that such a model can account semiquantitatively for several of the observed effects. One of the main conclusions of the theoretical analysis is that,; due...
Zero-bias conductance quantization in a normal / superconducting junction of nano wire
International Nuclear Information System (INIS)
Asano, Yasuhiro; Tanaka, Yukio
2012-01-01
We discuss a strong relationship between Majorana fermions and odd-frequency Cooper pairs which appear at a disordered normal nano wire attached to a topologically nontrivial superconducting one. The zero-bias differential conductance in a normal / superconducting nano wire junctions is quantized at 2e 2 /h irrespective of degree of disorder, length of disordered segment, and random realization of disordered potential. Such behaviors are exactly the same as those in the anomalous proximity effect of p x -wave spin-triplet superconductors. We show that odd-frequency Cooper pairs assist the unusual transport properties.
Current distribution and conductance quantization in the integer quantum Hall regime
International Nuclear Information System (INIS)
Cresti, Alessandro; Farchioni, Riccardo; Grosso, Giuseppe; Parravicini, Giuseppe Pastori
2003-01-01
Charge transport of a two-dimensional electron gas in the presence of a magnetic field is studied by means of the Keldysh-Green function formalism and the tight-binding method. We evaluate the spatial distributions of persistent (equilibrium) and transport (nonequilibrium) currents, and give a vivid picture of their profiles. In the quantum Hall regime, we find exact conductance quantization both for persistent currents and for transport currents, even in the presence of impurity scattering centres and moderate disorder. (letter to the editor)
Current distribution and conductance quantization in the integer quantum Hall regime
Energy Technology Data Exchange (ETDEWEB)
Cresti, Alessandro [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Farchioni, Riccardo [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Grosso, Giuseppe [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Parravicini, Giuseppe Pastori [NEST-INFM and Dipartimento di Fisica ' A Volta' , Universita di Pavia, via A Bassi 6, I-27100 Pavia (Italy)
2003-06-25
Charge transport of a two-dimensional electron gas in the presence of a magnetic field is studied by means of the Keldysh-Green function formalism and the tight-binding method. We evaluate the spatial distributions of persistent (equilibrium) and transport (nonequilibrium) currents, and give a vivid picture of their profiles. In the quantum Hall regime, we find exact conductance quantization both for persistent currents and for transport currents, even in the presence of impurity scattering centres and moderate disorder. (letter to the editor)
Devil's staircase in Kondo semimetals
International Nuclear Information System (INIS)
Ueda, K.; Shibata, N.; Science Univ. of Tokyo; Ishii, C.
1996-01-01
Complex magnetic phase diagrams of the trivalent cerium monopnictides are widely known as an example of the devil's staircase. We present an effective Hamiltonian for CeX which explains their complex magnetic phase diagrams in a unified way. The effective Hamiltonian consists of semimetallic conduction bands and localized f spins. A new feature is the inter-band transitions with spin exchange which frustrates with the usual intra-band Kondo couplings. (orig.)
Quantization and anomalous structures in the conductance of Si/SiGe quantum point contacts
Energy Technology Data Exchange (ETDEWEB)
Pock, J. F. von; Salloch, D.; Qiao, G.; Wieser, U.; Kunze, U. [Werkstoffe und Nanoelektronik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Hackbarth, T. [Daimler AG, D-89081 Ulm (Germany)
2016-04-07
Quantum point contacts (QPCs) are fabricated on modulation-doped Si/SiGe heterostructures and ballistic transport is studied at low temperatures. We observe quantized conductance with subband separations up to 4 meV and anomalies in the first conductance plateau at 4e{sup 2}/h. At a temperature of T = 22 mK in the linear transport regime, a weak anomalous kink structure arises close to 0.5(4e{sup 2}/h), which develops into a distinct plateau-like structure as temperature is raised up to T = 4 K. Under magnetic field parallel to the wire up to B = 14 T, the anomaly evolves into the Zeeman spin-split level at 0.5(4e{sup 2}/h), resembling the '0.7 anomaly' in GaAs/AlGaAs QPCs. Additionally, a zero-bias anomaly (ZBA) is observed in nonlinear transport spectroscopy. At T = 22 mK, a parallel magnetic field splits the ZBA peak up into two peaks. At B = 0, elevated temperatures lead to similar splitting, which differs from the behavior of ZBAs in GaAs/AlGaAs QPCs. Under finite dc bias, the differential resistance exhibits additional plateaus approximately at 0.8(4e{sup 2}/h) and 0.2(4e{sup 2}/h) known as '0.85 anomaly' and '0.25 anomaly' in GaAs/AlGaAs QPCs. Unlike the first regular plateau at 4e{sup 2}/h, the 0.2(4e{sup 2}/h) plateau is insensitive to dc bias voltage up to at least V{sub DS} = 80 mV, in-plane magnetic fields up to B = 15 T, and to elevated temperatures up to T = 25 K. We interpret this effect as due to pinching off one of the reservoirs close to the QPC. We do not see any indication of lifting of the valley degeneracy in our samples.
International Nuclear Information System (INIS)
Janin, Marion; Ghilane, Jalal; Lacroix, Jean-Christophe
2012-01-01
Highlights: ► Electrochemistry and SECM to generate copper nanowires with quantized conductance. ► Stable atomic contacts lasting for several hundreds of seconds have been obtained. ► The quantized conductances are independent of the tip and gap size. ► The method allows contacts to be generated in the presence of chosen molecules. ► Four-electrode configuration opens the route to redox gated atomic contact. - Abstract: Scanning electrochemical microscopy, SECM, is proposed as a tool for the fabrication of copper nanowires. In a first step, configuration based on two electrodes, a platinum UME (cathode) and a copper substrate (anode), operating in the SECM configuration was employed. For nanowires generated in water the conductance changes stepwise and varies by integer values of the conductance quantum G 0 . The formation of atomic contacts is supported by the ohmic behavior of the I–V curve. It depends neither on the UME tip radius nor on the initial gap size between tip and substrate. Atomic contacts generated in aqueous solutions of sodium dodecyl sulfate (SDS) below the critical micellar concentration (CMC) have conductances below 1G 0 attributed to molecular adsorption on the contact. In some cases, the nanowires have low conductance, 0.01G 0 . The corresponding I–V curve shows tunneling rather than ohmic behavior, suggesting that molecular junctions are formed with a few surfactant molecules trapped between the two electrodes. Finally, copper nanowires with quantized conductance have been generated using the SECM operating in a four-electrode setup. Thanks to the reference electrode, this configuration leads to better control of the potential of each working electrode; this setup will make it possible to evaluate the conductance variation and/or modulation upon electrochemical stimuli.
Generalising the staircase models
International Nuclear Information System (INIS)
Dorey, P.; Ravanini, F.
1993-01-01
Systems of integral equations are proposed which generalise those previously encountered in connection with the so-called staircase models. Under the assumption that these equations describe the finite-size effects of relativistic field theories via the thermodynamic Bethe ansatz, analytical and numerical evidence is given for the existence of a variety of new roaming renormalisation group trajectories. For each positive integer k and s=0, .., k-1, these is a one-parameter family of trajectories, passing close by the coset conformal field theories G (k) xG (nk+s) /G ((n+1)k+s) before finally flowing to a massive theory for s=0, or to another coset model for s.=|0. (orig.)
Quantization rules for strongly chaotic systems
International Nuclear Information System (INIS)
Aurich, R.; Bolte, J.
1992-09-01
We discuss the quantization of strongly chaotic systems and apply several quantization rules to a model system given by the unconstrained motion of a particle on a compact surface of constant negative Gaussian curvature. We study the periodic-orbit theory for distinct symmetry classes corresponding to a parity operation which is always present when such a surface has genus two. Recently, several quantization rules based on periodic orbit theory have been introduced. We compare quantizations using the dynamical zeta function Z(s) with the quantization condition cos(π N(E)) = 0, where a periodix-orbit expression for the spectral staircase N(E) is used. A general discussion of the efficiency of periodic-orbit quantization then allows us to compare the different methods. The system dependence of the efficiency, which is determined by the topological entropy τ and the mean level density anti d(E), is emphasized. (orig.)
Gauge invariance and fractional quantized Hall effect
International Nuclear Information System (INIS)
Tao, R.; Wu, Y.S.
1984-01-01
It is shown that gauge invariance arguments imply the possibility of fractional quantized Hall effect; the Hall conductance is accurately quantized to a rational value. The ground state of a system showing the fractional quantized Hall effect must be degenerate; the non-degenerate ground state can only produce the integral quantized Hall effect. 12 references
DEFF Research Database (Denmark)
Kjærgaard, Morten; Nichele, F; Suominen, Henri Juhani
2016-01-01
topological matter is by coupling a 2D electron gas with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al......, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e(2)/h...
International Nuclear Information System (INIS)
Cabrera, J. A.; Martin, R.
1976-01-01
We present in this work a review of the conventional quantization procedure, the proposed by I.E. Segal and a new quantization procedure similar to this one for use in non linear problems. We apply this quantization procedures to different potentials and we obtain the appropriate equations of motion. It is shown that for the linear case the three procedures exposed are equivalent but for the non linear cases we obtain different equations of motion and different energy spectra. (Author) 16 refs
Staircase To Sustainable Development
Directory of Open Access Journals (Sweden)
Doorasamy Mishelle
2015-06-01
Full Text Available The aim of this article to provide a theoretical framework on the concepts of Sustainable Development and the process that companies need to follow in order to ensure the future sustainability of business operations. Various secondary sources and previous literature was reviewed to clearly identify why companies are finding it difficult to conduct their business operations in a sustainable manner. Stricter legislation and regulations, increased competition, depletion of natural resources and market pressures have placed organisations under increased pressure to improve environmental performance and achieve eco-efficiency. This paper provides comprehensive overview of how companies can achieve the ‘Triple bottom line’ by committing to continuous improvement and adhering to the regulations stipulated according to the International Standards of Organisations (ISO14001.
Energy Technology Data Exchange (ETDEWEB)
Faizal, Mir
2013-12-18
In this Letter we will analyze the creation of the multiverse. We will first calculate the wave function for the multiverse using third quantization. Then we will fourth-quantize this theory. We will show that there is no single vacuum state for this theory. Thus, we can end up with a multiverse, even after starting from a vacuum state. This will be used as a possible explanation for the creation of the multiverse. We also analyze the effect of interactions in this fourth-quantized theory.
International Nuclear Information System (INIS)
Klauder, J.R.
1983-01-01
The author provides an introductory survey to stochastic quantization in which he outlines this new approach for scalar fields, gauge fields, fermion fields, and condensed matter problems such as electrons in solids and the statistical mechanics of quantum spins. (Auth.)
Weaver, Nik
2001-01-01
With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a variety of topics.Detailed here for the first time, the fundamental idea of mathematical quantization is that sets are replaced by Hilbert spaces. Building on this idea, and most importantly on the fact that scalar-valued functions on a set correspond to operators on a Hilbert space, one can determine quantum analogs of a variety of classical structures. In particular, because topologies and measure classes on a set can be treated in terms of scalar-valued functions, we can transfer these constructions to the quantum realm, giving rise to C*- and von Neumann algebras.In the first half of the book, the author quickly builds the operator algebra setting. He uses this ...
Staircase Models from Affine Toda Field Theory
Dorey, P; Dorey, Patrick; Ravanini, Francesco
1993-01-01
We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn.
Mathematical obstructions to quantization
International Nuclear Information System (INIS)
Chernoff, P.R.
1981-01-01
Quantization is commonly viewed as a mapping of functions on classical phase space to operators on Hilbert space, preserving the Lie algebra structure and satisfying some additional physically motivated requirements. The present paper surveys the main results, old and new, concerning the existence of quantization process. Although it is possible to preserve the Lie structure, it is shown that any one of a number of reasonable additional requirements on the quantization process leads to a contradiction
International Nuclear Information System (INIS)
Arodz, H.
1987-01-01
The two formulations of quantum theory of the free electromagnetic field are presented. In the Coulomb gauge approach the independent dynamical variables have been identified and then, in order to quantize the theory, it has been sufficient to apply the straightforward canonical quantization. In the Gupta-Bleuler approach the auxilliary theory is first considered. The straightforward canonical quantization of it leads to the quantum theory defined in the space G with indefinite norm. 15 refs. (author)
Asymptotic and geometrical quantization
International Nuclear Information System (INIS)
Karasev, M.V.; Maslov, V.P.
1984-01-01
The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered
International Nuclear Information System (INIS)
Hueffel, H.
1990-01-01
After a brief review of the BRST formalism and of the Parisi-Wu stochastic quantization method we introduce the BRST stochastic quantization scheme. It allows the second quantization of constrained Hamiltonian systems in a manifestly gauge symmetry preserving way. The examples of the relativistic particle, the spinning particle and the bosonic string are worked out in detail. The paper is closed by a discussion on the interacting field theory associated to the relativistic point particle system. 58 refs. (Author)
Deep Learning Policy Quantization
van de Wolfshaar, Jos; Wiering, Marco; Schomaker, Lambertus
2018-01-01
We introduce a novel type of actor-critic approach for deep reinforcement learning which is based on learning vector quantization. We replace the softmax operator of the policy with a more general and more flexible operator that is similar to the robust soft learning vector quantization algorithm.
Probabilistic Amplitude Shaping With Hard Decision Decoding and Staircase Codes
Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi; Steiner, Fabian
2018-05-01
We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by B\\"ocherer \\emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.
Topological quantization of ensemble averages
International Nuclear Information System (INIS)
Prodan, Emil
2009-01-01
We define the current of a quantum observable and, under well-defined conditions, we connect its ensemble average to the index of a Fredholm operator. The present work builds on a formalism developed by Kellendonk and Schulz-Baldes (2004 J. Funct. Anal. 209 388) to study the quantization of edge currents for continuous magnetic Schroedinger operators. The generalization given here may be a useful tool to scientists looking for novel manifestations of the topological quantization. As a new application, we show that the differential conductance of atomic wires is given by the index of a certain operator. We also comment on how the formalism can be used to probe the existence of edge states
Bassett, David R; Browning, Ray; Conger, Scott A; Wolff, Dana L; Flynn, Jennifer I
2013-05-01
The indoor built environment has the potential to influence levels of physical activity. However, the extent to which architectural design in commercial buildings can influence the percentage of people choosing to use the stairs versus elevators is unknown. The purpose of this study was to determine if buildings with centrally located, accessible, and aesthetically pleasing staircases result in a greater percentage of people taking the stairs. Direct observations of stair and elevator use were conducted in 3 buildings on a university campus. One of the buildings had a bank of 4 centrally located elevators and a fire escape stairwell behind a steel door. The other 2 buildings had centrally located staircases and out-of-the-way elevators. The percentage of people who ascended the stairs was 8.1% in the elevator-centric building, compared with 72.8% and 81.1% in the 2 stair-centric buildings (P building, compared with 89.5% and 93.7% in the stair-centric buildings (P buildings are constructed with centrally located, accessible, and aesthetically pleasing staircases, a greater percentage of people will choose to take the stairs.
Gerhardt, Claus
2018-01-01
A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...
Caffeine and length dependence of staircase potentiation in skeletal muscle.
Rassier, D E; Tubman, L A; MacIntosh, B R
1998-01-01
Skeletal muscle sensitivity to Ca2+ is greater at long lengths, and this results in an optimal length for twitch contractions that is longer than optimal length for tetanic contractions. Caffeine abolishes this length dependence of Ca2+ sensitivity. Muscle length (ML) also affects the degree of staircase potentiation. Since staircase potentiation is apparently caused by an increased Ca2+ sensitivity of the myofilaments, we tested the hypothesis that caffeine depresses the length dependence of staircase potentiation. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 10 s of 10-Hz stimulation were analyzed at seven different lengths to evaluate the length dependence of staircase potentiation. In the absence of caffeine, length dependence of Ca2+ sensitivity was observed, and the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased length (DT = 1.47 - 0.05 ML, r2 = 0.95, where DT is developed tension). Length dependence of Ca2+ sensitivity was decreased by caffeine when caffeine was administered in amounts estimated to result in 0.5 and 0.75 mM concentrations. Furthermore, the negative slope of the relationship between staircase potentiation and muscle length was diminished at the lower caffeine dose, and the slope was not different from zero after the higher dose (DT = 1.53 - 0.009 ML, r2 = 0.43). Our study shows that length dependence of Ca2+ sensitivity in intact skeletal muscle is diminished by caffeine. Caffeine also suppressed the length dependence of staircase potentiation, suggesting that the mechanism of this length dependence may be closely related to the mechanism for length dependence of Ca2+ sensitivity.
Electron Climbing a 'Devil's Staircase' in Wave-Particle Interaction
International Nuclear Information System (INIS)
Macor, Alessandro; Doveil, Fabrice; Elskens, Yves
2005-01-01
Numerous nonlinear driven systems display spectacular responses to forcing, including chaos and complex phase-locking plateaus characterized by 'devil's staircase', Arnold tongues, and Farey trees. In the universality class of Hamiltonian systems, a paradigm is the motion of a charged particle in two waves, which inspired a renormalization group method for its description. Here we report the observation of the underlying 'devil's staircase' by recording the beam velocity distribution function at the outlet of a traveling wave tube versus the amplitude of two externally induced waves
Studies in geometric quantization
International Nuclear Information System (INIS)
Tuynman, G.M.
1988-01-01
This thesis contains five chapters, of which the first, entitled 'What is prequantization, and what is geometric quantization?', is meant as an introduction to geometric quantization for the non-specialist. The second chapter, entitled 'Central extensions and physics' deals with the notion of central extensions of manifolds and elaborates and proves the statements made in the first chapter. Central extensions of manifolds occur in physics as the freedom of a phase factor in the quantum mechanical state vector, as the phase factor in the prequantization process of classical mechanics and it appears in mathematics when studying central extension of Lie groups. In this chapter the connection between these central extensions is investigated and a remarkable similarity between classical and quantum mechanics is shown. In chapter three a classical model is given for the hydrogen atom including spin-orbit and spin-spin interaction. The method of geometric quantization is applied to this model and the results are discussed. In the final chapters (4 and 5) an explicit method to calculate the operators corresponding to classical observables is given when the phase space is a Kaehler manifold. The obtained formula are then used to quantise symplectic manifolds which are irreducible hermitian symmetric spaces and the results are compared with other quantization procedures applied to these manifolds (in particular to Berezin's quantization). 91 refs.; 3 tabs
International Nuclear Information System (INIS)
DeWitt-Morette, C.
1983-01-01
Much is expected of path integration as a quantization procedure. Much more is possible if one recognizes that path integration is at the crossroad of stochastic and differential calculus and uses the full power of both stochastic and differential calculus in setting up and computing path integrals. In contrast to differential calculus, stochastic calculus has only comparatively recently become an instrument of thought. It has nevertheless already been used in a variety of challenging problems, for instance in the quantization problem. The author presents some applications of the stochastic scheme. (Auth.)
Minimal quantization and confinement
International Nuclear Information System (INIS)
Ilieva, N.P.; Kalinowskij, Yu.L.; Nguyen Suan Han; Pervushin, V.N.
1987-01-01
A ''minimal'' version of the Hamiltonian quantization based on the explicit solution of the Gauss equation and on the gauge-invariance principle is considered. By the example of the one-particle Green function we show that the requirement for gauge invariance leads to relativistic covariance of the theory and to more proper definition of the Faddeev - Popov integral that does not depend on the gauge choice. The ''minimal'' quantization is applied to consider the gauge-ambiguity problem and a new topological mechanism of confinement
International Nuclear Information System (INIS)
Klitzing von, K.
1989-01-01
The quantized Hall effect is theoretically explained in detail as are its basic properties. The explanation is completed with the pertinent mathematical relations and illustrative figures. Experimental data are critically assessed obtained by quantum transport measurement in a magnetic field on two-dimensional systems. The results are reported for a MOSFET silicon transistor and for GaAs-Al x Ga 1-x As heterostructures. The application is discussed of the quantized Hall effect in determining the fine structure constant or in implementing the resistance standard. (M.D.). 27 figs., 57 refs
Circle Maps and the Devil's Staircase in a Chemical Oscillator
DEFF Research Database (Denmark)
Brøns, Morten; Gross, P.; Bar-Eli, K.
1996-01-01
We explain numerical results on a periodically perturbed Oregonator by Markman and Bar-Eli (J. Phys. Chem. 98 12248 (1994)). If the dynamics of the system is governed by a family of diffeomorphisms of a circle with a Devil's staircase one will expect the observed behavior, i.e. (1) Only periodic...
Quantization of physical parameters
International Nuclear Information System (INIS)
Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge
1984-01-01
Dynamical models are described with parameters (mass, coupling strengths) which must be quantized for quantum mechanical consistency. These and related topological ideas have physical application to phenomenological descriptions of high temperature and low energy quantum chromodynamics, to the nonrelativistic dynamics of magnetic monopoles, and to the quantum Hall effect. (author)
Enhanced quantization: a primer
International Nuclear Information System (INIS)
Klauder, John R
2012-01-01
Although classical mechanics and quantum mechanics are separate disciplines, we live in a world where Planck’s constant ℏ > 0, meaning that the classical and quantum world views must actually coexist. Traditionally, canonical quantization procedures postulate a direct linking of various c-number and q-number quantities that lie in disjoint realms, along with the quite distinct interpretations given to each realm. In this paper we propose a different association of classical and quantum quantities that renders classical theory a natural subset of quantum theory letting them coexist as required. This proposal also shines light on alternative linking assignments of classical and quantum quantities that offer different perspectives on the very meaning of quantization. In this paper we focus on elaborating the general principles, while elsewhere we have published several examples of what this alternative viewpoint can achieve; these examples include removal of singularities in classical solutions to certain models, and an alternative quantization of several field theory models that are trivial when quantized by traditional methods but become well defined and nontrivial when viewed from the new viewpoint. (paper)
Quantized, piecewise linear filter network
DEFF Research Database (Denmark)
Sørensen, John Aasted
1993-01-01
A quantization based piecewise linear filter network is defined. A method for the training of this network based on local approximation in the input space is devised. The training is carried out by repeatedly alternating between vector quantization of the training set into quantization classes...... and equalization of the quantization classes linear filter mean square training errors. The equalization of the mean square training errors is carried out by adapting the boundaries between neighbor quantization classes such that the differences in mean square training errors are reduced...
Stochastic quantization and gravity
International Nuclear Information System (INIS)
Rumpf, H.
1984-01-01
We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)
Quantized Bogoliubov transformations
International Nuclear Information System (INIS)
Geyer, H.B.
1984-01-01
The boson mapping of single fermion operators in a situation dominated by the pairing force gives rise to a transformation that can be considered a quantized version of the Bogoliubov transformation. This transformation can also be obtained as an exact special case of operators constructed from an approximate treatment of particle number projection, suggesting a method of obtaining the boson mapping in cases more complicated than that of pairing force domination
Devil's staircase in a fully frustrated superconducting array
International Nuclear Information System (INIS)
Kim, S.; Choi, M.Y.
1993-01-01
A two-dimensional fully frustrated superconducting array with a combined direct and alternating applied current is studied both analytically and numerically. At zero temperature equations of motion can be reduced through the use of the translational symmetry present in the system. Remarkably, we find a series of subharmonic steps in addition to standard integer and half-integer giant Shapiro steps, leading to devil's staircase structure. We also present results of detailed numerical simulations, which indeed reveal such subharmonic fine structure. (orig.)
Quantum Computing and Second Quantization
International Nuclear Information System (INIS)
Makaruk, Hanna Ewa
2017-01-01
Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.
System Identification with Quantized Observations
Wang, Le Yi; Zhang, Jifeng; Zhao, Yanlong
2010-01-01
This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification,
Quantization Procedures; Sistemas de cuantificacion
Energy Technology Data Exchange (ETDEWEB)
Cabrera, J. A.; Martin, R.
1976-07-01
We present in this work a review of the conventional quantization procedure, the proposed by I.E. Segal and a new quantization procedure similar to this one for use in non linear problems. We apply this quantization procedures to different potentials and we obtain the appropriate equations of motion. It is shown that for the linear case the three procedures exposed are equivalent but for the non linear cases we obtain different equations of motion and different energy spectra. (Author) 16 refs.
Formal connections in deformation quantization
DEFF Research Database (Denmark)
Masulli, Paolo
The field of this thesis is deformation quantization, and we consider mainly symplectic manifolds equipped with a star product. After reviewing basics in complex geometry, we introduce quantization, focusing on geometric quantization and deformation quantization. The latter is defined as a star...... characteristic class, and that formal connections form an affine space over the derivations of the star products. Moreover, if the parameter space for the family of star products is contractible, we obtain that any two flat formal connections are gauge equivalent via a self-equivalence of the family of star...
Covariant Quantization with Extended BRST Symmetry
Geyer, B.; Gitman, D. M.; Lavrov, P. M.
1999-01-01
A short rewiev of covariant quantization methods based on BRST-antiBRST symmetry is given. In particular problems of correct definition of Sp(2) symmetric quantization scheme known as triplectic quantization are considered.
On quantization of relativistic string theory
International Nuclear Information System (INIS)
Isaev, A.P.
1982-01-01
Quantization of the relativistic string theory based on methods of the constrained Hamiltonian systems quantization is considered. Connections of this approach and Polyakov's quantization are looked. New representation of a loop heat kernel is obtained
Equivalence of Dirac quantization and Schwinger's action principle quantization
International Nuclear Information System (INIS)
Das, A.; Scherer, W.
1987-01-01
We show that the method of Dirac quantization is equivalent to Schwinger's action principle quantization. The relation between the Lagrange undetermined multipliers in Schwinger's method and Dirac's constraint bracket matrix is established and it is explicitly shown that the two methods yield identical (anti)commutators. This is demonstrated in the non-trivial example of supersymmetric quantum mechanics in superspace. (orig.)
Quantization of interface currents
Energy Technology Data Exchange (ETDEWEB)
Kotani, Motoko [AIMR, Tohoku University, Sendai (Japan); Schulz-Baldes, Hermann [Department Mathematik, Universität Erlangen-Nürnberg, Erlangen (Germany); Villegas-Blas, Carlos [Instituto de Matematicas, Cuernavaca, UNAM, Cuernavaca (Mexico)
2014-12-15
At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.
Quantization of fields with constraints
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M.; Tyutin, I.V.
1990-01-01
The quantization of singular field theories, in particular, gauge theories, is one of the key problems in quantum field theory. This book - which addresses the reader acquainted with the foundations of quantum field theory - provides a comprehensive analysis of this problem and techniques for its solution. The main topics are canonical and Lagrangian quantization and the path integral method. (orig.).
Dynamics of a jumping particle on a staircase profile
International Nuclear Information System (INIS)
Campos, J.; Romero-Valles, M.J.; Torres, P.J.; Veerman, J.J.P.
2007-01-01
We perform a detailed analysis of the dynamics of the descent of a particle bouncing down a staircase profile under the action of gravity. In order to get interesting dynamics we make a detail analysis of the case which the particle loses momentum in the direction orthogonal to the collision plane but preserves the tangential component of the momentum. We prove that in this case all orbits are bounded and show the existence and stability of periodic solutions. The interplay between loss and gain of energy due to impacts and free falling respectively generates a rich dynamics
Staircase falls: High-risk groups and injury characteristics in 464 patients
Boele van Hensbroek, P.; Mulder, S.; Luitse, J. S. K.; van Ooijen, M. R.; Goslings, J. C.
2009-01-01
Introduction: Few data are available about the epidemiology and injury characteristics in staircase falls. The available literature mainly concerns children and autopsy studies. Objective: To describe the epidemiology and injury characteristics of staircase falls, and to identify high-risk groups
Devil's Staircase in the Magnetoresistance of a Periodic Array of Scatterers
International Nuclear Information System (INIS)
Wiersig, Jan; Ahn, Kang-Hun
2001-01-01
The nonlinear response to an external electric field is studied for classical noninteracting charged particles under the influence of a uniform magnetic field, a periodic potential, and an effective friction force. We find numerical and analytical evidence that the ratio of transverse to longitudinal resistance forms a Devil's staircase. The staircase is attributed to the dynamical phenomenon of mode-locking
Structured chaos in a devil's staircase of the Josephson junction.
Shukrinov, Yu M; Botha, A E; Medvedeva, S Yu; Kolahchi, M R; Irie, A
2014-09-01
The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior. These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values.
Quantization ambiguity, ergodicity and semiclassics
International Nuclear Information System (INIS)
Kaplan, Lev
2002-01-01
It is well known that almost all eigenstates of a classically ergodic system are individually ergodic on coarse-grained scales. This has important implications for the quantization ambiguity in ergodic systems: the difference between alternative quantizations is suppressed compared with the O( h-bar 2 ) ambiguity in the integrable or regular case. For two-dimensional ergodic systems in the high-energy regime, individual eigenstates are independent of the choice of quantization procedure, in contrast with the regular case, where even the ordering of eigenlevels is ambiguous. Surprisingly, semiclassical methods are shown to be much more precise in any dimension for chaotic than for integrable systems
Quantized beam shifts in graphene
Energy Technology Data Exchange (ETDEWEB)
de Melo Kort-Kamp, Wilton Junior [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinitsyn, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego Alejandro Roberto [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-10-08
We predict the existence of quantized Imbert-Fedorov, Goos-Hanchen, and photonic spin Hall shifts for light beams impinging on a graphene-on-substrate system in an external magnetic field. In the quantum Hall regime the Imbert-Fedorov and photonic spin Hall shifts are quantized in integer multiples of the fine structure constant α, while the Goos-Hanchen ones in multiples of α^{2}. We investigate the influence on these shifts of magnetic field, temperature, and material dispersion and dissipation. An experimental demonstration of quantized beam shifts could be achieved at terahertz frequencies for moderate values of the magnetic field.
The quantization of Regge calculus
International Nuclear Information System (INIS)
Rocek, M.; Williams, R.M.; Cambridge Univ.
1984-01-01
We discuss the quantization of Regge's discrete description of Einstein's theory of gravitation. We show how the continuum theory emerges in the weak field long wavelength limit. We also discuss reparametrizations and conformal transformations. (orig.)
Visibility of wavelet quantization noise
Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.
1997-01-01
The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
Geometric quantization of vector bundles and the correspondence with deformation quantization
International Nuclear Information System (INIS)
Hawkins, E.
2000-01-01
I repeat my definition for quantization of a vector bundle. For the cases of the Toeplitz and geometric quantizations of a compact Kaehler manifold, I give a construction for quantizing any smooth vector bundle, which depends functorially on a choice of connection on the bundle. Using this, the classification of formal deformation quantizations, and the formal, algebraic index theorem, I give a simple proof as to which formal deformation quantization (modulo isomorphism) is derived from a given geometric quantization. (orig.)
Directory of Open Access Journals (Sweden)
W Alexander Escobar
2013-11-01
Full Text Available The proposed model holds that, at its most fundamental level, visual awareness is quantized. That is to say that visual awareness arises as individual bits of awareness through the action of neural circuits with hundreds to thousands of neurons in at least the human striate cortex. Circuits with specific topologies will reproducibly result in visual awareness that correspond to basic aspects of vision like color, motion and depth. These quanta of awareness (qualia are produced by the feedforward sweep that occurs through the geniculocortical pathway but are not integrated into a conscious experience until recurrent processing from centers like V4 or V5 select the appropriate qualia being produced in V1 to create a percept. The model proposed here has the potential to shift the focus of the search for visual awareness to the level of microcircuits and these likely exist across the kingdom Animalia. Thus establishing qualia as the fundamental nature of visual awareness will not only provide a deeper understanding of awareness, but also allow for a more quantitative understanding of the evolution of visual awareness throughout the animal kingdom.
Stochastic quantization of instantons
International Nuclear Information System (INIS)
Grandati, Y.; Berard, A.; Grange, P.
1996-01-01
The method of Parisi and Wu to quantize classical fields is applied to instanton solutions var-phi I of euclidian non-linear theory in one dimension. The solution var-phi var-epsilon of the corresponding Langevin equation is built through a singular perturbative expansion in var-epsilon=h 1/2 in the frame of the center of the mass of the instanton, where the difference var-phi var-epsilon -var-phi I carries only fluctuations of the instanton form. The relevance of the method is shown for the stochastic K dV equation with uniform noise in space: the exact solution usually obtained by the inverse scattering method is retrieved easily by the singular expansion. A general diagrammatic representation of the solution is then established which makes a thorough use of regrouping properties of stochastic diagrams derived in scalar field theory. Averaging over the noise and in the limit of infinite stochastic time, the authors obtain explicit expressions for the first two orders in var-epsilon of the pertrubed instanton of its Green function. Specializing to the Sine-Gordon and var-phi 4 models, the first anaharmonic correction is obtained analytically. The calculation is carried to second order for the var-phi 4 model, showing good convergence. 21 refs., 5 fig
Geometric quantization and general relativity
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-01-01
The purpose of geometric quantization is to give a rigorous mathematical content to the 'correspondence principle' between classical and quantum mechanics. The main tools are borrowed on one hand from differential geometry and topology (differential manifolds, differential forms, fiber bundles, homology and cohomology, homotopy), on the other hand from analysis (functions of positive type, infinite dimensional group representations, pseudo-differential operators). Some satisfactory results have been obtained in the study of dynamical systems, but some fundamental questions are still waiting for an answer. The 'geometric quantization of fields', where some further well known difficulties arise, is still in a preliminary stage. In particular, the geometric quantization on the gravitational field is still a mere project. The situation is even more uncertain due to the fact that there is no experimental evidence of any quantum gravitational effect which could give us a hint towards what we are supposed to look for. The first level of both Quantum Theory, and General Relativity describes passive matter: influence by the field without being a source of it (first quantization and equivalence principle respectively). In both cases this is only an approximation (matter is always a source). But this approximation turns out to be the least uncertain part of the description, because on one hand the first quantization avoids the problems of renormalization and on the other hand the equivalence principle does not imply any choice of field equations (it is known that one can modify Einstein equations at short distances without changing their geometrical properties). (Auth.)
Yamada, Toshishige; Yamada, Hidenori; Lohn, Andrew J; Kobayashi, Nobuhiko P
2011-02-04
Detailed electron transport analysis is performed for an ensemble of conical indium phosphide nanowires bridging two hydrogenated n(+)-silicon electrodes. The current-voltage (I-V) characteristics exhibit a Coulomb staircase in the dark with a period of ∼ 1 V at room temperature. The staircase is found to disappear under light illumination. This observation can be explained by assuming the presence of a tiny Coulomb island, and its existence is possible due to the large surface depletion region created within contributing nanowires. Electrons tunnel in and out of the Coulomb island, resulting in the Coulomb staircase I-V. Applying light illumination raises the electron quasi-Fermi level and the tunneling barriers are buried, causing the Coulomb staircase to disappear.
First step towards a Devil´s staircase in spin-crossover materials
Czech Academy of Sciences Publication Activity Database
Trzop, E.; Zhang, D.; Pineiro-Lopez, L.; Valverde-Munoz, F.J.; Munoz, M.C.; Palatinus, Lukáš; Guerin, L.; Cailleau, H.; Real, J.A.; Collet, E.
2016-01-01
Roč. 55, č. 30 (2016), s. 8675-8679 ISSN 0044-8249 Institutional support: RVO:68378271 Keywords : aperiodicity * coordination polymers * Devil’s staircase * phase transitions * spin-crossover Subject RIV: BM - Solid Matter Physics ; Magnetism
Kähler Quantization and Hitchin Connections
DEFF Research Database (Denmark)
Leth Gammelgaard, Niels
In this thesis, we study geometric quantization as well as deformation quantization of symplectic manifolds endowed with a compatible complex structure. Using Karabegov's classification of star products with separation of variables, we give an explicit, local, combinatorial formula for any...
Pseudo-Kaehler quantization on flag manifolds
International Nuclear Information System (INIS)
Karabegov, A.V.
1997-07-01
A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kaehler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols. (author). 16 refs
Weigmann, U; Petersen, J
1996-08-01
Visual acuity determination according to DIN 58,220 does not make full use of the information received about the patient, in contrast to the staircase method. Thus, testing the same number of optotypes, the staircase method should yield more reproducible acuity results. On the other hand, the staircase method gives systematically higher acuity values because it converges on the 48% point of the psychometric function (for Landolt rings in eight positions) and not on the 65% probability, as DIN 58,220 with criterion 3/5 does. This bias can be avoided by means of a modified evaluation. Using the staircase data we performed a maximum likelihood estimate of the psychometric function as a whole and computed the acuity value for 65% probability of correct answers. We determined monocular visual acuity in 102 persons with widely differing visual performance. Each subject underwent four tests in random order, two according to DIN 58,220 and two using the modified staircase method (Landolt rings in eight positions scaled by a factor 1.26; PC monitor with 1024 x 768 pixels; distance 4.5 m). Each test was performed with 25 optotypes. The two procedures provide the same mean visual acuity values (difference less than 0.02 acuity steps). The test-retest results match in 30.4% of DIN repetitions but in 50% of the staircases. The standard deviation of the test-retest difference is 1.41 (DIN) and 1.06 (modified staircase) acuity steps. Thus the standard deviation of the single test is 1.0 (DIN) and 0.75 (modified staircase) acuity steps. The new method provides visual acuity values identical to DIN 58,220 but is superior with respect to reproducibility.
Loop quantization as a continuum limit
International Nuclear Information System (INIS)
Manrique, Elisa; Oeckl, Robert; Weber, Axel; Zapata, Jose A
2006-01-01
We present an implementation of Wilson's renormalization group and a continuum limit tailored for loop quantization. The dynamics of loop-quantized theories is constructed as a continuum limit of the dynamics of effective theories. After presenting the general formalism we show as a first explicit example the 2D Ising field theory, an interacting relativistic quantum field theory with local degrees of freedom quantized by loop quantization techniques
Context quantization by minimum adaptive code length
DEFF Research Database (Denmark)
Forchhammer, Søren; Wu, Xiaolin
2007-01-01
Context quantization is a technique to deal with the issue of context dilution in high-order conditional entropy coding. We investigate the problem of context quantizer design under the criterion of minimum adaptive code length. A property of such context quantizers is derived for binary symbols....
Quantization and hall effect: necessities and difficulties
International Nuclear Information System (INIS)
Ahmed Bouketir; Hishamuddin Zainuddin
1999-01-01
The quantization procedure is a necessary tool for a proper understanding of many interesting quantum phenomena in modern physics. In this note, we focus on geometrical framework for such procedures, particularly the group-theoretic approach and their difficulties. Finally we look through the example of Hall effect as a quantized macroscopic phenomenon with group-theoretic quantization approach. (author)
Theory of the quantized Hall effect. Pt. 3
International Nuclear Information System (INIS)
Levine, H.; Pruisken, A.M.M.; Libby, S.B.
1984-01-01
In the previous paper, we have demonstrated the need for a phase transition as a function of theta in the non-liner sigma-model describing the quantized Hall effect. In this work, we present arguments for the occurrence of exactly such a transition. We make use of a dilute gas instanton approximation as well as present a more rigorous duality argument to show that the usual scaling of the conductivity to zero at large distances is altered whenever sigmasub(xy)sup((0)) approx.= 1/2ne 2 /h, n integer. This then completes our theory of the quantized Hall effect. (orig.)
Response of two-band systems to a single-mode quantized field
Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.
2016-03-01
The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.
Perturbation theory from stochastic quantization
International Nuclear Information System (INIS)
Hueffel, H.
1984-01-01
By using a diagrammatical method it is shown that in scalar theories the stochastic quantization method of Parisi and Wu gives the usual perturbation series in Feynman diagrams. It is further explained how to apply the diagrammatical method to gauge theories, discussing the origin of ghost effects. (Author)
Ordering in the skyrmions quantization
International Nuclear Information System (INIS)
Ananias Neto, Jorge
1994-01-01
Using collective coordinates for quantization, we show that exits a ordering problem in the definition of momentum operator. We suggest that a new definition for this operator can solve the infrared problem which rises when an attempt to minimize all the quantum Hamiltonian is made
Quantization of the Radiation Field
Indian Academy of Sciences (India)
field,quantization,Lamb shift. Avinash Khare ... actions as well as for theories beyond like grand unified theories. Further, the same ... cules as well as condensed matter physics, not to men- tion their ... of an electromagnetic field by a moving electron, and of the reaction of this field on the electron have not yet been touched.".
Stochastic quantization of Proca field
International Nuclear Information System (INIS)
Lim, S.C.
1981-03-01
We discuss the complications that arise in the application of Nelson's stochastic quantization scheme to classical Proca field. One consistent way to obtain spin-one massive stochastic field is given. It is found that the result of Guerra et al on the connection between ground state stochastic field and the corresponding Euclidean-Markov field extends to the spin-one case. (author)
On the quantization of spacetime
International Nuclear Information System (INIS)
Banai, M.
1981-01-01
A program of quantization of relativistic local field theories in terms of Hilbert modules over non-commutative Csup*-algebras is outlined. The spacetime of the considered systems should become a ''quantum'' represented by a Hilbert space. Two suggestions are given for the possible determination this quantum spacetime. (author)
Climatic irregular staircases: generalized acceleration of global warming.
De Saedeleer, Bernard
2016-01-27
Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.
Deformation of second and third quantization
Faizal, Mir
2015-03-01
In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.
Covariant quantizations in plane and curved spaces
International Nuclear Information System (INIS)
Assirati, J.L.M.; Gitman, D.M.
2017-01-01
We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)
Covariant quantizations in plane and curved spaces
Energy Technology Data Exchange (ETDEWEB)
Assirati, J.L.M. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P.N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil)
2017-07-15
We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)
Enhanced quantization particles, fields and gravity
Klauder, John R
2015-01-01
This pioneering book addresses the question: Are the standard procedures of canonical quantization fully satisfactory, or is there more to learn about assigning a proper quantum system to a given classical system? As shown in this book, the answer to this question is: The standard procedures of canonical quantization are not the whole story! This book offers alternative quantization procedures that complete the story of quantization. The initial chapters are designed to present the new procedures in a clear and simple manner for general readers. As is necessary, systems that exhibit acceptable results with conventional quantization lead to the same results when the new procedures are used for them. However, later chapters examine selected models that lead to unacceptable results when quantized conventionally. Fortunately, these same models lead to acceptable results when the new quantization procedures are used.
Modular invariance and stochastic quantization
International Nuclear Information System (INIS)
Ordonez, C.R.; Rubin, M.A.; Zwanziger, D.
1989-01-01
In Polyakov path integrals and covariant closed-string field theory, integration over Teichmueller parameters must be restricted by hand to a single modular region. This problem has an analog in Yang-Mills gauge theory---namely, the Gribov problem, which can be resolved by the method of stochastic gauge fixing. This method is here employed to quantize a simple modular-invariant system: the Polyakov point particle. In the limit of a large gauge-fixing force, it is shown that suitable choices for the functional form of the gauge-fixing force can lead to a restriction of Teichmueller integration to a single modular region. Modifications which arise when applying stochastic quantization to a system in which the volume of the orbits of the gauge group depends on a dynamical variable, such as a Teichmueller parameter, are pointed out, and the extension to Polyakov strings and covariant closed-string field theory is discussed
Topological quantization of gravitational fields
International Nuclear Information System (INIS)
Patino, Leonardo; Quevedo, Hernando
2005-01-01
We introduce the method of topological quantization for gravitational fields in a systematic manner. First we show that any vacuum solution of Einstein's equations can be represented in a principal fiber bundle with a connection that takes values in the Lie algebra of the Lorentz group. This result is generalized to include the case of gauge matter fields in multiple principal fiber bundles. We present several examples of gravitational configurations that include a gravitomagnetic monopole in linearized gravity, the C-energy of cylindrically symmetric fields, the Reissner-Nordstroem and the Kerr-Newman black holes. As a result of the application of the topological quantization procedure, in all the analyzed examples we obtain conditions implying that the parameters entering the metric in each case satisfy certain discretization relationships
Stochastic quantization of general relativity
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
Following an elementary exposition of the basic mathematical concepts used in the theory of stochastic relaxation processes the stochastic quantization method of Parisi and Wu is briefly reviewed. The method is applied to Einstein's theory of gravitation using a formalism that is manifestly covariant with respect to field redefinitions. This requires the adoption of Ito's calculus and the introduction of a metric in field configuration space, for which there is a unique candidate. Due to the indefiniteness of the Euclidean Einstein-Hilbert action stochastic quantization is generalized to the pseudo-Riemannian case. It is formally shown to imply the DeWitt path integral measure. Finally a new type of perturbation theory is developed. (Author)
Stochastic quantization and gauge theories
International Nuclear Information System (INIS)
Kolck, U. van.
1987-01-01
Stochastic quantization is presented taking the Flutuation-Dissipation Theorem as a guide. It is shown that the original approach of Parisi and Wu to gauge theories fails to give the right results to gauge invariant quantities when dimensional regularization is used. Although there is a simple solution in an abelian theory, in the non-abelian case it is probably necessary to start from a BRST invariant action instead of a gauge invariant one. Stochastic regularizations are also discussed. (author) [pt
Stochastic quantization and gauge invariance
International Nuclear Information System (INIS)
Viana, R.L.
1987-01-01
A survey of the fundamental ideas about Parisi-Wu's Stochastic Quantization Method, with applications to Scalar, Gauge and Fermionic theories, is done. In particular, the Analytic Stochastic Regularization Scheme is used to calculate the polarization tensor for Quantum Electrodynamics with Dirac bosons or Fermions. The regularization influence is studied for both theories and an extension of this method for some supersymmetrical models is suggested. (author)
Quantization of Equations of Motion
Directory of Open Access Journals (Sweden)
D. Kochan
2007-01-01
Full Text Available The Classical Newton-Lagrange equations of motion represent the fundamental physical law of mechanics. Their traditional Lagrangian and/or Hamiltonian precursors when available are essential in the context of quantization. However, there are situations that lack Lagrangian and/or Hamiltonian settings. This paper discusses a description of classical dynamics and presents some irresponsible speculations about its quantization by introducing a certain canonical two-form ?. By its construction ? embodies kinetic energy and forces acting within the system (not their potential. A new type of variational principle employing differential two-form ? is introduced. Variation is performed over “umbilical surfaces“ instead of system histories. It provides correct Newton-Lagrange equations of motion. The quantization is inspired by the Feynman path integral approach. The quintessence is to rearrange it into an “umbilical world-sheet“ functional integral in accordance with the proposed variational principle. In the case of potential-generated forces, the new approach reduces to the standard quantum mechanics. As an example, Quantum Mechanics with friction is analyzed in detail.
On the Dequantization of Fedosov's Deformation Quantization
Karabegov, Alexander V.
2003-08-01
To each natural deformation quantization on a Poisson manifold M we associate a Poisson morphism from the formal neighborhood of the zero section of the cotangent bundle to M to the formal neighborhood of the diagonal of the product M x M~, where M~ is a copy of M with the opposite Poisson structure. We call it dequantization of the natural deformation quantization. Then we "dequantize" Fedosov's quantization.
Quantization of scalar-spinor instanton
International Nuclear Information System (INIS)
Inagaki, H.
1977-04-01
A systematic quantization to the scalar-spinor instanton is given in a canonical formalism of Euclidean space. A basic idea is in the repair of the symmetries of the 0(5) covariant system in the presence of the instanton. The quantization of the fermion is carried through in such a way that the fermion number should be conserved. Our quantization enables us to get well-defined propagators for both the scalar and the fermion, which are free from unphysical poles
Thermohaline staircases in the Amundsen Basin: Possible disruption by shear and mixing
Guthrie, John D.; Fer, Ilker; Morison, James H.
2017-10-01
As part of the 2013 and 2014 North Pole Environmental Observatories (NPEO) in the Amundsen Basin of the Arctic Ocean, two similar temperature microstructure experiments were performed with different results. In 2013, vertical fluxes were through a thermohaline staircase, and in 2014, the thermohaline staircase was largely absent. Here we investigate the reasons for this difference. The 2013 data set was characterized by an extensive thermohaline staircase, indicative of the diffusive convective type of double diffusion (DC), from 120 to 250 m depths. The staircase was absent above 200 m in 2014, even though analysis of density ratio, Rρ, still shows high susceptibility to DDC. In the depth range of interest, survey-averaged Rρ = 3.8 in 2013 and Rρ = 3.6 in 2014, indicating that the temperature-salinity structure in the pycnocline was not the cause of the lack of a staircase in 2014. We propose that exceptionally weak turbulent mixing, even for the typically quiescent Arctic Ocean, allowed formation of the staircase in 2013. Average thermal diffusivity, KT, between 50 and 120 m is elevated in 2014, 2 × 10-5 m2 s-1, compared to 2013, 1 × 10-6 m2 s-1. However, vertical Atlantic Water (AW) DC heat fluxes in 2013 are remarkably consistent with turbulent heat fluxes in 2014. Similar data sets collected in 2007 and 2008 both resemble 2014, showing consistently higher mixing values compared to 2013. The suppression of turbulence during NPEO 2013 resulted from increased near-surface stratification, possibly caused by a different large-scale circulation pattern that year.
International Nuclear Information System (INIS)
Burkov, S.E.
1991-01-01
Magnetization curves for a thin-layered superconducting film in parallel magnetic field have been shown to become devil's staircases provided the superconducting layers are perpendicular to the film plane. The transition from an incomplete to a complete devil's staircase with decreasing temperature is predicted. A chain of vortices is described by the generalized Frenkel-Kontorova model
Quantization of Green-Schwarz superstring
International Nuclear Information System (INIS)
Kallosh, R.E.
1987-04-01
The problem of quantization of superstrings is traced back to the nil-potency of gauge generators of the first-generation ghosts. The quantization of such theories is performed. The novel feature of this quantization is the freedom in choosing the number of ghost generations as well as gauge conditions. As an example, we perform quantization of heterotic string in a gauge, which preserves space-time supersymmetry. The equations of motion are those of a free theory. (author). 12 refs, 2 figs
Twisted condensates of quantized fields
International Nuclear Information System (INIS)
Gallone, F.; Sparzani, A.; Ubertone, G.; Streater, R.F.
We construct some quasi-free pure states of free quantized fields in 1+1 dimensions, that are localized in the sense of Knight. We consider massless or massive Dirac fields forming a U(n), n >= 1, multiplet and subject it to a local gauge transformation. We also subject a doublet of massive Klein-Gordon fields to local SO(2) transformations. We find the conditions that the resulting automorphism is spatial in Fock space. In some cases the conditions turn out to require that certain parameters, identified as the winding numbers of the gauge, are integers. It is argued that this integer labels states of various charge. (orig.)
Spectral representation in stochastic quantization
International Nuclear Information System (INIS)
Nakazato, Hiromichi.
1988-10-01
A spectral representation of stationary 2-point functions is investigated based on the operator formalism in stochastic quantization. Assuming the existence of asymptotic non-interacting fields, we can diagonalize the total Hamiltonian in terms of asymptotic fields and show that the correlation length along the fictious time is proportional to the physical mass expected in the usual field theory. A relation between renormalization factors in the operator formalism is derived as a byproduct and its validity is checked with the perturbative results calculated in this formalism. (orig.)
Completely quantized collapse and consequences
International Nuclear Information System (INIS)
Pearle, Philip
2005-01-01
Promotion of quantum theory from a theory of measurement to a theory of reality requires an unambiguous specification of the ensemble of realizable states (and each state's probability of realization). Although not yet achieved within the framework of standard quantum theory, it has been achieved within the framework of the continuous spontaneous localization (CSL) wave-function collapse model. In CSL, a classical random field w(x,t) interacts with quantum particles. The state vector corresponding to each w(x,t) is a realizable state. In this paper, I consider a previously presented model, which is predictively equivalent to CSL. In this completely quantized collapse (CQC) model, the classical random field is quantized. It is represented by the operator W(x,t) which satisfies [W(x,t),W(x ' ,t ' )]=0. The ensemble of realizable states is described by a single state vector, the 'ensemble vector'. Each superposed state which comprises the ensemble vector at time t is the direct product of an eigenstate of W(x,t ' ), for all x and for 0≤t ' ≤t, and the CSL state corresponding to that eigenvalue. These states never interfere (they satisfy a superselection rule at any time), they only branch, so the ensemble vector may be considered to be, as Schroedinger put it, a 'catalog' of the realizable states. In this context, many different interpretations (e.g., many worlds, environmental decoherence, consistent histories, modal interpretation) may be satisfactorily applied. Using this description, a long-standing problem is resolved, where the energy comes from the particles gain due to the narrowing of their wave packets by the collapse mechanism. It is shown how to define the energy of the random field and its energy of interaction with particles so that total energy is conserved for the ensemble of realizable states. As a by-product, since the random-field energy spectrum is unbounded, its canonical conjugate, a self-adjoint time operator, can be discussed. Finally, CSL
Quantization by stochastic relaxation processes and supersymmetry
International Nuclear Information System (INIS)
Kirschner, R.
1984-01-01
We show the supersymmetry mechanism resposible for the quantization by stochastic relaxation processes and for the effective cancellation of the additional time dimension against the two Grassmann dimensions. We give a non-perturbative proof of the validity of this quantization procedure. (author)
Deformation quantization of principal fibre bundles
International Nuclear Information System (INIS)
Weiss, S.
2007-01-01
Deformation quantization is an algebraic but still geometrical way to define noncommutative spacetimes. In order to investigate corresponding gauge theories on such spaces, the geometrical formulation in terms of principal fibre bundles yields the appropriate framework. In this talk I will explain what should be understood by a deformation quantization of principal fibre bundles and how associated vector bundles arise in this context. (author)
Quantized Predictive Control over Erasure Channels
DEFF Research Database (Denmark)
E. Quevedo, Daniel; Østergaard, Jan
2009-01-01
.i.d. dropouts, the controller transmits data packets containing quantized plant input predictions. These minimize a finite horizon cost function and are provided by an appropriate optimal entropy coded dithered lattice vector quantizer. Within this context, we derive an equivalent noise-shaping model...
Deformation quantization of the Heisenberg group
International Nuclear Information System (INIS)
Bonechi, F.
1994-01-01
After reviewing the way the quantization of Poisson Lie Groups naturally leads to Quantum Groups, the existing quantum version H(1) q of the Heisenberg algebra is used to give an explicit example of this quantization on the Heisenberg group. (author) 6 refs
Directory of Open Access Journals (Sweden)
Mona Isabel Spielmann
2013-08-01
Full Text Available Auditory scene analysis describes the ability to segregate relevant sounds out from the environment and to integrate them into a single sound stream using the characteristics of the sounds to determine whether or not they are related. This study aims to contrast task performances in objective threshold measurements of segregation and integration using identical stimuli, manipulating two variables known to influence streaming, inter-stimulus-interval (ISI and frequency difference (Δf. For each measurement, one parameter (either ISI or Δf was held constant while the other was altered in a staircase procedure. By using this paradigm, it is possible to test within-subject across multiple conditions, covering a wide Δf and ISI range in one testing session. The objective tasks were based on across-stream temporal judgments (facilitated by integration and within-stream deviance detection (facilitated by segregation. Results show the objective integration task is well suited for combination with the staircase procedure, as it yields consistent threshold measurements for separate variations of ISI and Δf, as well as being significantly related to the subjective thresholds. The objective segregation task appears less suited to the staircase procedure. With the integration-based staircase paradigm, a comprehensive assessment of streaming thresholds can be obtained in a relatively short space of time. This permits efficient threshold measurements particularly in groups for which there is little prior knowledge on the relevant parameter space for streaming perception.
Length dependence of staircase potentiation: interactions with caffeine and dantrolene sodium.
Rassier, D E; MacIntosh, B R
2000-04-01
In skeletal muscle, there is a length dependence of staircase potentiation for which the mechanism is unclear. In this study we tested the hypothesis that abolition of this length dependence by caffeine is effected by a mechanism independent of enhanced Ca2+ release. To test this hypothesis we have used caffeine, which abolishes length dependence of potentiation, and dantrolene sodium, which inhibits Ca2+ release. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 20 s of repetitive stimulation at 5 Hz were analyzed at optimal length (Lo), Lo - 10%, and Lo + 10%. Potentiation was observed to be length dependent, with an increase in developed tension (DT) of 78 +/- 12, 51 +/- 5, and 34 +/- 9% (mean +/- SEM), at Lo - 10%, Lo, and Lo + 10%, respectively. Caffeine diminished the length dependence of activation and suppressed the length dependence of staircase potentiation, giving increases in DT of 65+/-13, 53 +/- 11, and 45 +/- 12% for Lo - 10%, Lo, and Lo + 10%, respectively. Dantrolene administered after caffeine did not reverse this effect. Dantrolene alone depressed the potentiation response, but did not affect the length dependence of staircase potentiation, with increases in DT of 58 +/- 17, 26 +/- 8, and 18 +/- 7%, respectively. This study confirms that there is a length dependence of staircase potentiation in mammalian skeletal muscle which is suppressed by caffeine. Since dantrolene did not alter this suppression of the length dependence of potentiation by caffeine, it is apparently not directly modulated by Ca2+ availability in the myoplasm.
Social Stairs : taking the Piano Staircase towards long-term behavioral change
Peeters, M.M.R.; Megens, C.J.P.G.; Hoven, van den E.A.W.H.; Hummels, C.C.M.; Brombacher, A.C.; Berkovsky, S.; Freyne, J.
2013-01-01
This paper addresses the development of Social Stairs, an intelligent musical staircase to change people’s behavior in the long-term to take the stairs in favor of the elevator. Through designing with the Experiential Design Landscape (EDL) method, a design opportunity was found that social
Branch structures at the steps of the devil's staircase of the sine circle map
International Nuclear Information System (INIS)
Wen, H.C.; Duong-van, M.
1992-01-01
We have discovered substructures consisting of branches at each step of the devil's staircase of the sine circle map. These substructures are found to follow the hierarchy of the Farey tree. We develop a formalism to relate the rational winding number W=p/q to the number of branches in these substructures
Quantization of super Teichmueller spaces
International Nuclear Information System (INIS)
Aghaei, Nezhla
2016-08-01
The quantization of the Teichmueller spaces of Riemann surfaces has found important applications to conformal field theory and N=2 supersymmetric gauge theories. We construct a quantization of the Teichmueller spaces of super Riemann surfaces, using coordinates associated to the ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. We construct a projective unitary representation of the groupoid of changes of refined ideal triangulations. Therefore, we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential. In the quantum Teichmueller theory, it was observed that the key object defining the Teichmueller theory has a close relation to the representation theory of the Borel half of U q (sl(2)). In our research we observed that the role of U q (sl(2)) is taken by quantum superalgebra U q (osp(1 vertical stroke 2)). A Borel half of U q (osp(1 vertical stroke 2)) is the super quantum plane. The canonical element of the Heisenberg double of the quantum super plane is evaluated in certain infinite dimensional representations on L 2 (R) x C 1 vertical stroke 1 and compared to the flip operator from the Teichmueller theory of super Riemann surfaces.
Weak associativity and deformation quantization
Energy Technology Data Exchange (ETDEWEB)
Kupriyanov, V.G., E-mail: vladislav.kupriyanov@gmail.com [CMCC-Universidade Federal do ABC, Santo André, SP (Brazil); Tomsk State University, Tomsk (Russian Federation)
2016-09-15
Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev–Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.
Weak associativity and deformation quantization
International Nuclear Information System (INIS)
Kupriyanov, V.G.
2016-01-01
Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev–Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.
Weak associativity and deformation quantization
Directory of Open Access Journals (Sweden)
V.G. Kupriyanov
2016-09-01
Full Text Available Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev–Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.
Fuzzy spheres from inequivalent coherent states quantizations
International Nuclear Information System (INIS)
Gazeau, Jean Pierre; Huguet, Eric; Lachieze-Rey, Marc; Renaud, Jacques
2007-01-01
The existence of a family of coherent states (CS) solving the identity in a Hilbert space allows, under certain conditions, to quantize functions defined on the measure space of CS parameters. The application of this procedure to the 2-sphere provides a family of inequivalent CS quantizations based on the spin spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue for the Cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to these differences, our procedure yields new types of fuzzy spheres. Moreover, the general applicability of CS quantization suggests similar constructions of fuzzy versions of a large variety of sets
International Nuclear Information System (INIS)
Shi, W.X.; Ji, J.; Sun, J.H.; Lo, S.M.; Li, L.J.; Yuan, X.Y.
2014-01-01
Highlights: • Experiments are conducted in a scaled building model. • The flow and heat transfer in the heated room are investigated. • The staircase ventilation state influence on the heated room. • The results are useful to understand the safety and energy efficiency of building. - Abstract: Safety and energy efficiency of high rise buildings have attracted public attention in recent decades. In this paper, a set of experiments was conducted in a scaled building model with 12 floors to study the influence of the staircase ventilation state on the flow and heat transfer of the heated room on the middle floor. The airflow, room temperature and fuel burning rate were investigated. It is found that when the window above the heated room is opened, the vents state below the heated room has a significant effect on the airflow and heat transfer in the heated room. When the vents below the heated room are closed, the single-directional air flows into the heated room owing to the stronger stack effect. And the flame tilt angle is larger and the upper hot smoke temperature in the heated room is low. However, when the windows above the heated room are closed, the vents state below the heated room has little influence on the airflow and heat transfer in the heated room. And, there is two-directional air flowing through the door of the heated room The burning rate of heat source is also affected by the staircase ventilation state, and the variation trend varies with the opened window position and pool size
Equivalence of Lagrangian and Hamiltonian BRST quantizations
International Nuclear Information System (INIS)
Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.
1992-01-01
Two approaches to the quantization of gauge theories using BRST symmetry are widely used nowadays: the Lagrangian quantization, developed in (BV-quantization) and Hamiltonian quantization, formulated in (BFV-quantization). For all known examples of field theory (Yang-Mills theory, gravitation etc.) both schemes give equivalent results. However the equivalence of these approaches in general wasn't proved. The main obstacle in comparing of these formulations consists in the fact, that in Hamiltonian approach the number of ghost fields is equal to the number of all first-class constraints, while in the Lagrangian approach the number of ghosts is equal to the number of independent gauge symmetries, which is equal to the number of primary first-class constraints only. This paper is devoted to the proof of the equivalence of Lagrangian and Hamiltonian quantizations for the systems with first-class constraints only. This is achieved by a choice of special gauge in the Hamiltonian approach. It's shown, that after integration over redundant variables on the functional integral we come to effective action which is constructed according to rules for construction of the effective action in Lagrangian quantization scheme
Hitchin's connection in metaplectic quantization
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Gammelgaard, Niels Leth; Lauridsen, Magnus Roed
2012-01-01
We give a differential geometric construction of a connection, which we call the Hitchin connection, in the bundle of quantum Hilbert spaces arising from metaplectically corrected geometric quantization of a prequantizable, symplectic manifold, endowed with a rigid family of Kähler structures, all...... manifold in question. Furthermore, when we are in a setting similar to the moduli space, we give an explicit formula and show that this connection agrees with previous constructions....... of which give vanishing first Dolbeault cohomology groups. This generalizes work of both Hitchin, Scheinost and Schottenloher, and Andersen, since our construction does not need that the first Chern class is proportional to the class of the symplectic form, nor do we need compactness of the symplectic...
How to quantize supersymmetric theories
International Nuclear Information System (INIS)
Smilga, A.V.
1985-01-01
A recipe for resolving the ordering ambiguities in quantum hamiltonians of supersymmetric theories is suggested. The Weyl ordering procedure applied to classical supercharges expressed as functions on the phase space of a classically supersymmetric system is shown to result in quantum operators which satisfy usual SUSY algebra. The quantum hamiltonian does not always coincide with the Weyl ordered classical hamiltonian function. The difference is due to that the Weyl symbol of the supercharge anticommutator does not coincide with the Poisson bracket of their Weyl symbols (i.e. the classical hamiltonian). The procedure is applied to supersymmetric σ-models (both N=2 and N=1 cases are analyzed) and also to the supersymmetric SU(2) Yang-Mills theory. Only quantum mechanical systems following from field theories when fields are assumed to be independent of space coordinates are considered. For gauge theories thesuggested recipe for quantization leads to the same result as the well-known Dirac recipe
Deformation quantization: Twenty years after
International Nuclear Information System (INIS)
Sternheimer, Daniel
1998-01-01
We first review the historical developments, both in physics and in mathematics, that preceded (and in some sense provided the background of) deformation quantization. Then we describe the birth of the latter theory and its evolution in the past twenty years, insisting on the main conceptual developments and keeping here as much as possible on the physical side. For the physical part the accent is put on its relations to, and relevance for, 'conventional' physics. For the mathematical part we concentrate on the questions of existence and equivalence, including most recent developments for general Poisson manifolds; we touch also noncommutative geometry and index theorems, and relations with group theory, including quantum groups. An extensive (though very incomplete) bibliography is appended and includes background mathematical literature
Quantized motion of trapped ions
International Nuclear Information System (INIS)
Steinbach, J.
1999-01-01
This thesis is concerned with a theoretical and numerical study of the preparation and coherent manipulation of quantum states in the external and internal degrees of freedom of trapped ions. In its first part, this thesis proposes and investigates schemes for generating several nonclassical states for the quantized vibrational motion of a trapped ion. Based on dark state preparation specific laser excitation configurations are presented which, given appropriately chosen initial states, realize the desired motional states in the steady-state, indicated by the cessation of the fluorescence emitted by the ion. The focus is on the SU(1,1) intelligent states in both their single- and two-mode realization, corresponding to one- and two-dimensional motion of the ion. The presented schemes are also studied numerically using a Monte-Carlo state-vector method. The second part of the thesis describes how two vibrational degrees of freedom of a single trapped ion can be coupled through the action of suitably chosen laser excitation. Concentrating on a two-dimensional ion trap with dissimilar vibrational frequencies a variety of quantized two-mode couplings are derived. The focus is on a linear coupling that takes excitations from one mode to another. It is demonstrated how this can result in a state rotation, in which it is possible to coherently transfer the motional state of the ion between orthogonal directions without prior knowledge of that motional state. The third part of this thesis presents a new efficient method for generating maximally entangled internal states of a collection of trapped ions. The method is deterministic and independent of the number of ions in the trap. As the essential element of the scheme a mechanism for the realization of a controlled NOT operation that can operate on multiple ions is proposed. The potential application of the scheme for high-precision frequency standards is explored. (author)
On the quantization of Hall currents in presence of disorder
Combes, J; Hislop, P
2005-01-01
We review recent results of two of the authors concerning the quantization of Hall currents, in particular a general quantization formula for the difference of edge Hall conductances in semi-infinite samples with and without a confining wall. We then study the case where the Fermi energy is located in a region of localized states and discuss new regularizations. We also sketch the proof of localization for 2D-models with constant magnetic field with random potential located in a half-plane in two different situations: 1) with a zero potential in the other half plane and for energies away from the Landau levels and 2) with a confining potential in the other half plane and on an interval of energies that covers an arbitrary number of Landau levels.
On the quantization of classically chaotic system
International Nuclear Information System (INIS)
Godoy, N.F. de.
1988-01-01
Some propeties of a quantization in terms of observables of a classically chaotic system, which exhibits a strange are studied. It is shown in particular that convenient expected values of some observables have the correct classical limit and that in these cases the limits ℎ → O and t → ∞ (t=time) rigorously comute. This model was alternatively quantized by R.Graham in terms of Wigner function. The Graham's analysis is completed a few points, in particular, we find out a remarkable analogy with general results about the semi-classical limit of Wigner function. Finally the expected values obtained by both methods of quantization were compared. (author) [pt
A Constructive Sharp Approach to Functional Quantization of Stochastic Processes
Junglen, Stefan; Luschgy, Harald
2010-01-01
We present a constructive approach to the functional quantization problem of stochastic processes, with an emphasis on Gaussian processes. The approach is constructive, since we reduce the infinite-dimensional functional quantization problem to a finite-dimensional quantization problem that can be solved numerically. Our approach achieves the sharp rate of the minimal quantization error and can be used to quantize the path space for Gaussian processes and also, for example, Lévy processes.
Superfield extended BRST quantization in general coordinates
Geyer, B.; Gitman, D. M.; Lavrov, P. M.; Moshin, P. Yu.
2003-01-01
We propose a superfield formalism of Lagrangian BRST-antiBRST quantization of arbitrary gauge theories in general coordinates with the base manifold of fields and antifields desribed in terms of both bosonic and fermionic variables.
Schroedinger's variational method of quantization revisited
International Nuclear Information System (INIS)
Yasue, K.
1980-01-01
Schroedinger's original quantization procedure is revisited in the light of Nelson's stochastic framework of quantum mechanics. It is clarified why Schroedinger's proposal of a variational problem led us to a true description of quantum mechanics. (orig.)
Quantized kernel least mean square algorithm.
Chen, Badong; Zhao, Songlin; Zhu, Pingping; Príncipe, José C
2012-01-01
In this paper, we propose a quantization approach, as an alternative of sparsification, to curb the growth of the radial basis function structure in kernel adaptive filtering. The basic idea behind this method is to quantize and hence compress the input (or feature) space. Different from sparsification, the new approach uses the "redundant" data to update the coefficient of the closest center. In particular, a quantized kernel least mean square (QKLMS) algorithm is developed, which is based on a simple online vector quantization method. The analytical study of the mean square convergence has been carried out. The energy conservation relation for QKLMS is established, and on this basis we arrive at a sufficient condition for mean square convergence, and a lower and upper bound on the theoretical value of the steady-state excess mean square error. Static function estimation and short-term chaotic time-series prediction examples are presented to demonstrate the excellent performance.
Constructing canonical bases of quantized enveloping algebras
Graaf, W.A. de
2001-01-01
An algorithm for computing the elements of a given weight of the canonical basis of a quantized enveloping algebra is described. Subsequently, a similar algorithm is presented for computing the canonical basis of a finite-dimensional module.
Null-plane quantization of fermions
International Nuclear Information System (INIS)
Mustaki, D.
1990-01-01
Massive Dirac fermions are canonically quantized on the null plane using the Dirac-Bergmann algorithm. The procedure is carried out in the framework of quantum electrodynamics as an illustration of a rigorous treatment of interacting fermion fields
Quantization in presence of external soliton fields
International Nuclear Information System (INIS)
Grosse, H.; Karner, G.
1986-01-01
Quantization of a fermi field interacting with an external soliton protential is considered. Classes of interactions leading to unitarily equivalent representations of the canonical anticommutation relations are determined. Soliton-like potentials compared to trivial ones yield inequivalent representations. (Author)
Differential calculus on quantized simple Lie groups
International Nuclear Information System (INIS)
Jurco, B.
1991-01-01
Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ε R are also discussed. (orig.)
Speech Data Compression using Vector Quantization
H. B. Kekre; Tanuja K. Sarode
2008-01-01
Mostly transforms are used for speech data compressions which are lossy algorithms. Such algorithms are tolerable for speech data compression since the loss in quality is not perceived by the human ear. However the vector quantization (VQ) has a potential to give more data compression maintaining the same quality. In this paper we propose speech data compression algorithm using vector quantization technique. We have used VQ algorithms LBG, KPE and FCG. The results table s...
Canonical group quantization and boundary conditions
International Nuclear Information System (INIS)
Jung, Florian
2012-01-01
In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.
Canonical group quantization and boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Jung, Florian
2012-07-16
In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.
Quantized Matrix Algebras and Quantum Seeds
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Pagani, Chiara
2015-01-01
We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees.......We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees....
An adaptive staircase procedure for the E-Prime programming environment.
Hairston, W David; Maldjian, Joseph A
2009-01-01
Many studies need to determine a subject's threshold for a given task. This can be achieved efficiently using an adaptive staircase procedure. While the logic and algorithms for staircases have been well established, the few pre-programmed routines currently available to researchers require at least moderate programming experience to integrate into new paradigms and experimental settings. Here, we describe a freely distributed routine developed for the E-Prime programming environment that can be easily integrated into any experimental protocol with only a basic understanding of E-Prime. An example experiment (visual temporal-order-judgment task) where subjects report the order of occurrence of two circles illustrates the behavior and consistency of the routine.
International Nuclear Information System (INIS)
Kuznik, V.; Odehnal, M.
1986-01-01
The RSJ model of the Josephson junction in the presence of a microwave field is studied using an analog computer, with special attention to the behavior of this system near or at the critical line, where the set of substeps forms a complete devil's staircase on the I-V characteristic. A value of fractal dimension D = 0.868 +/- 0.002 is determined from 240 substeps between the winding numbers W = 0 and W = 1. Four values of decay constants are determined. The results agree very well with the prediction obtained from the one-dimensional circle map. A self-similarity graph is shown confirming that the staircase is very near the critical line. Results confirm the universal and global character of D and decay constants on the critical line, as was suggested by Jensen et al
Stochastic quantization and topological theories
International Nuclear Information System (INIS)
Fainberg, V.Y.; Subbotin, A.V.; Kuznetsov, A.N.
1992-01-01
In the last two years topological quantum field theories (TQFT) have attached much attention. This paper reports that from the very beginning it was realized that due to a peculiar BRST-like symmetry these models admitted so-called Nicolai mapping: the Nicolai variables, in terms of which actions of the theories become gaussian, are nothing but (anti-) selfduality conditions or their generalizations. This fact became a starting point in the quest of possible stochastic interpretation to topological field theories. The reasons behind were quite simple and included, in particular, the well-known relations between stochastic processes and supersymmetry. The main goal would have been achieved, if it were possible to construct stochastic processes governed by Langevin or Fokker-Planck equations in a real Euclidean time leading to TQFT's path integrals (equivalently: to reformulate TQFTs as non-equilibrium phase dynamics of stochastic processes). Further on, if it would appear that these processes correspond to the stochastic quantization of theories of some definite kind, one could expect (d + 1)-dimensional TQFTs to share some common properties with d-dimensional ones
A family of quantization based piecewise linear filter networks
DEFF Research Database (Denmark)
Sørensen, John Aasted
1992-01-01
A family of quantization-based piecewise linear filter networks is proposed. For stationary signals, a filter network from this family is a generalization of the classical Wiener filter with an input signal and a desired response. The construction of the filter network is based on quantization...... of the input signal x(n) into quantization classes. With each quantization class is associated a linear filter. The filtering at time n is carried out by the filter belonging to the actual quantization class of x(n ) and the filters belonging to the neighbor quantization classes of x(n) (regularization......). This construction leads to a three-layer filter network. The first layer consists of the quantization class filters for the input signal. The second layer carries out the regularization between neighbor quantization classes, and the third layer constitutes a decision of quantization class from where the resulting...
Voltage quantization by ballistic vortices in two-dimensional superconductors
International Nuclear Information System (INIS)
Orlando, T.P.; Delin, K.A.
1991-01-01
The voltage generated by moving ballistic vortices with a mass m ν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions
Tribology of the lubricant quantized sliding state.
Castelli, Ivano Eligio; Capozza, Rosario; Vanossi, Andrea; Santoro, Giuseppe E; Manini, Nicola; Tosatti, Erio
2009-11-07
In the framework of Langevin dynamics, we demonstrate clear evidence of the peculiar quantized sliding state, previously found in a simple one-dimensional boundary lubricated model [A. Vanossi et al., Phys. Rev. Lett. 97, 056101 (2006)], for a substantially less idealized two-dimensional description of a confined multilayer solid lubricant under shear. This dynamical state, marked by a nontrivial "quantized" ratio of the averaged lubricant center-of-mass velocity to the externally imposed sliding speed, is recovered, and shown to be robust against the effects of thermal fluctuations, quenched disorder in the confining substrates, and over a wide range of loading forces. The lubricant softness, setting the width of the propagating solitonic structures, is found to play a major role in promoting in-registry commensurate regions beneficial to this quantized sliding. By evaluating the force instantaneously exerted on the top plate, we find that this quantized sliding represents a dynamical "pinned" state, characterized by significantly low values of the kinetic friction. While the quantized sliding occurs due to solitons being driven gently, the transition to ordinary unpinned sliding regimes can involve lubricant melting due to large shear-induced Joule heating, for example at large speed.
Gravitational surface Hamiltonian and entropy quantization
Directory of Open Access Journals (Sweden)
Ashish Bakshi
2017-02-01
Full Text Available The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos–Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
BRS invariant stochastic quantization of Einstein gravity
International Nuclear Information System (INIS)
Nakazawa, Naohito.
1989-11-01
We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in the sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space of the first-class constrained systems. The phase space is spanned by the dynamical variables, their canonical conjugate momentum variables, Faddeev-Popov ghost and anti-ghost. We apply the general BRS invariant formulation to stochastic quantization of gravity which is described as a second-class constrained system in terms of a pair of Langevin equations coupled with white noises. It is shown that the stochastic action of gravity includes explicitly the De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)
Second quantized approach to quantum chemistry
International Nuclear Information System (INIS)
Surjan, P.R.
1989-01-01
The subject of this book is the application of the second quantized approach to quantum chemistry. Second quantization is an alternative tool for dealing with many-electron theory. The vast majority of quantum chemical problems are more easily treated using second quantization as a language. This book offers a simple and pedagogical presentation of the theory and some applications. The reader is not supposed to be trained in higher mathematics, though familiarity with elementary quantum mechanics and quantum chemistry is assumed. Besides the basic formalism and standard illustrative applications, some recent topics of quantum chemistry are reviewed in some detail. This book bridges the gap between sophisticated quantum theory and practical quantum chemistry. (orig.)
Fourier duality as a quantization principle
International Nuclear Information System (INIS)
Aldrovandi, R.; Saeger, L.A.
1996-08-01
The Weyl-Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally groups. Kac algebras - and the duality they incorporate are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest non-trivial phase space, the half-plane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations - weights - and the correspondence embodied in the Weyl-Wigner formalism is no more complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems. (author). 30 refs
Wave packets, Maslov indices, and semiclassical quantization
International Nuclear Information System (INIS)
Littlejohn, R.G.
1989-01-01
The Bohr-Sommerfeld quantization condition, as refined by Keller and Maslov, reads I=(n+m/4)h, where I is the classical action, n is the quantum number, and where m is the Maslov index, an even integer. The occurrence of the integers n and m in this formula is a reflection of underlying topological features of semiclassical quantization. In particular, the work of Arnold and others has shown that m/2 is a winding number of closed curves on the classical symplectic group manifold, Sp(2N). Wave packets provide a simple and elegant means of establishing the connection between semiclassical quantization and the homotopy classes of Sp(2N), as well as a practical way of calculating Maslov indices in complex problems. Topological methods can also be used to derive general formulas for the Maslov indices of invariant tori in the classical phase space corresponding to resonant motion. (orig.)
Conductance quantization in magnetic nanowires electrodeposited in nanopores
DEFF Research Database (Denmark)
Elhoussine, F.; Mátéfi-Tempfli, Stefan; Encinas, A.
2002-01-01
Magnetic nanocontacts have been prepared by a templating method that involves the electrodeposition of Ni within the pores of track-etched polymer membranes. The nanocontacts are made at the extremity of a single Ni nanowire either inside or outside the pores. The method is simple, flexible...... degeneracy. Our fabrication method enables future investigation of ballistic spin transport phenomena in electrodeposited magnetic nanocontacts....
Pseudo-Kähler Quantization on Flag Manifolds
Karabegov, Alexander V.
A unified approach to geometric, symbol and deformation quantizations on a generalized flag manifold endowed with an invariant pseudo-Kähler structure is proposed. In particular cases we arrive at Berezin's quantization via covariant and contravariant symbols.
Modifications of Sp(2) covariant superfield quantization
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M.; Moshin, P.Yu
2003-12-04
We propose a modification of the Sp(2) covariant superfield quantization to realize a superalgebra of generating operators isomorphic to the massless limit of the corresponding superalgebra of the osp(1,2) covariant formalism. The modified scheme ensures the compatibility of the superalgebra of generating operators with extended BRST symmetry without imposing restrictions eliminating superfield components from the quantum action. The formalism coincides with the Sp(2) covariant superfield scheme and with the massless limit of the osp(1,2) covariant quantization in particular cases of gauge-fixing and solutions of the quantum master equations.
Quantization and non-holomorphic modular forms
Unterberger, André
2000-01-01
This is a new approach to the theory of non-holomorphic modular forms, based on ideas from quantization theory or pseudodifferential analysis. Extending the Rankin-Selberg method so as to apply it to the calculation of the Roelcke-Selberg decomposition of the product of two Eisenstein series, one lets Maass cusp-forms appear as residues of simple, Eisenstein-like, series. Other results, based on quantization theory, include a reinterpretation of the Lax-Phillips scattering theory for the automorphic wave equation, in terms of distributions on R2 automorphic with respect to the linear action of SL(2,Z).
Differential calculus on quantized simple Lie groups
Energy Technology Data Exchange (ETDEWEB)
Jurco, B. (Dept. of Optics, Palacky Univ., Olomouc (Czechoslovakia))
1991-07-01
Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU{sub q}(2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q {epsilon} R are also discussed. (orig.).
Fractional quantization and the quantum hall effect
International Nuclear Information System (INIS)
Guerrero, J.; Calixto, M.; Aldaya, V.
1998-01-01
Quantization with constrains is considered in a group-theoretical framework, providing a precise characterization of the set of good operators, i.e., those preserving the constrained Hilbert space, in terms of the representation of the subgroup of constraints. This machinery is applied to the quantization of the torus as symplectic manifold, obtaining that fractional quantum numbers are permitted, provided that we allow for vector valued representations. The good operators turn out to be the Wilson loops and, for certain representations of the subgroup of constraints, the modular transformations. These results are applied to the Fractional Quantum Hall Effect, where interesting implications are derived
On quantization of the SU(2) Skyrmions
International Nuclear Information System (INIS)
Jurčiukonis, D.; Norvaišas, E.
2013-01-01
There are two known approaches for quantizing the SU(2) Skyrme model, the semiclassical and canonical quantization. The semiclassical approach does not take into account the non-commutativity of velocity of quantum coordinates and the stability of the semiclassical soliton is conveniently ensured by the symmetry breaking term. The canonical quantum approach leads to quantum mass correction that is not obtained in the semiclassical approach. In this Letter we argue that these two approaches are not equivalent and lead to different results. We show that the resulting profile functions have the same asymptotic behaviour, however their shape in the region close to the origin is different
Image Coding Based on Address Vector Quantization.
Feng, Yushu
Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing
Stochastic quantization of gravity and string fields
International Nuclear Information System (INIS)
Rumpf, H.
1986-01-01
The stochastic quantization method of Parisi and Wu is generalized so as to make it applicable to Einstein's theory of gravitation. The generalization is based on the existence of a preferred metric in field configuration space, involves Ito's calculus, and introduces a complex stochastic process adapted to Lorentzian spacetime. It implies formally the path integral measure of DeWitt, a causual Feynman propagator, and a consistent stochastic perturbation theory. The lineraized version of the theory is also obtained from the stochastic quantization of the free string field theory of Siegel and Zwiebach. (Author)
Mixed quantization dimensions of self-similar measures
International Nuclear Information System (INIS)
Dai Meifeng; Wang Xiaoli; Chen Dandan
2012-01-01
Highlights: ► We define the mixed quantization dimension of finitely many measures. ► Formula of mixed quantization dimensions of self-similar measures is given. ► Illustrate the behavior of mixed quantization dimension as a function of order. - Abstract: Classical multifractal analysis studies the local scaling behaviors of a single measure. However recently mixed multifractal has generated interest. The purpose of this paper is some results about the mixed quantization dimensions of self-similar measures.
Piñar, Guadalupe; Dalnodar, Dennis; Voitl, Christian; Reschreiter, Hans; Sterflinger, Katja
2016-01-01
The prosperity of Hallstatt (Salzkammergut region, Austria) is based on the richness of salt in the surrounding mountains and salt mining, which is documented as far back as 1500 years B.C. Substantial archaeological evidence of Bronze and Iron Age salt mining has been discovered, with a wooden staircase (1108 B.C.) being one of the most impressive and well preserved finds. However, after its discovery, fungal mycelia have been observed on the surface of the staircase, most probably due to airborne contamination after its find. As a basis for the further preservation of this valuable object, the active micro-flora was examined to investigate the presence of potentially biodegradative microorganisms. Most of the strains isolated from the staircase showed to be halotolerant and halophilic microorganisms, due to the saline environment of the mine. Results derived from culture-dependent assays revealed a high fungal diversity, including both halotolerant and halophilic fungi, the most dominant strains being members of the genus Phialosimplex (synonym: Aspergillus). Additionally, some typical cellulose degraders, namely Stachybotrys sp. and Cladosporium sp. were detected. Numerous bacterial strains were isolated and identified as members of 12 different genera, most of them being moderately halophilic species. The most dominant isolates affiliated with species of the genera Halovibrio and Marinococcus. Halophilic archaea were also isolated and identified as species of the genera Halococcus and Halorubrum. Molecular analyses complemented the cultivation assays, enabling the identification of some uncultivable archaea of the genera Halolamina, Haloplanus and Halobacterium. Results derived from fungi and bacteria supported those obtained by cultivation methods, exhibiting the same dominant members in the communities. The results clearly showed the presence of some cellulose degraders that may become active if the requirements for growth and the environmental conditions
Directory of Open Access Journals (Sweden)
Guadalupe Piñar
Full Text Available The prosperity of Hallstatt (Salzkammergut region, Austria is based on the richness of salt in the surrounding mountains and salt mining, which is documented as far back as 1500 years B.C. Substantial archaeological evidence of Bronze and Iron Age salt mining has been discovered, with a wooden staircase (1108 B.C. being one of the most impressive and well preserved finds. However, after its discovery, fungal mycelia have been observed on the surface of the staircase, most probably due to airborne contamination after its find.As a basis for the further preservation of this valuable object, the active micro-flora was examined to investigate the presence of potentially biodegradative microorganisms.Most of the strains isolated from the staircase showed to be halotolerant and halophilic microorganisms, due to the saline environment of the mine. Results derived from culture-dependent assays revealed a high fungal diversity, including both halotolerant and halophilic fungi, the most dominant strains being members of the genus Phialosimplex (synonym: Aspergillus. Additionally, some typical cellulose degraders, namely Stachybotrys sp. and Cladosporium sp. were detected. Numerous bacterial strains were isolated and identified as members of 12 different genera, most of them being moderately halophilic species. The most dominant isolates affiliated with species of the genera Halovibrio and Marinococcus. Halophilic archaea were also isolated and identified as species of the genera Halococcus and Halorubrum. Molecular analyses complemented the cultivation assays, enabling the identification of some uncultivable archaea of the genera Halolamina, Haloplanus and Halobacterium. Results derived from fungi and bacteria supported those obtained by cultivation methods, exhibiting the same dominant members in the communities.The results clearly showed the presence of some cellulose degraders that may become active if the requirements for growth and the environmental
'Devil's Staircase'-Type Phase Transition in NaV2O5 under High Pressure
International Nuclear Information System (INIS)
Ohwada, K.; Fujii, Y.; Takesue, N.; Isobe, M.; Ueda, Y.; Nakao, H.; Wakabayashi, Y.; Murakami, Y.; Ito, K.; Amemiya, Y.
2001-01-01
The 'devil's staircase'-type phase transition in the quarter-filled spin-ladder compound NaV 2 O 5 has been discovered at low temperature and high pressure by synchrotron radiation x-ray diffraction. A large number of transitions are found to successively take place among higher-order commensurate phases with 2a x 2b x zc type superstructures. The observed temperature and pressure dependence of modulation wave number q c , defined by 1/z, is well reproduced by the axial next nearest neighbor Ising model. The q c is suggested to reflect atomic displacements presumably coupled with charge ordering in this system
Evidence for a devil's staircase in holmium produced by an applied magnetic field
International Nuclear Information System (INIS)
Cowley, R.A.; Jehan, D.A.; McMorrow, D.F.; McIntyre, G.J.
1991-01-01
The magnetic structure of holmium has been studied using neutron diffraction when a magnetic field is applied along the c axis. The field has the effect of suppressing the onset of the commensurate cone phase found at low temperatures in zero field, and instead produces a series of spin-slip structures. In contrast to the zero-field diffraction experiments, where a continuous variation of the magnetic wave vector q was observed, we find that below ∼15 K the wave vector q is always commensurate and forms a devil's staircase with increasing field
Variable Dimension Trellis-Coded Quantization of Sinusoidal Parameters
DEFF Research Database (Denmark)
Larsen, Morten Holm; Christensen, Mads G.; Jensen, Søren Holdt
2008-01-01
In this letter, we propose joint quantization of the parameters of a set of sinusoids based on the theory of trellis-coded quantization. A particular advantage of this approach is that it allows for joint quantization of a variable number of sinusoids, which is particularly relevant in variable...
The representations of Lie groups and geometric quantizations
International Nuclear Information System (INIS)
Zhao Qiang
1998-01-01
In this paper we discuss the relation between representations of Lie groups and geometric quantizations. A series of representations of Lie groups are constructed by geometric quantization of coadjoint orbits. Particularly, all representations of compact Lie groups, holomorphic discrete series of representations and spherical representations of reductive Lie groups are constructed by geometric quantizations of elliptic and hyperbolic coadjoint orbits. (orig.)
Spurious-Free Dynamic Range of a Uniform Quantizer
Oude Alink, M.S.; Kokkeler, Andre B.J.; Klumperink, Eric A.M.; Rovers, K.C.; Smit, Gerardus Johannes Maria; Nauta, Bram
2009-01-01
Abstract—Quantization plays an important role in many systems where analog-to-digital conversion and/or digital-to-analog conversion take place. If the quantization error is correlated with the input signal, then the spectrum of the quantization error will contain spurious peaks. Although analytical
Quasi-algebras and general Weyl quantization
International Nuclear Information System (INIS)
Lassner, G.A.; Lassner, G.
1984-01-01
In this paper we show how the systematic use of the topological properties of the quasi-sup(*)-algebra L(S,S') leads to a systematization of the quantization procedure. With that as background, the multiplication of certain classes of pairs of operators of L(S,S') and the corresponding twisted product of their sybmols are defined. (orig./HSI)
A Modified Scheme of Triplectic Quantization
Geyer, B.; Gitman, D. M.; Lavrov, P. M.
1998-01-01
A modified version of triplectic quantization, first introduce by Batalin and Martnelius, is proposed which makes use of two independent master equations, one for the action and one for the gauge functional such that the initial classical action also obeys that master equation.
Visual data mining for quantized spatial data
Braverman, Amy; Kahn, Brian
2004-01-01
In previous papers we've shown how a well known data compression algorithm called Entropy-constrained Vector Quantization ( can be modified to reduce the size and complexity of very large, satellite data sets. In this paper, we descuss how to visualize and understand the content of such reduced data sets.
Covariantly second-quantized string. Pt. 2
International Nuclear Information System (INIS)
Siegel, W.
1984-01-01
BRST invariance is used to second-quantize the interacting relativistic string. The zero-mode of the anticommuting string variables is identified as the Grassmann coordinate of BRST superfields. The massless sector is Yang-Mills theory in the usual Faddeev-Popov formalism. (orig.)
A Krein quantization approach to Klein paradox
International Nuclear Information System (INIS)
Payandeh, Farrin; Fathi, Mohsen; Mohammad Pur, Toradj; Moghaddam, Zahra Gh.
2013-01-01
In this paper we first introduce the famous Klein paradox. Afterwards by proposing the Krein quantization approach and taking the negative modes into account, we will show that the expected and exact current densities could be achieved without confronting any paradox. (authors)
Nonperturbative quantization of nonabelian gauge theories
International Nuclear Information System (INIS)
Slavnov, A.
2011-01-01
Full text: (author)On the basis of the equivalence theorems proven earlier, a new formulation of nonabelian gauge theories is proposed. Contrary to the usual scheme this formulation allows the quantization of gauge theories beyond perturbation theory. The method is applicable both to the Yang-Mills theory and to nonabelian models with spontaneously broken symmetries
Group theoretical quantization of isotropic loop cosmology
Livine, Etera R.; Martín-Benito, Mercedes
2012-06-01
We achieve a group theoretical quantization of the flat Friedmann-Robertson-Walker model coupled to a massless scalar field adopting the improved dynamics of loop quantum cosmology. Deparemetrizing the system using the scalar field as internal time, we first identify a complete set of phase space observables whose Poisson algebra is isomorphic to the su(1,1) Lie algebra. It is generated by the volume observable and the Hamiltonian. These observables describe faithfully the regularized phase space underlying the loop quantization: they account for the polymerization of the variable conjugate to the volume and for the existence of a kinematical nonvanishing minimum volume. Since the Hamiltonian is an element in the su(1,1) Lie algebra, the dynamics is now implemented as SU(1, 1) transformations. At the quantum level, the system is quantized as a timelike irreducible representation of the group SU(1, 1). These representations are labeled by a half-integer spin, which gives the minimal volume. They provide superselection sectors without quantization anomalies and no factor ordering ambiguity arises when representing the Hamiltonian. We then explicitly construct SU(1, 1) coherent states to study the quantum evolution. They not only provide semiclassical states but truly dynamical coherent states. Their use further clarifies the nature of the bounce that resolves the big bang singularity.
Quantization of an Ideal Monoatomic Gas
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 1. Quantization of an Ideal Monoatomic Gas. E Fermi. Classics Volume 19 Issue 1 January 2014 pp 82-96. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/01/0082-0096. Author Affiliations.
Multiverse in the Third Quantized Formalism
International Nuclear Information System (INIS)
Faizal Mir
2014-01-01
In this paper we will analyze the third quantization of gravity in path integral formalism. We will use the time-dependent version of Wheeler—DeWitt equation to analyze the multiverse in this formalism. We will propose a mechanism for baryogenesis to occur in the multiverse, without violating the baryon number conservation. (general)
Gauge theories and their superspace quantization
International Nuclear Information System (INIS)
Falck, N.K.
1984-01-01
In this thesis the mathematical formalism for gauge theory is treated together with its extensions to supersymmetry. After a description of the differential calculus in superspace, gauge theories at the classical level are considered. Then the superspace quantization of gauge theories is described. (HSI)
QUANTIZATION OF NON-LAGRANGIAN SYSTEMS
Czech Academy of Sciences Publication Activity Database
Kochan, Denis
2009-01-01
Roč. 24, 28-29 (2009), s. 5319-5340 ISSN 0217-751X R&D Projects: GA MŠk(CZ) LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : dissipative quantization * non-Lagrangian system * umbilical string Subject RIV: BE - Theoretical Physics Impact factor: 0.941, year: 2009
Stochastic quantization for the axial model
International Nuclear Information System (INIS)
Farina, C.; Montani, H.; Albuquerque, L.C.
1991-01-01
We use bosonization ideas to solve the axial model in the stochastic quantization framework. We obtain the fermion propagator of the theory decoupling directly the Langevin equation, instead of the Fokker-Planck equation. In the Appendix we calculate explicitly the anomalous divergence of the axial-vector current by using a regularization that does not break the Markovian character of the stochastic process
Coherent transform, quantization, and Poisson geometry
Novikova, E; Itskov, V; Karasev, M V
1998-01-01
This volume contains three extensive articles written by Karasev and his pupils. Topics covered include the following: coherent states and irreducible representations for algebras with non-Lie permutation relations, Hamilton dynamics and quantization over stable isotropic submanifolds, and infinitesimal tensor complexes over degenerate symplectic leaves in Poisson manifolds. The articles contain many examples (including from physics) and complete proofs.
Constraints, BRST-Cohomology and stochastic quantization
International Nuclear Information System (INIS)
Hueffel, H.
1989-01-01
After presenting a pedagogical introduction to the Becchi-Rouet-Stora-formalism we introduce stochastic quantization in extended configuration space. The appearance of a specific projection operator and its relationship to the BRST-cohomology is pointed out. 20 refs. (Author)
Quantization of bag-like solitons
International Nuclear Information System (INIS)
Breit, J.D.
1982-01-01
The method of collective coordinates is used to quantize bag-like solitons formed by scalar and spinor fields. This method leads to approximate wave functions for quarks in the bag that are orthogonal to the translational modes. Solutions are given for the MIT bag limit of the fields. (orig.)
Bolometric Device Based on Fluxoid Quantization
Bonetti, Joseph A.; Kenyon, Matthew E.; Leduc, Henry G.; Day, Peter K.
2010-01-01
The temperature dependence of fluxoid quantization in a superconducting loop. The sensitivity of the device is expected to surpass that of other superconducting- based bolometric devices, such as superconducting transition-edge sensors and superconducting nanowire devices. Just as important, the proposed device has advantages in sample fabrication.
Black hole bound states and their quantization
de Boer, J.
2008-01-01
We briefly review the construction of multi-centered black hole solutions in type IIA string theory. We then discuss a decoupling limit which embeds these solutions in M-theory on AdS(3) x S-2 x CY, and discuss some aspects of their dual CFT interpretation. Finally, we consider the quantization of
Optical conductivity of metal nanoshells
International Nuclear Information System (INIS)
Tomchuk, P.M.; Kulish, V.V.
2004-01-01
The expression for optical conductivity of spherical metal nanoshell as a function of internal and external radii of nanoshell and photon energy - Fermi energy ratio is obtained. Quantization of electron energy in nanoshells is shown to lead to the appearance of an oscillating dependence of optical conductivity on the light frequency. An explicit expression of oscillating addends for optical conductivity is obtained
Energy and variance budgets of a diffusive staircase with implications for heat flux scaling
Hieronymus, M.; Carpenter, J. R.
2016-02-01
Diffusive convection, the mode of double-diffusive convection that occur when both temperature and salinity increase with increasing depth, is commonplace throughout the high latitude oceans and diffusive staircases constitute an important heat transport process in the Arctic Ocean. Heat and buoyancy fluxes through these staircases are often estimated using flux laws deduced either from laboratory experiments, or from simplified energy or variance budgets. We have done direct numerical simulations of double-diffusive convection at a range of Rayleigh numbers and quantified the energy and variance budgets in detail. This allows us to compare the fluxes in our simulations to those derived using known flux laws and to quantify how well the simplified energy and variance budgets approximate the full budgets. The fluxes are found to agree well with earlier estimates at high Rayleigh numbers, but we find large deviations at low Rayleigh numbers. The close ties between the heat and buoyancy fluxes and the budgets of thermal variance and energy have been utilized to derive heat flux scaling laws in the field of thermal convection. The result is the so called GL-theory, which has been found to give accurate heat flux scaling laws in a very wide parameter range. Diffusive convection has many similarities to thermal convection and an extension of the GL-theory to diffusive convection is also presented and its predictions are compared to the results from our numerical simulations.
Structured chaos in a devil's staircase of the Josephson junction
International Nuclear Information System (INIS)
Shukrinov, Yu. M.; Botha, A. E.; Medvedeva, S. Yu.; Kolahchi, M. R.; Irie, A.
2014-01-01
The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior. These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values
Direct observation of a 'devil's staircase' in wave-particle interaction
International Nuclear Information System (INIS)
Doveil, Fabrice; Macor, Alessandro; Elskens, Yves
2006-01-01
We report the experimental observation of a 'devil's staircase' in a time-dependent system considered as a paradigm for the transition to large-scale chaos in the universality class of Hamiltonian systems. A test electron beam is used to observe its non-self-consistent interaction with externally excited wave(s) in a traveling wave tube (TWT). A trochoidal energy analyzer records the beam energy distribution at the output of the interaction line. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The resonant velocity domain associated to a single wave is observed, as well as the transition to large-scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a 'devil's staircase' behavior for increasing excitation amplitude, due to the nonlinear forcing by the second wave on the pendulum-like motion of a charged particle in one electrostatic wave
The Borromini's helicoidal staircase in Barberini Palace: scan laser survey and parametric modeling.
Directory of Open Access Journals (Sweden)
Leonardo Paris
2015-07-01
Full Text Available The paper concerns the study of the shape and geometry of the helicoidal staircase in Barberini Palace. Integrated models of representation (graphic and 3D have been produced starting from the digital data acquired by a laser scanner, processed and subsequently managed through procedures for optimizing the cloud-points.The realization of the helicoidal staircase in the Barberini Palace has an important rule in the architectural history because it is a wonderful example of the constructive development of a complex geometric shape which is a helix oval. This stair should be read and interpreted as evidence of a particular period,the Roman Baroque, rich of intertwining and overlapping of ecclesiastical and noble commissions, of alternations in the yards of the greatest artists and architects of the era, often working simultaneously. Borromini proposes a modification to the first design of Maderno, which included a helicoidal staircase to the right of the large porch entrance to the palace, imagining a new oval stair with a set of six twin columns for each revolution, very similar to the staircase that had been built a few years earlier, in 1585, at the Quirinale Palace by the Mascherino. Borromini had worked a few years earlier, under the direction of Maderno, in the Quirinal Palace, having a possibility to carefully study the Mascherino’s oval stair .Following the death of Maderno (1629 the yard of the Barberini Palace takes over the Bernini. Borromini will initiate a collaboration destined to end soon. The scale will be built in 1633 when now Borromini had already left the yard.The article wants above all to highlight the correlations between form and geometry when designing a campaign of digital acquisition using a laser scanner. Indeed, there are important implications to choice the positioning points of the instrument, with important fallout on the relationship between quality and quantity of a points cloud. The points cloud is a 3D
Numerical Optimization Design of Dynamic Quantizer via Matrix Uncertainty Approach
Directory of Open Access Journals (Sweden)
Kenji Sawada
2013-01-01
Full Text Available In networked control systems, continuous-valued signals are compressed to discrete-valued signals via quantizers and then transmitted/received through communication channels. Such quantization often degrades the control performance; a quantizer must be designed that minimizes the output difference between before and after the quantizer is inserted. In terms of the broadbandization and the robustness of the networked control systems, we consider the continuous-time quantizer design problem. In particular, this paper describes a numerical optimization method for a continuous-time dynamic quantizer considering the switching speed. Using a matrix uncertainty approach of sampled-data control, we clarify that both the temporal and spatial resolution constraints can be considered in analysis and synthesis, simultaneously. Finally, for the slow switching, we compare the proposed and the existing methods through numerical examples. From the examples, a new insight is presented for the two-step design of the existing continuous-time optimal quantizer.
International Nuclear Information System (INIS)
Bak, P.
1986-01-01
When the interaction between an oscillator and its driver is strong enough, the oscillator will resonate at, or ''lock'' onto, an infinity of driving frequencies, giving rise to steps with a fractal dimension between 0 and 1
Yamauchi, Touru; Ueda, Hiroaki; Ohwada, Kenji; Nakao, Hironori; Ueda, Yutaka
2018-03-01
A common characteristic of quasi-one-dimensional (q1D) conductors β -A0.33V2O5 (A = Li, Na, and Ag) is that the charge ordering (CO), the ground state (GS) at ambient pressure, and the superconducting (SC) phases, the GS under high pressure, are competing with each other. We have explored high-pressure properties of divalent β -vanadium bronzes, β -A0.33V2O5 (A = Ca, Sr, and Pb), which are A -cation stoichiometry finely controlled single-crystal/powder samples, and found the absence of the SC phase. In these observations, however, we observed enormous and novel phase transitions, a kind of "devil's staircase"-type phase transitions in the charge ordering (CO) phases. The most surprising discovery in this devil's staircase, which was found mainly in β -Sr0.33V2O5 , is that all the charge modulation vectors of many kinds of CO phases can be represented as a primitive lattice translation vector along the b axis multiplied by several odd numbers. This discovery surely demonstrates interplay between the charge degree freedom and the crystallographic symmetry. We propose two possible mechanisms to explain this phenomenon: "self-charge transfer (carrier redistribution)" between the two subsystems in these compounds and "sequential symmetry reduction" that was discussed in Landau theory of phase transitions. In β -Ca0.33V2O5 we also found a P -T phase diagram similar in outlook but different in detail. The devil's staircase was also observed but it is an incomplete one. Furthermore, the charge modulation vectors in it are shorter than those in β -Sr0.33V2O5 . In β -Pb0.33V2O5 , which has no CO phase at ambient pressure, the pressure-induced antiferromagnetic ordering was observed at around 50 K above 0.5 GPa. Using these two kinds of mechanisms, we also explain the global high-pressure properties in all the stoichiometric divalent β -vanadium bronzes, which were observed as a wide variety of electromagnetic states. In addition, we also discuss a possible key for
Tensor products of quantized tilting modules
International Nuclear Information System (INIS)
Andersen, H.H.
1992-01-01
Let U k denote the quantized enveloping algebra corresponding to a finite dimensional simple complex Lie algebra L. Assume that the quantum parameter is a root of unity in k of order at least the Coxeter number for pound. Also assume that this order is odd and not divisible by 3 if type G 2 occurs. We demonstrate how one can define a reduced tensor product on the family F consisting of those finite dimensional simple U k -modules which are deformations of simple L-modules and which have non-zero quantum dimension. This together with the work of Reshetikhin-Turaev and Turaev-Wenzl prove that (U k , F) is a modular Hopf algebra and hence produces invariants of 3-manifolds. Also by recent work of Duurhus, Jakobsen and Nest it leads to a general topological quantum field theory. The method of proof explores quantized analogues of tilting modules for algebraic groups. (orig.)
Postprocessing MPEG based on estimated quantization parameters
DEFF Research Database (Denmark)
Forchhammer, Søren
2009-01-01
the case where the coded stream is not accessible, or from an architectural point of view not desirable to use, and instead estimate some of the MPEG stream parameters based on the decoded sequence. The I-frames are detected and the quantization parameters are estimated from the coded stream and used...... in the postprocessing. We focus on deringing and present a scheme which aims at suppressing ringing artifacts, while maintaining the sharpness of the texture. The goal is to improve the visual quality, so perceptual blur and ringing metrics are used in addition to PSNR evaluation. The performance of the new `pure......' postprocessing compares favorable to a reference postprocessing filter which has access to the quantization parameters not only for I-frames but also on P and B-frames....
Light-front quantization of field theory
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1996-07-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.
Light-front quantization of field theory
International Nuclear Information System (INIS)
Srivastava, Prem P.
1996-07-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs
Coherent State Quantization and Moment Problem
Directory of Open Access Journals (Sweden)
J. P. Gazeau
2010-01-01
Full Text Available Berezin-Klauder-Toeplitz (“anti-Wick” or “coherent state” quantization of the complex plane, viewed as the phase space of a particle moving on the line, is derived from the resolution of the unity provided by the standard (or gaussian coherent states. The construction of these states and their attractive properties are essentially based on the energy spectrum of the harmonic oscillator, that is on natural numbers. We follow in this work the same path by considering sequences of non-negative numbers and their associated “non-linear” coherent states. We illustrate our approach with the 2-d motion of a charged particle in a uniform magnetic field. By solving the involved Stieltjes moment problem we construct a family of coherent states for this model. We then proceed with the corresponding coherent state quantization and we show that this procedure takes into account the circle topology of the classical motion.
Gauge invariance and Weyl-polymer quantization
Strocchi, Franco
2016-01-01
The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...
Scalets, wavelets and (complex) turning point quantization
Handy, C. R.; Brooks, H. A.
2001-05-01
Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.
Foundations of quantization for probability distributions
Graf, Siegfried
2000-01-01
Due to the rapidly increasing need for methods of data compression, quantization has become a flourishing field in signal and image processing and information theory. The same techniques are also used in statistics (cluster analysis), pattern recognition, and operations research (optimal location of service centers). The book gives the first mathematically rigorous account of the fundamental theory underlying these applications. The emphasis is on the asymptotics of quantization errors for absolutely continuous and special classes of singular probabilities (surface measures, self-similar measures) presenting some new results for the first time. Written for researchers and graduate students in probability theory the monograph is of potential interest to all people working in the disciplines mentioned above.
Quantized vortices in superfluids and superconductors
International Nuclear Information System (INIS)
Thoulessi, D.J.; Wexler, C.; Ping Ao, Ping; Niu, Qian; Geller, M.R.
1998-01-01
We give a general review of recent developments in the theory of vortices in superfluids and superconductors, discussing why the dynamics of vortices is important, and why some key results are still controversial. We discuss work that we have done on the dynamics of quantized vortices in a superfluid. Despite the fact that this problem has been recognized as important for forty years, there is still a lot of controversy about the forces on and masses of quantized vortices. We think that one can get unambiguous answers by considering a broken symmetry state that consists of one vortex in an infinite ideal system. We argue for a Magnus force that is proportional to the superfluid density, and we find that the effective mass density of a vortex in a neutral superfluid is divergent at low frequencies. We have generalized some of the results for a neutral superfluid to a charged system. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Semiclassical quantization of the nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Nohl, C.R.
1976-01-01
Using the functional integral technique of Dashen, Hasslacher, and Neveu, we perform a semiclassical quantization of the nonlinear Schrodinger equation (NLSE), which reproduces McGuire's exact result for the energy levels of the bound states of the theory. We show that the stability angle formalism leads to the one-loop normal ordering and self-energy renormalization expected from perturbation theory, and demonstrate that taking into account center-of-mass motion gives the correct nonrelativistic energy--momentum relation. We interpret the classical solution in the context of the quantum theory, relating it to the matrix element of the field operator between adjacent bound states in the limit of large quantum numbers. Finally, we quantize the NLSE as a theory of N component fermion fields and show that the semiclassical method yields the exact energy levels and correct degeneracies
Adiabatic quantum pumping and charge quantization
International Nuclear Information System (INIS)
Kashcheyevs, V; Aharony, A.; Entin-Wohlmanl, O.
2004-01-01
Full Text:Modern techniques for coherent manipulation of electrons at the nano scale (electrostatic gating, surface acoustic waves) allow for studies of the adiabatic quantum pumping effect - a directed current induced by a slowly varying external perturbation. Scattering theory of pumping predicts transfer of an almost integer number of electrons per cycle if instantaneous transmission is determined by a sequence of resonances. We show that this quantization can be explained in terms of loading/unloading quasi-bound virtual states, and derive a tool for analyzing quantized pumping induced by a general potential. This theory is applied to a simple model of pumping due to surface acoustic waves. The results reproduce all the qualitative features observed in actual experiments
Semi-classical quantization of chaotic billiards
International Nuclear Information System (INIS)
Smilansky, U.
1992-02-01
The semi-classical quantization of chaotic billiards will be developed using scattering theory approach. This will be used to introduce and explain the inherent difficulties in the semi-classical quantization of chaos, and to show some of the modern tools which were developed recently to overcome these difficulties. To this end, we shall first obtain a semi-classical secular equation which is based on a finite number of classical periodic orbits. We shall use it to derive some spectral properties, and in particular to investigate the relationship between spectral statistics of quantum chaotic systems and the predictions of random-matrix theory. We shall finally discuss an important family of chaotic billiard, whose statistics does not follow any of the canonical ensembles, (GOE,GUE,...) but rather, corresponds to a new universality class. (author)
Ionization in a quantized electromagnetic field
International Nuclear Information System (INIS)
Gonoskov, I. A.; Vugalter, G. A.; Mironov, V. A.
2007-01-01
An analytical expression for a matrix element of the transition from a bound state of an electron in an atom to continuum states is obtained by solving the problem of interaction of the electron with a quantized electromagnetic field. This expression is used to derive formulas for the photoelectron spectrum and the rate of ionization of the simplest model atomic system upon absorption of an arbitrary number of photons. The expressions derived are analyzed and compared with the corresponding relationships obtained via other approaches. It is demonstrated that there are differences as compared to the case of the classical field. In particular, the photoelectron spectrum exhibits dips due to the destructive interference of the transition amplitudes in the quantized electromagnetic field
Second quantization in bit-string physics
International Nuclear Information System (INIS)
Noyes, H.P.
1992-08-01
Using a new fundamental theory based on bit-strings we derived a finite and discrete version of the solutions of the free one particle Dirac equation as segmented trajectories with steps of length h/mc along the forward and backward light cones executed at velocity ±c. Interpreting the statistical fluctuations which cause the bends in these segmented trajectories as emission and absorption of radiation, these solutions are analagous to a fermion propagator in a second quantized theory. This allows us to interpret the mass parameter in the step length as the physical mass of the free particle. The radiation in interaction with it has the usual harmonic oscillator structure of a second quantized theory. We sketch on these free particle masses can be generated gravitationally using the combinatorial hierarchy sequence (3,10,137,2 127 +136), and some of the predictive consequences
Inflation and inhomogeneities: a hybrid quantization
International Nuclear Information System (INIS)
Olmedo, J; Fernández-Méndez, M; Mena Marugán, G A
2012-01-01
We provide a complete quantization of a homogeneous and isotropic spacetime with positive spatial curvature coupled to a massive scalar field in the framework of Loop Quantum Cosmology. The physical Hilbert space is constructed out of the space of initial data on the minimum volume section. By means of a perturbative treatment we introduce inhomogeneities and thereafter we adopt a hybrid quantum approach, in which these inhomogeneous degrees of freedom are described by a standard Fock quantization. For the considered case of compact spatial topology, the requirements of: i) invariance of the vacuum state under the spatial isometries, and ii) unitary implementation of the quantum dynamics, pick up a privileged set of canonical fields and a unique Fock representation (up to unitary equivalence).
Renormalized semiclassical quantization for rescalable Hamiltonians
International Nuclear Information System (INIS)
Takahashi, Satoshi; Takatsuka, Kazuo
2004-01-01
A renormalized semiclassical quantization method for rescalable Hamiltonians is proposed. A classical Hamilton system having a potential function that consists of homogeneous polynomials like the Coulombic potential can have a scale invariance in its extended phase space (phase space plus time). Consequently, infinitely many copies of a single trajectory constitute a one-parameter family that is characterized in terms of a scaling factor. This scaling invariance in classical dynamics is lost in quantum mechanics due to the presence of the Planck constant. It is shown that in a system whose classical motions have a self-similarity in the above sense, classical trajectories adopted in the semiclassical scheme interact with infinitely many copies of their own that are reproduced by the relevant scaling procedure, thereby undergoing quantum interference among themselves to produce a quantized spectrum
Nonlinear poisson brackets geometry and quantization
Karasev, M V
2012-01-01
This book deals with two old mathematical problems. The first is the problem of constructing an analog of a Lie group for general nonlinear Poisson brackets. The second is the quantization problem for such brackets in the semiclassical approximation (which is the problem of exact quantization for the simplest classes of brackets). These problems are progressively coming to the fore in the modern theory of differential equations and quantum theory, since the approach based on constructions of algebras and Lie groups seems, in a certain sense, to be exhausted. The authors' main goal is to describe in detail the new objects that appear in the solution of these problems. Many ideas of algebra, modern differential geometry, algebraic topology, and operator theory are synthesized here. The authors prove all statements in detail, thus making the book accessible to graduate students.
A logarithmic quantization index modulation for perceptually better data hiding.
Kalantari, Nima Khademi; Ahadi, Seyed Mohammad
2010-06-01
In this paper, a novel arrangement for quantizer levels in the Quantization Index Modulation (QIM) method is proposed. Due to perceptual advantages of logarithmic quantization, and in order to solve the problems of a previous logarithmic quantization-based method, we used the compression function of mu-Law standard for quantization. In this regard, the host signal is first transformed into the logarithmic domain using the mu-Law compression function. Then, the transformed data is quantized uniformly and the result is transformed back to the original domain using the inverse function. The scalar method is then extended to vector quantization. For this, the magnitude of each host vector is quantized on the surface of hyperspheres which follow logarithmic radii. Optimum parameter mu for both scalar and vector cases is calculated according to the host signal distribution. Moreover, inclusion of a secret key in the proposed method, similar to the dither modulation in QIM, is introduced. Performance of the proposed method in both cases is analyzed and the analytical derivations are verified through extensive simulations on artificial signals. The method is also simulated on real images and its performance is compared with previous scalar and vector quantization-based methods. Results show that this method features stronger a watermark in comparison with conventional QIM and, as a result, has better performance while it does not suffer from the drawbacks of a previously proposed logarithmic quantization algorithm.
Superfield quantization in Sp(2) covariant formalism
Lavrov, P M
2001-01-01
The rules of the superfield Sp(2) covariant quantization of the arbitrary gauge theories for the case of the introduction of the gauging with the derivative equations for the gauge functional are generalized. The possibilities of realization of the expanded anti-brackets are considered and it is shown, that only one of the realizations is compatible with the transformations of the expanded BRST-symmetry in the form of super translations along the Grassmann superspace coordinates
Stochastic quantization and mean field approximation
International Nuclear Information System (INIS)
Jengo, R.; Parga, N.
1983-09-01
In the context of the stochastic quantization we propose factorized approximate solutions for the Fokker-Planck equation for the XY and Zsub(N) spin systems in D dimensions. The resulting differential equation for a factor can be solved and it is found to give in the limit of t→infinity the mean field or, in the more general case, the Bethe-Peierls approximation. (author)
Geometry and quantization of moduli spaces
Andersen, Jørgen; Riera, Ignasi
2016-01-01
This volume is based on four advanced courses held at the Centre de Recerca Matemàtica (CRM), Barcelona. It presents both background information and recent developments on selected topics that are experiencing extraordinary growth within the broad research area of geometry and quantization of moduli spaces. The lectures focus on the geometry of moduli spaces which are mostly associated to compact Riemann surfaces, and are presented from both classical and quantum perspectives.
Particle states of a quantized meson field
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
A simple non-linear field theory is considered as the model for a recently proposed classical field theory of mesons and their particle sources. Quantization may be made according to canonical procedures; the problem is to show the existence of quantum states corresponding with the particle-like solutions of the classical field equations. A plausible way to do this is suggested. (author). 5 refs
Inequivalent quantizations and fundamentally perfect spaces
International Nuclear Information System (INIS)
Imbo, T.D.; Sudarshan, E.C.G.
1987-06-01
We investigate the problem of inequivalent quantizations of a physical system with multiply connected configuration space X. For scalar quantum theory on X we show that state vectors must be single-valued if and only if the first homology group H 1 (X) is trivial, or equivalently the fundamental group π 1 (X) is perfect. The θ-structure of quantum gauge and gravitational theories is discussed in light of this result
Quantization of non-Hamiltonian physical systems
International Nuclear Information System (INIS)
Bolivar, A.O.
1998-09-01
We propose a general method of quantization of non-Hamiltonian physical systems. Applying it, for example, to a dissipative system coupled to a thermal reservoir described by the Fokker-Planck equation, we are able to obtain the Caldeira-Leggett master equation, the non-linear Schroedinger-Langevin equation and Caldirola-Kanai equation (with an additional term), as particular cases. (author)
Hamiltonian description and quantization of dissipative systems
Enz, Charles P.
1994-09-01
Dissipative systems are described by a Hamiltonian, combined with a “dynamical matrix” which generalizes the simplectic form of the equations of motion. Criteria for dissipation are given and the examples of a particle with friction and of the Lotka-Volterra model are presented. Quantization is first introduced by translating generalized Poisson brackets into commutators and anticommutators. Then a generalized Schrödinger equation expressed by a dynamical matrix is constructed and discussed.
On the quantization of constrained generalized dynamics
International Nuclear Information System (INIS)
Galvao, C.A.P.; Lemos, N.A.
1987-01-01
A special class of degenerate second order Lagrangians, those which differ from a nondegenerate first order Lagrangian by a total time derivative (or a four divergence) of a function of both the coordinates and velocities, is studied in detail. The canonical quantization of such systems is then realized and it is shown that this leads to the same results as in the first order Lagrangian. (M.W.O.) [pt
Fractional statistics and fractional quantized Hall effect
International Nuclear Information System (INIS)
Tao, R.; Wu, Y.S.
1985-01-01
The authors suggest that the origin of the odd-denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which govern quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics do not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus, no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references
Stochastic quantization and 1/N expansion
International Nuclear Information System (INIS)
Brunelli, J.C.; Mendes, R.S.
1992-10-01
We study the 1/N expansion of field theories in the stochastic quantization method of Parisi and Wu using the supersymmetric functional approach. This formulation provides a systematic procedure to implement the 1/N expansion which resembles the ones used in the equilibrium. The 1/N perturbation theory for the non linear sigma model in two dimensions is worked out as an example. (author). 19 refs., 5 figs
Unique Fock quantization of scalar cosmological perturbations
Fernández-Méndez, Mikel; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.
2012-05-01
We investigate the ambiguities in the Fock quantization of the scalar perturbations of a Friedmann-Lemaître-Robertson-Walker model with a massive scalar field as matter content. We consider the case of compact spatial sections (thus avoiding infrared divergences), with the topology of a three-sphere. After expanding the perturbations in series of eigenfunctions of the Laplace-Beltrami operator, the Hamiltonian of the system is written up to quadratic order in them. We fix the gauge of the local degrees of freedom in two different ways, reaching in both cases the same qualitative results. A canonical transformation, which includes the scaling of the matter-field perturbations by the scale factor of the geometry, is performed in order to arrive at a convenient formulation of the system. We then study the quantization of these perturbations in the classical background determined by the homogeneous variables. Based on previous work, we introduce a Fock representation for the perturbations in which: (a) the complex structure is invariant under the isometries of the spatial sections and (b) the field dynamics is implemented as a unitary operator. These two properties select not only a unique unitary equivalence class of representations, but also a preferred field description, picking up a canonical pair of field variables among all those that can be obtained by means of a time-dependent scaling of the matter field (completed into a linear canonical transformation). Finally, we present an equivalent quantization constructed in terms of gauge-invariant quantities. We prove that this quantization can be attained by a mode-by-mode time-dependent linear canonical transformation which admits a unitary implementation, so that it is also uniquely determined.
New quantization matrices for JPEG steganography
Yildiz, Yesna O.; Panetta, Karen; Agaian, Sos
2007-04-01
Modern steganography is a secure communication of information by embedding a secret-message within a "cover" digital multimedia without any perceptual distortion to the cover media, so the presence of the hidden message is indiscernible. Recently, the Joint Photographic Experts Group (JPEG) format attracted the attention of researchers as the main steganographic format due to the following reasons: It is the most common format for storing images, JPEG images are very abundant on the Internet bulletin boards and public Internet sites, and they are almost solely used for storing natural images. Well-known JPEG steganographic algorithms such as F5 and Model-based Steganography provide high message capacity with reasonable security. In this paper, we present a method to increase security using JPEG images as the cover medium. The key element of the method is using a new parametric key-dependent quantization matrix. This new quantization table has practically the same performance as the JPEG table as far as compression ratio and image statistics. The resulting image is indiscernible from an image that was created using the JPEG compression algorithm. This paper presents the key-dependent quantization table algorithm and then analyzes the new table performance.
Light-Front Quantization of Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.
2003-03-25
Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.
Light-Front Quantization of Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Brodskey, Stanley
2002-12-01
Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.
Statistical Physics and Light-Front Quantization
Energy Technology Data Exchange (ETDEWEB)
Raufeisen, J
2004-08-12
Light-front quantization has important advantages for describing relativistic statistical systems, particularly systems for which boost invariance is essential, such as the fireball created in a heavy ion collisions. In this paper the authors develop light-front field theory at finite temperature and density with special attention to quantum chromodynamics. They construct the most general form of the statistical operator allowed by the Poincare algebra and show that there are no zero-mode related problems when describing phase transitions. They then demonstrate a direct connection between densities in light-front thermal field theory and the parton distributions measured in hard scattering experiments. The approach thus generalizes the concept of a parton distribution to finite temperature. In light-front quantization, the gauge-invariant Green's functions of a quark in a medium can be defined in terms of just 2-component spinors and have a much simpler spinor structure than the equal-time fermion propagator. From the Green's function, the authors introduce the new concept of a light-front density matrix, whose matrix elements are related to forward and to off-diagonal parton distributions. Furthermore, they explain how thermodynamic quantities can be calculated in discretized light-cone quantization, which is applicable at high chemical potential and is not plagued by the fermion-doubling problems.
Quantizations of D = 3 Lorentz symmetry
Energy Technology Data Exchange (ETDEWEB)
Lukierski, J. [University of Wroclaw, Institute for Theoretical Physics, Wroclaw (Poland); Tolstoy, V.N. [University of Wroclaw, Institute for Theoretical Physics, Wroclaw (Poland); Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow (Russian Federation)
2017-04-15
Using the isomorphism o(3; C) ≅ sl(2; C) we develop a new simple algebraic technique for complete classification of quantum deformations (the classical r-matrices) for real forms o(3) and o(2,1) of the complex Lie algebra o(3; C) in terms of real forms of sl(2; C): su(2), su(1,1) and sl(2; R). We prove that the D = 3 Lorentz symmetry o(2,1) ≅ su(1,1) ≅ sl(2; R) has three different Hopf-algebraic quantum deformations, which are expressed in the simplest way by two standard su(1,1) and sl(2; R) q-analogs and by simple Jordanian sl(2; R) twist deformation. These quantizations are presented in terms of the quantum Cartan-Weyl generators for the quantized algebras su(1,1) and sl(2; R) as well as in terms of quantum Cartesian generators for the quantized algebra o(2,1). Finally, some applications of the deformed D = 3 Lorentz symmetry are mentioned. (orig.)
Introduction to quantized LIE groups and algebras
International Nuclear Information System (INIS)
Tjin, T.
1992-01-01
In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl 2 is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxter equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl 2 algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory
Terrorism as a process: a critical review of Moghaddam's "Staircase to Terrorism".
Lygre, Ragnhild B; Eid, Jarle; Larsson, Gerry; Ranstorp, Magnus
2011-12-01
This study reviews empirical evidence for Moghaddam's model "Staircase to Terrorism," which portrays terrorism as a process of six consecutive steps culminating in terrorism. An extensive literature search, where 2,564 publications on terrorism were screened, resulted in 38 articles which were subject to further analysis. The results showed that while most of the theories and processes linked to Moghaddam's model are supported by empirical evidence, the proposed transitions between the different steps are not. These results may question the validity of a linear stepwise model and may suggest that a combination of mechanisms/factors could combine in different ways to produce terrorism. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.
Phage and bacteria support mutual diversity in a narrowing staircase of coexistence
DEFF Research Database (Denmark)
Härter, Jan Olaf Mirko; Mitarai, Namiko; Sneppen, Kim
2014-01-01
arms race will typically favor high growth rate, but a phage that infects two bacterial strains differently can occasionally eliminate the fastest growing bacteria. This context-dependent fitness allows abrupt resetting of the 'Red-Queen's race' and constrains the local diversity.......The competitive exclusion principle states that phage diversity M should not exceed bacterial diversity N. By analyzing the steady-state solutions of multistrain equations, we find a new constraint: the diversity N of bacteria living on the same resources is constrained to be M or M+1 in terms...... of the diversity of their phage predators. We quantify how the parameter space of coexistence exponentially decreases with diversity. For diversity to grow, an open or evolving ecosystem needs to climb a narrowing 'diversity staircase' by alternatingly adding new bacteria and phages. The unfolding coevolutionary...
Josephson junction at the onset of chaos: A complete devil's staircase
International Nuclear Information System (INIS)
Alstrom, P.; Levinsen, M.T.
1985-01-01
By analog computer calculations of the resistively and capacitively shunted Josephson junction model, I-V characteristics are measured for several choices of the parameters in the Josephson equation. The points, where hysteresis sets in, are related to cubic inflection points in the return map. For different values of the amplitude and the frequency of the imposed ac field the critical line is determined in the (I,G) space, where I is the dc current and G is the damping factor. Furthermore, the subharmonic steps along the critical line form a complete devil's staircase with a fractal dimension Dapprox.0.87 and a decay exponent for the (1/Q)-steps deltaapprox.3. Besides the hysteresis which gives occasion for a chaotic behavior everywhere below a certain critical voltage, hysteresis also turns up locally. It is suggested that the critical points where local hysteresis occurs can be found by use of a local approximation
Quantization, geometry and noncommutative structures in mathematics and physics
Morales, Pedro; Ocampo, Hernán; Paycha, Sylvie; Lega, Andrés
2017-01-01
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics. The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics. A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt. The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf a...
Algebraic quantization, good operators and fractional quantum numbers
International Nuclear Information System (INIS)
Aldaya, V.; Calixto, M.; Guerrero, J.
1996-01-01
The problems arising when quantizing systems with periodic boundary conditions are analysed, in an algebraic (group-) quantization scheme, and the failure of the Ehrenfest theorem is clarified in terms of the already defined notion of good (and bad) operators. The analysis of constrained Heisenberg-Weyl groups according to this quantization scheme reveals the possibility for quantum operators without classical analogue and for new quantum (fractional) numbers extending those allowed for Chern classes in traditional Geometric Quantization. This study is illustrated with the examples of the free particle on the circumference and the charged particle in a homogeneous magnetic field on the torus, both examples featuring anomalous operators, non-equivalent quantization and the latter, fractional quantum numbers. These provide the rationale behind flux quantization in superconducting rings and Fractional Quantum Hall Effect, respectively. (orig.)
Semiclassical quantization of nonadiabatic systems with hopping periodic orbits
International Nuclear Information System (INIS)
Fujii, Mikiya; Yamashita, Koichi
2015-01-01
We present a semiclassical quantization condition, i.e., quantum–classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller’s trace formula to a nonadiabatic form. The quantum–classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics
Minimal quantization of two-dimensional models with chiral anomalies
International Nuclear Information System (INIS)
Ilieva, N.
1987-01-01
Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis
A quantized mechanism for activation of pannexin channels
Chiu, Yu-Hsin; Jin, Xueyao; Medina, Christopher B.; Leonhardt, Susan A.; Kiessling, Volker; Bennett, Brad C.; Shu, Shaofang; Tamm, Lukas K.; Yeager, Mark; Ravichandran, Kodi S.; Bayliss, Douglas A.
2017-01-01
Pannexin 1 (PANX1) subunits form oligomeric plasma membrane channels that mediate nucleotide release for purinergic signalling, which is involved in diverse physiological processes such as apoptosis, inflammation, blood pressure regulation, and cancer progression and metastasis. Here we explore the mechanistic basis for PANX1 activation by using wild type and engineered concatemeric channels. We find that PANX1 activation involves sequential stepwise sojourns through multiple discrete open states, each with unique channel gating and conductance properties that reflect contributions of the individual subunits of the hexamer. Progressive PANX1 channel opening is directly linked to permeation of ions and large molecules (ATP and fluorescent dyes) and occurs during both irreversible (caspase cleavage-mediated) and reversible (α1 adrenoceptor-mediated) forms of channel activation. This unique, quantized activation process enables fine tuning of PANX1 channel activity and may be a generalized regulatory mechanism for other related multimeric channels. PMID:28134257
Quantized charge transport in chiral Majorana edge modes
Rachel, Stephan; Mascot, Eric; Cocklin, Sagen; Vojta, Matthias; Morr, Dirk K.
2017-11-01
Majorana fermions can be realized as quasiparticles in topological superconductors, with potential applications in topological quantum computing. Recently, lattices of magnetic adatoms deposited on the surface of s -wave superconductors—Shiba lattices—have been proposed as a new platform for topological superconductivity. These systems possess the great advantage that they are accessible via scanning-probe techniques and thus enable the local manipulation and detection of Majorana modes. Using a nonequilibrium Green's function technique we demonstrate that the topological Majorana edge modes of nanoscopic Shiba islands display universal electronic and transport properties. Most remarkably, these Majorana modes possess a quantized charge conductance that is proportional to the topological Chern number, C , and carry a supercurrent whose chirality reflects the sign of C . These results establish nanoscopic Shiba islands as promising components in future topology-based devices.
Global properties of systems quantized via bundles
International Nuclear Information System (INIS)
Doebner, H.D.; Werth, J.E.
1978-03-01
Take a smooth manifold M and a Lie algebra action (g-ation) theta on M as the geometrical arena of a physical system moving on M with momenta given by theta. It is proposed to quantize the system with a Mackey-like method via the associated vector bundle xisub(rho) of a principal bundle xi=(P,π,M,H) with model dependent structure group H and with g-action phi on P lifted from theta on M. This (quantization) bundle xisub(rho) gives the Hilbert space equal to L 2 (xisub(rho),ω) of the system as the linear space of sections in xisub(rho) being square integrable with respect to a volume form ω on M; the usual position operators are obtained; phi leads to a vector field representation D(phisub(rho),theta) of g in an hence Hilbert space to momentum operators. So Hilbert space carries the quantum kinematics. In this quantuzation the physically important connection between geometrical properties of the system, e.g. quasi-completeness of theta and G-maximality of phisub(rho), and global properties of its quantized kinematics, e.g. skew-adjointness of the momenta and integrability of D(phisub(rho), theta) can easily be studied. The relation to Nelson's construction of a skew-adjoint non-integrable Lie algebra representation and to Palais' local G-action is discussed. Finally the results are applied to actions induced by coverings as examples of non-maximal phisub(rho) on Esub(rho) lifted from maximal theta on M which lead to direct consequences for the corresponding quantum kinematics
Remarks on the quantization of conformal fields
International Nuclear Information System (INIS)
Bakas, I.
1988-01-01
The quantization of a general (b,c) system in two dimensions is formulated in terms of an infinite hierarchy of modules for the Virasoro algebra that interpolate between the space of classical conformal fields of weight j and the Dirac sea of semi-infinite forms. This provides a natural framework in which to study the relation between algebraic geometry and representations of the Virasoro algebra with central charge c j = -2(6j 2 -6j+1). The importance of the construction is discussed in the context of string theory. (orig.)
On the stochastic quantization of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Jona-Lasinio, G.; Parrinello, C.
1988-11-03
The non-gradient stochastic quantization scheme for gauge theories proposed by Zwanziger is analyzed in the semiclassical limit. Using ideas from the theory of small random perturbations of dynamical systems we derive a lower bound for the equilibrium distribution in a neighbourhood of a stable critical point of the drift. In this approach the calculation of the equilibrium distribution is reduced to the problem of finding a minimum for the large fluctuation functional associated to the Langevin equation. Our estimate follows from a simple upper bound for this minimum; in addition to the Yang-Mills action a gauge-fixing term which tends to suppress Gribov copies appears.
Quantized hopfield networks for reliability optimization
International Nuclear Information System (INIS)
Nourelfath, Mustapha; Nahas, Nabil
2003-01-01
The use of neural networks in the reliability optimization field is rare. This paper presents an application of a recent kind of neural networks in a reliability optimization problem for a series system with multiple-choice constraints incorporated at each subsystem, to maximize the system reliability subject to the system budget. The problem is formulated as a nonlinear binary integer programming problem and characterized as an NP-hard problem. Our design of neural network to solve efficiently this problem is based on a quantized Hopfield network. This network allows us to obtain optimal design solutions very frequently and much more quickly than others Hopfield networks
Projective geometry for polarization in geometric quantization
International Nuclear Information System (INIS)
Campbell, P.; Dodson, C.T.J.
1976-12-01
It is important to know the extent to which the procedure of geometric quantization depends on a choice of polarization of the symplectic manifold that is the classical phase space. Published results have so far been restricted to real and transversal polarizations. Here we also consider these cases by presenting a formulation in terms of projective geometry. It turns out that there is a natural characterization of real transversal polarizations and maps among them using projective concepts. We give explicit constructions for Rsup(2n)
Temperature quantization from the TBA equations
International Nuclear Information System (INIS)
Frolov, Sergey; Suzuki, Ryo
2009-01-01
We analyze the Thermodynamic Bethe Ansatz equations for the mirror model which determine the ground state energy of the light-cone AdS 5 xS 5 superstring living on a cylinder. The light-cone momentum of string is equal to the circumference of the cylinder, and is identified with the inverse temperature of the mirror model. We show that the natural requirement of the analyticity of the Y-functions leads to the quantization of the temperature of the mirror model which has never been observed in any other models.
Quantization of soluble classical constrained systems
International Nuclear Information System (INIS)
Belhadi, Z.; Menas, F.; Bérard, A.; Mohrbach, H.
2014-01-01
The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way
Quantization of soluble classical constrained systems
Energy Technology Data Exchange (ETDEWEB)
Belhadi, Z. [Laboratoire de physique et chimie quantique, Faculté des sciences, Université Mouloud Mammeri, BP 17, 15000 Tizi Ouzou (Algeria); Laboratoire de physique théorique, Faculté des sciences exactes, Université de Bejaia, 06000 Bejaia (Algeria); Menas, F. [Laboratoire de physique et chimie quantique, Faculté des sciences, Université Mouloud Mammeri, BP 17, 15000 Tizi Ouzou (Algeria); Ecole Nationale Préparatoire aux Etudes d’ingéniorat, Laboratoire de physique, RN 5 Rouiba, Alger (Algeria); Bérard, A. [Equipe BioPhysStat, Laboratoire LCP-A2MC, ICPMB, IF CNRS No 2843, Université de Lorraine, 1 Bd Arago, 57078 Metz Cedex (France); Mohrbach, H., E-mail: herve.mohrbach@univ-lorraine.fr [Equipe BioPhysStat, Laboratoire LCP-A2MC, ICPMB, IF CNRS No 2843, Université de Lorraine, 1 Bd Arago, 57078 Metz Cedex (France)
2014-12-15
The derivation of the brackets among coordinates and momenta for classical constrained systems is a necessary step toward their quantization. Here we present a new approach for the determination of the classical brackets which does neither require Dirac’s formalism nor the symplectic method of Faddeev and Jackiw. This approach is based on the computation of the brackets between the constants of integration of the exact solutions of the equations of motion. From them all brackets of the dynamical variables of the system can be deduced in a straightforward way.
Quantization in rotating co-ordinates revisited
International Nuclear Information System (INIS)
Hussain, F.; Qadir, A.
1982-07-01
Recent work on quantization in rotating co-ordinates showed that no radiation would be seen by an observer rotating with a constant angular speed. This work used a Galilean-type co-ordinate transformation. We show that the same result holds for a Lorentz-type co-ordinate system, in spite of the fact that the metric has a co-ordinate singularity at rΩ = 1. Further, we are able to define positive and negative energy modes for a particular case of a non-static, non-stationary metric. (author)
Phase-space quantization of field theory
International Nuclear Information System (INIS)
Curtright, T.; Zachos, C.
1999-01-01
In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999
Entropy and energy quantization: Planck thermodynamic calculation
International Nuclear Information System (INIS)
Mota e Albuquerque, Ivone Freire da.
1988-01-01
This dissertation analyses the origins and development of the concept of entropy and its meaning of the second Law of thermodynamics, as well as the thermodynamics derivation of the energy quantization. The probabilistic interpretation of that law and its implication in physics theory are evidenciated. Based on Clausius work (which follows Carnot's work), we analyse and expose in a original way the entropy concept. Research upon Boltzmann's work and his probabilistic interpretation of the second Law of thermodynamics is made. The discuss between the atomistic and the energeticist points of view, which were actual at that time are also commented. (author). 38 refs., 3 figs
Quantization of a nonlinearly realized supersymmetric theory
International Nuclear Information System (INIS)
Shima, K.
1977-01-01
The two-dimensional version of the Volkov-Akulov Lagrangian, where the supersymmetry is realized nonlinearly by means of a single Majorana spinor psi (x), is quantized. The equal-time anticommutators for the field are not c numbers but are functions of the field itself. By explicit calculation we shall show that the supersymmetry charges of the model form the supersymmetry algebra (the graded Lie algebra); therefore the Hamiltonian of the system P 0 is written as a bilinear sum of products of supersymmetry charges. We shall also show that the supersymmetry charges exactly generate a constant translation of psi (x) in the spinor space
Quantized fields in external field. Pt. 2
International Nuclear Information System (INIS)
Bellissard, J.
1976-01-01
The case of a charged scalar field is considered first. The existence of the corresponding Green's functions is proved. For weak fields, as well as pure electric or scalar external fields, the Bogoliubov S-operator is shown to be unitary, covariant, causal up-to-a-phase. These results are generalised to a class of higher spin quantized fields, 'nicely' coupled to external fields, which includes the Dirac theory, and in the case of minimal and magnetic dipole coupling, the spin one Petiau-Duffin-Kemmer theory. (orig.) [de
Directory of Open Access Journals (Sweden)
M. C. Fernández Cabo
2017-06-01
Full Text Available By 1700 Domingo de Andrade, at that time master builder of the Santiago de Compostela cathedral (North-west of Spain, built a unique spiral staircase in the Santo Domingo de Bonaval’s Convent, on the outskirts of the city. This paper provides a construction process hypothesis based on the available knowledge and technical resources at that time, involving the geometry, layout, stonework of the steps and their positioning on the site. A 1:5 scale model has been made to demonstrate that the staircase could have been built with no scaffolding at all. That would have meant for Andrade, architect and builder, an important cost reduction. Moreover been a masterpiece with an undeniable show of prowess, it is quite possible that economic reasons had driven the master to this bold design.
On quantization of time-dependent systems with constraints
International Nuclear Information System (INIS)
Gadjiev, S A; Jafarov, R G
2007-01-01
The Dirac method of canonical quantization of theories with second-class constraints has to be modified if the constraints depend on time explicitly. A solution of the problem was given by Gitman and Tyutin. In the present work we propose an independent way to derive the rules of quantization for these systems, starting from the physical equivalent theory with trivial non-stationarity
On quantization of time-dependent systems with constraints
International Nuclear Information System (INIS)
Hadjialieva, F.G.; Jafarov, R.G.
1993-07-01
The Dirac method of canonical quantization of theories with second class constraints has to be modified if the constraints depend on time explicitly. A solution of the problem was given by Gitman and Tyutin. In the present work we propose an independent way to derive the rules of quantization for these systems, starting from physical equivalent theory with trivial nonstationarity. (author). 4 refs
On quantization of time-dependent systems with constraints
Energy Technology Data Exchange (ETDEWEB)
Gadjiev, S A; Jafarov, R G [Institute for Physical Problems, Baku State University, AZ11 48 Baku (Azerbaijan)
2007-03-30
The Dirac method of canonical quantization of theories with second-class constraints has to be modified if the constraints depend on time explicitly. A solution of the problem was given by Gitman and Tyutin. In the present work we propose an independent way to derive the rules of quantization for these systems, starting from the physical equivalent theory with trivial non-stationarity.
The classical parafermion algebra, its generalization and its quantization
International Nuclear Information System (INIS)
Bardakci, K.
1992-01-01
The Poisson bracket algebra of the classical parafermions derived earlier from the lagrangian description of conformal coset models is generalized. It is also shown how to quantize models with commutative monodromy matrices, and progress is made in quantizing the non-commutative case. (orig.)
Lossless image data sequence compression using optimal context quantization
DEFF Research Database (Denmark)
Forchhammer, Søren; WU, Xiaolin; Andersen, Jakob Dahl
2001-01-01
Context based entropy coding often faces the conflict of a desire for large templates and the problem of context dilution. We consider the problem of finding the quantizer Q that quantizes the K-dimensional causal context Ci=(X(i-t1), X(i-t2), …, X(i-tK)) of a source symbol Xi into one of M...
Quantization ambiguity and the Aharanov-Bohm effect
International Nuclear Information System (INIS)
Kunstatter, G.
1983-01-01
A brief review is given of the role of quantization ambiguity in both quantum mechanics and quantum field theory. The author points out that quantization ambiguity is not relevant to discussions of physical experiments designed to test the Aharanov-Bohm effect. A recent proposal for such an experiment involving Aharanov-Bohm currents in thin superconducting cylinders is mentioned. (Auth.)
Generalized noise terms for the quantized fluctuational electrodynamics
DEFF Research Database (Denmark)
Partanen, Mikko; Hayrynen, Teppo; Tulkki, Jukka
2017-01-01
position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization...
Quantization Distortion in Block Transform-Compressed Data
Boden, A. F.
1995-01-01
The popular JPEG image compression standard is an example of a block transform-based compression scheme; the image is systematically subdivided into block that are individually transformed, quantized, and encoded. The compression is achieved by quantizing the transformed data, reducing the data entropy and thus facilitating efficient encoding. A generic block transform model is introduced.
On quantization of the electromagnetic field in radiation gauge
International Nuclear Information System (INIS)
Burzynski, A.
1982-01-01
This paper contains a detailed description of quantization of the electromagnetic field (in radiation gauge) and quantization of some basic physical variables connected with radiation field as energy, momentum and spin. The dynamics of the free quantum radiation field and the field interacting with external classical sources is described. The canonical formalism is not used explicity. (author)
A geometrical approach to free-field quantization
International Nuclear Information System (INIS)
Tabensky, R.; Valle, J.W.F.
1977-01-01
A geometrical approach to the quantization of free relativistic fields is given. Complex probability amplitudes are assigned to the solutions of the classical evolution equation. It is assumed that the evolution is stricly classical, according to the scalar unitary representation of the Poincare group in a functional space. The theory is equivalent to canonical quantization [pt
Berezin and Berezin-Toeplitz quantizations for general function spaces
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav
2006-01-01
Roč. 19, č. 2 (2006), s. 385-430 ISSN 1139-1138 R&D Projects: GA AV ČR(CZ) IAA1019301 Institutional research plan: CEZ:AV0Z10190503 Keywords : Berezin quantization * Berezin-Toeplitz quantization * star product Subject RIV: BA - General Mathematics
Quantization of fermions in external soliton fields and index calculation
International Nuclear Information System (INIS)
Grosse, H.
1986-01-01
We review recent results on the quantization of fermions in external fields, discuss equivalent and inequivalent representations of the canonical anticommutation relations, indicate how the requirement of implementability of gauge transformations leads to quantization conditions, determine the algebra of charges, identify the Schwinger term and remark finally how one may calculate a ground state charge. (Author)
Problems with quantizing the Skyrmion: a critical review
International Nuclear Information System (INIS)
Ralston, J.P.
1984-01-01
We review the motivation and construction of the chiral soliton picture of baryons. We discuss the semi-classical quantization procedure of Adkins, Nappi and Witten and the stability of the semi-classical solution under the collective coordinate quantization. By studying the behavior in the chiral limit and specific numerical predictions, we conclude that the collective coordinate procedure is inadequate
Group representations via geometric quantization of the momentum map
International Nuclear Information System (INIS)
Mladenov, I.M.; Tsanov, V.V.
1992-09-01
In this paper, we treat a general method of quantization of Hamiltonian systems whose flow is a subgroup (not necessarily closed) of a torus acting freely and symplectically on the phase space. The quantization of some classes of completely integrable systems as well as the Borel-Weil-Bott version of representation theory are special cases. (author). 14 refs
Smith, Ian C.; Vandenboom, Rene; Tupling, A. Russell
2014-01-01
Ca2+ entry during the action potential stimulates muscle contraction. During repetitive low frequency stimulation, skeletal muscle undergoes staircase potentiation (SP), a progressive increase in the peak twitch force induced by each successive stimulus. Multiple mechanisms, including myosin regulatory light chain phosphorylation, likely contribute to SP, a temperature-dependent process. Here, we used the Ca2+-sensitive fluorescence indicators acetoxymethyl (AM)-furaptra and AM-fura-2 to exam...
Directory of Open Access Journals (Sweden)
G. F. Wieczorek
2008-05-01
Full Text Available Since 1857 more than 600 rock falls, rock slides, debris slides, and debris flows have been documented in Yosemite National Park, with rock falls in Yosemite Valley representing the majority of the events. On 26 December 2003, a rock fall originating from west of Glacier Point sent approximately 200 m^{3} of rock debris down a series of joint-controlled ledges to the floor of Yosemite Valley. The debris impacted talus near the base of Staircase Falls, producing fragments of flying rock that struck occupied cabins in Curry Village. Several years later on 9 June 2007, and again on 26 July 2007, smaller rock falls originated from the same source area. The 26 December 2003 event coincided with a severe winter storm and was likely triggered by precipitation and/or frost wedging, but the 9 June and 26 July 2007 events lack recognizable triggering mechanisms. We investigated the geologic and hydrologic factors contributing to the Staircase Falls rock falls, including bedrock lithology, weathering, joint spacing and orientations, and hydrologic processes affecting slope stability. We improved upon previous geomorphic assessment of rock-fall hazards, based on a shadow angle approach, by using STONE, a three-dimensional rock-fall simulation computer program. STONE produced simulated rock-fall runout patterns similar to the mapped extent of the 2003 and 2007 events, allowing us to simulate potential future rock falls from the Staircase Falls detachment area. Observations of recent rock falls, mapping of rock debris, and simulations of rock fall runouts beneath the Staircase Falls detachment area suggest that rock-fall hazard zones extend farther downslope than the extent previously defined by mapped surface talus deposits.
Wieczorek, G. F.; Stock, G. M.; Reichenbach, P.; Snyder, J. B.; Borchers, J. W.; Godt, J. W.
2008-05-01
Since 1857 more than 600 rock falls, rock slides, debris slides, and debris flows have been documented in Yosemite National Park, with rock falls in Yosemite Valley representing the majority of the events. On 26 December 2003, a rock fall originating from west of Glacier Point sent approximately 200 m3 of rock debris down a series of joint-controlled ledges to the floor of Yosemite Valley. The debris impacted talus near the base of Staircase Falls, producing fragments of flying rock that struck occupied cabins in Curry Village. Several years later on 9 June 2007, and again on 26 July 2007, smaller rock falls originated from the same source area. The 26 December 2003 event coincided with a severe winter storm and was likely triggered by precipitation and/or frost wedging, but the 9 June and 26 July 2007 events lack recognizable triggering mechanisms. We investigated the geologic and hydrologic factors contributing to the Staircase Falls rock falls, including bedrock lithology, weathering, joint spacing and orientations, and hydrologic processes affecting slope stability. We improved upon previous geomorphic assessment of rock-fall hazards, based on a shadow angle approach, by using STONE, a three-dimensional rock-fall simulation computer program. STONE produced simulated rock-fall runout patterns similar to the mapped extent of the 2003 and 2007 events, allowing us to simulate potential future rock falls from the Staircase Falls detachment area. Observations of recent rock falls, mapping of rock debris, and simulations of rock fall runouts beneath the Staircase Falls detachment area suggest that rock-fall hazard zones extend farther downslope than the extent previously defined by mapped surface talus deposits.
Quantization of the Jackiw-Teitelboim model
International Nuclear Information System (INIS)
Constantinidis, Clisthenis P.; Piguet, Olivier; Perez, Alejandro
2009-01-01
We study the phase space structure of the Jackiw-Teitelboim model in its connection variables formulation where the gauge group of the field theory is given by local SL(2,R)[or SU(2) for the Euclidean model], i.e. the de Sitter group in two dimensions. In order to make the connection with two-dimensional gravity explicit, a partial gauge fixing of the de Sitter symmetry can be introduced that reduces it to space-time diffeomorphisms. This can be done in different ways. Having no local physical degrees of freedom, the reduced phase space of the model is finite dimensional. The simplicity of this gauge field theory allows for studying different avenues for quantization, which may use various (partial) gauge fixings. We show that reduction and quantization are noncommuting operations: the representation of basic variables as operators in a Hilbert space depends on the order chosen for the latter. Moreover, a representation that is natural in one case may not even be available in the other leading to inequivalent quantum theories.
Quantization of dissipative systems - some irresponsible speculations
International Nuclear Information System (INIS)
Kochan, Denis
2007-01-01
The Newton-Lagrange equations of motion represent the fundamental law of mechanics. Their traditional Lagrangian and/or Hamiltonian precursors when available are essential in the context of quantization. However, there are situations that lack Lagrangian and/or Hamiltonian settings. This paper discusses classical and quantal dynamics of such systems and presents some irresponsible speculations by introducing a certain canonical two-form Ω. By its construction Ω embodies kinetic energy and forces acting within the system (not their potential). A new type of variational principle is introduced, where variation is performed over a set of 'umbilical surfaces' instead of system histories. It provides correct Newton-Lagrange equations of motion and something more. The quantization is inspired by the Feynman functional integral approach. The quintessence is to rearrange path integral into an ''umbilical world-sheet'' integral in accordance with the proposed variational principle. In the case of potential-generated forces, the new approach reduces to the standard quantum mechanics
Fedosov quantization and perturbative quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Collini, Giovanni
2016-12-12
Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the Poisson algebra associated with a finite-dimensional symplectic manifold (''phase space''). His algorithm gives a non-commutative, but associative, product (a so-called ''star-product'') between smooth phase space functions parameterized by Planck's constant ℎ, which is treated as a deformation parameter. In the limit as ℎ goes to zero, the star product commutator goes to ℎ times the Poisson bracket, so in this sense his method provides a quantization of the algebra of classical observables. In this work, a generalization of Fedosov's method is developed which applies to the infinite-dimensional symplectic ''manifolds'' that occur in Lagrangian field theories. We show that the procedure remains mathematically well-defined, and we explain the relationship of the method to more standard perturbative quantization schemes in quantum field theory.
On infinite walls in deformation quantization
International Nuclear Information System (INIS)
Kryukov, S.; Walton, M.A.
2005-01-01
We examine the deformation quantization of a single particle moving in one dimension (i) in the presence of an infinite potential wall (ii) confined by an infinite square well, and (iii) bound by a delta function potential energy. In deformation quantization, considered as an autonomous formulation of quantum mechanics, the Wigner function of stationary states must be found by solving the so-called *-genvalue ('stargenvalue') equation for the Hamiltonian. For the cases considered here, this pseudo-differential equation is difficult to solve directly, without an ad hoc modification of the potential. Here we treat the infinite wall as the limit of a solvable exponential potential. Before the limit is taken, the corresponding *-genvalue equation involves the Wigner function at momenta translated by imaginary amounts. We show that it can be converted to a partial differential equation, however, with a well-defined limit. We demonstrate that the Wigner functions calculated from the standard Schroedinger wave functions satisfy the resulting new equation. Finally, we show how our results may be adapted to allow for the presence of another, non-singular part in the potential
Light-cone quantization of quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Pauli, H.C.
1991-06-01
We discuss the light-cone quantization of gauge theories from two perspectives: as a calculational tool for representing hadrons as QCD bound-states of relativistic quarks and gluons, and also as a novel method for simulating quantum field theory on a computer. The light-cone Fock state expansion of wavefunctions at fixed light cone time provides a precise definition of the parton model and a general calculus for hadronic matrix elements. We present several new applications of light-cone Fock methods, including calculations of exclusive weak decays of heavy hadrons, and intrinsic heavy-quark contributions to structure functions. A general nonperturbative method for numerically solving quantum field theories, ''discretized light-cone quantization,'' is outlined and applied to several gauge theories, including QCD in one space and one time dimension, and quantum electrodynamics in physical space-time at large coupling strength. The DLCQ method is invariant under the large class of light-cone Lorentz transformations, and it can be formulated such at ultraviolet regularization is independent of the momentum space discretization. Both the bound-state spectrum and the corresponding relativistic light-cone wavefunctions can be obtained by matrix diagonalization and related techniques. We also discuss the construction of the light-cone Fock basis, the structure of the light-cone vacuum, and outline the renormalization techniques required for solving gauge theories within the light-cone Hamiltonian formalism
Light-cone quantization of quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.J. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Pauli, H.C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))
1991-06-01
We discuss the light-cone quantization of gauge theories from two perspectives: as a calculational tool for representing hadrons as QCD bound-states of relativistic quarks and gluons, and also as a novel method for simulating quantum field theory on a computer. The light-cone Fock state expansion of wavefunctions at fixed light cone time provides a precise definition of the parton model and a general calculus for hadronic matrix elements. We present several new applications of light-cone Fock methods, including calculations of exclusive weak decays of heavy hadrons, and intrinsic heavy-quark contributions to structure functions. A general nonperturbative method for numerically solving quantum field theories, discretized light-cone quantization,'' is outlined and applied to several gauge theories, including QCD in one space and one time dimension, and quantum electrodynamics in physical space-time at large coupling strength. The DLCQ method is invariant under the large class of light-cone Lorentz transformations, and it can be formulated such at ultraviolet regularization is independent of the momentum space discretization. Both the bound-state spectrum and the corresponding relativistic light-cone wavefunctions can be obtained by matrix diagonalization and related techniques. We also discuss the construction of the light-cone Fock basis, the structure of the light-cone vacuum, and outline the renormalization techniques required for solving gauge theories within the light-cone Hamiltonian formalism.
Path integral quantization of parametrized field theory
International Nuclear Information System (INIS)
Varadarajan, Madhavan
2004-01-01
Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory
Structure Sensitive Hashing With Adaptive Product Quantization.
Liu, Xianglong; Du, Bowen; Deng, Cheng; Liu, Ming; Lang, Bo
2016-10-01
Hashing has been proved as an attractive solution to approximate nearest neighbor search, owing to its theoretical guarantee and computational efficiency. Though most of prior hashing algorithms can achieve low memory and computation consumption by pursuing compact hash codes, however, they are still far beyond the capability of learning discriminative hash functions from the data with complex inherent structure among them. To address this issue, in this paper, we propose a structure sensitive hashing based on cluster prototypes, which explicitly exploits both global and local structures. An alternating optimization algorithm, respectively, minimizing the quantization loss and spectral embedding loss, is presented to simultaneously discover the cluster prototypes for each hash function, and optimally assign unique binary codes to them satisfying the affinity alignment between them. For hash codes of a desired length, an adaptive bit assignment is further appended to the product quantization of the subspaces, approximating the Hamming distances and meanwhile balancing the variance among hash functions. Experimental results on four large-scale benchmarks CIFAR-10, NUS-WIDE, SIFT1M, and GIST1M demonstrate that our approach significantly outperforms state-of-the-art hashing methods in terms of semantic and metric neighbor search.
First quantized noncritical relativistic Polyakov string
International Nuclear Information System (INIS)
Jaskolski, Z.; Meissner, K.A.
1994-01-01
The first quantization of the relativistic Brink-DiVecchia-Howe-Polyakov (BDHP) string in the range 1 < d 25 is considered. It is shown that using the Polyakov sum over bordered surfaces in the Feynman path integral quantization scheme one gets a consistent quantum mechanics of relativistic 1-dim extended objects in the range 1 < d < 25. In particular, the BDHP string propagator is exactly calculated for arbitrary initial and final string configurations and the Hilbert space of physical states of noncritical BDHP string is explicitly constructed. The resulting theory is equivalent to the Fairlie-Chodos-Thorn massive string model. In contrast to the conventional conformal field theory approach to noncritical string and random surfaces in the Euclidean target space the path integral formulation of the Fairlie-Chodos-Thorn string obtained in this paper does not rely on the principle of conformal invariance. Some consequences of this feature for constructing a consistent relativistic string theory based on the ''splitting-joining'' interaction are discussed. (author). 42 refs, 1 fig
Bohmian quantization of the big rip
International Nuclear Information System (INIS)
Pinto-Neto, Nelson; Pantoja, Diego Moraes
2009-01-01
It is shown in this paper that minisuperspace quantization of homogeneous and isotropic geometries with phantom scalar fields, when examined in the light of the Bohm-de Broglie interpretation of quantum mechanics, does not eliminate, in general, the classical big rip singularity present in the classical model. For some values of the Hamilton-Jacobi separation constant present in a class of quantum state solutions of the Wheeler-De Witt equation, the big rip can be either completely eliminated or may still constitute a future attractor for all expanding solutions. This is contrary to the conclusion presented in [M. P. Dabrowski, C. Kiefer, and B. Sandhofer, Phys. Rev. D 74, 044022 (2006).], using a different interpretation of the wave function, where the big rip singularity is completely eliminated ('smoothed out') through quantization, independently of such a separation constant and for all members of the above mentioned class of solutions. This is an example of the very peculiar situation where different interpretations of the same quantum state of a system are predicting different physical facts, instead of just giving different descriptions of the same observable facts: in fact, there is nothing more observable than the fate of the whole Universe.
Light-front quantization of the sine-Gordon model
International Nuclear Information System (INIS)
Burkardt, M.
1993-01-01
It is shown how to modify the canonical light-front quantization of the (1+1)-dimensional sine-Gordon model such that the zero-mode problem of light-front quantization is avoided. The canonical sine-Gordon Lagrangian is replaced by an effective Lagrangian which does not lead to divergences as k + =(k 0 +k 1 )/ √2 →0. After canonically quantizing the effective Lagrangian, one obtains the effective light-front Hamiltonian which agrees with the naive light-front (LF) Hamiltonian, up to one additional renormalization. The spectrum of the effective LF Hamiltonian is determined using discrete light-cone quantization and agrees with results from equal-time quantization
Parameters Design for Logarithmic Quantizer Based on Zoom Strategy
Directory of Open Access Journals (Sweden)
Jingjing Yan
2017-01-01
Full Text Available This paper is concerned with the problem of designing suitable parameters for logarithmic quantizer such that the closed-loop system is asymptotic convergent. Based on zoom strategy, we propose two methods for quantizer parameters design, under which it ensures that the state of the closed-loop system can load in the invariant sets after some certain moments. Then we obtain that the quantizer is unsaturated, and thus the quantization errors are bounded under the time-varying logarithm quantization strategy. On that basis, we obtain that the closed-loop system is asymptotic convergent. A benchmark example is given to show the usefulness of the proposed methods, and the comparison results are illustrated.
First, Second Quantization and Q-Deformed Harmonic Oscillator
International Nuclear Information System (INIS)
Van Ngu, Man; Vinh, Ngo Gia; Lan, Nguyen Tri; Viet, Nguyen Ai; Thanh, Luu Thi Kim
2015-01-01
Relations between the first, the second quantized representations and deform algebra are investigated. In the case of harmonic oscillator, the axiom of first quantization (the commutation relation between coordinate and momentum operators) and the axiom of second quantization (the commutation relation between creation and annihilation operators) are equivalent. We shown that in the case of q-deformed harmonic oscillator, a violence of the axiom of second quantization leads to a violence of the axiom of first quantization, and inverse. Using the coordinate representation, we study fine structures of the vacuum state wave function depend in the deformation parameter q. A comparison with fine structures of Cooper pair of superconductivity in the coordinate representation is also performed. (paper)
Characterization of the Quantized Hall Insulator Phase in the Quantum Critical Regime
Song, Juntao; Prodan, Emil
2013-01-01
The conductivity $\\sigma$ and resistivity $\\rho$ tensors of the disordered Hofstadter model are mapped as functions of Fermi energy $E_F$ and temperature $T$ in the quantum critical regime of the plateau-insulator transition (PIT). The finite-size errors are eliminated by using the non-commutative Kubo-formula. The results reproduce all the key experimental characteristics of this transition in Integer Quantum Hall (IQHE) systems. In particular, the Quantized Hall Insulator (QHI) phase is det...
Quantum conductance in silicon quantum wires
Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A
2002-01-01
The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)
Twist map, the extended Frenkel-Kontorova model and the devil's staircase
International Nuclear Information System (INIS)
Aubry, S.
1982-01-01
Exact results obtained on the discrete Frenkel Kontorova (FK) model and its extensions during the past few years are reviewed. These models are associated with area preserving twist maps of the cylinder (or a part of it) onto itself. The theorems obtained for the FK model thus yields new theorems for the twist maps. The exact structure of the ground-states which are either commensurate or incommensurate and assert the existence of elementary discommensurations under certain necessary and sufficient conditions is described. Necessary conditions for the trajectories to represent metastable configurations, which can be chaotic, are given. The existence of a finite Peierl Nabarro barrier for elementary discommensurations is connected with a property of non-integrability of the twist map. The existence of KAM tori corresponds to undefectible incommensurate ground-states and a theorem is given which asserts that when the phenon spectrum of an incommensurate ground-state exhibits a finite gap, then the corresponding trajectory is dense on a Cantor set with zero measure length. These theorems, when applied to the initial FK model, allows one to prove the existence of the transition by breaking of analyticity for the incommensurate structures when the parameter which describes the discrepancy of the model to the integrable limit varies. Finally, we describe a theorem proving the existence of a devil's staircase for the variation curve of the atomic mean distance versus a chemical potential, for certain properties of the twist map which are generally satisfied
International Nuclear Information System (INIS)
Mondal, M.; Ghatak, K.P.
1984-01-01
A generalized expression of the effective mass of charge carriers in tetragonal semiconductors (taking n-Cd 3 As 2 as an example) in the presence of arbitrary magnetic quantization has been derived considering the generalized dispersion relation of the conduction electrons and taking into account only the effective mass of the electrons at the Fermi surface
Quantum mechanics, gravity and modified quantization relations.
Calmet, Xavier
2015-08-06
In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Path integral quantization in the temporal gauge
International Nuclear Information System (INIS)
Scholz, B.; Steiner, F.
1983-06-01
The quantization of non-Abelian gauge theories in the temporal gauge is studied within Feynman's path integral approach. The standard asymptotic boundary conditions are only imposed on the transverse gauge fields. The fictituous longitudinal gauge quanta are eliminated asymptotically by modified boundary conditions. This abolishes the residual time-independent gauge transformations and leads to a unique fixing of the temporal gauge. The resulting path integral for the generating functional respects automatically Gauss's law. The correct gauge field propagator is derived. It does not suffer from gauge singularities at n x k = 0 present in the usual treatment of axial gauges. The standard principal value prescription does not work. As a check, the Wilson loop in temporal gauge is calculated with the new propagator. To second order (and to all orders in the Abelian case) the result agrees with the one obtained in the Feynman and Coulomb gauge. (orig.)
Partial quantization of Lagrangian-Hamiltonian systems
International Nuclear Information System (INIS)
Amaral, C.M. do; Soares Filho, P.C.
1979-05-01
A classical variational principle is constructed in the Weiss form, for dynamical systems with support spaces of the configuration-phase kind. This extended principle rules the dynamics of classical systems, partially Hamiltonian, in interaction with Lagrangean parameterized subsidiary dynamics. The variational family of equations obtained, consists of an equation of the Hamilton-Jacobi type, coupled to a family of differential equations of the Euler-Lagrange form. The basic dynamical function appearing in the equations is a function of the Routh kind. By means of an ansatz induced by the variationally obtained family, a generalized set of equation, is proposed constituted by a wave equation of Schroedinger type, coupled to a family of equations formaly analog to those Euler-Lagrange equations. A basic operator of Routh type appears in our generalized set of equations. This operator describes the interaction between a quantized Hamiltonian dynamics, with a parameterized classical Lagrangean dynamics in semi-classical closed models. (author) [pt
Vector-Quantization using Information Theoretic Concepts
DEFF Research Database (Denmark)
Lehn-Schiøler, Tue; Hegde, Anant; Erdogmus, Deniz
2005-01-01
interpretation and relies on minimization of a well defined cost-function. It is also shown how the potential field approach can be linked to information theory by use of the Parzen density estimator. In the light of information theory it becomes clear that minimizing the free energy of the system is in fact......The process of representing a large data set with a smaller number of vectors in the best possible way, also known as vector quantization, has been intensively studied in the recent years. Very efficient algorithms like the Kohonen Self Organizing Map (SOM) and the Linde Buzo Gray (LBG) algorithm...... have been devised. In this paper a physical approach to the problem is taken, and it is shown that by considering the processing elements as points moving in a potential field an algorithm equally efficient as the before mentioned can be derived. Unlike SOM and LBG this algorithm has a clear physical...
Canonical quantization inside the Schwarzschild black hole
Yajnik, U. A.; Narayan, K.
1998-05-01
We propose a scheme for quantizing a scalar field over the Schwarzschild manifold including the interior of the horizon. On the exterior, the timelike Killing vector and on the horizon the isometry corresponding to restricted Lorentz boosts can be used to enforce the spectral condition. For the interior we appeal to CPT invariance to construct an explicitly positive-definite operator which allows identification of positive and negative frequencies. This operator is the translation operator corresponding to the inexorable propagation to smaller radii as expected from the classical metric. We also propose an expression for the propagator in the interior and express it as a mode sum. The field theory thus obtained is meaningful for small curvatures far from the classical singularity.
On the general theory of quantized fields
International Nuclear Information System (INIS)
Fredenhagen, K.
1991-10-01
In my lecture I describe the present stage of the general theory of quantized fields on the example of 5 subjects. They are ordered in the direction from large to small distances. The first one is the by now classical problem of the structure of superselection sectors. It involves the behavior of the theory at spacelike infinity and is directly connected with particle statistics and internal symmetries. It has become popular in recent years by the discovery of a lot of nontrivial models in 2d conformal-field theory, by connections to integrable models and critical behavior in statistical mechanics and by the relations to the Jones' theory of subfactors in von Neumann algebras and to the corresponding geometrical objects (braids, knots, 3d manifolds, ...). At large timelike distances the by far most important feature of quantum field theory is the particle structure. This will be the second subject of my lecture. It follows the technically most involved part which is concerned with the behavior at finite distances. Two aspets, nuclearity which emphasizes the finite density of states in phase space, and the modular structure which relies on the infinite number of degrees of freedom present even locally, and their mutual relations will be treated. The next point, involving the structure at infinitesimal distances, is the connection between the Haag-Kastler framework of algebras of local and the framework of Wightman fields. Finally, problems in approaches to quantum gravity will be discussed, as far as they are accessible by the methods of the general theory of quantized fields. (orig.)
Landau quantization and spin-momentum locking in topological Kondo insulators
Directory of Open Access Journals (Sweden)
P. Schlottmann
2016-05-01
Full Text Available SmB6 has been predicted to be a strong topological Kondo insulator and experimentally it has been confirmed that at low temperatures the electrical conductivity only takes place at the surfaces of the crystal. Quantum oscillations and ARPES measurements revealed several Dirac cones on the (001 and (101 surfaces of the crystal. We considered three types of surface Dirac cones with an additional parabolic dispersion and studied their Landau quantization and the expectation value of the spin of the electrons. The Landau quantization is quite similar in all three cases and would give rise to very similar de Haas-van Alphen oscillations. The spin-momentum locking, on the other hand, differs dramatically. Without the additional parabolic dispersion the spins are locked in the plane of the surface. The parabolic dispersion, however, produces a gradual canting of the spins out of the surface plane.
A Quantized Analog Delay for an ir-UWB Quadrature Downconversion Autocorrelation Receiver
Bagga, S.; Zhang, L.; Serdijn, W.A.; Long, J.R.; Busking, E.B.
2005-01-01
A quantized analog delay is designed as a requirement for the autocorrelation function in the quadrature downconversion autocorrelation receiver (QDAR). The quantized analog delay is comprised of a quantizer, multiple binary delay lines and an adder circuit. Being the foremost element, the quantizer
Canonical quantization of spinning relativistic particle in external backgrounds
Energy Technology Data Exchange (ETDEWEB)
Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica
2000-07-01
Full text follows: We revise the problem of the quantization of spinning relativistic particle pseudoclassical model, using a modified consistent canonical scheme. It allows one not only to include arbitrary electromagnetic and gravitational backgrounds in the consideration but to get in course of the quantization a consistent relativistic quantum mechanics, which reproduces literally the behavior of the one-particle sector of quantized spinor field. In particular, in a physical sector of the Hilbert space a complete positive spectrum of energies of relativistic particles and antiparticles is reproduced. Requirement to maintain all classical symmetries under the coordinate transformations and under U(1) transformations allows one to realize operator algebra without any ambiguities. (author)
Coherent states and related quantizations for unbounded motions
International Nuclear Information System (INIS)
Bagrov, V G; Gazeau, J-P; Gitman, D M; Levin, A D
2012-01-01
We discuss the construction of coherent states (CS) for systems with continuous spectra. First, we propose to adopt the Malkin–Manko approach, developed for systems with discrete spectra, to the case under consideration. Following this approach, we consider two examples, a free particle and a particle in a linear potential. Second, we generalize the approach of action-angle CS to systems with continuous spectra. In the first approach we start with a well-defined quantum formulation (canonical quantization) of a physical system and the construction of CS follows from such a quantization. In the second approach, the quantization procedure is inherent to the CS construction itself. (paper)
Networked Predictive Control for Nonlinear Systems With Arbitrary Region Quantizers.
Yang, Hongjiu; Xu, Yang; Xia, Yuanqing; Zhang, Jinhui
2017-04-06
In this paper, networked predictive control is investigated for planar nonlinear systems with quantization by an extended state observer (ESO). The ESO is used not only to deal with nonlinear terms but also to generate predictive states for dealing with network-induced delays. Two arbitrary region quantizers are applied to take effective values of signals in forward channel and feedback channel, respectively. Based on a "zoom" strategy, sufficient conditions are given to guarantee stabilization of the closed-loop networked control system with quantization. A simulation example is proposed to exhibit advantages and availability of the results.
Flux quantization in 'autistic' magnets
Energy Technology Data Exchange (ETDEWEB)
Costa de Beauregard, O.; Vigoureux, J.M.
1974-03-15
The Dirac electron theory for the evanescent wave surrounding an infinitely long cylindrical magnet with zero surface polarization and the requirement of the single valuedness of this wave are used to show that the magnetic flux is quantized in units h/2e emu. The same quantization is shown for a general ''autistic'' magnet (i.e. magnet completely trapping its flux), thus establishing complete external equivalence of the ''autistic'' magnet with the ''perfect solenoid''. An experimental test of the predicted quantization is suggested.
On gauge fixing and quantization of constrained Hamiltonian systems
International Nuclear Information System (INIS)
Dayi, O.F.
1989-06-01
In constrained Hamiltonian systems which possess first class constraints some subsidiary conditions should be imposed for detecting physical observables. This issue and quantization of the system are clarified. It is argued that the reduced phase space and Dirac method of quantization, generally, differ only in the definition of the Hilbert space one should use. For the dynamical systems possessing second class constraints the definition of physical Hilbert space in the BFV-BRST operator quantization method is different from the usual definition. (author). 18 refs
ICTP lectures on covariant quantization of the superstring
International Nuclear Information System (INIS)
Berkovits, N.
2003-01-01
These ICTP Trieste lecture notes review the pure spinor approach to quantizing the superstring with manifest D=10 super-Poincare invariance. The first section discusses covariant quantization of the superparticle and gives a new proof of equivalence with the Brink-Schwarz superparticle. The second section discusses the superstring in a flat background and shows how to construct vertex operators and compute tree amplitudes in a manifestly super-Poincare covariant manner. And the third section discusses quantization of the superstring in curved backgrounds which can include Ramond-Ramond flux. (author)
From the geometric quantization to conformal field theory
International Nuclear Information System (INIS)
Alekseev, A.; Shatashvili, S.
1990-01-01
Investigation of 2d conformal field theory in terms of geometric quantization is given. We quantize the so-called model space of the compact Lie group, Virasoro group and Kac-Moody group. In particular, we give a geometrical interpretation of the Virasoro discrete series and explain that this type of geometric quantization reproduces the chiral part of CFT (minimal models, 2d-gravity, WZNW theory). In the appendix we discuss the relation between classical (constant) r-matrices and this geometrical approach. (orig.)
Canonical quantization of gravity and a problem of scattering
International Nuclear Information System (INIS)
Rubakov, V.A.
1980-01-01
Linearized theory of gravity is quantized both in a naive way and as a proper limit of the Dirac-Wheeler-De Witt approach to the quantization of the full theory. The equivalence between the two approaches is established. The problem of scattering in the canonically quantized theory of gravitation is investigated. The concept of the background metric naturally appears in the canonical formalism for this case. The equivalence between canonical and path-integral approaches is established for the problem of scattering. Some kinetical properties of functionals in Wheeler superspace are studied in an appendix. (author)
ICTP lectures on covariant quantization of the superstring
Energy Technology Data Exchange (ETDEWEB)
Berkovits, N [Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, SP (Brazil)
2003-08-15
These ICTP Trieste lecture notes review the pure spinor approach to quantizing the superstring with manifest D=10 super-Poincare invariance. The first section discusses covariant quantization of the superparticle and gives a new proof of equivalence with the Brink-Schwarz superparticle. The second section discusses the superstring in a flat background and shows how to construct vertex operators and compute tree amplitudes in a manifestly super-Poincare covariant manner. And the third section discusses quantization of the superstring in curved backgrounds which can include Ramond-Ramond flux. (author)
Quantization of a scalar field in the Kerr spacetime
International Nuclear Information System (INIS)
Ford, L.H.
1974-01-01
A discussion of field quantization in a curved background spacetime is presented, with emphasis on the quantization of a scalar field in the Kerr spacetime. The ambiguity in the choice of a Fock space is discussed. The example of quantized fields in a rotating frame of reference in Minkowski space is analyzed, and it is shown that there is a preferred choice of states which makes particle number an invariant under transformation to the rotating frame. This choice allows the existence of negative energy quanta of the field
Bunda, Jordan; Gittings, William; Vandenboom, Rene
2018-01-30
Phosphorylation of the myosin regulatory light chain (RLC) by skeletal myosin light chain kinase (skMLCK) potentiates rodent fast twitch muscle but is an ATP-requiring process. Our objective was to investigate the effect of skMLCK-catalyzed RLC phosphorylation on the energetic cost of contraction and the contractile economy (ratio of mechanical output to metabolic input) of mouse fast twitch muscle in vitro (25°C). To this end, extensor digitorum longus (EDL) muscles from wild-type (WT) and from skMLCK-devoid (skMLCK -/- ) mice were subjected to repetitive low-frequency stimulation (10 Hz for 15 s) to produce staircase potentiation of isometric twitch force, after which muscles were quick frozen for determination of high-energy phosphate consumption (HEPC). During stimulation, WT muscles displayed significant potentiation of isometric twitch force while skMLCK -/- muscles did not (i.e. 23% versus 5% change, respectively). Consistent with this, RLC phosphorylation was increased ∼3.5-fold from the unstimulated control value in WT but not in skMLCK -/- muscles. Despite these differences, the HEPC of WT muscles was not greater than that of skMLCK -/- muscles. As a result of the increased contractile output relative to HEPC, the calculated contractile economy of WT muscles was greater than that of skMLCK -/- muscles. Thus, our results suggest that skMLCK-catalyzed phosphorylation of the myosin RLC increases the contractile economy of WT mouse EDL muscle compared with skMLCK -/- muscles without RLC phosphorylation. © 2018. Published by The Company of Biologists Ltd.
Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism.
Gludovatz, Bernd; Demetriou, Marios D; Floyd, Michael; Hohenwarter, Anton; Johnson, William L; Ritchie, Robert O
2013-11-12
Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ~1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly "zig-zag" manner, creating a rough "staircase-like" profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability.
On quantization of systems with couplings depending on time
International Nuclear Information System (INIS)
Gadzhiev, S.A.; Dzhafarov, R.K.
1990-01-01
Two main moments, on which the Gitman T yutin quantization is based: formal introduction of pulse, conjugated time and postulate of special nonunitary time dependence of the Schroeinger operators, have been interpreted. 4 refs
A quantization scheme for scale-invariant pure gauge theories
International Nuclear Information System (INIS)
Hortacsu, M.
1988-01-01
A scheme is suggested for the quantization of the recently proposed scale-invariant gauge theories in higher dimensions. The model is minimally coupled to a spinor field. Regularization algorithms are proposed. (orig.)
A possibility to solve the problems with quantizing gravity
International Nuclear Information System (INIS)
Hossenfelder, Sabine
2013-01-01
It is generally believed that quantum gravity is necessary to resolve the known tensions between general relativity and the quantum field theories of the standard model. Since perturbatively quantized gravity is non-renormalizable, the problem how to unify all interactions in a common framework has been open since the 1930s. Here, I propose a possibility to circumvent the known problems with quantizing gravity, as well as the known problems with leaving it unquantized: By changing the prescription for second quantization, a perturbative quantization of gravity is sufficient as an effective theory because matter becomes classical before the perturbative expansion breaks down. This is achieved by considering the vanishing commutator between a field and its conjugated momentum as a symmetry that is broken at low temperatures, and by this generates the quantum phase that we currently live in, while at high temperatures Planck's constant goes to zero
Quantized Passive Dynamic Output Feedback Control with Actuator Failure
Directory of Open Access Journals (Sweden)
Zu-Xin Li
2016-01-01
Full Text Available This paper investigates the problem of passive dynamic output feedback control for fuzzy discrete nonlinear systems with quantization and actuator failures, where the measurement output of the system is quantized by a logarithmic quantizer before being transferred to the fuzzy controller. By employing the fuzzy-basis-dependent Lyapunov function, sufficient condition is established to guarantee the closed-loop system to be mean-square stable and the prescribed passive performance. Based on the sufficient condition, the fuzzy dynamic output feedback controller is proposed for maintaining acceptable performance levels in the case of actuator failures and quantization effects. Finally, a numerical example is given to show the usefulness of the proposed method.
Minimum uncertainty and squeezing in diffusion processes and stochastic quantization
Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe
1994-01-01
We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.
Remarks on the geometric quantization of the Kepler problem
International Nuclear Information System (INIS)
Gaeta, G.; Spera, M.
1988-01-01
The geometric quantization of the (three-dimensional) Kepler problem is readily obtained from the one of the harmonic oscillator using a Segre map. The physical meaning of the latter is discussed. (orig.)
New approach to the problem of gauge field quantization
International Nuclear Information System (INIS)
Skachkov, N.B.; Shevchenko, O.Yu.
1987-01-01
A new scheme of calibration field quantization containing considerable change of the procedure of calibration conditions application on field variables is suggested. The above approach is based on a proved theorem on the subordination of fields to the additional Lorenz condition when applying a wide class of initial calibration conditions on these fields. This condition has the sense of the secondary bond, which must be included in the system of bonds during field quantization. The fact of secondary bond presence in the form of Lorenz condition was not earlier considered in literature and used in quantization. Due to this, the report suggests modification of all existing methods of field quantization: according to Dirac-Bergman, covariant approach using an indefinite metric and the method of functional integration
Effect of threshold quantization in opportunistic splitting algorithm
Nam, Haewoon; Alouini, Mohamed-Slim
2011-01-01
This paper discusses algorithms to find the optimal threshold and also investigates the impact of threshold quantization on the scheduling outage performance of the opportunistic splitting scheduling algorithm. Since this algorithm aims at finding
On the quantization of sectorially Hamiltonian dissipative systems
Energy Technology Data Exchange (ETDEWEB)
Castagnino, M. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Instituto de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires (Argentina); Gadella, M. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain)], E-mail: manuelgadella@yahoo.com.ar; Lara, L.P. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Facultad Regional Rosario, UTN, 2000 Rosario (Argentina)
2009-10-15
We present a theoretical discussion showing that, although some dissipative systems may have a sectorial Hamiltonian description, this description does not allow for canonical quantization. However, a quantum Liouville counterpart of these systems is possible, although it is not unique.
On the quantization of sectorially Hamiltonian dissipative systems
International Nuclear Information System (INIS)
Castagnino, M.; Gadella, M.; Lara, L.P.
2009-01-01
We present a theoretical discussion showing that, although some dissipative systems may have a sectorial Hamiltonian description, this description does not allow for canonical quantization. However, a quantum Liouville counterpart of these systems is possible, although it is not unique.
Gupta-Bleuler Photon Quantization in the SME
Colladay, Don; Potting, Robertus
2014-01-01
Photon quantization is implemented in the standard model extension (SME) using the Gupta-Bleuler method and BRST concepts. The quantization prescription applies to both the birefringent and non-birefringent CPT-even couplings. A curious incompatibility is found between the presence of the Lorentz-violating terms and the existence of a nontrivial conjugate momentum $\\Pi^0$ yielding problems with covariant quantization procedure. Introduction of a mass regulator term can avoid the vanishing of $\\Pi^0$ and allows for the implementation of a covariant quantization procedure. Field-theoretic calculations involving the SME photons can then be performed using the mass regulator, similar to the conventional procedure used in electrodynamics for infrared-divergence regulation.
A physically motivated quantization of the electromagnetic field
International Nuclear Information System (INIS)
Bennett, Robert; Barlow, Thomas M; Beige, Almut
2016-01-01
The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field. (paper)
A note on the BFV-BRST operator quantization method
International Nuclear Information System (INIS)
Dayi, O.F.
1988-03-01
The BFV-BRST operator quantization method is applied to massive, abelian (Yang-Mills) theory which has only second class constraints. A nilpotent BFV-BRST-charge is derived and used to define a unitarizing hamiltonian. Unphysical degrees of freedom can be eliminated either in a canonical gauge or in a relativistic one. In the latter gauge this is a general feature (at least locally) of the BFV-BRST quantization of the systems with irreducible constraints. (author). 23 refs
On the Langevin equation for stochastic quantization of gravity
International Nuclear Information System (INIS)
Nakazawa, Naohito.
1989-10-01
We study the Langevin equation for stochastic quantization of gravity. By introducing two independent variables with a second-class constraint for the gravitational field, we formulate a pair of the Langevin equations for gravity which couples with white noises. After eliminating the multiplier field for the second-class constraint, we show that the equations leads to stochastic quantization of gravity including an unique superspace metric. (author)
Vector potential quantization and the photon wave-particle representation
International Nuclear Information System (INIS)
Meis, C; Dahoo, P R
2016-01-01
The quantization procedure of the vector potential is enhanced at a single photon state revealing the possibility for a simultaneous representation of the wave-particle nature of the photon. Its relationship to the quantum vacuum results naturally. A vector potential amplitude operator is defined showing the parallelism with the Hamiltonian of a massless particle. It is further shown that the quantized vector potential satisfies both the wave propagation equation and a linear time-dependent Schrödinger-like equation. (paper)
Poincare invariant algebra from instant to light-front quantization
International Nuclear Information System (INIS)
Ji, Chueng-Ryong; Mitchell, Chad
2001-01-01
We present the Poincare algebra interpolating between instant and light-front time quantizations. The angular momentum operators satisfying SU(2) algebra are constructed in an arbitrary interpolation angle and shown to be identical to the ordinary angular momentum and Leutwyler-Stern angular momentum in the instant and light-front quantization limits, respectively. The exchange of the dynamical role between the transverse angular mometum and the boost operators is manifest in our newly constructed algebra
Covarient quantization of heterotic strings in supersymmetric chiral boson formulation
International Nuclear Information System (INIS)
Yu, F.
1992-01-01
This dissertation presents the covariant supersymmetric chiral boson formulation of the heterotic strings. The main feature of this formulation is the covariant quantization of the so-called leftons and rightons -- the (1,0) supersymmetric generalizations of the world-sheet chiral bosons -- that constitute basic building blocks of general heterotic-type string models. Although the (Neveu-Schwarz-Ramond or Green-Schwarz) heterotic strings provide the most realistic string models, their covariant quantization, with the widely-used Siegel formalism, has never been rigorously carried out. It is clarified in this dissertation that the covariant Siegel formalism is pathological upon quantization. As a test, a general classical covariant (NSR) heterotic string action that has the Siegel symmetry is constructed in arbitrary curved space-time coupled to (1,0) world-sheet super-gravity. In the light-cone gauge quantization, the critical dimensions are derived for such an action with leftons and rightons compactified on group manifolds G L x G R . The covariant quantization of this action does not agree with the physical results in the light-cone gauge quantization. This dissertation establishes a new formalism for the covariant quantization of heterotic strings. The desired consistent covariant path integral quantization of supersymmetric chiral bosons, and thus the general (NSR) heterotic-type strings with leftons and rightons compactified on torus circle-times d L S 1 x circle-times d R S 1 are carried out. An infinite set of auxiliary (1,0) scalar superfields is introduced to convert the second-class chiral constraint into first-class ones. The covariant gauge-fixed action has an extended BRST symmetry described by the graded algebra GL(1/1). A regularization respecting this symmetry is proposed to deal with the contributions of the infinite towers of auxiliary fields and associated ghosts
On the Fedosov deformation quantization beyond the regular Poisson manifolds
International Nuclear Information System (INIS)
Dolgushev, V.A.; Isaev, A.P.; Lyakhovich, S.L.; Sharapov, A.A.
2002-01-01
A simple iterative procedure is suggested for the deformation quantization of (irregular) Poisson brackets associated to the classical Yang-Baxter equation. The construction is shown to admit a pure algebraic reformulation giving the Universal Deformation Formula (UDF) for any triangular Lie bialgebra. A simple proof of classification theorem for inequivalent UDF's is given. As an example the explicit quantization formula is presented for the quasi-homogeneous Poisson brackets on two-plane
Renormalization of an abelian gauge theory in stochastic quantization
International Nuclear Information System (INIS)
Chaturvedi, S.; Kapoor, A.K.; Srinivasan, V.
1987-01-01
The renormalization of an abelian gauge field coupled to a complex scalar field is discussed in the stochastic quantization method. The super space formulation of the stochastic quantization method is used to derive the Ward Takahashi identities associated with supersymmetry. These Ward Takahashi identities together with previously derived Ward Takahashi identities associated with gauge invariance are shown to be sufficient to fix all the renormalization constants in terms of scaling of the fields and of the parameters appearing in the stochastic theory. (orig.)
Canonical quantization of so-called non-Lagrangian systems
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil); Kupriyanov, V.G. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318-CEP, Sao Paulo, S.P. (Brazil); Tomsk State University, Physics Department, Tomsk (Russian Federation)
2007-04-15
We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form that can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories as described in D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990). to the case under consideration. There exists an ambiguity (that cannot be reduced to the addition of a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge. (orig.)
Canonical quantization of so-called non-Lagrangian systems
International Nuclear Information System (INIS)
Gitman, D.M.; Kupriyanov, V.G.
2007-01-01
We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form that can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories as described in D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, 1990). to the case under consideration. There exists an ambiguity (that cannot be reduced to the addition of a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge. (orig.)
Snelson, Tim
2009-01-01
This paper examines the prestige ‘shocker’ The Spiral Staircase (1946), suggesting that it challenges the perception of the decline in quality in the horror genre in the 1940s, as well as assumptions in scholarship that the genre has historically been addressed to a male audience. Whilst the film is usually discussed as a woman’s film, on release it was centred as part of a distinct shift in the horror genre from ‘grade B thrillers to deluxe chillers’. The reclassification of films like The S...
Quantized gauge invariant periodic TDHF solutions
International Nuclear Information System (INIS)
Kan, K.-K.; Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.
1979-01-01
Time-dependent Hartree-Fock (TDHF) is used to study steady state large amplitude nuclear collective motions, such as vibration and rotation. As is well known the small amplitude TDHF leads to the RPA equation. The analysis of periodicity in TDHF is not trivial because TDHF is a nonlinear theory and it is not known under what circumstances a nonlinear theory can support periodic solutions. It is also unknown whether such periodic solution, if they exist, form a continuous or a discrete set. But, these properties may be important in obtaining the energy spectrum of the collective states from the TDHF description. The periodicity and Gauge Invariant Periodicity of solutions are investigated for that class of models whose TDHF solutions depend on time through two parameters. In such models TDHF supports a continuous family of periodic solutions, but only a discrete subset of these is gauge invariant. These discrete Gauge Invariant Periodic solutions obey the Bohr-Summerfeld quantization rule. The energy spectrum of the Gauge Invariant Periodic solutions is compared with the exact eigenergies in one specific example
Quantized Abelian principle connections on Lorentzian manifolds
International Nuclear Information System (INIS)
Benini, Marco; Schenkel, Alexander
2013-03-01
We construct a covariant functor from a category of Abelian principal bundles over globally hyperbolic spacetimes to a category of *-algebras that describes quantized principal connections. We work within an appropriate differential geometric setting by using the bundle of connections and we study the full gauge group, namely the group of vertical principal bundle automorphisms. Properties of our functor are investigated in detail and, similar to earlier works, it is found that due to topological obstructions the locality property of locally covariant quantum field theory is violated. Furthermore, we prove that, for Abelian structure groups containing a nontrivial compact factor, the gauge invariant Borchers- Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge equivalence classes of principal connections. We introduce a topological generalization of the concept of locally covariant quantum fields. As examples, we construct for the full subcategory of principal U(1)-bundles two natural transformations from singular homology functors to the quantum field theory functor that can be interpreted as the Euler class and the electric charge. In this case we also prove that the electric charges can be consistently set to zero, which yields another quantum field theory functor that satisfies all axioms of locally covariant quantum field theory.
Quantized Abelian principle connections on Lorentzian manifolds
Energy Technology Data Exchange (ETDEWEB)
Benini, Marco [Pavia Univ. (Italy); Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Dappiaggi, Claudio [Pavia Univ. (Italy); Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Schenkel, Alexander [Bergische Univ., Wuppertal (Germany). Fachgruppe Mathematik
2013-03-15
We construct a covariant functor from a category of Abelian principal bundles over globally hyperbolic spacetimes to a category of *-algebras that describes quantized principal connections. We work within an appropriate differential geometric setting by using the bundle of connections and we study the full gauge group, namely the group of vertical principal bundle automorphisms. Properties of our functor are investigated in detail and, similar to earlier works, it is found that due to topological obstructions the locality property of locally covariant quantum field theory is violated. Furthermore, we prove that, for Abelian structure groups containing a nontrivial compact factor, the gauge invariant Borchers- Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge equivalence classes of principal connections. We introduce a topological generalization of the concept of locally covariant quantum fields. As examples, we construct for the full subcategory of principal U(1)-bundles two natural transformations from singular homology functors to the quantum field theory functor that can be interpreted as the Euler class and the electric charge. In this case we also prove that the electric charges can be consistently set to zero, which yields another quantum field theory functor that satisfies all axioms of locally covariant quantum field theory.
Light-cone quantization and hadron structure
International Nuclear Information System (INIS)
Brodsky, S.J.
1996-04-01
Quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. In this talk, the author will discuss light-cone quantization and the light-cone Fock expansion as a tractable and consistent representation of relativistic many-body systems and bound states in quantum field theory. The Fock state representation in QCD includes all quantum fluctuations of the hadron wavefunction, including fax off-shell configurations such as intrinsic strangeness and charm and, in the case of nuclei, hidden color. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer. In other applications, such as the calculation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics
Perturbation theory for quantized string fields
International Nuclear Information System (INIS)
Thorn, C.B.; Florida Univ., Gainesville
1987-01-01
We discuss the problem of gauge fixing in string field theory. We show that BRST invariance requires the gauge-fixed action to contain terms cubic in the ghost... of ghost of ghost fields. The final BRST invariant gauge-fixed action for the gauge b 0 A=0 is extremely simple: with the proper interpretation (as given in this article), it is essentially the one anticipated earlier in the work of Giddings, Martinec, and Witten in their analysis of the BRST invariant world-sheet approach to string theory. We derive the Feynman rules from this action and explain in detail how the sum over sufaces of the BRST first-quantized string is reproduced. This result depends crucially on the correct assignment for the Grassmann character of the string field and its ghost... of ghost of ghost string fields. If all these fields are unified in a single string field Φ containing all ghost numbers, the requirements is that Φ be uniformly Grassmann odd. Finally, we do some sample calculations which provide some simple checks on our general results. (orig.)
Casimir-Polder interaction in second quantization
Energy Technology Data Exchange (ETDEWEB)
Schiefele, Juergen
2011-03-21
The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predictions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect, which arises from the quantum fluctuations in an interacting BEC. (orig.)
Casimir-Polder interaction in second quantization
International Nuclear Information System (INIS)
Schiefele, Juergen
2011-01-01
The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predictions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. We also discuss a phononic Casimir effect, which arises from the quantum fluctuations in an interacting BEC. (orig.)
Faddeev-Jackiw quantization and constraints
International Nuclear Information System (INIS)
Barcelos-Neto, J.; Wotzasek, C.
1992-01-01
In a recent Letter, Faddeev and Jackiw have shown that the reduction of constrained systems into its canonical, first-order form, can bring some new insight into the research of this field. For sympletic manifolds the geometrical structure, called Dirac or generalized bracket, is obtained directly from the inverse of the nonsingular sympletic two-form matrix. In the cases of nonsympletic manifolds, this two-form is degenerated and cannot be inverted to provide the generalized brackets. This singular behavior of the sympletic matrix is indicative of the presence of constraints that have to be carefully considered to yield to consistent results. One has two possible routes to treat this problem: Dirac has taught us how to implement the constraints into the potential part (Hamiltonian) of the canonical Lagrangian, leading to the well-known Dirac brackets, which are consistent with the constraints and can be mapped into quantum commutators (modulo ordering terms). The second route, suggested by Faddeev and Jackiw, and followed in this paper, is to implement the constraints directly into the canonical part of the first order Lagrangian, using the fact that the consistence condition for the stability of the constrained manifold is linear in the time derivative. This algorithm may lead to an invertible two-form sympletic matrix from where the Dirac brackets are readily obtained. This algorithm is used in this paper to investigate some aspects of the quantization of constrained systems with first- and second-class constraints in the sympletic approach
Quantized vortices in interacting gauge theories
International Nuclear Information System (INIS)
Butera, Salvatore; Valiente, Manuel; Öhberg, Patrik
2016-01-01
We consider a two-dimensional weakly interacting ultracold Bose gas whose constituents are two-level atoms. We study the effects of a synthetic density-dependent gauge field that arises from laser–matter coupling in the adiabatic limit with a laser configuration such that the single-particle zeroth-order vector potential corresponds to a constant synthetic magnetic field. We find a new exotic type of current nonlinearity in the Gross–Pitaevskii equation which affects the dynamics of the order parameter of the condensate. We investigate the rotational properties of this system in the Thomas–Fermi limit, focusing in particular on the physical conditions that make the existence of a quantized vortex in the system energetically favourable with respect to the non-rotating solution. We point out that two different physical interpretations can be given to this new nonlinearity: firstly it can be seen as a local modification of the mean field coupling constant, whose value depends on the angular momentum of the condensate. Secondly, it can be interpreted as a density modulated angular velocity given to the cloud. Looking at the problem from both of these viewpoints, we show that the effect of the new nonlinearity is to induce a rotation to the condensate, where the transition from non-rotating to rotating states depends on the density of the cloud. (paper)
Stochastic quantization of a topological quantum mechanical model
International Nuclear Information System (INIS)
Antunes, Sergio; Krein, Gastao; Menezes, Gabriel; Svaiter, Nami Fux
2011-01-01
Full text: Stochastic quantization of complex actions has been extensively studied in the literature. In these models, a Markovian Langevin equation is used in order to study the quantization of such systems. In such papers, the advantages of the Markovian stochastic quantization method were explored and exposed. However, many drawbacks of the method were also pointed out, such as instability of the simulations with absence of convergence and sometimes convergence to the wrong limit. Indeed, although several alternative methods have been proposed to deal with interesting physical systems where the action is complex, these approaches do not suggest any general way of solving the particular difficulties that arise in each situation. Here, we wish to make contributions to the program of stochastic quantization of theories with imaginary action by investigating the consequences of a non-Markovian stochastic quantization in a particular situation, namely a quantum mechanical topological action. We analyze the Markovian stochastic quantization for a topological quantum mechanical action which is analog to a Maxwell-Chern-Simons action in the Weyl gauge. Afterwards we consider a Langevin equation with memory kernel and Einstein's relations with colored noise. We show that convergence towards equilibrium is achieved in both regimes. We also sketch a simple numerical analysis to investigate the possible advantages of non-Markovian procedure over the usual Markovian quantization. Both retarded Green's function for the diffusion problem are considered in such analysis. We show that, although the results indicated that the effect of memory kernel, as usually expected, is to delay the convergence to equilibrium, non-Markovian systems imply a faster decay compared to Markovian ones as well as smoother convergence to equilibrium. (author)
Remote Sensing and Quantization of Analog Sensors
Strauss, Karl F.
2011-01-01
This method enables sensing and quantization of analog strain gauges. By manufacturing a piezoelectric sensor stack in parallel (physical) with a piezoelectric actuator stack, the capacitance of the sensor stack varies in exact proportion to the exertion applied by the actuator stack. This, in turn, varies the output frequency of the local sensor oscillator. The output, F(sub out), is fed to a phase detector, which is driven by a stable reference, F(sub ref). The output of the phase detector is a square waveform, D(sub out), whose duty cycle, t(sub W), varies in exact proportion according to whether F(sub out) is higher or lower than F(sub ref). In this design, should F(sub out) be precisely equal to F(sub ref), then the waveform has an exact 50/50 duty cycle. The waveform, D(sub out), is of generally very low frequency suitable for safe transmission over long distances without corruption. The active portion of the waveform, t(sub W), gates a remotely located counter, which is driven by a stable oscillator (source) of such frequency as to give sufficient digitization of t(sub W) to the resolution required by the application. The advantage to this scheme is that it negates the most-common, present method of sending either very low level signals (viz. direct output from the sensors) across great distances (anything over one-half meter) or the need to transmit widely varying higher frequencies over significant distances thereby eliminating interference [both in terms of beat frequency generation and in-situ EMI (electromagnetic interference)] caused by ineffective shielding. It also results in a significant reduction in shielding mass.
Quantization and Superselection Sectors I:. Transformation Group C*-ALGEBRAS
Landsman, N. P.
Quantization is defined as the act of assigning an appropriate C*-algebra { A} to a given configuration space Q, along with a prescription mapping self-adjoint elements of { A} into physically interpretable observables. This procedure is adopted to solve the problem of quantizing a particle moving on a homogeneous locally compact configuration space Q=G/H. Here { A} is chosen to be the transformation group C*-algebra corresponding to the canonical action of G on Q. The structure of these algebras and their representations are examined in some detail. Inequivalent quantizations are identified with inequivalent irreducible representations of the C*-algebra corresponding to the system, hence with its superselection sectors. Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions in each irreducible representation of { A}. “Topological” terms in the Hamiltonian (or the corresponding action) turn out to be representation-dependent, and are automatically induced by the quantization procedure. Known “topological” charge quantization or periodicity conditions are then identically satisfied as a consequence of the representation theory of { A}.
Direct comparison of fractional and integer quantized Hall resistance
Ahlers, Franz J.; Götz, Martin; Pierz, Klaus
2017-08-01
We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3 ± 6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.
Electrical resistance of flaky crystals in the longitudinal quantizing magnetic field
International Nuclear Information System (INIS)
Askerov, B.M.; Figarova, S.R.; Makhmudov, M.M.
2005-01-01
Specific resistance of the quasi-two-dimensional electrical gas in the longitudinal quantizing magnetic field is investigated in this work. Common expression for resistivity in the flaky crystals was received. In quantum limit was analyzed dependence of the resistivity from the size of magnetic field and parameters energetic spectra in case of strong degenerate gas. It was tagged that, the conduct of specific resistance is formed by the dependence of chemical potential from the size of magnetic field. At the defined value of the chemical potential and size of magnetic field obtains inflation of the specific resistance. (author)
A fingerprint key binding algorithm based on vector quantization and error correction
Li, Liang; Wang, Qian; Lv, Ke; He, Ning
2012-04-01
In recent years, researches on seamless combination cryptosystem with biometric technologies, e.g. fingerprint recognition, are conducted by many researchers. In this paper, we propose a binding algorithm of fingerprint template and cryptographic key to protect and access the key by fingerprint verification. In order to avoid the intrinsic fuzziness of variant fingerprints, vector quantization and error correction technique are introduced to transform fingerprint template and then bind with key, after a process of fingerprint registration and extracting global ridge pattern of fingerprint. The key itself is secure because only hash value is stored and it is released only when fingerprint verification succeeds. Experimental results demonstrate the effectiveness of our ideas.
On propagation of sound waves in Q2D conductors in a quantizing magnetic field
Kirichenko, O V; Galbova, O; Ivanovski, G; Krstovska, D
2003-01-01
The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers.
On propagation of sound waves in Q2D conductors in a quantizing magnetic field
International Nuclear Information System (INIS)
Kirichenko, O.V.; Peschansky, V.G.; Galbova, O.; Ivanovski, G.; Krstovska, D.
2003-01-01
The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers
Becchi-Rouet-Stora-Tyutin quantization of histories electrodynamics
International Nuclear Information System (INIS)
Noltingk, Duncan
2002-01-01
This article is a continuation of earlier work where a classical history theory of pure electrodynamics was developed in which the history fields have five components. The extra component is associated with an extra constraint, thus enlarging the gauge group of histories electrodynamics. In this article we quantize the classical theory developed previously by two methods. First we quantize the reduced classical history space to obtain a reduced quantum history theory. Second we quantize the classical BRST-extended history space, and use the Becchi-Rouet-Stora-Tyutin charge to define a 'cohomological' quantum history theory. Finally, we show that the reduced history theory is isomorphic (as a history theory) to the cohomological history theory
Hitchin's connection, Toeplitz operators, and symmetry invariant deformation quantization
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard
2012-01-01
We introduce the notion of a rigid family of Kähler structures on a symplectic manifold. We then prove that a Hitchin connection exists for any rigid holomorphic family of Kähler structures on any compact pre-quantizable symplectic manifold which satisfies certain simple topological constraints...... a mapping class group invariant formal quantization of the smooth symplectic leaves of the moduli space of flat SU(n)-connections on any compact surface....... quantization. Finally, these results are applied to the moduli space situation in which Hitchin originally constructed his connection. First we get a proof that the Hitchin connection in this case is the same as the connection constructed by Axelrod, Della Pietra, and Witten. Second we obtain in this way...
Augmenting Phase Space Quantization to Introduce Additional Physical Effects
Robbins, Matthew P. G.
Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.
Complex and real Hermite polynomials and related quantizations
International Nuclear Information System (INIS)
Cotfas, Nicolae; Gazeau, Jean Pierre; Gorska, Katarzyna
2010-01-01
It is known that the anti-Wick (or standard coherent state) quantization of the complex plane produces both canonical commutation rule and quantum spectrum of the harmonic oscillator (up to the addition of a constant). In this work, we show that these two issues are not necessarily coupled: there exists a family of separable Hilbert spaces, including the usual Fock-Bargmann space, and in each element in this family there exists an overcomplete set of unit-norm states resolving the unity. With the exception of the Fock-Bargmann case, they all produce non-canonical commutation relation whereas the quantum spectrum of the harmonic oscillator remains the same up to the addition of a constant. The statistical aspects of these non-equivalent coherent state quantizations are investigated. We also explore the localization aspects in the real line yielded by similar quantizations based on real Hermite polynomials.
Adaptive Watermarking Scheme Using Biased Shift of Quantization Index
Directory of Open Access Journals (Sweden)
Young-Ho Seo
2010-01-01
Full Text Available We propose a watermark embedding and extracting method for blind watermarking. It uses the characteristics of a scalar quantizer to comply with the recommendation in JPEG, MPEG series, or JPEG2000. Our method performs embedding of a watermark bit by shifting the corresponding frequency transform coefficient (the watermark position to a quantization index according to the value of the watermark bit, which prevents from losing the watermark information during the data compression process. The watermark can be embedded simultaneously to the quantization process without an additional process for watermarking, which means it can be performed at the same speed to the compression process. In the embedding process, a Linear Feedback Shift Register (LFSR is used to hide the watermark informations and the watermark positions. The experimental results showed that the proposed method satisfies enough robustness and imperceptibility that are the major requirements for watermarking.
Landau quantization of Dirac fermions in graphene and its multilayers
Yin, Long-Jing; Bai, Ke-Ke; Wang, Wen-Xiao; Li, Si-Yu; Zhang, Yu; He, Lin
2017-08-01
When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum-mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.
Modeling quantization effects in field effect transistors
International Nuclear Information System (INIS)
Troger, C.
2001-06-01
Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coefficients is introduced and the parameters are calculated via perturbation theory. The method described in this work has been implemented in a software tool that performs a self-consistent solution of Schroedinger- and Poisson-equation for a one-dimensional cut through a MOS structure or heterostructure. The calculation of the carrier densities is performed assuming Fermi-Dirac statistics. In the case of a MOS structure a metal or a polysilicon gate is considered and an arbitrary gate bulk voltage can be applied. This allows investigating quantum mechanical effects in capacity calculations, to compare the simulated data with measured CV curves and to evaluate the results obtained with a quantum mechanical correction for the classical electron density. The behavior of the defined subband parameters is compared to the value of the mass and the non-parabolicity coefficient from the model due to Kane. Finally the presented characterization of the subbands is applied
Quantization selection in the high-throughput H.264/AVC encoder based on the RD
Pastuszak, Grzegorz
2013-10-01
In the hardware video encoder, the quantization is responsible for quality losses. On the other hand, it allows the reduction of bit rates to the target one. If the mode selection is based on the rate-distortion criterion, the quantization can also be adjusted to obtain better compression efficiency. Particularly, the use of Lagrangian function with a given multiplier enables the encoder to select the most suitable quantization step determined by the quantization parameter QP. Moreover, the quantization offset added before discarding the fraction value after quantization can be adjusted. In order to select the best quantization parameter and offset in real time, the HD/SD encoder should be implemented in the hardware. In particular, the hardware architecture should embed the transformation and quantization modules able to process the same residuals many times. In this work, such an architecture is used. Experimental results show what improvements in terms of compression efficiency are achievable for Intra coding.
AIRS/Aqua Level 3 Pentad quantization in physical units (AIRS-only) V005
National Aeronautics and Space Administration — AIRS/Aqua Level 3 pentad quantization product in physical units (AIRS Only). The quantization products (QP) are distributional summaries derived from the Level-2...
Aqua AIRS Level 3 Quantization in Physical Units (AIRS+AMSU) V006
National Aeronautics and Space Administration — AIRS/Aqua Level 3 monthly quantization product in physical units (Without HSB). The quantization products (QP) are distributional summaries derived from the Level-2...
AIRS/Aqua Level 3 Pentad quantization in physical units (AIRS+AMSU+HSB) V005
National Aeronautics and Space Administration — AIRS/Aqua Level 3 pentad quantization product in physical units (With HSB). The quantization products (QP) are distributional summaries derived from the Level-2...
BRS symmetry in stochastic quantization of the gravitational field
International Nuclear Information System (INIS)
Nakazawa, Naohito.
1989-12-01
We study stochastic quantization of gravity in terms of a BRS invariant canonical operator formalism. By introducing artificially canonical momentum variables for the original field variables, a canonical formulation of stochastic quantization is proposed in a sense that the Fokker-Planck hamiltonian is the generator of the fictitious time translation. Then we show that there exists a nilpotent BRS symmetry in an enlarged phase space for gravity (in general, for the first-class constrained systems). The stochastic action of gravity includes explicitly an unique De Witt's type superspace metric which leads to a geometrical interpretation of quantum gravity analogous to nonlinear σ-models. (author)
The general theory of quantized fields in the 1950s
International Nuclear Information System (INIS)
Wightman, A.S.
1989-01-01
This review describes developments in theoretical particle physics in the 1950s which were important in the race to develop a putative general theory of quantized fields, especially ideas that offered a mathematically rigorous theory. Basic theoretical concepts then available included the Hamiltonian formulation of quantum dynamics, canonical quantization, perturbative renormalization theory and the theory of distributions. Following a description of various important theoretical contributions of this era, the review ends with a summary of the most important contributions of axiomatic field theory to concrete physics applications. (UK)
Deparametrization and path integral quantization of cosmological models
Simeone, Claudio
2001-01-01
The problem of time is a central feature of quantum cosmology: differing from ordinary quantum mechanics, in cosmology there is nothing "outside" the system which plays the role of clock, and this makes difficult the obtention of a consistent quantization. A possible solution is to assume that a subset of the variables describing the state of the universe can be a clock for the remaining of the system. Following this line, in this book a new proposal consisting in the previous identification of time by means of gauge fixation is applied to the quantization of homogeneous cosmological models. B
A Numerical Study of Quantization-Based Integrators
Directory of Open Access Journals (Sweden)
Barros Fernando
2014-01-01
Full Text Available Adaptive step size solvers are nowadays considered fundamental to achieve efficient ODE integration. While, traditionally, ODE solvers have been designed based on discrete time machines, new approaches based on discrete event systems have been proposed. Quantization provides an efficient integration technique based on signal threshold crossing, leading to independent and modular solvers communicating through discrete events. These solvers can benefit from the large body of knowledge on discrete event simulation techniques, like parallelization, to obtain efficient numerical integration. In this paper we introduce new solvers based on quantization and adaptive sampling techniques. Preliminary numerical results comparing these solvers are presented.
Group quantization on configuration space: Gauge symmetries and linear fields
International Nuclear Information System (INIS)
Navarro, M.; Aldaya, V.; Calixto, M.
1997-01-01
A new, configuration-space picture of a formalism of group quantization, the GAQ formalism, is presented in the context of a previous algebraic generalization. This presentation serves to make a comprehensive discussion in which other extensions of the formalism, principally to incorporate gauge symmetries, are developed as well. Both images are combined in order to analyze, in a systematic manner and with complete generality, the case of linear fields (Abelian current groups). To illustrate these developments we particularize them for several fields and, in particular, we carry out the quantization of the Abelian Chern endash Simons models over an arbitrary closed surface in detail. copyright 1997 American Institute of Physics
BRST operator quantization of generally covariant gauge systems
International Nuclear Information System (INIS)
Ferraro, R.; Sforza, D.M.
1997-01-01
The BRST generator is realized as a Hermitian nilpotent operator for a finite-dimensional gauge system featuring a quadratic super-Hamiltonian and linear supermomentum constraints. As a result, the emerging ordering for the Hamiltonian constraint is not trivial, because the potential must enter the kinetic term in order to obtain a quantization invariant under scaling. Namely, BRST quantization does not lead to the curvature term used in the literature as a means to get that invariance. The inclusion of the potential in the kinetic term, far from being unnatural, is beautifully justified in light of the Jacobi's principle. copyright 1997 The American Physical Society
Renormalization group equations in the stochastic quantization scheme
International Nuclear Information System (INIS)
Pugnetti, S.
1987-01-01
We show that there exists a remarkable link between the stochastic quantization and the theory of critical phenomena and dynamical statistical systems. In the stochastic quantization of a field theory, the stochastic Green functions coverge to the quantum ones when the frictious time goes to infinity. We therefore use the typical techniques of the Renormalization Group equations developed in the framework of critical phenomena to discuss some features of the convergence of the stochastic theory. We are also able, in this way, to compute some dynamical critical exponents and give new numerical valuations for them. (orig.)
On precanonical quantization of gravity in spin connection variables
Energy Technology Data Exchange (ETDEWEB)
Kanatchikov, I. V. [National Center of Quantum Information in Gdansk (KCIK), 81-824 Sopot (Poland)
2013-02-21
The basics of precanonical quantization and its relation to the functional Schroedinger picture in QFT are briefly outlined. The approach is then applied to quantization of Einstein's gravity in vielbein and spin connection variables and leads to a quantum dynamics described by the covariant Schroedinger equation for the transition amplitudes on the bundle of spin connection coefficients over space-time, that yields a novel quantum description of space-time geometry. A toy model of precanonical quantum cosmology based on the example of flat FLRW universe is considered.
Universal R-matrix for quantized (super) algebras
International Nuclear Information System (INIS)
Khoroshkin, S.M.; Tolstoj, V.N.
1991-01-01
For quantum deformations of finite-dimensional contragredient Lie (super)algebras an explicit formula for the universal R-matrix is given. This formula generalizes the analogous formulae for quantized semisimple Lie algebras obtained by M. Rosso, A.N. Kirillov and N. Reshetikhin, Yas.S. Soibelman and S.Z. Levendorskii. Approach is based on careful analysis of quantized rank 1 and 2 (super)algebras, a combinatorial structure of the root systems and algebraic properties of q-exponential functions. Quantum Weyl group is not used. 19 refs.; 2 tabs
On the quantization of systems with anticommuting variables
International Nuclear Information System (INIS)
Casalbuoni, R.
1976-01-01
The paper considers the pseudomechanics, that is the mechanics of a system described by ordinary canonical variables and by Grassmann variables. The canonical formalism is studied and in particular the Poisson brackets are defined. It is shown that the algebra of the Poisson brackets is graded Lie algebra. Using this fact as a hint for quantization it is shown that the corresponding quantized theory is the ordinary quantum theory with Fermi operators. It follows that the classical limit of the quantum theory is, in general, the pseudo-mechanics
Exact quantization conditions for the relativistic Toda lattice
International Nuclear Information System (INIS)
Hatsuda, Yasuyuki; Mariño, Marcos
2016-01-01
Inspired by recent connections between spectral theory and topological string theory, we propose exact quantization conditions for the relativistic Toda lattice of N particles. These conditions involve the Nekrasov-Shatashvili free energy, which resums the perturbative WKB expansion, but they require in addition a non-perturbative contribution, which is related to the perturbative result by an S-duality transformation of the Planck constant. We test the quantization conditions against explicit calculations of the spectrum for N=3. Our proposal can be generalized to arbitrary toric Calabi-Yau manifolds and might solve the corresponding quantum integrable system of Goncharov and Kenyon.
Constraints and Hamiltonian in light-front quantized field theory
International Nuclear Information System (INIS)
Srivastava, P.P.
1993-01-01
Self-consistent hamiltonian formulation of scalar theory on the null plane is constructed and quantized following the Dirac procedure. The theory contains also constraint equations which would give, if solved, to a nonlocal Hamiltonian. In contrast to the equal-time formulation we obtain a different description of the spontaneous symmetry breaking in the continuum and the symmetry generators are found to annihilate the light-front vacuum. Two examples are given where the procedure cannot be applied self-consistently. The corresponding theories are known to be ill-defined from the equal-time quantization. (author)
Covariant canonical quantization of fields and Bohmian mechanics
International Nuclear Information System (INIS)
Nikolic, H.
2005-01-01
We propose a manifestly covariant canonical method of field quantization based on the classical De Donder-Weyl covariant canonical formulation of field theory. Owing to covariance, the space and time arguments of fields are treated on an equal footing. To achieve both covariance and consistency with standard non-covariant canonical quantization of fields in Minkowski spacetime, it is necessary to adopt a covariant Bohmian formulation of quantum field theory. A preferred foliation of spacetime emerges dynamically owing to a purely quantum effect. The application to a simple time-reparametrization invariant system and quantum gravity is discussed and compared with the conventional non-covariant Wheeler-DeWitt approach. (orig.)
Loop quantum cosmology of the Bianchi I model: complete quantization
International Nuclear Information System (INIS)
Martín-Benito, M; Garay, L J; Mena Marugán, G A; Wilson-Ewing, E
2012-01-01
We complete the canonical quantization of the vacuum Bianchi I model within the improved dynamics scheme of loop quantum cosmology, characterizing the Hilbert structure of the physical states and providing a complete set of observables acting on them. In order to achieve this task, it has been essential to determine the structure of the separable superselection sectors that arise owing to the polymeric quantization, and to prove that the initial value problem obtained when regarding the Hamiltonian constraint as an evolution equation, interpreting the volume as the evolution parameter, is well-posed.
Quantization analysis of speckle intensity measurements for phase retrieval
DEFF Research Database (Denmark)
Maallo, Anne Margarette S.; Almoro, Percival F.; Hanson, Steen Grüner
2010-01-01
Speckle intensity measurements utilized for phase retrieval (PR) are sequentially taken with a digital camera, which introduces quantization error that diminishes the signal quality. Influences of quantization on the speckle intensity distribution and PR are investigated numerically...... and experimentally in the static wavefront sensing setup. Resultsshowthat 3 to 4 bits are adequate to represent the speckle intensities and yield acceptable reconstructions at relatively fast convergence rates. Computer memory requirements may be eased down by 2.4 times if a 4 bit instead of an 8 bit camera is used...
Electromagnetically induced transparency with quantized fields in optocavity mechanics
International Nuclear Information System (INIS)
Huang Sumei; Agarwal, G. S.
2011-01-01
We report electromagnetically induced transparency (EIT) using quantized fields in optomechanical systems. The weak probe field is a narrowband squeezed field. We present a homodyne detection of EIT in the output quantum field. We find that the EIT dip exists even though the photon number in the squeezed vacuum is at the single-photon level. The EIT with quantized fields can be seen even at temperatures on the order of 100 mK, thus paving the way for using optomechanical systems as memory elements.
Quantization of the Poisson SU(2) and its Poisson homogeneous space - the 2-sphere
International Nuclear Information System (INIS)
Sheu, A.J.L.
1991-01-01
We show that deformation quantizations of the Poisson structures on the Poisson Lie group SU(2) and its homogeneous space, the 2-sphere, are compatible with Woronowicz's deformation quantization of SU(2)'s group structure and Podles' deformation quantization of 2-sphere's homogeneous structure, respectively. So in a certain sense the multiplicativity of the Lie Poisson structure on SU(2) at the classical level is preserved under quantization. (orig.)
Berezin-Toeplitz Quantization for Compact Kähler Manifolds. A Review of Results
Directory of Open Access Journals (Sweden)
Martin Schlichenmaier
2010-01-01
Full Text Available This article is a review on Berezin-Toeplitz operator and Berezin-Toeplitz deformation quantization for compact quantizable Kähler manifolds. The basic objects, concepts, and results are given. This concerns the correct semiclassical limit behaviour of the operator quantization, the unique Berezin-Toeplitz deformation quantization (star product, covariant and contravariant Berezin symbols, and Berezin transform. Other related objects and constructions are also discussed.
Staircase and saw-tooth field emission steps from nanopatterned n-type GaSb surfaces
Kildemo, M.; Le Roy, S.; Søndergård, E.
2009-01-01
High resolution field emission experiments from nanopatterned GaSb surfaces consisting of densely packed nanocones prepared by low ion-beam-energy sputtering are presented. Both uncovered and metal-covered nanopatterned surfaces were studied. Surprisingly, the field emission takes place by regular steps in the field emitted current. Depending on the field, the steps are either regular, flat, plateaus, or saw-tooth shaped. To the author’s knowledge, this is the first time that such results have been reported. Each discrete jump in the field emission may be understood in terms of resonant tunneling through an extended surface space charge region in an n-type, high aspect ratio, single GaSb nanocone. The staircase shape may be understood from the spatial distribution of the aspect ratio of the cones.
Staircase and saw-tooth field emission steps from nanopatterned n-type GaSb surfaces
Energy Technology Data Exchange (ETDEWEB)
Kildemo, M.; Levinsen, Y. Inntjore; Le Roy, S.; Soenderga ring rd, E. [Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondlieim (Norway); Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondlieim, Norway and AB CERN, CH- 1211 Geneva 23 (Switzerland); Laboratoire Surface du Verre et Interfaces, UMR 125 Unite Mixte de Recherche CNRS/Saint-Gobain Laboratoire, 39 Quai Lucien Lefranc, F-93303 Aubervilliers Cedex (France)
2009-09-15
High resolution field emission experiments from nanopatterned GaSb surfaces consisting of densely packed nanocones prepared by low ion-beam-energy sputtering are presented. Both uncovered and metal-covered nanopatterned surfaces were studied. Surprisingly, the field emission takes place by regular steps in the field emitted current. Depending on the field, the steps are either regular, flat, plateaus, or saw-tooth shaped. To the author's knowledge, this is the first time that such results have been reported. Each discrete jump in the field emission may be understood in terms of resonant tunneling through an extended surface space charge region in an n-type, high aspect ratio, single GaSb nanocone. The staircase shape may be understood from the spatial distribution of the aspect ratio of the cones.
Energy Technology Data Exchange (ETDEWEB)
Neufeld, E [Foundation for Research on Information Technologies in Society (IT' IS), ETH Zurich, 8092 Zurich (Switzerland); Chavannes, N [Foundation for Research on Information Technologies in Society (IT' IS), ETH Zurich, 8092 Zurich (Switzerland); Samaras, T [Radiocommunications Laboratory, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Kuster, N [Foundation for Research on Information Technologies in Society (IT' IS), ETH Zurich, 8092 Zurich (Switzerland)
2007-08-07
The modeling of thermal effects, often based on the Pennes Bioheat Equation, is becoming increasingly popular. The FDTD technique commonly used in this context suffers considerably from staircasing errors at boundaries. A new conformal technique is proposed that can easily be integrated into existing implementations without requiring a special update scheme. It scales fluxes at interfaces with factors derived from the local surface normal. The new scheme is validated using an analytical solution, and an error analysis is performed to understand its behavior. The new scheme behaves considerably better than the standard scheme. Furthermore, in contrast to the standard scheme, it is possible to obtain with it more accurate solutions by increasing the grid resolution.
International Nuclear Information System (INIS)
Bak, P.
1979-01-01
The magnetic structure of the rare-earth metal neodymium has remained a mystery for more than a decade. Recently, a magnetic structure which fits the experimental results has been reported [1]. Here it will be shown how the model was derived by combining neutron diffraction data with the results of Landau symmetry arguments and renormalization group theory. The spins form a fascinating two-dimensional pattern with hexagonal symmetry, the ''triple q'' structure. The magnetic order is accompanied by a lattice distortion with a similar symmetry. Also, the results of a numerical study of simple model of a one-dimensionally modulated system are reported [2]. The phase diagram includes multiple phase transitions between commensurate phases similar to those observed in CeSb. This model, and CeSb, are possible candidates for ''the devil's staircase'' behavior where the periodicity jumps between an infinity of commensurate values
Creation of particles in the gravitational field and the boundary conditions for quantized fields
International Nuclear Information System (INIS)
Khrustalev, O.A.; Silaev, P.K.
1995-01-01
We prove, that if one impose the linear constraints on the quantized fields that satisfy different boundary conditions, it can leads to such a transformation between creation-annihilation operators, that corresponds to particle creation. We also prove, that the correspondence between field, quantized in Minkowski space and the field, quantized in Rindler space has Rindler space can't be observed. 7 refs
Generalized quantization scheme for two-person non-zero sum games
International Nuclear Information System (INIS)
Nawaz, Ahmad; Toor, A H
2004-01-01
We proposed a generalized quantization scheme for non-zero sum games which can be reduced to the two existing quantization schemes under an appropriate set of parameters. Some other important situations are identified which are not apparent in the two existing quantization schemes
Quantum Hall Conductivity and Topological Invariants
Reyes, Andres
2001-04-01
A short survey of the theory of the Quantum Hall effect is given emphasizing topological aspects of the quantization of the conductivity and showing how topological invariants can be derived from the hamiltonian. We express these invariants in terms of Chern numbers and show in precise mathematical terms how this relates to the Kubo formula.
Binary Biometric Representation through Pairwise Adaptive Phase Quantization
Chen, C.; Veldhuis, Raymond N.J.
Extracting binary strings from real-valued biometric templates is a fundamental step in template compression and protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Quantization and coding is the straightforward way to extract binary representations
Quantization of bosonic closed strings and the Liouville model
International Nuclear Information System (INIS)
Paycha, S.
1988-01-01
The author shows that by means of a reasonable interpretation of the Lebesgue measure describing the partition function the quantization of closed bosonic strings described by compact surfaces of genus p>1 can be related to that of the Liouville model. (HSI)
Quantization of edge currents for continuous magnetic operators
Kellendonk, J
2003-01-01
For a magnetic Hamiltonian on a half-plane given as the sum of the Landau operator with Dirichlet boundary conditions and a random potential, a quantization theorem for the edge currents is proven. This shows that the concept of edge channels also makes sense in presence of disorder. Moreover, gaussian bounds on the heat kernel and its covariant derivatives are obtained.
2-Step scalar deadzone quantization for bitplane image coding.
Auli-Llinas, Francesc
2013-12-01
Modern lossy image coding systems generate a quality progressive codestream that, truncated at increasing rates, produces an image with decreasing distortion. Quality progressivity is commonly provided by an embedded quantizer that employs uniform scalar deadzone quantization (USDQ) together with a bitplane coding strategy. This paper introduces a 2-step scalar deadzone quantization (2SDQ) scheme that achieves same coding performance as that of USDQ while reducing the coding passes and the emitted symbols of the bitplane coding engine. This serves to reduce the computational costs of the codec and/or to code high dynamic range images. The main insights behind 2SDQ are the use of two quantization step sizes that approximate wavelet coefficients with more or less precision depending on their density, and a rate-distortion optimization technique that adjusts the distortion decreases produced when coding 2SDQ indexes. The integration of 2SDQ in current codecs is straightforward. The applicability and efficiency of 2SDQ are demonstrated within the framework of JPEG2000.
Optimal context quantization in lossless compression of image data sequences
DEFF Research Database (Denmark)
Forchhammer, Søren; Wu, X.; Andersen, Jakob Dahl
2004-01-01
In image compression context-based entropy coding is commonly used. A critical issue to the performance of context-based image coding is how to resolve the conflict of a desire for large templates to model high-order statistic dependency of the pixels and the problem of context dilution due...... to insufficient sample statistics of a given input image. We consider the problem of finding the optimal quantizer Q that quantizes the K-dimensional causal context C/sub t/=(X/sub t-t1/,X/sub t-t2/,...,X/sub t-tK/) of a source symbol X/sub t/ into one of a set of conditioning states. The optimality of context...... quantization is defined to be the minimum static or minimum adaptive code length of given a data set. For a binary source alphabet an optimal context quantizer can be computed exactly by a fast dynamic programming algorithm. Faster approximation solutions are also proposed. In case of m-ary source alphabet...
Multispectral data compression through transform coding and block quantization
Ready, P. J.; Wintz, P. A.
1972-01-01
Transform coding and block quantization techniques are applied to multispectral aircraft scanner data, and digitized satellite imagery. The multispectral source is defined and an appropriate mathematical model proposed. The Karhunen-Loeve, Fourier, and Hadamard encoders are considered and are compared to the rate distortion function for the equivalent Gaussian source and to the performance of the single sample PCM encoder.
The Gribov problem in the frame of stochastic quantization
Energy Technology Data Exchange (ETDEWEB)
Parrinello, C. (Rome-1 Univ. (Italy). Dipt. di Fisica)
1990-09-01
We review the Gribov problem in the Landau gauge, from the point of view of stochastic quantization, and briefly sketch a numerical investigation based on a minimization algorithm, with the purpose of collecting wide information about Gribov copies within the first Gribov horizon. (orig.).
On covariant quantization of massive superparticle with first class constraints
International Nuclear Information System (INIS)
Huq, M.
1990-02-01
We use the technique of Batalin and Fradkin to convert the second class fermionic constraints of the massive superparticle into first class constraints. Then the Batalin-Vilkovisky formalism has been used to quantize covariantly the resulting theory. Appropriate gauge fixing conditions lead to a completely quadratic action. Some interesting properties of the physical space wave functions are discussed. (author). 16 refs
Appropriate quantization of asymmetric games with continuous strategies
International Nuclear Information System (INIS)
Qin Gan; Chen Xi; Sun Min; Zhou Xianyi; Du Jiangfeng
2005-01-01
We establish a new quantization scheme to study the asymmetric Bertrand duopoly with differentiated products. This scheme is more efficient than the previous symmetric one because it can exactly make the optimal cooperative payoffs at quantum Nash equilibrium. It is also a necessary condition for general asymmetric games with continuous strategies to reach such payoffs
Statistical amplitude scale estimation for quantization-based watermarking
Shterev, I.D.; Lagendijk, I.L.; Heusdens, R.
2004-01-01
Quantization-based watermarking schemes are vulnerable to amplitude scaling. Therefore the scaling factor has to be accounted for either at the encoder, or at the decoder, prior to watermark decoding. In this paper we derive the marginal probability density model for the watermarked and attacked
Remarks on the application of group extensions to quantization
International Nuclear Information System (INIS)
Mozrzymas, J.; Rzewuski, J.
1976-01-01
Quantization is described in the language of the theory of group extensions. Under the assumption of analyticity the most general form of factor of the extension is derived. A realization of the extended group in terms of functionals is described in the case of quantum field theory. The homomorphism of the extended group with the Weyl group of canonical commutation relations is demonstrated. (author)
Quantized layer growth at liquid-crystal surfaces
DEFF Research Database (Denmark)
Ocko, B. M.; Braslau, A.; Pershan, P. S.
1986-01-01
of the specular reflectivity is consistent with a sinusoidal density modulation, starting at the surface and terminating abruptly, after an integral number of bilayers. As the transition is approached the number of layers increases in quantized steps from zero to five before the bulk undergoes a first...
Magnetic resonance image compression using scalar-vector quantization
Mohsenian, Nader; Shahri, Homayoun
1995-12-01
A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. SVQ is a fixed-rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity issues of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation which is typical of coding schemes which use variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit-rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original, when displayed on a monitor. This makes our SVQ based coder an attractive compression scheme for picture archiving and communication systems (PACS), currently under consideration for an all digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired.
On the quantization of spin systems and Fermi systems
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Sirugue, M.
1978-03-01
It is shown that spin operators and Fermi operators can be interpreted as the Weyl quantization of some functions on a classical phase space which is a compact group. Moreover the transition from quantum spin to Fermi operators is an isomorphism of the classical phase space preserving the Haar measure
Phase transitions in vector quantization and neural gas
Witoelar, Aree; Biehl, Michael
The statistical physics of off-learning is applied to winner-takes-all (WTA) and rank-based vector quantization (VQ), including the neural gas (NG). The analysis is based on the limit of high training temperatures and the annealed approximation. The typical learning behavior is evaluated for systems
Note on path integral quantization of hydrogen atom
International Nuclear Information System (INIS)
Storchak, S.N.
1988-01-01
For path integrals whose integration measures are generated by stochastic processes of a definite form (Stratonovich-type equations are a local form for stochastic differential equations of these processes) it has been shown that under quantization of hydrogen atom the reparametrization and reduction Jacobians are mutually cancelled. 12 refs
Another scheme for quantization of scale invariant gauge theories
International Nuclear Information System (INIS)
Hortacsu, M.
1987-10-01
A new scheme is proposed for the quantization of scale invariant gauge theories for all even dimensions when they are minimally coupled to a spinor field. A cut-off procedure suggests an algorithm which may regularize the theory. (author). 10 refs
Electric charge quantization and the muon anomalous magnetic moment
International Nuclear Information System (INIS)
Pires, C.A.S. de; Rodrigues da Silva, P.S.
2002-01-01
We investigate some proposals to solve the electric charge quantization puzzle that simultaneously explain the recent measured deviation on the muon anomalous magnetic moment. For this we assess extensions of the electro-weak standard model spanning modifications on the scalar sector only. It is interesting to verify that one can have modest extensions which easily account for the solution for both problems
Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
Directory of Open Access Journals (Sweden)
Lothar Schlafer
2008-05-01
Full Text Available C*-algebraic Weyl quantization is extended by allowing also degenerate pre-symplectic forms for the Weyl relations with infinitely many degrees of freedom, and by starting out from enlarged classical Poisson algebras. A powerful tool is found in the construction of Poisson algebras and non-commutative twisted Banach-*-algebras on the stage of measures on the not locally compact test function space. Already within this frame strict deformation quantization is obtained, but in terms of Banach-*-algebras instead of C*-algebras. Fourier transformation and representation theory of the measure Banach-*-algebras are combined with the theory of continuous projective group representations to arrive at the genuine C*-algebraic strict deformation quantization in the sense of Rieffel and Landsman. Weyl quantization is recognized to depend in the first step functorially on the (in general infinite dimensional, pre-symplectic test function space; but in the second step one has to select a family of representations, indexed by the deformation parameter h. The latter ambiguity is in the present investigation connected with the choice of a folium of states, a structure, which does not necessarily require a Hilbert space representation.
Dynamics, stability analysis and quantization of β-Fermi–Pasta ...
Indian Academy of Sciences (India)
Keywords. Phonon; Fermi–Pasta–Ulam lattice; Floquet theory; semiclassical quantization. PACS Nos 05.45.−a; 45.20.Jj; 47.10.Df; 03.65.Sq. 1. Introduction. Some of the fundamental questions underlying equilibrium statistical mechanics are related to equipartition and ergodicity [1]. These questions for macroscopic systems ...
Quantized Roentgen Effect in Bose-Einstein Condensates
Leonhardt, U.; Piwnicki, P.
1998-01-01
A classical dielectric moving in a charged capacitor can create a magnetic field (Roentgen effect). A quantum dielectric, however, will not produce a magnetization, except at vortices. The magnetic field outside the quantum dielectric appears as the field of quantized monopoles.
Quantization of Robertson-Walker geometry coupled to fermionic matter
International Nuclear Information System (INIS)
Christodoulakis, T.; Zanelli, J.
1983-06-01
A Robertson-Walker universe coupled to a spin 1/2 Dirac field is quantized following Dirac's formalism for constrained Hamiltonian systems. It is found that in nearly all cases it can be asserted that the universe avoids the collapse. (author)
Canonical quantization of the Bateman-Morse-Feshbach damped oscillator
International Nuclear Information System (INIS)
Rideau, G.; Anderson, R.L.; Hebda, P.W.
1991-01-01
The Bateman-Morse-Feshbach classical formulation of the damped oscillator is canonically quantized. The spectrum of the Hamiltonian is given. It is shown that the wavefunctions behave asymptotically as a superposition of damped oscillators when their initial values belong to an appropriately-selected dense subset of the Hilbert space. (orig.)
The cosmological ‘constant’ and quantization in five dimensions
International Nuclear Information System (INIS)
Wesson, Paul S.
2011-01-01
Campbell's theorem ensures that all vacuum space-times in general relativity can be embedded in five dimensions, with the 4D scalar curvature expressed as an effective cosmological ‘constant’ Λ which depends on the extra coordinate. This Λ-landscape can be used to give insight to certain physical phenomena, such as the big bang and quantized particles.
Effect of threshold quantization in opportunistic splitting algorithm
Nam, Haewoon
2011-12-01
This paper discusses algorithms to find the optimal threshold and also investigates the impact of threshold quantization on the scheduling outage performance of the opportunistic splitting scheduling algorithm. Since this algorithm aims at finding the user with the highest channel quality within the minimal number of mini-slots by adjusting the threshold every mini-slot, optimizing the threshold is of paramount importance. Hence, in this paper we first discuss how to compute the optimal threshold along with two tight approximations for the optimal threshold. Closed-form expressions are provided for those approximations for simple calculations. Then, we consider linear quantization of the threshold to take the limited number of bits for signaling messages in practical systems into consideration. Due to the limited granularity for the quantized threshold value, an irreducible scheduling outage floor is observed. The numerical results show that the two approximations offer lower scheduling outage probability floors compared to the conventional algorithm when the threshold is quantized. © 2006 IEEE.
Macroscopic charge quantization in single-electron devices
Burmistrov, I.S.; Pruisken, A.M.M.
2010-01-01
In a recent paper by the authors [I. S. Burmistrov and A. M. M. Pruisken, Phys. Rev. Lett. 101, 056801 (2008)] it was shown that single-electron devices (single-electron transistor or SET) display "macroscopic charge quantization" which is completely analogous to the quantum Hall effect observed on
On the quantization of the Poincare gange model
International Nuclear Information System (INIS)
Aldrovandi, R.; Pereira, J.G.
1986-01-01
A gauge model based on the Yang-Mills equations for the Poincare group cannot be consistently quantized, at least in a perturbative approach. The problem is related to the absence of a Lagrangian. Adding the counterterms required by consistency and renormalizability turns the model into a gauge theory for a de Sitter group. (Author) [pt
Quantizing non-Lagrangian gauge theories: an augmentation method
International Nuclear Information System (INIS)
Lyakhovich, Simon L.; Sharapov, Alexei A.
2007-01-01
We discuss a recently proposed method of quantizing general non-Lagrangian gauge theories. The method can be implemented in many different ways, in particular, it can employ a conversion procedure that turns an original non-Lagrangian field theory in d dimensions into an equivalent Lagrangian, topological field theory in d+1 dimensions. The method involves, besides the classical equations of motion, one more geometric ingredient called the Lagrange anchor. Different Lagrange anchors result in different quantizations of one and the same classical theory. Given the classical equations of motion and Lagrange anchor as input data, a new procedure, called the augmentation, is proposed to quantize non-Lagrangian dynamics. Within the augmentation procedure, the originally non-Lagrangian theory is absorbed by a wider Lagrangian theory on the same space-time manifold. The augmented theory is not generally equivalent to the original one as it has more physical degrees of freedom than the original theory. However, the extra degrees of freedom are factorized out in a certain regular way both at classical and quantum levels. The general techniques are exemplified by quantizing two non-Lagrangian models of physical interest
Consensus of second-order multi-agent dynamic systems with quantized data
Energy Technology Data Exchange (ETDEWEB)
Guan, Zhi-Hong, E-mail: zhguan@mail.hust.edu.cn [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Meng, Cheng [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Liao, Rui-Quan [Petroleum Engineering College,Yangtze University, Jingzhou, 420400 (China); Zhang, Ding-Xue, E-mail: zdx7773@163.com [Petroleum Engineering College,Yangtze University, Jingzhou, 420400 (China)
2012-01-09
The consensus problem of second-order multi-agent systems with quantized link is investigated in this Letter. Some conditions are derived for the quantized consensus of the second-order multi-agent systems by the stability theory. Moreover, a result characterizing the relationship between the eigenvalues of the Laplacians matrix and the quantized consensus is obtained. Examples are given to illustrate the theoretical analysis. -- Highlights: ► A second-order multi-agent model with quantized data is proposed. ► Two sufficient and necessary conditions are obtained. ► The relationship between the eigenvalues of the Laplacians matrix and the quantized consensus is discovered.
Improved stability and performance from sigma-delta modulators using 1-bit vector quantization
DEFF Research Database (Denmark)
Risbo, Lars
1993-01-01
A novel class of sigma-delta modulators is presented. The usual scalar 1-b quantizer in a sigma-delta modulator is replaced by a 1-b vector quantizer with a N-dimensional input state-vector from the linear feedback filter. Generally, the vector quantizer changes the nonlinear dynamics...... of the modulator, and a proper choice of vector quantizer can improve both system stability and coding performance. It is shown how to construct the vector quantizer in order to limit the excursions in state-space. The proposed method is demonstrated graphically for a simple second-order modulator...
Quantization of (2 + 1)-spinning particles and bifermionic constraint problem
Energy Technology Data Exchange (ETDEWEB)
Fresneda, R [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil); Gavrilov, S P [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil); Gitman, D M [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil); Moshin, P Yu [Instituto de FIsica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, SP (Brazil)
2004-03-21
This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.
Quantization and Quantum-Like Phenomena: A Number Amplitude Approach
Robinson, T. R.; Haven, E.
2015-12-01
Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.
ADC border effect and suppression of quantization error in the digital dynamic measurement
International Nuclear Information System (INIS)
Bai Li-Na; Liu Hai-Dong; Zhou Wei; Zhai Hong-Qi; Cui Zhen-Jian; Zhao Ming-Ying; Gu Xiao-Qian; Liu Bei-Ling; Huang Li-Bei; Zhang Yong
2017-01-01
The digital measurement and processing is an important direction in the measurement and control field. The quantization error widely existing in the digital processing is always the decisive factor that restricts the development and applications of the digital technology. In this paper, we find that the stability of the digital quantization system is obviously better than the quantization resolution. The application of a border effect in the digital quantization can greatly improve the accuracy of digital processing. Its effective precision has nothing to do with the number of quantization bits, which is only related to the stability of the quantization system. The high precision measurement results obtained in the low level quantization system with high sampling rate have an important application value for the progress in the digital measurement and processing field. (paper)
On the quantization of the massless Bateman system
Takahashi, K.
2018-03-01
The so-called Bateman system for the damped harmonic oscillator is reduced to a genuine dual dissipation system (DDS) by setting the mass to zero. We explore herein the condition under which the canonical quantization of the DDS is consistently performed. The roles of the observable and auxiliary coordinates are discriminated. The results show that the complete and orthogonal Fock space of states can be constructed on the stable vacuum if an anti-Hermite representation of the canonical Hamiltonian is adopted. The amplitude of the one-particle wavefunction is consistent with the classical solution. The fields can be quantized as bosonic or fermionic. For bosonic systems, the quantum fluctuation of the field is directly associated with the dissipation rate.
Precise quantization of anomalous Hall effect near zero magnetic field
Energy Technology Data Exchange (ETDEWEB)
Bestwick, A. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fox, E. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kou, Xufeng [Univ. of California, Los Angeles, CA (United States); Pan, Lei [Univ. of California, Los Angeles, CA (United States); Wang, Kang L. [Univ. of California, Los Angeles, CA (United States); Goldhaber-Gordon, D. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-05-04
In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.
Wavelet/scalar quantization compression standard for fingerprint images
Energy Technology Data Exchange (ETDEWEB)
Brislawn, C.M.
1996-06-12
US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.
Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!
International Nuclear Information System (INIS)
Nutku, Yavuz
2003-01-01
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems
TBA-like integral equations from quantized mirror curves
Energy Technology Data Exchange (ETDEWEB)
Okuyama, Kazumi [Department of Physics, Shinshu University,Matsumoto 390-8621 (Japan); Zakany, Szabolcs [Département de Physique Théorique, Université de Genève,Genève, CH-1211 (Switzerland)
2016-03-15
Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local ℙ{sup 2}. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.
TBA-like integral equations from quantized mirror curves
Okuyama, Kazumi; Zakany, Szabolcs
2016-03-01
Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.
Quantization State of Baryonic Mass in Clusters of Galaxies
Directory of Open Access Journals (Sweden)
Potter F.
2007-01-01
Full Text Available The rotational velocity curves for clusters of galaxies cannot be explained by Newtonian gravitation using the baryonic mass nor does MOND succeed in reducing this discrepancy to acceptable differences. The dark matter hypothesis appears to offer a solution; however, non-baryonic dark matter has never been detected. As an alternative approach, quantum celestial mechanics (QCM predicts that galactic clusters are in quantization states determined solely by the total baryonic mass of the cluster and its total angular momentum. We find excellent agreement with QCM for ten galactic clusters, demonstrating that dark matter is not needed to explain the rotation velocities and providing further support to the hypothesis that all gravitationally bound systems have QCM quantization states.
Background independent quantizations-the scalar field: II
International Nuclear Information System (INIS)
Kaminski, Wojciech; Lewandowski, Jerzy; Okolow, Andrzej
2006-01-01
We are concerned with the issue of the quantization of a scalar field in a diffeomorphism invariant manner. We apply the method used in loop quantum gravity. It relies on the specific choice of scalar field variables referred to as the polymer variables. The quantization, in our formulation, amounts to introducing the 'quantum' polymer *-star algebra and looking for positive linear functionals, called states. As assumed in our paper, homeomorphism invariance allows us to derive the complete class of the states. They are determined by the homeomorphism invariant states defined on the CW-complex *-algebra. The corresponding GNS representations of the polymer *-algebra and their self-adjoint extensions are derived, the equivalence classes are found, and invariant subspaces characterized. In part I we outlined those results. Here, we present the technical details
Subband directional vector quantization in radiological image compression
Akrout, Nabil M.; Diab, Chaouki; Prost, Remy; Goutte, Robert; Amiel, Michel
1992-05-01
The aim of this paper is to propose a new scheme for image compression. The method is very efficient for images which have directional edges such as the tree-like structure of the coronary vessels in digital angiograms. This method involves two steps. First, the original image is decomposed at different resolution levels using a pyramidal subband decomposition scheme. For decomposition/reconstruction of the image, free of aliasing and boundary errors, we use an ideal band-pass filter bank implemented in the Discrete Cosine Transform domain (DCT). Second, the high-frequency subbands are vector quantized using a multiresolution codebook with vertical and horizontal codewords which take into account the edge orientation of each subband. The proposed method reduces the blocking effect encountered at low bit rates in conventional vector quantization.
Scattering of quantized solitary waves in the cubic Schrodinger equation
International Nuclear Information System (INIS)
Dolan, L.
1976-01-01
The quantum mechanics for N particles interacting via a delta-function potential in one space dimension and one time dimension is known. The second-quantized description of this system has for its Euler-Lagrange equations of motion the cubic Schrodinger equation. This nonlinear differential equation supports solitary wave solutions. A quantization of these solitons reproduces the weak-coupling limit to the known quantum mechanics. The phase shift for two-body scattering and the energy of the N-body bound state is derived in this approximation. The nonlinear Schrodinger equation is contrasted with the sine-Gordon theory in respect to the ideas which the classical solutions play in the description of the quantum states
q-Derivatives, quantization methods and q-algebras
International Nuclear Information System (INIS)
Twarock, Reidun
1998-01-01
Using the example of Borel quantization on S 1 , we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number τ. This extension is denoted as quasi-crystal Lie algebra, because this is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed
Labram, John G.
2015-02-13
Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.
Black Hole Area Quantization rule from Black Hole Mass Fluctuations
Schiffer, Marcelo
2016-01-01
We calculate the black hole mass distribution function that follows from the random emission of quanta by Hawking radiation and with this function we calculate the black hole mass fluctuation. From a complete different perspective we regard the black hole as quantum mechanical system with a quantized event horizon area and transition probabilities among the various energy levels and then calculate the mass dispersion. It turns out that there is a perfect agreement between the statistical and ...
Loop quantum gravity and black hole entropy quantization
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Using the spin networks and the asymptotic quasinormal mode frequencies of black holes given by loop quantum gravity,the minimum horizon area gap is obtained.Then the quantum area spectrum of black holes is derived and the black hole entropy is a realized quantization.The results show that the black hole entropy given by loop quantum gravity is in full accord with the Bekenstein-Hawking entropy with a suitable Immirzi.
Torus as phase space: Weyl quantization, dequantization, and Wigner formalism
Energy Technology Data Exchange (ETDEWEB)
Ligabò, Marilena, E-mail: marilena.ligabo@uniba.it [Dipartimento di Matematica, Università di Bari, I-70125 Bari (Italy)
2016-08-15
The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.
Matsubara-Fradkin thermodynamical quantization of Podolsky electrodynamics
International Nuclear Information System (INIS)
Bonin, C. A.; Pimentel, B. M.
2011-01-01
In this work, we apply the Matsubara-Fradkin formalism and the Nakanishi's auxiliary field method to the quantization of the Podolsky electrodynamics in thermodynamic equilibrium. This approach allows us to write consistently the path integral representation for the partition function of gauge theories in a simple manner. Furthermore, we find the Dyson-Schwinger-Fradkin equations and the Ward-Fradkin-Takahashi identities for the Podolsky theory. We also write the most general form for the polarization tensor in thermodynamic equilibrium.
Formality theory from Poisson structures to deformation quantization
Esposito, Chiara
2015-01-01
This book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction.
Quantized fluctuational electrodynamics for three-dimensional plasmonic structures
DEFF Research Database (Denmark)
Partanen, Mikko; Häyrynen, Teppo; Tulkki, Jukka
2017-01-01
We recently introduced a quantized fluctuational electrodynamics (QFED) formalism that provides a physically insightful definition of an effective position-dependent photon-number operator and the associated ladder operators. However, this far the formalism has been applicable only for the normal...... formalism, we apply it to study the local steady-state photon numbers and field temperatures in a light-emitting near-surface InGaN quantum-well structure with a metallic coating supporting surface plasmons....
Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei
International Nuclear Information System (INIS)
Drozdz, S.; Okolowicz, J.; Ploszajczak, M.; Caurier, E.
1988-01-01
The time-dependent Hartree-Fock theory supplemented with the regularity and single-valuedness quantization condition for the gauge invariant component of the wavefunction is applied to the description of the centroid energy and escape width of isoscalar giant quadrupole resonances in 16 O, 40 Ca and 110 Zr. Calculations are performed using the Skyrme SIII effective interaction. An important role of the finite oscillation amplitude in the mean-field dynamics is emphasized. (orig.)
The Third Quantization: To Tunnel or Not to Tunnel?
Directory of Open Access Journals (Sweden)
Mariam Bouhmadi-López
2018-02-01
Full Text Available Within the framework of the third quantization, we consider the possibility that an initially recollapsing baby universe can enter a stage of near de Sitter inflation by tunnelling through a Euclidean wormhole that connects the recollapsing and inflationary geometries. We present the solutions for the evolution of the scale factor in the Lorentzian and Euclidean regions as well as the probability that the baby universe indeed crosses the wormhole when it reaches its maximum size.
Quantization ambiguity and non-trivial vacuum structure
International Nuclear Information System (INIS)
Rothe, H.J.; Swieca, J.A.
1978-01-01
It is pointed out that there is an ambiguity in quantization of any system whose configuration space has a non-trivial topology characterized by a Chern number. In field theories this ambiguity manifests itself through the existence of theta-sectors. The point of view adopted gives a simple interpretation of the difference between the temporal and Coulomb gauge descriptions of instantons. The general ideas are exemplified in the O(3) non-linear sigma-model in two dimensions [pt
Canonical action-angle formalism for quantized nonlinear fields
International Nuclear Information System (INIS)
Garbaczewki, P.
1987-01-01
The canonical quantizations of field and action-angle coordinates which (locally) parameterize the phase manifold for the same nonlinear field theory model (e.g. sine-Gordon and nonlinear Schrodinger with the attractive coupling) are reconciled on the common for both cases state space. The classical-quantum relationship is maintained in the mean: coherent state expectation values of operators give rise to classical objects
Energy quantization for approximate H-surfaces and applications
Directory of Open Access Journals (Sweden)
Shenzhou Zheng
2013-07-01
Full Text Available We consider weakly convergent sequences of approximate H-surface maps defined in the plane with their tension fields bounded in $L^p$ for p> 4/3, and establish an energy quantization that accounts for the loss of their energies by the sum of energies over finitely many nontrivial bubbles maps on $mathbb{R}^2$. As a direct consequence, we establish the energy identity at finite singular time to their H-surface flows.
Quantized fields and operators on a partial inner product space
International Nuclear Information System (INIS)
Shabani, J.
1985-11-01
We investigate the connection between the space OpV of all operators on a partial inner product space V and the weak sequential completion of the * algebra L + (Vsup(no.)) of all operators X such that Vsup(no.) is contained in D(X) intersection D(X*) and both X and its adjoint X* leave Vsup(no.) invariant. This connection gives a mathematical description of quantized fields in terms of elements of OpV. (author)
Fractional statistics and fractional quantized Hall effect. Revision
International Nuclear Information System (INIS)
Tao, R.; Wu, Y.S.
1984-01-01
We suggest that the origin of the odd denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which governs quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics does not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references
Noncanonical quantization-on the coexistence of particles and ghosts
International Nuclear Information System (INIS)
Saller, H.
1988-01-01
Local interactions of quantized fields are sometimes parametrized with the aid of ghostlike degrees of freedom, e.g., in non-Abelian gauge theories. These ghosts do not necessarily lead to eigenstates of energy. Such a situation requires a discussion of the asymptotic boundary condition for the ghosts, leading to ghost propagation only for timelike distance. Coexisting particle and ghost degrees of freedom in one basic field operator allow the formulation of interactions for such a field without local ambiguities
Possible evidence for the quantization of particle lifetimes
International Nuclear Information System (INIS)
Ehrlich, R.
1976-01-01
An analysis of widths of resonant states supports the hypothesis that particle lifetimes are quantized in units of 1/2 or possibly 1/4 the lifetime of the rho meson: (4.40 +- 0.06) x 10 -24 seconds. The probability that the observed regularity in resonance widths (lifetimes) is simply due to chance is estimated to be less than 2 x 10 -4 . Possible ramifications of this result are considered
A zeta function approach to the semiclassical quantization of maps
International Nuclear Information System (INIS)
Smilansky, Uzi.
1993-11-01
The quantum analogue of an area preserving map on a compact phase space is a unitary (evolution) operator which can be represented by a matrix of dimension L∝ℎ -1 . The semiclassical theory for spectrum of the evolution operator will be reviewed with special emphasize on developing a dynamical zeta function approach, similar to the one introduced recently for a semiclassical quantization of hamiltonian systems. (author)
Supporting Dynamic Quantization for High-Dimensional Data Analytics.
Guzun, Gheorghi; Canahuate, Guadalupe
2017-05-01
Similarity searches are at the heart of exploratory data analysis tasks. Distance metrics are typically used to characterize the similarity between data objects represented as feature vectors. However, when the dimensionality of the data increases and the number of features is large, traditional distance metrics fail to distinguish between the closest and furthest data points. Localized distance functions have been proposed as an alternative to traditional distance metrics. These functions only consider dimensions close to query to compute the distance/similarity. Furthermore, in order to enable interactive explorations of high-dimensional data, indexing support for ad-hoc queries is needed. In this work we set up to investigate whether bit-sliced indices can be used for exploratory analytics such as similarity searches and data clustering for high-dimensional big-data. We also propose a novel dynamic quantization called Query dependent Equi-Depth (QED) quantization and show its effectiveness on characterizing high-dimensional similarity. When applying QED we observe improvements in kNN classification accuracy over traditional distance functions. Gheorghi Guzun and Guadalupe Canahuate. 2017. Supporting Dynamic Quantization for High-Dimensional Data Analytics. In Proceedings of Ex-ploreDB'17, Chicago, IL, USA, May 14-19, 2017, 6 pages. https://doi.org/http://dx.doi.org/10.1145/3077331.3077336.
Quantization of 2 + 1-spinning particles and bifermionic constraint problem
Energy Technology Data Exchange (ETDEWEB)
Fresneda, R.; Gavrilov, S.P.; Gitman, D.M.; Moshin, P.Yu. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
2004-07-01
In this paper, we have quantized a P- and T-noninvariant pseudoclassical model of a massive relativistic spin-1=2 particle in 2 + 1 dimensions, on the background of an arbitrary U(1) gauge vector field. A peculiar feature of the model at the classical level is that it contains a bifermionic first-class constraint, which does not admit gauge-fixing. It is shown that this first-class constraint can be realized at the quantum level as a bounded operator, which is imposed as a condition on the state vectors (by analogy with the Dirac quantization method). This allows us to generalize the quantization scheme [?] in case there is a bifermionic first-class constraint.We present a detailed construction of the Hilbert space and verify that the constructed QM possesses the necessary symmetry properties. We show that the condition of preservation of the classical symmetries under the restricted Lorentz transformations and the U(1) transformations allows one to realize the operator algebra in an unambiguous way. Within the constructed relativistic QM, we select a physical subspace which describes the one-particle sector. The physical sector of the QM contains both particles and antiparticles with positive energy hat {omega} levels, and exactly reproduces the one-particle sector of the quantum theory of the 2 + 1 spinor field. (author)
Hamiltonian theories quantization based on a probability operator
International Nuclear Information System (INIS)
Entral'go, E.E.
1986-01-01
The quantization method with a linear reflection of classical coordinate-momentum-time functions Λ(q,p,t) at quantum operators in a space of quantum states ψ, is considered. The probability operator satisfies a system of equations representing the principles of dynamical and canonical correspondences between the classical and quantum theories. The quantization based on a probability operator leads to a quantum theory with a nonnegative joint coordinate-momentum distribution function for any state ψ. The main consequences of quantum mechanics with a probability operator are discussed in comparison with the generally accepted quantum and classical theories. It is shown that a probability operator leads to an appearance of some new notions called ''subquantum'' ones. Hence the quantum theory with a probability operator does not pretend to any complete description of physical reality in terms of classical variables and by this reason contains no problems like Einstein-Podolsky-Rosen paradox. The results of some concrete problems are given: a free particle, a harmonic oscillator, an electron in the Coulomb field. These results give hope on the possibility of an experimental verification of the quantization based on a probability operator
Higgs mechanism in light-front quantized field theory
Energy Technology Data Exchange (ETDEWEB)
Srivastava, P P
1993-12-31
The spontaneous symmetry breaking of continuous symmetry in light-front quantized scalar field theory is studied following the standard Dirac procedure for constrained dynamical systems. A non-local constraint is found to follow. The values of the constant backgrounds fields (zero modes) at the tree level, as a consequence, are shown to given by minimizing the light-front energy. The zero modes are shown to commute with the non-zero ones and the isovector built from them is seen to characterize a (non-perturbative) vacuum state and the corresponding physical sector. The infinite degeneracy of the vacuum is described by the continuum of the allowed orientations of this background isovector in the isospin space. The symmetry generators in the quantized field theory annihilate the vacuum is contrast to the case of equal-time quantization. Not all of them are conserved and the conserved ones determine the surviving symmetry of the quantum theory Lagrangian. The criteria for determining the background isovector and the counting of the number of Goldstone bosons goes as in the equal-time case. A demonstration in favour of the absence of Goldstone bosons in two dimensions is also found. Finally, is extended to an understanding of the Higgs mechanism in light-front frame. (author). 13 refs.
ROBUST CONTROL ALGORITHM FOR MULTIVARIABLE PLANTS WITH QUANTIZED OUTPUT
Directory of Open Access Journals (Sweden)
A. A. Margun
2017-01-01
Full Text Available The paper deals with robust output control algorithm for multivariable plants under disturbances. A plant is described by the system of linear differential equations with known relative degrees. Plant parameters are unknown but belong to the known closed bounded set. Plant state vector is unmeasured. Plant output is measured only via static quantizer. Control system algorithm is based on the high gain feedback method. Developed controller provides exponential convergence of tracking error to the bounded area. The area bounds depend on quantizer parameters and the value of external disturbances. Experimental approbation of the proposed control algorithm is performed with the use of Twin Rotor MIMO System laboratory bench. This bench is a helicopter like model with two degrees of freedom (pitch and yaw. DC motors are used as actuators. The output signals are measured via optical encoders. Mathematical model of laboratory bench is obtained. Proposed algorithm was compared with proportional - integral – differential controller in conditions of output quantization. Obtained results have confirmed the efficiency of proposed controller.
Combinatorial quantization of the Hamiltonian Chern-Simons theory
International Nuclear Information System (INIS)
Alekseev, A.Yu.; Grosse, H.; Schomerus, V.
1996-01-01
This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of ''functions on the quantum moduli space of flat connections'' and comes equipped with a positive functional ω (''integration''). We prove that this data does not depend on the particular choices which have been made in the construction. The algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group. (orig.). With 1 fig
Higgs mechanism in light-front quantized field theory
International Nuclear Information System (INIS)
Srivastava, P.P.
1992-01-01
The spontaneous symmetry breaking of continuous symmetry in light-front quantized scalar field theory is studied following the standard Dirac procedure for constrained dynamical systems. A non-local constraint is found to follow. The values of the constant backgrounds fields (zero modes) at the tree level, as a consequence, are shown to given by minimizing the light-front energy. The zero modes are shown to commute with the non-zero ones and the isovector built from them is seen to characterize a (non-perturbative) vacuum state and the corresponding physical sector. The infinite degeneracy of the vacuum is described by the continuum of the allowed orientations of this background isovector in the isospin space. The symmetry generators in the quantized field theory annihilate the vacuum is contrast to the case of equal-time quantization. Not all of them are conserved and the conserved ones determine the surviving symmetry of the quantum theory Lagrangian. The criteria for determining the background isovector and the counting of the number of Goldstone bosons goes as in the equal-time case. A demonstration in favour of the absence of Goldstone bosons in two dimensions is also found. Finally, is extended to an understanding of the Higgs mechanism in light-front frame. (author). 13 refs
Einstein's photoemission emission from heavily-doped quantized structures
Ghatak, Kamakhya Prasad
2015-01-01
This monograph solely investigates the Einstein's Photoemission(EP) from Heavily Doped(HD) Quantized Structures on the basis of newly formulated electron dispersion laws. The materials considered are quantized structures of HD non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, GaP, Gallium Antimonide, II-V, Bismuth Telluride together with various types of HD superlattices and their Quantized counterparts respectively. The EP in HD opto-electronic materials and their nanostructures is studied in the presence of strong light waves and intense electric fields that control the studies of such quantum effect devices. The suggestions for the experimental determinations of different important physical quantities in HD 2D and 3D materials and the importance of measurement of band gap in HD optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring physical properties in the presence of intense light waves w...
Directory of Open Access Journals (Sweden)
Y. Zhang
2015-02-01
Full Text Available Memristors exhibit very sharp off-to-on transitions with a large on/off resistance ratio. These remarkable characteristics coupled with their long retention time and very simple device geometry make them nearly ideal for three-terminal devices where the gate voltage can change their on/off voltages and/or simply turn them off, eliminating the need for bipolar operations. In this paper, we propose a cation migration-based computational model to explain the quantized current conduction and the gate field-effect in Cu2-αS memristors. Having tree-shaped conductive filaments inside a memristor is the reason for the quantized current conduction effect. Applying a gate voltage causes a deformation of the conductive filaments and thus controls the SET and the RESET process of the device.
Directory of Open Access Journals (Sweden)
Aasef G. Shaikh
2017-07-01
Full Text Available Whipple’s disease, a rare systemic infectious disorder, is complicated by the involvement of the central nervous system in about 5% of cases. Oscillations of the eyes and the jaw, called oculo-masticatory myorhythmia, are pathognomonic of the central nervous system involvement but are often absent. Typical manifestations of the central nervous system Whipple’s disease are cognitive impairment, parkinsonism mimicking progressive supranuclear palsy with vertical saccade slowing, and up-gaze range limitation. We describe a unique patient with the central nervous system Whipple’s disease who had typical features, including parkinsonism, cognitive impairment, and up-gaze limitation; but also had diplopia, esotropia with mild horizontal (abduction more than adduction limitation, and vertigo. The patient also had gaze-evoked nystagmus and staircase horizontal saccades. Latter were thought to be due to mal-programmed small saccades followed by a series of corrective saccades. The saccades were disconjugate due to the concurrent strabismus. Also, we noted disconjugacy in the slow phase of gaze-evoked nystagmus. The disconjugacy of the slow phase of gaze-evoked nystagmus was larger during monocular viewing condition. We propose that interaction of the strabismic drifts of the covered eyes and the nystagmus drift, putatively at the final common pathway might lead to such disconjugacy.
International Nuclear Information System (INIS)
Gulaboski, Rubin; Kokoškarova, Pavlinka; Mitrev, Saša
2012-01-01
Highlights: ► Theoretical models for 2e− successive mechanisms are considered. ► The models are compatible for various metal-containing redox proteins. ► Diagnostic criteria are provided to recognize the particular redox mechanism. - Abstract: Protein-film voltammetry (PFV) is a versatile tool designed to provide insight into the enzymes physiological functions by studying the redox properties of various oxido-reductases with suitable voltammetric technique. The determination of the thermodynamic and kinetic parameters relevant to protein's physiological properties is achieved via methodologies established from theoretical considerations of various mechanisms in PFV. So far, the majority of the mathematical models in PFV have been developed for redox proteins undergoing a single-step electron transfer reactions. However, there are many oxido-reductases containing quinone moieties or polyvalent ions of transition metals like Mo, Mn, W, Fe or Co as redox centers, whose redox chemistry can be described only via mathematical models considering successive two-step electron transformation. In this work we consider theoretically the protein-film redox mechanisms of the EE (Electrochemical–Electrochemical), ECE (Electrochemical–Chemical–Electrochemical), and EECat (Electrochemical–Electrochemical–Catalytic) systems under conditions of cyclic staircase voltammetry. We also propose methodologies to determine the kinetics of electron transfer steps by all considered mechanisms. The experimentalists working with PFV can get large benefits from the simulated voltammograms given in this work.
Lezzerini, Marco; Antonelli, Fabrizio; Gallello, Gianni; Ramacciotti, Mirco; Parodi, Luca; Alberti, Antonio; Pagnotta, Stefano; Legnaioli, Stefano; Palleschi, Vincenzo
2017-05-01
The aim of this study is to investigate the provenance of marbles used as architectural elements (bases, shafts and capitals of columns) for building the internal spiral staircase of the medieval bell tower of St. Nicholas Church at Pisa, Italy. Accordingly, the 45 collected marble samples have been analysed by optical microscopy, X-ray powder diffraction and mass spectroscopy for carbon and oxygen stable isotope ratio analysis; additionally, SEM-EDS analysis have been performed to complement data about accessory minerals. By comparison with literature data on the main sources of the white Mediterranean marbles used in ancient times, the results show that the analysed samples are mainly white crystalline marbles from Carrara (Italy) and, subordinately, from other Tuscan and Eastern Mediterranean quarrying areas. In fact, Mt. Pisano and Campiglia M.ma (Tuscany, Italy) and Marmara (Turkey), Paros, Mt. Penteli, Thasos (Greece) are minor sources. The other coloured stones identified on the strength of their macroscopic features are quartzites from Mt. Pisano area and granitoids from Sardinia and Island of Elba (Italy). Occasionally, a very limited number of architectonical elements made up of Acquabona limestone from Rosignano Marittimo (Livorno, Italy), red limestone with ammonites (the so-called "Rosso Ammonitico") and black limestone belonging to the Tuscan Nappe sequence, outcropping at northwest of Pisa in the nearby Monti d'Oltre Serchio area, are present.
Sokolović, I.; Mali, P.; Odavić, J.; Radošević, S.; Medvedeva, S. Yu.; Botha, A. E.; Shukrinov, Yu. M.; Tekić, J.
2017-08-01
The devil's staircase structure arising from the complete mode locking of an entirely nonchaotic system, the overdamped dc+ac driven Frenkel-Kontorova model with deformable substrate potential, was observed. Even though no chaos was found, a hierarchical ordering of the Shapiro steps was made possible through the use of a previously introduced continued fraction formula. The absence of chaos, deduced here from Lyapunov exponent analyses, can be attributed to the overdamped character and the Middleton no-passing rule. A comparative analysis of a one-dimensional stack of Josephson junctions confirmed the disappearance of chaos with increasing dissipation. Other common dynamic features were also identified through this comparison. A detailed analysis of the amplitude dependence of the Shapiro steps revealed that only for the case of a purely sinusoidal substrate potential did the relative sizes of the steps follow a Farey sequence. For nonsinusoidal (deformed) potentials, the symmetry of the Stern-Brocot tree, depicting all members of particular Farey sequence, was seen to be increasingly broken, with certain steps being more prominent and their relative sizes not following the Farey rule.
International Nuclear Information System (INIS)
Hauke, Philipp; Cucchietti, Fernando M; Lewenstein, Maciej; Mueller-Hermes, Alexander; Banuls, Mari-Carmen; Ignacio Cirac, J
2010-01-01
Systems with long-range interactions show a variety of intriguing properties: they typically accommodate many metastable states, they can give rise to spontaneous formation of supersolids, and they can lead to counterintuitive thermodynamic behavior. However, the increased complexity that comes with long-range interactions strongly hinders theoretical studies. This makes a quantum simulator for long-range models highly desirable. Here, we show that a chain of trapped ions can be used to quantum simulate a one-dimensional (1D) model of hard-core bosons with dipolar off-site interaction and tunneling, equivalent to a dipolar XXZ spin-1/2 chain. We explore the rich phase diagram of this model in detail, employing perturbative mean-field theory, exact diagonalization and quasi-exact numerical techniques (density-matrix renormalization group and infinite time-evolving block decimation). We find that the complete devil's staircase-an infinite sequence of crystal states existing at vanishing tunneling-spreads to a succession of lobes similar to the Mott lobes found in Bose-Hubbard models. Investigating the melting of these crystal states at increased tunneling, we do not find (contrary to similar 2D models) clear indications of supersolid behavior in the region around the melting transition. However, we find that inside the insulating lobes there are quasi-long-range (algebraic) correlations, as opposed to models with nearest-neighbor tunneling, that show exponential decay of correlations.
Width dependent transition of quantized spin-wave modes in Ni80Fe20 square nanorings
Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Rousseau, Olivier; Otani, YoshiChika; Barman, Anjan
2014-10-01
We investigated optically induced ultrafast magnetization dynamics in square shaped Ni80Fe20 nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.
Depth of quantization in signals of the digital X-ray television
International Nuclear Information System (INIS)
Beuthan, J.
1989-01-01
The technological realization of image acquisition and processing in digital X-ray television in methodical dependence on the image-forming purpose places particular requirements in signal quantization. By evaluation of experimental results with simultaneous modification of a special calculation method an optimum quantization stage is ascertained with method-relevant quantization characteristic. In addition to consideration made so far in this field a self-contained solution is presented with inclusion of vision physiology and information gain. (author)
The BRST formalism and the quantization of hamiltonian systems with first class constraints
International Nuclear Information System (INIS)
Gamboa, J.; Rivelles, V.O.
1989-04-01
The quantization of hamiltonian system with first class constraints using the BFV formalism is studied. Two examples, the quantization of the relativistic particle and the relativistic spinning particle, are worked out in detail, showing that the BFV formalism is a powerful method for quantizing theories with gauge freedom. Several points not discussed is the literature are pointed out and the correct expression for the Feynman propagator in both cases is found. (L.C.)
Comments on exact quantization conditions and non-perturbative topological strings
International Nuclear Information System (INIS)
Hatsuda, Yasuyuki
2015-12-01
We give some remarks on exact quantization conditions associated with quantized mirror curves of local Calabi-Yau threefolds, conjectured in arXiv:1410.3382. It is shown that they characterize a non-perturbative completion of the refined topological strings in the Nekrasov-Shatashvili limit. We find that the quantization conditions enjoy an exact S-dual invariance. We also discuss Borel summability of the semi-classical spectrum.
Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.
2017-10-01
Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate
Length quantization of DNA partially expelled from heads of a bacteriophage T3 mutant
Energy Technology Data Exchange (ETDEWEB)
Serwer, Philip, E-mail: serwer@uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 (United States); Wright, Elena T. [Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 (United States); Liu, Zheng; Jiang, Wen [Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 (United States)
2014-05-15
DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNA missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.
International Nuclear Information System (INIS)
Vajnberg, Eh.I.; Fajngojz, M.L.
1984-01-01
The sources and forms of manifestation of errors in quantization and interpolation of projections in case of X-ray computerized tomography are considered and quantitative criteria of their evaluation are formulated. The dominating role of the interaction of two successive quantizations of projections - one-dimensional and two-dimensional ones is revealed. The necessity of joint optimization of the two-dimensional quantization range, expansion and form of interpolation function, quantized convolution nucleus is substantiated. The experimental results at aspect ratio of tomograms 256x256 and 480 projections are presented
Current quantization and fractal hierarchy in a driven repulsive lattice gas.
Rotondo, Pietro; Sellerio, Alessandro Luigi; Glorioso, Pietro; Caracciolo, Sergio; Cosentino Lagomarsino, Marco; Gherardi, Marco
2017-11-01
Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.
Current quantization and fractal hierarchy in a driven repulsive lattice gas
Rotondo, Pietro; Sellerio, Alessandro Luigi; Glorioso, Pietro; Caracciolo, Sergio; Cosentino Lagomarsino, Marco; Gherardi, Marco
2017-11-01
Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.
Quantum algebras as quantizations of dual Poisson–Lie groups
International Nuclear Information System (INIS)
Ballesteros, Ángel; Musso, Fabio
2013-01-01
A systematic computational approach for the explicit construction of any quantum Hopf algebra (U z (g), Δ z ) starting from the Lie bialgebra (g, δ) that gives the first-order deformation of the coproduct map Δ z is presented. The procedure is based on the well-known ‘quantum duality principle’, namely the fact that any quantum algebra can be viewed as the quantization of the unique Poisson–Lie structure (G*, Λ g ) on the dual group G*, which is obtained by exponentiating the Lie algebra g* defined by the dual map δ*. From this perspective, the coproduct for U z (g) is just the pull-back of the group law for G*, and the Poisson analogues of the quantum commutation rules for U z (g) are given by the unique Poisson–Lie structure Λ g on G* whose linearization is the Poisson analogue of the initial Lie algebra g. This approach is shown to be a very useful technical tool in order to solve the Lie bialgebra quantization problem explicitly since, once a Lie bialgebra (g, δ) is given, the full dual Poisson–Lie group (G*, Λ) can be obtained either by applying standard Poisson–Lie group techniques or by implementing the algorithm presented here with the aid of symbolic manipulation programs. As a consequence, the quantization of (G*, Λ) will give rise to the full U z (g) quantum algebra, provided that ordering problems are appropriately fixed through the choice of certain local coordinates on G* whose coproduct fulfils a precise ‘quantum symmetry’ property. The applicability of this approach is explicitly demonstrated by reviewing the construction of several instances of quantum deformations of physically relevant Lie algebras such as sl(2,R), the (2+1) anti-de Sitter algebra so(2, 2) and the Poincaré algebra in (3+1) dimensions. (paper)
Vandenboom, Rene
2014-01-01
Ca2+ entry during the action potential stimulates muscle contraction. During repetitive low frequency stimulation, skeletal muscle undergoes staircase potentiation (SP), a progressive increase in the peak twitch force induced by each successive stimulus. Multiple mechanisms, including myosin regulatory light chain phosphorylation, likely contribute to SP, a temperature-dependent process. Here, we used the Ca2+-sensitive fluorescence indicators acetoxymethyl (AM)-furaptra and AM-fura-2 to examine the intracellular Ca2+ transient (ICT) and the baseline Ca2+ level at the onset of each ICT during SP at 30 and 37°C in mouse lumbrical muscle. The stimulation protocol, 8 Hz for 8 s, resulted in a 27 ± 3% increase in twitch force at 37°C and a 7 ± 2% decrease in twitch force at 30°C (P < 0.05). Regardless of temperature, the peak rate of force production (+df/dt) was higher in all twitches relative to the first twitch (P < 0.05). Consistent with the differential effects of stimulation on twitch force at the two temperatures, raw ICT amplitude decreased during repetitive stimulation at 30°C (P < 0.05) but not at 37°C. Cytosolic Ca2+ accumulated during SP such that baseline Ca2+ at the onset of ICTs occurring late in the train was higher (P < 0.05) than that of those occurring early in the train. ICT duration increased progressively at both temperatures. This effect was not entirely proportional to the changes in twitch duration, as twitch duration characteristically decreased before increasing late in the protocol. This is the first study identifying a changing ICT as an important, and temperature-sensitive, modulator of muscle force during repetitive stimulation. Moreover, we extend previous observations by demonstrating that contraction-induced increases in baseline Ca2+ coincide with greater +df/dt but not necessarily with higher twitch force. PMID:25422504
Magnetic properties of the Kagome staircase mixed system (CoxNi1-x)3V2O8
International Nuclear Information System (INIS)
Qureshi, Navid
2008-01-01
The orthooxovanadates of the 3d transition metals M 3 V 2 O 8 , known as Kagome staircase systems, reveal interesting magnetic properties due to their crystal structure. Although these compounds are isostructural for M=Co,Ni,Mn,Cu, they differ considerably with respect to their magnetic phase transitions and magnetic structures. As the magnetic ions are situated on corners of cornersharing triangles, geometric frustration plays an important role in this system. This is not only confined to the fact, that the antiferromagnetic structures exhibit reduced magnetic moments, but apparently also to the ferromagnetic structure of Co 3 V 2 O 8 , which exhibits a strongly reduced Co moment of 1.54 Bohr magnetons. Within this work precisely this ferromagnetic structure has been investigated in detail and it could be shown that the relatively weak magnetic moment does not result from frustration, but is a consequence of the strong hybridization effects between the cobalt and oxygen orbitals. The pronounced covalent character of this Co ion leads to the fact that due to the charge transfer the oxygen ions significantly contribute to the bulk magnetization when applying an external magnetic field. The second part of the presented work deals with the systematic investigation of the mixed system (Co x Ni 1-x )3V 2 O 8 . A detailed magnetic phase diagram could be drawn, in which the temperature and composition dependent magnetic phase transitions have been pinpointed. Furthermore, an interesting magnetic structure of a chosen composition of x=0.5 has been observed, which differs considerably from those of the end members. (orig.)
Quantization of a non-linearly realized supersymmetric theory
International Nuclear Information System (INIS)
Shima, Kazunari
1976-01-01
The two-dimensional version of the Volkov-Akulov's Lagrngian, where the super-symmetry is realized non-linearly by means of a single Majorana spinor psi(x), is quantized. The equal time anti-commutators for the field are not c-numbers but functions of the field itself. By the explicite calculation we shall show that supersymmetry charges of the model form the supersymmetry algebra(the graded Lie algebra) and the supersymmetry charges exactly generate a constant translation of psi(x) in the spinor space. In this work we restrict our investigation to the two-dimensional space-time for the sake of simplicity. (auth.)
Charge quantization of wormholes and the finiteness of Newton's constant
International Nuclear Information System (INIS)
Grinstein, B.
1989-01-01
We derive, from first principles, the equations of Lee which exhibit wormhole solutions. The interpretation of such solutions becomes more transparent: they are local extrema of the action which contribute to transition amplitudes between states of definite charge. Hence the charge carried by the wormhole is quantized. We briefly review Coleman's mechanism for the vanishing of the cosmological constant, with emphasis on the problem of the vanishing of Newton's constant G. A mechanism is proposed that could naturally make 1/G a bounded function of the wormhole parameters. (orig.)
Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers
Neshveyev, Sergey; Tuset, Lars
2012-05-01
Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K).
Noncommutative solitons: moduli spaces, quantization, finite θ effects and stability
Hadasz, Leszek; Rocek, Martin; Lindström, Ulf; von Unge, Rikard
2001-06-01
We find the N-soliton solution at infinite θ, as well as the metric on the moduli space corresponding to spatial displacements of the solitons. We use a perturbative expansion to incorporate the leading θ-1 corrections, and find an effective short range attraction between solitons. We study the stability of various solutions. We discuss the finite θ corrections to scattering, and find metastable orbits. Upon quantization of the two-soliton moduli space, for any finite θ, we find an s-wave bound state.
Generalized field quantization and statistics of elementary particles
International Nuclear Information System (INIS)
Govorkov, A.V.
1994-01-01
Generalized schemes for the quantization of free fields based on the deformed trilinear relations of Green are investigated. A theorem shows that in reality continuous deformation is impossible. In particular, it is shown that a open-quotes smallclose quotes violation of the ordinary Fermi and Bose statistics is impossible both in the framework of local field theory, corresponding to parastatistics of finite orders, and in the framework of nonlocal field theory, corresponding to infinite statistics. The existence of antiparticles plays a decisive role in establishing the matter case. 23 refs
Logarithmic corrections in a quantization rule. The polaron spectrum
International Nuclear Information System (INIS)
Karasev, M.V.; Pereskokov, A.V.
1994-01-01
A nonlinear integrodifferential equation that arises in polaron theory is considered. The integral nonlinearity is given by a convolution with the Coulomb potential. Radially symmetric solutions are sought. In the semiclassical limit, an equation for the self-consistent potential is found and studied. The potential has a logarithmic singularity at the origin, and also a turning point at 1. The phase shifts at these points are determined. The quantization rule that takes into account the logarithmic corrections gives a simple asymptotic formula for the polaron spectrum. Global semiclassical solutions of the original nonlinear equation are constructed. 18 refs., 1 tab
On quantization, the generalised Schroedinger equation and classical mechanics
International Nuclear Information System (INIS)
Jones, K.R.W.
1991-01-01
A ψ-dependent linear functional operator, was defined, which solves the problem of quantization in non-relativistic quantum mechanics. Weyl ordering is implemented automatically and permits derivation of many of the quantum to classical correspondences. The parameter λ presents a natural C ∞ deformation of the dynamical structure of quantum mechanics via a non-linear integro-differential 'Generalised Schroedinger Equation', admitting an infinite family of soliton solutions. All these solutions are presented and it is shown that this equation gives an exact dynamic and energetic reproduction of classical mechanics with the correct measurement theoretic limit. 23 refs
Gauged BPS baby Skyrmions with quantized magnetic flux
Adam, C.; Wereszczynski, A.
2017-06-01
A new type of gauged BPS baby Skyrme model is presented, where the derivative term is just the Schroers current (i.e., gauge invariant and conserved version of the topological current) squared. This class of models has a topological bound saturated for solutions of the pertinent Bogomolnyi equations supplemented by a so-called superpotential equation. In contrast to the gauged BPS baby Skyrme models considered previously, the superpotential equation is linear and, hence, completely solvable. Furthermore, the magnetic flux is quantized in units of 2 π , which allows, in principle, to define this theory on a compact manifold without boundary, unlike all gauged baby Skyrme models considered so far.
Harmonic generation and flux quantization in granular superconductors
International Nuclear Information System (INIS)
Lam, Q.H.; Jeffries, C.D.
1989-01-01
Simple dynamical models of granular superconductors are used to compute the generation of harmonic power in ac and dc magnetic fields. In zero order, the model is a single superconducting loop, with or without a weak link. The sample-average power is predicted by averaging over suitable distribution functions for loop areas and orientations in a dc magnetic field. In a first-order model, inductance and resistance are also included. In all models the power at high harmonics shows strikingly sharp dips periodic in the dc field, revealing flux quantization in the prototype loops
Quantized Eigenstates of a Classical Particle in a Ponderomotive Potential
International Nuclear Information System (INIS)
Dodin, I.Y.; Fisch, N.J.
2004-01-01
The average dynamics of a classical particle under the action of a high-frequency radiation resembles quantum particle motion in a conservative field with an effective de Broglie wavelength λ equal to the particle average displacement on a period of oscillations. In a ''quasi-classical'' field, with a spatial scale large compared to λ, the guiding center motion is adiabatic. Otherwise, a particle exhibits quantized eigenstates in a ponderomotive potential well, can tunnel through classically forbidden regions and experience reflection from an attractive potential. Discrete energy levels are also found for a ''crystal'' formed by multiple ponderomotive barriers
Quantized Dirac field interacting with a classical Maxwell field
International Nuclear Information System (INIS)
Kolsrud, M.
1987-10-01
The S operator for the quantized and the s matrix for the unquantized Dirac field, both fields interacting with an unquantized Maxwell field, are shown to be related in the following way: S=exp(-ic†kc) and s=exp(-ik). Here c is the column matrix of the particle operators, and k is a Hermitian matrix. With splitting of c into an electron and a positron part, a corresponding factorization of S is performed. Exact expressions for the probability amplitude for various electron and/or positron processes are then obtained
Categorical Cell Decomposition of Quantized Symplectic Algebraic Varieties
Bellamy, Gwyn; Dodd, Christopher; McGerty, Kevin; Nevins, Thomas
2013-01-01
We prove a new symplectic analogue of Kashiwara’s equivalence from D–module\\ud theory. As a consequence, we establish a structure theory for module categories over\\ud deformation-quantizations that mirrors, at a higher categorical level, the BiałynickiBirula\\ud stratification of a variety with an action of the multiplicative group Gm . The\\ud resulting categorical cell decomposition provides an algebrogeometric parallel to the\\ud structure of Fukaya categories of Weinstein manifolds. From it,...
Michael Marinov memorial volume multiple facets of quantization and supersymmetry
Vainshtein, A I
2002-01-01
This book is dedicated to the memory of Michael Marinov, the theorist who, together with Felix Berezin, introduced the classical description of spin by anticommuting Grassmann variables. It contains original papers and reviews by physicists and mathematicians written specifically for the book. These articles reflect the current status and recent developments in the areas of Marinov's research: quantum tunneling, quantization of constrained systems, supersymmetry, and others. The personal recollections included portray the human face of M Marinov, a person of great knowledge and integrity.
Canonical quantization of general relativity in discrete space-times.
Gambini, Rodolfo; Pullin, Jorge
2003-01-17
It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.
Quantization conditions and functional equations in ABJ(M) theories
International Nuclear Information System (INIS)
Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki
2014-12-01
The partition function of ABJ(M) theories on the three-sphere can be regarded as the canonical partition function of an ideal Fermi gas with a non-trivial Hamiltonian. We propose an exact expression for the spectral determinant of this Hamiltonian, which generalizes recent results obtained in the maximally supersymmetric case. As a consequence, we find an exact WKB quantization condition determining the spectrum which is in agreement with numerical results. In addition, we investigate the factorization properties and functional equations for our conjectured spectral determinants. These functional equations relate the spectral determinants of ABJ theories with consecutive ranks of gauge groups but the same Chern-Simons coupling.
Two dimensional topological insulator in quantizing magnetic fields
Olshanetsky, E. B.; Kvon, Z. D.; Gusev, G. M.; Mikhailov, N. N.; Dvoretsky, S. A.
2018-05-01
The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at B ≈ 6 T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field Bc after which a gap opens up in the 2D TI spectrum.
Are lepton and quark families quantized dynamical systems
International Nuclear Information System (INIS)
Krolikowski, W.
1980-04-01
Lepton and quark families (#betta#sub(N)), (esub(N))) and (usub(N)), (dsub(N) are conjectured to be quantum-dynamical systems in the space of generations N = 0,1,2,... Such a conjecture, called the ''zeroth quantization'', implies the form of lepton and quark mass spectra, if lepton and quark families are supposed to be almost in thermal equilibrium with the rest of the Universe. Toponium is predicted at about 38 GeV, while the next charged lepton at 28.5 GeV. (author)
Quantized acoustoelectric current in the presence of large tunneling counterflow
DEFF Research Database (Denmark)
Gloos, K.; Utko, P.; Hansen, Jørn Bindslev
2004-01-01
A surface acoustic wave drives an electrical current through a short quantum wire. A second tunneling current is injected by biasing one side of the quantum wire. These two contributions to the total current, which flow in opposite directions, are controlled almost independently by the gate...... and the bias voltage, respectively. We have observed the quantization of the acoustoelectric current at up to ten times larger counterflowing tunneling currents. At large tunneling currents the acoustoelectric current can be strongly suppressed. However, this does not seem to be due to an electrostatic...... interaction between the two currents, but is probably caused by the complex potential landscape in the narrow channel of the quantum wire....
Quantized acoustoelectric current in the presence of large tunneling counterflow
International Nuclear Information System (INIS)
Gloos, K.; Utko, P.; Lindelof, P.E.; Hansen, J. Bindslev
2004-01-01
A surface acoustic wave drives an electrical current through a short quantum wire. A second tunneling current is injected by biasing one side of the quantum wire. These two contributions to the total current, which flow in opposite directions, are controlled almost independently by the gate and the bias voltage, respectively. We have observed the quantization of the acoustoelectric current at up to ten times larger counterflowing tunneling currents. At large tunneling currents the acoustoelectric current can be strongly suppressed. However, this does not seem to be due to an electrostatic interaction between the two currents, but is probably caused by the complex potential landscape in the narrow channel of the quantum wire
New inner products for physical states in BRST quantization
International Nuclear Information System (INIS)
Marnelius, R.; Oegren, M.
1991-01-01
In a BRST quantization involving operators with continuous eigenvalues the naive inner products of physical states are usually undefined. In order to include such cases we propose new inner products defined by , where ρ is an odd gauge-fixing operator. In this definition, which requires the use of dynamical Lagrange multipliers, the factor exp i[ρ,Q] is naturally provided by the choice of dynamics. Several examples are worked out. In particular it is shown that the worldline supersymmetric model for a massless spin-1/2 particle leads to fermions whose chiral projections have opposite norms. (orig.)
Renormalization in the stochastic quantization of field theories
International Nuclear Information System (INIS)
Brunelli, J.C.
1991-01-01
In the stochastic quantization scheme of Parisi and Wu the renormalization of the stochastic theory of some models in field theory is studied. Following the path integral approach for stochastic process the 1/N expansion of the non linear sigma model is performed and, using a Ward identity obtained, from a BRS symmetry of the effective action of this formulation. It is shown the renormalizability of the model. Using the Langevin approach for stochastic process the renormalizability of the massive Thirring model is studied showing perturbatively the vanishing of the renormalization group's beta functions at finite fictitious time. (author)
On second quantization methods applied to classical statistical mechanics
International Nuclear Information System (INIS)
Matos Neto, A.; Vianna, J.D.M.
1984-01-01
A method of expressing statistical classical results in terms of mathematical entities usually associated to quantum field theoretical treatment of many particle systems (Fock space, commutators, field operators, state vector) is discussed. It is developed a linear response theory using the 'second quantized' Liouville equation introduced by Schonberg. The relationship of this method to that of Prigogine et al. is briefly analyzed. The chain of equations and the spectral representations for the new classical Green's functions are presented. Generalized operators defined on Fock space are discussed. It is shown that the correlation functions can be obtained from Green's functions defined with generalized operators. (Author) [pt
BRST quantization of Polyakov's two-dimensional gravity
International Nuclear Information System (INIS)
Itoh, Katsumi
1990-01-01
Two-dimensional gravity coupled to minimal models is quantized in the chiral gauge by the BRST method. By using the Wakimoto construction for the gravity sector, we show how the quartet mechanism of Kugo and Ojima works and solve the physical state condition. As a result the positive semi-definiteness of the physical subspace is shown. The formula of Knizhnik et al. for gravitational scaling dimensions is rederived from the physical state condition. We also observe a relation between the chiral gauge and the conformal gauge. (orig.)
Elliptic Genera of Symmetric Products and Second Quantized Strings
Dijkgraaf, R; Verlinde, Erik; Verlinde, Herman L
1997-01-01
In this note we prove an identity that equates the elliptic genus partition function of a supersymmetric sigma model on the $N$-fold symmetric product $M^N/S_N$ of a manifold $M$ to the partition function of a second quantized string theory on the space $M \\times S^1$. The generating function of these elliptic genera is shown to be (almost) an automorphic form for $O(3,2,\\Z)$. In the context of D-brane dynamics, this result gives a precise computation of the free energy of a gas of D-strings inside a higher-dimensional brane.
d=3 Chern-Simons action, supergravity and quantization
International Nuclear Information System (INIS)
Dayi, O.F.
1989-01-01
An interpretation of three-dimensional simple supergravity as a pure Chern-Simons gauge action is shown to be valid up to the one loop level. Canonical quantization of this system does not lead to an explicit definition of the physical Hilbert space. Hence another formulation of the N = 1 three-dimensional supergravity is introduced. In this formalism an explicit definition of the physical Hilbert space is possible, but still one has to solve the problems of showing that there exists a global set of coordinates and of defining the inner product. (author). 10 refs
Quantized fields in interaction with external fields. Pt. 1
International Nuclear Information System (INIS)
Bellissard, J.
1975-01-01
We consider a massive, charged, scalar quantized field interacting with an external classical field. Guided by renormalized perturbation theory we show that whenever the integral equations defining the Feynman or retarded or advanced interaction kernel possess non perturbative solutions, there exists an S-operator which satisfies, up to a phase, the axioms of Bogoliubov, and is given for small external fields by a power series which converges on coherent states. Furthermore this construction is shown to be equivalent to the one based on the Yang-Kaellen-Feldman equation. This is a consequence of the relations between chronological and retarded Green's functions which are described in detail. (orig.) [de
Wang, W.; Kishimoto, Y.; Imadera, K.; Li, J. Q.; Wang, Z. X.
2018-05-01
The mechanism for the formation and sustainment of a self-organized global profile and the ‘ E × B staircase’ are investigated through simulations of a flux-driven ion temperature gradient (ITG) turbulence based on GKNET, a 5D global gyrokinetic code. The staircase is found to be initiated from the radially extended ITG mode structures with nearly up-down symmetry during the saturation phase, and is established as it evolves into a quasi-steady turbulence, leading to a self-organized global temperature profile and to meso-scale isomorphic profiles of the radial electric field and the temperature gradient. It is found that the quasi-regular E × B shear flow pattern is primarily originated from an even-symmetrical zonal flow produced by the extended ITG mode, which flow pattern exhibits an in-phase relation with the mean flow variation induced by the temperature relaxation. Consequently, the staircase is initiated through the profiles of total electric field and temperature gradient with a self-organized manner. Since the sign of E × B shear flow at the central part are opposite to that at both edges, it disintegrates the ITG mode into smaller scale eddies. Meanwhile, smaller scale eddies tend to be aligned radially by spontaneous phase matching, which can provide the growth of mode amplitude and the formation of radially extended mode structures, leading to the bursty heat transport. This process is repeated quasi-periodically, sustaining self-organized structures and the E × B staircase. Moreover, the equilibrium mean field is found to be of specific importance in causing the structures and dynamics from meso- to macro scales in toroidal plasmas.
L. Anet Neto; P. Chanclou; Z. Tayq; B. C. Zabada; F. Saliou; G. Simon
2016-01-01
We experimentally assess compression with scalar and vector quantization for fixed-mobile convergent networks. We show that four-dimensional vector quantization allows 73% compression compliant with 3GPP EVM recommendations for transmissions over 25 km SSMF with 1:16 split ratio.
Implementability of gauge transformations and quantization of fermions in external fields
International Nuclear Information System (INIS)
Grosse, H.; Karner, G.
1986-01-01
Quantization of fermions in an external soliton field, leading to a representation of the CAR which is inequivalent to the representation connected to the massive Dirac operator, is studied. We determine classes of gauge and axial gauge transformations which can be unitarily implemented. In the latter case quantization conditions for gauge functions are obtained; integers entering can be interpreted as winding numbers. (Author)
Educational Information Quantization for Improving Content Quality in Learning Management Systems
Rybanov, Alexander Aleksandrovich
2014-01-01
The article offers the educational information quantization method for improving content quality in Learning Management Systems. The paper considers questions concerning analysis of quality of quantized presentation of educational information, based on quantitative text parameters: average frequencies of parts of speech, used in the text; formal…
Modeling and analysis of energy quantization effects on single electron inverter performance
Dan, Surya Shankar; Mahapatra, Santanu
2009-08-01
In this paper, for the first time, the effects of energy quantization on single electron transistor (SET) inverter performance are analyzed through analytical modeling and Monte Carlo simulations. It is shown that energy quantization mainly changes the Coulomb blockade region and drain current of SET devices and thus affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new analytical model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. A compact expression is developed for a novel parameter quantization threshold which is introduced for the first time in this paper. Quantization threshold explicitly defines the maximum energy quantization that an SET inverter logic circuit can withstand before its noise margin falls below a specified tolerance level. It is found that SET inverter designed with CT:CG=1/3 (where CT and CG are tunnel junction and gate capacitances, respectively) offers maximum robustness against energy quantization.
Exact quantization conditions, toric Calabi-Yau and non-perturbative topological string
Energy Technology Data Exchange (ETDEWEB)
Sun, Kaiwen [Department of Mathematics, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui 230026 (China); Wang, Xin; Huang, Min-xin [Interdisciplinary Center for Theoretical Study,Department of Modern Physics, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui 230026 (China)
2017-01-16
We establish the precise relation between the Nekrasov-Shatashvili (NS) quantization scheme and Grassi-Hatsuda-Mariño conjecture for the mirror curve of arbitrary toric Calabi-Yau threefold. For a mirror curve of genus g, the NS quantization scheme leads to g quantization conditions for the corresponding integrable system. The exact NS quantization conditions enjoy a self S-duality with respect to Planck constant ℏ and can be derived from the Lockhart-Vafa partition function of non-perturbative topological string. Based on a recent observation on the correspondence between spectral theory and topological string, another quantization scheme was proposed by Grassi-Hatsuda-Mariño, in which there is a single quantization condition and the spectra are encoded in the vanishing of a quantum Riemann theta function. We demonstrate that there actually exist at least g nonequivalent quantum Riemann theta functions and the intersections of their theta divisors coincide with the spectra determined by the exact NS quantization conditions. This highly nontrivial coincidence between the two quantization schemes requires infinite constraints among the refined Gopakumar-Vafa invariants. The equivalence for mirror curves of genus one has been verified for some local del Pezzo surfaces. In this paper, we generalize the correspondence to higher genus, and analyze in detail the resolved ℂ{sup 3}/ℤ{sub 5} orbifold and several SU(N) geometries. We also give a proof for some models at ℏ=2π/k.
Quantization and harmonic analysis on nilpotent Lie groups
International Nuclear Information System (INIS)
Wildberger, N.J.
1983-01-01
Weyl Quantization is a procedure for associating a function on which the canonical commutation relations are realized. If G is a simply-connected, connected nilpotent Lie group with Lie algebra g and dual g/sup */, it is shown how to inductively construct symplectic isomorphisms between every co-adjoint orbit O and the bundle in Hilbert Space for some m. Weyl Quantization can then be used to associate to each orbit O a unitary representation rho 0 of G, recovering the classification of the unitary dual by Kirillov. It is used to define a geometric Fourier transform, F : L 1 (G) → functions on g/sup */, and it is shown that the usual operator-valued Fourier transform can be recovered from F, characters are inverse Fourier transforms of invariant measures on orbits, and matrix coefficients are inverse Fourier transforms of non-invariant measures supported on orbits. Realizations of the representations rho 0 in subspaces of L 2 (O) are obtained.. Finally, the kernel function is computed for the upper triangular unipotent group and one other example