WorldWideScience

Sample records for quantitative zinc copper

  1. Biovailability of copper and zinc in pig and cattle slurries

    NARCIS (Netherlands)

    Jakubus, M.; Dach, J.; Starmans, D.A.J.

    2013-01-01

    Slurry is an important source of macronutrients, micro-nutrients and organic matter. Despite the considerable fertilizer value of slurry, it may be abundant in amounts of copper and zinc originating from dietary. The study presents quantitative changes in copper and zinc in individual slurries (pig

  2. Iron, zinc and copper in the Alzheimer's disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion.

    Science.gov (United States)

    Schrag, Matthew; Mueller, Claudius; Oyoyo, Udochukwu; Smith, Mark A; Kirsch, Wolff M

    2011-08-01

    Dysfunctional homeostasis of transition metals is believed to play a role in the pathogenesis of Alzheimer's disease (AD). Although questioned by some, brain copper, zinc, and particularly iron overload are widely accepted features of AD which have led to the hypothesis that oxidative stress generated from aberrant homeostasis of these transition metals might be a pathogenic mechanism behind AD. This meta-analysis compiled and critically assessed available quantitative data on brain iron, zinc and copper levels in AD patients compared to aged controls. The results were very heterogeneous. A series of heavily cited articles from one laboratory reported a large increase in iron in AD neocortex compared to age-matched controls (piron and this bias was particularly prominent among narrative review articles. Additionally, while zinc was not significantly changed in the neocortex (p=0.29), copper was significantly depleted in AD (p=0.0003). In light of these findings, it will be important to re-evaluate the hypothesis that transition metal overload accounts for oxidative injury noted in AD.

  3. QUANTITATIVE CHANGES OF IRON, MANGANESE, ZINC AND COPPER IN PINE BARK COMPOSTED WITH PLANT MASS AND EFFECTIVE MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Jacek Czekała

    2014-10-01

    Full Text Available The objective of the investigation was to ascertain changes in the total contents, as well as water-soluble forms of iron, manganese, zinc and copper during the process of composting of pine bark with plant material (PM, with or without the addition of effective microorganisms (EM. Experiments were carried out at a forest nursery area and comprised the following treatments: pile 1. pine bark, pile 2. pine bark + PM, pile 3. pine bark + PM + EM. Compost piles were formed from pine bark (4 m3 and as described above, 2 Mg of plant material were added to pile 2 and to pile 3 – plant material and effective microorganisms in the amount of 3 dm3·m-3 bark. All compost files were also supplemented with 0.3 kg P2O5·m-3 (in the form of superphosphate 20% P2O5 and 0,1 kg K2O·m-3 (in the form of potassium salt 60%. The plant material comprised a mixture of buckwheat, field pea, serradella and vetch harvested before flowering. Piles were mixed and formed with the tractor aerator. At defined dates, using the method of atomic spectrophotometry, total contents of iron, manganese, zinc and copper, as well as their water-soluble forms were determined. It was found that all the examined elements underwent changes, albeit with different dynamics. This was particularly apparent in the case of water-soluble forms. This solubility was, in general, high during the initial days of the process and declined with the passage of time. No significant impact of effective microorganisms on the solubility of the examined chemical elements was determined, especially in mature composts.

  4. Zinc, copper and selenium in reproduction.

    Science.gov (United States)

    Bedwal, R S; Bahuguna, A

    1994-07-15

    Of the nine biological trace elements, zinc, copper and selenium are important in reproduction in males and females. Zinc content is high in the adult testis, and the prostate has a higher concentration of zinc than any other organ of the body. Zinc deficiency first impairs angiotensin converting enzyme (ACE) activity, and this in turn leads to depletion of testosterone and inhibition of spermatogenesis. Defects in spermatozoa are frequently observed in the zinc-deficient rat. Zinc is thought to help to extend the functional life span of the ejaculated spermatozoa. Zinc deficiency in the female can lead to such problems as impaired synthesis/secretion of (FSH) and (LH), abnormal ovarian development, disruption of the estrous cycle, frequent abortion, a prolonged gestation period, teratogenicity, stillbirths, difficulty in parturition, pre-eclampsia, toxemia and low birth weights of infants. The level of testosterone in the male has been suggested to play a role in the severity of copper deficiency. Copper-deficient female rats are protected against mortality due to copper deficiency, and the protection has been suggested to be provided by estrogens, since estrogens alter the subcellular distribution of copper in the liver and increase plasma copper levels by inducing ceruloplasmin synthesis. The selenium content of male gonads increases during pubertal maturation. Selenium is localized in the mitochondrial capsule protein (MCP) of the midpiece. Maximal incorporation in MCP occurs at steps 7 and 12 of spermatogenesis and uptake decreases by step 15. Selenium deficiency in females results in infertility, abortions and retention of the placenta. The newborns from a selenium-deficient mother suffer from muscular weakness, but the concentration of selenium during pregnancy does not have any effect on the weight of the baby or length of pregnancy. The selenium requirements of a pregnant and lactating mother are increased as a result of selenium transport to the fetus via

  5. Zinc Deficiency Impacts CO2 Assimilation and Disrupts Copper Homeostasis in Chlamydomonas reinhardtii*

    Science.gov (United States)

    Malasarn, Davin; Kropat, Janette; Hsieh, Scott I.; Finazzi, Giovanni; Casero, David; Loo, Joseph A.; Pellegrini, Matteo; Wollman, Francis-André; Merchant, Sabeeha S.

    2013-01-01

    Zinc is an essential nutrient because of its role in catalysis and in protein stabilization, but excess zinc is deleterious. We distinguished four nutritional zinc states in the alga Chlamydomonas reinhardtii: toxic, replete, deficient, and limited. Growth is inhibited in zinc-limited and zinc-toxic cells relative to zinc-replete cells, whereas zinc deficiency is visually asymptomatic but distinguished by the accumulation of transcripts encoding ZIP family transporters. To identify targets of zinc deficiency and mechanisms of zinc acclimation, we used RNA-seq to probe zinc nutrition-responsive changes in gene expression. We identified genes encoding zinc-handling components, including ZIP family transporters and candidate chaperones. Additionally, we noted an impact on two other regulatory pathways, the carbon-concentrating mechanism (CCM) and the nutritional copper regulon. Targets of transcription factor Ccm1 and various CAH genes are up-regulated in zinc deficiency, probably due to reduced carbonic anhydrase activity, validated by quantitative proteomics and immunoblot analysis of Cah1, Cah3, and Cah4. Chlamydomonas is therefore not able to grow photoautotrophically in zinc-limiting conditions, but supplementation with 1% CO2 restores growth to wild-type rates, suggesting that the inability to maintain CCM is a major consequence of zinc limitation. The Crr1 regulon responds to copper limitation and is turned on in zinc deficiency, and Crr1 is required for growth in zinc-limiting conditions. Zinc-deficient cells are functionally copper-deficient, although they hyperaccumulate copper up to 50-fold over normal levels. We suggest that zinc-deficient cells sequester copper in a biounavailable form, perhaps to prevent mismetallation of critical zinc sites. PMID:23439652

  6. Concentrations of plasma copper and zinc and blood selenium in ...

    African Journals Online (AJOL)

    Department of Human and Animal Physiology, University of Stellenbosch, Stellenbosch 7600, ... Concentrations of plasma copper and zinc as well as blood selenium were determined in single and twin lambs ... of zinc within the body; notably.

  7. Abnormalities of zinc and copper during total parenteral nutrition.

    Science.gov (United States)

    Lowry, S F; Goodgame, J T; Smith, J C; Maher, M M; Makuch, R W; Henkin, R I; Brennan, M F

    1979-01-01

    Changes in serum zinc and copper levels were studied in 19 tumor bearing patients undergoing parenteral nutrition (TPN) for five to 42 days. Before initiation of intravenous feeding mean serum zinc and copper concentrations were within normal limits but during TPN levels decreased significantly below those measured prior to parenteral nutrition. During TPN nitrogen, zinc, and copper intake, urinary output and serum levels were studied prospectively in nine of these patients. These nine patients exhibited positive nitrogen retention based upon urinary nitrogen excretion, but elevated urinary zinc and copper excretion and lowered serum zinc and copper concentrations. Neither blood administration nor limited oral intake was consistently able to maintain normal serum levels of zinc or copper. Zinc and copper supplementation of hyperalimentation fluids in four patients studied for five to 16 days was successful in increasing serum zinc and copper levels in only two. The data obtained suggest that patients undergoing parenteral nutrition may require supplementation of zinc and copper to prevent deficiencies of these elements. PMID:103506

  8. Copper and zinc concentrations in serum of healthy Greek adults

    Energy Technology Data Exchange (ETDEWEB)

    Kouremenou-Dona, Eleni [A' Hospital of IKA, Athens (Greece); Dona, Artemis [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece)]. E-mail: artedona@med.uoa.gr; Papoutsis, John [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece); Spiliopoulou, Chara [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece)

    2006-04-15

    Serum copper and zinc concentrations of 506 (414 males and 92 females) apparently healthy Greek blood donors aged 18-60 years old were determined by flame atomic absorption spectrometry. The mean copper and zinc concentrations were 115.46 {+-} 23.56 {mu}g/dl and 77.11 {+-} 17.67 {mu}g/dl, respectively. The mean value for copper and zinc in females was higher than in males, although the difference for zinc was smaller than the one observed for copper. When the subjects were divided into various age groups there appeared to be some increase in copper concentration as a function of age, whereas zinc concentration did not change. There were no significant variations in serum copper and zinc concentrations due to place of residence, occupation and socioeconomic status. This study is the first one evaluating the serum status of copper and zinc in healthy Greeks and it has shown that they are at the highest concentration range for copper and the lowest for zinc compared to literature data on copper and zinc levels for various countries.

  9. Serum concentration of copper, zinc, iron, and cobalt and the copper/zinc ratio in horses with equine herpesvirus-1.

    Science.gov (United States)

    Yörük, Ibrahim; Deger, Yeter; Mert, Handan; Mert, Nihat; Ataseven, Veysel

    2007-07-01

    The serum concentrations of copper, zinc, iron, and cobalt and copper/zinc ratio were investigated in horses infected with equine herpesvirus-1 (EHV-1). Nine horses were naturally infected with the virus and nine healthy horses served as controls. The concentrations of copper, zinc, iron, and cobalt were determined spectrophotometrically in the blood serum of all horses. The results were (expressed in micrograms per deciliters) copper 2.80 +/- 0.34 vs 1.12 +/- 0.44, zinc 3.05 +/- 0.18 vs 0.83 +/- 0.06, iron 2.76 +/- 0.17 vs 3.71 +/- 0.69, cobalt 0.19 +/- 0.37 vs 0.22 +/- 0.45, and copper/zinc ratio 0.72 +/- 0.38 vs 1.41 +/- 0.36 for control vs infected group, respectively. In conclusion, copper and zinc concentrations of the infected group were lower than the control group (p copper/zinc ratio of the infected group were higher than the control group (p cobalt concentration was not found to be statistically different between two groups. It might be emphasized that copper/zinc ratio was significantly affected by the EHV-1 infection, so it could be taken into consideration during the course of infection.

  10. Copper and Zinc Metallation Status of Copper Zinc Superoxide Dismutase form Amyotrophic Lateral Sclerosis Transgenic Mice

    Energy Technology Data Exchange (ETDEWEB)

    Lelie, H.L.; Miller, L.; Liba, A.; Bourassa, M.W.; Chattopadhyay, M.; Chan, P.K.; Gralla, E.B.; Borchelt, D.R.; et al

    2010-09-24

    Mutations in the metalloenzyme copper-zinc superoxide dismutase (SOD1) cause one form of familial amyotrophic lateral sclerosis (ALS), and metals are suspected to play a pivotal role in ALS pathology. To learn more about metals in ALS, we determined the metallation states of human wild-type or mutant (G37R, G93A, and H46R/H48Q) SOD1 proteins from SOD1-ALS transgenic mice spinal cords. SOD1 was gently extracted from spinal cord and separated into insoluble (aggregated) and soluble (supernatant) fractions, and then metallation states were determined by HPLC inductively coupled plasma MS. Insoluble SOD1-rich fractions were not enriched in copper and zinc. However, the soluble mutant and WT SOD1s were highly metallated except for the metal-binding-region mutant H46R/H48Q, which did not bind any copper. Due to the stability conferred by high metallation of G37R and G93A, it is unlikely that these soluble SOD1s are prone to aggregation in vivo, supporting the hypothesis that immature nascent SOD1 is the substrate for aggregation. We also investigated the effect of SOD1 overexpression and disease on metal homeostasis in spinal cord cross-sections of SOD1-ALS mice using synchrotron-based x-ray fluorescence microscopy. In each mouse genotype, except for the H46R/H48Q mouse, we found a redistribution of copper between gray and white matters correlated to areas of high SOD1. Interestingly, a disease-specific increase of zinc was observed in the white matter for all mutant SOD1 mice. Together these data provide a picture of copper and zinc in the cell as well as highlight the importance of these metals in understanding SOD1-ALS pathology.

  11. Electrochemical and Spectroscopic Study of Benzotriazole Films Formed on Copper, Copper-zinc Alloys and Zinc in Chloride Solution

    OpenAIRE

    Milošev, I.; Kosec, T.

    2009-01-01

    The formation of protective layers on copper, zinc and copper-zinc (Cu-10Zn and Cu-40Zn) alloys at open circuit potential in aerated, near neutral 0.5 M NaCl solution containing benzotriazole (BTA) was studied using potentiodynamic measurements, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The addition of benzotriazole affects the dissolution of the materials investigated. Benzotriazole, generally known as an inhibitor of copper corrosion, is als...

  12. Roles of zinc and copper in modulating the oxidative refolding of bovine copper, zinc superoxide dismutase.

    Science.gov (United States)

    Li, Hong-Tao; Jiao, Ming; Chen, Jie; Liang, Yi

    2010-03-15

    The structural integrity of the ubiquitous enzyme copper, zinc superoxide dismutase (SOD1) depends critically on the correct coordination of zinc and copper. We investigate here the roles of the stoichiometric zinc and copper ions in modulating the oxidative refolding of reduced, denatured bovine erythrocyte SOD1 at physiological pH and room temperature. Fluorescence experiment results showed that the oxidative refolding of the demetalated SOD1 (apo-SOD1) is biphasic, and the addition of stoichiometric Zn(2+) into the refolding buffer remarkably accelerates both the fast phase and the slow phase of the oxidative refolding, compared with without Zn(2+). Aggregation of apo-SOD1 in the presence of stoichiometric Zn(2+) is remarkably slower than that in the absence of Zn(2+). In contrast, the effects of stoichiometric Cu(2+) on both the rates of the oxidative refolding and the aggregation of apo-SOD1 are not remarkable. Experiments of resistance to proteinase K showed that apo-SOD1 forms a conformation with low-level proteinase K resistance during refolding and stoichiometric Cu(2+) has no obvious effect on the resistance to proteinase K. In contrast, when the refolding buffer contains stoichiometric zinc, SOD1 forms a compact conformation with high-level proteinase K resistance during refolding. Our data here demonstrated that stoichiometric zinc plays an important role in the oxidative refolding of low micromolar bovine SOD1 by accelerating the oxidative refolding, suppressing the aggregation during refolding, and helping the protein to form a compact conformation with high protease resistance activity.

  13. Genotoxicology: Single and Joint Action of Copper and Zinc to ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: The genotoxicity of copper, zinc and their binary mixture was examined in. Synodontis clarias and ... Capacity of the water body to support aquatic life as well as its suitability for ... humans (Merian, 1991; DWAF, 1996). In addition,.

  14. Effects of zinc on static and dynamic mechanical properties of copper-zinc alloy

    Institute of Scientific and Technical Information of China (English)

    马志超; 赵宏伟; 鲁帅; 程虹丙

    2015-01-01

    The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37% (mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.

  15. Impedance and XPS study of benzotriazole films formed on copper, copper-zinc alloys and zinc in chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Kosec, Tadeja; Merl, Darja Kek [Jozef Stefan Institute, Department of Physical and Organic Chemistry, Jamova 39, 1000 Ljubljana (Slovenia); Milosev, Ingrid [Jozef Stefan Institute, Department of Physical and Organic Chemistry, Jamova 39, 1000 Ljubljana (Slovenia); Orthopaedic Hospital Valdoltra, Jadranska c. 31, 6280 Ankaran (Slovenia)], E-mail: ingrid.milosev@ijs.si

    2008-07-15

    The formation of protective layers on copper, zinc and copper-zinc (Cu-10Zn and Cu-40Zn) alloys at open circuit potential in aerated, near neutral 0.5 M NaCl solution containing benzotriazole was studied using electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). Benzotriazole (BTAH), generally known as an inhibitor of copper corrosion, also proved to be an efficient inhibitor for copper-zinc alloys and zinc metal. The surface layers formed on alloys in BTAH-inhibited solution comprised both polymer and oxide components, namely Cu(I)BTA and Zn(II)BTA polymers and Cu{sub 2}O and ZnO oxides, as proved by the in-depth profiling of the layers formed. A tentative structural model describing the improved corrosion resistance of Cu, Cu-xZn alloys and Zn in BTAH containing chloride solution is proposed.

  16. Jiangxi Copper Marching into Lead-zinc Industry

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>On November 13,Jiangxi Copper officially signed transfer agreement on the share rights of lead-zinc mines with Jiangxi Provincial Geol- ogy & Mineral Resources Bureau,marking the beginning of full-strategic cooperation between the two parties for the common exploitation of lead-zinc industry in the province. The Jiangxi Province is rich in lead-zinc re- sources,but most of them are in scattered lay-

  17. Atomic-absorption determination of copper and zinc in ferroboron

    Energy Technology Data Exchange (ETDEWEB)

    Malinina, R.D.; Toropova, L.S.

    1986-03-01

    This paper reports on the development of an atomic-absorption method for determining copper and zinc impurities in ferroboron, used for alloying steels and special alloys. The work was done on a Model 503 Perkin-Elmer atomic absorption spectrophotometer. Effects of perchloric acid and alloy macrocomponents on zinc and copper atomization were studied. Results by atomic absorption spectrometry were compared with those found by polarography, using a PPT-6016 ac polarograph. Compared with the GOST 14021.7-78 method for determining copper, the proposed procedure is more rapid and decreases the detection limit from 1 X 10/sup -2/ to 5 X 10/sup -3/ wt. %.

  18. The effect of copper and zinc at neutral and acidic pH on the general ...

    African Journals Online (AJOL)

    In general, at neutral pH copper and zinc caused blood acidosis, increases in ... as an adaptation to altered respiratory homeostasis caused by copper and zinc. ... concentrations usually caused blood alkalosis and decreases in white blood ...

  19. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Quirós, Jennifer [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Borges, João P. [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Boltes, Karina [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain); Rodea-Palomares, Ismael [Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Rosal, Roberto [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain)

    2015-12-15

    Highlights: • Electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc. • Antimicrobial effect for the bacteria Staphylococcus aureus and Escherichia coli. • Silver strongly reduced colony forming units and bacterial viability. • Silver, copper, and zinc led to a significant increase of non-viable cells on mats. - Abstract: The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  20. Dietary zinc, copper and selenium, and risk of lung cancer.

    Science.gov (United States)

    Mahabir, Somdat; Spitz, Margaret R; Barrera, Stephanie L; Beaver, Shao Hua; Etzel, Carol; Forman, Michele R

    2007-03-01

    Zinc, copper and selenium are important cofactors for several enzymes that play a role in maintaining DNA integrity. However, limited epidemiologic research on these dietary trace metals and lung cancer risk is available. In an ongoing study of 1,676 incident lung cancer cases and 1,676 matched healthy controls, we studied the associations between dietary zinc, copper and selenium and lung cancer risk. Using multiple logistic regression analysis, the odds ratios (OR) and 95% confidence intervals (CI) of lung cancer for all subjects by increasing quartiles of dietary zinc intake were 1.0, 0.80 (0.65-0.99), 0.64 (0.51-0.81), 0.57 (0.42-0.75), respectively (p trend = 0.0004); similar results were found for men. For dietary copper, the ORs and 95% CI for all subjects were 1.0, 0.59 (0.49-0.73), 0.51 (0.41-0.64), 0.34 (0.26-0.45), respectively (p trend cancer with increased dietary zinc intake were also found for all ages, BMI > 25, current smokers, pack-years copper intake was associated with protective trends (p copper intakes are associated with reduced risk of lung cancer. Given the known limitations of case-control studies, these findings must be interpreted with caution and warrant further investigation.

  1. Talitrid amphipods (Crustacea) as biomonitors for copper and zinc

    Science.gov (United States)

    Rainbow, P. S.; Moore, P. G.; Watson, D.

    1989-06-01

    Data are presented on the copper and zinc concentrations of four talitrid amphipod species (standard dry weight 10 mg), i.e. Orchestia gammarellus (Pallas), O. mediterranea Costa, Talitrus saltator Montagu and Talorchestia deshayesii (Audouin), from 31 sites in S.W. Scotland, N. Wales and S.W. England. More limited data are also presented for cadmium in O. gammarellus (three sites) and T. deshayesii (one site). In S.W. Scotland, copper concentrations were raised significantly in O. gammarellus from Whithorn and Auchencairn (Solway) and Loch Long and Holy Loch (Clyde). In S.W. England, copper concentrations were highest at Restronguet Creek, Torpoint and Gannel (Cornwall). Samples of O. gammarellus from Islay (inner Hebrides) taken adjacent to the effluent outfalls of local whisky distilleries fell into two groups based on copper concentrations (presumably derived from copper stills), the higher copper levels deriving from the more productive distilleries. High copper levels were found in T. saltator and Tal. deshayesii from Dulas Bay (Wales). Zinc levels in O. gammarellus were high in Holy Loch and Auchencairn (Scotland), Gannel and Torpoint (England) but extremely elevated (as was Zn in O. mediterranea) at Restronguet Creek. Zinc was also high in T. saltator from Dulas Bay (Wales), but not in Tal. deshayesii. Cadmium levels in O. gammarellus from Kilve (Bristol Channel) were much raised. These differences (a) conform with expectations of elevated bioavailability of these metals from well researched areas (S.W. England & N. Wales), and (b) identify hitherto unappreciated areas of enrichment in S.W. Scotland. Orchestia gammarellus is put forward as a suitable biomonitor for copper and zinc in British coastal waters.

  2. A novel absolute quantitative imaging strategy of iron, copper and zinc in brain tissues by Isotope Dilution Laser Ablation ICP-MS.

    Science.gov (United States)

    Feng, Liuxing; Wang, Jun; Li, Hongmei; Luo, Xinzheng; Li, Jiao

    2017-09-01

    Isotope Dilution Laser Ablation ICP-MS (ID-LA-ICP-MS), because of its impressive spatial resolution capacity and precise means for quantification, is one of the most promising tools for in-situ quantitative imaging of trace elements in biological samples. In the ID-LA-ICP-MS strategy for tissue section, the tissue must be maintained intact during the whole sample preparation process. Therefore, how to homogeneously distribute enriched isotope spike on tissue section and how to confirm isotope equilibration between sample and spike are two important challenges. In this study, we reported a novel quantitative imaging strategy for biological thin section based on ID-LA-ICP-MS. To distribute the enriched isotope spikes on tissue section homogeneously, a "border" was constructed to make spike droplet stay on the tissue for isotope exchange. Laser ablation and isotope exchange parameters were also investigated to obtain optimal ID-LA-ICP-MS conditions. The prepared homogeneous in-house standard was used to validate the ID-LA-ICP-MS approach and good agreement with the bulk analysis was achieved. On this basis, quantitative imaging of Fe, Cu and Zn in real mouse brain of Alzheimer's Disease (AD) were measured by the improved methodology. Assessment of the method for real sample was undertaken by comparison of the LA-ICP-MS data with that obtained by micro-XRF. Moreover, comparative analysis of elements distribution and immunohistochemical markers in AD mouse brain was also carried out. The similar distributional patterns demonstrated that the proposed methodology is potential to investigate the correlation of biomarker heterogeneity and elements distribution, and may be useful to understand such complex brain mechanisms in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Impact of selenium, iron, copper and zinc in on/off Parkinson's patients on L-dopa therapy.

    Science.gov (United States)

    Qureshi, G A; Qureshi, A A; Memon, S A; Parvez, S H

    2006-01-01

    We have quantitated CSF and serum levels of Selenium, iron, copper and zinc by Atomic absorption spectrophotometer in 36 patients with parkinson's disease all on L-dopa therapy. Out of these 19 showed on or positive response to L-dopa where as 21 patients showed on and off response. These data were compared with 21 healthy controls. The results showed that serum levels of iron, copper and zinc remained unchanged where as in CSF, significant decrease in zinc was found in both on and on/off PD patients indicating the deficiency of zinc which continues in the worsening clinical condition of off patients. The level of copper remained unchanged in both on and on/off PD patients. Iron and selenium increase in CSF of both patients which is a clear evidence of relationship between increased iron and selenium level in brain which could be correlated with decrease in dopamine levels and oxidative stress in PD Patients.

  4. Distribution of cadmium, copper, and zinc in the caryopsis of wheat (Triticum aestivum L. )

    Energy Technology Data Exchange (ETDEWEB)

    Pieczonka, K.; Rosopulo, A.

    1985-12-01

    Cadmium, copper, and zinc were quantitatively determined in the whole grain, the germ, the aleurone layer, the outer pericarp, and the endosperm from the caryopsis of wheat (Triticum aestivum L.) by the methods of direct solid microsampling and flame-AAS, respectively. Metal concentrations markedly differed among the tissues investigated. Both methods used in this study produced almost identical heavy metal concentrations. However, the techniques dramatically differed in the amounts of grain material required for analysis.

  5. Effect of Copper, Manganese and Zinc With Antioxidant Vitamins on ...

    African Journals Online (AJOL)

    Nigerian Journal of Basic and Applied Science (2011), 19 (1): 151- 154. ISSN 0794-5698. Effect of Copper, Manganese and Zinc With Antioxidant Vitamins on Pulse ..... human microvasculature,. Hypertension. 36: 941-944. Piece, J.D, Cackler ...

  6. LEAD AND COPPER CONTROL WITH NON-ZINC ORTHOPHOSPHATE

    Science.gov (United States)

    Successful application of orthophosphate formulations not containing zinc for achieving control of copper and lead corrosion requires careful consideration of the background water chemistry, particularly pH and DIC. Inhibitor performance is extremely dependent upon dosage and pH,...

  7. Copper and zinc concentrations in Nigerian women with breast cancer.

    Science.gov (United States)

    Ajayi, G O

    2011-01-01

    Trace elements are accepted to be involved directly or indirectly in the process of cancer formation. In this study, serum selenium, copper and zinc were measured in three groups of patients using atomic absorption spectrometer. A total of 29 Nigerian women were included: group I consisted of nine age-matched healthy controls without breast problems; group 2 included nine women with benign breast disease; and group 3 was comprised of women with breast cancer. The serum concentration of copper (Cu) was significantly higher in patients with cancer when compared to the control group (1.43 +/- 0.31 microg/ml vs 0.91 +/- 0.18 microg/ul/0.94 +/- 0.10 microg/ml). The zinc (Zn) concentration was significantly lower in the breast cancer group than in the other two groups (0.74 +/- 0.21 microg/ml vs 1.14 +/- 0.31 ug/ml/1.11 +/- 0.29 microg/ml; p copper and zinc in serum of patients with breast cancer, which may indicate abnormal copper and zinc metabolism in Nigerian females with breast cancer.

  8. Combined copper/zinc attachment to prion protein

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  9. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  10. Effect of copper carbonate and zinc oxide applied to seeds on copper and zinc uptake by maize seedlings

    Directory of Open Access Journals (Sweden)

    Marcos Altomani Neves Dias

    2016-01-01

    Full Text Available ABSTRACT Seed treatment is an interesting alternative to deliver micronutrients to field crops. The aim of this study was to investigate the uptake of Cu and Zn by maize seedlings, with the application of the water-insoluble sources copper carbonate and zinc oxide as seed treatment. Treatments were composed of a control (untreated seeds, five doses of copper (0.14, 0.28, 0.56, 1.12 and 2.24 mg Cu∙seed–1 and zinc (0.55, 1.10, 2.20, 4.40 and 8.80 mg Zn∙seed–1 as well as five doses of copper and zinc combined (0.14, 0.28, 0.56, 1.12 and 2.24 mg Cu∙seed–1; 0.55, 1.10, 2.20, 4.40 and 8.80 mg Zn∙seed–1. Plants were cultivated in sand, under greenhouse conditions and, at the two-leaf stage (15 days, the root and shoot tissues dry mass and concentration of Cu and Zn were determined, which allowed to calculate accumulation and uptake efficiency of these micronutrients by maize plants. Seed treatment with copper carbonate and zinc oxide increased both root and shoot concentration and accumulation of Cu and Zn in maize seedlings, with two fully expanded leaves. Cu tended to accumulate in roots, while Zn was more evenly distributed among roots and shoots. Combined application of copper carbonate and zinc oxide resulted in lower uptake of both Cu and Zn by maize if compared to individual applications, with Cu uptake reduced in a higher extent.

  11. River Sediment Analysis by Slurry Sampling FAAS: Determination of Copper, Zinc and Lead

    Directory of Open Access Journals (Sweden)

    Alves Flávia L.

    2001-01-01

    Full Text Available An experimental procedure for direct sediment analysis was developed. Using this procedure, copper, zinc and lead were determined and quantitative recoveries for these metals were accomplished at a low cost and with minimal sample manipulation. The influence of the nitric acid concentration on the slurry preparation, as well as the sediment particle size was investigated. Sediment slurries were treated with 6.0 mol L-1 nitric acid and 2% (m/v ammonium chloride, and sonicated for 15 minutes in an ultrasonic bath before quantification by flame atomic absorption spectrometry. Using these conditions for a certified reference material, the percentage of recovery for copper, zinc and lead were 96.4 ± 4.9, 97.0 ± 4.0 and 99.7 ± 4.0, respectively.

  12. The roles of zinc and copper sensing in fungal pathogenesis.

    Science.gov (United States)

    Ballou, Elizabeth R; Wilson, Duncan

    2016-08-01

    All organisms must secure essential trace nutrients, including iron, zinc, manganese and copper for survival and proliferation. However, these very nutrients are also highly toxic if present at elevated levels. Mammalian immunity has harnessed both the essentiality and toxicity of micronutrients to defend against microbial invasion-processes known collectively as 'nutritional immunity'. Therefore, pathogenic microbes must possess highly effective micronutrient assimilation and detoxification mechanisms to survive and proliferate within the infected host. In this review we compare and contrast the micronutrient homeostatic mechanisms of Cryptococcus and Candida-yeasts which, despite ancient evolutionary divergence, account for over a million life-threatening infections per year. We focus on two emerging arenas within the host-pathogen battle for essential trace metals: adaptive responses to zinc limitation and copper availability.

  13. Runoff of copper and zinc caused by atmospheric corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Leuenberger-Minger, A.U.; Faller, M.; Richner, P. [Swiss Federal Labs. for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2002-03-01

    Runoff and total corrosion loss for copper and zinc were investigated at seven sites in Switzerland. The exposure sites were chosen near the stations of the national air pollution monitoring network (NABEL), where climatic and air pollution data are measured. Runoff and corrosion rates were investigated after 0.5, 1, 2 and 4 years of exposure. Runoff rates differ from corrosion rates depending on the material, the exposure time and the sampling site. (orig.)

  14. Water quality improvement through bioretention: lead, copper, and zinc removal.

    Science.gov (United States)

    Davis, Allen P; Shokouhian, Mohammad; Sharma, Himanshu; Minami, Christie; Winogradoff, Derek

    2003-01-01

    Intensive automobile use, weathering of building materials, and atmospheric deposition contribute lead, copper, zinc, and other heavy metals to urban and roadway runoff. Bioretention is a low-impact-development best management practice that has the potential to improve stormwater quality from developed areas. The practice represents a soil, sand, organic matter, and vegetation-based storage and infiltration facility used in parking lots and on individual lots to treat runoff. Investigations using pilot-plant laboratory bioretention systems and two existing bioretention facilities documented their effectiveness at removing low levels of lead, copper, and zinc from synthetic stormwater runoff. Removal rates of these metals (based on concentration and total mass) were excellent, reaching close to 100% for all metals under most conditions, with effluent copper and lead levels mostly less than 5 microg/L and zinc less than 25 microg/L. Somewhat less removal was noted for shallow bioretention depths. Runoff pH, duration, intensity, and pollutant concentrations were varied, and all had minimal effect on removal. The two field investigations generally supported the laboratory studies. Overall, excellent removal of dissolved heavy metals can be expected through bioretention infiltration. Although the accumulation of metals is a concern, buildup problems are not anticipated for more than 15 years because of the low metal concentrations expected in runoff.

  15. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism

    Directory of Open Access Journals (Sweden)

    Artur Krężel

    2017-06-01

    Full Text Available Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn2+, the loading of exocytotic vesicles with zinc species, and the control of Zn2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn2+ and Cu+ match the biological requirements for controlling—binding and delivering—these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn2+ and Cu+. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.

  16. Copper and Zinc Status in Patients with Preeclampsia in Bangladesh.

    Science.gov (United States)

    Ferdousi, S; Akhtar, S; Begum, S

    2015-10-01

    This study assessed maternal serum copper and zinc levels in preeclampsia to find out the role of trace element disorder in the aetiology of preeclampsia. This cross sectional study was conducted in the dept of Physiology of BSMMU during 2009. Sixty patients of Preeclampsia (BP--140/90 aged 18-39 years, with >20th weeks of pregnancy with proteinuria and edema) participated. Thirty normotensive gravida was control. All subjects were collected from in and out patient department of Obstetric and Gynecology of BSMMU and Dhaka medical college hospital. Serum copper and zinc levels were measured by auto analyzer and atomic absorption sprectrophotometric method respectively. Data were compared between preeclampsia and normotensive pregnant women. Data were expressed as mean and SD and independent sample 't' test and two proportion 'z' test was used for statistical analysis. Mean value of maternal serum zinc (ppreeclampsia. In addition Cu/Zn ratio was significantly higher (preeclampsia. Hypozincemia was found in 13% and hypocupremia was found in 38% of preeclampsia. The result of this study concludes that trace element disorders may be involved in the etiology of preeclampsia.

  17. Zinc Deficiency and Zinc Therapy Efficacy with Reduction of Serum Free Copper in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    George J. Brewer

    2013-01-01

    Full Text Available We are in the midst of an epidemic of Alzheimer’s disease (AD in developed countries. We have postulated that ingestion of inorganic copper from drinking water and taking supplement pills and a high fat diet are major causative factors. Ingestion of inorganic copper can directly raise the blood free copper level. Blood free copper has been shown by the Squitti group to be elevated in AD, to correlate with cognition, and to predict cognition loss. Secondly, we have shown that AD patients are zinc deficient compared to age matched controls. Zinc is important in neuronal protection. We carried out a 6-month small double blind trial of a new zinc formulation on AD patients. We found that in patients 70 years and older, zinc therapy protected against cognition decline compared to placebo controls. We also found that zinc therapy significantly lowered blood free copper levels. So zinc efficacy could be due to restoring neuronal zinc levels, to lowering blood free copper levels, or to both.

  18. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  19. Copper and protons directly activate the zinc-activated channel

    DEFF Research Database (Denmark)

    Trattnig, Sarah Maria; Gasiorek, Agnes; Deeb, Tarek Z

    2016-01-01

    further. We demonstrate that not only zinc (Zn(2+)) but also copper (Cu(2+)) and protons (H(+)) are agonists of ZAC, displaying potencies and efficacies in the rank orders of H(+)>Cu(2+)>Zn(2+) and H(+)>Zn(2+)>Cu(2+), respectively. The responses elicited by Zn(2+), Cu(2+) and H(+) through ZAC are all...... characterized by low degrees of desensitization. In contrast, currents evoked by high concentrations of the three agonists comprise distinctly different activation and decay components, with transitions to and from an open state being significantly faster for H(+) than for the two metal ions. The permeabilities...

  20. SIGNIFICANCE OF SERUM COPPER AND ZINC LEVEL IN GASTROINTESTINAL CANCER

    Directory of Open Access Journals (Sweden)

    Prathibha

    2016-02-01

    Full Text Available The roles of trace elements especially copper and zinc in carcinogenesis in relation to disease activity have shown useful in estimating the extent and prognosis of malignant tumor in the digestive organ. Keeping this in consideration, the study was conducted on 140 subjects either sex out of which 35 normal adults and 105 gastrointestinal (GI cancer patients. The follow up study was further undertaken and values of serum Cu and Zn of the same patients before and after surgery were recorded. The study showed that there was significant elevation (p<0.01 of serum copper levels before surgery and serum copper levels were deceased significantly (p<0.05 after surgery. Serum Zn level was found significantly (p<0.05 lower in GI cancer patients while the Zn level was increased significantly (p<0.01 after surgery. There was significant increase (p<0.01 in Cu/ Zn ratio of GI cancer patients before surgery in contrast to the control. The serum copper level in patients of GI cancer decreased significantly after surgery resulting normalization of metabolic process. A significant increase in serum Zn levels have been observed after treatment of the patients. The Cu/ Zn ratio decreased significantly after the surgery. These observations clearly indicate that serum Cu, Zn and Cu/ Zn ratio are useful in estimating the extent and prognosis of malignant tumors in digestive organs

  1. Potentiometric stripping analysis of zinc and copper in human teeth and dental materials.

    Science.gov (United States)

    Kalicanin, Biljana M; Nikolić, Ruzica S

    2008-01-01

    Potentiometric stripping analysis (PSA) with oxygen as the oxidant has been used to determine soluble zinc and copper levels in exfoliated human teeth (all of which required extraction for orthodontic reasons) and commercial dental materials. The soluble zinc and copper contents of teeth were slightly below the zinc and copper contents in whole teeth reported by other researchers, except in the case of tooth with removed amalgam filling. Soluble zinc and copper concentrations of the dental materials and metal ceramic crowns were 0.50-6.30, and of 2.00-4.30 microg/g, respectively. The results of this work suggest that PSA may be a good method for zinc and copper leaching studies during the investigation of dental prosthetic materials' biocompatibility. Corrosive action of acidic media as evidenced by SEM micrographs caused the leaching of metal ions from teeth.

  2. Improvement of copper vapor laser characteristics by zinc additive

    Science.gov (United States)

    Shpenik, Yurij; Kelman, Volodymyr; Zhmenyak, Yurij

    2008-10-01

    The influence of Zn atom additive on ``pure'' copper vapor laser output characteristics was studied. Two-section discharge tube (DT) with an external heated Zn reservoir placed at the center between ceramic sections with Cu pieces was elaborated. The pulsed periodical longitudinal discharge was excited in the DT with Cu-Zn-Ne admixture by a traditional circuit using thyratron generator with resonant overcharge of a storage capacitor. Experimental investigations established that the width, energy and power of laser pulses increased when Zn atoms at appropriate temperature ˜ 500 ^oC of zinc containing reservoir diffuse into discharge. The registered increasing of pulse energy was up to 50% comparatively with the energy without additive with peak energy at ˜ 600 ^oC. Additional absorption experiments and modeling the absorption of Zn atom resonant line in the DT (taking into account Doppler and dispersion line broadening) consistent with the conclusion that not only optical resonant pumping by 213.9 nm Zn atom line, but other processes also might be taken into account to explain the influence effects (second kind collisions between resonance state zinc and metastable copper state atoms).

  3. Mortality and cancer incidence in a copper-zinc cohort.

    Science.gov (United States)

    Lightfoot, Nancy E; Berriault, Colin J

    2012-05-01

    Previous studies of copper-zinc workers have primarily observed significant increases in lung and other respiratory cancers. This study concurrently examined cancer incidence and cause-specific mortality for a cohort of workers at a copper-zinc producer in Ontario, Canada, from 1964 to 2005. Significant elevations in lung cancer incidence were observed for males in the overall cohort (standardized incidence ratio [SIR] = 124, 95% confidence interval [CI] = 102-150) and for surface mine (SIR = 272, 95% CI = 124-517), concentrator (SIR = 191, 95% CI = 102-327), and central maintenance (SIR = 214, 95% CI = 125-343) employees. Significant elevations of non-Hodgkin's lymphoma incidence were observed for male underground mine employees (SIR = 232, 95% CI = 111-426). Occupational etiology cannot be ascertained with the current exploratory study design. Future studies could (1) incorporate exposure assessment for subgroups within the existing cohort and (2) determine the efficacy of wellness programs in partnership with the local health unit.

  4. Solid-phase extraction of copper, iron and zinc ions on Bacillus thuringiensis israelensis loaded on Dowex optipore V-493

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa; Melek, Esra [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)], E-mail: msoylak@gmail.com

    2008-11-30

    Bacillus thuringiensis israelensis loaded on Dowex optipore V-493 as new adsorbent for the separation-preconcentration of heavy metal ions has been proposed. The analytical conditions for the quantitative recoveries of copper(II), iron(III) and zinc(II) including pH, amounts of adsorbent, sample volume, etc. were investigated. The influences of alkaline and earth alkaline ions were also reported. The recovery values for the analytes are generally higher than 95%. The preconcentration factor was 37. The limit of detections of the analyte ions (k = 3, N = 21) were 1.14 {mu}g L{sup -1} for copper, 2.01 {mu}g L{sup -1} for iron and 0.14 {mu}g L{sup -1} for zinc. The relative standard deviations of the determinations were found to be lower than 9%. The procedure was validated by analyzing copper, iron and zinc contents in two certified reference materials, NRCC-SLRS-4 Riverine water and NIST SRM 1515 Apple leaves. Agreements between the obtained results and the certified values were achieved. The developed preconcentration method was applied in the flame atomic absorption spectrometric determination of copper, iron and zinc in several samples including a multivitamin-multimineral tablet, dialysis solutions, natural waters and some food samples.

  5. Biliary and plasma copper and zinc in pregnant Simmental and Angus cattle

    Directory of Open Access Journals (Sweden)

    S. Ravi Gooneratne

    2013-03-01

    Full Text Available Three each of 3-year-old Angus and Simmental heifers, surgically modified to collect bile, were used to measure the effects of pregnancy and breed on bile flow, biliary copper and zinc excretion and plasma copper and zinc concentrations. Bile copper excretion was significantly higher at 7-mo of pregnancy when samples from both breeds were pooled. From then onwards it declined to its lowest, one week post-partum. During pregnancy, plasma copper concentration increased slightly, reaching its highest level at 7-mo of pregnancy and then decreased slightly until full term. In pooled samples from both breeds, the correlation between increase in bile copper excretion and plasma copper concentration from 0 to 7-mo of pregnancy was high (r = 0.85 and significant (p < 0.05. Plasma zinc concentration decreased to the lowest level around 6-mo of pregnancy but increased thereafter until full term. In cows that were dried off one week after parturition, major shifts in bile and plasma copper and zinc parameters occurred at one week following and these coincided with a marked decline of bile flow and bile copper and zinc excretion. By 3-mo post-partum, biliary copper and zinc excretion and plasma copper and zinc concentrations had reached levels observed prior to pregnancy. When the data from all samples were pooled, the bile flow and bile copper excretion were significantly (p < 0.05 higher in Simmental, and plasma copper and zinc concentration higher in the Angus.

  6. Mineralogical Study of a Biologically-Based Treatment System That Removes Arsenic, Zinc and Copper from Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Maryam Khoshnoodi

    2013-12-01

    Full Text Available Mineralogical characterization by X-ray diffraction (XRD and a high throughput automated quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN was conducted on samples from a sulphate-reducing biochemical reactor (BCR treating high concentrations of metals (As, Zn, Cu in smelter waste landfill seepage. The samples were also subjected to energy dispersive X-ray (EDX analysis of specific particles. The bulk analysis results revealed that the samples consisted mainly of silicate and carbonate minerals. More detailed phase analysis indicated four different classes: zinc-arsenic sulphosalts/sulphates, zinc-arsenic oxides, zinc phosphates and zinc-lead sulphosalts/sulphates. This suggests that sulphates and sulphides are the predominant types of Zn and As minerals formed in the BCR. Sphalerite (ZnS was a common mineral observed in many of the samples. In addition, X-ray point analysis showed evidence of As and Zn coating around feldspar and amphibole particles. The presence of arsenic-zinc-iron, with or without cadmium particles, indicated arsenopyrite minerals. Copper-iron-sulphide particles suggested chalcopyrite (CuFeS2 and tennantite (Cu,Fe12As4S13. Microbial communities found in each sample were correlated with metal content to describe taxonomic groups associated with high-metal samples. The research results highlight mineral grains that were present or formed at the site that might be the predominant forms of immobilized arsenic, zinc and copper.

  7. Leaching and recovery of zinc and copper from brass slag by sulfuric acid

    Directory of Open Access Journals (Sweden)

    I.M. Ahmed

    2016-09-01

    Full Text Available Leaching and recovery processes for zinc and copper from brass slag by sulfuric acid were carried out and iron and aluminum were also precipitated as hydroxides in addition to silica gel. The factors affecting the performance and efficiency of the leaching processsuch as agitation rate, leaching time, acid concentration and temperature were separately investigated. The results obtained revealed that zinc and copper are successfully recovered from these secondary resources, where the percent recovery amounts to 95% and 99% for zinc and copper, respectively. The experimental data of this leaching process were well interpreted with the shrinking core model under chemically controlled processes. The apparent activation energy for the leaching of zinc has been evaluated using the Arrhenius expression. Based on the experimental results, a separation method and a flow sheet were developed and tested to separate zinc, copper, iron, aluminum and silica gel from the brass slag.

  8. Sorption recovery of copper (II and zinc (II from chloride aqueous solutions

    Directory of Open Access Journals (Sweden)

    Kononova Olga N.

    2014-01-01

    Full Text Available The present investigation is devoted to simultaneous sorption recovery of copper (II and zinc (II ions on some commercial anion exchangers with different physical-chemical properties. The initial concentrations of zinc and copper were 1-3 mmol L-1 and the recovery was carried out in 0.01 M and 2 M hydrochloric acid solutions. It was shown that the investigated anion exchangers possess good sorption and kinetic properties. After the recovery of copper and zinc from strong acidic solutions, their selective elution was carried out by means of 2 M hydrochloric acid solution (zinc recovery and 2 M ammonia solution (copper recovery. In weak acidic solutions, copper and zinc were separated during sorption, as zinc sorption did not proceed in this case. The subsequent copper (II elution was carried out by 2 M ammonia solution. The anion exchangers Purolite S985, Purolite A500 and AM-2B can be recommended for zinc and copper recovery from acidic industrial solutions and waste water.

  9. Serum levels of ferritin, copper, and zinc in patients with oral cancer.

    Science.gov (United States)

    Baharvand, Maryam; Manifar, Soheila; Akkafan, Reihaneh; Mortazavi, Hamed; Sabour, Siamak

    2014-01-01

    Apart from the crucial role of micronutrients like copper, iron, and zinc in the functions of body enzymes, it seems that changes in the serum levels of these biomarkers may play a role in the pathogenesis of oral cancer. The aim of this study was to measure the serum levels of ferritin, copper, and zinc in patients with oral malignancies. Sixty consecutive patients with oral cancer, together with 66 age- and sex-matched controls were enrolled in this cross-sectional study. The serum levels of ferritin, copper, and zinc were measured in both patients and healthy individuals. Data were statistically analyzed by Student's t-test and Mann-Whitney U test. In patients with oral cancer, the serum levels of ferritin, copper, and zinc were 267.41 ± 249.45, 209.85 ± 160.28, and 113.51 ± 52.30 mg/dl, respectively. In the control group, the serum levels of ferritin, copper, and zinc were reported to be 106.13 ± 72.96, 114.20 ± 38.69, and 64.57 ± 31.54 mg/dl, respectively. The mean serum values of ferritin, copper, and zinc in cancerous patients were significantly higher than in controls (p serum levels of ferritin, copper, and zinc in oral cancer patients were significantly higher than in control group subjects.

  10. Serum levels of ferritin, copper, and zinc in patients with oral cancer

    Directory of Open Access Journals (Sweden)

    Maryam Baharvand

    2014-10-01

    Full Text Available Background: Apart from the crucial role of micronutrients like copper, iron, and zinc in the functions of body enzymes, it seems that changes in the serum levels of these biomarkers may play a role in the pathogenesis of oral cancer. The aim of this study was to measure the serum levels of ferritin, copper, and zinc in patients with oral malignancies. Methods: Sixty consecutive patients with oral cancer, together with 66 age- and sex-matched controls were enrolled in this cross-sectional study. The serum levels of ferritin, copper, and zinc were measured in both patients and healthy individuals. Data were statistically analyzed by Student's t-test and Mann-Whitney U test. Results: In patients with oral cancer, the serum levels of ferritin, copper, and zinc were 267.41 ± 249.45, 209.85 ± 160.28, and 113.51 ± 52.30 mg/dl, respectively. In the control group, the serum levels of ferritin, copper, and zinc were reported to be 106.13 ± 72.96, 114.20 ± 38.69, and 64.57 ± 31.54 mg/dl, respectively. The mean serum values of ferritin, copper, and zinc in cancerous patients were significantly higher than in controls (p < 0.001. Conclusions: The serum levels of ferritin, copper, and zinc in oral cancer patients were significantly higher than in control group subjects.

  11. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways.

    Science.gov (United States)

    Won, Yen-Kim; Lin, Connie B; Seiberg, Miri; Chen, Nannan; Hu, Yaping; Rossetti, Dianne; Saliou, Claude; Loy, Chong-Jin

    2014-01-01

    The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc-copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc-copper microparticles on skin pigmentation. Our findings showed that galvanic zinc-copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc-copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc-copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc-copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc-copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.

  12. Effect of infant cereals on zinc and copper absorption during weaning

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J.G.; Keen, C.L.; Loennerdal, B.

    1987-10-01

    Zinc and copper absorption from five infant cereal products mixed with water, human milk, or cow's milk was measured using an in vivo absorption model (rat pup) involving gastric intubation of extrinsically radiolabeled diets. Whole-body copper 64 uptake, nine hours after intubation, ranged from 14% to 31% of the dose given for the different cereal combinations. The resultant bioavailability of copper from human milk-cereal combinations (23% to 26%) was significantly lower than that from human milk alone (38%). Whole-body zinc 65 uptake, nine hours after intubation, ranged from 13% to 54% of the dose given for the different cereal combinations. These values were significantly lower than the whole-body zinc 65 uptake from milk alone (61%). Zinc availability was lower (13% to 25%) from dry cereal combinations that contained phytic acid (oatmeal and high-protein varieties) compared with the ready-to-serve cereal-fruit combinations (24% to 54%). The highest zinc uptake (37% to 54%) was from rice-fruit combinations that do not contain phytic acid. We estimated the amounts of zinc and copper that would be absorbed from these cereal products and speculated on the potential impact of these foods on the weaning infant's zinc and copper nutriture. Depending on the feeding practices employed during the weaning period, it is apparent that infant cereals may compromise utilization of zinc and copper from milk diets during weaning.

  13. Chronic but not acute antidepresant treatment alters serum zinc/copper ratio under pathological/zinc-deficient conditions in mice.

    Science.gov (United States)

    Mlyniec, K; Ostachowicz, B; Krakowska, A; Reczynski, W; Opoka, W; Nowak, G

    2014-10-01

    Depression is the leading psychiatric disorder with a high risk of morbidity and mortality. Clinical studies report lower serum zinc in depressed patients, suggesting a strong link between zinc and mood disorders. Also copper as an antagonistic element to zinc seems to play a role in depression, where elevated concentration is observed. In the present study we investigated serum copper and zinc concentration after acute or chronic antidepressant (AD) treatment under pathological/zinc-deficient conditions. Zinc deficiency in mice was induced by a special diet administered for 6 weeks (zinc adequate diet - ZnA, contains 33.5 mgZn/kg; zinc deficient diet - ZnD, contains 0.2 mgZn/kg). Animals received acute or chronically saline (control), imipramine, escitalopram, reboxetine or bupropion. To evaluate changes in serum copper and zinc concentrations the total reflection X-ray fluorescence (TXRF) and flame atomic absorption spectrometry (FAAS) was performed. In ZnD animals serum zinc level was reduced after acute ADs treatment (similarly to vehicle treatment), however, as demonstrated in the previous study after chronic ADs administration no differences between both ZnA and ZnD groups were observed. Acute ADs in ZnD animals caused different changes in serum copper concentration with no changes after chronic ADs treatment. The calculated serum Zn/Cu ratio is reduced in ZnD animals (compared to ZnA subjects) treated with saline (acutely or chronically) and in animals treated acutely with ADs. However, chronic treatment with ADs normalized (by escitalopram, reboxetine or bupropion) or increased (by imipramine) this Zn/Cu ratio. Observed in this study normalization of serum Zn/Cu ratio in depression-like conditions by chronic (but not acute) antidepressants suggest that this ratio may be consider as a marker of depression or treatment efficacy.

  14. Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem.

    Science.gov (United States)

    Hare, Dominic J; Lee, Jason K; Beavis, Alison D; van Gramberg, Amanda; George, Jessica; Adlard, Paul A; Finkelstein, David I; Doble, Philip A

    2012-05-01

    Atlases depicting molecular and functional features of the brain are becoming an integral part of modern neuroscience. In this study we used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantitatively measure iron (Fe), copper (Cu), and zinc (Zn) levels in a serially sectioned C57BL/6 mouse brain (cerebrum and brainstem). Forty-six sections were analyzed in a single experiment of approximately 158 h in duration. We constructed a 46-plate reference atlas by aligning quantified images of metal distribution with corresponding coronal sections from the Allen Mouse Brain Reference Atlas. The 46 plates were also used to construct three-dimensional models of Fe, Cu, and Zn distribution. This atlas represents the first reconstruction of quantitative trace metal distribution through the brain by LA-ICPMS and will facilitate the study of trace metals in the brain and help to elucidate their role in neurobiology.

  15. Zinc and copper levels in plasma, erythrocytes, and whole blood in cancer patients.

    Science.gov (United States)

    Aldor, Y; Walach, N; Modai, D; Horn, Y

    1982-04-01

    Zinc and copper levels in erythrocytes, plasma, and whole blood were determined in 35 cancer patients and compared with 24 normal individuals. A decrease in zinc was found in all three blood constituents of the cancer patients. The decrease was significant in plasma and whole blood and nonsignificant in erythrocytes. Copper levels in the cancer group showed a slight and nonsignificant increase in erythrocytes, plasma, and whole blood. The copper to zinc ratio revealed a significant increase only for plasma levels. Further investigations are indicated to determine whether these two elements could serve as indicators for diagnosis or prognosis in cancer patients.

  16. Modelling of copper and zinc adsorption onto zeolite

    Directory of Open Access Journals (Sweden)

    H. Pavolová

    2016-10-01

    Full Text Available Adsorption of Cu(II and Zn(II ions from metallurgical solutions has been studied and the adsorption capacity of zeolite (Nižný Hrabovec, SK has been determined. Zeolites are characterized by relatively high sorption capacity, i.e. Cu(II and Zn(II can be removed even at relatively low concentrations. The experiments were realised in a batch system and evaluated using isotherms. According to the results of the experiments the adsorption equilibrium of Cu(II and Zn(II on zeolite was best described by Freundlich isotherm. The maximum sorption capacity was 1,48 and 1,49 mg/g for Cu(II and Zn(II, respectively. The experimental results of this study demonstrate that zeolite is suitable for adsorption of copper and zinc from aqueous solutions at low concentrations.

  17. Serum Copper and Zinc Levels Among Iranian Colorectal Cancer Patients.

    Science.gov (United States)

    Khoshdel, Zahra; Naghibalhossaini, Fakhraddin; Abdollahi, Kourosh; Shojaei, Shahla; Moradi, Mostafa; Malekzadeh, Mahyar

    2016-04-01

    Alterations of trace element concentrations adversely affect biological processes and could promote carcinogenesis. Only a few studies have investigated the degree of changes in copper and zinc levels in colorectal cancer (CRC). The aim of the present study was to compare the serum copper (Cu) and zinc (Zn) concentrations in patients with CRC from Iran with those of healthy subjects. Cu and Zn concentrations in the serum of 119 cancer patients and 128 healthy individuals were measured by atomic absorption spectrometry. We found a significant decrease in the total mean serum Cu and Zn concentrations in CRC patients as compared with the control group (137.5 ± 122.38 vs. 160.68 ± 45.12 μg/dl and 81.04 ± 52.05 vs. 141.64 ± 51.75, respectively). However, the serum Cu/Zn ratio in the patient group was significantly higher than that measured in the control group (p = 0.00). There was no significant difference in the mean values of serum Cu and Zn concentrations between young (obese cases (132.31 ± 87.43 vs. 103.81 ± 53.72 μg/dl, respectively) (p < 0.05). There was no difference in mean serum Cu and Zn concentrations in patients stratified by the site, stage, or differentiation grade of tumors. Our findings suggest that imbalance in Cu and Zn trace element level is associated with CRC and might play an important role in cancer development among Iranian patients.

  18. Alzheimer’s Disease Causation by Copper Toxicity and Treatment with Zinc

    Directory of Open Access Journals (Sweden)

    George J Brewer

    2014-05-01

    Full Text Available Evidence will be presented that the Alzheimer’s disease (AD epidemic is new, the disease being very rare in the 1900s. The incidence is increasing rapidly, but only in developed countries. We postulate that the new emerging environmental factor partially causal of the AD epidemic is ingestion of inorganic copper from drinking water and taking supplement pills, along with a high fat diet. Inorganic copper can be partially directly absorbed and elevate the serum free copper pool. The Squitti group has shown that serum free copper is elevated in AD, correlates with cognition, and predicts cognition loss. Thus, our inorganic copper hypothesis fits well with the Squitti group data. We have also shown that AD patients are zinc deficient compared to age-matched controls. Because zinc is a neuronal protective factor, we postulate that zinc deficiency may also be partially causative of AD. We carried out a small 6 month double blind study of a new zinc formulation and found that in patients age 70 and over, it protected against cognition loss. Zinc therapy also significantly reduced serum free copper in AD patients, so efficacy may come from restoring normal zinc levels, or from lowering serum free copper, or from both.

  19. The Proteome of Copper, Iron, Zinc, and Manganese Micronutrient Deficiency in Chlamydomonas reinhardtii*

    Science.gov (United States)

    Hsieh, Scott I.; Castruita, Madeli; Malasarn, Davin; Urzica, Eugen; Erde, Jonathan; Page, M. Dudley; Yamasaki, Hiroaki; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Loo, Joseph A.

    2013-01-01

    Trace metals such as copper, iron, zinc, and manganese play important roles in several biochemical processes, including respiration and photosynthesis. Using a label-free, quantitative proteomics strategy (MSE), we examined the effect of deficiencies in these micronutrients on the soluble proteome of Chlamydomonas reinhardtii. We quantified >103 proteins with abundances within a dynamic range of 3 to 4 orders of magnitude and demonstrated statistically significant changes in ∼200 proteins in each metal-deficient growth condition relative to nutrient-replete media. Through analysis of Pearson's coefficient, we also examined the correlation between protein abundance and transcript abundance (as determined via RNA-Seq analysis) and found moderate correlations under all nutritional states. Interestingly, in a subset of transcripts known to significantly change in abundance in metal-replete and metal-deficient conditions, the correlation to protein abundance is much stronger. Examples of new discoveries highlighted in this work include the accumulation of O2 labile, anaerobiosis-related enzymes (Hyd1, Pfr1, and Hcp2) in copper-deficient cells; co-variation of Cgl78/Ycf54 and coprogen oxidase; the loss of various stromal and lumenal photosynthesis-related proteins, including plastocyanin, in iron-limited cells; a large accumulation (from undetectable amounts to over 1,000 zmol/cell) of two COG0523 domain-containing proteins in zinc-deficient cells; and the preservation of photosynthesis proteins in manganese-deficient cells despite known losses in photosynthetic function in this condition. PMID:23065468

  20. Atmospheric Deposition of Copper and Zinc in Maramures County (Romania

    Directory of Open Access Journals (Sweden)

    Buteana Claudia

    2014-12-01

    Full Text Available The need to reduce pollution to levels that minimize adverse effects on human health involve the monitoring of air quality, including dry depositions and their metal content. The analysis of these parameters aims to investigate the air quality in Maramures County (with nonferrous mining activities and in the Romanian - Ukraine transboundary area. The paper presents the experimental results obtained for dry atmospheric deposition of copper and zinc using flame atomic absorption spectrometry (FAAS. The samples were collected from four location/cities of Maramures County (Baia Mare, Sighetu Marmatiei, Viseu de Sus and Borsa during May-October 2014. The highest average values of copper concentration in the dry depositions were found in Baia Mare (199.88 μg/g, that is the most important industrial centre in Maramures County, followed by Borsa (111.49 μg/g, that used to be a nonferrous mining centre. In Viseu de Sus and Sighetu Marmatiei the average concentrations of copper in the dry depositions were lower: 75.63 μg/g and 64.26 μg/g, respectively. Zn average concentrations in dry depositions were 6.4-12 times higher than Cu concentrations. In Viseu de Sus and Borsa relative high values of Pearson correlation coefficients between the logarithm of Cu and Zn content in the dry deposition were found (0.702 and 0.737, respectively estimating that both pollutants in the ambient air have the same sources, probably the re-suspension of the dust from the tailing ponds. This study is implemented within the frame of ENPI Cross-border Cooperation Programme Hungary-Slovakia-Romania-Ukraine 2007-2013, in the project Clean Air Management in the Romania-Ukraine Transboundary Area - (CLAMROUA, financed by the European Union

  1. Synthesis and spectroscopic characterization of copper zinc aluminum nanoferrite particles

    Science.gov (United States)

    Lakshmi Reddy, S.; Ravindra Reddy, T.; Roy, Nivya; Philip, Reji; Montero, Ovidio Almanza; Endo, Tamio; Frost, Ray L.

    2014-06-01

    Copper doped zinc aluminum ferrites CuxZn1-x.(AlxFe2-x)O4 are synthesized by the solid-state reaction route and characterized by XRD, TEM, EPR and non linear optical spectroscopy techniques. The average particle size is found to be from 35 to 90 nm and the unit cell parameter “a” is calculated as from 8.39 to 8.89 Å. The cation distributions are estimated from X-ray diffraction intensities of various planes. The XRD studies have verified the quality of the synthesis of compounds and have shown the differences in the positions of the diffraction peaks due to the change in concentration of copper ions. TEM pictures clearly indicating that fundamental unit is composed of octahedral and tetrahedral blocks and joined strongly. The selected area electron diffraction (SAED) of the ferrite system shows best crystallinity is obtained when Cu content is very. Some of the d-plane spacings are exactly coinciding with XRD values. EPR spectra is compositional dependent at lower Al/Cu concentration EPR spectra is due to Fe3+ and at a higher content of Al/Cu the EPR spectra is due to Cu2+. Absence of EPR spectra at room temperature indicates that the sample is perfectly ferromagnetic. EPR results at low temperature indicate that the sample is paramagnetic, and that copper is placed in the tetragonal elongation (B) site with magnetically non-equivalent ions in the unit cell having strong exchange coupling between them. This property is useful in industrial applications. Nonlinear optical properties of the samples studied using 5 ns laser pulses at 532 nm employing the open aperture z-scan technique indicate that these ferrites are potential candidates for optical limiting applications.

  2. Solvent extraction of copper and zinc from bioleaching solutions with LIX984 and D2EHPA

    Institute of Scientific and Technical Information of China (English)

    LAN Zhuo-yue; HU Yue-hua; LIU Jian-she; WANG Jun

    2005-01-01

    The solvent extraction of copper and zinc from the bioleaching solutions of low-grade sulfide ores with LIX984 and D2EHPA was investigated. The influences of extractant content, aqueous pH value, phase ratio and equilibration time on metals extraction were studied. The results show that LIX984 has a higher selectivity for copper than for iron, zinc and other metals, and has the copper extraction rate above 97%,while the zinc and iron extraction rate is less than 1.6% respectively. Zinc extraction is carried out following the copper extraction from the raffinate. The zinc extraction with di(2-ethylhexyl) phosphoric acid(D2EHPA) is low due to its poor cation exchange. A sodium salt of D2EHPA is used and the zinc extraction rate is enhanced to above 98%. Though iron (Ⅲ) is strongly extracted before the extraction of zinc by D2EHPA, it is difficult to strip iron from the organic phase by sulfuric acid. The zinc stripping rate is above 99% with 100 g/L sulfuric acid, while that of iron is 0.16%. Hence, the separation of zinc from iron can be achieved by the selective stripping.

  3. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D. (NIOM, Scandinavian Institute of Dental Materials, Oslo, Norway); Gjerdet, N. (Department of Dental Materials, School of Dentistry, Bergen, Norway); Paulsen, G. (Denatal Faculty, University of Oslo, Norway)

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied.

  4. Tetranuclear zinc(II-oxy (benzothiazole-2-thiolate aggregate and copper(I phenylthiolate aggregate

    Directory of Open Access Journals (Sweden)

    Abir Goswami

    2015-12-01

    Full Text Available A tetranuclear zinc-oxy (benzothiazole-2-thiolate aggregate whose structure has a C3-axis passing through ZnO unit relating three other zinc ions and a tetranuclear copper(I phenylthiolate aggregate having each thiphenolate ligand bridging three copper ions are reported. These aggregates were prepared by hydrothermal reactions of 2,2′-dithiobis-(benzothiazole with zinc nitrate or copper(I iodide, respectively. The reaction of zinc nitrate passed through in situ abstraction of a oxy ligand from moisture to form a Zn4O core holding six 2-benzothiazolethiolate ligands, and during the formation of the aggregate, cleavage of S–S bond of 2,2′-dithiobis-(benzothiazole took place. Whereas, an aggregate formed by self-assembling of copper(I phenylthiolate was formed after extensive degradation of 2,2′-dithiobis-(benzothiazole during solvothermal reaction.

  5. A study of serum zinc, selenium and copper levels in carcinoma of esophagus patients.

    Science.gov (United States)

    Goyal, M M; Kalwar, A K; Vyas, R K; Bhati, A

    2006-03-01

    The association of serum trace elements like selenium, zinc and copper has been found in different types of cancer. This study was conducted to see the serum level of these three trace elements in cancer esophagus patients. Biopsy confirmed cancer esophagus, 24 patients (12 males, 12 females, mean age 54.5±11.65 year with 23 healthy subjects (16 males, 7 females, mean age 44 ±13.82 years) were included in this study. Both control and study group patients were of same socio-economic status and dietary habits. Serum zinc and copper level were estimated using standard absorption spectrometer technique and serum selenium by Hydride generation method.We observed significant low serum levels of zinc and selenium while high level of serum copper in carcinoma esophagus patients, as compared with normal healthy controls. This shows an association of serum selenium zinc and copper with cancer esophagus.

  6. Supplementation with zinc in rats enhances memory and reverses an age-dependent increase in plasma copper.

    Science.gov (United States)

    Sandusky-Beltran, Leslie A; Manchester, Bryce L; McNay, Ewan C

    2017-08-30

    Zinc and copper are essential trace elements. Dyshomeostasis in these two metals has been observed in Alzheimer's disease, which causes profound cognitive impairment. Insulin therapy has been shown to enhance cognitive performance; however, recent data suggest that this effect may be at least in part due to the inclusion of zinc in the insulin formulation used. Zinc plays a key role in regulation of neuronal glutamate signaling, suggesting a possible link between zinc and memory processes. Consistent with this, zinc deficiency causes cognitive impairments in children. The effect of zinc supplementation on short- and long-term recognition memory, and on spatial working memory, was explored in young and adult male Sprague Dawley rats. After behavioral testing, hippocampal and plasma zinc and copper were measured. Age increased hippocampal zinc and copper, as well as plasma copper, and decreased plasma zinc. An interaction between age and treatment affecting plasma copper was also found, with zinc supplementation reversing elevated plasma copper concentration in adult rats. Zinc supplementation enhanced cognitive performance across tasks. These data support zinc as a plausible therapeutic intervention to ameliorate cognitive impairment in disorders characterized by alterations in zinc and copper, such as Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. AVAILABILITY OF COPPER AND ZINC IN SOILS EVALUATED BY SEQUENTIAL EXTRACTION PROCEDURE (BCR

    Directory of Open Access Journals (Sweden)

    Lucilia Alves Linhares

    2009-07-01

    Full Text Available In environmental studies, knowledge of the chemical forms of copper and zinc and the relationships with the levels available, are important for predicting the elements behavior in the soil-plant system. To assess the distribution of copper and zinc in soils of Minas Gerais State and their relations with their availability, an experiment was carried out on samples from six natural soils at two depths. The soil samples were incubated with the elements of interest and subjected to sequential extraction for separation of the elements in six fractions defined operationally. The results showed that the technique provided valuable information regarding the interaction of copper and zinc in soil and their speciation in various fractions of soils. There was a larger distribution of zinc in the exchangeable fraction and residual, while copper was preferably associated to more stable chemical forms, that is, related to reducible and residual forms. The nearly null extractions of copper and zinc from the soluble fraction and the exchangeable Argilúvico Chernosol (soil 2 and Tb eutrophic Haplic Cambisol (soil 3 systems correspond to the soil-metal system with the largest retention and lower availability of the elements in these soils. The predominance of copper and zinc associated mainly with the soluble and exchangeable fractions in Cambisol (soil 4 and latosol orthic Quartzarenic Neosol (soil 6 showed increased mobility and availability of the metals in more acidic and sandy soil when compared with the other soils.

  8. Zinc and Copper Homeostasis in Head and Neck Cancer: Review and Meta-Analysis.

    Science.gov (United States)

    Ressnerova, Alzbeta; Raudenska, Martina; Holubova, Monika; Svobodova, Marketa; Polanska, Hana; Babula, Petr; Masarik, Michal; Gumulec, Jaromir

    2016-01-01

    Metals are known for playing essential roles in human physiology. Copper and zinc are trace elements closely dependent on one another and are involved in cell proliferation, growth, gene expression, apoptosis and other processes. Their homeostasis is crucial and tightly controlled by a resourceful system of transporters and transport proteins which deliver copper and zinc ions to their target sites. Abnormal zinc and copper homeostasis can be seen in a number of malignancies and also in head and neck cancer. Imbalance in this homeostasis is observed as an elevation or decrease of copper and zinc ions in serum or tissue levels in patients with cancer. In head and neck cancer these altered levels stand out from those of other malignancies which makes them an object of interest and therefore zinc and copper ions might be a good target for further research of head and neck cancer development and progression. This review aims to summarize the physiological roles of copper and zinc, its binding and transport mechanisms, and based on those, its role in head and neck cancer. To provide stronger evidence, dysregulation of levels is analysed by a meta-analytical approach.

  9. Comparison of lowering copper levels with tetrathiomolybdate and zinc on mouse tumor and doxorubicin models.

    Science.gov (United States)

    Hou, Guoqing; Dick, Robert; Zeng, Chunhua; Brewer, George J

    2006-12-01

    Tetrathiomolybdate (TM), presumably by lowering copper levels and availability, has shown excellent efficacy in animal models of cancer and models of injury that produce fibrotic or inflammatory damage in lung, heart, and liver. Trials in human patients are underway. If the efficacy of TM is indeed through lowering copper levels, other anticopper drugs should be equally efficacious. Zinc is an anticopper drug, with proven efficacy in Wilson's disease, a disease of copper toxicity. In this study, the efficacy of zinc is compared with TM on a mouse tumor model and on the doxorubicin model of heart damage, and it is hypothesized that when copper availability is lowered to an equivalent extent, the 2 drugs would show equivalent efficacy. No effect is found of zinc on inhibiting growth of a tumor that is markedly inhibited by TM, and zinc is found to be less effective than TM in inhibiting cardiac damage from doxorubicin. This study shows that TM's mechanism of action in protecting against doxorubicin toxicity is because of its anticopper effects, as copper supplementation eliminated the protective effect of TM. It is also hypothesized that the differences between TM and zinc may be caused by TM's mechanism of action in which it binds copper already in the body, whereas zinc does not.

  10. Synthetic, spectral and solution studies on imidazolate-bridged copper(II)-copper(II) and copper(II)-zinc(II) complexes

    Indian Academy of Sciences (India)

    Subodh Kumar; R N Patel; P V Khadikar; K B Pandeya

    2001-02-01

    Synthesis, spectral and solution studies on 2-ethyl imidazolate-bridged (2-EtIm) homo-binuclear copper(II)-copper(II) and hetero-binuclear copper(II)-zinc(II) homologue are described. Magnetic moment values of homo-binuclear complexes indicate that the imidazolate group can mediate antiferromagnetic interactions. Optical spectra of hetero-binuclear complex at varying H values suggest that the imidazolate-bridged complex is stable over the H-range 7 15-10 0.

  11. Copper electrodeposition from cuprous chloride solutions containing lead, zinc or iron ions

    Institute of Scientific and Technical Information of China (English)

    M. Tchoumou; M. Roynette Ehics

    2005-01-01

    Cuprous chloride hydrochloric acid solutions were electrolysed in a two compartments cell without agitation for copper extraction. It is found that the current density affects the colour and the size of copper deposits. During electrodeposition of copper from cuprous solution in the presence of various concentrations of lead, zinc or iron ions at different current densities, it is observed that lead is codeposited with copper by increasing current density.In all experiments, the current efficiency for the copper deposition reaction fluctuates between 88.50% and 95.50%.

  12. Serum copper and zinc levels in patients with cervical cancer.

    Science.gov (United States)

    Chen, C A; Hwang, J L; Kuo, T L; Hsieh, C Y; Huang, S C

    1990-08-01

    The serum copper (SCL) and zinc (SZL) levels were measured in 99 patients with cervical cancer and 50 patients with uterine myoma as controls. The mean SCL in the control group was 109.4 +/- 17.4 micrograms/ml as compared to 117.1 +/- 14.6 micrograms/dl and was not significant (NS) in 17 carcinoma in situ (CIS) patients, 142.3 +/- 14.2 micrograms/dl in 30 stage I patients (p less than 0.001), 159.0 +/- 16.6 micrograms/dl in 22 stage II patients (p less than 0.001), 171.6 +/- 25.7 micrograms/dl in 10 stage III or IV patients (p less than 0.001), and 166.2 +/- 32.2 micrograms/dl in 20 recurrent patients (p less than 0.001). The SCL returned to control level 2 weeks after surgical treatment for the stage I and II patients (mean 110.6 +/- 19.6 and 108.7 +/- 20.4 micrograms/dl, respectively, p less than 0.001). The SZL was 97.2 +/- 15.8 micrograms/dl in control patients and only showed a significant decrease in stage III or IV and recurrent patients (67.2 +/- 16.6 and 70.4 +/- 17.2 micrograms/dl, respectively). Concerning the copper/zinc ratio, the control group was 1.13 +/- 0.07 as compared to 1.17 +/- 0.07 in CIS (p = 0.06), 1.51 +/- 0.24 in stage I (p less than 0.001), 1.85 +/- 0.37 in stage II (p less than 0.001), 2.66 +/- 0.61 in stage III or IV (p less than 0.001), and 2.50 +/- 0.75 in recurrent patients (p less than 0.001). Taking mean +/- 2.5 SD of the control values as cut off points, the percentages of the recurrent patients with abnormal SCL, SZL, and a Cu/Zn ratio were 65, 30 and 90%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Serum zinc and copper concentrations in maternal and umbilical cord blood. Relation to course and outcome of pregnancy

    DEFF Research Database (Denmark)

    Bro, S; Berendtsen, H; Nørgaard, J;

    1988-01-01

    higher serum copper levels than reference infants and mothers (p = 0.02 and p = 0.04, respectively), whereas there was no difference in serum zinc concentrations. Serum zinc and copper concentrations in malformed infants (n = 14) and their mothers (n = 17) did not differ from concentrations in reference...... serum zinc and copper concentrations in maternal and umbilical cord blood from 500 Danish mothers at delivery, looking for an association between serum zinc and copper levels and various maternal and foetal complications. Preterm infants (n = 30) had significantly lower serum copper concentrations than...... reference infants (n = 346) (p = 0.01), whereas there was no difference in serum zinc concentrations. Mothers of preterm infants (n = 34) did not differ in serum zinc or copper concentrations from reference mothers (n = 220). Small for date infants (n = 37) and mothers of small for date infants (n = 47) had...

  14. Changes in copper and zinc serum levels in women wearing a copper TCu-380A intrauterine device.

    Science.gov (United States)

    Imani, Somaieh; Moghaddam-Banaem, Lida; Roudbar-Mohammadi, Shahla; Asghari-Jafarabadi, Mohammad

    2014-02-01

    OBJECTIVE To assess the effects of the copper intrauterine device (IUD) TCu-380A, on copper and zinc serum levels. MATERIAL AND METHODS This longitudinal study enrolled 121 women attending Health Centres in Tehran between November 2011 and August 2012. A blood sample was obtained before use and three months after insertion of a TCu-380A IUD. Serum levels of copper and zinc were measured for the 101 women who had completed three months with the device in situ. Analyses of change included paired t-tests, McNemar tests and linear regression. RESULTS Significant elevations in mean serum levels were found for both copper (170.22 μg/dl at three months vs.160.40 μg/dl at baseline, p = 0.034) and zinc (107.67 μg/dl at three months vs. 94.61 μg/dl at baseline, p IUD insertion. CONCLUSIONS A slight, but significant increase in copper serum levels, not reaching toxic levels, was observed three months after TCu-380A IUD insertion. Zinc levels too had risen significantly, which was quite unexpected, and warrants further investigation.

  15. [A dynamic study of HGH, zinc and copper in diabetic girls. Preliminary report].

    Science.gov (United States)

    González Espinosa, C; García Báez, M; Rodríguez, I; González, C; Lopes, S; Duque, R

    1982-11-01

    A dynamic study study on secretion of HGH in diabetic girls under the combined stimulus of L-dopa and L-arginina is performed. Serum levels for Zinc and copper are measured. Results show that as HGH increase, copper levels decrease. Correlation (r = 0.81, p = 0.05) points to an inverse dependence of both parameters. Concomitantly, the values obtained for zinc and copper are correlated (r = 0.82, p = 0.03). During stimulation, all patients showed an increase in glycemia and a significant correlation between both parameters was found (r = 0.76, p = 0.05).

  16. Role of copper, zinc, and selenium in uterine cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sarita, P.; Naga Raju, G.J. [Department of Physics, Institute of Technology, GITAM University, Visakhapatnam (India); Bhuloka Reddy, S. [Swami Jnanananda Laboratories for Nuclear Research, Andhra Universily, Visakahpatnam (India)

    2013-07-01

    Full text: The objective of this study was to evaluate the levels of trace elements in blood sera of uterine cervix cancer patients, analyze their alteration with respect to healthy controls, ascertain the role played by them in the initiation, promotion and inhibition of cancer, and identify the best predictors amongst these for disease occurrence and progression. Moreover, the variation of trace elemental content in the sera of cervix cancer patients with the clinical stage of disease and with therapy was also studied. Particle induced X-ray emission (PIXE), a well established method for elemental analysis, was used in this work to identify and quantify trace elements in the blood sera of uterine cervix cancer subjects and healthy control subjects. The PIXE measurements were carried out using 2.5 MeV collimated proton beam from the 3 MV Tandem Pelletron Accelerator at lon Beam Laboratory, Institute of Physics, Bhubaneswar, India. Among all the trace elements identified in this work, statistically significant alterations in serum levels of copper, zinc, and selenium were observed among the various studied groups. The observed alterations are discussed with respect to the possible mechanisms by which these elements might influence the carcinogenic process. (author)

  17. Copper and Zinc Chelation as a Treatment of Alzheimer's Disease

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. The cause of the disease remains unknown, but amyloid- β (A β), a short peptide, is considered causal its pathogenesis. At cellular level, AD is characterized by deposits mainly composed of A β that also contain elevated levels of transition metals ions. Targeting metals is a promising new strategy for AD treatment, which uses moderately strong metal chelators to sequester them from A β or the environment. PBT2 is a chelating compound that has been the most promising in clinical trials. In our work, we use computer simulations to investigate complexes of a close analog of PBT2 with Cu2+ and Zn2+ ions. The calculations employ KS/FD DFT method, which combines Kohn-Sham DFT with the frozen-density DFT to achieve efficient description of explicit solvent beyond the first solvation shell. Our work is based on recent experiments and examines both 1:1 and 2:1 chelator-metal stochiometries detected experimentally. The results show that copper attaches more strongly than zinc, find that 1:1 complexes involve water in the first coordination shell and determine which one of several possible 2:1 geometries is the most preferable.

  18. Copper and zinc metabolism in aminonucleoside-induced nephrotic syndrome.

    Science.gov (United States)

    Pedraza-Chaverrí, J; Torres-Rodríguez, G A; Cruz, C; Mainero, A; Tapia, E; Ibarra-Rubio, M E; Silencio, J L

    1994-01-01

    Copper (Cu) and zinc (Zn) were measured in urine, serum and tissues from rats with nephrotic syndrome (NS) induced with a single subcutaneous dose of puromycin aminonucleoside (PAN; 15 mg/100 g BW). Control animals were pair-fed. Urine was collected daily, and the rats were sacrificed on day 10. PAN-nephrotic rats had proteinuria (days 3-10), high urinary Cu (days 1, 2, 4-10) and Zn (days 3-10) excretion. On day 10, nephrotic rats had: (a) albuminuria, hypoalbuminemia, hypoproteinemia, high urine and low serum levels of ceruloplasmin; (b) low Cu and Zn serum levels; (c) high clearance and fractional excretion of Cu and Zn, and (d) low kidney and liver Cu content and essentially normal tissue Zn levels. The alterations in Cu metabolism were more intense than those in Zn metabolism. Urine Cu and Zn showed a positive correlation with urine total protein on days 3-10 which suggests that high urinary excretion of Cu and Zn may be due to the excretion of its carrier proteins. In conclusion, these rats did not show a typical Zn deficiency but a clear decrease in Cu in the liver and kidney.

  19. Spectroscopic characterization of copper(I) binding to apo and metal-reconstituted zinc finger peptides.

    Science.gov (United States)

    Doku, Reginald T; Park, Grace; Wheeler, Korin E; Splan, Kathryn E

    2013-08-01

    Cu(I) exhibits high affinity for thiolate ligands, suggesting that thiol-rich zinc or iron binding sites may be subject to disruption during copper stress conditions. Zinc fingers constitute a large class of metalloproteins that use a combination of cysteine and histidine residues that bind Zn(II) as a structural element. Despite the shared preference of both copper and zinc for thiolate and amine coordination, the susceptibility of zinc finger domains toward copper substitution is not well studied. We report spectroscopic studies that characterize the Cu(I) binding properties of the zinc finger consensus peptides CP-CCHH, CP-CCHC, and CP-CCCC and the C-terminal zinc finger domain of HIV-1 nucleocapsid protein p7 (NCp7_C). Cu(I) binds to both the apopeptides and the Co(II)-substituted peptides, and the stoichiometry of Cu(I) binding is dependent on the number of cysteine thiols at the metal binding site. Fluorescence studies of the Zn(II)-NCp7_C complex indicate that Cu(I) also effectively competes with Zn(II) at the metal binding site, despite the high affinity of Zn(II) for the CCHC binding motif. Circular dichroism studies on both CP-CCHC and NCp7_C show that the conformations of the Cu(I)-bound complexes differ substantially from those of the Zn(II) species, implying that Cu(I) substitution is likely to impact zinc finger function. These results show that for the peptides studied here, Cu(I) is the thermodynamically favored metal despite the known high Zn(II) affinity of zinc finger domains, suggesting that Cu(I)-substituted zinc finger domains might be relevant in the context of both copper toxicity mechanisms and copper-responsive transcription factors.

  20. Influence of metallothioneins on zinc and copper distribution in brain tumours.

    Science.gov (United States)

    Floriańczyk, Bolesław; Osuchowski, Jacek; Kaczmarczyk, Robert; Trojanowski, Tomasz; Stryjecka-Zimmer, Marta

    2003-01-01

    Metallothioneins take part in the homeostasis of the ions of the metals which are necessary for the proper metabolism of the organism (zinc, copper), in biosynthesis regulation of the zinc-containing proteins and also in the detoxication of metals from the tissues. They also protect the tissue from the effects of free radicals, radiation, electrophilic pharmacological agents used in the cancer therapy and from mutagens. The experimental materials were brain astrocytomas, benign gliomas and malignant gliomas. The levels of the metallothionein were determined by cadmium-haemoglobin affinity assay using the cadmium isotope (109Cd). The values of zinc and copper were determined by means of atomic absorption spectrophotometry. In our studies, the level of metallothioneins in the group of malignant neoplasms was slightly higher than the level of these proteins in the group of benign neoplasms. The correlation coefficient of the studied parameters proved an interrelation between the levels of zinc and copper and the content of metallothioneins. In malignant neoplasms, the level of zinc showed a positive relationship with the metallothionein level, whereas the copper content showed an inverse relationship. There was a statistical difference, but no significant difference, in the levels of copper between malignant and benign groups.

  1. Serum levels of zinc and copper in epileptic children during long-term therapy with anticonvulsants.

    Science.gov (United States)

    Talat, Mohamed A; Ahmed, Anwar; Mohammed, Lamia

    2015-10-01

    To evaluate the serum levels of zinc and copper in epileptic children during the long-term treatment of anticonvulsant drugs and correlate this with healthy subjects. A hospital-based group matched case-control study was conducted in the Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt between November 2013 and October 2014. Ninety patients aged 7.1 ± 3.6 years were diagnosed with epilepsy by a neurologist. The control group was selected from healthy individuals and matched to the case group. Serum zinc and copper were measured by the calorimetric method using a colorimetric method kit. The mean zinc level was 60.1 ± 22.6 ug/dl in the cases, and 102.1 ± 18 ug/dl in the controls (p<0.001). The mean copper level was 180.1 ± 32.4 ug/dl in cases compared with 114.5 ± 18.5 ug/dl in controls (p<0.001). Serum zinc levels in epileptic children under drug treatment are lower compared with healthy children. Also, serum copper levels in these patients are significantly higher than in healthy people. No significant difference in the levels of serum copper and zinc was observed in using one drug or multiple drugs in the treatment of epileptic patients.

  2. MEDNIK syndrome: a novel defect of copper metabolism treatable by zinc acetate therapy.

    Science.gov (United States)

    Martinelli, Diego; Travaglini, Lorena; Drouin, Christian A; Ceballos-Picot, Irene; Rizza, Teresa; Bertini, Enrico; Carrozzo, Rosalba; Petrini, Stefania; de Lonlay, Pascale; El Hachem, Maya; Hubert, Laurence; Montpetit, Alexandre; Torre, Giuliano; Dionisi-Vici, Carlo

    2013-03-01

    MEDNIK syndrome-acronym for mental retardation, enteropathy, deafness, neuropathy, ichthyosis, keratodermia-is caused by AP1S1 gene mutations, encoding σ1A, the small subunit of the adaptor protein 1 complex, which plays a crucial role in clathrin coat assembly and mediates trafficking between trans-Golgi network, endosomes and the plasma membrane. MEDNIK syndrome was first reported in a few French-Canadian families sharing common ancestors, presenting a complex neurocutaneous phenotype, but its pathogenesis is not completely understood. A Sephardic-Jewish patient, carrying a new AP1S1 homozygous mutation, showed severe perturbations of copper metabolism with hypocupremia, hypoceruloplasminemia and liver copper accumulation, along with intrahepatic cholestasis. Zinc acetate treatment strikingly improved clinical conditions, as well as liver copper and bile-acid overload. We evaluated copper-related metabolites and liver function retrospectively in the original French-Canadian patient series. Intracellular copper metabolism and subcellular localization and function of copper pump ATP7A were investigated in patient fibroblasts. Copper metabolism perturbation and hepatopathy were confirmed in all patients. Studies in mutant fibroblasts showed abnormal copper incorporation and retention, reduced expression of copper-dependent enzymes cytochrome-c-oxidase and Cu/Zn superoxide dismutase, and aberrant intracellular trafficking of Menkes protein ATP7A, which normalized after rescue experiments expressing wild-type AP1S1 gene. We solved the pathogenetic mechanism of MEDNIK syndrome, demonstrating that AP1S1 regulates intracellular copper machinery mediated by copper-pump proteins. This multisystem disease is characterized by a unique picture, combining clinical and biochemical signs of both Menkes and Wilson's diseases, in which liver copper overload is treatable by zinc acetate therapy, and can now be listed as a copper metabolism defect in humans. Our results may also

  3. Release behavior of copper and zinc from sandy soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-kui; XIA Yi-ping

    2005-01-01

    The concentrations and chemical forms of copper(Gu) and zinc(Zn) in surface soils directly influence the movement of Gu and Zn. In this study, thirteen sandy soil samples with a wide range of total Cu and Zn concentrations were collected for evaluating the relationships between Cu and Zn release and extraction time, ratio of soil to water, pH and electrolyte types. The results indicated that Cu released in batch extraction that represents long-term leaching was mainly from exchangeable, and carbonate bound Cu fractions, and Zn released in the batch extraction was mainly from its carbonate bound fraction. However, the Cu and Zn leached from the soils using the column leaching that represents short-term leaching were mainly from their exchangeable fractions. Soil column leaching at different pH values indicated that the amounts of leached Zn and Cu were greatly affected by pH. The Cu and Zn release experiments with varying extraction times and ratio of soil to water suggest that long-term water-logging in the soils after rain may increase contact time of the soils with water and the release of Cu and Zn to water from the soils, and total amounts of Cu or Zn released from the soils increase, but the Cu or Zn concentration in the surface runoff decrease with increasing rainfall intensity. The increased Ca concentration in soil solution increased stability of organic matter-mineral complexes and might decrease the dissolution of organic matter, and thus decreased the release of Cu-binding component of organic matter. However, high concentration of Na in the soil solution increased the dispersion of the organic matter-mineral complexes and increased dissolution of organic matter and the release of Cu from the soils.

  4. Cadmium, zinc, and copper in horse liver and in horse liver metallothionein: comparisons with kidney cortex

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.G.; Nordberg, M.; Palm, B.; Piscator, M.

    1981-10-01

    Cadmium, zinc, and copper were determined in liver and in kidney cortex samples obtained from 33 normal Swedish horses. Cadmium concentrations in liver ranged from 0.002 to 0.165 mmole/kg and in kidney from 0.01 to 2.15 mmole/kg. There was a significant correlation between liver and kidney concentrations of cadmium. The average kidney concentration of cadmium was about 15 times that of liver. Zinc concentrations increased with increasing cadmium concentrations in both liver and kidney. The relative increase of zinc with cadmium was more pronounced in liver than in kidney. However, the absolute increase of zinc was larger in kidney due to the much higher concentration of cadmium in kidney compared to liver. Any significant correlation between copper and cadmium, or copper and zinc, could not be revealed. Sephadex gel filtration was performed on supernatants from homogenates of kidney and liver from 19 of the horses. In both organs the major part of cadmium was recovered in protein fractions corresponding to metallothionein (MT), in which the increase of zinc also took place. The molar ratio between zinc and cadmium was higher in MT fractions obtained from liver than in MT fractions obtained from kidney.

  5. Competitive Complexation of Copper and Zinc by Sequentially Extracted Humic Substances from Manure Compost

    Institute of Scientific and Technical Information of China (English)

    LIU Shuai; WANG Xu-dong; LU Li-lan; DIAO Shi-rong; ZHANG Jun-feng

    2008-01-01

    Chicken manure with similar content of copper and zinc was chosen to conduct a composting experiment to investigate the changes of organic carbon and humus substance complexed copper (HS-Cu) and zinc (HS-Zn), which were extracted by water (H2O), sodium hydroxide (NaOH), and sodium pyrophate-NaOH mixture (Na4P2O7-NaOH), sequentially. Distributions of copper and zinc in fulvic acids (FA) and humic acids (HA) in the three extracts were studied. During manure composting, the concentrations of copper and zinc increased from about 500 mg kg-' in the raw material to 1100 mg kg-1 in the final products. HS-Cu in H2O, NaOH, and Na4P2O7-NaOH extracts occupied 6.7, 26.7, and 19% averagely of total copper and HS-Zn represented 2.7, 13.7, and 17% averagely of total zinc in compost, respectively. In water extracts, both HA and FA mainly complexed with Cu and the mole ratio of Cu to Zn was 2.8 in HA fractions and was 2.6 in FA fractions, respectively. HA mainly complexed with copper, so that the ratios of HA-Cu to HA-Zn averaged 3.4 in NaOH extracts. FA had a similar potential to complex with copper and zinc, so that the ratio of FA-Cu to FA-Zn was close to 1. In Na4P2O7-NaOH extracts, HA or FA had a similar potential to complex with copper and zinc. The ratio of HS-Cu to HS-Zn was close to 1. With manure composting, Na4P2O7-NaOH extractable HS-Zn increased to a level as high as HS-Cu. This indicated that more and more stable complexes of HS-Zn were formed in the late decomposition period. The competition between copper and zinc to be complexed with humic substance became weaker and weaker with the decomposition process.

  6. Zinc, copper, iron, and chromium concentrations in young patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Basaki, M; Saeb, M; Nazifi, S; Shamsaei, H A

    2012-08-01

    Homeostasis of trace elements can be disrupted by diabetes mellitus. On the other hand, disturbance in trace element status in diabetes mellitus may contribute to the insulin resistance and development of diabetic complications. The aim of present study was to compare the concentration of essential trace elements, zinc, copper, iron, and chromium in serum of patients who have type 2 diabetes mellitus (n = 20) with those of nondiabetic control subjects (n = 20). The serum concentrations of zinc, copper, iron, and chromium were measured by means of an atomic absorption spectrophotometer (Shimadzu AA 670, Kyoto, Japan) after acid digestion. The results of this study showed that the mean values of zinc, copper, and chromium were significantly lower in the serum of patients with diabetes as compared to the control subjects (P diabetes mellitus.

  7. Magnesium, zinc, and copper status in women involved in different sports.

    Science.gov (United States)

    Nuviala, R J; Lapieza, M G; Bernal, E

    1999-09-01

    The dietary intake, serum levels, and urinary excretion of magnesium, zinc, and copper were studied in 78 women involved in different sports (karate, handball, basketball, and running) and in 65 sedentary women. Seven-day, weighed-food dietary reports revealed that no group of female athletes reached the minimal intake recommended for magnesium (280 mg/day) and zinc (12 mg/day), although their values were superior to those of the control group. The estimated safe and adequate minimal intake of copper (1.5 mg/day) was amply surpassed by the basketball players and runners but was not reached by the handball players. Serum levels and urinary excretion of magnesium, zinc and copper di not seem related either to their intake or to the type of physical activity performed. The influence of other factors such as nutritional status, bioavailability, intestinal absorption mechanisms, and muscle-level modifications might explain the differences between the different groups of female athletes.

  8. THE STUDY ON THE CHANGES OF ZINC,COPPER,CALCIUM AND MAGNESIUM IN PLASMA AND ERYTHROCYTES DURING CARDIOPULMONARY BYPASS

    Institute of Scientific and Technical Information of China (English)

    耿希刚; 李兆志; 李明; 师桃

    2004-01-01

    Objective To study the changes and their influence factors involved of zinc, copper, calcium and magnesium in plasma and erythrocytes during cardiopulmonary bypass(CPB). Methods Zinc, copper, calcium and magnesium values in plasma and erythrocytes were measured by atomic absorption spectrophotometer during CPB. Results Zinc and copper levels in plasma were significantly elevated above preinduction level before perfusion, but calcium and magnesium levels did not change significantly; zinc, copper and calcium levels in plasma were significantly below preoperation level during CPB, but magnesium level in plasma was significantly increased above preoperation; zinc level in plasma was increased to preoperation level after CPB and began to decrease again at 8 hours after CPB, copper level in plasma was increased to preoperation level at 20 hours after CPB, calcium in plasma was increased significantly from beginning to 8 hours after CPB, magnesium level in plasma was decreased to preoperation level at 8 hours afterCPB. Concentration of zinc , copper, calcium and magnesium in erythrocytes did not change significantly. Conclusion During CPB, the changes of zinc, copper, calcium and magnesium had relation to hemodilution, operative wound, carrier protein, stress and component of priming solution and cardioplegic solution, but no relation to transfer from plasma erythrocytes. The results indicate that it is beneficial to patient's recovery to supplement zinc, copper, calcium and magnesium properly by different ways during cardiac perioperation.

  9. Five Major State-Level Copper,Lead, Zinc Resource Succession Bases in Tibet Have Initially Taken Shape

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    According to the Chengdu Center of China Geological Survey,five major state-level copper-lead-zinc resource succession bases in Tibet have initially taken shape,featuring tremendous resource potentials.It has been learned that these five major resource succession bases are respectively copper-lead-zinc molybdenum iron prospecting development base in Central Tibet,chromite

  10. Serum Copper, Zinc levels and Copper/Zinz ratio as biochemical markers in diagnosis and prognosis of breast cancer patients

    Directory of Open Access Journals (Sweden)

    Sadr Sh

    1996-07-01

    Full Text Available Serum copper, zinc and the cu/zn ratio were measured in 55 patients with breast disease (20 with benign breast disease and 35 patients with breast cancer and 30 healthy subjects. The mean serum copper levels were higher in breast cancer than in benign breast diseases (127.5 µg/dl versus 92.4 µg/dl (P<0.0005 and controls (127.5 µg/dl versus 75.6 µg/dl (P<0.0005. Patients with advanced breast cancer had higher serum copper levels than did patients with early breast cancer (163 µg/dl versus 103.9 µg/dl (P<0.0005. Patients with advanced breast cancer had lower serum zinc levels than did patients with benign breast disease (68.9 µg/dl versus 135.9 µg/dl (P<0.0005 and controls (68.9 µg/dl versus 129.9 µg/dl (P<0.0005 but no significant difference have seen between serum zinc levels of early and advanced breast cancer patients (68.9 µg/dl versus 72.9 µg/dl (P<0.05. Serum zinc levels were not decreased in patients with benign breast disease

  11. THE ZN-SITE IN BOVINE COPPER, ZINC SUPEROXIDE-DISMUTASE STUDIED BY CD-111 PAC

    DEFF Research Database (Denmark)

    Kofod, Pauli; Bjerrum, Morten J.; Bauer, Rogert

    1991-01-01

    The active site in bovine copper, zinc superoxide dismutase (Cu2. Zn2 SOD) has been studied by 111Cd time differential Perturbed Angular Correlation (PAC) on enzyme with Zn2+ replaced by excited 'Cd2+. The PAC spectra obtained for both the oxidized and the reduced form of Cu2Cd2SOD show no asymme......The active site in bovine copper, zinc superoxide dismutase (Cu2. Zn2 SOD) has been studied by 111Cd time differential Perturbed Angular Correlation (PAC) on enzyme with Zn2+ replaced by excited 'Cd2+. The PAC spectra obtained for both the oxidized and the reduced form of Cu2Cd2SOD show...

  12. Effects of zinc pyrithione and copper pyrithione on microbial community function and structure in sediments

    DEFF Research Database (Denmark)

    Petersen, DG; Dahllof, I.; Nielsen, LP

    2004-01-01

    The effects of the new antifouling biocides, zinc pyrithione (ZPT) and copper pyrithione (CPT), on microbial communities in estuarine sediments were studied in microcosms. As functional endpoints, fluxes of nutrients (NO3-, NH4+, HPO42-, Si(OH)(4)) and protein synthesis ([C-14] leucine incorporat......The effects of the new antifouling biocides, zinc pyrithione (ZPT) and copper pyrithione (CPT), on microbial communities in estuarine sediments were studied in microcosms. As functional endpoints, fluxes of nutrients (NO3-, NH4+, HPO42-, Si(OH)(4)) and protein synthesis ([C-14] leucine...... of ZPT, suggesting growth of tolerant opportunistic species....

  13. Copper, zinc, and magnesium tissue and serum levels in patients with cervical carcinoma.

    Science.gov (United States)

    Altintas, A; Vardar, M A; Gönlüsen, F; Atay, Y; Evrüke, C; Arpaci, A; Aridogan, N

    1995-01-01

    Serum and cervical tissue copper (Cu), zinc (Zn) and magnesium (Mg) levels were determined by atomic absorption spectrophotometry in 65 women with cervical carcinoma and compared with levels in 30 healthy women. The patients mean serum Cu level (184.8 +/- 12.3 mugr/dl) was significantly higher than the control group (p cancerous tissues of patients with cervical carcinoma were not statistically significant (p > 0.05). There was also no significant difference between FIGO Stage I and IIA patients according to their serum and tissue concentrations of these trace elements. We concluded that serum and tissue copper, zinc and magnesium determinations have no use in cervical carcinoma management.

  14. Relation between anemia and blood levels of lead, copper, zinc and iron among children

    OpenAIRE

    Morsy Amal A; Abd el-hafez Manal A; Zaher Manal M; Hegazy Amal A; Saleh Raya A

    2010-01-01

    Abstract Background Anemia is a health problem among infants and children. It is often associated with a decrease in some trace elements (iron, zinc, copper) and an increase in heavy metals as lead. This study was done to determine the association of blood lead level > 10 μg/dl, with the increased risk to anemia, also, to investigate the relationship between anemia and changes in blood iron, zinc and copper levels, and measure lead level in drinking water. The study is a cross-sectional perfo...

  15. Copper-Zinc Superoxide Dismutase: A Unique Biological "Ligand" for Bioinorganic Studies.

    Science.gov (United States)

    Valentine, Joan Selverstone; de Freitas, Duarte Mota

    1985-01-01

    Discusses superoxide dismutase (SOD) research and the properties of copper, zinc (Cu, Zn)-SOD. Emphasizes the controversy concerning the role of Cu,Zn-SOD and other SOD enzymes as protective agents in reactions involving dioxygen metabolism, and the properties of Cu, Zn-SOD that make it an interesting biological ligand for physical studies of…

  16. Day-to-Day Variations in Iron, Zinc and Copper in Breast Milk of Guatemalan Mothers

    NARCIS (Netherlands)

    Dhonukshe-Rutten, R.A.M.; West, C.E.; Schümann, K.; Bulux-Hernandes, J.; Solomons, N.W.

    2005-01-01

    Objective: To assess the within-subject and between-subject coefficients of variation (CV) of iron, zinc and copper concentrations in the milk of Guatemalan mothers. Methods: We performed a cross-sectional study in lactating women who had delivered a healthy infant 1 to 6 months previously in two lo

  17. ANTIMICROBIAL ACTIVITY OF COPPER AND ZINC ACCUMULATED BY EASTERN OYSTER AMEBOCYTES

    Science.gov (United States)

    Fisher, William S. Submitted. Antimicrobial Activity of Copper and Zinc Accumulated by Eastern Oyster Amebocytes. J. Shellfish Res. 54 p. (ERL,GB 1196). The distribution of eastern oysters Crassostrea virginica near terrestrial watersheds has led to a general impression t...

  18. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant G

  19. Investigation of the effects of dietary protein source on copper and zinc bioavailability in rainbow trout

    Science.gov (United States)

    Limited research has examined the effects that dietary protein sources have on copper (Cu) and Zinc (Zn) absorption, interactions and utilization in rainbow trout. Therefore, the objective of the first trial was to determine what effect protein source (plant vs. animal based), Cu source (complex vs....

  20. Comparison of serum levels of copper and zinc among multiple sclerosis patients and control group.

    Directory of Open Access Journals (Sweden)

    Behnaz Sedighi

    2013-12-01

    Full Text Available There have been several studies done on the role of metals in the occurrence of multiple sclerosis (MS disease, but their roles have not been confirmed yet. Because of the lack of information on this issue, this study compared the serum level of copper and zinc in MS patients with their levels in a control group.This was an analytical, cross-sectional study conducted in Kerman (a medium size city, Iran. We assessed the serum level of copper and zinc in 58 MS patients and 39 healthy individuals, who were selected from the relatives of cases and matched for age and sex.The average serum level of Copper in cases and controls were 93.7 and 88.9 ml/dl, respectively. The corresponding numbers for Zinc were 36.7 and 40.9 ml/dl, respectively. There was no significant difference between the two groups (copper: P = 0.459; zinc: P = 0.249.The groups were matched for age, sex, and family. However, we did not find a considerable difference between the level of these metals in MS patients and controls.

  1. DETERMINATION OF COPPER AND ZINC IN MINERAL WATERS BY ATOMIC ABSORPTION SPECTROPHOTOMETRY

    Directory of Open Access Journals (Sweden)

    Tatiana Mitina

    2011-12-01

    Full Text Available The content of copper and zinc in mineral waters were determined by atomic spectroscopy with preliminary extraction of metals. Validation of the technique was carried out by the method of standard additions and proved the reliability of analytical data.

  2. Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000-2010

    Science.gov (United States)

    Wu, Q. R.; Wang, S. X.; Zhang, L.; Song, J. X.; Yang, H.; Meng, Y.

    2012-07-01

    China is the largest anthropogenic mercury emitter in the world, where primary nonferrous metal smelting process is regarded as one of the most significant emission sources. In this study, atmospheric mercury emissions from primary zinc, lead and copper smelters in China during 2000-2010 were estimated using a technology-based methodology with comprehensive consideration of mercury concentration in concentrates, smelting process, mercury removal efficiencies of air pollution control devices (APCDs) and installation rate of a certain type of APCD combination. Our study indicated that atmospheric mercury emission from nonferrous metal smelters in 2000, 2003, 2005, 2007 and 2010 was 67.6, 100.1 86.7 80.6 and 72.5 t, respectively. In 2010, the mercury in metal concentrates consumed by primary zinc, lead and copper smelters were 543 t. The mercury emitted into atmosphere, fly ash, other solids, waste water and acid was 72.5, 61.5, 2.0, 3774 and 27.2 t, respectively. Mercury retrieved directly from flue gas as byproduct of nonferrous metal smelting was about 2.4 t. The amounts of mercury emitted into atmosphere were 39.4, 30.6 and 2.5 t from primary zinc, lead and copper smelters, respectively. The largest amount of mercury was emitted from Gansu province, followed by Henan, Yunnan, Hunan, Inner Mongolia and Shaanxi provinces. The average mercury removal efficiency was 90.5%, 71.2% and 91.8% in zinc, lead, and copper smelters, respectively.

  3. Serum copper and zinc and the risk of death from cancer and cardiovascular disease

    NARCIS (Netherlands)

    F.J. Kok (Frans); C.M. van Duijn (Cock); F.A. de Wolf; H.A. Valkenburg (Hans); A. Hofman (Albert)

    1988-01-01

    textabstractTo investigate the association of serum copper and zinc with mortality from cancer and cardiovascular disease, the authors performed a case-control analysis of data obtained in a Dutch prospective follow-up study. Cancer (n = 64) and cardiovascular disease (n = 62) deaths and their match

  4. Laser forming of structures of zinc oxide on a surface of products from copper alloys

    Science.gov (United States)

    Abramov, D. V.; Gorudko, T. N.; Koblov, A. N.; Nogtev, D. S.; Novikova, O. A.

    Laser formation of a protective zinc oxide layer on a surface of products from copper alloys is present. This layer is formed with using of carbon nanotubes. Destructions of the basic material are avoided or minimized at laser nanostructuring of product surfaces. Such laser processing can be made repeatedly. Offered covering have self-clearing and water-repellent properties.

  5. [A primary study on chemical bound forms of copper and zinc in wheat and rape].

    Science.gov (United States)

    Wang, J; Zhu, Q; Liu, Z

    2000-08-01

    Sequential extraction method was used to analyze and distinguish various chemical bound forms of copper and zinc in rape and wheat. The results show that in these two crops, copper was mainly in the form of wate soluble and ethanol soluble, which can be easily transferred in crops. The total content of various chemical bound forms of copper was higher in aboveground part than in underground part, and their content was decreased in the order of water soluble form (W.S. form) > residual form (Re. form) > ethanol soluble form(Eth. S. form) > acid soluble form (A.S. form). Zinc was mainly in the form of acid soluble, which is hard to be transferred in crops. The total content of various chemical bound forms of zinc was lower in aboveground part than in roots, and their content was decreased in the order of A.S. form > Re. form > W.S. form > Eth. S. form. In comparing with copper, a large amount of zinc was enriched in seeds and pods of rape.

  6. Accumulation of copper and zinc by balanus amphitrite in a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Anil, A.C.; Wagh, A.B.

    @iBalanus amphitrite@@ (Cirripedia: Thoracica) a dominant fouling organism was analysed to assess the accumulation potentialities of copper and zinc. It was observed that it could accumulate Cu to 864.77 mu g g-1 dry wt. and Zn to 1937.50 mu g g-1...

  7. The impact of tertiary wastewater treatment on copper and zinc complexation.

    Science.gov (United States)

    Constantino, C; Gardner, M; Comber, S D W; Scrimshaw, M D; Ellor, B

    2015-01-01

    Tightening quality standards for European waters has seen a move towards enhanced wastewater treatment technologies such as granulated organic carbon treatment and ozonation. Although these technologies are likely to be successful in degrading certain micro-organic contaminants, these may also destroy compounds which would otherwise complex and render metals significantly less toxic. This study examined the impact of enhanced tertiary treatment on the capacity of organic compounds within sewage effluents to complex copper and zinc. The data show that granulated organic carbon treatment removes a dissolved organic carbon (DOC) fraction that is unimportant to complexation such that no detrimental impact on complexation or metal bioavailability is likely to occur from this treatment type. High concentrations of ozone (>1 mg O3/mg DOC) are, however, likely to impact the complexation capacity for copper although this is unlikely to be important at the concentrations of copper typically found in effluent discharges or in rivers. Ozone treatment did not affect zinc complexation capacity. The complexation profiles of the sewage effluents show these to contain a category of non-humic ligand that appears unaffected by tertiary treatment and which displays a high affinity for zinc, suggesting these may substantially reduce the bioavailability of zinc in effluent discharges. The implication is that traditional metal bioavailability assessment approaches such as the biotic ligand model may overestimate zinc bioavailability in sewage effluents and effluent-impacted waters.

  8. Corrosion of carbon steel, zinc and copper by air pollution in Chongqing

    Institute of Scientific and Technical Information of China (English)

    YE Di; ZHAO Da-wei; CHEN Gang-cai; ZHANG Dong-bao

    2007-01-01

    This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Countries. We performed field exposure tests of carbon steel, zinc and copper at an urban site Guanyinqiao and a rural site Tieshanping inChongqing, then used grey relational analysis, based on the database of the whole corrosion project, to determine the order of the effect of environmental factors on corrosion rates of tested metals, and established dose-response functions for these three metals. The results showed that the two crucial agents of acidic environment, SO2 and H+, were common factors that contributed most to the corrosion of the tested metals. The established dose-response functions for outdoor carbon steel and zinc are proved applicable to use in Chongqing, but the function for copper needs further modifying. We employed these dose-response functions and general environmental data to elaborate the maps of corrosion rate respectively of carbon steel and zinc by geological information system (GIS) technique which help to identify areas of high corrosion damage risk. An acceptable annual average SO2 level of 21 μg/m3 for carbon steel and that of 61 μg/m3 for zinc are also put forward to control the air pollution impact on atmospheric corrosion in Chongqing urban areas.

  9. Examination of the Oxidation Protection of Zinc Coatings Formed on Copper Alloys and Steel Substrates

    Science.gov (United States)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.

    2010-01-01

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steel substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.

  10. Zinc, copper, manganese, and selenium metabolism in patients with human growth hormone deficiency or acromegaly.

    Science.gov (United States)

    Aihara, K; Nishi, Y; Hatano, S; Kihara, M; Ohta, M; Sakoda, K; Uozumi, T; Usui, T

    1985-08-01

    This study was designed to evaluate trace metal metabolism in patients with known abnormalities of human growth hormone (hGH). The mean concentration of zinc in plasma and urine decreased in patients with hGH deficiency after hGH injection, whereas, after adenomectomy, in patients with acromegaly, zinc increased in plasma, remained the same in erythrocytes, and decreased in urine. There was a negative correlation between plasma zinc and serum hGH levels and a positive correlation between urinary zinc excretion and serum hGH levels in acromegaly. In hGH deficiency, the copper content remained unchanged in plasma and erythrocytes and rose in urine after treatment; however, in acromegaly, the copper content increased in plasma and remained unchanged in erythrocytes and urine after surgery. The mean concentration of erythrocyte manganese did not change significantly after treatment in patients with hGH deficiency or acromegaly, but the pre-hGH treatment level of erythrocyte manganese in hGH deficiency was lower than in the controls. Plasma selenium concentrations were decreased in hGH deficiency and increased in acromegaly patients after therapy. These results suggest that hGH affects the metabolism of zinc, copper, manganese, and selenium.

  11. Zinc, ferritin, magnesium and copper in a group of Egyptian children with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Mahmoud Magdy M

    2011-12-01

    Full Text Available Abstract Background Attention deficit hyperactivity disorder is a behavioral syndrome of childhood characterized by inattention, hyperactivity and impulsivity. There were many etiological theories showed dysfunction of some brain areas that are implicated in inhibition of responses and functions of the brain. Minerals like zinc, ferritin, magnesium and copper may play a role in the pathogenesis and therefore the treatment of this disorder. Objective This study aimed to measure levels of zinc, ferritin, magnesium and copper in children with attention deficit hyperactivity disorder and comparing them to normal. Methods This study included 58 children aged 5-15 years with attention deficit hyperactivity disorder attending Minia University Hospital from June 2008 to January 2010. They were classified into three sub-groups: sub-group I included 32 children with in-attentive type, sub-group II included 10 children with hyperactive type and sub-group III included 16 children with combined type according to the DSM-IV criteria of American Psychiatric Association, 2000. The control group included 25 apparently normal healthy children. Results Zinc, ferritin and magnesium levels were significantly lower in children with attention deficit hyperactivity disorder than controls (p value 0.04, 0.03 and 0.02 respectively, while copper levels were not significantly different (p value 0.9. Children with inattentive type had significant lower levels of zinc and ferritin than controls (p value 0.001 and 0.01 respectively with no significant difference between them as regards magnesium and copper levels (p value 0.4 and 0.6 respectively. Children with hyperactive type had significant lower levels of zinc, ferritin and magnesium than controls (p value 0.01, 0.02 and 0.02 respectively with no significant difference between them as regards copper levels (p value 0.9. Children with combined type had significant lower levels of zinc and magnesium than controls (p value 0

  12. Iron supplementation in pregnancy and breastfeeding and iron, copper and zinc status of lactating women from a human milk bank.

    Science.gov (United States)

    Mello-Neto, Julio; Rondó, Patricia Helen Carvalho; Oshiiwa, Marie; Morgano, Marcelo Antonio; Zacari, Cristiane Zago; dos Santos, Mariana Lima

    2013-04-01

    This study evaluated the influence of iron supplementation in pregnancy and breastfeeding on iron status of lactating women from a Brazilian Human Milk Bank. Blood and mature breast milk samples were collected from 145 women for assessment of iron status, as well as copper and zinc status. Haemoglobin, serum iron and ferritin were determined, respectively, by electronic counting, colorimetry and chemiluminescence. Transferrin and ceruloplasmin were analysed by nephelometry. Serum copper and zinc were measured by atomic absorption spectrophotometry, and serum alkaline phosphatase was measured by a colorimetric method. Iron, zinc and copper in breast milk were determined by spectrometry. Mean values of iron, copper and zinc (blood and breast milk) were compared by ANOVA, followed by Tukey's test. Iron supplementation was beneficial to prevent anaemia in pregnancy but not effective to treat anaemia. During breastfeeding, iron supplementation had a negative effect on maternal copper status, confirming an interaction between these micronutrients.

  13. Serum Zinc, Copper, Magnesium and Selenium Levels in Children with Helicobacter Pylori Infection.

    Science.gov (United States)

    Öztürk, Nurinnisa; Kurt, Nezahat; Özgeriş, Fatma Betül; Baygutalp, Nurcan Kılıç; Tosun, Mahya Sultan; Bakan, Nuri; Bakan, Ebubekir

    2015-06-01

    Helicobacter pylori infection can cause disease from mild to severe that may be accompanied by micronutrient deficiencies. We aimed to investigate serum zinc, copper, magnesium and selenium levels in Helicobacter pylori positive children. Thirty-four children, with chronic abdominal pain and diag-nosed to be Helicobacter pylori-positive and 20 healthy children with the same demo-graphic characteristics were included in the study. Serum zinc, copper and magnesium levels were measured in the flame unit of atomic absorption spectrophotometer, selenium levels were measured in the graphite unit of the same atomic absorption spectrophotometer. Serum zinc levels were significantly higher and serum magnesium levels were significantly lower (p0.05). There was no significant difference between serum selenium levels of two groups. We concluded that in Helicobacter pylori-positive children, many trace elements and mineral metabolism may change.

  14. Lead, copper and zinc biosorption from bicomponent systems modelled by empirical Freundlich isotherm

    Energy Technology Data Exchange (ETDEWEB)

    Sag, Y.; Kaya, A.; Kutsal, T. [Dept. of Chemical Engineering, Hacettepe Univ., Beytepe, Ankara (Turkey)

    2000-07-01

    The biosorption of lead, copper and zinc ions on Rhizopus arrhizus has been studied for three single-component and two binary systems. The equilibrium data have been analysed using the Freundlich adsorption model. The characteristic parameters for the Freundlich adsorption model have been determined and the competition coefficients for the competitive biosorption of Pb(II)-Cu(II) at pH 4.0 and 5.0, and Pb(II)-Zn(II) at pH 5.0 have been calcualted. For the individual single-component isotherms, lead has the highest biosorption capacity followed by copper, then zinc. The capacity of lead in the two binary systems is always significantly greater than those of the other metal ions, in agreement with the single-component data. Only a partial selectivity for copper ions has been obtained at pH 4.0. (orig.)

  15. Copper and zinc content in wild game shot with lead or non-lead ammunition - implications for consumer health protection.

    Science.gov (United States)

    Schlichting, Daniela; Sommerfeld, Christine; Müller-Graf, Christine; Selhorst, Thomas; Greiner, Matthias; Gerofke, Antje; Ulbig, Ellen; Gremse, Carl; Spolders, Markus; Schafft, Helmut; Lahrssen-Wiederholt, Monika

    2017-01-01

    The aim of this study was to examine the contamination of game meat with copper and zinc and establish whether the use of alternative (non-lead) ammunition can lead to higher or unsafe levels of copper and zinc in the meat of roe deer, wild boar and red deer. The research project "Safety of game meat obtained through hunting" (LEMISI) was conducted in Germany with the purpose of examining the entry of lead as well as copper and zinc into the meat of hunted game when using either lead or non-lead ammunition. The outcome of this study shows that the usage of both lead-based ammunition and alternative non-lead ammunition results in the entry of copper and zinc into the edible parts of the game. Using non-lead ammunition does not entail dangerously elevated levels of copper and zinc, so replacing lead ammunition with alternative ammunition does not introduce a further health problem with regard to these metals. The levels of copper and zinc in game meat found in this study are in the range found in previous studies of game. The content of copper and zinc in game meat is also comparable to those regularly detected in meat and its products from livestock (pig, cattle, sheep) for which the mean human consumption rate is much higher. From the viewpoint of consumer health protection, the use of non-lead ammunition does not pose an additional hazard through copper and zinc contamination. A health risk due to the presence of copper and zinc in game meat at typical levels of consumer exposure is unlikely for both types of ammunition.

  16. Serum Levels of Zinc, Copper, Vitamin B12, Folate and Immunoglobulins in Individuals with Giardiasis

    Directory of Open Access Journals (Sweden)

    M Zarebavani

    2012-12-01

    Full Text Available Background: Giardia lamblia is one of the most important intestinal parasites. The aim of this study was to measure serum levels of IgA, IgE, zinc, copper, vitamin B12 and folate in individuals with giardiasis in comparison to normal subjects.Methods: The study was carried out among 49 Giardia positive and 39 age and sex matched healthy volunteers. Examination of stool samples was done by direct wet smear and formol-ether concentration method. Serum samples were obtained for further laboratory examination. IgA levels were measured by Single Radial Immune Diffusion (SRID. IgE levels were measured by ELISA kit. Zinc and copper levels was measured by Ziestchem Diagnostics Kit and colorimetric endpoint-method respectively. Vitamin B12 and folate levels were measured by DRG Diagnostics Kit and Enzyme Immunoassay method respectively. All data were analyzed using SPSS version 17.Results: There was a statistically significant difference in IgA, IgE, copper and zinc levels between positive and negative groups (P<0.05. There was no significant difference between vitamin B12 and folate levels between the two groups. Mean values of Giardia positive and negative groups for IgA were 309.26 and 216.89 mg/dl, IgE 167.34 and 35.49 IU/ml, copper 309.74 and 253.61 µg/dl and zinc 69.41 and 144.75 µg/dl respectively.Conclusion: The results showed levels of IgA may correlate more closely with giardiasis than IgE. Regarding trace elements, giardiasis elevated serum copper levels, while it decreased serum zinc. Finally, there was no significant difference in serum levels of vitamin B12 and folic acid between the two groups.

  17. Effect of post-treatment processing on copper migration from Douglas-fir lumber treated with ammoniacal copper zinc arsenate.

    Science.gov (United States)

    Ye, Min; Morrell, Jeffrey J

    2015-04-01

    Migration of heavy metals into aquatic environments has become a concern in some regions of the world. Many wood preservatives are copper based systems that have the potential to migrate from the wood and into the surrounding environment. Some wood treaters have developed "best management practices" (BMPs) that are designed to reduce the risk of migration, but there are few comparative studies assessing the efficacy of these processes. The potential for using various heating combinations to limit copper migration was assessed using ammoniacal coper zinc arsenate treated Douglas-fir lumber. Kiln drying and air drying both proved to be the most effective methods for limiting copper migration, while post-treatment steaming or hot water immersion produced more variable results. The results should provide guidance for improving the BMP processes.

  18. Selective recovery of copper and zinc from mine dump waters of mining enterprises in precipitates

    Science.gov (United States)

    Orekhova, N. N.; Tarybaeva, G. A.; Muravev, D. S.

    2017-01-01

    The acid mine dump waters at mining companies that mining the copper and copperzinc sulphide ore have the high concentrates of metals and classified in our view as the raw materials for selective recovery of metals in precipitates comparable in quality with concentrates of ores enrichment and suitable for further metallurgical processing. Authors have implemented three two-stage schemes for sequential extraction of copper and zinc: cementation-sulphide precipitation, galvanocoagulation-sulphide precipitation, precipitation-precipitation. Moreover, parameters of processes and quality of the obtained precipitates have described. The achieved copper recovery is 89% and 94% respectively with the application of cementation and galvanocoagulation, in sulphide precipitate exceeded 75%. Furthermore, the copper recovery from decoppering in precipitates amounted to more than 65%. Zinc-containing precipitates because of coprecipitation of iron, magnesium and calcium contain zinc from 14% to 28%, in two to three times less than the quality of conditioned zinc concentrates. The content of precipitates allows to apply them for additional charging to concentrates of enrichment or for the production of metals in metallurgical treatment. As a result of the studying the effect of reduced total salinity (S) on mass fraction of zinc in precipitate (β) with the constant concentration of zinc (SZn), the changes in concentration with constant salinity and reduction in total salinity (S) with constant ratio S/CZn, the following dependencies have obtained: ≤ft( {{S}} \\right):{≤ft( {{{\\partial β } \\over {\\partial {cZn}}}} \\right)_S} > 0,{≤ft( {{{\\partial β } \\over {\\partial S}}} \\right){C_{Zn}}} < 0, in the range of an index S from 4.5 to 90.0 g/L {≤ft( {{{\\partial β } \\over {\\partial S}}} \\right){{{C_{Zn}} \\over S}}} < 0, where {≤ft( {{{\\partial x} \\over {\\partial y}}} \\right)_Z} is a partial derivative of x to y, whereas the value z is fixed.

  19. Synthesis and characterization of copper zinc oxide nanoparticles obtained via metathesis process

    Science.gov (United States)

    Phoohinkong, Weerachon; Foophow, Tita; Pecharapa, Wisanu

    2017-09-01

    Copper-doped zinc oxide nanoparticles were successfully synthesized by grinding copper acetate and zinc acetate powder with different starting molar ratios in combined with sodium hydroxide. The effect of initial copper and zinc molar ratios on the product samples was investigated and discussed. Relevant ligand coordination type of reactant acetate salt precursors and product samples were investigated by Fourier transform infrared spectroscopy (FTIR). The particle shapes and surface morphologies were characterized by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Phase structures of prepared samples were studied by x-ray powder diffraction (XRD) and x-ray absorption near-edge spectroscopy (XANES) was applied to investigate the local structure of Cu and Zn environment atoms. The results demonstrate that the, particle size of as-synthesized products affected by copper concentration in the precursor trend to gradually decreases from nanorod shape with diameter around 50-100 nm to irregular particle structure around 5 nm associated with an increase in the concentration of copper in precursor. Moreover, it is noticed that shape and morphology of the products are strongly dependent on Cu:Zn ratios during the synthesis. Nanocrystallines Cu-doped ZnO by the substitution in Zn site with a high crystallization degree of hexagonal wurtzite structure were obtained. This synthesis technique is suggested as a potential effective technique for preparing copper zinc oxide nanoparticles with various atomic ratio in wide range of applications. Contribution at the 4th Southeast Asia Conference on Thermoelectrics 2016 (SACT 2016), 15-18 December 2016, Da Nang City, Vietnam.

  20. Effects of feeding elevated concentrations of copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle.

    Science.gov (United States)

    Jacob, Megan E; Fox, J Trent; Nagaraja, T G; Drouillard, James S; Amachawadi, Raghavendra G; Narayanan, Sanjeev K

    2010-06-01

    Cattle are fed elevated concentrations of copper and zinc for growth promotion. The potential mechanisms of growth promotional effects of these elements are attributed to their antimicrobial activities, similar to that of antibiotics, in that gut microbial flora are altered to reduce fermentation loss of nutrients and to suppress gut pathogens. Copper and zinc fed at elevated concentrations may select for bacteria that are resistant not only to heavy metals but also to antibiotics. Our objectives were to determine the effects of feeding elevated copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle. Twenty heifers, fed corn-based high-grain diets, were randomly assigned to treatments in a 2 x 2 factorial arrangement with 1X or 10X National Research Council recommended copper and/or zinc. Feces, collected on days 0, 14, and 32, were cultured for commensal bacteria (Escherichia coli and Enterococcus) to determine their susceptibilities to copper, zinc, and antibiotics. Fecal DNA was extracted to detect tcrB gene and quantify erm(B) and tet(M) genes. In E. coli and Enterococcus sp., minimal differences in minimum inhibitory concentrations (MICs) of copper, zinc, and antibiotics were noticed. The mean copper MIC for E. coli increased (p cattle had marginal effects on antimicrobial susceptibilities of fecal E. coli and enterococci.

  1. Woodlouse Porcellio scaber as a biological indicator of zinc, cadmium, lead, and copper pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hopkin, S.P.; Hardisty, G.N.; Martin, M.H.

    1986-01-01

    The amounts of zinc, cadmium, lead, and copper were determined in the hepatopancreas and whole body of the woodlouse. Porcellio scaber (Crustacea, Isopoda) and soil and leaf litter collected from 89 sites in the counties of Avon and Somerset, south-west England. Maps were drawn to compare the regional distribution of concentrations of metals in the samples. The main source of zinc, cadmium, lead, and copper pollution was centered on Avonmouth to the north-west of Bristol, the site of a primary zinc, lead, and cadmium smelting works. Concentrations of all four metals in the hepatopancreas, whole woodlice, soil and leaf litter were above background levels over a large area on all maps which, in the case of cadmium in the hepatopancreas, extended for 25 km to the east of the smelting works. The correlation coefficients between the concentrations of each metal in woodlice and soil, and between woodlice and leaf litter, were positive and statistically significant in all cases. At individual sites, however, particularly those associated with disused mining areas, rubbish tips or busy roads, the concentrations of zinc, cadmium, lead, and copper in woodlice could not have been predicted accurately from the levels of metals in leaf litter or soil due to the large scatter of data points along the lines of best fit.

  2. Effects of enhanced zinc and copper in drinking water on spatial memory and fear conditioning

    Science.gov (United States)

    Chrosniak, L.D.; Smith, L.N.; McDonald, C.G.; Jones, B.F.; Flinn, J.M.

    2006-01-01

    Ingestion of enhanced zinc can cause memory impairments and copper deficiencies. This study examined the effect of zinc supplementation, with and without copper, on two types of memory. Rats raised pre- and post-natally on 10 mg/kg ZnCO3 or ZnSO4 in the drinking water were tested in a fear-conditioning experiment at 11 months of age. Both zinc groups showed a maladaptive retention of fearful memories compared to controls raised on tap water. Rats raised on 10 mg/kg ZnCO3, 10 mg/kg ZnCO3 + 0.25 mg/kg CuCl2, or tap water, were tested for spatial memory ability at 3 months of age. Significant improvements in performance were found in the ZnCO3 + CuCl2 group compared to the ZnCO3 group, suggesting that some of the cognitive deficits associated with zinc supplementation may be remediated by addition of copper. ?? 2005 Elsevier B.V. All rights reserved.

  3. Diagnostic value of the copper/zinc ratio in digestive cancer: a case control study.

    Science.gov (United States)

    Poo, J L; Romero, R R; Robles, J A; Montemayor, A C; Isoard, F; Estanes, A; Uribe, M

    1997-01-01

    The aim of this study was to assess the accuracy of the copper/zinc ratio (Cu/Zn ratio) in the evaluation of a large group of patients with digestive cancer compared to gender and age-matched control subjects. A total of 282 patients was studied and separated into three groups: group I (n = 75), patients with digestive cancer, group II (n = 112), patients with benign digestive disease, and group III (n = 95), healthy subjects. Serum levels of copper and zinc were measured by atomic absorption spectrophotometry. The results showed that the serum levels of copper (mg/dL) in patients with digestive cancer (91.6 +/- 27.3, p cancer (1.45 +/- .58, p copper/zinc ratio was 82.2%, with a specificity of 65.7%, a positive predictive value of 45.8% and a negative predictive value of 91.3%. In conclusion, Cu/Zn ratio was found to be considerably higher in patients with digestive cancer compared to age- and gender-matched controls, with a sensitivity of 82.2% that might be useful in the evaluation of suspected malignancy.

  4. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    Energy Technology Data Exchange (ETDEWEB)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak P.; Woodruff, Teresa K.; O' Halloran, Thomas V.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes

  5. Magnesium, zinc and copper estimation in children with attention ...

    African Journals Online (AJOL)

    Farida Elbaz

    2016-05-14

    May 14, 2016 ... Received 17 January 2016; accepted 21 April 2016. Available ... These functions have been shown to be affected by moderate zinc ... mood swings [10]. Given the ... Participants. We evaluated 50 children (age range 6–16 years) chosen ran- ..... ADHD on the basis of serum, red cell and hair analyses.

  6. Plasma copper, zinc and blood selenium concentrations of sheep ...

    African Journals Online (AJOL)

    Veek. 1 990, 20(3). Concentrations of plasma mpper, plasma zinc and blood selenium ... these breeds make them suitable for meat production in arid, cxtonsive regions. ..... effect of high levels of dietary molyMenum and sulphate on SA Mutton ...

  7. Selenium, copper and zinc in seminal plasma of men with varicocele, relationship with seminal parameters.

    Science.gov (United States)

    Camejo, María Isabel; Abdala, Lyzeth; Vivas-Acevedo, Giovanny; Lozano-Hernández, Ricardo; Angeli-Greaves, Miriam; Greaves, Eduardo D

    2011-12-01

    Varicocele has been associated with decrease in seminal parameters. Selenium (Se), copper (Cu), and zinc (Zn) are trace elements essential for normal spermatogenesis of mammals and play a critical role as antioxidant defense system enzymes. Se, Cu, and Zn are associated with sperm quality in fertile and infertile men. However, there is little information about Se, Cu, and Zn concentrations in semen in patients with varicocele and its association with seminal parameters. The purpose of this study was to determine the concentrations of Se, Cu, and Zn in semen of patients with varicocele and the relationship with seminal parameters. Total Reflection X-Ray Fluorescence was used for the fist time in the seminal fluid analysis. The concentration of selenium in men with varicocele was smaller than the normozoospermic group, while no differences were observed for both concentrations of zinc and copper. A significant positive correlation between zinc and selenium concentration was observed. Selenium in seminal plasma correlates with a good spermatozoa concentrations, motility, and morphology. Additionally, a significant positive correlation was observed between zinc levels and sperm count. In conclusion, a decrease in selenium concentration was associated with detriment of seminal parameters. A study should be conducted to evaluate the benefits of both zinc and selenium supplementation to improve seminal parameters in patients with varicocele.

  8. The content of copper and zinc in human ulcered atherosclerotic plaque

    Directory of Open Access Journals (Sweden)

    Radak Đorđe

    2004-01-01

    Full Text Available INTRODUCTION Copper and zinc have significant antiatherogenic effect influencing activity of antioxidant enzyms (giutathion-peroxidase i superoxid-dismutase, mechanism of apoptosis and other mechanisms. Few studies showed increased copper and zinc concentration in atherosclerotic plaque in comparison to normal vascular tissue. AIM The aim of the study was to compare copper and zinc concentrations in carotid artery tissue without significant atherosclerotic changes and human ulcered atherosclerotic plaque. MATERIAL AND METHODS Study was conducted on 66 patients. Carotid endarterectomy due to the significant carotid atherosclerotic changes with cerebrovascular disorders was performed in 54 patients (81.8%. Control group consisted of 12 patients (18.2% without carotid atherosclerotic changes operated due to the symptomatic kinking and coiling of carotid artery. Operated group consisted of 38 man (62.96% and 16 woman (37.04%. Control group had the same number of patients: six men (50% and six women (50%. Preoperatively, all patients were examined by vascular surgeon, neurologist and cardiologist. Duplex sonografy of carotid and vertebral arteries was performed by Aloca DSD 630 ultrasound with mechanical and linear transducer 7.7 MHz. Indication for surgical treatment was obtained according to non-invasive diagnostic protocol and neurological symptoms. Copper and zinc concentration in human ulcered atherosclerotic plaque and carotid artery segment were estimated by spectophotometry (Varian AA-5. RESULTS Average age of our patients was 59.8±8.1 years. For males average age was 76.1 ±9.8 years. And for females 42.4±5.8 years. In group with carotid endarterectomy female patients were significantly younger than male patients (p<0.01. In group with carotid endarterectomy clinically determined neurological disorders were found in 47 patients (87.03%-35 male (74.47% and 12 female patients (25.53%. Regarding risk factors for cardiovascular diseases, no

  9. Jiangxi Copper Lead Zinc Smelting Project with an Investment of Nearly 5 billion yuan Started Construction in Hukou

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Recently,Jiangxi Copper Group Lead Zinc Smelting Project,a key construction project of Jiangxi Province’s "Ten,Hundred,Thousand Project" (referring to the plan to have a number of leading enterprises with annual sales topping

  10. The study on microstructure and microwave-absorbing properties of lithium zinc ferrites doped with magnesium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xiaofei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Sun Kangning [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China)], E-mail: xiaowenhoulvbu1@yahoo.com.cn; Sun Chang; Leng Liang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China)

    2009-09-15

    Lithium zinc ferrites doped with magnesium and copper were prepared by means of a combination of sol-gel method and subsequent calcination. The crystalline phase and microstructure of different doped lithium zinc ferrites were measured by X-ray powder diffraction and scanning electronic microscopy analysis. The results indicate that there are no remarkable differences in phase composition between pure lithium zinc ferrite and the as-doped lithium zinc ferrites. The effects of magnesium and copper dopants on microwave absorption in low-frequency region were investigated by the transmission/reflection coaxial line method. It was found from the present work that doping with copper improved microwave-absorbing properties, while doping with magnesium had little effect on microwave absorption of pure lithium zinc ferrite.

  11. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson's disease.

    Science.gov (United States)

    Gorell, J M; Johnson, C C; Rybicki, B A; Peterson, E L; Kortsha, G X; Brown, G G; Richardson, R J

    1999-01-01

    A population-based case-control study was conducted in the Henry Ford Health System (HFHS) in metropolitan Detroit to assess occupational exposures to manganese, copper, lead, iron, mercury and zinc as risk factors for Parkinson's disease (PD). Non-demented men and women 50 years of age who were receiving primary medical care at HFHS were recruited, and concurrently enrolled cases (n = 144) and controls (n = 464) were frequency-matched for sex, race and age (+/- 5 years). A risk factor questionnaire, administered by trained interviewers, inquired about every job held by each subject for 6 months from age 18 onward, including a detailed assessment of actual job tasks, tools and environment. An experienced industrial hygienist, blinded to subjects' case-control status, used these data to rate every job as exposed or not exposed to one or more of the metals of interest. Adjusting for sex, race, age and smoking status, 20 years of occupational exposure to any metal was not associated with PD. However, more than 20 years exposure to manganese (Odds Ratio [OR] = 10.61, 95% Confidence Interval [CI] = 1.06, 105.83) or copper (OR = 2.49, 95% CI = 1.06,5.89) was associated with PD. Occupational exposure for > 20 years to combinations of lead-copper (OR = 5.24, 95% CI = 1.59, 17.21), lead-iron (OR = 2.83, 95% CI = 1.07,7.50), and iron-copper (OR = 3.69, 95% CI = 1.40,9.71) was also associated with the disease. No association of occupational exposure to iron, mercury or zinc with PD was found. A lack of statistical power precluded analyses of metal combinations for those with a low prevalence of exposure (i.e., manganese, mercury and zinc). Our findings suggest that chronic occupational exposure to manganese or copper, individually, or to dual combinations of lead, iron and copper, is associated with PD.

  12. Survival in amoeba--a major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a "copper pathogenicity island".

    Science.gov (United States)

    Hao, Xiuli; Lüthje, Freja L; Qin, Yanan; McDevitt, Sylvia Franke; Lutay, Nataliya; Hobman, Jon L; Asiani, Karishma; Soncini, Fernando C; German, Nadezhda; Zhang, Siyu; Zhu, Yong-Guan; Rensing, Christopher

    2015-07-01

    The presence of metal resistance determinants in bacteria usually is attributed to geological or anthropogenic metal contamination in different environments or associated with the use of antimicrobial metals in human healthcare or in agriculture. While this is certainly true, we hypothesize that protozoan predation and macrophage killing are also responsible for selection of copper/zinc resistance genes in bacteria. In this review, we outline evidence supporting this hypothesis, as well as highlight the correlation between metal resistance and pathogenicity in bacteria. In addition, we introduce and characterize the "copper pathogenicity island" identified in Escherichia coli and Salmonella strains isolated from copper- and zinc-fed Danish pigs.

  13. The Effect of Salinity on the Release of Copper (Cu), Lead (Pb) And Zinc (Zn) from Tailing

    OpenAIRE

    Apriani Sulu Parubak; Eko Sugiharto; Mudjiran Mudjiran

    2010-01-01

    The effects of salinity on the release of copper (Cu), lead (Pb) and zinc (Zn) in tailing sediment have been studied by stripping voltammetry. The purpose of the research is to know the effect of salinity on the release of metals with certain pH, conductivity and variety of metals. Simultaneous determination of copper, lead and zinc in tailing was done by Differential Pulse Anodic Stripping Voltammetry (DPASV) onto hanging mercury drop electrode (HMDE) and nitric acid 65% as support electroly...

  14. Zinc therapy improves adverse effects of long term administration of copper on epididymal sperm quality of rats

    OpenAIRE

    Jalil Abshenas; Homayoon Babaei

    2013-01-01

    Background: Industrial copper ingest is a common form of poisoning in animals. Zinc has an important role in the physiology of spermatozoa, in sperm production and viability. Objective: This study was set to investigate whether the adverse effects of long term copper consumption on quality of rat spermatozoa could be prevented by zinc therapy. Materials and Methods: Forty eight mature (6-8 weeks old) male rats were randomly allocated to either control (Cont, n=12) or three treatment groups ea...

  15. Influence of Rangelia vitalii (Apicomplexa: Piroplasmorida) on copper, iron, and zinc bloodstream levels in experimentally infected dogs.

    Science.gov (United States)

    Da Silva, Aleksandro S; França, Raqueli T; Costa, Marcio M; Paim, Carlos B V; Paim, Francine C; Santos, Clarissa M M; Flores, Erico M M; Eilers, Tiago L; Mazzanti, Cinthia M; Monteiro, Silvia G; do Amaral, Carlos H; Lopes, Sonia T A

    2012-10-01

    The aim of this study was to evaluate the concentrations of copper, iron, and zinc in blood serum of dogs experimentally infected with Rangelia vitalii (n  =  7) compared with uninfected controls (n  =  5). Serum metal levels were determined in blood samples collected at days 0, 10, 15, and 20 post-infection (PI). Inductively coupled plasma optical emission spectrometry was used to measure the levels of copper, iron, and zinc. Significant differences (P disease.

  16. EFFECT OF THERMAL PROCESSES ON COPPER-TIN ALLOYS FOR ZINC GETTERING

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.; Golyski, M.

    2013-11-01

    A contamination mitigation plan was initiated to address the discovery of radioactive zinc‐65 in a glovebox. A near term solution was developed, installation of heated filters in the glovebox piping. This solution is effective at retaining the zinc in the currently contaminated area, but the gamma emitting contaminant is still present in a system designed for tritium beta. A project was initiated to develop a solution to contain the {sup 65}Zn in the furnace module. Copper and bronze (a Cu/Sn alloy) were found to be candidate materials to combine with zinc‐65 vapor, using thermodynamic calculations. A series of binary Cu/Sn alloys were developed (after determining that commercial alloys were unacceptable), that were found to be effective traps of zinc vapor. The task described in this report was undertaken to determine if the bronze substrates would retain their zinc gettering capability after being exposed to simulated extraction conditions with oxidizing and reducing gases. Pure copper and three bronze alloys were prepared, exposed to varying oxidation conditions from 250 to 450{degree}C, then exposed to varying reduction conditions in He-H{sub 2} from 250-450{degree}C, and finally exposed to zinc vapor at 350{degree}C for four hours. The samples were characterized using scanning electron microscopy, X-ray diffraction, differential thermal analysis, mass change, and visual observation. It was observed that the as fabricated samples and the reduced samples all retained their zinc gettering capacity while samples in the "as-oxidized" condition exhibited losses in zinc gettering capacity. Over the range of conditions tested, i.e., composition, oxidation temperature, and reduction temperature, no particular sample composition appeared better. Samples reduced at 350{degree}C exhibited the greatest zinc capacity, although there were some testing anomalies associated with these samples. This work clearly demonstrated that the zinc gettering was not adversely

  17. Zinc therapy improves adverse effects of long term administration of copper on epididymal sperm quality of rats

    Directory of Open Access Journals (Sweden)

    Jalil Abshenas

    2013-01-01

    Full Text Available Background: Industrial copper ingest is a common form of poisoning in animals. Zinc has an important role in the physiology of spermatozoa, in sperm production and viability. Objective: This study was set to investigate whether the adverse effects of long term copper consumption on quality of rat spermatozoa could be prevented by zinc therapy. Materials and Methods: Forty eight mature (6-8 weeks old male rats were randomly allocated to either control (Cont, n=12 or three treatment groups each containing twelve animals. Animals in the first treatment group was gavaged with copper sulfate, the second treatment group was injected with zinc sulfate, and the third treatment group was given combined treatment of copper and zinc. Control animals received normal saline using the same volume and similar methods. Six rats from each group were sacrificed on day 28 and 56 after treatments for sperm quality evaluations. Results: In spite of testicular weight reduction 56 days after copper consumption in comparison to the control group (p=0.002, there was not a significant difference between the control and combined treatment of copper and zinc group (31.40±0.55 vs. 28.63±0.55, p=0.151. Administration of copper caused a significant decrease in the sperm count, viability and motility after 56 days compared to the control group. However, a complete recovery in sperm count was seen in combined treatment of copper and zinc group after 56 days compared to the control group (p=0.999 and a partial improvement was seen about the percentage of viability and motility (p<0.001. Conclusion: Adverse effects of long term consumption of copper on sperm quality could be prevented by zinc therapy in rats.

  18. COPPER, ZINC, VITAMIN–C AND OX IDATIVE STRESS CAN CAUSES IRON DEFICIENCY ANEMIA IN PREGNANT WOMEN

    Directory of Open Access Journals (Sweden)

    M.Rajeswari

    2013-02-01

    Full Text Available Pregnancy is precious for women it is the most memorable movement in her life. In pregnancy period the Copper, Zinc, vitamin C plays an important role for production of hemoglobin and controls the oxidative stress. The present study under taken to asses the causing Zinc, Copper, vitamin C and ROS, anemia in pregnant period. METERIALS & METHODS: 40 cases of 4th-8th month pregnant subjects were selected for the present study blood sample collected for estimation of Hemoglobin, Zinc, Copper vitamin C and ROS. Hemoglobin whole blood, Zinc, Copper, ROS serum, vitamin C heparinised blood. RESULTS: Significantly decreases the Hemoglobin (P<0.001. Zinc (P<0.001, Copper (0.001 vitamin C (P<0.001 MDA significantly elevation observed in pregnant women compare to normal healthy women’s are controls. CONCLUSION: Lowered levels of Zinc, Copper, vitaminC, Hemoglobin and elevated MDA concentration were consistently observed in pregnant women. These by abate the synthesis of hemoglobin for the lack of these biological substance which can leads to increase the oxidative stress.

  19. Effects of long-term zinc treatment in Japanese patients with Wilson disease: efficacy, stability, and copper metabolism.

    Science.gov (United States)

    Shimizu, Norikazu; Fujiwara, Junko; Ohnishi, Shin; Sato, Mari; Kodama, Hiroko; Kohsaka, Takao; Inui, Ayano; Fujisawa, Tomoo; Tamai, Hiroshi; Ida, Shinobu; Itoh, Susumu; Ito, Michinori; Horiike, Norio; Harada, Masaru; Yoshino, Makoto; Aoki, Tsugutoshi

    2010-12-01

    Wilson disease is an autosomal recessive disorder with copper metabolism. In Japan, the standard treatment is the administration of copper chelating agents, such as D-penicillamine and trientine. In this study, the authors used zinc acetate to treat Japanese patients with Wilson disease and investigated its efficacy. The 37 patients that comprise this study were found to have Wilson disease using clinical and biochemical tests and were administrated zinc acetate for 48 weeks. The authors followed the clinical symptoms and laboratory findings of the patients by assessing their complete blood counts, biochemical findings, as well as the results of urinalysis and special laboratory tests for copper and zinc metabolism. We also examined side effects of the treatment. Zinc acetate did not aggravate the hepatic or neurological symptoms of any of the patients. Blood biochemical analysis also did not reveal elevation of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyltranspeptidase levels. Zinc treatment did not aggravate the patients' clinical signs and/or laboratory findings. However, it did improve some clinical symptoms of the Wilson disease patients. Although this agent had some side effects, none of them were severe. The authors measured spot urinary copper excretion, which gave an indication of the efficacy of treatment and of the sufficient dosage of zinc. We recommend maintaining a spot urinary copper excretion less than 0.075-μg/mg creatinine. The authors conclude that zinc acetate is an effective and safe treatment for Japanese patients with Wilson disease.

  20. Hardness analysis and morphological characterization of copper-zinc alloys produced in pyrophosphate-based electrolytes

    Directory of Open Access Journals (Sweden)

    Lilian Ferreira de Senna

    2005-09-01

    Full Text Available In this work, copper-zinc alloy coatings on mild steel substrates were obtained in nontoxic pyrophosphate-based electrolytes, at room temperature and under continuous current. The effects of bath composition and current density on the hardness of the coatings, as well as on their morphologies, were evaluated. The results showed that the electrolyte composition, and the use of stress relieving additives strongly influence the hardness of the coatings, while the current density directly affect their morphology. Hence, for a current density of 116 A/m², copper-zinc alloy deposits with no pores or cracks were produced in a pyrophosphate-based electrolyte, especially when allyl alcohol was added to the solution.

  1. The toxicity of copper, cadmium and zinc to four different Hydra (Cnidaria: Hydrozoa).

    Science.gov (United States)

    Karntanut, Wanchamai; Pascoe, David

    2002-06-01

    An acute toxicity study of three metals to Hydra species carried out using two different assessment methods, (i) determination of the LC50 and (ii) measurement of progressive morphological changes, demonstrated that relative toxicity decreased from copper to cadmium with zinc the least toxic for all species. The latter method revealed more details of the effect on Hydra in terms of physical damage to the polyp but both methods indicated that H. viridissima was more sensitive to copper and cadmium than H. vulgaris1 (Zurich strain, male clone), H. vulgaris2 (a dioecious strain reproducing sexually and asexually) and H. oligactis (dioecious, reproducing sexually and asexually). The responses to zinc were similar for all Hydra. The possible role of metabolic interactions between H. viridissima and its symbiotic green algae in contributing to the greater sensitivity of this polyp is discussed.

  2. Different dietary lifestyles and serum zinc and copper in women of reproductive age

    Energy Technology Data Exchange (ETDEWEB)

    Breskin, M.W.; Worthington-Roberts, B.S.; Monsen, E.R.

    1986-03-01

    Nutrient intakes and biochemical measures of zinc and copper were compared in non-pregnant young women representing different dietary lifestyles, viz, those who habitually ate red meat (RM), fish or poultry (FP), or lacto-ovo-vegetarian (LV) sources of protein. All were in good health and concerned about their diets; none was using supplements or oral contraceptives. Three-day food records were analyzed for nutrient content. Serum and drinking water samples were assayed for zinc and copper (AAS), and serum, for ceruloplasmin (RID). Sign. diff. in dietary Zn or Cu content were not reflected by serum(Zn) or (Cu), but the incidence of serum(Zn) < the 95% CI for RM eaters was sign. higher in FP and LV groups (X/sup 2/ = 20.65, p < 0.001). Thus, use of diets limited in animal protein sources may be associated with an increase risk of low serum (Zn).

  3. Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.; Bose, M.A.; Kumar, S. [Indian Inst. of Technology, Kanpur (India). Dept Civil Engineering, Environmental Engineering & Management Programme

    2002-11-01

    Industrial wastewater containing heavy metals and cyanide must be treatment for removal of both metals and cyanide before disposal. The study described evaluated treatment strategies involving some indigenous adsorbents and a low-cost chelating agent for treatment of a simulated wastewater containing copper and zinc, complexed with cyanide. Treatment strategies involving three adsorbents, sulfonated coal, biosorbent G. lucidum, and iron oxide coated sand (IOCS), and a chelating agent, insoluble agro-based starch xanthate (IAX), were tested. The evaluation procedure involved comparison of the performance of these treatment strategies with that of conventional treatment. Results indicate that treatment using the chelating agent IAX has the greatest potential as an alternative to the conventional treatment technique. The three adsorbents tested, although reported to be very effective in removing copper and zinc from pure systems, exhibit diminished metal removal capacity in the presence of cyanide, and hence are unsuitable.

  4. Emerging Photovoltaics: Organic, Copper Zinc Tin Sulphide, and Perovskite-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    Shraavya Rao

    2016-01-01

    Full Text Available As the photovoltaics industry continues to grow rapidly, materials other than silicon are being explored. The aim is to develop technologies that use environmentally friendly, abundant materials, low-cost manufacturing processes without compromising on efficiencies and lifetimes. This paper discusses three of the emerging technologies, organic, copper zinc tin sulphide (CZTS, and perovskite-based solar cells, their advantages, and the possible challenges in making these technologies commercially available.

  5. Assessment of Copper and Zinc Contamination in Soils of Industrial Estates of Arak Region (Iran (

    Directory of Open Access Journals (Sweden)

    Eisa Solgi

    2015-03-01

    Full Text Available Background: Contamination of the environment due to heavy metals is a major concern to human life and the environment. This study was conducted to investigate and quantify the copper and zinc concentrations in industrial estates soil in Arak, Iran. Methods: Four industrial estates were considered for the experimental design, including Arak 1, Arak 2, Arak 3, and Ghotbe Sanaati. For preliminary understanding of soil heavy metals pollution in industrial estates, the concentrations of zinc and copper in the soil are analyzed and investigated to evaluate their concentration and environmental quality based on the contamination factor. Results: The results indicated the soils had been polluted by heavy metals due to industrial processes that concentrate these metals in the soil. Copper concentrations varied from 15.69 to 49.55 mg/kg. Zinc concentrations were found to be between 23.02 and 144.17 mg/kg. The highest concentration of Zn was found in Arak 3 region which may be due to industrial activities while the highest concentration of Cu was observed in the soil of Arak 1 region that may be due to proximity of this industrial estate to Arak city. The findings of the contamination factor showed that the heavy metals are accumulated in the soil of industrial estates that are considered low risk for contamination with zinc and copper. Conclusion: The achievements of this research showed the location of the industrial estate, proximity to highways and main roads, and the area of green space of industrial estates are important factors in determining heavy metals concentration.

  6. Zinc and copper supplementation in acute diarrhea in children: a double-blind randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Mamtani Manju

    2009-05-01

    Full Text Available Abstract Background Diarrhea causes an estimated 2.5 million child deaths in developing countries each year, 35% of which are due to acute diarrhea. Zinc and copper stores in the body are known to be depleted during acute diarrhea. Our objectives were to evaluate the efficacy of zinc and copper supplementation when given with standard treatment to children with acute watery or bloody diarrhea. Methods We conducted a double-blind randomized controlled clinical trial in the Department of Pediatrics at Indira Gandhi Government Medical College Nagpur, India. Eight hundred and eight children aged 6 months to 59 months with acute diarrhea were individually randomized to placebo (Pl, zinc (Zn only, and zinc and copper (Zn+Cu together with standard treatment for acute diarrhea. Results The mean duration of diarrhea from enrolment and the mean stool weight during hospital stay were 63.7 hours and 940 grams, respectively, and there were no significant differences in the adjusted means across treatment groups. Similarly, the adjusted means of the amount of oral rehydration solution or intravenous fluids used, the proportion of participants with diarrhea more than 7 days from onset, and the severity of diarrhea indicated by more than three episodes of some dehydration or any episode of severe dehydration after enrolment, did not differ across the three groups. Conclusion The expected beneficial effects of zinc supplementation for acute diarrhea were not observed. Therapeutic Zn or Zn and Cu supplementation may not have a universal beneficial impact on the duration of acute diarrhea in children. Trial registration The study was registered as an International Standard Randomized Controlled Trial (ISRCTN85071383.

  7. Zinc and copper induced changes in physiological characteristics of Vigna mungo (L.).

    Science.gov (United States)

    Solanki, Radha; Anju; Poonam; Dhankhar, R

    2011-11-01

    The effect of deleterious concentration of zinc and copper provided either individually or in combination in the nutrient media was investigated in order to assess the effect of metal interaction in Vigna mungo (L.). Both metals showed negative effect and led to a marked decrease in seed germination (20%), seedling growth (91.7%) and nitrate reductase activity (85.7%) with the increase in metal concentrations. The present study also emphasizes on the response of catalase and peroxidase enzyme under zinc and copper stress. Both antioxidant enzymes exhibited an increasing trend under different treatment conditions but it was reverse at highly toxic metal concentration. The results showed active involvement of peroxidase enzyme in regulating oxidative stress rather than catalase enzyme, as the specific activity of peroxidase enzyme got increased by 8.94% under the combined metals stress whereas catalase activity got declined by 60.97% in comparison to control due to excessive stress. The combined effect of copper and zinc metal was more pronounced in comparison to their individual effects.

  8. THE EFFECTS OF COPPER AND ZINC IONS DURING THEIR BINDING WITH HUMAN SERUM γ-GLOBULIN

    Directory of Open Access Journals (Sweden)

    S. B. Cheknev

    2006-01-01

    Full Text Available Abstract. Conformational changes of human serum γ-globulin were studied during and after its binding with copper and zinc ions, using molecular ultrafiltration and differential spectrophotometry. The contents of nonbound metals in the filtrate were evaluated, resp., with sodium diethyl thyocarbamate and o-phenanthroline. It has been shown that copper and zinc exhibited common biological properties during their interactions with protein, but the binding differed sufficiently under similar experimental conditions. E.g., it was confirmed that copper was more active at the external sites of γ-globulin molecule, whereas zinc demonstrated tropicity for the areas of protein intraglobular compartments. The metal-binding sites have been described that differ in their parameters of interactions with cations and their spatial location within globular domains. Approaches are suggested for dynamic analysis of saturation for these differently located sites by the metal ions. We discuss the issues of altered conformational state of the γ-globulin molecule during the binding of cations, as well as potential usage of these data in clinical immunology.

  9. A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using Zincon.

    Science.gov (United States)

    Säbel, Crystal E; Neureuther, Joseph M; Siemann, Stefan

    2010-02-15

    Zincon (2-carboxy-2'-hydroxy-5'-sulfoformazylbenzene) has long been known as an excellent colorimetric reagent for the detection of zinc and copper ions in aqueous solution. To extend the chelator's versatility to the quantification of metal ions in metalloproteins, the spectral properties of Zincon and its complexes with Zn(2+), Cu(2+), and Co(2+) were investigated in the presence of guanidine hydrochloride and urea, two common denaturants used to labilize metal ions in proteins. These studies revealed the detection of metals to be generally more sensitive with urea. In addition, pH profiles recorded for these metals indicated the optimal pH for complex formation and stability to be 9.0. As a consequence, an optimized method that allows the facile determination of Zn(2+), Cu(2+), and Co(2+) with detection limits in the high nanomolar range is presented. Furthermore, a simple two-step procedure for the quantification of both Zn(2+) and Cu(2+) within the same sample is described. Using the prototypical Cu(2+)/Zn(2+)-protein superoxide dismutase as an example, the effectiveness of this method of dual metal quantification in metalloproteins is demonstrated. Thus, the spectrophotometric determination of metal ions with Zincon can be exploited as a rapid and inexpensive means of assessing the metal contents of zinc-, copper-, cobalt-, and zinc/copper-containing proteins.

  10. Interaction of ions in water system containing copper-zinc alloy for boiler energy saving

    Institute of Scientific and Technical Information of China (English)

    MING Xing; LIANG Jinsheng; OU Xiuqin; TANG Qingguo; DING Yan

    2006-01-01

    Copper-zinc alloy element for boiler energy saving was put in the intake of simulated boiler system to investigate the interaction and transfer of ions in water system both theoretically and experimentally. The fouling was analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray detector (EDX). The results show that the transfer of calcium and magnesium ions in heat-transfer-surface-water system is affected by zinc ions dissolved from the alloy because of primary battery reaction. Some calcium ions of calcium carbonate crystal are replaced by zinc ions, the growth of aragonite crystal nucleus is retarded, and the transition of calcium carbonate from aragonite to calcite is hampered.

  11. An electrochemical study of the formation of Benzotriazole surface films on Copper, Zinc and a Copper-Zinc alloy

    OpenAIRE

    Fenelon, Anna M.; Breslin, Carmel B.

    2001-01-01

    The electrochemical behaviour of Cu, Cu–37Zn and Zn in benzotriazole (BTA) containing chloride solutions was studied and compared using potentiodynamic, cyclic voltammetry and electrochemical impedance spectroscopy. The presence of BTA in the chloride-containing solutions gave rise to higher breakdown potentials, significantly higher polarisation resistances and inhibited the formation of CuCl2 and zinc-containing corrosion products. These effects were observed for pure Cu, Cu–Zn and to a som...

  12. Relación entre las cantidades de cobre y zinc administradas a pacientes graves con nutrición parenteral total y los niveles de cobre y zinc en plasma y eritrocitos Relationship between the amount of copper and zinc given to critically ill patients on total parenteral nutrition and plasma and erythrocyte copper and zinc levels

    Directory of Open Access Journals (Sweden)

    A. M. Menéndez

    2008-08-01

    superiores a 1,2 mg/d.Objectives: Complications resulting from zinc and copper deficiency, or adverse effects from excessive zinc and copper intake should be avoided during total parenteral nutrition (TPN. This study was conducted on critically ill patients requiring TPN to determine the relationship between the zinc and copper levels of the TPN mixtures, patients' clinical progression, and changes in plasma levels of zinc, serum levels of copper, and erythrocyte levels of zinc and copper. Patients and methods: 29 adult critically ill patients following pancreatitis or after a major abdominal surgery were studied. Zinc and copper levels in TPN, plasmatic zinc levels, copper serum levels and erythrocyte levels of zinc and copper were determined at the onset and at the end of the treatment (5-21 days (using Atomic Absorption Spectrometry. Results: The mean ± standard deviation (and ranges in parenthesis of zinc and copper levels in TPN were (μg/mL: zinc: 4.2 ± 1.7 (1.8 a 9.3; copper: 0.94 ± 0.66 (0.1 a 3.1. Biochemical parameters at the onset and at the end of the treatment were, respectively: (μg/mL: plasmatic zinc: 80 ± 45 (29-205 and 122 ± 56 (37-229; erythrocyte zinc: 2,300 ± 1,070 (790-5,280 and 2,160 ± 920 (790-4,440; serum copper (μg/dL: 124 ± 35 (62-211 and 128 ± 41 (60- 238; erythrocyte copper (μg/dl: 72 ± 39 (4-183 and 70 ± 41 (9-156. Plasmatic and erythrocyte zinc levels did not correlated neither at the onset nor at the end of the treatment. Changes in erythrocyte zinc levels correlated with daily administered zinc (mg/d in the parenteral nutrition (r = 0.38. Serum copper and erythrocyte copper showed significant correlation at the onset (p = 0.0005 and at the end of treatment (p = 0.008. Changes of serum or erythrocyte copper levels showed a significant correlation with daily administered copper (r = 0.31 and 0.26, respectively. Conclusions: These results show that: 1 determination of erythrocyte zinc and copper levels in these critically ill

  13. The Uses of Copper and Zinc Aluminates to Capture and Convert Carbon dioxide to Syn-gas at Higher Temperature

    Directory of Open Access Journals (Sweden)

    R.Y. Raskar

    2014-03-01

    Full Text Available The uses of copper and zinc aluminates to capture and convert the CO2 to syn-gas were studied at higher temperatures. The samples of copper and zinc aluminates were prepared by solid-solid fusion method by calcining in air at 900 oC for 3 h. Those samples were characterized by acidity/alkalinity, surface area, XRD pattern, IR, SEM images and screening to capture CO2 at the different temperatures. The phases Cu2O, CuO, ZnO, CuAl2O4 and ZnAl2O4 were found to be in the samples of zinc and copper aluminates. Acidity and surface area of the samples of copper and zinc aluminates were found to be in the ranges from 0.063 to 9.37 mmol g-1 and 3.04 to 11.8 m2 g-1, respectively. The captured CO2 by the samples of copper and zinc aluminates was found to be 19.92 to 31.52 wt% for the temperature range 40 to 850 oC. The captured CO2 at 550 oC by variable Zn/Al and Cu/Al mol ratio from 0.5 to 6 of the samples of copper and zinc aluminates was found to be 12.81 to 18.04 wt%. The reduction of carbon dioxide by zinc and copper aluminates was observed. The conversion of CO2 by methane over variable mol ratio of Cu/Al and Zn/Al in copper and zinc aluminates, respectively, at 500 oC showed the production of syn-gas by using the gas hourly space velocities (GHSV 12000, 12000 and 6000 ml. h-1. g-1 of helium, CO2 and methane. The conversions of CO2 by methane over the samples of zinc and copper aluminates were studied at different mol ratios of CO2 to methane.  © 2014 BCREC UNDIP. All rights reservedReceived: 13rd May 2013; Revised: 8th November 2013; Accepted: 8th November 2013[How to Cite: Raskar, R.Y., Gaikwad, A.G. (2014. The Uses of Copper and Zinc Aluminates to Cap-ture and Convert Carbon Dioxide to Syn-gas at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 1-15. (doi:10.9767/bcrec.9.1.4899.1-15[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.4899.1-15

  14. Comparison of copper and zinc in vitro bioaccessibility from cyanobacteria rich in proteins and a synthetic supplement containing gluconate complexes: LC-MS mapping of bioaccessible copper complexes.

    Science.gov (United States)

    Wojcieszek, Justyna; Witkoś, Katarzyna; Ruzik, Lena; Pawlak, Katarzyna

    2016-01-01

    An analytical procedure was proposed to estimate bioaccessibility of copper and zinc in Spirulina Pacifica tablets with respect to that of copper and zinc in gluconate complexes. Spirulina is the common name for diet supplements produced primarily from two species of cyanobacteria, namely Arthrospira platensis and Arthrospira maxima. Spirulina tablets are an excellent source of proteins, vitamins and minerals. To obtain information about the bioavailability of these elements, an in vitro bioaccessibility test was performed by application of a two-step protocol which simulated the gastric (pepsin) and intestinal (pancreatin) digestion. The species obtained were investigated by size exclusion chromatography on a chromatograph coupled to a mass spectrometer with inductively coupled plasma (SEC-ICP-MS) and an on-capillary liquid chromatograph coupled to an electrospray mass spectrometer (μ-HPLC-ESI-MS). Both copper and zinc were found to be highly bioaccessible in Spirulina tablets (90-111%) and those containing gluconate complexes (103% for Cu and 62% for Zn). In Spirulina tablets, copper was found to form two types of complex: (1) polar ones with glycine and aspartic acid and (2) more hydrophobic ones containing amino acids with cyclic hydrocarbons (phenylalanine, histidine, proline and tyrosine). Zinc and copper were also proved to form complexes during the digestion process with products of pepsin digestion, but the stability of these complexes is lower than that of the complexes formed in Spirulina. The results proving the involvement of proteins in the enhancement of copper and zinc bioaccessibility will be useful for the design of new copper and zinc supplements.

  15. Comparison of Serum Zinc and Copper levels in Children and adolescents with Intractable and Controlled Epilepsy

    Directory of Open Access Journals (Sweden)

    Zeynab KHERADMAND

    2014-07-01

    Full Text Available How to Cite This Article: Kheradmand Z, Yarali B, Zare A, Pourpak Z, Shams S, Ashrafi MR. Comparison of Serum Zinc and Copper levels in Children and adolescents with Intractable and Controlled Epilepsy. Iran J Child Neurol. 2014; 8(3:49-54. AbstractObjectiveTrace elements such as zinc and copper have physiological effects on neuronal excitability that may play a role in the etiology of intractable epilepsy. This topic has been rarely discussed in Iranian epileptic patients.This study with the analysis of serum zinc and copper levels of children and adolescents with intractable and controlled epilepsy may identifies the potential role of these two trace elements in the development of epilepsy and intractabilityto antiepileptic drug treatment. Materials & MethodsSeventy patients between the ages of 6 months to 15 years that referred to Children’s Medical Center with the diagnosis of epilepsy, either controlled or intractable to treatment enrolled in the study. After informed parental consent the levels of serum zinc and copper were measured with atomic absorptionspectrophotometer and analyzed with SPSS version 11.Results35 patients were enrolled in each group of intractable (IE and controlled epilepsy (CE. 71.45% of the IE and 25.72% of the CE group had zinc deficiency that was statistically significant. 48.58% of the IE and 45.72 of the CE group were copper deficient, which was not statistically significant.ConclusionOur findings showed significant low serum zinc levels of patients with intractable epilepsy in comparison with controlled epilepsy group. We recommend that serum zinc level may play a role in the etiology of epilepsy and intractable epilepsy therefore its measurement and prescription may be regarded in the treatment of intractable epilepsy.ReferencesMikati MA. Seizures in childhood. In: Kliegman RM, Stanton BF, Schor NF, Geme JWS, Behrman R (eds. Nelson textbook of pediatrics. 19th ed. Elsevier:Saunders; 2011. Pp

  16. Assessing of plasma levels of iron, zinc and copper in Iranian Parkinson′s disease

    Directory of Open Access Journals (Sweden)

    Rokhsareh Meamar

    2016-01-01

    Full Text Available Background: Trace elements have long been suspected to be involved in Parkinson's disease (PD pathogenesis, but their exact roles have been remained controversial. In this study, we assessed the levels of copper (Cu, iron (Fe and zinc (Zn in different stage of PD patients. Materials and Methods: Serum concentrations of iron, copper and zinc were measured in 109 patients with PD by colorimetric methods. Staging of the disease was evaluated according to Hoehn and Yahr (H and Y and Unified PD Rating Scale III (UPDRS. Results: Severity values of PD measured by UPRDSIII and HY stages with mean ± SD were 22.9 ± 1.81 and 1.8 ± 1.1, respectively. Mean ± SD values of iron, zinc and copper are 100.7 ± 289.2, 68.3 ± 5.32, and 196.8 ± 162.1 μg/dl, respectively. Serum iron level in most of the patients was normal (76.6%. Whereas zinc concentration in most participants was below the normal range (64.5% and serum Cu in the majority of patients had a high normal concentration (42.7% and did not significantly differ among various PD stages. Conclusion: The result of this study does not confirm strong correlation between PD stages and serum levels of tested trace elements. The actual correlations between these elements and PD and whether modulating of these agents levels could be an effective approach in the treatment of this disease remain to be elucidated.

  17. The development of 6.7% efficient copper zinc indium selenide devices from copper zinc indium sulfide nanocrystal inks

    Science.gov (United States)

    Graeser, Brian K.

    As solar cell absorber materials, alloys of CuIn(S,Se)2 and Zn(S,Se) provide an opportunity to reduce the usage of indium along with the ability to tune the band gap. Here we report successful synthesis of alloyed (CuInS2)0.5(ZnS)0.5 nanocrystals by a method that solely uses oleylamine as the liquid medium for synthesis. The reactive sintering of a thin film of these nanocrystals via selenization at 500 °C results in a uniform composition alloy (CuIn(S,Se)2)0.5(Zn(S,Se)) 0.5 layer with micron size grains. Due to the large amount of zinc in the film, the sintered grains exhibit the zinc blende structure instead of the usual chalcopyrite structure of CuIn(S,Se)2 films. The use of the selenide films as a p-type absorber layer has yielded solar cells with total area power conversion efficiencies as high as 6.7% (7.4% based on active area). These preliminary results are encouraging and indicate that with further optimization this class of materials has promise as the absorber layer in solar cells.

  18. Comparative analysis of copper and zinc based agrichemical biocide products: materials characteristics, phytotoxicity and in vitro antimicrobial efficacy

    Directory of Open Access Journals (Sweden)

    Harikishan Kannan

    2016-07-01

    Full Text Available In the past few decades, copper based biocides have been extensively used in food crop protection including citrus, small fruits and in all garden vegetable production facilities. Continuous and rampant use of copper based biocides over decades has led to accumulation of this metal in the soil and the surrounding ecosystem. Toxic levels of copper and its derivatives in both the soil and in the run off pose serious environmental and public health concerns. Alternatives to copper are in great need for the agriculture industry to produce food crops with minimal environmental risks. A combination of copper and zinc metal containing biocide such as Nordox 30/30 or an improved version of zinc-only containing biocide would be a good alternative to copper-only products if the efficacy can be maintained. As of yet there is no published literature on the comparative study of the materials characteristics and phyto-compatibility properties of copper and zinc-based commercial products that would allow us to evaluate the advantages and disadvantages of both versions of pesticides. In this report, we compared copper hydroxide and zinc oxide based commercially available biocides along with suitable control materials to assess their efficacy as biocides. We present a detailed material characterization of the biocides including morphological studies involving electron microscopy, molecular structure studies involving X-ray diffraction, phytotoxicity studies in model plant (tomato and antimicrobial studies involving surrogate plant pathogens (Xanthomonas alfalfae subsp. citrumelonis, Pseudomonas syringae pv. syringae and Clavibacter michiganensis subsp. michiganensis. Zinc based compounds were found to possess comparable to superior antimicrobial properties while exhibiting significantly lower phytotoxicity when compared to copper based products thus suggesting their potential as an alternative.

  19. Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran Ceriodaphnia cf dubia.

    Science.gov (United States)

    Hyne, Ross V; Pablo, Fleur; Julli, Moreno; Markich, Scott J

    2005-07-01

    This study determined the influence of key water chemistry parameters (pH, alkalinity, dissolved organic carbon [DOC], and hardness) on the aqueous speciation of copper and zinc and its relationship to the acute toxicity of these metals to the cladoceran Ceriodaphnia cf dubia. Immobilization tests were performed for 48-h in synthetic or natural waters buffered at various pH values from 5.5 to 8.4 (other chemical parameters held constant). The toxicity of copper to C. cf dubia decreased fivefold with increasing pH, whereas the toxicity of zinc increased fivefold with increasing pH. The effect of DOC on copper and zinc toxicity to C. cf dubia was determined using natural fulvic acid in the synthetic water. Increasing DOC was found to decrease linearly the toxicity of copper, with the mean effect concentration of copper that immobilized 50% of the cladocerans (EC50) value 45 times higher at 10 mg/L, relative to 0.1 mg/L DOC at pH 6.5. In contrast, the addition of 10 mg/L DOC only resulted in a very small (1.3-fold) reduction in the toxicity of zinc to C. cf dubia. Copper toxicity to C. cf dubia generally did not vary as a function of hardness, whereas zinc toxicity was reduced by a factor of only two, with an increase in water hardness from 44 to 374 mg CaCO3/L. Increasing bicarbonate alkalinity of synthetic waters (30-125 mg/L as CaCO3) decreased the toxicity of copper up to fivefold, which mainly could be attributed to the formation of copper-carbonate complexes, in addition to a pH effect. The toxicity of copper added to a range of natural waters with varying DOC content, pH, and hardness was consistent with the toxicity predicted using the data obtained from the synthetic waters.

  20. Intracellular distribution of fluorescent copper and zinc bis(thiosemicarbazonato) complexes measured with fluorescence lifetime spectroscopy.

    Science.gov (United States)

    Hickey, James L; James, Janine L; Henderson, Clare A; Price, Katherine A; Mot, Alexandra I; Buncic, Gojko; Crouch, Peter J; White, Jonathan M; White, Anthony R; Smith, Trevor A; Donnelly, Paul S

    2015-10-05

    The intracellular distribution of fluorescently labeled copper and zinc bis(thiosemicarbazonato) complexes was investigated in M17 neuroblastoma cells and primary cortical neurons with a view to providing insights into the neuroprotective activity of a copper bis(thiosemicarbazonato) complex known as Cu(II)(atsm). Time-resolved fluorescence measurements allowed the identification of the Cu(II) and Zn(II) complexes as well as the free ligand inside the cells by virtue of the distinct fluorescence lifetime of each species. Confocal fluorescent microscopy of cells treated with the fluorescent copper(II)bis(thiosemicarbazonato) complex revealed significant fluorescence associated with cytoplasmic puncta that were identified to be lysosomes in primary cortical neurons and both lipid droplets and lysosomes in M17 neuroblastoma cells. Fluorescence lifetime imaging microscopy confirmed that the fluorescence signal emanating from the lipid droplets could be attributed to the copper(II) complex but also that some degree of loss of the metal ion led to diffuse cytosolic fluorescence that could be attributed to the metal-free ligand. The accumulation of the copper(II) complex in lipid droplets could be relevant to the neuroprotective activity of Cu(II)(atsm) in models of amyotrophic lateral sclerosis and Parkinson's disease.

  1. Synthesis and characterization of heteroleptic copper and zinc complexes with saccharinate and aminoacids. Evaluation of SOD-like activity of the copper complexes.

    Science.gov (United States)

    Santi, Eduardo; Viera, Inés; Mombrú, Alvaro; Castiglioni, Jorge; Baran, Enrique J; Torre, María H

    2011-12-01

    Five new copper and zinc heteroleptic complexes with saccharin and aminoacids with general stoichiometry Na(2)[M(sac)(2)(aa)(2)].nH(2)O (M denotes Cu or Zn, sac the saccharinate ion, and aa the aminoacids) were synthesized and characterized by elemental and thermogravimetric analysis, conductimetric measurements and IR, Raman and UV-vis spectroscopies. In all the complexes, copper and zinc ions coordinated with the aminoacids through the terminal amine and carboxylate residues and with saccharin through the heterocyclic nitrogen atom. Besides, the superoxide dismutase-like activity of the heteroleptic copper complexes was evaluated and compared with the homoleptic copper amino acid complexes with the aim to observe the influence of the saccharin coordination.

  2. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Science.gov (United States)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-02-01

    In this paper spectroscopic investigation of Cu2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR - X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P-O-P bonds and creating more number of new P-O-Cu bonds.

  3. Evaluation of interaction of Zinc, Aluminum, Copper and Manganese on Chromobacterium violaceum

    Directory of Open Access Journals (Sweden)

    Luis Carlos Laureano da Rosa

    2007-12-01

    Full Text Available The accumulation of metallic salts in the environment resulted from the explotation, mineralogy, industrial, and agro-industrial activities and urban residues affect the dynamic balance of ecosystems, generating environmental and economic problems. The aim of this study was to evaluate the interaction of Chromobacterium violaceum with four metallic salts: aluminum sulphate, copper sulphate, manganese sulphate and zinc sulphate at concentration of 100mg/L or the absence of them, as well as a possible 2nd order interaction effect, using a complete 24 factorial design. The 16 experimental tests were carried out in microplate culture. Suspension of microorganism was prepared in Nutrient Broth and added to the orifices. After incubation at 37ºC during 24 hours, the absorbance was carried out using a 410nm in Versamax reader. The results showed remarkable bacterial adaptability. Student t test analysis showed that manganese was the only metal that did not have significant effect on the population growth of C. violaceum while zinc was the most influent. Positive interactions involving zinc was observed, interaction between aluminum and copper was not relevant.

  4. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  5. Multimicronutrient Slow-Release Fertilizer of Zinc, Iron, Manganese, and Copper

    Directory of Open Access Journals (Sweden)

    Siladitya Bandyopadhyay

    2014-01-01

    Full Text Available The process for the production of a slow-release micronutrient fertilizer is described. The compound contains zinc, iron, manganese, and copper as micronutrients and is produced by polymerizing a system containing phosphoric acid, zinc oxide, hematite, pyrolusite, copper sulfate, and magnesium oxide followed by neutralization of the polyphosphate chain with ammonium hydroxide. Changes in temperature, density, and viscosity of the reaction system during polymerization were studied. Reaction kinetics was studied at three different temperatures. Rate curves revealed a multistage process with essentially linear rates at each stage. Thus, each stage displayed zero order kinetics. The product was crystalline and revealed ordering of P-O-P chains. It had low solubility in water but high solubility in 0.33 M citric acid and 0.005 M DTPA. Three different field trials showed significant yield increments using the slow-release micronutrient fertilizer compared to the conventional micronutrients. Yield increments in rice were in the range of 10–55% over control (with no micronutrient and up to 17% over the conventional micronutrient fertilizers. There were significant increases in total uptake of zinc, iron, and manganese in the grain. Slow-release fertilizers also produced significant yield increases in potato as well as significant increase in vitamin C content of the tuber.

  6. Fabrication of a Functionally Graded Copper-Zinc Sulfide Phosphor.

    Science.gov (United States)

    Park, Jehong; Park, Kwangwon; Kim, Jongsu; Jeong, Yongseok; Kawasaki, Akira; Kwon, Hansang

    2016-03-14

    Functionally graded materials (FGMs) are compositionally gradient materials. They can achieve the controlled distribution of the desired characteristics within the same bulk material. We describe a functionally graded (FG) metal-phosphor adapting the concept of the FGM; copper (Cu) is selected as a metal and Cu- and Cl-doped ZnS (ZnS:Cu,Cl) is selected as a phosphor and FG [Cu]-[ZnS:Cu,Cl] is fabricated by a very simple powder process. The FG [Cu]-[ZnS:Cu,Cl] reveals a dual-structured functional material composed of dense Cu and porous ZnS:Cu,Cl, which is completely combined through six graded mediating layers. The photoluminescence (PL) of FG [Cu]-[ZnS:Cu,Cl] is insensitive to temperature change. FG [Cu]-[ZnS:Cu,Cl] also exhibits diode characteristics and photo reactivity for 365 nm -UV light. Our FG metal-phosphor concept can pave the way to simplified manufacturing of low-cost and can be applied to various electronic devices.

  7. Adhesion strength of nickel and zinc coatings with copper base electroplated in conditions of external stimulation by laser irradiance

    Directory of Open Access Journals (Sweden)

    V. V. Dudkina

    2013-04-01

    Full Text Available Purpose. The investigation of laser irradiance influence on the adhesion strength of nickel and zinc coatings with copper base and the research of initial stages of crystallization for nickel and zinc films. Methodology. Electrodeposition of nickel and zinc films from the standard sulphate electrolyte solutions was carried out on the laser-electrolytic installations, built on the basis of gas discharge CO2-laser and solid ruby laser KVANT-12. The adhesion strength of metal coatings with copper base are defined not only qualitatively using the method of meshing and by means of multiple bending, but also quantitatively by means of indention of diamond pyramid into the border line between coating and base of the side section. Spectrum microanalysis of the element composition of the border line “film and base” is carried out using the electronic microscope REMMA-102-02. Findings. Laser irradiance application of the cathode region in the process of electroplating of metal coatings enables the adhesion strength improvement of coating with the base. Experimental results of adhesive strength of the films and the spectrum analysis of the element composition for the border line between film and base showed that during laser-assisted electroplating the diffusion interaction between coating elements and the base metal surface takes place. As a result of this interaction the coating metal diffuses into the base metal, forming transition diffused layer, which enhances the improvement of adhesion strength of the coatings with the base. Originality. It is found out that ion energy increase in the double electric layer during interaction with laser irradiance affects cathode supersaturation at the stage of crystallization. Hence, it also affects the penetration depth of electroplated material ions into the base metal, which leads to the adhesion strength enhancement. Practical value. On the basis of research results obtained during the laser

  8. Assessment of Reference Values for Copper and Zinc in Blood Serum of First and Second Lactating Dairy Cows

    Directory of Open Access Journals (Sweden)

    Markus Spolders

    2010-01-01

    Full Text Available The influence of different copper and zinc contents in rations on blood serum concentrations in dependence on feeding (Groups A and B and lactation (Lactation 1 and 2 was tested in a feeding trial with 60 German Holstein cows. All animals received a diet based on maize and grass silage ad libitum. 30 cows received a concentrate supplemented with copper and zinc as recommended (Group A, whereas the other 30 animals were offered a concentrate with roughly double the amount of copper and zinc (Group B. Blood samples were taken several times during the lactation to analyse serum concentrations of copper and zinc. Copper serum concentration was influenced neither by the different feeding (11.7 mol/L in Group A and 12.3 mol/L in Group B nor by the lactation (12.0 mol/L in Lactation 1 and 12.1 mol/L in Lactation 2. Zinc serum concentration was significantly influenced as well as by feeding (14.1 mol/L in Group B and 12.5 mol/L in Group A and lactation (14.2 mol/L in the second lactation and 12.8 mol/L for first lactating cows. For an exact diagnosis of trace element supply, blood serum is a not qualified indicator; other sources (feedstuffs, liver, hair must also be investigated.

  9. Effect of cerebral amyloid angiopathy on brain iron, copper, and zinc in Alzheimer's disease.

    Science.gov (United States)

    Schrag, Matthew; Crofton, Andrew; Zabel, Matthew; Jiffry, Arshad; Kirsch, David; Dickson, April; Mao, Xiao Wen; Vinters, Harry V; Domaille, Dylan W; Chang, Christopher J; Kirsch, Wolff

    2011-01-01

    Cerebral amyloid angiopathy (CAA) is a vascular lesion associated with Alzheimer's disease (AD) present in up to 95% of AD patients and produces MRI-detectable microbleeds in many of these patients. It is possible that CAA-related microbleeding is a source of pathological iron in the AD brain. Because the homeostasis of copper, iron, and zinc are so intimately linked, we determined whether CAA contributes to changes in the brain levels of these metals. We obtained brain tissue from AD patients with severe CAA to compare to AD patients without evidence of vascular amyloid-β. Patients with severe CAA had significantly higher non-heme iron levels. Histologically, iron was deposited in the walls of large CAA-affected vessels. Zinc levels were significantly elevated in grey matter in both the CAA and non-CAA AD tissue, but no vascular staining was noted in CAA cases. Copper levels were decreased in both CAA and non-CAA AD tissues and copper was found to be prominently deposited on the vasculature in CAA. Together, these findings demonstrate that CAA is a significant variable affecting transition metals in AD.

  10. Potential foliar fertilizers with copper and zinc dual micronutrients in nanocrystal suspension

    Science.gov (United States)

    Li, Peng; Li, Li; Du, Yumei; Hampton, Marc A.; Nguyen, Anh V.; Huang, Longbin; Rudolph, Victor; Xu, Zhi Ping

    2014-11-01

    Control preparation, aqueous stability, and ion release of several Cu-Zn-containing crystals in suspensions have been investigated as potential dual micronutrient foliar fertilizers. These crystals were prepared by quick co-precipitation through simultaneously adding potassium hydroxide and copper salt solutions into zinc salt solution, and characterized in structure and composition with XRD, FTIR, SEM, TEM, and ICP in detail. As-prepared Cu-Zn mixed hydroxide nitrate was identified as a two-phase mixture while Cu-Zn mixed hydroxide sulfate as a single-phase compound. These crystals are all sheet-like in morphology and stable in aqueous solutions with pH 5-9. No phase change was detected after the samples were kept in shelf for >3 months, suggesting that these crystals have long shelf lives. In terms of ion release, Cu-Zn mixed hydroxide nitrate and Cu-Zn mixed hydroxide sulfate can afford 4 and 1 mg L-1 of Cu2+, respectively, which could be suitable for different levels of copper deficiency in plants. Moreover, both compounds can provide 38-39 mg L-1 of Zn2+ in aqueous suspensions. Thus, our findings suggest that as-prepared compounds can be potentially applied as long-term foliar fertilizers to simultaneously correct deficiencies of copper and zinc in various crops.

  11. Association of serum levels of iron, copper, and zinc, and inflammatory markers with bacteriological sputum conversion during tuberculosis treatment.

    Science.gov (United States)

    Moraes, Milena Lima de; Ramalho, Daniela Maria de Paula; Delogo, Karina Neves; Miranda, Pryscila Fernandes Campino; Mesquita, Eliene Denites Duarte; de Melo Guedes de Oliveira, Hedi Marinho; Netto, Antônio Ruffino; Dos Anjos, Marcelino José; Kritski, Afrânio Lineu; de Oliveira, Martha Maria

    2014-08-01

    Iron, copper, and zinc are key micronutrients that play an important role in the immune response to Mycobacterium tuberculosis. The present study aimed to evaluate the association between serum levels of those micronutrients, inflammatory markers, and the smear and culture conversion of M. tuberculosis during 60 days of tuberculosis treatment. Seventy-five male patients with pulmonary tuberculosis (mean age, 40.0 ± 10.7 years) were evaluated at baseline and again at 30 and 60 days of tuberculosis treatment. Serum levels of iron, copper, zinc, albumin, globulin, C-reactive protein, and hemoglobin, and smear and cultures for M. tuberculosis in sputum samples were analyzed. Compared to healthy subjects, at baseline, patients with PTB had lower serum iron levels, higher copper levels and copper/zinc ratio, and similar zinc levels. During the tuberculosis treatment, no significant changes in the serum levels of iron, zinc, and copper/zinc were observed. Lower serum copper levels were associated with bacteriological conversion in tuberculosis treatment (tuberculosis-negative) at 30 days but not at 60 days (tuberculosis-positive). C-reactive protein levels and the C-reactive protein/albumin ratio were lower in tuberculosis-negative patients than in tuberculosis-positive patients at 30 and 60 days after treatment. Albumin and hemoglobin levels and the albumin/globulin ratio in patients with pulmonary tuberculosis increased during the study period, regardless of the bacteriological results. High serum globulin levels did not change among pulmonary tuberculosis patients during the study. Serum copper levels and the C-reactive protein/albumin ratio may be important parameters to evaluate the persistence of non-conversion after 60 days of tuberculosis treatment, and they may serve as predictors for relapse after successful treatment.

  12. Mechanical characterization based in the impact test of the cadmium-zinc and cadmium-zinc-copper alloys; Caracterizacion mecanica basada en la prueba de impacto de las aleaciones cadmio-zinc y cadmio-zinc-cobre

    Energy Technology Data Exchange (ETDEWEB)

    Casolco, S.R.; Torres V, G. [Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico D.F. (Mexico)

    1999-11-01

    The present work is a study carried out in the Institute for Materials Research of the UNAM, of the alloys cadmium-zinc and cadmium-zinc-copper with the fundamental objective of knowing their behavior to the impact that which will allow to establish structural applications of these alloys. This work consists mainly on impact tests of the type Charpy at different temperatures in a range of - 150 Centigrade to 250 Centigrade and to study their fracture morphologies with the help of a scanning electron microscope to recognize the tendency of the material toward the fracture of the fragile type and to determine the ductile-fragile transition. (Author)

  13. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2013-10-15

    Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5-50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Status and Interrelationship of Zinc, Copper, Iron, Calcium and Selenium in Prostate Cancer.

    Science.gov (United States)

    Singh, Bhupendra Pal; Dwivedi, Shailendra; Dhakad, Urmila; Murthy, Ramesh Chandra; Choubey, Vimal Kumar; Goel, Apul; Sankhwar, Satya Narayan

    2016-03-01

    Deficiency or excess of certain trace elements has been considered as risk factor for prostate cancer. This study was aimed to detect differential changes and mutual correlations of selected trace elements in prostate cancer tissue versus benign prostatic hyperplasia tissue. Zinc, copper, iron, calcium and selenium were analysed in histologically proven 15 prostate cancer tissues and 15 benign prostatic hyperplasia tissues using atomic absorption spectrophotometer. Unpaired two tailed t test/Mann-Whitney U test and Pearson correlation coefficient were used to compare the level of trace elements, elemental ratios and their interrelations. As compared to benign prostatic tissue, malignant prostatic tissue had significantly lower selenium (p = 0.038) and zinc (p = 0.043) concentrations, a lower zinc/iron ratio (p = 0.04) and positive correlation of selenium with zinc (r = 0.71, p = 0.02) and iron (r = 0.76, p = 0.009). Considerably divergent interrelationship of elements and elemental ratios in prostate cancer versus benign prostatic hyperplasia was noted. Understanding of differential elemental changes and their interdependence may be useful in defining the complex metabolic alterations in prostate carcinogenesis with potential for development of element based newer diagnostic, preventive and therapeutic strategies. Further studies may be needed to elucidate this complex relationship between trace elements and prostate carcinogenesis.

  15. Effects of various anesthesia maintenance on serum levels of selenium, copper, zinc, iron and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Mehmet Akin

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: In this study, we aimed to investigate the effects of sevoflurane, desflurane and propofol maintenances on serum levels of selenium, copper, zinc, iron, malondialdehyde, and glutathion peroxidase measurements, and antioxidant capacity. METHODS: 60 patients scheduled for unilateral lower extremity surgery which would be performed with tourniquet under general anesthesia were divided into three groups. Blood samples were collected to determine the baseline serum levels of selenium, copper, zinc, iron, malondialdehyde and glutathion peroxidase. Anesthesia was induced using 2-2.5 mg kg-1 propofol, 1 mg kg-1 lidocaine and 0.6 mg kg-1 rocuronium. In the maintenance of anesthesia, under carrier gas of 50:50% O2:N2O 4 L min-1, 1 MAC sevoflorane was administered to Group S and 1 MAC desflurane to Group D; and under carrier gas of 50:50% O2:air 4 L min-1 6 mg kg h-1 propofol and 1 µg kg h-1 fentanyl infusion were administered to Group P. At postoperative blood specimens were collected again. RESULTS: It was observed that only in Group S and P, levels of MDA decreased at postoperative 48th hour; levels of glutathion peroxidase increased in comparison to the baseline values. Selenium levels decreased in Group S and Group P, zinc levels decreased in Group P, and iron levels decreased in all three groups, and copper levels did not change in any groups in the postoperative period. CONCLUSION: According to the markers of malondialdehyde and glutathion peroxidase, it was concluded that maintenance of general anesthesia using propofol and sevoflurane activated the antioxidant system against oxidative stress and using desflurane had no effects on oxidative stress and antioxidant system.

  16. [Effects of various anesthesia maintenance on serum levels of selenium, copper, zinc, iron and antioxidant capacity].

    Science.gov (United States)

    Akın, Mehmet; Ayoglu, Hilal; Okyay, Dilek; Ayoglu, Ferruh; Gür, Abdullah; Can, Murat; Yurtlu, Serhan; Hancı, Volkan; Küçükosman, Gamze; Turan, Işıl

    2015-01-01

    In this study, we aimed to investigate the effects of sevoflurane, desflurane and propofol maintenances on serum levels of selenium, copper, zinc, iron, malondialdehyde, and glutathion peroxidase measurements, and antioxidant capacity. 60 patients scheduled for unilateral lower extremity surgery which would be performed with tourniquet under general anesthesia were divided into three groups. Blood samples were collected to determine the baseline serum levels of selenium, copper, zinc, iron, malondialdehyde and glutathion peroxidase. Anesthesia was induced using 2-2.5mgkg(-1) propofol, 1mgkg(-1) lidocaine and 0.6mgkg(-1) rocuronium. In the maintenance of anesthesia, under carrier gas of 50:50% O2:N2O 4Lmin(-1), 1 MAC sevoflorane was administered to Group S and 1 MAC desflurane to Group D; and under carrier gas of 50:50% O2:air 4Lmin(-1) 6mgkgh(-1) propofol and 1μgkgh(-1) fentanyl infusion were administered to Group P. At postoperative blood specimens were collected again. It was observed that only in Group S and P, levels of MDA decreased at postoperative 48th hour; levels of glutathion peroxidase increased in comparison to the baseline values. Selenium levels decreased in Group S and Group P, zinc levels decreased in Group P, and iron levels decreased in all three groups, and copper levels did not change in any groups in the postoperative period. According to the markers of malondialdehyde and glutathion peroxidase, it was concluded that maintenance of general anesthesia using propofol and sevoflurane activated the antioxidant system against oxidative stress and using desflurane had no effects on oxidative stress and antioxidant system. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  17. Relation between anemia and blood levels of lead, copper, zinc and iron among children

    Directory of Open Access Journals (Sweden)

    Morsy Amal A

    2010-05-01

    Full Text Available Abstract Background Anemia is a health problem among infants and children. It is often associated with a decrease in some trace elements (iron, zinc, copper and an increase in heavy metals as lead. This study was done to determine the association of blood lead level > 10 μg/dl, with the increased risk to anemia, also, to investigate the relationship between anemia and changes in blood iron, zinc and copper levels, and measure lead level in drinking water. The study is a cross-sectional performed on 60 children. Venous blood samples were taken from the studied population for estimating hematological parameters as well as iron and ferritin levels. The concentrations of zinc, copper, and lead were measured. The studied population was divided into anemic and non-anemic (control groups. The anemic group was further classified into mild, moderate and severe anemia. The study subjects were also categorized into low and high blood lead level groups. Findings Approximately 63.33% of children had blood lead levels ≥ 10 μg/dl. At the blood lead level range of 10-20 μg/dl, a significant association was found for mild and severe anemia. The blood level of iron and ferritin was found to be significantly lower in high blood lead level and anemic groups than those of the low blood lead level and control groups. Lead level in drinking water was higher than the permissible limit. Conclusion Lead level ≥ 10 μg/dl was significantly associated with anemia, decreased iron absorption and hematological parameters affection. High blood lead levels were associated with low serum iron and ferritin. Lead level in drinking water was found to be higher than the permissible limits.

  18. Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting.

    Science.gov (United States)

    Yang, Haoran; Jauregui, Luis A; Zhang, Genqiang; Chen, Yong P; Wu, Yue

    2012-02-01

    Improving energy/fuel efficiency by converting waste heat into electricity using thermoelectric materials is of great interest due to its simplicity and reliability. However, many thermoelectric materials are composed of either toxic or scarce elements. Here, we report the experimental realization of using nontoxic and abundant copper zinc tin sulfide (CZTS) nanocrystals for potential thermoelectric applications. The CZTS nanocrystals can be synthesized in large quantities from solution phase reaction and compressed into robust bulk pellets through spark plasma sintering and hot press while still maintaining nanoscale grain size inside. Electrical and thermal measurements have been performed from 300 to 700 K to understand the electron and phonon transports. Extra copper doping during the nanocrystal synthesis introduces a significant improvement in the performance.

  19. Electrochemical and optical characterization of cobalt, copper and zinc phthalocyanine complexes.

    Science.gov (United States)

    Lee, Jaehyun; Kim, Se Hun; Lee, Woosung; Lee, Jiwon; An, Byeong-Kwan; Oh, Se Young; Kim, Jae Pil; Park, Jongwook

    2013-06-01

    New phthalocyanine (Pc) derivatives that include the alkyl group in ligand were synthesized based on three core metals such as zinc (Zn), copper (Cu), and cobalt (Co). Electrochemical behaviors and optical properties of the new phthalocyanine derivatives with ligand and different core metal were investigated by using cyclic voltammetry, UV-Visible (UV-Vis) spectroscopy and photoluminescence (PL) spectroscopy. In UV-Vis data, maximum values of 2H, Co, Cu, and Zn complexes were 708 nm and 677 nm, 686 nm, 684 nm, respectively.

  20. Use of Azolla to assess toxicity and accumulation of metals from artificial and natural sediments containing cadmium, copper, and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Powell, G.M. [S.M. Stoller Corp., Boulder, CO (United States); Nimmo, D.W.R.; Flickinger, S.A.; Brinkman, S.F.

    1998-12-31

    The aquatic macrophyte Azolla mexicana was studied to determine if it could indicate toxicity and bioavailability of cadmium, copper, and zinc in sediments. Plants were exposed to metal-fortified artificial sediment and to natural sediment contaminated with tailings from a Superfund site near Deer Lodge, Montana. Dry weights (mass) of biomass were used to determine effects of the metal concentrations and tissue metals were measured to determine metal uptake from the sediments. Plants exposed to artificial sediments fortified with cadmium and copper showed the greatest reduction in dry mass while zinc showed the least. And, plants exposed to copper singly in artificial sediments lost both zinc and cadmium for their tissues. Plants exposed to metal-contaminated natural sediment developed necrotic and chlorotic tissue within 24 hours in 75% and 100% dilutions but significant effects (P < 0.0001) using dry mass were found as low as 3.13%.

  1. Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort

    DEFF Research Database (Denmark)

    Stepien, Magdalena; Jenab, Mazda; Freisling, Heinz

    2017-01-01

    epidemiologic studies is lacking, we conducted a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort to investigate the association between circulating levels of copper and zinc, and their calculated ratio, with risk of CRC development. Copper and zinc...

  2. 中国兰坪地区铜、铅、锌矿潜在分布的GIS预测模型%A Predictive GIS Model for Potential Mapping of Copper,Lead,and Zinc in Langping Area,China

    Institute of Scientific and Technical Information of China (English)

    Tarik. B. Benomar; 胡光道; 边馥苓

    2009-01-01

    Mineral resource potential mapping is a complex analytical process,which requires the consideration and the inte-gration of a number of spatial evidences like geological,geomorphological,and wall rock alteration.The aim of this paper is to establish mineral exploration model for copper,lead,and zinc in Lanping basin area using the capability of analytical tools of Geographic Information System (GIS) and remote sensing data to generate maps showing favorable mineralized area.The geo-exploration dataset used for the research includes copper,lead,and zinc deposits,geological maps,topographic maps,structural maps,and ETM+ imagery.Geological features indicative of potential copper,lead,and zinc were extracted from the datasets input in the predictive model.The method of weights of evidence modeling is a probability-based technique for gen-erating mineral potential maps using the spatial distribution of indicative features with respect to the known mineral occur-rences.The method of weights of evidence probabilistic modeling provides a quantitative method for delineating areas with potential of copper,lead,and zinc mineral deposits in the Lanping Basin area.weights (W+,W-) and contrast (C=(W+)-(W-)) calculations guide the data-driven modeling.The four most important spatial features for exploration guide for copper,lead,and zinc mineralization hosted in the Lanping Basin area are alteration zones,faults,host rocks,and lineaments.The host rocks and deep faults have the strongest spatial association with the known copper,lead,and zinc deposits.The hydrother-mal alteration zones have the moderate spatial association with the copper,lead,and zinc deposits.The predictedhigh-favorability zones do not show the strong affinity with lineaments.The distribution of 22 (copper,lead,and zinc) occur-rences in the Lanping Basin was examined in terms of spatial association with various geological phenomena.The analysis of these relationships using GIS and weights of evidence modeling

  3. Copper and zinc concentrations in atherosclerotic plaque and serum in relation to lipid metabolism in patients with carotid atherosclerosis

    Directory of Open Access Journals (Sweden)

    Tasić Nebojša M.

    2015-01-01

    Full Text Available Background/Aim. Some oligoelements are now investigated as possibly having a role in atherosclerosis. The aim of this study was to compare the concentrations of copper and zinc in the serum and carotid plaque and parameters of lipid metabolism in patients with different morphology of carotid atherosclerotic plaque. Methods. Carotid endarterectomy due to the significant atherosclerotic stenosis was performed in 91 patients (mean age 64 ± 7. The control group consisted of 27 patients (mean age 58 ± 9, without carotid atherosclerosis. Atheroscletoric plaques were divided into four morphological groups, according to ultrasonic and intraoperative characteristics. Copper and zinc concentrations in the plaque, carotid artery and serum were measured by atomic absorption spectrophotometry. Results. Serum copper concentrations were statistically significantly higher in the patients with hemorrhagic in comparison to those with calcified plaque (1.2 ± 0.9 μmol/L vs 0.7 ± 0.2 μmol/L, respectively; p = 0.021. Zinc concentrations were statistically significantly lower in plaques of the patients with fibrolipid in comparison to those with calcified plaques (22.1 ± 16.3 μg/g vs 38.4 ± 25.8 μg/g, respectively; p = 0.024. A negative significant correlation was found for zinc and triglycerides in the serum in all the patients (r = -0.52, p = 0.025. In the control group we also demonstrated a positive significant correlation for low-density lipoprotein cholesterol and copper in the serum (r = 0.54, p = 0.04. Conclusion. The data obtained in the current study are consistent with the hypothesis that high copper and lower zinc levels may contribute to atherosclerosis and its sequelae as factors in a multifactorial disease. Further studies are necessary in order to conclude whether high concentration of copper and zinc in the serum could be risk factors for atherosclesrosis.

  4. Evaluation of a commercially available molybdate formulation and zinc oxide boluses in preventing hepatic copper accumulation and thus enzootic icterus in sheep

    Directory of Open Access Journals (Sweden)

    C.J. Botha

    2001-07-01

    Full Text Available The efficacy of a molybdate formulation and a zinc oxide bolus as prophylactic agents for enzootic icterus was evaluated in sheep. Before copper loading, liver biopsies were performed on 12 male, 6-month-old, Mutton Merino sheep to determine hepatic copper (Cu and zinc (Zn concentrations. The animals were restrictively randomised according to liver copper concentrations to 3 treatment groups (n = 4 to achieve similar mean liver copper concentrations per group. All sheep received 4 m /kg of a 0.5 %aqueous solution of CuSO4·5H2O intraruminally 7 days per week for 10 weeks. On Day 0 the sheep in the Mo-group were injected subcutaneously with 42 mg molybdenum (Mo contained in a commercial molybdate formulation. The animals in the Zn-group each received a zinc oxide bolus, containing 43 g zinc oxide, via a rumen cannula. Treatment was repeated on Day 42. Four animals served as untreated controls. Urinary copper excretion, plasma copper concentration, haematocrit and glutamate dehydrogenase (GLDH activity were determined throughout the trial. The animals were sacrificed after 10 weeks and liver samples were submitted for histopathological examination. Liver and kidney copper and zinc concentrations were determined. Neither the molybdate treatment nor the zinc oxide boluses prevented hepatic copper accumulation. The urinary copper excretion, plasma copper concentration, haematocrit and GLDH activity were not significantly different (P > 0.05 from the controls.

  5. Age-associated changes of brain copper, iron, and zinc in Alzheimer's disease and dementia with Lewy bodies.

    Science.gov (United States)

    Graham, Stewart F; Nasaruddin, Muhammad Bin; Carey, Manus; Holscher, Christian; McGuinness, Bernadette; Kehoe, Patrick G; Love, Seth; Passmore, Peter; Elliott, Christopher T; Meharg, Andrew A; Green, Brian D

    2014-01-01

    Disease-, age-, and gender-associated changes in brain copper, iron, and zinc were assessed in postmortem neocortical tissue (Brodmann area 7) from patients with moderate Alzheimer's disease (AD) (n = 14), severe AD (n = 28), dementia with Lewy bodies (n = 15), and normal age-matched control subjects (n = 26). Copper was lower (20%; p iron higher (10-16%; p iron, suggesting gradual age-associated decline of these metals in healthy non-cognitively impaired individuals. Zinc was unaffected in any disease pathologies and no age-associated changes were apparent. Age-associated changes in brain elements warrant further investigation.

  6. The effect of copper, zinc, mercury and cadmium on some sperm enzyme activities in the common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Sarosiek, Beata; Pietrusewicz, Marta; Radziwoniuk, Julita; Glogowski, Jan

    2009-11-01

    The objective of the study was to determine the effect of copper, zinc, cadmium and mercury ions (100, 10 and 1 mg/l) on the activity of some enzymes of carp spermatozoa. Acid phosphatase activity was proved to be relatively insensitive to zinc ions, while copper, mercury and cadmium ions effectively inhibited the activity of this enzyme. Beta-N-acetylglucosaminidase activity was sensitive only to mercury ions. Lactic dehydrogenase activity remained unaffected by heavy metals. Our results showed that, among the examined metals, mercury had the strongest inhibitory effect on enzymatic activities.

  7. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV

    OpenAIRE

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice...

  8. APPLICATION OF METAL RESISTANT BACTERIA BY MUTATIONAL ENHANCMENT TECHNIQUE FOR BIOREMEDIATION OF COPPER AND ZINC FROM INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    M. R. Shakibaie ، A. Khosravan ، A. Frahmand ، S. Zare

    2008-10-01

    Full Text Available In this research, using mutation in the metal resistant bacteria, the bioremediation of the copper and zinc from copper factory effluents was investigated. Wastewater effluents from flocculation and rolling mill sections of a factory in the city of Kerman were collected and used for further experiments. 20 strains of Pseudomonas spp. were isolated from soil and effluents surrounding factory and identified by microbiological methods. Minimum inhibitory concentrations for copper (Cu and zinc (Zn were determined by agar dilution method. Those strains that exhibited highest minimum inhibitory concentrations values to the metals (5mM were subjected to 400-3200 mg/L concentrations of the three mutagenic agents, acriflavine, acridine orange and ethidium bromide. After determination of subinhibitory concentrations, the minimum inhibitory concentrations values for copper and zinc metal ions were again determined, which showed more than 10 fold increase in minimum inhibitory concentrations value (10 mM for Cu and 20 mM for Zn with P≤0.05. The atomic absorption spectroscopy of dried biomass obtained from resistant strains after exposure to mutagenic agents revealed that strains 13 accumulate the highest amount of intracellular copper (0.35% Cu/mg dried biomass and strain 10 showed highest accumulation of zinc (0.3% Zn/mg dried biomass respectively with P≤0.05. From above results it was concluded that the treatment of industrial waste containing heavy metals by artificially mutated bacteria may be appropriate solution for effluent disposal problems.

  9. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L. grown at four international field sites.

    Directory of Open Access Journals (Sweden)

    Gareth J Norton

    Full Text Available The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼ 300 accessions and 36.9 k single nucleotide polymorphisms (SNPs. The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel. This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.

  10. Friedreich's ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus.

    Science.gov (United States)

    Koeppen, Arnulf H; Ramirez, R Liane; Yu, Devin; Collins, Sarah E; Qian, Jiang; Parsons, Patrick J; Yang, Karl X; Chen, Zewu; Mazurkiewicz, Joseph E; Feustel, Paul J

    2012-12-01

    Friedreich's ataxia (FRDA) causes selective atrophy of the large neurons of the dentate nucleus (DN). High iron (Fe) concentration and failure to clear the metal from the affected brain tissue are potential risk factors in the progression of the lesion. The DN also contains relatively high amounts of copper (Cu) and zinc (Zn), but the importance of these metals in FRDA has not been established. This report describes nondestructive quantitative X-ray fluorescence (XRF) and "mapping" of Fe, Cu, and Zn in polyethylene glycol-dimethylsulfoxide (PEG/DMSO)-embedded DN of 10 FRDA patients and 13 controls. Fe fluorescence arose predominantly from the hilar white matter, whereas Cu and Zn were present at peak levels in DN gray matter. Despite collapse of the DN in FRDA, the location of the peak Fe signal did not change. In contrast, the Cu and Zn regions broadened and overlapped extensively with the Fe-rich region. Maximal metal concentrations did not differ from normal (in micrograms per milliliter of solid PEG/DMSO as means ± S.D.): Fe normal, 364 ± 117, FRDA, 344 ± 159; Cu normal, 33 ± 13, FRDA, 33 ± 18; and Zn normal, 32 ± 16, FRDA, 33 ± 19. Tissues were recovered from PEG/DMSO and transferred into paraffin for matching with immunohistochemistry of neuron-specific enolase (NSE), glutamic acid decarboxylase (GAD), and ferritin. NSE and GAD reaction products confirmed neuronal atrophy and grumose degeneration that coincided with abnormally diffuse Cu and Zn zones. Ferritin immunohistochemistry matched Fe XRF maps, revealing the most abundant reaction product in oligodendroglia of the DN hilus. In FRDA, these cells were smaller and more numerous than normal. In the atrophic DN gray matter of FRDA, anti-ferritin labeled mostly hypertrophic microglia. Immunohistochemistry and immunofluorescence of the Cu-responsive proteins Cu,Zn-superoxide dismutase and Cu(++)-transporting ATPase α-peptide did not detect specific responses to Cu redistribution in FRDA. In contrast

  11. Effects of Dietary Copper and Zinc Supplementation on Growth Performance, Tissue Mineral Retention, Antioxidant Status, and Fur Quality in Growing-Furring Blue Foxes (Alopex lagopus).

    Science.gov (United States)

    Liu, Zhi; Wu, Xuezhuang; Zhang, Tietao; Guo, Jungang; Gao, Xiuhua; Yang, Fuhe; Xing, Xiumei

    2015-12-01

    A 4×2 factorial experiment with four supplemental levels of copper (0, 20, 40, or 60 mg copper per kg dry matter) from copper sulfate and two supplemental levels of zinc (40 or 200 mg zinc per kg dry matter) from zinc sulfate was conducted to investigate the effects of dietary copper and zinc supplementation on growth performance, tissue mineral retention, antioxidant status, and fur quality in growing-furring blue foxes. One hundred and twenty healthy 15-week-old male blue foxes were randomly allocated to eight dietary treatments with 15 replicates per treatment for a 70-day trial from mid-September to pelting in December. The average daily gain and feed conversion ratio were increased with copper supplementation in the first 35 days as well as the overall period (Pzinc did not affect body gain (P>0.10) and feed intake (P>0.10) but improved feed conversion (Pzinc throughout the experiment. No copper×zinc interaction was observed for growth performance except that a tendency (P=0.09) was found for feed intake in the first 35 days. Supplementation of copper or zinc improved crude fat digestibility (Pzinc addition (Pzinc was affected only by dietary zinc addition (P0.05). However, the level of copper in the liver was increased with copper supplementation (Pzinc supplementation (P=0.08). Dietary zinc addition tended to increase the activity of alkaline phosphatase (P=0.07). The activities of copper-zinc superoxide dismutase and catalase tended to increase by copper (P=0.08) and zinc addition (P=0.05). Moreover, a copper×zinc interaction was observed for catalase in the experiment (Pzinc levels (Pzinc supplementation can improve growth by increasing feed intake and improving fat digestibility. Additionally, copper and zinc can enhance the antioxidant capacity of blue foxes. This study also indicates that additional zinc up to 200 mg/kg did not exert significant adverse effects on the copper metabolism of growing-furring blue foxes.

  12. Effect of sample pretreatment on speciation of copper and zinc in MSW.

    Science.gov (United States)

    Long, Yu-Yang; Hu, Li-Fang; Wang, Jing; Fang, Cheng-Ran; He, Ruo; Hu, Hong; Shen, Dong-Sheng

    2009-09-15

    Copper and zinc were determined in MSW samples collected from Tianziling landfill site in Hangzhou, Zhejiang, east China by modified BCR sequential extractions. Three pretreatment methods, including fresh, air drying, and oven drying, were studied. It showed that the main cause of fraction transfer after drying could be ascribed to the variation of sample status, including the evaporation of ammonia nitrogen and volatile fatty acid (VFA), the shift of sample pH, and the oxidation of sulfur, when contacted with atmospheric oxygen or exposed in high temperature during drying processes. Effect of sample pretreatment methods on speciation of copper and zinc in MSW concluded that oven drying should not be used because the changes are more numerous and generally of greater amplitude, air drying was a 'neutral' treatment relatively, while fresh sample might be the best choice if possible. To validate the effect and determine the source of pretreatment methods clearly, certified reference materials of MSW should be confirmed in the future research.

  13. Copper, zinc and cadmium in marine cage fish farm sediments: An extensive survey

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Rebecca J. [Scottish Association for Marine Science, Ecology Department, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Shimmield, Tracy M. [Scottish Association for Marine Science, Ecology Department, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Black, Kenneth D. [Scottish Association for Marine Science, Ecology Department, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom)]. E-mail: kenny.black@sams.ac.uk

    2007-01-15

    The diet of cage-farmed Atlantic salmon contains a range of trace metals, some of which have toxic properties, e.g. zinc, copper and cadmium. A survey of metal concentrations (ICP-MS analysis) in surface sediments of ca. 70 stations was carried out in both May and December 2000 around a Scottish fish farm. Additionally, at 13 stations on 2 orthogonal transects centered on the farm, sediments were analysed at 1 cm intervals to 8 cm depth. Maximum concentrations in surface sediments were 921, 805 and 3.5 {mu}g g{sup -1} for Zn, Cu and Cd, respectively, and were found at stations near the fish farm. The calculated losses from the farm (feed input minus fish output) were 87.0%, 4.3% and 14.0% of the background-corrected inventories for Zn, Cu and Cd, respectively, indicating that for Cu and Cd at least, the feed is not the only source. - Sediments around a salmon farm show extremely high levels of zinc, copper and cadmium contamination.

  14. Surface cellulose modification with 2-aminomethylpyridine for copper, cobalt, nickel and zinc removal from aqueous solution

    Directory of Open Access Journals (Sweden)

    Edson Cavalcanti Silva Filho

    2013-02-01

    Full Text Available Cellulose was first modified with thionyl chloride, followed by reaction with 2-aminomethylpyridine to yield 6-(2'-aminomethylpyridine-6-deoxycellulose. The resulting chemically-immobilized surface was characterized by elemental analysis, FTIR, 13C NMR and thermogravimetry. From 0.28% of nitrogen incorporated in the polysaccharide backbone, the amount of 0.10 ± 0.01 mmol of the proposed molecule was anchored per gram of the chemically modified cellulose. The available basic nitrogen centers attached to the covalent pendant chain bonded to the biopolymer skeleton were investigated for copper, cobalt, nickel and zinc adsorption from aqueous solution at room temperature. The newly synthesized biopolymer gave maximum sorption capacities of 0.100 ± 0.012, 0.093 ± 0.021, 0.074 ± 0.011 and 0.071 ± 0.019 mmol.g-1 for copper, cobalt, nickel and zinc cations, respectively, using the batchwise method, whose data was fitted to different sorption models, the best fit being obtained with the Langmuir model. The results suggested the use of this anchored biopolymer for cation removal from the environment.

  15. Excretion of Zinc and Copper Increases in Men during 3 Weeks of Bed Rest, with or without Artificial Gravity.

    Science.gov (United States)

    Heacox, Hayley N; Gillman, Patricia L; Zwart, Sara R; Smith, Scott M

    2017-06-01

    Background: Zinc and copper have many physiologic functions and little or no functional storage capability, so persistent losses of either element present health concerns, especially during extended-duration space missions.Objectives: We evaluated the effects of short-term bed rest (BR), a spaceflight analog, on copper and zinc metabolism to better understand the role of these nutrients in human adaptation to (simulated) spaceflight. We also investigated the effect of artificial gravity on copper and zinc homeostasis.Methods: Zinc and copper balances were studied in 15 men [mean ± SD age: 29 ± 3 y; body mass index (in kg/m(2)): 26.4 ± 2.2] before, during, and after 21 d of head-down tilt BR, during which 8 of the participants were subjected to artificial gravity (AG) by centrifugation for 1 h/d. Control subjects were transferred onto the centrifuge but were not exposed to centrifugation. The study was conducted in a metabolic ward; all urine and feces were collected. Data were analyzed by 2-factor repeated-measures ANOVA.Results: Urinary zinc excretion values for control and AG groups were 33% and 14%, respectively, higher during BR than before BR, and fecal zinc excretion values for control and AG groups were 36% and 19%, respectively, higher during BR, resulting in 67% and 82% lower net zinc balances for controls and AG, respectively (both P copper values for control and AG groups were 40% and 33%, respectively, higher during BR than before BR (P copper did not change during BR, but a 19% increase was observed after BR compared with before BR in the AG group (P copper and zinc by men during BR suggests that their absorption of these minerals from the diet was reduced, secondary to the release of minerals from bone and muscle. These findings highlight the importance of determining dietary requirements for astronauts on space missions and ensuring provision and intake of all nutrients. © 2017 American Society for Nutrition.

  16. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu, Longhua, E-mail: lhwu@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Pengjie [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Yantai 264003 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2013-10-15

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola.

  17. Studies on Zinc and Copper Ion in Relation to Wound Healing in Male and Female West African Dwarf Goats.

    Science.gov (United States)

    Olaifa, A K; Fadason, S T

    2017-03-06

    Wound healing remains a challenging clinical problem for which precise and efficient management is essential in order to curtail morbidity and mortality. Wound healing has been shown to depend upon the availability of appropriate trace elements like copper and zinc which serve as enzyme cofactors and structural components in tissue repair. This study aims at evaluating the distribution of zinc and copper found in the hair as well as skin during epidermal wound healing. Adult and healthy West African dwarf (WAD) goats of both sexes fed with concentrate, grass, cassava peel and water ad libitum were used. The animals were housed for three weeks before commencement of the experiments. Epidermal wounds were created on the trunks of all the goats using cardboard template of 1cm². Progressive changes in wound contraction were monitored grossly by placing clean and sterile venier calliper on the wound margin. Hair and skin elemental (copper and zinc) analyses were done using atomic absorption spectroscopy (AAS). Significant increases in Cu level were observed in the female hair compared with that of males. There were significant increases in the Zn levels of the females' hair compared with the males. The wound healed faster in female goat compared with the males. The ratio of copper to zinc is clinically more important than the concentration of either of these trace metals. The pattern of distribution between zinc and copper concentration in the skin and hair of the male and female goats observed in this study could be added factor responsible for early wound healing in female. Therefore, our findings suggest that the distribution in the Cu and Zinc level in skin and hair of both male and female goats could also be a factor for wound healing in the animals.

  18. Associations between serum C-reactive protein and serum zinc, ferritin, and copper in Guatemalan school children.

    Science.gov (United States)

    Bui, Vinh Q; Stein, Aryeh D; DiGirolamo, Ann M; Ramakrishnan, Usha; Flores-Ayala, Rafael C; Ramirez-Zea, Manuel; Grant, Frederick K; Villalpando, Salvador; Martorell, Reynaldo

    2012-08-01

    Inflammation affects trace nutrient concentrations, but research on copper and particularly in children is limited. We assessed associations between serum C-reactive protein (CRP) and zinc, iron, copper, and other biomarkers (alkaline phosphatase, hemoglobin, and albumin), in 634 healthy 6- to 11-year-old Guatemalan schoolchildren. CRP was measured by a standardized, high-sensitive method. For significant associations with CRP, we stratified nutrient concentrations across categories of CRP and compared concentrations above and below several CRP cutoff points (0.5, 1, 3, 5, and 10 mg/L), and then adjusted values using correction factors (ratios of geometric means of the nutrients in the low and high groups). Prevalence of serum zinc (ferritin (concentration was positively associated with ferritin and copper concentrations (r = 0.23 and 0.29, respectively; P 0.05). Regardless of CRP cutoffs, high (> cutoff) vs. low (≤ cutoff) CRP levels had higher ferritin and copper concentrations and lower prevalence of copper deficiency of ferritin prevalence hardly changed (from 2.1% to 2.5%) while the low copper prevalence changed appreciably (from 23.8% to 31.2%). In conclusion, CRP was positively associated with ferritin and copper but not with zinc concentrations. Adjustment for inflammation had little effect on low ferritin prevalence, low to begin with, and a large impact on low copper prevalence. High-sensitive CRP methods and the use of very low CRP cutoffs may be more accurate than traditional CRP methods in the adjustment of serum copper concentrations for inflammation in healthy school children.

  19. Copper zinc tin sulfide layers prepared from solution processable metal dithiocarbamate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Edler, Michael [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz (Austria); Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz, Forschungsgesellschaft mbH (Austria); Rath, Thomas, E-mail: thomas.rath@tugraz.at [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz (Austria); Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz, Forschungsgesellschaft mbH (Austria); Schenk, Alexander [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz (Austria); Fischereder, Achim [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz (Austria); Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz, Forschungsgesellschaft mbH (Austria); Haas, Wernfried [Christian Doppler Laboratory for Nanocomposite Solar Cells, Graz University of Technology and NanoTecCenter Weiz, Forschungsgesellschaft mbH (Austria); Institute for Electron Microscopy and Fine Structure Research, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Edler, Matthias [Chair of Chemistry of Polymeric Materials, University of Leoben, Otto Gloeckel-Strasse 2, 8700 Leoben (Austria); Chernev, Boril [Institute for Electron Microscopy and Fine Structure Research, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Kunert, Birgit [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Hofer, Ferdinand [Institute for Electron Microscopy and Fine Structure Research, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); and others

    2012-10-15

    In this contribution we present a solution based route toward copper zinc tin sulfide - CZTS - layers using metal dithiocarbamate precursors. We focus on the synthesis of the precursor materials as well as on the fabrication of thin CZTS layers at low temperatures of 350 Degree-Sign C and their characterization. Powder X-ray diffraction measurements show that a precursor solution containing an excess of the zinc precursor, compared to the Cu and Sn precursors, has to be used to obtain CZTS films without secondary phases. Thus, the prepared films are Zn-rich, which is beneficial for solar cell applications. Raman as well as X-ray photoelectron spectroscopy studies confirm the formation of CTZS. No clear evidence for free ZnS has been found. Electron microscopy shows agglomerates of 10 nm-sized crystallites forming spherical particles with a diameter between 50 nm and 400 nm. The prepared films possess high optical absorption (>1.10{sup 4} cm{sup -1}) and an optical band gap of approximately 1.6 eV. Highlights: Black-Right-Pointing-Pointer CZTS layers are prepared from metal dithiocarbamate precursor solu-tions. Black-Right-Pointing-Pointer No additional sulfur sources or capping agents are necessary. Black-Right-Pointing-Pointer Prepared CZTS layers are zinc rich. Black-Right-Pointing-Pointer CZTS layers show a high absorption coefficient and a band gap of 1.6 eV.

  20. Trace Elements Iron, Copper and Zinc in Vitreous of Patients with Various Vitreoretinal Diseases

    Directory of Open Access Journals (Sweden)

    Sulochana Konerirajapuram

    2004-01-01

    Full Text Available Purpose: To measure the concentrations of iron, copper and zinc in human vitreous and to interpret their levels with various vitreoretinal diseases like proliferative diabetic retinopathy, retinal detachment, intraocular foreign body, Eales′ disease and macular hole. Methods: Undiluted vitreous fluid collected during pars plana vitrectomy was used to measure trace elements using an atomic absorption spectrophotometer. Results: The level of vitreous iron increased threefold in Eales′ disease (1.85 ± 0.36 pg/ml, 2.5-fold in proliferative diabetic retinopathy (1.534 ± 0.17 pg/ml and 2.3-fold in eyes with intraocular foreign body (1.341 ± 0.25 pg/ml when compared with macular hole (0.588 ± 0.16 pg/ml. This was statistically significant (P < 0.05. Zinc was found to be low in Eales′ disease (0.57 ± 0.22 pg/ml when compared with other groups, though the difference was not statistically significant. Conclusion: The increased level of iron with decreased zinc content in Eales′ disease confirms the earlier reported oxidative stress mechanism for the disease. In proliferative diabetic retinopathy and intraocular foreign body the level of iron increases. This is undesirable as iron can augment glycoxidation, which can lead to increased susceptibility to oxidative damage, in turn causing vitreous liquefaction, posterior vitreous detachment and ultimately retinal detachment and vision loss

  1. Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of multihistidine peptide fragments of human prion protein.

    Science.gov (United States)

    Jószai, Viktória; Turi, Ildikó; Kállay, Csilla; Pappalardo, Giuseppe; Di Natale, Giuseppe; Rizzarelli, Enrico; Sóvágó, Imre

    2012-07-01

    Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of four peptide fragments of human prion protein have been studied by potentiometric, UV-vis and circular dichroism spectroscopic techniques. One peptide contained three histidyl residues: HuPrP(84-114) with H85 inside and H96, H111 outside the octarepeat domain. The other three peptides contained two histidyl residues; H96 and H111 for HuPrP(91-115) and HuPrP(84-114)H85A while HuPrP(84-114)H96A contained the histidyl residues at positions 85 and 111. It was found that both histidines of the latter peptides can simultaneously bind copper(II) and nickel(II) ions and dinuclear mixed metal complexes can exist in slightly alkaline solution. One molecule of the peptide with three histidyl residues can bind two copper(II) and one nickel(II) ions. H85 and H111 were identified as the major copper(II) and H96 as the preferred nickel(II) binding sites in mixed metal species. The studies on the zinc(II)-PrP peptide binary systems revealed that zinc(II) ions can coordinate to the 31-mer PrP peptide fragments in the form of macrochelates with two or three coordinated imidazol-nitrogens but the low stability of these complexes cannot prevent the hydrolysis of the metal ion in slightly alkaline solution. These data provide further support for the outstanding affinity of copper(II) ions towards the peptide fragments of prion protein but the binding of nickel(II) can significantly modify the distribution of copper(II) among the available metal binding sites.

  2. Relationship between Paratuberculosis and the microelements Copper, Zinc, Iron, Selenium and Molybdenum in Beef Cattle

    Directory of Open Access Journals (Sweden)

    F. Paolicchi

    2013-01-01

    Full Text Available To study the deficiency of minerals and its relationship with Paratuberculosis, blood, serum, and fecal samples were obtained from 75 adult bovines without clinical symptoms of the disease and from two bovines with clinical symptoms of the disease, from two beef herds with a previous history of Paratuberculosis in the Province of Buenos Aires, Argentina. Serum samples were processed by ELISA and feces were cultured in Herrolds medium. Copper, zinc and iron in serum were quantified by spectrophotometry and selenium was measured by the activity of glutathione peroxidase. We also determined copper, zinc, iron and molybdenum concentrations in pastures and the concentration of sulfate in water. Mycobacterium avium subsp paratuberculosis (Map was isolated from 17.3% of fecal samples of asymptomatic animals and from the fecal samples from the two animals with clinical symptoms. All the Map-positive animals were also ELISA-positive or suspect, and among them, 84.6% presented low or marginal values of selenium and 69.2% presented low or marginal values of copper. The two animals with clinical symptoms, and isolation of Map from feces and organs were selenium-deficient and had the lowest activity of glutathione peroxidase of all the animals from both herds. All the animals negative to Map in feces and negative to ELISA had normal values of Se, while 13.8% of animals with positive ELISA or suspect and culture negative presented low levels of Se. Half of the animals that were negative both for ELISA and culture in feces were deficient in copper but none of them presented low values of selenium. The content of molybdenum and iron in pasture was high, 2.5 ppm and 1.13 ppm in one herd and 2.5 ppm and 2.02 ppm in the other, respectively, whereas the copper:molybdenum ratio was 1.5 and 5.2, respectively. These results do not confirm an interaction between imbalances of the micronutrients and clinical Paratuberculosis, but show evidence of the relationship

  3. Effect of calcium, copper, and zinc levels in a rapeseed meal diet on mineral and trace element utilization in the rat.

    Science.gov (United States)

    Larsen, T; Sandström, B

    1992-11-01

    Mineral and trace element interactions were studied in a balance trial with rats. Calcium, copper, and zinc were supplied to a rapeseed meal diet in a factorial design. Animals were fed ad libitum, and absorption, excretion, and retention of the elements were evaluated either as fractions of total intake or in relation to nitrogen retention to account for differences in food intake and lean body mass increment. The intrinsic content of minerals and trace elements was sufficient to support growth at a rate that could be expected from the rapeseed protein quality. However, when calcium was included in the diet, the intrinsic dietary level of zinc appeared to be limiting, despite the fact that the zinc level was twice the recommended level. Additional zinc supply reversed growth impairment. This calcium-zinc interaction is believed to be owing to the formation of phytate complexes. Calcium addition influenced the calcium, phosphorus, magnesium, zinc, and iron--but not the copper--balances. The addition of calcium reduced the availability of the intrinsic zinc, whereas no effect was seen in the zinc-fortified groups. The availability of intrinsic copper was in a similar way significantly impaired by addition of dietary zinc, whereas copper-supplied groups were unaffected by zinc addition. Intrinsic iron availability was also dependent upon zinc addition, although in a more ambiguous way. Thus, addition of extrinsic minerals to a diet high in phytate can result in significant impairments of growth and mineral utilization.

  4. An Optical Fiber-Based Sensor Array for the Monitoring of Zinc and Copper Ions in Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Steven Kopitzke

    2014-02-01

    Full Text Available Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments.

  5. The technical and economic efficiency in the mineral processing for lead-zinc and copper ores by Microsoft excel

    OpenAIRE

    Krstev, Aleksandar; Krstev, Boris; Krstev, Dejan; Vuckovski, Zoran

    2012-01-01

    The comparisons between economical and technical efficiency for lead flotation indicators, zinc flotation indicators in Sasa mine, Toranica and Zletovo mine. The comparisons for economic and technical efficiency for copper flotation indicators in Bucim mine. The possibility of equaled between both efficiencies for flotation indicators from mentioned mines using Microsoft Excel 2010.

  6. Longitudinal study of serum zinc and copper levels in hemodialysis patients and their relation to biochemical markers.

    Science.gov (United States)

    Navarro-Alarcon, M; Reyes-Pérez, A; Lopez-Garcia, H; Palomares-Bayo, M; Olalla-Herrera, M; Lopez-Martinez, M C

    2006-12-01

    A 6-mo longitudinal study of 48 hemodialysis patients (HPs) with chronic renal failure was performed. Three blood samplings were done. Samples of whole blood from each patient were collected during hemodialysis sessions after passing through the artificial kidney. Zinc and copper levels were measured by atomic absorption spectrometry. Additionally, 36 biochemical indexes were evaluated during the study. Fifty-two healthy matched controls were also considered. Mean serum zinc and copper concentrations in HPs were significantly decreased (Zn) and increased (Cu), when compared with healthy controls (p < 0.01). Zinc concentrations found in the first and second blood samplings from patients were significantly lower than those measured for the third sampling (p < 0.01). The etiology of chronic renal failure influenced the statistically serum Zn levels of patients (p < 0.05). Serum copper levels of HPs were significantly diminished by the existence of secondary associated diseases (p < 0.01). Uric acid and parathyroid hormone, and total-cholesterol and glutamic-pyruvic-transaminase levels were significantly (p < 0.05) and linearly related with serum zinc and copper concentrations, respectively. From all of indexes, creatinine, direct bilirubin, magnesium, calcium, parathyroid hormone, transferrin, and albumin were statistically modified along the longitudinal study (p < 0.05). Transferrin serum levels were significantly diminished in the third blood sampling, indicating the tendency toward anemia in the patients. This result is reinforced by low levels of biochemical and hematological indexes related with iron body staus.

  7. Copper-Zinc Alloy Nanopowder : A Robust Precious-Metal-Free Catalyst for the Conversion of 5-Hydroxymethylfurfural

    NARCIS (Netherlands)

    Bottari, Giovanni; Kumalaputri, Angela J; Krawczyk, Krzysztof K; Feringa, Ben L; Heeres, Hero J; Barta, Katalin

    2015-01-01

    Noble-metal-free copper-zinc nanoalloy (<150 nm) is found to be uniquely suited for the highly selective catalytic conversion of 5-hydroxymethylfurfural (HMF) to potential biofuels or chemical building blocks. Clean mixtures of 2,5-dimethylfuran (DMF) and 2,5-dimethyltetrahydrofuran (DMTHF) with com

  8. BIOACCUMULATION OF COPPER, ZINC, MANGAN, IRON AND MAGNESIUM IN SOME ECONOMICALLY IMPORTANT FISH FROM THE WESTERN SHORES OF ANTALYA

    Directory of Open Access Journals (Sweden)

    Kazim UYSAL

    2011-02-01

    Full Text Available Bioaccumulation of copper, zinc, manganese, iron and magnesium which generaly result from agricultural activities was determined in muscle, skin and gills of some economically important sea fish(Diplodus sargus, Siganus rivulatus, Lithognathus mormyrus, Liza aurata, Chelon labrasus from the western shores of Antalya, intensive agricultural regions. The minimum and maximum levels of investigated elements (mg kg-1 wet weight in tissues of the fish varied from 0.54 to1.69 for copper; from 4.14 to 407.23 for zinc from 0.15 to 9.17 for mangan; from 3.45 to104.49 for iron; and from 204.33 to 784.30 for magnesium. While the lowest levels of elements were determined in the muscle, the highest levels (except copper were encountered in the gills. Copper and zinc levels in muscle of the species were remarkably lower than the maximum permissible levels informed by World Health Organization (WHO, Food and Agriculture Organisation (FAO and Turkish Legislation although zinc contents in the skin of some species (D. sargus, S. rivulatus, L. mormyrus and L. aurata were higher than that levels.

  9. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV

    National Research Council Canada - National Science Library

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    ...) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 μg/100g, 0.445 ± 0.006, 0.050...

  10. Elimination of the copper-zinc interference in anodic stripping voltammetry by addition of a complexing agent.

    Science.gov (United States)

    Brandes Marques, A L; Chierice, G O

    1991-07-01

    The addition of cyanide and Triton X-100 suppress the formation of the CuZn intermetallic compound in ASV making it possible to determine traces of zinc(II) in the presence of an excess of copper ions. The precision of the method (5%) and the accuracy (error of 1.4%) in sea water are satisfactory.

  11. Hydrothermally treated chitosan hydrogel loaded with copper and zinc particles as a potential micro-nutrient based antimicrobial feed additive

    Directory of Open Access Journals (Sweden)

    Parthiban eRajasekaran

    2015-11-01

    Full Text Available Large-scale use of antibiotics in food animal farms as growth promoters is considered as one of the driving factors behind increasing incidence of microbial resistance. Several alternatives are under investigation to reduce the amount of total antibiotics used in order to avoid any potential transmission of drug resistant microbes to humans through food chain. Copper sulfate and zinc oxide salts are used as feed supplement as they exhibit antimicrobial properties in addition to being micronutrients. However, higher dosage of copper and zinc (often needed for growth promoting effect to animals is not advisable because of potential environmental toxicity arising from excreta. Innovative strategies are needed to utilize the complete potential of trace minerals as growth promoting feed supplements. To this end, we describe here the development and preliminary characterization of hydrothermally treated chitosan as a delivery vehicle for copper and zinc nanoparticles that could act as a micronutrient based antimicrobial feed supplement. Material characterization studies showed that hydrothermal treatment makes a chitosan hydrogel that re-arranged to capture the copper and zinc metal particles. Systemic antimicrobial assays showed that this chitosan biopolymer matrix embedded with copper (57.6 μg/ml and zinc (800 μg/ml reduced the load of model gut-bacteria (target organisms of growth promoting antibiotics such as Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and Lactobacillus fermentum under in vitro conditions. Particularly, the chitosan/copper/zinc hydrogel exhibited significantly higher antimicrobial effect against L. fermentum, one of the primary targets of antibiotic growth promoters. Additionally, the chitosan matrix ameliorated the cytotoxicity levels of metal supplements when screened against a murine macrophage cell line RAW 264.7 and in TE-71, a murine thymic epithelial cell line. In this proof of concept study, we show

  12. Copper, zinc and lead enrichments in sediments from Guacanayabo Gulf, Cuba, and its bioaccumulation in oysters, Crassostrea rhizophorae.

    Science.gov (United States)

    Díaz Rizo, O; Olivares Reumont, S; Viguri Fuente, J; Díaz Arado, O; López Pino, N; D'Alessandro Rodríguez, K; de la Rosa Medero, D; Gelen Rudnikas, A; Arencibia Carballo, G

    2010-01-01

    Levels of iron, copper, zinc and lead were determined in sediments and soft tissue of the oyster Crassostrea rhizophorae collected from Guacanayabo Gulf, Cuba. Metal-to-Iron ratio in sediments shows an average enrichment for Cu (5,1), Pb (11,7) and Zn (1,3) in the last 20 years. Metal concentrations found in soft tissue of C. rhizophorae are site dependent. The average biota-sediment accumulation factors (BSAFs) obtained for Fe, Cu and Pb are less than unity in all cases, indicating that only a little fraction of Cu and Pb in the sediments is bioavailable, independently of their enrichments. Zinc has an average BSAF value of 2.4 and may represent a serious impact in the area. The concentrations of zinc and copper in some of the oysters are above typical public health recommended limits.

  13. Studies on the effects of x-ray on erythrocyte zinc and copper concentrations in rabbits after treatment with antioxidants.

    Science.gov (United States)

    Dede, S; Deger, Y; Mert, N; Kahraman, T; Alkan, M; Keles, I

    2003-04-01

    The aim of this study was to investigate the effect of supplemental antioxidant vitamins and minerals on the erythrocyte concentrations of zinc and copper in rabbits after exposure to X-rays. The animals were divided into two experimental and one control group (CG). The first group (VG) was given daily oral doses of vitamins E and C; supplemental amounts of manganese, zinc, and copper were mixed with the feed and given to the second group of experimental animals (MG). Blood samples were taken from all groups before and after 4 wk of vitamin and mineral administration and after irradiation with a total dose of 550-rad X-rays. The administration of minerals caused the most significant increases of Zn and Cu. Even after irradiation, the zinc levels in the irradiated animals were higher than in the nonirradiated vitamin-supplemented animals (pvitamins and minerals may have a protective effect against X-ray-induced damage.

  14. The relationship between bone health and plasma zinc, copper lead and cadmium concentration in osteoporotic women.

    Science.gov (United States)

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behzad, Masoomeh; Behfar, Abdolazim; Sadeghi, Fatemeh; Saadatmand, Sahereh

    2014-01-01

    Osteoporosis is a multi factorial disease with dimension of genetic and nutritional considerations. The aim of this study was to present data from the association of plasma zinc, copper and toxic elements of lead and cadmium levels with bone mineral density in Iranian women. 135 women gave their information and enrolled. Fasting plasma was used for measurement of trace elements and heavy metals by Differential Pulse Anodic Stripping Voltammetry. Control group (n = 51) were normal in both lumbar spine (L1-L4) and femoral neck density (T-score ≥ -1), but just femoral neck T-score was considered as criterion in selection of patient group (n = 49, Tscore T-score > -1.7), 1.463 ± 0.174, 1.327 ± 0.147 μg/ml in Severe patient group (T-score < -1.7); respectively. Mean ± SD plasma level of lead and cadmium was 168.42 ± 9.61 ng/l, 2.91 ± 0.18 ng/ml in control group, 176.13 ± 8.64 ng/l, 2.97 ± 0.21 ng/ml in TP, 176.43 ± 13.2 ng/l, 2.99 ± 0.1 ng/ml in mild patients, 221.44 ± 20 ng/l and 3.80 ± 0.70 ng/ml in severe patient group, respectively. In this study plasma zinc, copper, lead & cadmium concentrations were higher in the patients than in the control, though differences were not significant. However, differences were higher between the controls and patients with severe disease (T-score < -1.7). In addition adjusted T-score of femur with age and BMI showed negative significant correlation with plasma levels of zinc and lead in total participants (p < 0.05, r = -0.201, p = 0.044, r = -0.201). It seems that more extensive study with larger ample size might supply definite results about this association for copper and cadmium.

  15. Serum Iron, Zinc, and Copper Levels in Patients with Alzheimer's Disease: A Replication Study and Meta-Analyses.

    Science.gov (United States)

    Wang, Zi-Xuan; Tan, Lan; Wang, Hui-Fu; Ma, Jing; Liu, Jinyuan; Tan, Meng-Shan; Sun, Jia-Hao; Zhu, Xi-Chen; Jiang, Teng; Yu, Jin-Tai

    2015-01-01

    To evaluate whether iron, zinc, and copper levels in serum are disarranged in Alzheimer's disease (AD), we performed meta-analyses of all studies on the topic published from 1984 to 2014 and contextually carried out a replication study in serum as well. Our meta-analysis results showed that serum zinc was significantly lower in AD patients. Our replication and meta-analysis results showed that serum copper was significantly higher in AD patients than in healthy controls, so our findings were consistent with the conclusions of four previously published copper meta-analyses. Even if a possible role of iron in the pathophysiology of the disease could not be ruled out, the results of our meta-analysis showed no change of serum iron levels in AD patients, but this conclusion was not robust and requires further investigation. The meta-regression analyses revealed that in some studies, differences in serum iron levels could be due to the different mean ages, while differences in zinc levels appeared to be due to the different sex ratios. However, the effect of sex ratio on serum zinc levels in our meta-analysis is subtle and needs further confirmation. Also, diverse demographic terms and methodological approaches appeared not to explain the high heterogeneity of our copper meta-analysis. Therefore, when investigating trace elements, covariants such as age and sex have to be taken into account in the analyses. In the light of these findings, we suggest that the possible alteration of serum zinc and copper levels are involved in the pathogenesis of AD.

  16. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV.

    Science.gov (United States)

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice and wheat based) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 μg/100g, 0.445 ± 0.006, 0.050 ± 0.005 mg/Kg respectively. Also these amount in powder milk (n = 240) were 3.621± 0.529 mg/100g, 403.822 ± 133.953 μg/100g, 0.007 ± 0.003, 0.060 ± 0.040 mg/Kg respectively. Zinc level in baby food type I was higher than lablled value (P = 0.030), but in other brands was not difference. Concentration of copper in all of samples was in labeled range (P > 0.05). In each four products, level of lead and cadmium were lower than the standard limit (P < 0.05). Amount of zinc and lead in baby food I, had difference versus other products. Concentration of zinc, camium in baby food type I, was higher than type II (P = 0.043, 0.001 respectively). Concentration of lead and cadmium in baby food type II, was higher than infant formulas, but are in standard limit.

  17. Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort.

    Science.gov (United States)

    Stepien, Magdalena; Jenab, Mazda; Freisling, Heinz; Becker, Niels-Peter; Czuban, Magdalena; Tjønneland, Anne; Olsen, Anja; Overvad, Kim; Boutron-Ruault, Marie-Christine; Mancini, Francesca Romana; Savoye, Isabelle; Katzke, Verena; Kühn, Tilman; Boeing, Heiner; Iqbal, Khalid; Trichopoulou, Antonia; Bamia, Christina; Orfanos, Philippos; Palli, Domenico; Sieri, Sabina; Tumino, Rosario; Naccarati, Alessio; Panico, Salvatore; Bueno-de-Mesquita, H B As; Peeters, Petra H; Weiderpass, Elisabete; Merino, Susana; Jakszyn, Paula; Sanchez, Maria-Jose; Dorronsoro, Miren; Huerta, José María; Barricarte, Aurelio; Boden, Stina; van Guelpen, Behany; Wareham, Nick; Khaw, Kay-Tee; Bradbury, Kathryn E; Cross, Amanda J; Schomburg, Lutz; Hughes, David J

    2017-07-01

    Adequate intake of copper and zinc, two essential micronutrients, are important for antioxidant functions. Their imbalance may have implications for development of diseases like colorectal cancer (CRC), where oxidative stress is thought to be etiologically involved. As evidence from prospective epidemiologic studies is lacking, we conducted a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort to investigate the association between circulating levels of copper and zinc, and their calculated ratio, with risk of CRC development. Copper and zinc levels were measured by reflection X-ray fluorescence spectrometer in 966 cases and 966 matched controls. Multivariable adjusted odds ratios (OR) and 95% confidence intervals (CI) were calculated using conditional logistic regression and are presented for the fifth versus first quintile. Higher circulating concentration of copper was associated with a raised CRC risk (OR = 1.50; 95% CI: 1.06, 2.13; P-trend = 0.02) whereas an inverse association with cancer risk was observed for higher zinc levels (OR = 0.65; 95% CI: 0.43, 0.97; P-trend = 0.07). Consequently, the ratio of copper/zinc was positively associated with CRC (OR = 1.70; 95% CI: 1.20, 2.40; P-trend = 0.0005). In subgroup analyses by follow-up time, the associations remained statistically significant only in those diagnosed within 2 years of blood collection. In conclusion, these data suggest that copper or copper levels in relation to zinc (copper to zinc ratio) become imbalanced in the process of CRC development. Mechanistic studies into the underlying mechanisms of regulation and action are required to further examine a possible role for higher copper and copper/zinc ratio levels in CRC development and progression. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction.

    Science.gov (United States)

    Yang, Wei-dong; Wang, Yu-yan; Zhao, Feng-liang; Ding, Zhe-li; Zhang, Xin-cheng; Zhu, Zhi-qiang; Yang, Xiao-e

    2014-09-01

    Willows (Salix spp.) have shown high potential for the phytoextraction of heavy metals. This study compares variations in copper (Cu) and zinc (Zn) tolerance and accumulation potential among 12 willow clones grown in a nutrient solution treated with 50 μmol/L of Cu or Zn, respectively. The results showed differences in the tolerance and accumulation of Cu and Zn with respect to different species/clones. The biomass variation among clones in response to Cu or Zn exposure ranged from the stimulation of growth to inhibition, and all of the clones tested showed higher tolerance to Cu than to Zn. The clones exhibited less variation in Cu accumulation but larger variation in Zn accumulation. Based on translocation factors, it was found that most of the Cu was retained in the roots and that Zn was more mobile than Cu for all clones. It is concluded that most willow clones are good accumulators of Zn and Cu.

  19. Use of ionic liquid in leaching process of brass wastes for copper and zinc recovery

    Institute of Scientific and Technical Information of China (English)

    Ayfer Kilicarslan; Muhlis Nezihi Saridede; Srecko Stopic; Bernd Friedrich

    2014-01-01

    Brass ash from the industrial brass manufacturer in Turkey was leached using the solutions of ionic liquid (IL) 1-butyl-3-methyl-imi-dazolium hydrogen sulfate ([bmim]HSO4) at ambient pressure in the presence of hydrogen peroxide (H2O2) and potassium peroxymonosulfate (oxone) as the oxidants. Parameters affecting leaching efficiency, such as dissolution time, IL concentration, and oxidizing agent addition, were investigated. The results show that [bmim]HSO4 is an efficient IL for the brass ash leaching, providing the dissolution efficiencies of 99%for Zn and 24.82%for Cu at a concentration of 50vol%[bmim]HSO4 in the aqueous solution without any oxidant. However, more than 99%of zinc and 82%of copper are leached by the addition of 50vol%H2O2 to the [bmim]HSO4 solution. Nevertheless, the oxone does not show the promising oxidant behavior in leaching using [bmim]HSO4.

  20. Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus.

    Science.gov (United States)

    Ye, Nan; Wang, Zhuang; Fang, Hao; Wang, Se; Zhang, Fan

    2017-05-12

    A combined ecotoxicity study was carried out with nano-zinc oxide (nZnO) and nano-copper oxide (nCuO) to freshwater algae Scenedesmus obliquus. Concentration-response analysis indicated that the dissolved metal fraction was not the major source of individual and combined toxicity of the metal-oxide nanoparticles (MONPs). Moreover, the contribution of the nCuO (based on metallic mass) to the combined toxicity was greater than that of the nZnO. The observed combined toxicity can be predicted by the pharmacological concepts of concentration addition (CA) and independent action (IA). Combined toxicity prediction (in terms of median effect concentration) based on both concepts tends to overestimate the overall observed toxicity of the MONP mixtures. CA was more accurate for predicting the combined toxicity than IA. It may be concluded that CA gives a valid estimation of the overall ecotoxicity for mixtures comprising of similar acting MONPs.

  1. Synthesis of copper doped Zinc oxide nanowires with enhanced ultraviolet photoresponse behavior

    Science.gov (United States)

    Ghosh, S. P.; Das, K. C.; Tripathy, N.; Moharana, A.; Adhikari, A.; Bose, G.; Kim, D. H.; Lee, T. I.; Myoung, J. M.; Kar, J. P.

    2017-02-01

    This work mainly focused on the synthesis of copper doped zinc oxide nanowires by hydrothermal method, their characterization and their ultraviolet (UV) light sensing response at room temperature. The structural and morphological characterization was carried out using X-ray diffraction and scanning electron microscopy. Enhanced ultraviolet (UV) photodetection property has been achieved for a dopant concentration of 2.5wt% and 5wt% showing UV photosensitivity values (photo-to-dark current ratio) of around 800 and 1800, respectively. This is an order of magnitude higher than the undoped ZnO nanowires. High photocurrent gain is attributed to the trapping of carriers under dark and detrapping them under UV illumination by Cu-related defects. Enhancement in photosensitivity indicates that Cu-doped ZnO nanowires are promising candidates for UV photodetection applications.

  2. Magnetization and Magnetocaloric Effect in Sol-Gel Derived Nanocrystalline Copper-Zinc Ferrite.

    Science.gov (United States)

    Anwar, M S; Ahmed, Faheem; Koo, Bon Heun

    2015-02-01

    We report the sol-gel synthesis and magnetocaloric effect in nanocrystalline copper-zinc ferrite (Cu0.5Zn0.5Fe2O4). The synthesized powder was characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and magnetization measurements. The XRD results confirm the formation of single phase spinel structure. The average particle size was found to be ~58 nm. FE-SEM results suggested that the nanoparticles are agglomerated and spherical in shape. Magnetization measurement reveals that Cu0.5Zn0.5Fe2O4 nanoparticles exhibit transition temperature (Tc) above room temperature. The maximum magnetic entropy change (ΔSM)max shows interesting behaviour and was found to vary with the applied magnetic field. This nanopowder can be considered as potential material for magnetic refrigeration above room temperature.

  3. Decreased copper and zinc in sera of Chinese vitiligo patients: a meta-analysis.

    Science.gov (United States)

    Zeng, Qinghai; Yin, Jun; Fan, Fan; Chen, Jing; Zuo, Chengxin; Xiang, Yaping; Tan, Lina; Huang, Jinhua; Xiao, Rong

    2014-03-01

    Abnormalities of copper (Cu) and zinc (Zn) are involved in the etiology and pathogenesis of vitiligo. However, controversial results exist now on Cu and Zn in serum of vitiligo patients. The purpose of this study is to compare the serum levels of Cu and Zn between vitiligo patients and healthy controls. In the meta-analysis, 16 studies with a total of 891 vitiligo cases and 1682 healthy controls were included. The levels of serum Cu and Zn were compared between groups of case and control. The serum levels of Cu were significantly lower in vitiligo patients than in healthy controls (Z = 4.04, P vitiligo patients than in healthy controls (Z = 4.88, P vitiligo patients. This may offer support for clinical administration of oral Cu and Zn supplements.

  4. Sorption recovery of platinum (II, IV in presence of copper (II and zinc (II from chloride solutions

    Directory of Open Access Journals (Sweden)

    Kononova Olga N.

    2015-01-01

    Full Text Available The sorption preconcentration of platinum (II, IV ions was investigated in presence of accompanying copper (II and zinc (II ions from chloride solutions on the new ion exchangers CYBBER (Russia, previously unexplored. The initial concentrations of platinum and accompanying ions were 0.25 mmol L-1 and 2.0 mmol L-1, respectively, and the acidity of medium was 0.001 - 4.0 mol L-1. It was shown that the resins investigated - strong and weak basic anion exchangers as well as chelate ion exchangers - possess good sorption and kinetic properties. The simultaneous sorption of investigated ions results in the complete recovery of platinum, while the non-ferrous metal ions are sorbed at less than 20%. Followed by the selective elution of platinum by thiourea (80 g L-1 solution in 0.3 M H2SO4, the quantitative isolation of platinum was achieved (more than 90%. Therefore, the studied ion exchangers can be recommended for recovery and separation of Pt(II,IV, Cu(II and Zn(II ions.

  5. Evaluation of Serum Superoxide Dismutase Activity, Malondialdehyde, and Zinc and Copper Levels in Patients With Keratoconus.

    Science.gov (United States)

    Kılıç, Raşit; Bayraktar, Aslhan Cavunt; Bayraktar, Serdar; Kurt, Ali; Kavutçu, Mustafa

    2016-12-01

    The aim of this study was to evaluate the relationship between antioxidant superoxide dismutase (SOD) enzyme activity, malondialdehyde (MDA) as a lipid peroxidation marker, and some trace elements such as zinc (Zn) and copper (Cu) levels in patients with keratoconus. A total of 58 patients with keratoconus and 53 control subjects with similar age and sex were evaluated in this study. The modified Krumeich keratoconus classification was used to divide the patients into 4 stages. Serum SOD activity, MDA, and zinc and copper levels were compared between the patient and control groups. The median serum SOD activity, MDA, and Zn and Cu levels were 27.2 (42.4-13.7) U/mL, 10.2 (11.9-8.5) nmol/mL, 87.9 (104.6-76.5) μmol/L, and 103.2 (117.9-90.3) μmol/L in the keratoconus group and 26.2 (32.5-14.4) U/mL, 8.8 (11.4-7.1) nmol/mL, 100.5 (121.1-81.8) μmol/L, and 98.4 (120.3-83.4) μmol/L in the control group, respectively. There was a statistically significant difference between the MDA and Zn levels of the keratoconus group and control subjects but not between the respective SOD activities or Cu levels (P = 0.016, P = 0.031, P = 0.440, and P = 0.376, respectively). We found no significant difference between the keratoconus group stages for serum SOD activity, serum MDA, and Zn and Cu levels (P > 0.05), and there was also no significant correlation between the keratoconus group stages and serum SOD activity, serum MDA, and Zn and Cu levels (P > 0.05). There is imbalance in the systemic oxidant/antioxidant status where Zn deficiency also plays a role in patients with keratoconus.

  6. Aluminum, copper, iron and zinc differentially alter amyloid-Aβ(1-42) aggregation and toxicity.

    Science.gov (United States)

    Bolognin, Silvia; Messori, Luigi; Drago, Denise; Gabbiani, Chiara; Cendron, Laura; Zatta, Paolo

    2011-06-01

    Amyloid-β(1-42) (Aβ) is believed to play a crucial role in the ethiopathogenesis of Alzheimer's Disease (AD). In particular, its interactions with biologically relevant metal ions may lead to the formation of highly neurotoxic complexes. Here we describe the species that are formed upon reacting Aβ with several biometals, namely copper, zinc, iron, and with non-physiological aluminum to assess whether different metal ions are able to differently drive Aβ aggregation. The nature of the resulting Aβ-metal complexes and of the respective aggregates was ascertained through a number of biophysical techniques, including electrospray ionization mass spectrometry, dynamic light scattering, fluorescence, transmission electron microscopy and by the use of conformation-sensitive antibodies (OC, αAPF). Metal binding to Aβ is shown to confer highly different chemical properties to the resulting complexes; accordingly, their overall aggregation behaviour was deeply modified. Both aluminum(III) and iron(III) ions were found to induce peculiar aggregation properties, ultimately leading to the formation of annular protofibrils and of fibrillar oligomers. Notably, only Aβ-aluminum was characterized by the presence of a relevant percentage of aggregates with a mean radius slightly smaller than 30 nm. In contrast, both zinc(II) and copper(II) ions completely prevented the formation of soluble fibrillary aggregates. The biological effects of the various Aβ-metal complexes were studied in neuroblastoma cell cultures: Aβ-aluminum turned out to be the only species capable of triggering amyloid precursor and tau181 protein overproduction. Our results point out that Al can effectively interact with Aβ, forming "structured" aggregates with peculiar biophysical properties which are associated with a high neurotoxicity.

  7. Assessment of Anodonta cygnea as a Biomonitor Agent for Copper and Zinc in Anzali Wetland, Iran

    Directory of Open Access Journals (Sweden)

    Saeed Ganjali

    2014-06-01

    Full Text Available Background: Anzali wetland has been subjected to high levels of pollution due to contamination from several industrial sites in addition to agricultural chemicals. Mussels have been widely used for monitoring pollution in aquatic ecosystems, because they, as filter feeders, bioaccumulate pollutants. Therefore we decided to evaluate Anodonta cygnea for its application as a bio-monitor for copper (Cu and zinc (Zn. Methods: A. cygnea specimens and their surface sediments were gathered from three locations in Anzali wetland. Afterwards, the collected samples (the soft tissues and shells of A. cygnea as well as surface sediments were analyzed for Cu and Zn by a flame atomic absorption spectrophotometer (Model 670G. Results: The Cu and Zn concentrations in the sediments obtained from Anzali wetland were in the range of 21.05 to 25.53 for copper and 37.84 to 82.26 μg g-1 dw for zinc. The Cu and Zn levels in the soft tissue were 1.09-1.5 times and 5-7.3 times, respectively, higher than those of the shells. The CV values (% in the soft tissues and shells were 36 and 53 for Cu, and 53.5 and 150.3 for Zn respectively. Conclusions: The lower Zn variability (CV in the soft tissues of A. cygnea and significant correlation between Zn levels in the soft tissues of A. cygnea and the surface sediments indicated that the soft tissues of A. cygnea are more appropriate for bio-monitoring of Zn. Cu concentration in the sediment and Zn levels in the soft tissues were found to be comparatively higher than some of the international standards of reference.

  8. Dietary intake of iron, zinc, copper, and risk of Parkinson's disease: a meta-analysis.

    Science.gov (United States)

    Cheng, Pengfei; Yu, Jia; Huang, Wen; Bai, Shunjie; Zhu, Xiaofeng; Qi, Zhigang; Shao, Weihua; Xie, Peng

    2015-12-01

    Although some studies have reported the associations between specific metal element intake and risk of Parkinson's disease (PD), the associations between specific metal element intake such as iron intake and PD are still conflicted. We aimed to determine whether intake of iron, zinc, and copper increases/decreases the risk of PD. PubMed, Embase, Web of Knowledge, and Google Scholar were searched. We pooled the multivariate-adjusted relative risks (RRs) or odds ratios using random effects. Study quality was evaluated by the Newcastle-Ottawa Scale. Five studies including 126,507 individuals remained for inclusion, pooled RRs of Parkinson's disease for moderate dietary iron intake was 1.08 (95 % CI 0.61-1.93, P = 0.787), and for high dietary iron intake was (1.03, 95 % CI 0.83-1.30, P = 0.766), respectively. The pooled RRs of Parkinson's disease for the highest compared with the lowest dietary iron intake were 1.47 (95 % CI 1.17-1.85, P = 0.001) in western population and in males (RR = 1.43, 95 % CI 1.01-2.01, P = 0.041). The pooled RRs of Parkinson's disease for moderate or high intake of zinc, and copper were not statistically different (P > 0.05). PD increased by 18 % (RR 1.18, 95 % CI 1.02-1.37) for western population by every 10-mg/day increment in iron intake. Higher iron intake appears to be not associated with overall PD risk, but may be associated with risk of PD in western population. Sex may be a factor influencing PD risk for higher iron intake. However, further studies are still needed to confirm the sex-selective effects.

  9. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006 Anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos: resultados de la ENSANUT 2006

    National Research Council Canada - National Science Library

    Vanessa De la Cruz-Góngora; Berenice Gaona; Salvador Villalpando; Teresa Shamah-Levy; Ricardo Robledo

    2012-01-01

    .... MATERIALS AND METHODS: The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium...

  10. [Prevalence of deficiency and dietary intake of iron, zinc and copper in Chilean childbearing age women].

    Science.gov (United States)

    Mujica-Coopman, María F; Borja, Angélica; Pizarro, Fernando; Olivares, Manuel

    2014-03-01

    The aim of the present study was to evaluate anemia, the biochemical status and dietary adequacy of iron (Fe), zinc (Zn) and copper (Cu), in Chilean childbearing age women. We studied a convenience sample of 86 women aged 18 to 48 years from Santiago, Chile. We determined anemia and the micronutrient status through hemoglobin (Hb) mean corpuscular volume, transferrin saturation, zinc protoporphyrin, serum ferritin (SF), serum Zn and Cu. Dietary adequacy was estimated using a food frequency questionnaire. Of all women, 4.7% had Fe deficiency (ID) anemia, 21 % ID without anemia, 26 % depleted Fe stores and 48.3% normal Fe status. Obese women had higher SF (p<0.01) compared with those classified as having normal BMI. Also, showed higher Hb (p<0.05) concentrations compared with overweight and normal weight women. Partidipants showed 3.5 % and 2.3 % of Zn and Cu deficiency, respectively. Also, 95 %, 94 % and 99 % had adequate intake of Fe, Zn and Cu respectively, according to EAR cut points. There were no significant differences in micronutrients intake across different nutritional status. There was a low prevalence of anemia, Fe, Zn and Cu deficiency. A high percentage of women reached micronutrient adequacy. However, 47% of women had ID without anemia and Fe depleted stores.

  11. Synthesis of copper and zinc sulfide nanocrystals via thermolysis of the polymetallic thiolate cage

    Directory of Open Access Journals (Sweden)

    Toshihiro Kuzuya, Yutaka Tai, Saeki Yamamuro and Kenji Sumiyama

    2005-01-01

    Full Text Available In this paper report on the synthesis of copper and zinc sulfide nanocrystals (NCs via the formation of polymetallic thiolate cages. Cu2S NCs derived from Cu–dodecanethiol complex formed well-defined spherers, which were sufficiently monodisperse (with a size distribution of ~10% standard deviation of approximately 4.7 nm diameter on average to generate ordered self-assemblies. An electron diffraction pattern and UV–vis spectrum of Cu2S NCs indicate that this process can provide pure β-chalcocite (Cu2S. Nearly monodisperse ZnS NCs with a size ranging from 3 to 7 nm were obtained by thermolysis of the S–Zn–dodecanethiol precursor. The electron diffraction pattern indicates that zinc sulfide NCs are either wurtzite or a mixture of wurtzite and zincblende. TEM observation and UV–vis spectra revealed that the growth rate of ZnS NCs depends strongly on the annealing temperature. UV–vis spectra of 3 nm ZnS NCs show sharp excitonic features and a large blue shift from the bulk material. The photoluminescence spectra exhibit a large red shift from the absorption band edges. These shifts could be attributed to recombination from the surface traps. The narrow size distribution of Cu2S and ZnS NCs led to the formation of ordered self-assemblies with various well-defined but nonclosed-packing.

  12. Metallothionein-like proteins and zinc--copper interaction in the hindgut of Porcellio scaber (Crustacea: Isopoda) exposed to zinc.

    Science.gov (United States)

    Znidarsic, N; Tusek-Znidaric, M; Falnoga, I; Scancar, J; Strus, J

    2005-09-01

    Metallothioneins (MTs) are ubiquitous low-molecular-weight metal-binding proteins, with a variety of functions in metal metabolism ascribed to them. Among terrestrial invertebrates, MTs have been studied in nematodes, insects, snails, and earthworms. The aim of this study was the characterization of MT-like proteins in the terrestrial isopod crustacean Porcellio scaber in order to analyze their probable role in the metabolism of copper (Cu) and zinc (Zn). Dietary Zn supplementation (793 microg Zn/g dry food, 6 d) was applied to stimulate MT synthesis. After separation of the hindgut post-microsomic supernatant (cytosol) of Zn-exposed animals by gel filtration on a Sephadex G-75 column, a Cu- and Zn-containing peak was detected in the position of Ve/Vo approximately 2, where MTs are expected to elute. Rechromatography of these fractions by size-exclusion chromatography-high-performance liquid chromatography revealed that the 215-nm absorbance peak coincided with the absorbance peak of the rabbit MT II standard. These low-molecular-weight Cu- and Zn-binding compounds, detected in the cytosol of the hindgut cells in Zn-exposed P. scaber, are considered to be Cu, Zn-MT-like proteins. To our knowledge, this is the first report on the characterization of MT-like proteins in isopod crustaceans. These results also indicate that both Zn and Cu dynamics in P. scaber hindgut are affected at the given dietary Zn supplementation and that MT-like proteins are involved in this Zn-Cu interaction.

  13. Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer's Amyloid-β Peptides.

    Directory of Open Access Journals (Sweden)

    Francis T Hane

    Full Text Available The presence of trace concentrations of metallic ions, such as copper and zinc, has previously been shown to drastically increase the aggregation rate and neurotoxicity of amyloid-β (Aβ, the peptide implicated in Alzheimer's disease (AD. The mechanism of why copper and zinc accelerate Aβ aggregation is poorly understood. In this work, we use single molecule force spectroscopy (SMFS to probe the kinetic and thermodynamic parameters (dissociation constant, Kd, kinetic dissociation rate, koff, and free energy, ΔG of the dissociation of an Aβ dimer, the amyloid species which initiates the amyloid cascade. Our results show that nanomolar concentrations of copper do not change the single molecule affinity of Aβ to another Aβ peptide in a statistically significant way, while nanomolar concentrations of zinc decrease the affinity of Aβ-Aβ by an order of magnitude. This suggests that the binding of zinc ion to Aβ may interfere with the binding of Aβ-Aβ, leading to a lower self-affinity.

  14. Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer's Amyloid-β Peptides.

    Science.gov (United States)

    Hane, Francis T; Hayes, Reid; Lee, Brenda Y; Leonenko, Zoya

    2016-01-01

    The presence of trace concentrations of metallic ions, such as copper and zinc, has previously been shown to drastically increase the aggregation rate and neurotoxicity of amyloid-β (Aβ), the peptide implicated in Alzheimer's disease (AD). The mechanism of why copper and zinc accelerate Aβ aggregation is poorly understood. In this work, we use single molecule force spectroscopy (SMFS) to probe the kinetic and thermodynamic parameters (dissociation constant, Kd, kinetic dissociation rate, koff, and free energy, ΔG) of the dissociation of an Aβ dimer, the amyloid species which initiates the amyloid cascade. Our results show that nanomolar concentrations of copper do not change the single molecule affinity of Aβ to another Aβ peptide in a statistically significant way, while nanomolar concentrations of zinc decrease the affinity of Aβ-Aβ by an order of magnitude. This suggests that the binding of zinc ion to Aβ may interfere with the binding of Aβ-Aβ, leading to a lower self-affinity.

  15. Molecular interaction mechanism between 2-mercaptobenzimidazole and copper-zinc superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Yue Teng

    Full Text Available 2-Mercaptobenzimidazole (MBI is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment is potentially harmful. In the present work, the toxic interaction of MBI with the important antioxidant enzyme copper-zinc superoxide dismutase (Cu/ZnSOD was investigated using spectroscopic and molecular docking methods. MBI can interact with Cu/ZnSOD to form an MBI-Cu/ZnSOD complex. The binding constant, number of binding sites and thermodynamic parameters were measured, which indicated that MBI could spontaneously bind with Cu/ZnSOD with one binding site through hydrogen bonds and van der Waals forces. MBI bound into the Cu/ZnSOD interface of two subdomains, which caused some microenvironmental and secondary structure changes of Cu/ZnSOD and further resulted in the inhibition of Cu/ZnSOD activity. This work provides direct evidence at a molecular level to show that exposure to MBI could induce changes in the structure and function of the enzyme Cu/ZnSOD. The estimated methods in this work may be applied to probe molecular interactions of biomacromolecules and other pollutants and drugs.

  16. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006 Anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos: resultados de la ENSANUT 2006

    OpenAIRE

    Vanessa De la Cruz-Góngora; Berenice Gaona; Salvador Villalpando; Teresa Shamah-Levy; Ricardo Robledo

    2012-01-01

    OBJETIVE: To describe the frequency of anemia and iron, zinc, copper and magnesium deficiencies among Mexican adolescents in the probabilistic survey ENSANUT 2006. MATERIALS AND METHODS: The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium. Logistic regression models were constructed to assess the risk for mineral deficiencies. RESULTS: The overa...

  17. Copper and Zinc Enrichment in Different Size Fractions of Organic Matter from Polluted Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-Kui; KE Zi-Xia

    2004-01-01

    Bioavailability of heavy metals in soil organic matter depends on its components. Characterization of heavy metal distributions in different fractions of soil organic matter is needed for better understanding of the fate of heavy metals. This study investigated the accumulation and partitioning of copper and zinc among different size particulate organic matter (POM) fractions in polluted soils from a former iron ore processing site in western Shaoxing County, Zhejiang Province. Physical fractionations were carried out to separate soil primary particles according to their size and density. Copper and Zn had a heterogeneous distribution among soil particle fractions. Copper and Zn were significantly (p < 0.05) enriched in the POM fractions. > 0.05 mm POM and < 0.05 mm fine soil fractions were mainly responsible for Cu and Zn retention in soils. The POM fraction contained up to 1 322 mg Cu kg-1 and 1 115 mg Zn kg-1 and the fine soil fraction contained up to 422 mg Cu kg-1 and 537 mg Zn kg-1. The total POM fraction was responsible for 15.8%-41.2% and 12.2%-31.7% of the total amount of Cu and Zn, respectively, in the polluted soils. The percentages of Cu and Zn associated with organic matter in < 0.05 mm fine soil fractions for the polluted soils ranged from 14.1% to 24.5%, and 5.4% to 15.8%, respectively. Accumulation of soil organic matter could increase enrichment of Gu (or Zn) in the POM fractions. Also, Cu provided a greater enrichment in the POM fractions than Zn.

  18. Temporal and spatial distribution of dissolved copper,lead,zinc and cadmium in the Changjiang Estuary and its adjacent waters

    Institute of Scientific and Technical Information of China (English)

    WANG Changyou; WANG Xiulin; WANG Baodong; ZHANG Chuansong; SHI Xiaoyong; ZHU Chenjian

    2008-01-01

    Heavy metal concentrations were measured in the Changjiang Estuary and its adjacent waters.Results from a systematic survey in April 2002 to March 2003 indicate that the ranges of the concentrations of dissolved copper,lead,zinc and cadmium in the study waters are 1.01~6.86,0.10~0.39,3.17~9.12 and 0.011~0.049 μg/dm3,respectively.Similar to zinc,the behavior of dissolved copper Was essentially conservative,but high seatter has been observed for high salinity samples,which can be attribu-ted to the decomposition or mineralization of organic matter by bacteria.Dissolved lead may have active behavior with an addition at high salinity.Overall concentrations of dissolved cadmium increase with salinity.The mean values of these dissolved metals cal-culated for the surface waters were highcr than those for the middle and bottom ones.External inputs of dissolved heavy metals to the surface waters were the likely explanation for these higher values.The maximum seasonal average values of dissolved copper and zinc were flound in summer,reflecting higher amounts of riverine input in this season.In contrast,the maximum seasonal av-erage values of dissolved lead and copper were found in winter and the lowest ones in summer,respectively,which might be asso-ciated with a combination of low concentration with heterogeneous scavenging.Concentrations of these dissolved metals found for the Changjiang Estuary fall in the range observed for the other estuaries but are noticeably higher than those from uncontaminated rivers,except for cadmium.Compared with observations for the Changjiang Estuary in the last two deeades.it is clear that the Changjiang estuarine waters has been contaminated with copper,lead,zinc and cadmium during China's industuialization,but concentrations of them have decreased in the last few years.

  19. Risk assessment on mixture toxicity of arsenic, zinc and copper intake from consumption of milkfish, Chanos chanos (Forsskål), cultured using contaminated groundwater in Southwest Taiwan.

    Science.gov (United States)

    Lin, Ming-Chao

    2009-07-01

    Studies on bioaccumulation of arsenic, zinc, and copper in freshwater-cultured milkfish were carried out to assess the risks on human health. The arsenic, zinc, and copper levels in milkfish showed significant positive correlations to the arsenic, zinc, and copper concentrations in pond water. The hazard index of arsenic, zinc, and copper mixture for intake of milkfish (1.75 +/- 0.65) demonstrated that intake of in this way contaminated milkfish will result in non-carcinogenic risk. The target cancer risk of arsenic for intake of the milkfish (2.74 x 10(-4) +/- 1.18 x 10(-4)) indicated that the inhabitants were exposed to arsenic pollution with carcinogenic risk.

  20. 某低品位铜锌矿浮选分离试验研究%Flotation Experimental Study on a Copper-zinc Sulfide Ore

    Institute of Scientific and Technical Information of China (English)

    曹登国; 吴明海

    2014-01-01

    In view of the problem of low grade copper and zinc , the good floatability of zinc mineral and the difficult in separation of copper and zinc in tailings somewhere in Hunan , the test adopted the process of copper -zinc mixed flotation -flotation separation of copper -zinc mixed concen-trate.Copper-zinc flotation separation used lime , zinc sulfate and sodium sulfite as the inhibitors of zinc sulfur minerals , and diethyldithiocarbamate as the collector of copper mineral , which real-ized the effective separation of copper -zinc minerals , as well as the maximum utilization of re-sources .Through closed-circuit experiment the copper concentrate with the grade of 17 .94%and the recovery of 61 .47% and the zinc concentrate with the grade of 45 .43% and the recovery of 59 .73%were obtained respectively .This process provided the technical direction for the reasona -ble development of this type of copper -zinc ore, at the same time put forward the effective recover-y approach of low-grade copper zinc mine of the tailings .%针对湖南某地尾砂中铜、锌品位低,锌矿物可浮性好,铜锌分离难的问题,采用铜锌混合浮选、铜锌分离的工艺流程,以石灰、硫酸锌、亚硫酸钠为锌硫矿物的抑制剂,乙硫氮为铜矿物的捕收剂,实现了铜锌矿物的有效分离,以及资源的最大化利用,闭路试验获得了含 Cu 17.94%、回收率61.47%的铜精矿,含 Zn 45.43%、回收率59.73%的锌精矿,该工艺为合理开发此类铜锌矿提供了技术支持。

  1. Analysis of serum and urinal copper and zinc in Chinese northeast population with the prediabetes or diabetes with and without complications.

    Science.gov (United States)

    Xu, Jiancheng; Zhou, Qi; Liu, Gilbert; Tan, Yi; Cai, Lu

    2013-01-01

    This study investigated the association of copper and zinc levels in the serum or urine of patients living in northeast China, with either prediabetes or diabetes. From January 2010 to October 2011, patients with type 1 diabetes (T1D, n = 25), type 2 diabetes (T2D, n = 137), impaired fasting glucose (IFG, n = 12) or impaired glucose tolerance (IGT, n = 15), and age/gender matched controls (n = 50) were enrolled. In the T2D group, there were 24 patients with nephropathy, 34 with retinopathy, and 50 with peripheral neuropathy. Serum copper levels were significantly higher in IFG, IGT, and T2D groups. Serum zinc level was dramatically lower, and urinary zinc level was significantly higher in both T1D and T2D subjects compared with controls. The serum zinc/copper ratio was significantly lower in all the patients with IFG, ITG, T1D, and T2D. The serum copper level was positively associated with HbA1c in T2D subjects. Simvastatin treatment in T2D patients had no significant effect on serum and urinary copper and zinc. These results suggest the need for further studies of the potential impact of the imbalanced serum copper and zinc levels on metabolic syndrome, diabetes, and diabetic complications.

  2. Analysis of Serum and Urinal Copper and Zinc in Chinese Northeast Population with the Prediabetes or Diabetes with and without Complications

    Directory of Open Access Journals (Sweden)

    Jiancheng Xu

    2013-01-01

    Full Text Available This study investigated the association of copper and zinc levels in the serum or urine of patients living in northeast China, with either prediabetes or diabetes. From January 2010 to October 2011, patients with type 1 diabetes (T1D, n=25, type 2 diabetes (T2D, n=137, impaired fasting glucose (IFG, n = 12 or impaired glucose tolerance (IGT, n=15, and age/gender matched controls (n=50 were enrolled. In the T2D group, there were 24 patients with nephropathy, 34 with retinopathy, and 50 with peripheral neuropathy. Serum copper levels were significantly higher in IFG, IGT, and T2D groups. Serum zinc level was dramatically lower, and urinary zinc level was significantly higher in both T1D and T2D subjects compared with controls. The serum zinc/copper ratio was significantly lower in all the patients with IFG, ITG, T1D, and T2D. The serum copper level was positively associated with HbA1c in T2D subjects. Simvastatin treatment in T2D patients had no significant effect on serum and urinary copper and zinc. These results suggest the need for further studies of the potential impact of the imbalanced serum copper and zinc levels on metabolic syndrome, diabetes, and diabetic complications.

  3. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    Science.gov (United States)

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  4. Evaluation of radioprotective effect of aloe vera and zinc/copper compounds against salivary dysfunction in irradiated rats.

    Science.gov (United States)

    Nejaim, Yuri; I V Silva, Amaro; V Vasconcelos, Taruska; J N L Silva, Emmanuel; M de Almeida, Solange

    2014-09-01

    The aim of this study was to evaluate the radioprotective and reparative effects of compounds based on aloe vera, zinc, and copper against salivary gland dysfunction in Wistar rats. A total of 150 Wistar rats were randomly divided into 12 groups, in which the animals received aloe vera and/or zinc and copper. In eight of these groups the animals were also subjected to irradiation before or after administration of the substances. After 27 days, sialometry tests were performed. Data were analyzed using ANOVA and the Tukey test (P aloe vera before or after irradiation showed a significantly higher salivary flow rate than rats that had been simply irradiated. When both substances were administered, a statistically significant difference in the salivary flow rate was observed in comparison with the irradiation alone group seven days after irradiation. The present results suggest that aloe vera exerts positive protective and reparative effects, and can be considered a potential radioprotective substance.

  5. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae).

    Science.gov (United States)

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-12-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation.

  6. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae)

    Science.gov (United States)

    Olkhovych, Olga; Volkogon, Mykola; Taran, Nataliya; Batsmanova, Lyudmyla; Kravchenko, Inna

    2016-04-01

    The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants. The reduction of the contents of 8 out of 12 investigated acylcarnitines (namely C0, C2, C3, C5, C6, C8, C16, C18:1) was observed in plants under the influence of copper nanoparticles. The result of plants incubation with zinc nanoparticles was the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 15 %), (3) the content of leucine, methionine, phenylalanine, proline, and tyrosine (more than twice), and (4) the content of 10 acylcarnitines (C0, C2, C3, C4, C5, C10, C16, C18, C18:1, C18:2). The observed reduction in amino acid contents may negatively affect plants adaptive reactions associated with de novo synthesis of stress proteins. At the same time, the decrease in the content of acylcarnitines, responsible for fatty acid transportation, may lead to the changes in the activity and direction of lipid metabolism in plants and reduce plant's ability to use free fatty acids as the oxidation substrate for cell reparation.

  7. 113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast

    DEFF Research Database (Denmark)

    Kofod, Pauli; Bauer, Rogert; Danielsen, Eva

    1991-01-01

    113Cd nuclear magnetic resonance spectroscopy has been used to investigate the metal binding sites of cadmium-substituted copper,zinc-containing superoxide dismutase from baker's yeast. NMR signals were obtained for 113Cd(II) at the Cu site as well as for 113Cd(II) at the Zn site. The two subunits...... an explanation for the discrepancy in the literature regarding 113Cd-NMR investigations of bovine superoxide dismutase....

  8. Cloning and Expressing of a Gene Encoding Cytosolic Copper/Zinc Superoxide Dismutase in the Upland Cotton

    Institute of Scientific and Technical Information of China (English)

    HU Gen-hai; YU Shu-xun; FAN Shu-li; SONG Mei-zhen

    2007-01-01

    In this study, a gene encoding a superoxide dismutase (SOD) was cloned from senescent leaves of cotton (Gossypium hirsutum), and its expressing profile was analyzed. The gene was cloned by rapid amplification of cDNA ends (RACE)method. Northern blotting was used to show the profile of the gene expression, and the enzyme activity was mensurated by NBT deoxidization method in different growth periods. The full length of a gene of cytosolic copper/zinc superoxide dismutase (Cu/Zn-SOD) was isolated from cotton (GenBank Accession Number: DQ445093). The sequence of cDNA contained 682 bp, the opening reading frame 456 bp, and encoded polypeptide 152 amino acids with the predicted molecular mass of 15.03 kD and theoretical pI of 6.09. The amino acid sequence was similar with the other plants from 82 to 87%. Southern blotting showed that the gene had different number of copies in different cotton species. Northern blotting suggested that the gene had different expression in different tissues and development stages. The enzyme activity was the highest in peak flowering stage. The cotton cytosolic (Cu/Zn-SOD) had lower copies in the upland cotton. The copper/zinc superoxide dismutase mRNA expressing level showed regular changing in the whole development stages; it was lower in the former stages, higher in latter stages and the highest at the peak flowering stage. The curve of the copper/zinc superoxide dismutase mRNA expressing level was consistent with that of the Cu/Zn-SOD enzyme activity.The copper/zinc superoxide dismutase mRNA expressing levels of different organs showed that the gene was higher in the root, leaf, and lower in the flower.

  9. Evaluation of suitability of Giant Miscanthus (Miscanthus × giganteus Greef et Deu. in phytoextraction of copper and zinc from soil

    Directory of Open Access Journals (Sweden)

    Maciej Bosiacki

    2013-09-01

    Full Text Available The main objective of this study was to determine the suitability of Miscanthus × giganteus to phytoextraction of copper and zinc from soil, as well as evaluation of the tolerance of this species to the increasing concentration of the metals. Potential for phytoextraction of Miscanthus × giganteus had been studied for two years, pot experiment in the plastic greenhouse when they grown in mineral soil (which was slightly loamy sand and soil with raised peat substrate with four levels of copper and zinc: control (native Cu and Zn content, Cu – 80 mg·dm-3, Zn – 300 mg·dm-3 – weak pollution, Cu – 100 mg·dm-3, Zn – 1000 mg·dm-3 – medium pollution, Cu – 500 mg·dm-3, Zn – 3000 mg·dm-3 – strong pollution. Assessing their potential for copper and zinc phytoextraction from the soil, it was found that it is not significant. No hyperaccumulation of heavy metals in the aboveground biomass was found in this study.

  10. Copper, zinc and cadmium in benthic organisms from the Java Sea and estuarine and coastal areas around East Java

    Science.gov (United States)

    Everaarts, J. M.; Boon, J. P.; Kastoro, W.; Fischer, C. V.; Razak, H.; Sumanta, I.

    A study was made of the concentrations of copper, zinc and cadmium in benthic organisms, representing the phyla Mollusca, Arthropoda, Echinodermata and Pisces, from the riverine and estuarine areas of the rivers Brantas and Solo (East Java) and the adjacent coastal area. Moreover, an assessment was made of the contamination of the benthic biota with these elements in the Java Sea and Bali Sea. Benthic organisms show a species-specific uptake pattern for each element. Compared to the same type of animals from estuaries and coastal areas in temperate regions of western Europe, the concentrations of cadmium are considerably higher, while copper and zinc concentrations are somewhat lower. There is no general trend in concentration levels of the metals in specimens from rivers, estuaries, coastal zone and open sea. In some groups of organisms ( e.g. shrimp, starfish) the concentrations of copper and zinc are highest in specimens from rivers and estuaries. In contrast, cadmium concentration levels in e.g. crab, shrimp and squid are lowest in riverine and estuarine areas. Significant differences in metal concentrations in these organisms were found between the dry monsoon period (July, August) and the beginning of the wet monsoon (November, December). No relationship existed between the metal concentration of the organisms and the silt fraction of the sediment (grain size < 63 μm) or the bulk sediment.

  11. Application of anodic stripping voltammetry for zinc, copper, and cadmium quantification in the aqueous humor: implications of pseudoexfoliation syndrome.

    Science.gov (United States)

    Panteli, Vassiliki S; Kanellopoulou, Dimitra G; Gartaganis, Sotirios P; Koutsoukos, Petros G

    2009-12-01

    Anodic stripping voltammetric (ASV) procedure, using mercury film electrode, was optimized and applied to determine the concentrations of zinc, cadmium, and copper in the aqueous humor. Concentration levels as low as 1 ppb of the test metals was possible to be detected using short electrolysis times (120 s) and microquantities of aqueous humor (up to 35 μL). As a first application of the voltammetric analysis of trace metals in the aqueous humor, the role of the three selected trace elements in the pseudoexfoliation (PEX) syndrome was examined. Samples from aqueous humor were collected during cataract extraction from patients with and without PEX. The zinc and copper concentration levels in the aqueous humor did not show statistically significant difference in the study and control group. Cadmium was detected in a small number of samples, without however statistical differences between the two groups. ASV proved to be a highly precise and sensitive tool for the quantification of heavy metal ions in aqueous humor. Further studies may lead to useful conclusions for the role of zinc, copper, or cadmium in PEX syndrome.

  12. Magnesium-zinc ferrite nanoparticles: effect of copper doping on the structural, electrical and magnetic properties.

    Science.gov (United States)

    Zaki, H M; Al-Heniti, S; Umar, Ahmad; Al-Marzouki, F; Abdel-Daiem, A; Elmosalami, T A; Dawoud, H A; Al-Hazmi, F S; Ata-Allah, S S

    2013-06-01

    In this paper, Mg0.5Zn0.5-Cu(x)Fe2O4 ferrites nanoparticles were synthesized by facile co-precipitation route and characterized in detail in terms of their structural, electrical and magnetic properties as a function of Cu concentration. The prepared samples have cubic spinel phase as confirmed by X-ray diffraction patterns. The decrease of the lattice constant and increase of X-ray density indicate the solubility of Cu ions in the spinel lattice. The AC conductivity measurements between 300 K and 773 K at different frequencies 1 KHz up to 1 MHz, showed two different behaviors as semiconductor-like at high temperature and frequency depending behavior associated with dispersion phenomena at low temperatures. The conduction mechanism in the system is influenced by Cu concentration and the dominant one is the hopping conduction mechanism. Dielectric measurements at the same conditions of temperatures and frequencies exhibited that the dielectric loss increases with increasing the temperature and decreasing the frequency indicating the semiconducting nature of the ferrite compounds. An anomalous behavior of the dielectric loss is observed in samples with high Cu content which explained in terms of resonance between frequency accompanied the electronic hopping and the frequency of the external electric field. The analysis of Mössbauer spectra revealed that copper free compound is super-paramagnetically relaxed in nature and zinc free compound demonstrates ferrimagnetic order. Moreover, hyperfine field spectrum shows the migration of Cu ions from octahedral to tetrahedral site in zinc free compound.

  13. Predicting copper-, iron- and zinc-binding proteins in pathogenic species of the Paracoccidioides genus

    Directory of Open Access Journals (Sweden)

    Gabriel B Tristao

    2015-01-01

    Full Text Available Approximately one-third of all proteins have been estimated to contain at least one metal cofactor, and these proteins are referred to as metalloproteins. These represent one of the most diverse classes of proteins, containing metal ions that bind to specific sites to perform catalytic, regulatory and structural functions. Bioinformatic tools have been developed to predict metalloproteins encoded by an organism based only on its genome sequence. Its function and the type of metal binder can also be predicted via a bioinformatics approach. Paracoccidioides complex includes termodimorphic pathogenic fungi that are found as saprobic mycelia in the environment and as yeast, the parasitic form, in host tissues. They are the etiologic agents of Paracoccidioidomycosis, a prevalent systemic mycosis in Latin America. Many metalloproteins are important for the virulence of several pathogenic microorganisms. Accordingly, the present work aimed to predict the cooper, iron and zinc proteins encoded by the genomes of three phylogenetic species of Paracoccidioides (Pb01, Pb03 and Pb18. The metalloproteins were identified using bioinformatics approaches based on structure, annotation and domains. Cu-, Fe- and Zn-binding proteins represent 7% of the total proteins encoded by Paracoccidioides spp. genomes. Zinc proteins were the most abundant metalloproteins, representing 5.7% of the fungus proteome, whereas copper and iron proteins represent 0.3% and 1.2%, respectively. Functional classification revealed that metalloproteins are related to many cellular processes. Furthermore, it was observed that many of these metalloproteins serve as virulence factors in the biology of the fungus. Thus, it is concluded that the Cu, Fe and Zn metalloproteomes of the Paracoccidioides spp. are of the utmost importance for the biology and virulence of these particular human pathogens.

  14. Effects of copper, zinc and dragonfly kairomone on growth rate and induced morphology of Bufo arabicus tadpoles.

    Science.gov (United States)

    Barry, Michael J

    2011-05-01

    It is well documented that many amphibian species can detect chemical signals from predatory invertebrates and subsequently develop alternate phenotypes that are protective against predation. The effects of metallic pollutants on the development of predator-induced morphology have not previously been reported. Tadpoles of the Arabian toad Bufo arabicus were exposed for 20 days to copper (0, 10 or 100 μg/L), zinc (0, 10 or 100 μg/L) and kairomones of larval dragonflies (Crocothemis erythrea 1 dragonfly/12 L) in a fully crossed design. The effects of these treatments of growth and body shape were measured. Measured copper concentrations after 24 h were 4.25 μg/L±1.30 (10 μg/L nominal) and 34.9 μg/L±2.15 (100 μg/L nominal). Measured zinc concentrations were 3.04 μg/L±0.1 (10 μg/L nominal) and 26.3 μg/L±12.3 (100 μg/L nominal). Tadpoles exposed to 34.9 μg/L copper were significantly lighter and had a shorter body length than other groups. There was no direct effect of zinc on growth or tadpole shape. Tadpoles exposed to dragonfly kairomones were heavier, wider and had deeper bodies when viewed laterally and had longer tails but overall length was not affected. At 4.25 μg/L copper differences between the control and predator-exposed phenotypes increased but at 34.9 μg/L the phenotypes converged, indicating that copper may inhibit the induced response.

  15. Kinetics of copper absorption in zinc-overload states and following the withdrawal of zinc supplement: the role of endogenous zinc status.

    Science.gov (United States)

    Cossack, Z T; van den Hamer, C J

    1987-01-01

    Zinc (Zn), in therapeutic dosages, has been used to inhibit copper (Cu) absorption in patients with Wilson's disease. A series of experiments were conducted to substantiate the effects of high dosages of Zn on Cu absorption using the experimental animal model. In the first experiment, five groups of mice were fed five different levels of Zn: 6 ppm (basal diet), 30 ppm (control), 750 ppm, 1,000 ppm, and 2,400 ppm, for a period of 35 days. 64Cu-loading test was conducted to measure whole body retention (WBR) of 64Cu at the 10th, 14th, 21st, and 35th day. Results showed that the inhibition of 64Cu absorption by Zn is dose- and time-dependent. However, maximum inhibition occurred in mice fed 1,000 ppm of Zn, and no additional effect was observed in mice fed 2,400 ppm of Zn. In the second experiment, the distribution between the gastrointestinal tract (GIT) and gut-free carcass, of the retained dose of 64Cu, was measured in controls and in the group fed 750 ppm of Zn. While WBR of 64Cu was significantly lower (p less than 0.01) in mice fed 750 ppm of Zn, the distribution of the retained dose was not affected. In the third experiment, a group of mice was fed 30 ppm of Zn for a period of 70 days (control), and a second group was fed 1,000 ppm of Zn for the first 35 days (repletion), after which they were switched to the basal diet (6 ppm) for the following 35 days (depletion). WBR of 64Cu was conducted in intervals throughout the experimental period.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Removal of copper, nickel, and zinc ions from electroplating rinse water

    Energy Technology Data Exchange (ETDEWEB)

    Revathi, Meyyappan; Saravanan, Mohan; Velan, Manickam [Department of Chemical Engineering, AC Tech, Anna University, Chennai, Tamil Nadu (India); Chiya, Ahmed Basha [Department of Chemical Engineering, Industrial Liaison Research Institute, Kyang Hee University, Gyeonggi (Korea, Republic of)

    2012-01-15

    Removal of copper, nickel, and zinc ions from synthetic electroplating rinse water was investigated using cationic exchange resin (Ceralite IR 120). Batch ion exchange studies were carried out to optimize the various experimental parameters (such as contact time, pH, and dosage). Influence of co-existing cations, chelating agent EDTA on the removal of metal ion of interest was also studied. Sorption isotherm data obtained at different experimental conditions were fitted with Langmuir, Freundlich, Redlich-Peterson, and Toth models. A maximum adsorption capacity of 164 mg g{sup -1} for Cu(II), 109 mg g{sup -1} for Ni(II), and 105 mg g{sup -1} for Zn(II) was observed at optimum experimental conditions according to Langmuir model. The kinetic data for metal ions adsorption process follows pseudo second-order. Presence of EDTA and co-ions markedly alters the metal ion removal. Continuous column ion exchange experiments were also conducted. The breakeven point of the column was obtained after recovering effectively several liters of rinse water. The treated rinse water could be recycled in rinsing operations. The Thomas and Adams-Bohart models were applied to column studies and the constants were evaluated. Desorption of the adsorbed metal ions from the resin column was studied by conducting a model experiments with Cu(II) ions loaded ion exchange resin column using sulfuric acid as eluant. A novel lead oxide coated Ti substrate dimensionally stable (DSA) anode was prepared for recovery of copper ions as metal foil from regenerated liquor by electro winning at different current densities (50-300 A cm{sup -2}). (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Simultaneous determination of trace-levels of alloying zinc and copper by semi-mercury-free potentiometric stripping analysis with chemometric data treatment

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Hansen, Elo Harald

    1998-01-01

    Assays of copper and zinc in brass samples were performed by Semi-Mercury Free Potentiometric Stripping Analysis (S-MF PSA) using a thin-film mercury covered glassy-carbon working electrode and dissolved oxygen as oxidizing agent during the stripping step. The stripping peak transients were...... resolved by chemometrics which enabled simultaneous determination of both the copper and the zinc concentrations, thereby eliminating the conventional necessary pretreatment of the sample solution, such as initial addition of Ga(III) or solvent extraction of copper. The brass samples were diluted...

  18. Economic incentive for applying vetiver grass to remediate lead, copper and zinc contaminated soils.

    Science.gov (United States)

    Danh, Luu Thai; Truong, Paul; Mammucari, Raffaella; Fostert, Neil

    2011-01-01

    The application of vetiver grass (Chrysopogon zizaniodes) for phytoremediation of heavy metal contaminated soils can be promoted by economic return through essential oil production. Four levels of lead (0, 500, 2000, and 8000 mg kg(-1) dry soil), copper (0, 100, 400, and 1600 mg kg(-1) dry soil) and zinc (0, 400, 1600, and 6400 mg kg(-1) dry soil) were used to study their effects on vetiver growth, essential oil composition and yield. This study also investigated the effect of nitrogen concentrations on vetiver oil yield. Vetiver accumulated high concentrations of Pb, Cu and Zn in roots (3246, 754 and 2666 mg kg(-1), respectively) and small amounts of contaminants in shoots (327, 55, and 642 mg kg(-1), respectively). Oil content and yield were not affected at low and moderate concentrations of Cu and Zn. Only the application of Pb had a significant detrimental effect on oil composition. Extraction of vetiver essential oils by hydrodistillation produced heavy metal free products. High level of nitrogen reduced oil yields. Results show that phytoremediation of Cu and Zn contaminated soils by vetiver can generate revenue from the commercialization of oil extracts.

  19. Response of a phytoplanktonic assemblage to copper and zinc enrichment in microcosm.

    Science.gov (United States)

    Pandey, Lalit K; Han, T; Gaur, J P

    2015-04-01

    The response of a laboratory-raised phytoplankton assemblage to copper and zinc enrichment was studied. Higher intracellular accumulation of both the test metals caused disappearance of metal sensitive species, loss of diversity and species richness, reduced growth rate, Chl a and biovolume; however, the community could recover after 14 days of incubation. Cyanobacteria showed marked sensitivity to both the test metals besides some diatoms, such as, Cyclotella meneghiniana and Melosira granulata. Metal enrichment enhanced the relative abundance of species like Scenedesmus quadricauda, Oocystis borgei, Achnanthes exigua, Fragilaria capucina and Nitzschia amphibia, and these were apparently metal tolerant. Cu and Zn stress induces formation of lipid bodies (bigger in size as well as in number) and morphological abnormalities in diatoms. Among these two metals, Cu impact was higher than Zn despite the fact that the intracellular accumulation of Zn was higher than Cu. Deformed raphe and mixed deformities in diatoms were exclusively found under heavy metal stress which was well supported by regression analysis. Finally the present study gives new insight for using diatoms as an effective tool for biomonitoring and biofuel production.

  20. Zinc and copper sorption and fixation by an acid soil clay: effect of selective dissolutions

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, N.; McBride, M.B.

    Copper and zinc sorption-desorption studies were carried out over a range of pH values using clay fractions separated from two horizons of an acid soil from New York. In the pH range of high sorption, as much as 95% of the sorbed metal could not be desorbed and thus was considered fixed. Sorption and fixation of Cu and Zn increased rapidly above pH 4 and 5, respectively, for the whole soil clays. Following removal of the oxide fraction by oxalate and citrate-dethionite extractions, sorption and fixation were reduced considerably at pH values below the onset of hydrolysis of the metals in bulk solution. Citrate-dithionite extraction was more effective than oxalate in reducing Zn sorption and fixation. These extraction procedures had less effect on the ability of the clays to sorb and fix Cu. It is concluded that microcrystalline and noncrystalline oxides in the clay fraction of this soil, representing < 20% off the clay by weight, provide reactive surfaces for the chemisorption of Cu and Zn. At low pH, adsorption at these surfaces may be the dominant mechanism of heavy metal immobilization, especially in the subsoil horizons.

  1. Bioaccumulation of copper, lead, and zinc in six macrophyte species grown in simulated stormwater bioretention systems.

    Science.gov (United States)

    Rycewicz-Borecki, Malgorzata; McLean, Joan E; Dupont, R Ryan

    2016-01-15

    Stormwater bioretention (BR) systems collect runoff containing heavy metals, which can concentrate in soil environments and potentially leach into groundwater. This greenhouse experiment evaluated differences among six plant species undergoing three varying hydraulic and pollutant loads in their bioaccumulation potential when subjected to continual application of low metal concentrations as a means of preventing copper, lead, and zinc accumulation in the BR soil. Results show that >92% of metal mass applied to the treatments via synthetic stormwater was removed from the exfiltrate within 27 cm of soil depth. Compacted soil conditions of unplanted controls retained significantly more Cu, Pb, and Zn than Carex praegracilis, and Carex microptera treatments. Differences in above and below ground plant tissue concentrations differed among species, resulting in significant differences in mass accumulation. In the above ground tissue, from highest to lowest, Phragmites australis accumulated 8 times more Cu than Scirpus acutus, and C. microptera accumulated 18 times more Pb, and 6 times more Zn than Scirpus validus. These results, and differences among species in mass distribution of the metals recovered at the end of the study, reveal various metal accumulation mechanisms.

  2. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition.

    Science.gov (United States)

    Jeon, Jong-Ok; Lee, Kee Doo; Seul Oh, Lee; Seo, Se-Won; Lee, Doh-Kwon; Kim, Honggon; Jeong, Jeung-hyun; Ko, Min Jae; Kim, BongSoo; Son, Hae Jung; Kim, Jin Young

    2014-04-01

    Highly efficient copper-zinc-tin-selenide (Cu2ZnSnSe4 ; CZTSe) thin-film solar cells are prepared via the electrodepostion technique. A metallic alloy precursor (CZT) film with a Cu-poor, Zn-rich composition is directly deposited from a single aqueous bath under a constant current, and the precursor film is converted to CZTSe by annealing under a Se atmosphere at temperatures ranging from 400 °C to 600 °C. The crystallization of CZTSe starts at 400 °C and is completed at 500 °C, while crystal growth continues at higher temperatures. Owing to compromises between enhanced crystallinity and poor physical properties, CZTSe thin films annealed at 550 °C exhibit the best and most-stable device performances, reaching up to 8.0 % active efficiency; among the highest efficiencies for CZTSe thin-film solar cells prepared by electrodeposition. Further analysis of the electronic properties and a comparison with another state-of-the-art device prepared from a hydrazine-based solution, suggests that the conversion efficiency can be further improved by optimizing parameters such as film thickness, antireflection coating, MoSe2 formation, and p-n junction properties.

  3. Copper-zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma.

    Science.gov (United States)

    Salem, Kelley; McCormick, Michael L; Wendlandt, Erik; Zhan, Fenghuang; Goel, Apollina

    2015-01-01

    Multiple myeloma (MM) is an incurable B-cell malignancy. The proteasome inhibitor bortezomib (BTZ) is a frontline MM drug; however, intrinsic or acquired resistance to BTZ remains a clinical hurdle. As BTZ induces oxidative stress in MM cells, we queried if altered redox homeostasis promotes BTZ resistance. In primary human MM samples, increased gene expression of copper-zinc superoxide dismutase (CuZnSOD or SOD1) correlated with cancer progression, high-risk disease, and adverse overall and event-free survival outcomes. As an in vitro model, human MM cell lines (MM.1S, 8226, U266) and the BTZ-resistant (BR) lines (MM.1SBR, 8226BR) were utilized to determine the role of antioxidants in intrinsic or acquired BTZ-resistance. An up-regulation of CuZnSOD, glutathione peroxidase-1 (GPx-1), and glutathione (GSH) were associated with BTZ resistance and attenuated prooxidant production by BTZ. Enforced overexpression of SOD1 induced BTZ resistance and pharmacological inhibition of CuZnSOD with disulfiram (DSF) augmented BTZ cytotoxicity in both BTZ-sensitive and BTZ-resistant cell lines. Our data validates CuZnSOD as a novel therapeutic target in MM. We propose DSF as an adjuvant to BTZ in MM that is expected to overcome intrinsic and acquired BTZ resistance as well as augment BTZ cytotoxicity.

  4. Copper and zinc uptake by rice and accumulation in soil amended with municipal solid waste compost

    Science.gov (United States)

    Bhattacharyya, P.; Chakraborty, A.; Chakrabarti, K.; Tripathy, S.; Powell, M. A.

    2006-04-01

    Effect of addition of municipal solid waste compost (MSWC) on two metals viz. copper (Cu) and zinc (Zn) contents of submerged rice paddies were studied. Experiments were conducted during the three consecutive wet seasons from 1997 to 1999 on rice grown under submergence, at the Experimental Farm of Calcutta University, India. A sequential extraction method was used to determine the metal (Cu and Zn) fractions in MSWC and cow dung manure (CDM). Both metals were significantly bound to the organic matter and Fe and Mn oxides in MSWC and CDM. Metal content in rice straw was higher than in rice grain. Metal bound with Fe and Mn oxides in MSWC and CDM best correlated with straw and grain metal followed by exchangeable and water soluble fractions. Carbonate, organic matter bound and residual fractions in MSWC and CDM did not significantly correlate with rice straw and grain metal. The MSWC would be a valuable resource for agriculture if it can be used safely, but long-term field experiments with MSWC are needed to assess by regular monitoring of the metal loads and accumulation in soil and plants.

  5. Assessing the Impact of Copper and Zinc Oxide Nanoparticles on Soil: A Field Study

    Science.gov (United States)

    Collins, Daniel; Luxton, Todd; Kumar, Niraj; Shah, Shreya; Walker, Virginia K.; Shah, Vishal

    2012-01-01

    It is not known if the annual production of tonnes of industrial nanoparticles (NPs) has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding zero valent copper and zinc oxide NPs to soil in pots that were then maintained under field conditions. The fate of these NPs, as well as changes in the microbial communities, was monitored over 162 days. Both NP types traveled through the soil matrix, albeit at differential rates, with Cu NPs retained in the soil matrix at a higher rate compared to ZnO NPs. Leaching of Cu and Zn ions from the parent NPs was also observed as a function of time. Analysis of microbial communities using culture-dependent and independent methods clearly indicated that Cu and ZnO NPs altered the microbial community structure. In particular, two orders of organisms found in rhizosphere, Flavobacteriales and Sphingomonadales, appeared to be particularly susceptible to the presence of NPs. Together, the migration of NPs through soil matrix and the ability of these potential pollutants to influence the composition of microbial community in this field study, cannot help but raise some environmental concerns. PMID:22905159

  6. Dynamics of copper and zinc sedimentation in a lagooning system receiving landfill leachate.

    Science.gov (United States)

    Guigue, Julien; Mathieu, Olivier; Lévêque, Jean; Denimal, Sophie; Steinmann, Marc; Milloux, Marie-Jeanne; Grisey, Hervé

    2013-11-01

    This study characterises the sediment dredged from a lagooning system composed of a settling pond and three lagoons that receive leachates from a municipal solid waste (MSW) landfill in France. Organic carbon, carbonate, iron oxyhydroxides, copper (Cu) and zinc (Zn) concentrations were measured in the sediment collected from upstream to downstream in the lagooning system. In order to complete our investigation of sedimentation mechanisms, leachates were sampled in both dry (spring) and wet (winter) seasonal conditions. Precipitation of calcite and amorphous Fe-oxyhydroxides and sedimentation of organic matter occurred in the settling pond. Since different distributions of Zn and Cu concentrations are measured in sediment samples collected downstream in the lagooning system, it is suggested that these elements were not distributed in a similar way in the leachate fractions during the first stage of treatment in the settling pond, so that their sedimentation dynamics in the lagooning system differ. In the lagoons, it was found that organic carbon plays a major role in Cu and Zn mobility and trapping. The presence of macrophytes along the edges provided an input of organic matter that enhanced Cu and Zn scavenging. This edge effect resulted in a two-fold increase in Cu and Zn concentrations in the sediment deposited near the banks of the lagoons, thus confirming the importance of vegetation for the retention of Cu and Zn in lagooning systems.

  7. Iron, copper, magnesium and zinc status as predictors of swimming performance.

    Science.gov (United States)

    Lukaski, H C; Siders, W A; Hoverson, B S; Gallagher, S K

    1996-10-01

    The hypothesis that blood biochemical measurements of iron (Fe), copper (Cu), magnesium (Mg) and zinc (Zn) nutritional status and dietary intakes of these minerals are useful predictors of 100-yd free-style swimming performance during actual competition was examined in five female and five male collegiate swimmers. Dietary intakes of Fe, Cu, Mg, and Zn exceeded 70% of daily recommended or estimated safe and adequate intakes. Anemia was not present but body iron stores, assessed with serum ferritin concentration, were reduced in female swimmers who had significantly increased erythrocyte Mg and superoxide dismutase activity which suggest a biochemical adaptation to physical training. Actual 100-yd freestyle times (53.1 +/- 1.4 sec; mean +/- SE) measured during competition were similar to values (52.6 +/- 1.4 sec) predicted with models previously derived from other groups of swimmers. These findings indicate the important role of mineral nutritional status in facilitating the development of peak physical performance and support the hypothesis that mineral element nutritional status is one factor contributing to attainment of optimal human physiological function.

  8. Carvedilol increases copper-zinc superoxide dismutase activity in patients with acute myocardial infarction.

    Science.gov (United States)

    Kastratović, Dragana A; Vasiljević, Zorana M; Spasić, Mihajlo B; Perunicić, Jovan P; Matić, Mihajlo; Blagojević, Dusko P; Mijalković, Dejan N; Antonijević, Nebojsa M; Marković, Srdjan Z; Gojković-Bukarica, Ljiljana; Stojiljkovic, Milos P; Lasica, Ratko M; Jones, David R; Nikolić-Kokić, Aleksandra L

    2007-08-01

    Balanced and coordinated antioxidant defence enzyme activities are of utmost importance for correct physiological function and for shielding against unwelcome pathological conditions. We determined the activities of copper-zinc superoxide dismutase (CuZnSOD), catalase, glutathione peroxidase and glutathione reductase in erythrocytes isolated from patients receiving different therapy (streptokinase alone or in combination with metoprolol or with carvedilol) for up to 168 hr after starting treatment for acute myocardial infarction. We observed increased CuZnSOD activity in erythrocytes isolated from patients treated with streptokinase-carvedilol (after 6, 24 and 168 hr) and in erythrocytes isolated from patients treated with streptokinase-metoprolol (after 24 hr). In addition, positive correlation between CuZnSOD and catalase activities was found in erythrocytes isolated from patients that received streptokinase-carvedilol after 168 hr. As metoprolol does not react directly with hydrogen peroxide, it would appear that combined streptokinase-metoprolol therapy exerted its effects primarily via by beta-blockade whereas combined streptokinase-carvedilol therapy appeared to function via both beta-blockade and direct antioxidant mechanisms.

  9. Copper and zinc forms in soil fertilized with pig slurry in the bean crop

    Directory of Open Access Journals (Sweden)

    Marco A. Grohskopf

    Full Text Available ABSTRACT The application of pig slurry may have different influence on copper (Cu and zinc (Zn dynamics in the soil compared with mineral fertilization. The aim of this research was to determine the different forms of Cu and Zn in soil and their uptake by bean plants in response to the application of mineral fertilizer and pig slurry (PS. The treatments were: mineral fertilizer (Cu and Zn oxides and liquid pig slurry, at increasing rates (0/0, 1.7/6.0, 3.4/12.0 and 6.8/24.0 kg ha-1 Cu/Zn, respectively applied in a Rhodic Kandiudox. PS increased the Cu content in soil in the exchangeable form, Fe oxides and residual, while the mineral fertilizer increased Cu contents in the fraction associated with soil organic matter. Soil Zn contents in the fractions available, exchangeable and SOM were highest under mineral fertilization, while in the soluble fraction the contents were highest under PS. The fertilizers had not impact on Cu and Zn contents associated with Al oxides, and these elements were mostly associated with Fe oxides in the soil. PS promoted the highest biomass production in shoots and roots of the bean plants, reflecting in the highest accumulation of Cu and Zn.

  10. Assessing plasma levels of selenium, copper, iron and zinc in patients of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Hai-Wen Zhao

    Full Text Available Trace elements have been recognized to play an important role in the development of Parkinson's disease (PD. However, it is difficult to precisely identify the relationship between these elements and the progression of PD because of an insufficient number of patients. In this study, quantifications of selenium (Se, copper (Cu, iron (Fe and zinc (Zn by atomic absorption spectrophotometry were performed in plasma from 238 PD patients and 302 controls recruited from eastern China, which is so far the largest cohort of PD patients and controls for measuring plasma levels of these elements. We found that plasma Se and Fe concentrations were significantly increased whereas Cu and Zn concentrations decreased in PD patients as compared with controls. Meanwhile, these four elements displayed differential changes with regard to age. Linear and logistic regression analyses revealed that both Fe and Zn were negatively correlated with age in PD patients. Association analysis suggests that lower plasma Se and Fe levels may reduce the risk for PD, whereas lower plasma Zn is probably a PD risk factor. Finally, a model was generated to predict PD patients based on the plasma concentrations of these four trace elements as well as other features such as sex and age, which achieved an accuracy of 80.97±1.34% using 10-fold cross-validation. In summary, our data provide new insights into the roles of Se, Cu, Fe and Zn in PD progression.

  11. Recovery of nickel, cobalt, copper and zinc in sulphate and chloride solutions using synergistic solvent extraction

    Institute of Scientific and Technical Information of China (English)

    Chu Yong Cheng; Keith R. Barnard; Wensheng Zhang; Zhaowu Zhu; Yoko Pranolo

    2016-01-01

    A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia. These in-clude (1) Versatic 10/CLX50 system for the separation of Ni from Ca in sulphate solutions, (2) Versatic 10/4PC system for the separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (3) Cyanex 471X/HRJ-4277 system for the separation of Zn from Cd in sulphate solutions, (4) Versatic 10/LIX63 system for the separation of Co from Mn/Mg/Ca in sulphate solutions, (5) Versatic 10/LIX63/TBP system for separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (6) Versatic 10/LIX63 system for the separation of cobalt from nickel in sulphate solutions by difference in kinetics, (7) Cyanex 272/LIX84 system for the separation of Cu/Fe/Zn from Ni/Co in sulphate solutions, (8) Versatic 10/LIX63/TBP system to recover Cu/Ni from strong chloride solutions, and (9) Versatic 10/LIX63 system to separate Cu from Fe in strong chloride solutions. The synergistic effect on metal separation and efficiency is presented and possible industrial applications are demonstrated. The chemical stability of selected SSX systems is also reported.

  12. Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study.

    Directory of Open Access Journals (Sweden)

    Daniel Collins

    Full Text Available It is not known if the annual production of tonnes of industrial nanoparticles (NPs has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding zero valent copper and zinc oxide NPs to soil in pots that were then maintained under field conditions. The fate of these NPs, as well as changes in the microbial communities, was monitored over 162 days. Both NP types traveled through the soil matrix, albeit at differential rates, with Cu NPs retained in the soil matrix at a higher rate compared to ZnO NPs. Leaching of Cu and Zn ions from the parent NPs was also observed as a function of time. Analysis of microbial communities using culture-dependent and independent methods clearly indicated that Cu and ZnO NPs altered the microbial community structure. In particular, two orders of organisms found in rhizosphere, Flavobacteriales and Sphingomonadales, appeared to be particularly susceptible to the presence of NPs. Together, the migration of NPs through soil matrix and the ability of these potential pollutants to influence the composition of microbial community in this field study, cannot help but raise some environmental concerns.

  13. Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol-gel surfaces.

    Science.gov (United States)

    Jaiswal, Swarna; McHale, Patrick; Duffy, Brendan

    2012-06-01

    The colonisation of clinical and industrial surfaces with microorganisms, including antibiotic-resistant strains, has promoted increased research into the development of effective antibacterial and antifouling coatings. This study describes the preparation of metal nitrate (Ag, Cu, Zn) doped methyltriethoxysilane (MTEOS) coatings and the rapid assessment of their antibacterial activity using polyproylene microtitre plates. Microtitre plate wells were coated with different volumes of liquid sol-gel and cured under various conditions. Curing parameters were analysed by thermogravimetric analysis (TGA) and visual examination. The optimum curing conditions were determined to be 50-70°C using a volume of 200 μl. The coated wells were challenged with Gram-positive and Gram-negative bacterial cultures, including biofilm-forming and antibiotic-resistant strains. The antibacterial activities of the metal doped sol-gel, at equivalent concentrations, were found to have the following order: silver>zinc>copper. The order is due to several factors, including the increased presence of silver nanoparticles at the sol-gel coating surface, as determined by X-ray photoelectron spectroscopy, leading to higher elution rates as measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The use of microtitre plates enabled a variety of sol-gel coatings to be screened for their antibacterial activity against a wide range of bacteria in a relatively short time. The broad-spectrum antibacterial activity of the silver doped sol-gel showed its potential for use as a coating for biomaterials.

  14. Comparative Study of Serum Copper, Iron, Magnesium, and Zinc in Type 2 Diabetes-Associated Proteinuria.

    Science.gov (United States)

    Khan, Farah Aziz; Al Jameil, Noura; Arjumand, Sadia; Khan, Mohammad Fareed; Tabassum, Hajera; Alenzi, Naif; Hijazy, Sereen; Alenzi, Samyah; Subaie, Sahar; Fatima, Sabiha

    2015-12-01

    Trace element (TE) disturbances are well noted in type 2 diabetes mellitus (T2DM) and its associated complications. In present study, the effect of proteinuria on serum copper (Cu), iron (Fe), magnesium (Mg), and zinc (Zn) in T2DM patients with and without proteinuria was seen. Total subjects were aged between 30 and 90 years; 73 had proteinuria, 76 had T2DM with proteinuria, 76 had T2DM, and 75 were controls. Serum Cu(II), Fe(III), Mg(II), and Zn(II) were assayed by inductively coupled plasma optical emission spectrometer (ICP-OES). Urinary albumin estimation was performed by turbidimetric method. Other biochemical parameters were analyzed by ROCHE Module COBAS 6000 analyzer. Statistical analysis was performed using analysis of variance (ANOVA) at Pproteinuria on TE. Serum Cu(II) level was increased in T2DM patients with proteinuria while Fe(III) was found elevated in T2DM (Pproteinuria, T2DM with proteinuria, and T2DM (Pproteinuria group and T2DM group (Pproteinuria group. Mg(II) was negatively linked with ACR Pproteinuria, T2DM with proteinuria, and T2DM group. TE were observed more disturbed in T2DM with proteinuria group, thus considered to be the part of T2DM routine checkup and restricts the disease towards its progression.

  15. Use of the copper/zinc ratio in the diagnosis of lung cancer.

    Science.gov (United States)

    Dìez, M; Cerdàn, F J; Arroyo, M; Balibrea, J L

    1989-02-15

    Serum zinc (Zn), copper (Cu), and the Cu/Zn ratio were evaluated in 84 patients with pulmonary lesions before surgery and in 100 healthy normal controls. There were 20 patients with benign and 64 with malignant lung tumors. Only the mean (+/- SD) Cu/Zn ratio was significantly higher in malignant tumors (2.24 +/- 0.78) than in benign tissue (1.63 +/- 0.33) (P less than 0.001). In the normal group, the Cu/Zn ratio was significantly lower (1.43 +/- 0.29). Patients with advanced disease (Stage III) had higher Cu/Zn ratio than patients in Stages I and II (2.65 +/- 0.86 versus 1.9 +/- 0.27) (P less than 0.001). At a cutoff value of 1.72, Cu/Zn ratio had a sensitivity of 89%, specificity of 84%, positive predictive value of 78%, and negative predictive value of 92% between controls and lung cancer patients. Between lung cancer patients and patients with benign pulmonary lesions the aforementioned values were 89%, 70%, 90%, and 70% respectively. A correlation between increasing Cu/Zn ratio and tumor extension and postoperative survival was observed. These findings suggest that Cu/Zn ratio may be used as a diagnostic test in lung cancer patients.

  16. Zinc and copper levels in bladder cancer: a systematic review and meta-analysis.

    Science.gov (United States)

    Mao, Song; Huang, Songming

    2013-06-01

    It is well documented that oxidative stress is involved in the pathogenesis of bladder cancer. Zinc (Zn) and copper (Cu) are important components of antioxidants. However, the association between Zn or Cu levels and bladder cancer remains elusive. The present study was designed to investigate the alteration of serum and urinary levels of Zn or Cu in bladder cancer patients compared with controls by performing a systematic review. We searched the PubMed, Embase, and Cochrane databases from January 1990 to March 2013 to identify studies that met our predefined criteria. Six studies were included. Bladder cancer patients demonstrated significantly lower levels of serum Zn (three studies, random effects standard mean deviation (SMD): -1.072, 95 % CI: -1.489 to -0.656, P cancer patients and controls (two studies, random effects SMD: 0.153, 95 % CI: -0.244 to 0.55, P = 0.449). No evidence of publication bias was observed. In conclusion, the disorder of Zn and Cu is closely associated with bladder cancer. Frequent monitoring and early intervention should be recommended.

  17. Antioxidants activities and concentration of selenium, zinc and copper in preterm and IUGR human placentas.

    Science.gov (United States)

    Zadrozna, Monika; Gawlik, Małgorzata; Nowak, Barbara; Marcinek, Antoni; Mrowiec, Halina; Walas, Stanisław; Wietecha-Posłuszny, Renata; Zagrodzki, Paweł

    2009-01-01

    The aim of this study was to examine changes in activities of cytochrome c oxidase (CCO), glucose-6-phosphate dehydrogenase (G6PDH), Cu-Zn superoxide dismutase (Cu-Zn SOD), glutathione peroxidase (GSH-Px), glutathione (GSH) levels and copper (Cu), zinc (Zn) and selenium (Se) concentrations, and to assess the possible differences between preterm placentas, placentas from term pregnancies complicated by intrauterine growth restriction (IUGR) and full-term control placentas. The enzyme activities and the level of GSH decreased in IUGR and preterm placentas in comparison with the control group. CCO activity and GSH level in preterm placentas were markedly lower compared with the IUGR (P<0.01; P<0.05) and control (P<0.01; P<0.05) placentas, respectively. In IUGR placentas the level of Cu was reduced by 23% (P<0.05) and Zn by 37%. In preterm placentas the level of Cu was reduced by 19% and Zn by 42%. Se level in IUGR and preterm placentas was higher (P<0.05) by 28% and 32% than in control group, respectively. The strong relation was observed between birth weight and CCO activity, birth weight and Cu-Zn SOD activity, and a low level of Zn and Cu influenced the birth weight especially in IUGR cases. Moreover, the strong inverse correlation between Se level and birth weight, Se level and placental weight and Se level and CCO activity are new findings.

  18. Comparison of the adsorption capabilities of myriophyllum spicatum and ceratophyllum demersum for zinc, copper and lead

    Energy Technology Data Exchange (ETDEWEB)

    Keskinkan, O.; Yuceer, A.; Basibuyuk, M. [Department Environmental Engineering, Engineering and Architecture Faculty, Cukurova University, Balcali, Adana (Turkey); Goksu, M.Z.L. [Fisheries Faculty, Cukurova University, Balcali, Adana (Turkey)

    2007-04-15

    Industrial wastewaters contain various heavy metal components and therefore threaten aquatic bodies. Heavy metals can be adsorbed by living or non-living biomass. Submerged aquatic plants can be used for the removal of heavy metals. This paper exhibits the comparison of the adsorption properties of two aquatic plants Myriophyllum spicatum and Ceratophyllum demersum for lead, zinc, and copper. The data obtained from batch studies conformed well to the Langmuir Model. Maximum adsorption capacities (q{sub max}) were obtained for both plant species and each metal. The maximum adsorption capacities (q{sub max}) achieved with M. spicatum were 10.37 mg/g for Cu{sup 2+}, and 15.59 mg/g for Zn{sup 2+} as well as 46.49 mg/g for Pb{sup 2+} and with C. demersum they were 6.17 mg/g for Cu{sup 2+}, 13.98 mg/g for Zn{sup 2+} and 44.8 mg/g for Pb{sup 2+}. It was found that M. spicatum has a better adsorption capacity than C. demersum for each metal tested. Gibbs free energy and the specific surface area based on the q{sub max} values were also determined for each metal. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  19. Embryotoxicity of Copper and Zinc in Tropical Sea Urchin Tripneustes gratilla

    Directory of Open Access Journals (Sweden)

    Brisneve Edullantes

    2014-06-01

    Full Text Available The study determined the individual toxicity of copper (Cu and zinc (Zn in sea urchin Tripneustes gratilla. Bioassay using inhibitions on fertilization, early cleavage, mid cleavage, late cleavage and blastulation as endpoints involved exposure of viable gametes to Cu and Zn for 0.5, 3, 6, 9 and 12 h, respectively. Inhibitions increased significantly with concentration of Cu and Zn. Probit analysis estimated EC50 values for Cu and Zn, respectively, at 32 and 67 μg·L-1 on fertilization; 31 and 93 μg·L-1 on early cleavage; 43 and 61 μg·L-1 on mid cleavage; 42 and 42 μg·L-1 on late cleavage; and 20 and 44 μg·L-1 on blastulation. Results showed that toxicity of Cu is significantly higher (p<0.05 than that of Zn in all developmental stages, except in late cleavage. Also, the inhibitions elicited by Cu showed sensitivity to life stages. This study provided evidence on heavy metal species-sensitive, concentration-dependent and stage-specif ic inhibitions on embryonic development in T. gratilla to Cu and Zn. Keywords: Embryotoxicity, sea urchin development, individual toxicity, heavy metals

  20. Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer's and Parkinson's diseases.

    Science.gov (United States)

    Stelmashook, E V; Isaev, N K; Genrikhs, E E; Amelkina, G A; Khaspekov, L G; Skrebitsky, V G; Illarioshkin, S N

    2014-05-01

    Disbalance of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as multisystem atrophy, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, Wilson-Konovalov disease, Alzheimer's disease, and Parkinson's disease. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most frequent age-related neurodegenerative pathologies with disorders in Zn2+ and Cu2+ homeostasis playing a pivotal role in the mechanisms of pathogenesis. In this review we generalized and systematized current literature data concerning this problem. The interactions of Zn2+ and Cu2+ with amyloid precursor protein (APP), β-amyloid (Abeta), tau-protein, metallothioneins, and GSK3β are considered, as well as the role of these interactions in the generation of free radicals in AD and PD. Analysis of the literature suggests that the main factors of AD and PD pathogenesis (oxidative stress, structural disorders and aggregation of proteins, mitochondrial dysfunction, energy deficiency) that initiate a cascade of events resulting finally in the dysfunction of neuronal networks are mediated by the disbalance of Zn2+ and Cu2+.

  1. Calcium, copper, iron, magnesium, silicon and zinc content of hair in Parkinson's disease.

    Science.gov (United States)

    Forte, Giovanni; Alimonti, Alessandro; Violante, Nicola; Di Gregorio, Marco; Senofonte, Oreste; Petrucci, Francesco; Sancesario, Giuseppe; Bocca, Beatrice

    2005-01-01

    The aetiology of Parkinson's disease (PD) is still unknown, but some hypotheses have focused on the imbalances in body levels of metals as co-factors of risk. To assess whether hair could be a reliable marker of possible changes, calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), silicon (Si) and zinc (Zn) were determined in hair from 81 patients affected by PD and 17 age-matched controls. Care was taken to eliminate external contamination of the hair by thorough washing. Digestion of the matrix was achieved by an acid-assisted microwave procedure. Quantification of the elements was performed by inductively coupled plasma atomic emission spectrometry. Results indicated significantly lower levels of Fe in the hair of patients (p=0.018) compared with controls. Ca and Mg levels were slightly lower while Zn levels were higher in patients, although these differences were not significant; neither were variations in Cu and Si. Ca and Mg were at least 1.5 times higher in females than in males in both controls and patients. In addition, Ca correlated positively with Mg in both groups and in both sexes (p-value always less than 0.03), and negatively with age in patients (p<0.01). Finally, element levels did not correlate with either the duration or the severity of the disease or with anti-Parkinson treatment.

  2. Assessing plasma levels of selenium, copper, iron and zinc in patients of Parkinson's disease.

    Science.gov (United States)

    Zhao, Hai-Wen; Lin, Jie; Wang, Xue-Bao; Cheng, Xing; Wang, Jian-Yong; Hu, Bei-Lei; Zhang, Yan; Zhang, Xiong; Zhu, Jian-Hong

    2013-01-01

    Trace elements have been recognized to play an important role in the development of Parkinson's disease (PD). However, it is difficult to precisely identify the relationship between these elements and the progression of PD because of an insufficient number of patients. In this study, quantifications of selenium (Se), copper (Cu), iron (Fe) and zinc (Zn) by atomic absorption spectrophotometry were performed in plasma from 238 PD patients and 302 controls recruited from eastern China, which is so far the largest cohort of PD patients and controls for measuring plasma levels of these elements. We found that plasma Se and Fe concentrations were significantly increased whereas Cu and Zn concentrations decreased in PD patients as compared with controls. Meanwhile, these four elements displayed differential changes with regard to age. Linear and logistic regression analyses revealed that both Fe and Zn were negatively correlated with age in PD patients. Association analysis suggests that lower plasma Se and Fe levels may reduce the risk for PD, whereas lower plasma Zn is probably a PD risk factor. Finally, a model was generated to predict PD patients based on the plasma concentrations of these four trace elements as well as other features such as sex and age, which achieved an accuracy of 80.97±1.34% using 10-fold cross-validation. In summary, our data provide new insights into the roles of Se, Cu, Fe and Zn in PD progression.

  3. Zinc supplementation decreases hepatic copper accumulation in LEC rat: a model of Wilson's disease.

    Science.gov (United States)

    Gonzalez, Blanca P Esparza; Niño Fong, Rodolfo; Gibson, Candace J; Fuentealba, I Carmen; Cherian, M George

    2005-01-01

    The effect of dietary zinc (Zn) supplementation on copper (Cu)-induced liver damage was investigated in Long-Evans Cinnamon rats (LEC), a model for Wilson's disease (WD). Four-week-old LEC (N=64) and control Long-Evans (LE) (N=32) female rats were divided into two groups; one group was fed with a Zn-supplemented diet (group I) and the other was given a normal rodent diet (group II). LEC rats were killed at 6, 8, 10, 12, 18, and 20 wk of age; the LE control rats were killed at 6, 12, 18, and 20 wk of age. Cu concentration in the liver was reduced in LEC rats fed the Zn-supplemented diet compared with LEC rats on the normal diet between 6 and 18 wk of age. Metallothionein (MT) concentration in the livers of LEC rats in group I increased between 12 and 20 wk of age, whereas hepatic MT concentration in LEC rats from group II decreased after 12 wk. Hepatocyte apoptosis, as determined by TUNEL, was reduced in Zn-supplemented LEC rats at all ages. Cholangiocellular carcinoma was observed only in LEC rats in group II at wk 20. These results suggest that Zn supplementation can reduce hepatic Cu concentration and delay the onset of clinical and pathological changes of Cu toxicity in LEC rats. Although the actual mechanism of protection is unknown, it could be explained by sequestration of dietary Cu by intestinal MT, induced by high dietary Zn content.

  4. Zebrafish in the Sea of Mineral (Iron, Zinc and Copper Metabolism

    Directory of Open Access Journals (Sweden)

    Lu eZhao

    2014-03-01

    Full Text Available Iron, copper, zinc and eight other minerals are classified as essential trace elements because they present in minute in vivo quantities and are essential for life. Because either excess or insufficient levels of trace elements can be detrimental to life (causing human diseases such as iron-deficiency anemia, hemochromatosis, Menkes syndrome and Wilson’s disease, the endogenous levels of trace minerals must be tightly regulated. Many studies have demonstrated the existence of systems that maintain trace element homeostasis, and these systems are highly conserved in multiple species ranging from yeast to mice. As a model for studying trace mineral metabolism, the zebrafish is indispensable to researchers. Several large-scale mutagenesis screens have been performed in zebrafish, and these screens led to the identification of a series of metal transporters and the generation of several mutagenesis lines, providing an in-depth functional analysis at the system level. Moreover, because of their developmental advantages, zebrafish have also been used in mineral metabolism‒related chemical screens and toxicology studies. Here, we systematically review the major findings of trace element homeostasis studies using the zebrafish model. We also provide a homology analysis of trace mineral transporters in fish, mice and humans. Finally, we discuss the evidence that zebrafish are an ideal experimental tool for uncovering novel mechanisms of trace mineral metabolism and for improving approaches to treat mineral imbalance‒related diseases.

  5. Maternal and Umbilical Cord Blood Levels of Zinc and Copper in Active Labor Versus Elective Caesarean Delivery at Khartoum Hospital, Sudan.

    Science.gov (United States)

    Elhadi, Alaeldin; Rayis, Duria A; Abdullahi, Hala; Elbashir, Leana M; Ali, Naji I; Adam, Ishag

    2016-01-01

    A case-control study was conducted in Khartoum Hospital Sudan to determine maternal and umbilical cord blood levels of zinc and copper in active labor versus elective cesarean delivery. Cases were women delivered vaginally and controls were women delivered by elective cesarean (before initiation of labor). Paired maternal and cord zinc and copper were measured using atomic absorption spectrophotometry. The two groups (52 paired maternal and cord in each arm) were well matched in their basic characteristics. In comparison with cesarean delivery, the median (interquartile range) of both maternal [87.0 (76.1-111.4) vs. 76.1 (65.2-88.3) μg/dL, P = 0.004] and cord zinc [97.8 (87.0-114.1) vs. 81.5(65.2-110.2) μg/dL P = 0.034] levels were significantly higher in the vaginal delivery. While there was no significant difference in the maternal copper [78.8 (48.1-106.1) vs. 92.4 (51.9-114.9) μg/dL, P = 0.759], the cord copper [43.5(29.9-76.1) vs. 32.2(21.7-49.6) μg/dL, P = 0.019] level was significantly higher in vaginal delivery. There was no significant correlation between zinc (both maternal and cord) and copper. While the cord zinc was significantly correlated with maternal zinc, there was no significant correlation between maternal and cord copper. The current study showed significantly higher levels of maternal and cord zinc and cord copper in women who delivered vaginally compared with caesarean delivery.

  6. 某细粒浸染铜锌矿选矿工艺研究%The Mineral Processing Technology forone Fine-grained Disseminated Copper-zinc Ore

    Institute of Scientific and Technical Information of China (English)

    何晋勇; 陆长龙; 肖骏

    2016-01-01

    The mineral processing technology investigation is conducted on one fine-grained disseminated copper-zinc ore in Yunnan. The sulphide minerals have a complex metasomatic embedded relationship in this copper-zinc ore. The mineral processing flow that copper differential flotation, regrinding of copper rough concentrate, activation flotation of zinc from copper tailings is adopted, which improved the single separation degree of fine-grained disseminated and embedded copper pyrites and sphalerite. Meanwhile, by using BP+ ethyl xanthogenate as the collecting agent of copper ore, Na2S+Na2SO3+ZnSO4 as the combined depressants of zinc ore, therefore the effective separation between fine-grained disseminated copper-zinc ore was achieved. Under the conditions that in the raw ore, copper content is 0.82%, zinc content is 2.21%, we can get the indexes that copper concentrate with Cu 20.92%, Zn 2.89%, the recovery rate of Cu is 87.41% in the copper concentrate, the Cu content is 1.24% in zinc concentrate, The Zn recovery rate is 89.15% in the zinc concentrate.%针对云南某细粒浸染铜锌矿开展了选矿工艺研究.该铜锌矿中的硫化矿物具有复杂的交代嵌生关系,本研究采用优先浮铜-铜粗精矿再磨-铜尾矿活化浮选锌的工艺流程,提高了细粒浸染交代嵌生的黄铜矿、闪锌矿的单体解离度.同时,使用BP+乙黄药做铜矿物的组合捕收剂, Na2S+Na2SO3+ZnSO4做锌矿物组合抑制剂,实现了细粒浸染铜锌矿的有效分离.在原矿含铜0.82%、锌2.21%的情况下,获得了铜精矿含Cu 20.92%、Zn 2.89%,铜精矿中Cu回收率87.41%,锌精矿含Cu 1.24%、Zn 43.34%,锌精矿中Zn回收率89.15%的指标.

  7. Evaluation of Removal and Adsorption Isotherms of Zinc and Copper from Municipal Solid Waste Leachate Using Clinoptilolite Adsorbent

    Directory of Open Access Journals (Sweden)

    ali toolabi

    2016-06-01

    Full Text Available Introduction and Purpose: Heavy metals are among the most important pollutants in leachate waste, causing serious health risks for humans through entering the food chain and reaching the top of food pyramid. Therefore, this study aimed to evaluate the efficacy of modified clinoptilolite in the removal of copper and zinc ions from landfill leachate and modeling of adsorption isotherms and reactions.Methods: This cross-sectional in vitro study was conducted to test waste landfill leachate as a true sample for four seasons in 2014 in Bam, Iran. Natural zeolite (clinoptilolite, modified with 2 M HNO3 solution, was used to remove copper and zinc. Experiments were conducted as batch systems, in which the effects of pH, adsorbent dosage, and contact time on the adsorption of heavy metals in municipal waste landfill leachate by clinoptilolite (as soil amendment were investigated. Afterwards, the adsorption isotherms of each adsorbent were demonstrated.Results: In total, the removal efficency of zinc in the optimum pH=5, equallied time=120 min and Adsorbent dosage of 120g/l was reached 92%. Adsorption isotherms indicated that the capacity of this adsorbent was higher in zinc, compared to copper, and adsorbents were absorbed with higher energy. The adsorption process was based on Langmuir’s equations (isotherm type II (R2=0.99.Conclusion: According to the results, adsorption capacity of clinoptilolite was high for copper and zinc and based on isotherm equations, adsorption took place with higher energy. It was concluded that this method could be used for the removal of these metals due to its high removal efficiency. Therefore, it is recommended that further studies be conducted to evaluate the possibility of removal of other heavy metals with this method.

  8. Electrical Study of Trapped Charges in Copper-Doped Zinc Oxide Films by Scanning Probe Microscopy for Nonvolatile Memory Applications

    Science.gov (United States)

    Su, Ting; Zhang, Haifeng

    2017-01-01

    Charge trapping properties of electrons and holes in copper-doped zinc oxide (ZnO:Cu) films have been studied by scanning probe microscopy. We investigated the surface potential dependence on the voltage and duration applied to the copper-doped ZnO films by Kelvin probe force microscopy. It is found that the Fermi Level of the 8 at.% Cu-doped ZnO films shifted by 0.53 eV comparing to undoped ZnO films. This shift indicates significant change in the electronic structure and energy balance in Cu-doped ZnO films. The Fermi Level (work function) of zinc oxide films can be tuned by Cu doping, which are important for developing this functional material. In addition, Kelvin probe force microscopy measurements demonstrate that the nature of contact at Pt-coated tip/ZnO:Cu interface is changed from Schottky contact to Ohmic contact by increasing sufficient amount of Cu ions. The charge trapping property of the ZnO films enhance greatly by Cu doping (~10 at.%). The improved stable bipolar charge trapping properties indicate that copper-doped ZnO films are promising for nonvolatile memory applications. PMID:28135335

  9. 酸性镀铜溶液中锌杂质的分析方法%Analysis Method of Zinc Impurity in an Acidic Copper Plating Bath

    Institute of Scientific and Technical Information of China (English)

    郭崇武

    2012-01-01

    在电镀生产中,监控镀液中金属杂质是十分必要的.制定了酸性镀铜溶液中锌杂质的分析方法.用碘量法测定硫酸铜,用EDTA容量法测定硫酸铜和锌杂质的总量,从总量中减去硫酸铜的量得到锌杂质的质量浓度.方法准确,能够满足监控酸性镀铜溶液的要求.%It is necessary to monitor the metal impurites in bath during the electroplating production. An a-nalysis method of zinc impurity in acidic copper plating bath is established. The concentration of copper sulfate is firstly determined by using iodimetry, and then the sum of the copper sulfate and zinc impurity is determined with EDTA volumetry. The concentration of zinc is determined by the deference between copper sulfate and the sum of copper sulfate and zinc impurity. This method is exact and accurate, and can satisfy the controlling requirement of acidic copper plating solution.

  10. Differential Expression of Copper-Zinc Superoxide Dismutase Gene of Polygonum sibiricum Leaves, Stems and Underground Stems, Subjected to High-Salt Stress

    Directory of Open Access Journals (Sweden)

    Gui-Feng Liu

    2010-12-01

    Full Text Available In aerobic organisms, protection against oxidative damage involves the combined action of highly specialized antioxidant enzymes, such as copper-zinc superoxide dismutase. In this work, a cDNA clone which encodes a copper-zinc superoxide dismutase gene, named PS-CuZnSOD, has been identified from P. sibiricum Laxm. by the rapid amplification of cDNA ends method (RACE. Analysis of the nucleotide sequence reveals that the PS-CuZnSOD gene cDNA clone consists of 669 bp, containing 87 bp in the 5' untranslated region; 459 bp in the open reading frame (ORF encoding 152 amino acids; and 123 bp in 3' untranslated region. The gene accession nucleotide sequence number in GenBank is GQ472846. Sequence analysis indicates that the protein, like most plant superoxide dismutases (SOD, includes two conserved ecCuZnSOD signatures that are from the amino acids 43 to 51, and from the amino acids 137 to 148, and it has a signal peptide extension in the front of the N-terminus (1–16 aa. Expression analysis by real-time quantitative PCR reveals that the PS-CuZnSOD gene is expressed in leaves, stems and underground stems. PS-CuZnSOD gene expression can be induced by 3% NaHCO3. The different mRNA levels’ expression of PS-CuZnSOD show the gene’s different expression modes in leaves, stems and underground stems under the salinity-alkalinity stress.

  11. Investigating the distribution of dissolved copper, zinc, silver and cadmium in the Pacific Ocean

    Science.gov (United States)

    Janssen, D. J.; Cullen, J. T.

    2012-12-01

    A stated goal of the GEOTRACES program is to better understand the large-scale distribution of trace metals in the marine environment. A characteristic feature of the soft Lewis acid metals like copper (Cu), zinc (Zn), silver (Ag) and cadmium (Cd) is their correlation with the major algal nutrients. These correlations imply that the proximate control on the distribution of these metals is microbial uptake at the ocean surface, sinking associated with particulate organic matter and subsequent remineralization in the ocean interior. Combined with sedimentary records of past metal concentrations such correlations can provide much needed information on water mass circulation and nutrient cycling in the paleo-ocean. Today, as trace nutrients and/or toxins these metals help shape microbial community composition and influence productivity. Here we present depth profiles through the low dissolved oxygen waters of the north Pacific which show decoupling of trace metal-macronutrient relationships driven by depletion anomalies of trace metal concentrations in the broad, low oxygen layer. Similar anomalies have been previously reported in permanently anoxic layers (e.g. fjords) or in waters in contact with suboxic sediments and attributed to sulfidic removal of soft trace metals. The observed trace metal behavior and trace metal-macronutrient relationships in the oxygen minimum layer in the northeastern Pacific is consistent with the possibility of sulfidic scavenging of soft metals and the formation of insoluble metal sulfides in the water column. Implications of this influence on the basin scale distribution of soft metals like Cu, Zn, Ag, Cd through scavenging in the spreading low oxygen layer in the northeastern Pacific are discussed.

  12. Copper and Zinc Runoff from Land Application of Composted Poultry Litter.

    Science.gov (United States)

    DeLaune, P B; Moore, P A

    2016-09-01

    Regions with long-term animal manure applications based on nitrogen (N) requirements have concerns regarding elevated nutrient levels. Most attention has focused on phosphorus (P), but heavy metal accumulation has received attention due to perceived environmental concerns. Composting is a potential management practice that can reduce total manure mass and volume while creating a stabilized product that has less odor and fewer pathogens. However, composting animal manures can lead to high N loss via ammonia volatilization and increased concentrations of nonvolatile nutrients. The objective of this study was to measure copper (Cu) and zinc (Zn) concentrations in runoff water from plots fertilized with composted and fresh poultry litter. Seven treatments were evaluated in the first year: (i) unfertilized control, (ii) fresh poultry litter, (iii) normal compost (no amendment), (iv) composted litter with alum, (v) composted litter with phosphoric acid, (vi) composted litter with a microbial mixture, and (vii) composted litter with alum + microbial mixture. Six of these treatments were evaluated in Year 2 (alum + microbial mixture was not evaluated in Year 2). Rainfall simulators were used to produce a 5 cm h storm event sufficient in length to cause 30 min of continuous runoff. Concentrations of Cu and Zn were elevated in compost compared with fresh poultry litter. However, metal concentrations in compost did not correlate well with metal concentrations in runoff water and may have been affected by compost maturity and amendment. Total Cu and Zn concentrations in runoff water did not differ between alum-amended compost and fresh poultry litter in each year.

  13. Phytoavailability of Copper, Zinc and Cadmium in Sewage Sludge-Amended Calcareous Soils

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; GUO Xue-Yan; XU Xing-Hua; ZUO Yu-Bao; WEI Dong-Pu; MA Yi-Bing

    2012-01-01

    The toxicity of trace elements (TEs),such as copper (Cu),zinc (Zn),and cadmium (Cd),often restrict land application of sewage sludge (SS) and there was little information about soil-plant transfer of TEs in SS from field experiments in China.In this study pot and field experiments were carried out for 2 years to investigate the phytoavailability of TEs in calcareous soils amended with SS.The results of the pot experiment showed that the phytoavailability of Zn and Cu in the SS was equal to 53.4%-80.9% and 54.8%-91.1% of corresponding water-soluble metal salts,respectively.The results from the field experiment showed that the contents of total Zn,Cu,and Cd in the soils increased linearly with SS application rates.With increasing SS application rates,the contents of Zn and Cu in the wheat grains initially increased and then reached a plateau,while there was no significant change of Cd content in the maize grains.The bioconcentration factors of the metals in the grains of wheat and maize were found to be in the order of Zn > Cu > Cd,but for the straw the order was Cd > Cu > Zn.It was also found that wheat grains could accumulate more metals compared with maize grains.The results will be helpful in developing the critical loads of sewage sludge applied to calcareous soils.

  14. Decline of phosphorus, copper, and zinc in anaerobic swine lagoon columns receiving pretreated influent

    Directory of Open Access Journals (Sweden)

    Ariel A. Szögi

    Full Text Available ABSTRACT Land application of both anaerobic lagoon liquid and sludge can increase nutrient accumulation beyond the soil’s assimilative capacity and become a threat to water quality in regions with intensive, confined swine production. In a 15-month meso-scale column study, we evaluated the effect of manure pretreatment on the reduction of total suspended solids (TSS, total phosphorus (TP, soluble reactive P (SRP, and total copper (Cu and zinc (Zn in swine lagoons using (i enhanced solid-liquid separation (SS and (ii solid-liquid separation plus biological nitrogen treatment with nitrification-denitrification (SS + NDN. A conventional anaerobic lagoon treatment was included as a control. A mass flow balance revealed that with both pretreatments the net mass input of TP, Cu, and Zn in the lagoon columns declined 80 to 100 % when compared to the control. Even though both pretreatments significantly reduced P in the inflow, TP and SRP were negatively correlated (r = -0.51 to -0.87 with TSS in the liquid fraction because of the dissolution of P from sludge into the overlying lagoon liquid. On the other hand, the removal of solids by both pretreatments effectively reduced Cu and Zn concentrations in the lagoon liquid, and their concentrations were positively correlated (r = 0.79 to 0.90 with TSS. The decline in mass accumulation of TP, Cu, and Zn in sludge as a result of the reduction of input solids can help minimize both the frequency of sludge removal for lagoon maintenance and the land area for its disposal.

  15. Plasma levels of zinc, copper, and ceruloplasmin in patients after undergoing laparoscopic adjustable gastric banding.

    Science.gov (United States)

    Böyük, Abdullah; Banlı, Oktay; Gümüş, Metehan; Evliyaoğlu, Osman; Demirelli, Salih

    2011-12-01

    Laparoscopic adjustable gastric banding (LAGB) causes significant weight loss in morbidly obese adults. However, its consequences on nutritional status still remain unclear. There are a few studies determining the nutritional status after LAGB and none have focused on the serum levels of zinc (Zn), copper (Cu), and ceruloplasmin (CP). We aimed to investigate the effects of LAGB surgery on plasma Zn, Cu, and CP levels. Thirty patients with LAGB with morbid obesity were included. Blood samples were collected preooperatively and in the postoperative third month to determine plasma Zn, Cu, and CP levels. The mean preoperative and postoperative body mass indexes (BMI) were 44.9 ± 7.4 kg/m(2) and 44.1 ± 6.5 kg/m(2), respectively. The mean weight loss was 12.9 ± 3.3 kg at the postoperative third month. The postoperative Zn (500 ± 130 ng/ml), Cu (280 ± 80 ng/ml), and CP (23.9 ± 8.8 mg/dl) values were statistically significantly lower than the preooperative Zn (740 ± 230 ng/ml), Cu (370 ± 80 ng/ml) and CP (33.3 ± 15.7 mg/dl) levels (p < 0.05). Decreases in the plasma levels of Zn, Cu, and CP were seen postoperatively following LAGB surgery. The nutritional status of LAGB-applied patients should be monitored and mineral supplementation may be considered.

  16. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients.

    Science.gov (United States)

    Kazi, Tasneem Gul; Afridi, Hassan Imran; Kazi, Naveed; Jamali, Mohammad Khan; Arain, Mohammad Bilal; Jalbani, Nussarat; Kandhro, Ghulam Abbas

    2008-04-01

    There is accumulating evidence that the metabolism of several trace elements is altered in diabetes mellitus and that these nutrients might have specific roles in the pathogenesis and progress of this disease. The aim of present study was to compare the level of essential trace elements, chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn) in biological samples (whole blood, urine, and scalp hair) of patients who have diabetes mellitus type 2 (n = 257), with those of nondiabetic control subjects (n = 166), age ranged (45-75) of both genders. The element concentrations were measured by means of an atomic absorption spectrophotometer after microwave-induced acid digestion. The validity and accuracy was checked by conventional wet-acid-digestion method and using certified reference materials. The overall recoveries of all elements were found in the range of (97.60-99.49%) of certified values. The results of this study showed that the mean values of Zn, Mn, and Cr were significantly reduced in blood and scalp-hair samples of diabetic patients as compared to control subjects of both genders (p < 0.001). The urinary levels of these elements were found to be higher in the diabetic patients than in the age-matched healthy controls. In contrast, high mean values of Cu and Fe were detected in scalp hair and blood from patients versus the nondiabetic subjects, but the differences found in blood samples was not significant (p < 0.05). These results are consistent with those obtained in other studies, confirming that deficiency and efficiency of some essential trace metals may play a role in the development of diabetes mellitus.

  17. Impact of Maternal Helicobacter pylori Infection on Trace Elements (Copper, Iron and Zinc and Pregnancy Outcomes

    Directory of Open Access Journals (Sweden)

    Emmanuel I Akubugwo

    2010-04-01

    Full Text Available Background: H. pylori infection has been suggested to interfere with micronutrient metabolism and influence pregnancy outcomes. Objectives: This study therefore seeks to document the prevalence of H. pylori seroposivity among pregnant women and to determine its impact on some trace element status and pregnancy outcomes. Materials and methods: Three hundred and forty nine consenting pregnant women aged 15-40 years (mean; 27. 04 ± 4. 75 years and gestational age ≤ 25 weeks (mean 21.77 ± 3.14 wks attending antenatal clinic at Federal Medical Centre, Abakaliki, between July 2007 and September 2008 participated in the study. H. Pylori antibody (IgG was determined by a new generation ELISA method. Plasma copper, iron and zinc were analysed using flame atomic absorption spectrophotometer (Bulk Scientific AVG 210 Model while haemoglobin and albumin were analysed using standard haematological and biochemical techniques. Both maternal sociodemographic and anthropometric parameters were recorded at recruitment. The women were followed-up till delivery after which neonatal anthropometrics and other birth outcomes were recorded. Results: H. pylori seroprevalence of 24.1% (84/349 was recorded with higher prevalence in multiparous and older women. H. pylori infected women had significantly higher BMI (29.00 ± 3.89 vs. 26.86 ± 4.10, p = 0.020 and lower (p > 0.05 plasma levels of Cu, Fe, Zn, albumin, and haemoglobin when compared to non-infected women. Also H. pylori infected women had significantly (p < 0.05 higher rates of convulsion and concomitant illnesses than their non-infected counterparts, although there was no difference in the two groups for other pregnancy outcomes. Conclusion: H. pylori infection during pregnancy seems to interfere with trace element metabolism and contribute significantly to increased maternal morbidity. Prior to confirmation of these findings in a well controlled randomised trial, it is suggested that pregnant women be

  18. The impact of blood and seminal plasma zinc and copper concentrations on spermogram and hormonal changes in infertile Nigerian men.

    Science.gov (United States)

    Akinloye, Oluyemi; Abbiyesuku, Fayeofori M; Oguntibeju, Oluwafemi O; Arowojolu, Ayodele O; Truter, Ernie J

    2011-07-01

    Zinc (Zn) and copper (Cu) concentrations in sera and seminal plasma of 60 infertile males (40 oligozoospermic and 20 azoospermic) and 40 males with evidence of fertility (normozoospermic; controls) were estimated using atomic absorption spectrophotometry. The results were correlated with the subject's spermogram and hormonal levels in order to determine their relationship and significance in male infertility. The mean serum concentration of zinc was significantly (pspermatozoa viability. In conclusion, the measurement of serum Zn level, apart from being a good index of the assessment of prostatic secretion and function, may be considered a useful tool in addition to other parameters in assessing male infertility. Also, a lower Cu/Zn ratio in seminal plasma may serve as a supportive tools in assessing male infertility.

  19. Zinc

    Science.gov (United States)

    ... slow wound healing, poor sense of taste and smell, diarrhea, and nausea. Moderate zinc deficiency is associated ... nose, as it might cause permanent loss of smell. In June 2009, the US Food and Drug ...

  20. Composition at the CuInSe{sub 2}/ZnO interface: Copper depletion induced by diethyl-zinc

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, A.; Janocha, E.; Kelleter, F.; Pettenkofer, C. [Helmholtz-Zentrum-Berlin, Institute for Silicon Photovoltaics, Albert-Einstein-Str. 15, 12489, Berlin (Germany)

    2014-09-15

    The interface formation between epitaxial CuInSe{sub 2}(112) films and ZnO deposited by metal-organic MBE is investigated by photoelectron spectroscopy. Reaction of diethyl-zinc with CuInSe{sub 2} leads to the formation of an intrinsic ZnSe layer and copper depletion of the interface. This is associated with Zn doping of the chalcopyrite surface and a Fermi-level shift toward the conduction band. The implications on the band alignment are discussed. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Preparation and thermal decomposition of copper(II, zinc(II and cadmium(II chelates with 8-hydroxyquinoline

    Directory of Open Access Journals (Sweden)

    Crespi Marisa S.

    1999-01-01

    Full Text Available When the compounds are heated in an inert atmosphere it can be verified the consecutive partial sublimation, fusion, partial volatilization and partial thermal decomposition of the anhydrous complexes. When in an oxidating atmosphere the above process is only verified to Cu(II chelates. Anhydrous copper(II complexes present a monoclinic structure in the b form and the volatilized compound in a a form. Zinc(II and cadmium(II hydrated complexes are isomorphous and they present different cell dimensions from those reported previously.

  2. Optimization of microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry.

    Science.gov (United States)

    Soylak, Mustafa; Tuzen, Mustafa; Souza, Anderson Santos; das Graças Andrade Korn, Maria; Ferreira, Sérgio Luis Costa

    2007-10-22

    The present paper describes the development of a microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry (FAAS). The optimization step was performed using a full factorial design (2(3)) involving the factors: composition of the acid mixture (CMA), microwave power (MP) and radiation time (RT). The experiments of this factorial were carried out using a certified reference material of tea GBW 07605 furnished by National Research Centre for Certified Reference Materials, China, being the metal recoveries considered as response. The relative standard deviations of the method were found below 8% for the three elements. The procedure proposed was used for the determination of copper, zinc and nickel in several samples of tea from Turkey. For 10 tea samples analyzed, the concentration achieved for copper, zinc and nickel varied at 6.4-13.1, 7.0-16.5 and 3.1-5.7 (microg g(-1)), respectively.

  3. Toxicity of Alzheimer's disease-associated Aβ peptide is ameliorated in a Drosophila model by tight control of zinc and copper availability.

    Science.gov (United States)

    Hua, Haiqing; Münter, Lisa; Harmeier, Anja; Georgiev, Oleg; Multhaup, Gerd; Schaffner, Walter

    2011-10-01

    Amyloid plaques consisting of aggregated Aβ peptide are a hallmark of Alzheimer's disease. Among the different forms of Aβ, the one of 42aa length (Aβ42) is most aggregation-prone and also the most neurotoxic. We find that eye-specific expression of human Aβ42 in Drosophila results in a degeneration of eye structures that progresses with age. Dietary supplements of zinc or copper ions exacerbate eye damage. Positive effects are seen with zinc/copper chelators, or with elevated expression of MTF-1, a transcription factor with a key role in metal homeostasis and detoxification, or with human or fly transgenes encoding metallothioneins, metal scavenger proteins. These results show that a tight control of zinc and copper availability can minimize cellular damage associated with Aβ42 expression.

  4. Serum Concentration of Zinc, Copper, Selenium, Manganese, and Cu/Zn Ratio in Children and Adolescents with Myopia.

    Science.gov (United States)

    Fedor, Monika; Socha, Katarzyna; Urban, Beata; Soroczyńska, Jolanta; Matyskiela, Monika; Borawska, Maria H; Bakunowicz-Łazarczyk, Alina

    2017-03-01

    The purpose of the present study was the assessment of the serum concentration of antioxidant microelements-zinc, copper, selenium, manganese, and Cu/Zn ratio in children and adolescents with myopia. Eighty-three children were examined (mean age 14.36 ± 2.49 years) with myopia. The control group was 38 persons (mean age 12.89 ± 3.84 years). Each patient had complete eye examination. The serum concentration of zinc, copper, manganese, and selenium was determined by atomic absorption spectrometry. Cu/Zn ratio, which is the indicator of the oxidative stress, was also calculated. The average serum concentration of zinc in myopic patients was significantly lower (0.865 ± 0.221 mg L(-1)) in comparison to the control group (1.054 ± 0.174 mg L(-1)). There was significantly higher Cu/Zn ratio in myopic patients (1.196 ± 0.452) in comparison to that in the control group (0.992 ± 0.203). The average serum concentration of selenium in the study group was significantly lower (40.23 ± 12.07 μg L(-1)) compared with that in the control group (46.00 ± 12.25 μg L(-1)). There were no essential differences between serum concentration of copper and manganese in the study group and the control group. Low serum concentration of zinc and selenium in myopic children may imply an association between insufficiency of these antioxidant microelements and the development of the myopia and could be the indication for zinc and selenium supplementation in the prevention of myopia. Significantly, higher Cu/Zn ratio in the study group can suggest the relationship between myopia and oxidative stress.

  5. In vitro susceptibility of the oomycete Pythium insidiosum to metallic compounds containing cadmium, lead, copper, manganese or zinc.

    Science.gov (United States)

    Ribeiro, Tatiana Corrêa; Weiblen, Carla; Botton, Sônia de Avila; Pereira, Daniela Isabel Brayer; de Jesus, Francielli Pantella Kunz; Verdi, Camila Marina; Gressler, Leticia Trevisan; Sangioni, Luís Antonio; Santurio, Janio Morais

    2017-08-01

    Pythium insidiosum is an aquatic oomycete that causes pythiosis, an important and severe disease of difficult treatment that affects humans, domestic and wild animals. This infection is often described in horses in Brazil and humans in Thailand. In clinical practice, we have observed many cases that do not respond to available therapies, indicating the need to explore alternative therapeutic approaches. In this sense, studies using metal compounds in conjunction with available antimicrobial agents have been demonstrated greater antimicrobial activity. Thus, in this research, we tested in vitro activities of metallic compounds containing cadmium, lead, copper, manganese, or zinc against 23 isolates of P. insidiosum. The assays were performed by broth microdilution based on CLSI M38-A2 document. The minimum inhibitory and fungicidal concentrations were established for all isolates. Copper acetate and cadmium acetate showed the highest inhibitory effects, with minimal inhibitory concentration ranging from 4-64 μg/ml and 16-256 μg/ml, respectively. The mean geometric for minimal fungicidal concentrations were, respectively, 26 μg/ml and 111.43 μg/ml for copper acetate and cadmium acetate. These results suggest that copper and cadmium can inhibit P. insidiosum growth, highlighting the greater inhibitory activity of copper acetate. In addition, our results propose that copper and/or cadmium compounds can be used in upcoming researches to formulate effective new complexed drugs against P. insidiosum in in vitro and in vivo experimental models. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Specific Labeling of Zinc Finger Proteins using Non-canonical Amino Acids and Copper-free Click Chemistry

    Science.gov (United States)

    Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A.

    2012-01-01

    Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry. PMID:22871171

  7. Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology.

    Science.gov (United States)

    Sparks, D L; Friedland, R; Petanceska, S; Schreurs, B G; Shi, J; Perry, G; Smith, M A; Sharma, A; Derosa, S; Ziolkowski, C; Stankovic, G

    2006-01-01

    Mounting evidence suggests copper may influence the progression of Alzheimer's disease by reducing clearance of the amyloid beta protein (Abeta) from the brain. Previous experiments show that addition of only 0.12 PPM copper (one-tenth the Environmental Protection Agency Human consumption limits) to distilled water was sufficient to precipitate the accumulation of Abeta in the brains of cholesterol-fed rabbits (1). Here we report that addition of copper to the drinking water of spontaneously hypercholesterolemic Watanabe rabbits, cholesterol-fed beagles and rabbits, PS1/APP transgenic mice produced significantly enhanced brain levels of Abeta. In contrast to the effects of copper, we found that aluminum- or zinc-ion-supplemented distilled water did not have a significant effect on brain Ab accumulation in cholesterol-fed rabbits. We also report that administration of distilled water produced a reduction in the expected accumulation of Ab in three separate animal models. Collectively, these data suggest that water quality may have a significant influence on disease progression and Ab neuropathology in AD.

  8. Serum level of Zinc and Copper among pregnant women of Jam area referred to Towhid Hospital,southern part of Bushehr

    Directory of Open Access Journals (Sweden)

    syead Mojtaba Jafari

    2015-05-01

    Full Text Available Background: Micronutrients are essential for the healthy growth and development of body organs and they have important roles in the function of immune and skeletal system . During pregnancy, due to the physiological changes for the normal growth of fetal, the need for minerals is significantly increased. The aim of this study was to find the status of serum copper and zinc and their relation to anemia in pregnant women. Materials and Methods: In this randomized, cross sectional descriptive study 250 pregnant women (mean age, 27.2±5.5 participated. They attended the medical center (In Jam area, Bushehr, Iran for routine checkups. Blood was collected from them and serum levels of Copper and Zinc were measured by atomic absorption spectrophothometric method. Hemoglobin and other indexes were measured by Automatic Counter analyzer. Results: the mean serum concentration of copper and Zinc were 126.5±56.7 g/dl and 67.6±18.2 g/dl respectively. Also the percentage of their deficiency was 21.2% and 47.2% respectively. The mean level of hemoglobin in the subjects was 11.9±1.2 and the percentage of anemia (Hb < 11g/dl was 21.6%. There was a significant differences between increases in gestational age and the deficiency of copper and zinc in the participants, which is as the pregnancy progress, the deficiency of Copper reduces (p=0.024 and that of Zinc increases(p=0.036. Conclusion: The results of this study showed that the deficiency of Copper, Zinc and the rate of anemia in the pregnant women of Jam area is significantly high and suggests that a proper interventional program should be planned to monitor such women at risk, before their marriage or in prenatal clinics.

  9. Chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Dorman, Rebecca A.; Brumbaugh, William G.; Mebane, Christopher A.; Kunz, James L.; Hardesty, Douglas K.

    2014-01-01

    Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th–82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.

  10. Chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures.

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G; Dorman, Rebecca A; Brumbaugh, William G; Mebane, Christopher A; Kunz, James L; Hardesty, Doug K

    2014-10-01

    Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th-82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.

  11. Diffusion interaction and quantitative analysis of zinc dialkyldithiophosphate content in lube base oils in terahertz regime

    Institute of Scientific and Technical Information of China (English)

    Lu Tian; Kun Zhao; Qingli Zhou; Yulei Shi; Dongmei Zhao; Cunlin Zhang; Songqing Zhao

    2011-01-01

    We investigate the diffusion interaction and quantitative analysis of zinc dialkyldithiophosphate (ZDDP) mixed with lube base oil (LBO) at different concentrations using terahertz time-domain spectroscopy (THz-TDS). When the concentration exceeds 6.78%, the characteristic absorption peaks exhibit significantly shift, and the absorption coefficient peak value is nonlinear against concentration. Moreover, the absorption coefficients of mixed samples follow the Beer's law at a concentration below 6.78%. The quantitative analysis enables a strategy for monitoring the formulation of lubricating oil in real time.%Zinc dialkyldithiophosphate (ZDDP),as a multifunctional additive and inhibitor in petroleum industry,works mainly as antiwear,antioxidant,and anticorrosion agent[1,2].ZDDP mixed with lube base oils (LBOs)has been used to study the effect of concentration on lubrication boundary and tribological properties[3].The concentration of ZDDP in LBOs plays a crucial role in formulation,which is a balance of many different aspects of performance.Lubricating formulation generally results from a molecular diffusion mechanism due to the relative motion of molecules.Molecular diffusion in a steady-state and nonequilibrium system is divided into molecular motion and interaction.Molecular motion,containing the electronic motion,molecular vibration,and molecular rotation,is complicated and multibody.

  12. Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long-Lian, E-mail: Longlian57@163.com [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Lu, Ling [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Pan, Ya-Juan; Ding, Chun-Guang [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Xu, Da-Yong [Department of Occupational Diseases Control and Prevention, Fengtai Center for Disease Control and Prevention, Beijing 100071 (China); Huang, Chuan-Feng; Pan, Xing-Fu [Institute for Occupational Health and Poison Control in China Center for Disease Prevention and Control, Beijing 100050 (China); Zheng, Wei, E-mail: wzheng@purdue.edu [School of Health Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2015-07-15

    Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu, Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.

  13. Effect of temperature on chronic toxicity of copper, zinc, and nickel to Daphnia magna.

    Science.gov (United States)

    Pereira, Cecília M S; Deruytter, David; Blust, Ronny; De Schamphelaere, Karel A C

    2017-07-01

    Few studies have considered the effect of temperature on the chronic sensitivity of Daphnia magna to other stressors. The present study investigated the effect of temperature on chronic metal toxicity and whether this effect differed among 4 different D. magna clones. Life table experiments were performed with copper, zinc, and nickel at 15 °C, 20 °C, and 25 °C. General linear modeling indicated that chronic Cu, Zn, and Ni toxicity to D. magna were all significantly affected by temperature. When averaged across clones, our results suggest that chronic metal toxicity to D. magna was higher at 15 °C than at 20 °C, which is the temperature used in standard toxicity tests. At 15 °C, the 21-d median effect concentrations (EC50s) of Cu, Zn, and Ni were 1.4 times, 1.1 times, and 1.3 times lower than at 20 °C, respectively. At 25 °C, chronic Cu and Zn toxicity did not change in comparison with 20 °C, but chronic Ni toxicity was lower (21-d EC50 of nickel at 25 °C was 1.6 times higher than at 20 °C). The same trends were observed for Cu and Ni when the 21-d 10% and 20% effect concentrations were considered as the effect estimator, but not for Zn, which warns against extrapolating temperature effects on chemical toxicity across effect sizes. Overall, however, chronic metal toxicity was generally highest at the lowest temperature investigated (15 °C), which is in contrast with the usually observed higher acute metal toxicity at higher temperatures. Furthermore, the effect of temperature on chronic Ni toxicity depended significantly on the clone. This warns against extrapolating results about effect of temperature on chemical toxicity from single clone studies to the population level. Environ Toxicol Chem 2017;36:1909-1916. © 2016 SETAC. © 2016 SETAC.

  14. Adsorption edge study about cadmium, copper, nickel and zinc adsorption by variable charge soils

    Science.gov (United States)

    Casagrande, J. C.; Mouta, E. R.; Soares, M. R.

    2009-04-01

    The improper discharge of industrial and urban residues and the inadvertent use of fertilizers and pesticides can result in soil and water pollution and improve the potential of trace metals to enter in the human food chain. Adsorption reactions occur at the solid/liquid interface and are the most important mechanisms for controlling the activity of metal ions in soil solution. In a complex system with amphoteric behavior, the comprehension of the mobility, availability and fate of pollutants in the soil system is crucial for the prediction of the environmental consequences and for development of prevention/remediation strategies. A comparative study of cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) adsorption by highly weathered soils was carried out. Surface (0-0.2m) and subsoil (B horizon) samples were taken from a Rhodic Kandiudalf (RH), an Anionic "Xanthic" Acrudox (XA) and an Anionic "Rhodic" Acrudox (RA), located in brazilian humid tropical area. As the pH and the ionic strength are important environmental factors influencing the solution chemistry of heavy metals in variable charge systems, adsorption envelopes, in a batch adsorption experiment, were elaborated by reacting, for 24 h, soil samples with individual 0.01, 0.1 and 1.0 mol L-1 Ca(NO3)2 aqueous solutions containing nitrate salts of the adsorptive heavy metal (Cd, Cu, Ni and Zn) at the initial concentration of 5 mg L-1, with an increasing pH value from 3.0 to 8.0. pH50-100%, the difference between the pH of 100 and 50 percent metal adsorption was determined. A sharp increase of adsorption density (adsorption edge) was observed within a very narrow pH range, usually less than two pH units. Commonly, the relative affinity of a soil for a metal cation increases with the tendency of the cation to form inner-sphere surface complexes. This may be caused by differences in extent of hydrolysis of Cu ions and in affinity of adsorption sites for Cu. In general, subsurface samples showed low pH50

  15. Intense pulsed light annealing of copper zinc tin sulfide nanocrystal coatings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Bryce A.; Smeaton, Michelle A.; Holgate, Collin S.; Trejo, Nancy D.; Francis, Lorraine F., E-mail: francis@umn.edu; Aydil, Eray S., E-mail: aydil@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States)

    2016-09-15

    A promising method for forming the absorber layer in copper zinc tin sulfide [Cu{sub 2}ZnSnS{sub 4} (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm{sup 2}) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linear crack densities, 0.01 and 0.2 μm{sup −1}, depending on the flash intensity and total number of flashes. Low density cracking (0.01 μm{sup −1}, ∼1 crack per 100 μm) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur

  16. Removal of Copper(II and Zinc(II Ions From Aqueous Solution by Chemical Treatment of Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Eleonora Sočo

    2015-12-01

    Full Text Available The aim of this study was to investigate the chemical modifications of coal fly ash (CFA treated with HNO3 or ammonium acetate (AcNH4 or NaOH or sodium diethyldithiocarbamate (NaDDTC as an adsorbent for the removal of copper(II and zinc(II ions from aqueous solution. The morphology of fly ash grains before and after modification was examined via X-ray diffraction (XRD and images of scanning electron microscope (SEM. Adsorption of copper(II and zinc(II ions was conducted under batch process at different duration, concentrations and temperature of the suspension. Equilibrium experiments shows that the selectivity of CFA-NaOH nanoparticles towards Cu(II ions is greater than that of Zn(II ions, which is related to their hydrated ionic radius and first hydrolysis equilibrium constant. The adsorption isotherms were described by Langmuir and Freundlich models. Kinetic data revealed that the adsorption fits well by the pseudo-second-order rate model with high regression coefficients. Thermodynamic parameters suggested that the immobilization Cu(II and Zn(II ions onto CFA-NaOH is a spontaneous process. Results demonstrated that the treating coal fly ash with alkaline solution was a promising way to enhance Cu(II and Zn(II ions adsorption.

  17. Concentration of copper, iron, zinc, cadmium, lead, and nickel in boar semen and relation to the spermatozoa quality.

    Science.gov (United States)

    Massányi, Peter; Trandzík, Jozef; Nad, Pavol; Koréneková, Beáta; Skalická, Magdaléna; Toman, Robert; Lukác, Norbert; Strapák, Peter; Halo, Marko; Turcan, Ján

    2003-01-01

    The concentration of copper, iron, zinc, cadmium, lead, and nickel as well as its relation to spermatozoa quality was investigated. The semen samples were analyzed by atomic absorption spectrophotometry (AAS). The concentration of copper in boar semen was 1.64 +/- 0.28 mg kg(-1) and of iron 16.14 +/- 10.35 mg kg(-1). The concentration of zinc in boar semen reached an average value of 171.74 +/- 64.72 mg kg(-1) and the level of cadmium reached 0.01-0.16 mg kg(-1) with the average value of 0.05 mg kg(-1). The analysis of lead showed that the concentration of this element in boar semen was 0.02 +/- 0.03 mg kg(-1) and the average level of nickel was 0.06 +/- 0.08 mg kg(-1). The total percentage of pathological spermatozoa was 9.82 +/- 1.47%. Detail analysis determined 3.18% of separated flagellum, 2.26% knob twisted flagellum, 0.88% flagellum torso, 0.85% flagellum ball, 0.42% broken flagellum, 0.23% retention of the cytoplasmic drop, 0.14% small heads, 0.03% large heads, and 1.83% forms other of pathological changes. Correlation analysis showed significant (p spermatozoa (r = 0.73) was determined.

  18. The analysis of lead, cadmium, zinc, copper and nickel content in human bones from the upper Silesian industrial district.

    Science.gov (United States)

    Baranowska, I; Czernicki, K; Aleksandrowicz, R

    1995-01-10

    The concentration of lead, cadmium, zinc, copper and nickel in autopsy samples of bones from adults living in the Upper Silesian industrial district (Poland)--an ecological disaster region--was determined by atomic absorption spectrometry (flame and flameless GF AAS). Lead concentrations ranged from 20 micrograms/g to 200 micrograms/g bone wet weight, cadmium from 0.4 microgram/g to 1.5 micrograms/g bone wet weight. About one-fourth of the bones examined from Silesia, contained lead in the range from 100 micrograms/g to 200 micrograms/g. The were no significant differences in zinc, copper and nickel concentration between the control groups. The samples were mineralized in a microwave digestion system. To avoid anomalous results caused by the influence of the matrix Ca3 (PO4)2--the procedure of lead determination was carried out at a temperature of 2000 degrees C, the cadmium determination at a temperature of about 1200 degrees C.

  19. Investigation of the ablation of zinc oxide thin films on copper-indium-selenide layers by ps laser pulses

    Science.gov (United States)

    Heise, Gerhard; Dickmann, Marcel; Domke, Matthias; Heiss, Andreas; Kuznicki, Thomas; Palm, Jörg; Richter, Isabel; Vogt, Helmut; Huber, Heinz P.

    2011-07-01

    The selective laser structuring of zinc oxide thin films, which serve as the transparent negative electrodes of copper-indium-selenide (CIS) thin film solar cells, is of great common interest as it can replace the mechanical scribing of the so-called pattern 3 (P3) process step for the monolithic serial interconnection of these cells. We present an investigation of the single-pulse ablation behavior of zinc oxide thin films on glass substrates and on CIS layers and of trench scribing with 10-ps laser pulses at 1064 nm and at 532 nm. We show that the ablation behavior strongly depends on the properties of the underling substrate and that the energy required to ablate a specific volume using induced laser processes (often referred to as `lift off') is considerably reduced compared to the direct ablation of zinc oxide. With laser powers below 2 W at a wavelength of 1064 nm process speeds of 6 m/s for the P3 process have been achieved.

  20. The Effect of Salinity on the Release of Copper (Cu, Lead (Pb And Zinc (Zn from Tailing

    Directory of Open Access Journals (Sweden)

    Apriani Sulu Parubak

    2010-06-01

    Full Text Available The effects of salinity on the release of copper (Cu, lead (Pb and zinc (Zn in tailing sediment have been studied by stripping voltammetry. The purpose of the research is to know the effect of salinity on the release of metals with certain pH, conductivity and variety of metals. Simultaneous determination of copper, lead and zinc in tailing was done by Differential Pulse Anodic Stripping Voltammetry (DPASV onto hanging mercury drop electrode (HMDE and nitric acid 65% as support electrolyte. The limit of detection for this method 0.60 µg/L, 0.150 µg/L and 0.238 µg/L for copper, lead and iMc respectively. The stripping solution of 300/00 salinity with pH= 7.85, conductivity= 46.62 mS/cm gives the amounts of released metals as follows :14.867 µg/L Cu, 0.976 µg/L Pb and 6.224 µg/L Zn. These results are higher as compared with the results from 15 0/00 salinity with pH= 7.66, conductivity= 23.22 mS/cm that give released metals of Cu= 7.988 µg/L, Pb= 0.311 µg/L and Zn= 4.699 µg/L. the results from ANOVA suggest that this is due to different in salinity of the solution. It also found that the conductivity does not give any effect. It can be concluded that the higher salinity will that give higher concentration or released metals.

  1. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism.

    Science.gov (United States)

    Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J

    2017-02-01

    Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Synthesis and characterisation of Copper Zinc Tin Sulphide (CZTS) compound for absorber material in solar-cells

    Science.gov (United States)

    Kheraj, Vipul; Patel, K. K.; Patel, S. J.; Shah, D. V.

    2013-01-01

    The development of thin-film semiconductor compounds, such as Copper Indium Gallium Selenide (CIGS), has caused remarkable progress in the field of thin-film photovoltaics. However, the scarcity and the increasing prices of indium impose the hunt for alternative materials. The Copper Zinc Tin Sulphide (CZTS) is one of the promising emerging materials with Kesterite-type crystal structure and favourable material properties like high absorption co-efficient and direct band-gap. Moreover, all the constituent elements of CZTS are non-toxic and aplenty on the earth-crust, making it a potential candidate for the thin-film photovoltaics. Here we report the synthesis of CZTS powder from its constituent elements, viz. copper, zinc, tin and sulphur, in an evacuated Quartz ampoule at 1030 K temperature. The sulphur content in the raw mixture in the ampoule was varied and optimised in order to attain the desired atomic stoichiometry of the compound. The synthesised powder was characterised by X-Ray diffraction technique (XRD), Raman Scattering Spectroscopy, Energy Dispersive Analysis of X-Ray (EDAX) and UV-Visible Absorption Spectra. The XRD Patterns of the synthesised compound show the preferred orientation of (112), (220) and (312) planes, confirming the Kesterite structure of CZTS. The chemical composition of the powder was analysed by EDAX and shows good atomic stoichiometry of the constituent elements in the CZTS compound. The UV-Vis absorption spectra confirm the direct band-gap of about 1.45 eV, which is quite close to the optimum value for the semiconductor material as an absorber in solar-cells.

  3. Copper metabolism and its interactions with dietary iron, zinc, tin and selenium in rats.

    NARCIS (Netherlands)

    Yu, S.

    1993-01-01

    This thesis describes various studies on copper metabolism and its interactions with selected dietary trace elements in rats. The rats were fed purified diets throughout. High intakes of iron or tin reduced copper concentrations in plasma, liver and kidneys. The dietary treatments also reduced bilia

  4. Effect of Nitrogen and Sulfur Oxides on Copper and Zinc Corrosion: An Experiment for Teaching of Corrosion [Efeito dos Óxidos de Nitrogênio e de Enxofre na Corrosão de Cobre e Zinco: Um Experimento para o Ensino da Corrosão

    OpenAIRE

    Ednilson L. S. Vaz; Eduard o N. Codaro; Heloisa A. Acciari

    2013-01-01

    This paper proposes a didactic experience on the simulation of theatmospheric corrosion of copper and zinc due to the presence of sulfur and nitrogen oxides. Quantitative parameters of corrosion such as gain and loss of mass were determined to assess the variation of the layer thickness of the metal and of the corrosion products. This proposal aims a better understanding of some basic aspects of acid rain formation using fundamental concepts of chemistry such as the reactivity of gases.

  5. Copper Chaperone for Cu/Zn Superoxide Dismutase is a sensitive biomarker of mild copper deficiency induced by moderately high intakes of zinc

    Directory of Open Access Journals (Sweden)

    L'Abbé Mary R

    2005-11-01

    Full Text Available Abstract Background Small increases in zinc (Zn consumption above recommended amounts have been shown to reduce copper (Cu status in experimental animals and humans. Recently, we have reported that copper chaperone for Cu/Zn superoxide dismutase (CCS protein level is increased in tissues of overtly Cu-deficient rats and proposed CCS as a novel biomarker of Cu status. Methods Weanling male Wistar rats were fed one of four diets normal in Cu and containing normal (30 mg Zn/kg diet or moderately high (60, 120 or 240 mg Zn/kg diet amounts of Zn for 5 weeks. To begin to examine the clinical relevance of CCS, we compared the sensitivity of CCS to mild Cu deficiency, induced by moderately high intakes of Zn, with conventional indices of Cu status. Results Liver and erythrocyte CCS expression was significantly (P P Conclusion Collectively, these data show that CCS is a sensitive measure of Zn-induced mild Cu deficiency and demonstrate a dose-dependent biphasic response for reduced Cu status by moderately high intakes of Zn.

  6. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy.

    Science.gov (United States)

    Ju, Shaohua; Zhang, Yifei; Zhang, Yi; Xue, Peiyi; Wang, Yihui

    2011-08-30

    A hydrometallurgical process for treating the hazardous jarosite residue from zinc hydrometallurgy was proposed, for not only detoxifying the residue, but also recovering the contained valuable metal components. The jarosite was initially activated and decomposed by sintering at 650°C for 1h. The sintered residue was leached in 6mol L(-1) aqueous NH(4)Cl solution at 105°C, followed by filtration. The leaching extraction of Zn, Pb, Cu, Cd and Ag are more than 95%. During reduction with Zn powder, more than 93% of Pb, Cu, Ag and Cd can be simultaneously recovered. Then the NH(4)Cl leaching residue were leached again in 30wt% aqueous NaOH solution for 1h at 160°C, and about 94% of As and 73% of Si were removed from the residue. The final residue was almost completely detoxified, and contains about 55wt% Fe, which can be used as an iron concentration.

  7. Serum levels of zinc, copper, iron, cobalt, magnesium, and selenium elements in children diagnosed with Giardia intestinalis and Enterobiosis vermicularis in Hatay, Turkey.

    Science.gov (United States)

    Culha, Gülnaz; Sangün, Mustafa Kemal

    2007-07-01

    The intestinal parasites are noted to be an important health problem in Turkey as similarly reported in the globe. The aim of this study was to investigate the changes in total content of essential elements, namely, zinc, iron, copper, cobalt, magnesium, and selenium, in children infected with intestinal parasites aged between 6 and 12 years inhabiting in Hatay Province, Turkey. These essential elements were measured in the children/patient who was positive for intestinal parasites, Giardia intestinalis and Enterobius vermicularis. Scores were obtained from the positive study group (SG), and their age matched the healthy children control group (CG). Serological levels of zinc, iron, copper, cobalt, magnesium, and selenium were analyzed by Varian Liberty Series II inductively coupled plasma atomic emission spectrometer (ICP-AES). The mean magnesium concentrations were found to be statistically different at 95% confidence interval level between study groups. As a result of this study, selenium was found to be uncorrelated with all other elements examined; whereas, copper was observed to have statistically significant correlations with cobalt, magnesium, and zinc. In addition, cobalt-magnesium, cobalt-zinc, and magnesium-zinc metal pairs were found to have statistically significant correlations based on study findings.

  8. Research on Mineral Processing Process for Copper-Lead-Zinc Mine%某铜铅锌矿选矿工艺研究

    Institute of Scientific and Technical Information of China (English)

    熊锋

    2015-01-01

    青海某铜铅锌矿的矿石类型为原生硫化矿,针对原矿的物相分析及工艺矿物学研究,研究了一种比较适合该矿矿石的选矿工艺流程,最终可获得含锌54.10%、含铜0.39%、含铅0.24%的锌精矿,其锌回收率为90.90%,锌精矿含银36.1 g/t,回收率4.26%;得到含铜25.27%,含铅5.88%,含锌5.91%的铜精矿,铜的最终回收率80.48%,铜精矿中含银842 g/t;得到含铅37.78%,含铜1.60%,含锌8.35%的铅精矿,铅的最终回收率53.55%,铅精矿中含银3 880 g/t.%Ore type of a Qinghai copper-lead-zinc mine is primary sulfide ore, according to phase analysis of ROM ore and process mineralogy research, mineral processing process flow suitable for the type of ore is researched, zinc concentrate (including 54.10% zinc, 0.39% copper and 0.24% lead) will be obtained, in which zinc recovery of 90.90%, 36.1 g/t silver content in zinc concentrate, recovery of 4.26%;copper concentrate (including 25.27%copper, 5.88%lead and 5.91%zinc) will be obtained, in which copper recovery of 80.48%, 842 g/t silver content in copper concentrate; lead concentrate (including 37.78% lead, 1.60% copper, 8.35%zinc) will be obtained, in which lead recovery of 53.55%, 3 880 g/t silver in lead concentrate.

  9. [Zinc].

    Science.gov (United States)

    Couinaud, C

    1984-10-01

    Zinc is indispensable for life from bacteria to man. As a trace element it is included in numerous enzymes or serves as their activator (more than 80 zinc metallo-enzymes). It is necessary for nucleic acid and protein synthesis, the formation of sulphated molecules (insulin, growth hormone, keratin, immunoglobulins), and the functioning of carbonic anhydrase, aldolases, many dehydrogenases (including alcohol-dehydrogenase, retinal reductase indispensable for retinal rod function), alkaline phosphatase, T cells and superoxide dismutase. Its lack provokes distinctive signs: anorexia, diarrhea, taste, smell and vision disorders, skin lesions, delayed healing, growth retardation, delayed appearance of sexual characteristics, diminished resistance to infection, and it may be the cause of congenital malformations. Assay is now simplified by atomic absorption spectrophotometry in blood or hair. There is a latent lack prior to any disease because of the vices of modern eating habits, and this increases during stress, infections or tissue healing processes. Its lack is accentuated during long-term parenteral feeding or chronic gastrointestinal affections. Correction is as simple as it is innocuous, and zinc supplements should be given more routinely during surgical procedures.

  10. Uptake of lead, zinc, cadmium, and copper by the pulmonate mollusc, Helix aspersa Muller, and its relevance to the monitoring of heavy metal contamination of the environment

    Energy Technology Data Exchange (ETDEWEB)

    Coughtrey, P.J.; Martin, M.H.

    1977-01-13

    The occurrence of lead, zinc, cadmium, and copper in individuals of Helix aspersa from two sites of varying degrees of contamination was studied. Zinc, cadmium, and copper were shown to increase in a linear fashion with animal weight. The rate of uptake for zinc and cadmium in particular was significantly greater at the more contaminated site. Statistical analysis of the data, using correlation and regression techniques, provided information on apparent intermetallic effects. It is concluded that because metal uptake and body weight show a positive linear relationship only the use of animals of similar weight and/or size can be used for monitoring purposes. Even then, different patterns of uptake into different organs and interactions between metal uptakes are such as to seriously question the use of Helix, and other molluscs, for monitoring purposes unless specific organs from comparably sized and/or aged animals are used.

  11. A P2X receptor from the tardigrade species Hypsibius dujardini with fast kinetics and sensitivity to zinc and copper.

    Science.gov (United States)

    Bavan, Selvan; Straub, Volko A; Blaxter, Mark L; Ennion, Steven J

    2009-01-20

    Orthologs of the vertebrate ATP gated P2X channels have been identified in Dictyostelium and green algae, demonstrating that the emergence of ionotropic purinergic signalling was an early event in eukaryotic evolution. However, the genomes of a number of animals including Drosophila melanogaster and Caenorhabditis elegans, both members of the Ecdysozoa superphylum, lack P2X-like proteins, whilst other species such as the flatworm Schistosoma mansoni have P2X proteins making it unclear as to what stages in evolution P2X receptors were lost. Here we describe the functional characterisation of a P2X receptor (HdP2X) from the tardigrade Hypsibius dujardini demonstrating that purinergic signalling is preserved in some ecdysozoa. ATP (EC50 approximately 44.5 microM) evoked transient inward currents in HdP2X with millisecond rates of activation and desensitisation. HdP2X is antagonised by pyridoxal-phosphate-6-azophenyl-2',4' disulfonic acid (IC50 15.0 microM) and suramin (IC50 22.6 microM) and zinc and copper inhibit ATP-evoked currents with IC50 values of 62.8 microM and 19.9 microM respectively. Site-directed mutagenesis showed that unlike vertebrate P2X receptors, extracellular histidines do not play a major role in coordinating metal binding in HdP2X. However, H306 was identified as playing a minor role in the actions of copper but not zinc. Ivermectin potentiated responses to ATP with no effect on the rates of current activation or decay. The presence of a P2X receptor in a tardigrade species suggests that both nematodes and arthropods lost their P2X genes independently, as both traditional and molecular phylogenies place the divergence between Nematoda and Arthropoda before their divergence from Tardigrada. The phylogenetic analysis performed in our study also clearly demonstrates that the emergence of the family of seven P2X channels in human and other mammalian species was a relatively recent evolutionary event that occurred subsequent to the split between

  12. A P2X receptor from the tardigrade species Hypsibius dujardini with fast kinetics and sensitivity to zinc and copper

    Directory of Open Access Journals (Sweden)

    Blaxter Mark L

    2009-01-01

    Full Text Available Abstract Background Orthologs of the vertebrate ATP gated P2X channels have been identified in Dictyostelium and green algae, demonstrating that the emergence of ionotropic purinergic signalling was an early event in eukaryotic evolution. However, the genomes of a number of animals including Drosophila melanogaster and Caenorhabditis elegans, both members of the Ecdysozoa superphylum, lack P2X-like proteins, whilst other species such as the flatworm Schistosoma mansoni have P2X proteins making it unclear as to what stages in evolution P2X receptors were lost. Here we describe the functional characterisation of a P2X receptor (HdP2X from the tardigrade Hypsibius dujardini demonstrating that purinergic signalling is preserved in some ecdysozoa. Results ATP (EC50 ~44.5 μM evoked transient inward currents in HdP2X with millisecond rates of activation and desensitisation. HdP2X is antagonised by pyridoxal-phosphate-6-azophenyl-2',4' disulfonic acid (IC50 15.0 μM and suramin (IC50 22.6 μM and zinc and copper inhibit ATP-evoked currents with IC50 values of 62.8 μM and 19.9 μM respectively. Site-directed mutagenesis showed that unlike vertebrate P2X receptors, extracellular histidines do not play a major role in coordinating metal binding in HdP2X. However, H306 was identified as playing a minor role in the actions of copper but not zinc. Ivermectin potentiated responses to ATP with no effect on the rates of current activation or decay. Conclusion The presence of a P2X receptor in a tardigrade species suggests that both nematodes and arthropods lost their P2X genes independently, as both traditional and molecular phylogenies place the divergence between Nematoda and Arthropoda before their divergence from Tardigrada. The phylogenetic analysis performed in our study also clearly demonstrates that the emergence of the family of seven P2X channels in human and other mammalian species was a relatively recent evolutionary event that occurred subsequent

  13. Synthesis and DNA cleavage activities of mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes which linked with uracil.

    Science.gov (United States)

    Wang, Xiao-Yan; Zhang, Ji; Li, Kun; Jiang, Ning; Chen, Shan-Yong; Lin, Hong-Hui; Huang, Yu; Ma, Li-Jian; Yu, Xiao-Qi

    2006-10-01

    Mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes, which could attach to peptide nucleic acid (PNA), were synthesized as DNA cleavage agents. The structures of these new mononuclear complexes were identified by MS and (1)H NMR spectroscopy. The catalytic activities on DNA cleavage of these mononuclear complexes with different central metals were subsequently studied, which showed that copper complex was better catalyst in the DNA cleavage process than zinc and cobalt complexes. The effects of reaction time, concentration of complexes were also investigated. The results indicated that the copper(II) complexes could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) (Form I) under physiological conditions to produce selectively nicked DNA (Form II, no Form III produced) with high yields. The mechanism of the cleavage process was also studied.

  14. Evaluation of micronutrient (zinc, copper and iron levels in periodontitis patients with and without diabetes mellitus type 2: A biochemical study

    Directory of Open Access Journals (Sweden)

    Biju Thomas

    2013-01-01

    Full Text Available Context: Periodontal tissue destruction is caused by an inappropriate host response to microorganisms. Diabetes is a metabolic disease and most of its complications are due to hyperglycemia. Periodontitis is considered as its sixth complication. Micronutrients such as zinc, copper and iron are essential for human health. There is accumulating evidence that the metabolism of several trace elements is altered in diabetes mellitus and that these nutrients might have specific roles in the pathogenesis and progress of this disease and its complication. An association between micronutrients and periodontitis has also been suggested by preliminary studies. However, till date there is a lack of relevant clinical data. Aim: This study was designed to estimate and compare the serum levels of zinc, copper and iron in diabetes mellitus type 2 patients and healthy individuals with and without periodontitis. Setting and Design: Single centre case-control study. Subjects and Materials: This study included 150 subjects, 50 in each group. Group 1 comprised of 50 subject with diabetes mellitus type 2 and periodontitis. Group 2 comprised of 50 subjects with chronic periodontitis and Group 3 comprised of 50 control subjects. Atomic absorption spectrophotometry method was used to measure clinical level of zinc and copper in serum. Estimation of serum iron levels was done by bathophenanthroline method. Statistical analysis: The results obtained were tabulated and subjected to statistical analysis by analysis of variance and Tukey multiple comparison tests using statistical software SPSS version 17. Results: The results showed that the serum levels of zinc decreased and serum levels of iron and copper increased in diabetes patients with periodontitis compared to healthy individuals with and without periodontitis. Conclusion: Imbalance of Zinc, copper and iron levels in the serum can predispose an individual to the risk of developing periodontitis.

  15. Evaluation of micronutrient (zinc, copper and iron) levels in periodontitis patients with and without diabetes mellitus type 2: a biochemical study.

    Science.gov (United States)

    Thomas, Biju; Gautam, Anshuman; Prasad, B Rajendra; Kumari, Suchetha

    2013-01-01

    Periodontal tissue destruction is caused by an inappropriate host response to microorganisms. Diabetes is a metabolic disease and most of its complications are due to hyperglycemia. Periodontitis is considered as its sixth complication. Micronutrients such as zinc, copper and iron are essential for human health. There is accumulating evidence that the metabolism of several trace elements is altered in diabetes mellitus and that these nutrients might have specific roles in the pathogenesis and progress of this disease and its complication. An association between micronutrients and periodontitis has also been suggested by preliminary studies. However, till date there is a lack of relevant clinical data. This study was designed to estimate and compare the serum levels of zinc, copper and iron in diabetes mellitus type 2 patients and healthy individuals with and without periodontitis. Single centre case-control study. This study included 150 subjects, 50 in each group. Group 1 comprised of 50 subject with diabetes mellitus type 2 and periodontitis. Group 2 comprised of 50 subjects with chronic periodontitis and Group 3 comprised of 50 control subjects. Atomic absorption spectrophotometry method was used to measure clinical level of zinc and copper in serum. Estimation of serum iron levels was done by bathophenanthroline method. The results obtained were tabulated and subjected to statistical analysis by analysis of variance and Tukey multiple comparison tests using statistical software SPSS version 17. The results showed that the serum levels of zinc decreased and serum levels of iron and copper increased in diabetes patients with periodontitis compared to healthy individuals with and without periodontitis. Imbalance of Zinc, copper and iron levels in the serum can predispose an individual to the risk of developing periodontitis.

  16. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.

    Science.gov (United States)

    Paksi, Zoltán; Jancsó, Attila; Pacello, Francesca; Nagy, Nóra; Battistoni, Andrea; Gajda, Tamás

    2008-09-01

    The Cu,Zn superoxide dismutase (Cu,ZnSOD) isolated from Haemophilus ducreyi possesses a His-rich N-terminal metal binding domain, which has been previously proposed to play a copper(II) chaperoning role. To analyze the metal binding ability and selectivity of the histidine-rich domain we have carried out thermodynamic and solution structural analysis of the copper(II) and zinc(II) complexes of a peptide corresponding to the first 11 amino acids of the enzyme (H(2)N-HGDHMHNHDTK-OH, L). This peptide has highly versatile metal binding ability and provides one and three high affinity binding sites for zinc(II) and copper(II), respectively. In equimolar solutions the MHL complexes are dominant in the neutral pH-range with protonated lysine epsilon-amino group. As a consequence of its multidentate nature, L binds zinc and copper with extraordinary high affinity (K(D,Zn)=1.6x10(-9)M and K(D,Cu)=5.0x10(-12)M at pH 7.4) and appears as the strongest zinc(II) and copper(II) chelator between the His-rich peptides so far investigated. These K(D) values support the already proposed role of the N-terminal His-rich region of H. ducreyi Cu,ZnSOD in copper recruitment under metal starvation, and indicate a similar function in the zinc(II) uptake, too. The kinetics of copper(II) transfer from L to the active site of Cu-free N-deleted H. ducreyi Cu,ZnSOD showed significant pH and copper-to-peptide ratio dependence, indicating specific structural requirements during the metal ion transfer to the active site. Interestingly, the complex CuHL has significant superoxide dismutase like activity, which may suggest multifunctional role of the copper(II)-bound N-terminal His-rich domain of H. ducreyi Cu,ZnSOD.

  17. Studies on Zinc and Copper Ion in Relation to Wound Healing in ...

    African Journals Online (AJOL)

    olayemitoyin

    of both male and female goats could also be a factor for wound healing in the animals. Keywords: Wound ... and healing of wounds. The direct role of copper in facilitating angiogenesis .... well as activities of fibroblasts and skin immune cells.

  18. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions.

    Science.gov (United States)

    Jiang, Shasha; Huang, Longbin; Nguyen, Tuan A H; Ok, Yong Sik; Rudolph, Victor; Yang, Hong; Zhang, Dongke

    2016-01-01

    Biochar adsorption may lower concentrations of soluble metals in pore water of sulphidic Cu/Pb-Zn mine tailings. Unlike soil, high levels of salinity and soluble cations are present in tailing pore water, which may affect biochar adsorption of metals from solution. In the present study, removal of soluble copper (Cu) and zinc (Zn) ions by soft- (pine) and hard-wood (jarrah) biochars pyrolysed at high temperature (about 700 °C) was evaluated under typical ranges of pH and salinity conditions resembling those in pore water of sulphidic tailings, prior to their direct application into the tailings. Surface alkalinity, cation exchange capacity, and negative surface charge of biochars affected Cu and Zn adsorption capacities. Quantitative comparisons were provided by fitting the adsorption equilibrium data with either the homogeneous or heterogeneous surface adsorption models (i.e. Langmuir and Freundlich, respectively). Accordingly, the jarrah biochar showed higher Cu and Zn adsorption capacity (Qmax=4.39 and 2.31 mg/g, respectively) than the softwood pine biochar (Qmax=1.47 and 1.00 mg/g). Copper and Zn adsorption by the biochars was favoured by high pH conditions under which they carried more negative charges and Cu and Zn ions were predicted undergoing hydrolysis and polymerization. Within the tested range, salinity had relatively weak effects on the adsorption, which perhaps influenced the surface charge and induced competition for negative charged sites between Na(+) and exchangeable Ca(2+) and/or heavy metal ions. Large amounts of waste wood/timber at many mine sites present a cost-effective opportunity to produce biochars for remediation of sulphidic tailings and seepage water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Conformational changes of active site of copper zinc superoxide dismutase can be detected sensitively by electron-transfer reaction

    Institute of Scientific and Technical Information of China (English)

    舒占永

    1996-01-01

    The electron-transfer (ET) reaction between Fe(CN)64- and copper zinc superoxide dismutase (CuZn-SOD) occurs at the active site of the enzyme. The ET parameters which are sensitive to the denaturation have been used to determine the conformational changes of the active site induced by guanidine hydrochloride and thermal denaturation. The decreases of ET rates for all the denatured enzyme samples reflect the collapse of the active cavity of enzyme in the unfolding processes. The interesting changes of ET amplitude for the enzyme denatured at different pH values suggest that electrostatic interaction plays an important role in the conformational changes of active site. From the results of the kinetic analyses, it is concluded that the conformational changes of the active site are parallel with the inactivation.

  20. Thermodynamic study of copper sulphate and zinc sulphate in water and binary aqueous mixtures of propylene glycol

    Directory of Open Access Journals (Sweden)

    R. C. Thakur

    2015-03-01

    Full Text Available Partial molar volumes of copper sulphate and zinc sulphate have been determined in water and binary aqueous mixtures of propylene glycol (2,4,6 and 8% by weight of propylene glycol at 303.15 K with the help of density measurements. Effect of temperature on the partial molar volumes was also analysed for these salts in water and binary aqueous mixtures of propylene glycol. Results obtained have been analysed by Masson’s equation and the experimental values of slopes and partial molar volumes of these transition metals sulphates have been interpreted in terms of ion-ion or ion –solvent interactions. Limiting molar expansibilities ( have also been determined which is interpreted in terms of structure making or breaking capacities of transition metal sulphates. The transition metal sulphates have been found as structure promoter in water and binary aqueous mixture of propylene glycol.

  1. Hybrid transparent conductive electrodes with copper nanowires embedded in a zinc oxide matrix and protected by reduced graphene oxide platelets

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-02-01

    Transparent conductive electrodes (TCE) were fabricated by combining three emerging nano-materials: copper nanowires (CuNWs), zinc oxide (ZnO) nano-particulate thin films, and reduced graphene oxide (rGO) platelets. Whereas CuNWs are responsible for essentially all of the electrical conductivity of our thin-film TCEs, the ZnO matrix embeds and strengthens the CuNW network in its adhesion to the substrate, while the rGO platelets provide a protective overcoat for the composite electrode, thereby improving its stability in hot and humid environments. Our CuNW/ZnO/rGO hybrid electrodes deposited on glass substrates have low sheet resistance (Rs ˜ 20 Ω/sq) and fairly high optical transmittance (T550 ˜ 79%). In addition, our hybrid TCEs are mechanically strong and able to withstand multiple scotch-tape peel tests. Finally, these TCEs can be fabricated on rigid glass as well as flexible plastic substrates.

  2. Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus.

    Science.gov (United States)

    Viktorínová, Alena; Toserová, Eva; Krizko, Marián; Duracková, Zdenka

    2009-10-01

    Diabetes mellitus (DM) is associated with the alterations in the metabolism of copper (Cu), zinc (Zn), and magnesium (Mg). The aim of the present study was to investigate plasma levels of these elements in patients with DM and in healthy subjects. Association between glycated hemoglobin and levels of metals was also evaluated. We studied 36 subjects with DM (type 1, 11; type 2, 25) and 34 healthy subjects matched for age, sex, and duration of diabetes. Plasma concentrations of Cu, Zn, and Mg were measured by atomic absorption spectrometry. An imbalance in the levels of studied metals was observed in both type 1 and type 2 DM. We found higher levels of Cu (P diabetic complications.

  3. Studies on the Interactions of Copper and Zinc Ions with β-Amyloid Peptides by a Surface Plasmon Resonance Biosensor

    Directory of Open Access Journals (Sweden)

    He Tian

    2012-09-01

    Full Text Available The aggregation of β-amyloid peptide (Aβ into fibrils plays an important role in the pathogenesis of Alzheimer’s disease (AD. Metal ions including copper and zinc are closely connected to the precipitation and toxicity of Aβ. In this study, a surface plasmon resonance (SPR biosensor was constructed to investigate the interactions between Aβ and metal ions. Aβ peptide was immobilized on the SPR chip surface through a preformed alkanethiol self-assembled monolayer (SAM. Our observations indicate that the immobilized Aβ undergoes a conformational change upon exposure to the metal ions. A difference in metal binding affinity between Aβ1–28 and Aβ1–42 was also detected. The results suggest that SPR is an effective method to characterize the interactions between Aβ and metal ions.

  4. Studies on the interactions of copper and zinc ions with β-amyloid peptides by a surface plasmon resonance biosensor.

    Science.gov (United States)

    Yao, Fujun; Zhang, Ruiping; Tian, He; Li, Xiangjun

    2012-01-01

    The aggregation of β-amyloid peptide (Aβ) into fibrils plays an important role in the pathogenesis of Alzheimer's disease (AD). Metal ions including copper and zinc are closely connected to the precipitation and toxicity of Aβ. In this study, a surface plasmon resonance (SPR) biosensor was constructed to investigate the interactions between Aβ and metal ions. Aβ peptide was immobilized on the SPR chip surface through a preformed alkanethiol self-assembled monolayer (SAM). Our observations indicate that the immobilized Aβ undergoes a conformational change upon exposure to the metal ions. A difference in metal binding affinity between Aβ(1-28) and Aβ(1-42) was also detected. The results suggest that SPR is an effective method to characterize the interactions between Aβ and metal ions.

  5. Zinc reduces copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown aquatic duckweed Spirodela polyrhiza L.

    Science.gov (United States)

    Upadhyay, RishiKesh; Panda, Sanjib Kumar

    2010-03-15

    The mechanism by which Zn promotes Cu toxicity in duckweed Spirodela polyrhiza L. was investigated in order to understand the possible interaction between these two metals. Cu uptake was gradually declined by Zn. The induction of oxidative stress is shown by increased levels of lipid peroxidation, total peroxide, superoxide anion and lipoxygenase activity. Zn interaction reduced the oxidative damage. However, only Zn-treated plants did not show alteration in the above observed parameters. The activities of antioxidant enzymes catalase, ascorbate peroxidase and peroxidase showed a very high increase in activity in Cu+Zn treatment as compared to Cu or Zn alone-treated plants. Thus, this study demonstrates that zinc reversed the effect of copper, combating against Cu induced oxidative damage and improvement of duckweed's growth and toxicity under natural condition.

  6. Evaluation of the Content of Lead, Cadmium, Mercury, Arsenic, Tin, Copper and Zinc during the Production Process Flow of Tomato Broth

    Directory of Open Access Journals (Sweden)

    Corina Andrei

    2013-11-01

    Full Text Available Heavy metals are among the largest contaminants of food products. Once metals are present in vegetables, their concentrations are rarely modified by industrial processing techniques, although in some cases washing may decrease the metal content. The main objective of this study was to quantify the effect of industrial processing on the content of lead, cadmium, mercury, arsenic, tin, copper and zinc in tomatoes and products resulting on flow technology of tomato broth. For the determination of essential elements and/or potentially toxic was use atomic absorption spectrometry. The analytical results for quantitative evaluation the concentrations of the investigated elements on the samples of tomatoes taken from the technological process of the production of tomato broth indicated the presence of Pb, Cd, Cu and Zn but with a level of concentration that significantly decreased in the finished product and the absence of metals Hg and As in all investigated samples. Effect of industrial processing on the content of tin in tomato samples analyzed was characterized by fluctuations in the residual content that led to a significant increase in concentration of 0.100 ± 0.041 mg kg-1 (tomatoes - unprocessed to 0.200 ± 0.041 mg kg-1 (tomato broth.

  7. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes.

  8. The Role of Blood Lead, Cadmium, Zinc and Copper in Development and Severity of Acne Vulgaris in a Nigerian Population.

    Science.gov (United States)

    Ikaraoha, C I; Mbadiwe, N C; Anyanwu, C J; Odekhian, J; Nwadike, C N; Amah, H C

    2017-04-01

    Acne vulgaris is a very common skin disorder affecting human beings. There is a paucity of report on the role of heavy metals-lead (Pb) and cadmium (Cd)-globally, and trace metals-zinc (Zn) and copper (Cd)-particularly in Nigeria in the development/severity of acne vulgaris. This study is aimed to determine the blood levels of some heavy metals-cadmium and lead-and trace metals-zinc and copper-in acne vulgaris sufferers in a Nigerian population. Venous blood samples were collected from a total number of 90 non-obese female subjects consisting of 30 mild, 30 moderate and 30 severe acne vulgaris sufferers for blood Cd, Pb, Cu and Zn determination. They were age-matched with 60 females without acne vulgaris who served as the control subjects. Acne sufferers had significantly higher blood Cd and Pb (P = 0.0143 and P = 0.0001 respectively) and non-significantly different blood levels of Cu and Zn (P = 0.910 and P = 0.2140 respectively) compared to controls. There were significant progressive increases in blood levels of Cd and Pb (P = 0.0330 and P = 0.0001 respectively) and non-significant differences in the mean blood level of Cu and Zn (P = 0.1821 and P = 0.2728 respectively) from mild to moderate and severe acne vulgaris sufferers. Increases in blood Cd and Pb may play critical roles in the pathogenesis/severity of acne vulgaris, while Cu and Zn seem to play less significant roles in the development of this disorder in this environment.

  9. Survey of Serum Zinc and Copper Levels in the Patients with Brucellosis and Comparing with Healthy Persons

    Directory of Open Access Journals (Sweden)

    P Eini

    2014-08-01

    Full Text Available Introduction: Brucellosis is a zoonotic infection. Metabolism of trace elements such as zinc and copper can influence the response of immunity system and can activate host 's immunochemical mechanisms against the organism. Therefore, this study aimed to determine changes in serum levels of Zn and Cu in patients with brucellosis in pre and post treatment compared with healthy persons. Methods: In this individual matched case-control study, 26 patients participated who were admitted to infectious unit of Farshchian Hospital with brucellosis. Moreover, 26 healthy individuals were included in the control group. 5mL of venous blood was taken from all cases in pre-treatment as well post-treatment. Then, the serum samples were diluted with deionized water, and Cu and Zn levels were measured by using Atomic Absorption Spectrophotometer. Results: In this study, 26 patients with brucellosis were enrolled, who were 13 men (50% and 13 women (50%. No significant difference was observed between the patients and the control group in regard with their age and sex. Serum level of Cu in patients with brucellosis was found to be 100.31µg/dl and 92.81µg/dl, respectively before and after the treatment (P=0.495. Serum level of Cu in healthy individuals was reported to be 97.96µg/dl. In addition, serum level of Zn in the patients and controls was 93 µg/dl and 96.38 µg/dl, respectively (P= 0.625. Patients' Zn Serum level was found to be 90.27µg/dl after the treatment. Conclusion: In this study, no significant changes were observed in serum levels of copper and zinc in the patients with brucellosis in comparison with the control group. Besides, no significant changes were reported in serum levels of these elements in the patients in the end of treatment.

  10. Correlation of erythrocyte and plasma levels of zinc, copper, and iron with evidence of metastatic spread in cancer patients.

    Science.gov (United States)

    Gorodetsky, R; Fuks, Z; Sulkes, A; Ginsburg, H; Weshler, Z

    1985-02-15

    The level of plasma copper (Cu-Pl) and zinc (Zn-Pl) and the level of erythrocyte iron (Fe-RBC), copper (Cu-RBC), and zinc (Zn-RBC) were determined in the blood of 70 normal donors and 138 patients with various solid tumors by diagnostic x-ray spectrometry (DXS), a technique based on x-ray fluorescence spectrometry analysis. There were no significant changes in the mean values of Zn-Pl, Fe-RBC, and Cu-RBC in the patients when compared with those of normal donors. The mean level of Cu-Pl in the normal donors was 1.34 +/- 0.37 micrograms/ml; it was significantly increased in the patients, ranging between 1.47 +/- 0.34 micrograms/ml for patients without evidence of active cancer (NED) and 1.91 +/- 0.76 micrograms/ml for patients with hepatic metastases. The most significant change observed was an increase in the Zn-RBC found in the patients with clinical evidence of metastatic spread. Whereas the Zn-RBC level in the normal donors was 9.85 +/- 1.47 micrograms/g wet weight, and not significantly elevated in the NED patients, it was elevated to values of 11.37 +/- 1.55 micrograms/g (P less than 0.004) for patients with soft tissue and hepatic metastases and was 12.34 +/- 1.65 micrograms/g (P less than 0.001) for patients with bone metastases. The data suggest a clear correlation between Zn-RBC and metastatic spread in nonlymphomatous human cancer.

  11. Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil.

    Science.gov (United States)

    Hong, J W; Park, J Y; Gadd, G M

    2010-06-01

    This study aimed to isolate and identify potential polycyclic aromatic hydrocarbon (PAH)-degrading and/or metal-tolerant fungi from PAH-contaminated and metal-contaminated soils. Pyrene-degrading fungi were isolated from contaminated soil and tested for metal (Cu, Zn and Pb) compound solubilization and metal accumulation. Three strains of Fusarium solani and one of Hypocrea lixii were able to degrade more than 60% of initial supplied pyrene (100 mg l(-1)) after 2 weeks. The isolates were grown on toxic metal (Cu, Pb and Zn)-containing media: all isolates accumulated Cu in their mycelia to values ranging from c. 5.9 to 10.4 mmol per kg dry weight biomass. The isolates were also able to accumulate Zn (c. 3.7-7.2 mmol per kg dry weight biomass) from zinc phosphate-amended media. None of the isolates accumulated Pb. These fungal isolates appear to show promise for use in bioremediation of pyrene or related xenobiotics and removal of copper and zinc from wastes contaminated singly or in combination with these substances. Microbial responses to mixed organic and inorganic pollution are seldom considered: this research highlights the abilities of certain fungal strains to interact with both xenobiotics and toxic metals and is relevant to other studies on natural attenuation and bioremediation of polluted sites.

  12. Effect of processing parameters on the electromagnetic radiation emission during plastic deformation and crack propagation in copper-zinc alloys

    Institute of Scientific and Technical Information of China (English)

    KUMAR Rajeev; MISRA Ashok

    2006-01-01

    This paper presents some investigations on the effect of processing parameters on the emission of electromagnetic radiation (EMR) during plastic deformation and crack propagation in copper-zinc alloys. Timing of the EMR emissions, maximum stress during crack instability, stress-intensity factor, elastic strain energy release rate, maximum EMR amplitude, RMS value of EMR amplitude, EMR frequency and electromagnetic energy release rate were analysed for the effect of rolling directions at different percentage of zinc content in Cu-Zn alloy specimens. The same parameters were also analysed for 68-32 Cu-Zn alloy specimens at different annealing temperatures and at different angles θ, to the rolling direction. EMR emissions are observed to be highly anisotropic in nature. At θ=45° to 60°, marked changes in mechanical and electromagnetic parameters were observed.Specimens annealed at 500 °C, just above the recrystallization temperature, and at 700 °C, when grain-size growth is rapid, EMR responses have been found to have well-defined patterns.

  13. Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents.

    Science.gov (United States)

    Machado, Manuela D; Soares, Eduardo V; Soares, Helena M V M

    2010-12-15

    The aim of this work was to seek an environmentally friendly process for recycling metals from biomass-sludges generated in the treatment of industrial wastewaters. This work proposes a hybrid process for selective recovery of copper, nickel and zinc from contaminated biomass of Saccharomyces cerevisiae, used in the bioremediation of electroplating effluents. The developed separation scheme comprised five consecutive steps: (1) incineration of the contaminated biomass; (2) microwave acid (HCl) digestion of the ashes; (3) recovery of copper from the acid solution by electrolysis at controlled potential; (4) recycle of nickel, as nickel hydroxide, by alcalinization of the previous solution at pH 14; (5) recovery of zinc, as zinc hydroxide, by adjusting the pH of the previous solution at 10. This integrated approach allowed recovering each metal with high yielder (>99% for all metals) and purity (99.9%, 92% and 99.4% for copper, nickel and zinc, respectively). The purity of the metals recovered allows selling them in the market or being recycled in the electroplating process without waste generation.

  14. New dinuclear copper(II) and zinc(II) complexes for the investigation of sugar-metal ion interactions.

    Science.gov (United States)

    Bera, Manindranath; Patra, Ayan

    2011-10-18

    We have studied the binding interactions of biologically important carbohydrates (D-glucose, D-xylose and D-mannose) with the newly synthesized five-coordinate dinuclear copper(II) complex, [Cu(2)(hpnbpda)(μ-OAc)] (1) and zinc(II) complex, [Zn(2)(hpnbpda)(μ-OAc)] (2) [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in aqueous alkaline solution. The complexes 1 and 2 are fully characterized both in solid and solution using different analytical techniques. A geometrical optimization was made of the ligand H(3)hpnbpda and the complexes 1 and 2 by molecular mechanics (MM+) method in order to establish the stable conformations. All carbohydrates bind to the metal complexes in a 1:1 molar ratio. The binding events have been investigated by a combined approach of FTIR, UV-vis and (13)C NMR spectroscopic techniques. UV-vis spectra indicate a significant blue shift of the absorption maximum of complex 1 during carbohydrate coordination highlighting the sugar binding ability of complex 1. The apparent binding constants of the substrate-bound copper(II) complexes have been determined from the UV-vis titration experiments. The binding ability and mode of binding of these sugar substrates with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for carbon atoms C1, C2, and C3 of sugar substrates.

  15. Detoxication of metals by marine bivalves: an ultrastructural study of the compartmentation of copper and zinc in the oyster ostrea edulis

    Energy Technology Data Exchange (ETDEWEB)

    George, S.G.; Pirie, B.J.S.; Cheyne, A.R.; Coombs, T.L.; Grant, P.T.

    1978-01-01

    An investigation of the mechanisms of detoxication of copper and zinc by the oyster Ostrea edulis (L) has been carried out using naturally occurring ''green-sick'' (contamination by copper) and unpolluted oysters. Electron microprobe X-ray analysis of tissues in the electron microscope gives direct evidence for the structural compartmentation of copper and zinc in separate, specific, granular amoebocytes. The metals are immobilized in membrane-limited vesicles as different chemical compounds, copper being associated with sulphur and zinc with phosphorus. Chemical analyses of serum and tissues of normal and ''green-sick'' oysters indicate that (a) Cu and Zn are accumulated independently, (b) the Cu and Zn in the serum, while higher than in the surrounding sea water, are maintained at a 10-fold smaller level than the tissues, (c) toxicity is reduced by active uptake from the serum into granular amoebocytes, where it is further reduced by compartmentation in membrane-limited vesicles. It is calculated that the individual cell types may contain as much as 13,000 ppm Cu and 25,000 ppm Zn.

  16. Treatment with D-penicillamine or zinc sulphate affects copper metabolism and improves but not normalizes antioxidant capacity parameters in Wilson disease.

    Science.gov (United States)

    Gromadzka, Grażyna; Grażyna, Gromadzka; Karpińska, Agata; Agata, Karpińska; Przybyłkowski, Adam; Adam, Przybyłkowski; Litwin, Tomasz; Tomasz, Litwin; Wierzchowska-Ciok, Agata; Agata, Wierzchowska-Ciok; Dzieżyc, Karolina; Karolina, Dzieżyc; Chabik, Grzegorz; Grzegorz, Chabik; Członkowska, Anna; Anna, Członkowska

    2014-02-01

    Copper accumulation in tissues due to a biallelic pathogenic mutation of the gene: ATP7B results in a clinical phenotype known as Wilson disease (WD). Aberrations in copper homeostasis can create favourable conditions for superoxide-yielding redox cycling and oxidative tissue damage. Drugs used in WD treatment aim to remove accumulated copper and normalise the free copper concentration in the blood. In the current study the effect of decoppering treatment on copper metabolism and systemic antioxidant capacity parameters was analyzed. Treatment naïve WD patients (TNWD) (n = 33), those treated with anti-copper drugs (TWD) (n = 99), and healthy controls (n = 99) were studied. Both TNWD and TWD patients characterised with decreased copper metabolism parameters, as well as decreased total antioxidant potential (AOP), glutathione (GSH) level, activity of catalase, glutathione peroxidase (GPx), and S-transferase glutathione, compared to controls. TWD patients had significantly lower copper metabolism parameters, higher total AOP and higher levels of GSH than TWD individuals; however, no difference was observed between these two patient groups with respect to the rest of the antioxidant capacity parameters. Patients who had undergone treatment with D-penicillamine or zinc sulphate did not differ with respect to copper metabolism or antioxidant capacity parameters, with the exception of GPx that was lower in D-penicillamine treated individuals. These data suggest that anti-copper treatment affects copper metabolism as well as improves, but does not normalize, natural antioxidant capacity in patients with WD. We propose to undertake studies aimed to evaluate the usefulness of antioxidants as well as selenium as a supplemental therapy in WD.

  17. Application of a topical biomimetic electrical signaling technology to photo-aging: a randomized, double-blind, placebo-controlled trial of a galvanic zinc-copper complex.

    Science.gov (United States)

    Chantalat, Jeannette; Bruning, Elizabeth; Sun, Ying; Liu, Jue-Chen

    2012-01-01

    The first signs of facial skin photo-aging often occur in the skin of the periorbital area and include sagging, loss of firmness and definition, and sallowness. Epidermal wounds have been shown to alter the trans-epithelial electrical potential creating an electric signal that directs cell migration in epithelial wound healing; this electric field declines sharply with age. A topical galvanic zinc-copper complex, which couples elemental zinc and copper to create a biomimetic electric field, has demonstrated anti-inflammatory activity and extracellular matrix improvement in vitro, including collagen and elastin production. To evaluate the efficacy and tolerability of a galvanic zinc-copper complex on photo-aging parameters in a randomized, double-blind, placebo-controlled clinical trial. In this eight-week study, women (40-65 years) with mild to moderate photo-aging were randomized to use placebo or 1 of 3 galvanic zinc-copper complex compositions (gel and activating moisturizer). Efficacy evaluations included clinical grading, specialized clinical imaging, and subject self-assessments performed at baseline, 15-30 minutes after product application and after 1, 2, 4, and 8 weeks. Tolerability was based on adverse events and clinical grading of irritation. Significance was set at P?0.05 versus baseline and between treatment groups. The study was completed by 124 women. Compositions containing the galvanic zinc-copper complex showed statistically significant clinical improvements versus placebo and baseline rapidly (15-30 min) after application and through week 8. Clinical grading showed significant improvement versus placebo in skin radiance and under-eye dark circles 15-30 minutes after first application with continued improvement through week 8, and in overall photo-damage, fine lines, lifted appearance of the eyes, and under-eye wrinkles starting after two weeks and continuing through week 8. Test compositions were well tolerated. This galvanic zinc-copper complex

  18. Synthesis And Characterization of Copper Zinc Tin Sulfide Nanoparticles And Thin Films

    Science.gov (United States)

    Khare, Ankur

    Copper zinc tin sulfide (Cu2ZnSnS4, or CZTS) is emerging as an alternative material to the present thin film solar cell technologies such as Cu(In,Ga)Se2 and CdTe. All the elements in CZTS are abundant, environmentally benign, and inexpensive. In addition, CZTS has a band gap of ˜1.5 eV, the ideal value for converting the maximum amount of energy from the solar spectrum into electricity. CZTS has a high absorption coefficient (>104 cm-1 in the visible region of the electromagnetic spectrum) and only a few micron thick layer of CZTS can absorb all the photons with energies above its band gap. CZT(S,Se) solar cells have already reached power conversion efficiencies >10%. One of the ways to improve upon the CZTS power conversion efficiency is by using CZTS quantum dots as the photoactive material, which can potentially achieve efficiencies greater than the present thin film technologies at a fraction of the cost. However, two requirements for quantum-dot solar cells have yet to be demonstrated. First, no report has shown quantum confinement in CZTS nanocrystals. Second, the syntheses to date have not provided a range of nanocrystal sizes, which is necessary not only for fundamental studies but also for multijunction photovoltaic architectures. We resolved these two issues by demonstrating a simple synthesis of CZTS, Cu2SnS3, and alloyed (Cu2SnS3) x(ZnS)y nanocrystals with diameters ranging from 2 to 7 nm from diethyldithiocarbamate complexes. As-synthesized nanocrystals were characterized using high resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and energy dispersive spectroscopy to confirm their phase purity. Nanocrystals of diameter less than 5 nm were found to exhibit a shift in their optical absorption spectra towards higher energy consistent with quantum confinement and previous theoretical predictions. Thin films from CZTS nanocrystals deposited on Mo-coated quartz substrates using drop casting were found to be continuous

  19. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia.

    Science.gov (United States)

    Maznah, W O Wan; Al-Fawwaz, A T; Surif, Misni

    2012-01-01

    In this study, the biosorption of copper and zinc ions by Chlorella sp. and Chlamydomonas sp. isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses. Under optimal biosorption conditions, the biosorption capacity of Chlorella sp. for copper and zinc ions was 33.4 and 28.5 mg/g, respectively, after 6 hr of biosorption in an immobilised system. Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption. Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  20. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp.and Chlamydomonas sp.isolated from rivers in Penang, Malaysia

    Institute of Scientific and Technical Information of China (English)

    W.O.Wan Maznah; A.T. Al-Fawwaz; Misni Surif

    2012-01-01

    In this study,the biosorption of copper and zinc ions by Chlorella sp.and Chlamydomonas sp.isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses.Under optimal biosorption conditions,the biosorption capacity of Chlorella sp.for copper and zinc ions was 33.4 and 28.5 mg/g,respectively,after 6 hr of biosorption in an immobilised system.Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass.Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption.Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  1. Transport of Nanoparticles of Zerovalent Copper, Zinc Oxide, and Titanium Dioxide in Saturated Porous Media

    Science.gov (United States)

    Column tests show nanoparticles (NPs) of Cu(0) and ZnO were immobile at neutral pH in saturated sand.They became mobile in the presence of trizma, humic/fulvic, and citric/oxalic/formic acids. Copper NPs were mobile at pH 9. The deposition rates of TiO2 NP aggregates in both KCl ...

  2. Transport of Nanoparticles of Zerovalent Copper, Zinc Oxide, and Titanium Dioxide in Saturated Porous Media

    Science.gov (United States)

    Column tests show nanoparticles (NPs) of Cu(0) and ZnO were immobile at neutral pH in saturated sand.They became mobile in the presence of trizma, humic/fulvic, and citric/oxalic/formic acids. Copper NPs were mobile at pH 9. The deposition rates of TiO2 NP aggregates in both KCl ...

  3. Synergistic inhibition effect of benzotriazole (BTA) and oxalate ions on the corrosion of copper, zinc and brass in NaCl and HCl solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yanardag, T.; Aksut, A.A. [Ankara Univ., Science Faculty, Dept. of Chemistry, Ankara (Turkey)

    2009-07-01

    Inhibition of corrosion is of high technological importance and progress made in this field has been phenomenal in recent years. Zinc is more active compared to copper. Copper is a valuable material, especially in electronics, solar cell fittings, household products, structural engineering, art and decoration, coinage and biomedical application. Even though copper is corrosion resistant due to its natural oxide film, it is prone to corrode in solutions that contain oxygen and high concentration of chloride, sulphate, sulphide and nitrate ions. A variety of potentially damaging environments require versatile inhibition actions. Although an inhibitor is sometimes added to avoid tarnishing, in the majority of cases the inhibitor's purpose is to prevent or postpone corrosion attack. The corrosion inhibition of copper, zinc and brass in 0.5 M NaCl and 0.5 M HCl solutions in the presence of BTA and sodium oxalate have been investigated using polarization, AC-impedance and current-potential methods. Inhibition effect depends to the pretreatment of electrode. For this reason, the electrodes were pretreated in 0.15 M HCl solution for 20 seconds in order to obtain better surface prone to form coatings on the electrode surface before immersing into the studied solutions. Results showed BTA and oxalate to have synergistic inhibition effect on the corrosion of copper and brass. All the methods employed showed good correlation between each other revealing a mean efficiency of 99% in neutral medium and 88% in acidic medium for brass. (authors)

  4. Effect of high dietary zinc oxide on the caecal and faecal short-chain fatty acids and tissue zinc and copper concentration in pigs is reversible after withdrawal of the high zinc oxide from the diet.

    Science.gov (United States)

    Janczyk, P; Büsing, K; Dobenecker, B; Nöckler, K; Zeyner, A

    2015-04-01

    Zinc oxide (ZnO) used in high ('pharmacological') levels to prevent diarrhoea in pigs is assumed to reduce copper (Cu) in tissues and inhibits large intestinal microbial fermentation. To test it, German Landrace pigs were weaned on d28 of age and fed diets containing either 100 (LowZinc, LZn, n = 10) or 3100 mg ZnO/kg (HighZinc, HZn, n = 10). The mixed feed (13.0 MJ ME, 18.5% crude protein) was based on wheat, barley, soya bean meal and maize. After 4 weeks, the HZn group was further fed 100 mg ZnO/kg for another 2 weeks. Caecal contents, faeces and tissues were collected after 4 weeks (n = 5 and n = 10 respectively) and 6 weeks (n = 5 and n = 5 respectively). Faeces and caecal content were analysed for dry matter (DM), pH, ammonia, lactic acid (LA) and short-chain fatty acids (SCFA) on native water basis. anova was performed to elucidate significant differences at p 0.05) were recorded in caecal contents after 6 weeks. In faeces, acetic acid remained lower in the HZn group in comparison with LZn (p = 0.006), as did the A:P ratio (p = 0.004). Zn concentration in liver, kidneys and ribs, and Cu concentrations in kidneys increased in HZn. Withdrawal of ZnO resulted in reversibility of the changes. The effect on butyric acid should be discussed critically regarding the energetic support for the enterocytes. High Zn and Cu tissue concentrations should be considered by pet food producers.

  5. Copper modulates zinc metalloproteinase-dependent ectodomain shedding of key signaling and adhesion proteins and promotes the invasion of prostate cancer epithelial cells.

    Science.gov (United States)

    Parr-Sturgess, Catherine A; Tinker, Claire L; Hart, Claire A; Brown, Michael D; Clarke, Noel W; Parkin, Edward T

    2012-10-01

    A disintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs) are zinc metalloproteinases (ZMPs) that catalyze the "ectodomain shedding" of a range of cell surface proteins including signaling and adhesion molecules. These "sheddases" are associated with the invasion and metastasis of a range of cancers. Increased serum and tumor tissue levels of copper are also observed in several cancers, although little is known about how the metal might promote disease progression at the molecular level. In the current study, we investigated whether copper might regulate the ectodomain shedding of two key cell surface proteins implicated in the invasion and metastasis of prostate cancer, the Notch ligand Jagged1 and the adhesion molecule E-cadherin, and whether the metal was able to influence the invasion of the prostate cancer epithelial cell line PC3. Physiological copper concentrations stimulated the ZMP-mediated proteolysis of Jagged1 and E-cadherin in cell culture models, whereas other divalent metals had no effect. Copper-mediated Jagged1 proteolysis was also observed following the pretreatment of cells with cycloheximide and in a cell-free membrane system, indicating a posttranslational mechanism of sheddase activation. Finally, the concentrations of copper that stimulated ZMP-mediated protein shedding also enhanced PC3 invasion; an effect that could be negated using a sheddase inhibitor or copper chelators. Collectively, these data implicate copper as an important factor in promoting prostate cancer cell invasion and indicate that the selective posttranslational activation of ZMP-mediated protein shedding might play a role in this process.

  6. A quantitative trait loci analysis of zinc hyperaccumulation in Arabidopsis halleri.

    Science.gov (United States)

    Filatov, Victor; Dowdle, John; Smirnoff, Nicholas; Ford-Lloyd, Brian; Newbury, H John; Macnair, Mark R

    2007-01-01

    The mechanisms of metal hyperaccumulation are still not understood, so we conducted a quantitative trait locus (QTL) analysis of zinc (Zn) hyperaccumulation in Arabidopsis halleri, in a cross between this and its sister species, A. petraea, in order to determine the number and approximate location of the genomic regions significantly contributing to this adaptation. An F2 cross between the two species was made, and the leaf Zn concentration of 92 individuals was measured at both low (10 microm) and high (100 microm) Zn concentrations. Twenty-five markers were established that were distributed on all of the eight chromosomes. Mapping of the markers established that they were essentially collinear with previous studies. QTLs exceeding a logarithm to the base 10 of the odds (LOD) value of 3 were found on chromosomes 4 (low Zn), 6 (high Zn) and 7 (both high and low Zn). Evidence for a QTL on chromosome 3 (low Zn) was also found. This analysis validates a previously used method of QTL analysis, based on microarray analysis of segregating families. Genes that have altered during the evolution of this character should also be QTL: this analysis calls into question a number of candidate genes from consideration as such primary genes because they do not appear to be associated with QTLs.

  7. Coordination Chemistry of Polyaromatic Thiosemicarbazones 2: Synthesis and Biological Activity of Zinc, Cobalt, and Copper Complexes of 1-(Naphthalene-2-ylethanone Thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Marc-Andre LeBlanc

    2011-01-01

    Full Text Available A novel thiosemicarbazone from 2-acetonaphthone (represented as acnTSC has been synthesized and its basic coordination chemistry with zinc(II, cobalt(II, and copper(II explored. The complexes were characterized by elemental analysis and various spectroscopic techniques and are best formulated as [M(acnTSC2Cl2] with the metal likely in an octahedral environment. The anticancer activity of the complexes was determined against a panel of human colon cancer cells (HCT-116 and Caco-2. The compounds bind to DNA via an intercalative mode with binding constants of 9.7×104 M-1, 1.8×105 M-1, and 9.5×104 M-1 for the zinc, cobalt, and copper complexes, respectively.

  8. [Simultaneous determination of trace amounts of zinc, cadmium, lead and copper by the method of anodic voltammetry using factor experimental design].

    Science.gov (United States)

    Koen, E

    1975-01-01

    Using the method of factor planning of the experiment, the author studies and demonstrates the influence exerted by the potential and time of electrolysis, and by the concentration of the background and elements on the heights of anodal peaks upon simultaneous determination of zinc, cadmium, lead and copper microconcentrations. On the ground of statistical elaboration of the results, the optimal condition for polarographic determination through anodal voltamperometry are outlined. According to the cyclic voltametry method, the electrod processes reversibility for zinc, cadmium and lead, as well as the incomplete reversibility for copper are established; the number of electrons participating in the electrochemical reaction are found using the method of gas coulometry. The possibility of simultaneous determination of the four elements' ultramicroconcentrations after the method of voltamperometry with enrichment is proved. The standard deviation is in the range 3.02 to 4.9.

  9. Practical study on the electrochemical simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater using a packed-bed cathode

    Directory of Open Access Journals (Sweden)

    Meshaal F. Alebrahim

    2017-06-01

    Full Text Available In this work, electrochemical-simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater containing different ratios of copper to zinc was studied using a packed-bed continuous-recirculation flow electrolytic reactor. The total nominal initial concentration of both metals, circulating rate of flow and nominal initial pH were held constant. Parameters affecting the removal percent and current efficiency of removal, such as applied current and time of electrolysis were investigated. Results revealed that increased current intensity accelerated the removal of metals and diminish current efficiency. It was also observed that selective removal of both metals is possible when the applied current was of small intensity. Moreover, the factors that led to loss of faradaic efficiency were discussed.

  10. Effect that the relative abundance of copper oxide and zinc oxide corrosion has on the visualization of fingerprints formed from fingerprint sweat corrosion of brass.

    Science.gov (United States)

    Bond, John W

    2011-07-01

    From an examination of the fingerprint sweat corrosion of 40 different individuals on α phase brass, we show that an increase in visualization can be achieved by applying a negative potential to the brass followed by the introduction of a conducting powder. Previously, this technique has been demonstrated only for a positive applied potential and a corrosion product that was dominated by p-type copper (I) oxide. X-ray photoelectron and Auger electron spectroscopic analyses of the surface of the corroded brass show that an increase in visualization with a negative applied potential corresponds with an increase in the concentration of n-type zinc oxide relative to p-type copper (I) oxide with the Cu:Zn ratio zinc oxide/brass rectifying Schottky barrier are fulfilled.

  11. Effect of zinc and cerium addition on property of copper-based adsorbents for phosphine adsorption

    Institute of Scientific and Technical Information of China (English)

    宁平; 易红宏; 余琼粉; 唐晓龙; 杨丽萍; 叶智青

    2010-01-01

    A series of copper-based activated carbon (AC) adsorbents were prepared in order to investigate the effect of Zn, Ce addition on Cu-based AC adsorbent for phosphine (PH3) adsorption removal from yellow phosphorous tail gas. N2 adsorption isotherm and X-ray diffrac-tion (XRD) results suggested that the addition of Zn could increase the adsorbent ultramicropores, decrease the adsorbent supermicropores and the adsorbent average pore diameter. Therefore it enhanced the PH3 adsorption capacity. Appropriate amoun...

  12. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken

    Directory of Open Access Journals (Sweden)

    P. Patric Joshua

    2016-03-01

    Full Text Available Background and Aim: Nanoparticles can bypass conventional physiological ways of nutrient distribution and transport across tissue and cell membranes, as well as protect compounds against destruction prior to reaching their targets. In ovo administration of nanoparticles, may be seen as a new method of nano-nutrition, providing embryos with an additional quantity of nutrients. The aim of the study is to examine the effect of in ovo supplementation of nano forms of zinc, copper and selenium on the hatchability and post hatch performance of broiler chicken. Materials and Methods: Nano form of zinc at 20, 40, 60 and 80 μg/egg, nano form of copper at 4, 8, 12 and 16 μg/egg and nano form of selenium at 0.075, 0.15, 0.225 and 0.3 μg/egg were in ovo supplemented (18th day incubation, amniotic route in fertile broiler eggs. Control group in ovo fed with normal saline alone was also maintained. Each treatment had thirty replicates. Parameters such as hatchability, hatch weight and post hatch performance were studied. Results: In ovo feeding of nano minerals were not harmful to the developing embryo and did not influence the hatchability. Significantly (p<0.05 best feed efficiency for nano forms of zinc (2.16, copper (2.46 and selenium (2.51 were observed, when 40, 4 and 0.225 μg/egg respectively were in ovo supplemented. Except in nano form of copper at 12 μg per egg which had significantly (p<0.05 highest breast muscle percentage there was no distinct trend to indicate that dressing percentage or breast muscle yield was influenced in other treatments. Conclusion: Nano forms of zinc, copper and selenium can be prepared at laboratory conditions. In ovo feeding of nano forms of zinc, copper and selenium at 18th day of incubation through amniotic route does not harm the developing embryo, does not affect hatchability.

  13. STUDY OF CLINICO- EPIDEMIOLOGICAL PROFILE OF PATIENTS ADMITTED WITH INFANTILE TREMOR SYNDROME (ITS AND STATUS OF TRACE ELEMENTS (ZINC, COPPER DEFICIENCY IN THEM

    Directory of Open Access Journals (Sweden)

    Mohan Makwana

    2017-03-01

    Full Text Available BACKGROUND Under nutrition is one of the major problems in the field of Paediatrics. The greatest risk of malnutrition is in the first two years of life. The effects of this early damage on health, brain development, intelligence, educability and productivity are potentially reversible. The current study was an attempt to find out the clinico epidemiological profile, evaluate them for trace elements deficiency and most appropriate management options in those who are admitted with infantile tremor syndrome. MATERIALS AND METHODS The current study was a hospital based cross sectional study that was conducted in the Department of Paediatrics, Dr. S. N. Medical College Jodhpur. Duration of study was One Year. Any child up to the age of three years of age admitted in the paediatric wards with typical features of infantile tremor syndrome. RESULTS Maximum numbers of patients were found between 6 months to 12 months of age, there was slight male predominance. The majority of infants in our study (85% were exclusively breast fed, 66% of cases were having low serum Copper level. 9% of cases were having low serum zinc level. 8% of cases were having low serum copper level with tremors. CONCLUSION In our study the fact that NTS is mainly seen in children who are exclusively breast feed for a longer period with delayed introduction of weaning foods. The main presenting features remain developmental delay, hyper pigmentation and anemia. Among nutritional factors, deficiency of copper and zinc in children plays a big role in development of disease. Thus to prevent the development of nutritional tremor syndrome stress should be on early timely introduction of weaning foods, especially rich in copper and zinc. What is already known about this Study- low levels of trace elements like copper and zinc may be responsible for typical clinical manifestations in patients of infantile tremor syndrome. Pronged and Exclusive breast feeding further aggravate these features

  14. 铜萃余液综合回收铜、锌试验研究%Experimental study on comprehensive recovery of copper and zinc from copper extraction raffinate

    Institute of Scientific and Technical Information of China (English)

    俎小凤; 王夏

    2013-01-01

    采用硫化沉淀工艺对铜萃余液中的铜、锌等有价金属进行了回收试验研究,考察了硫化沉淀pH值、硫化钠加入量和硫化反应时间等因素以及铜、锌共沉淀和分步沉淀对铜、锌回收率和精矿品位的影响.试验结果表明,铜、锌分步沉淀时,萃余液pH =2.5,加入1.2倍硫化钠用量,反应20 min,沉铜效果最好,铜回收率98.33%,精矿铜品位38.88%;pH =3.5,加入1.4倍硫化钠用量,反应20 min,沉锌效果最好,锌回收率为98.36%,精矿锌品位33.17%.该工艺可有效回收萃余液中的铜、锌等有价金属.%The experimental study on using sulfide precipitation process to recover copper, zinc and other valuable metals from copper extraction raffinate was carried out.The study investigated the influence on copper and zinc recovery rate and concentrate grade played by pH of sulfide precipitation,sodium sulfide dosage and curing reaction time,as well as one step precipitation and multiple-step precipitation.The results show that it achieves the best results that the copper recovery rate is 98.33 % and the concentrate grade is 38.88 % on the condition of multiple sulfide precipitation ,and that the raffinate pH is 2.5 ,1.2 times amount of sodium sulfide is added and the reaction time is 20 minutes.The best effect for zinc immersion is achieved on the condition that PH is 3.5,1.4 times amount of sodium sulfide is added and the reaction time is 20 minutes.With that, zinc recovery rate is 98.36 % and concentrate grade is 33.17 %.The process can effectively recover copper,zinc and other valuable metals from copper raffinate.

  15. High Cobalt, Copper And Zinc Smelting Practice Of High Raw Material%高钴、高铜锌原料冶炼的实践

    Institute of Scientific and Technical Information of China (English)

    韦庭胜

    2012-01-01

    This article mainly introduced in the process of zinc hydrometallurgy how successful treatment of high cobalt, copper refined zinc and treatment effect. Through the introduction of cobalt, copper impurity in the process of zinc hydrometallurgy of zinc electrolysis process hazard and affect the quality of refined zinc, and cobalt, copper impurity in the process of zinc hydrometallurgy leaching, purification, electrolytic process behavior, make the production process and process conditions. Simple description of roasting, leaching process conditions and basis. Focuses on the purification mechanism, antimony trioxide purification method mechanism. Presents a selection of inverse antimony trioxide purification method basis, Narrative Choice purification process and technological conditions. At the same time for cobalt impurities high case, prevent cobalt impurities accumulation in production system, puts forward the method and effect of cobalt impurities control. Finally, introduces the application of formulation of the production process and application in hydrometallurgical zinc production in treatment of high cobalt, some experience of high copper.%文章主要介绍在湿法炼锌中如何成功处理高钴、高铜精锌矿及处理效果。通过介绍钴、铜杂质在湿法炼锌中电解过程的危害及对锌锭质量的影响,以及分析了精锌矿中钴、铜杂质在湿法炼锌中浸出、净化、电解过程中的行为,制定了生产工艺流程和工艺条件。简单地叙述沸腾焙烧、浸出的工艺条件和制定依据。重点叙述净化工艺机理、锑盐净化法机理。提出了选择逆锑盐净化法的依据,叙述所选择净化工艺流程和工艺条件。同时针对钴杂质特高情况下,防止钴杂质在生产系统积累,提出了钴杂质控制的方法及效果。最后介绍应用制定的工艺生产应用效果及在湿法炼锌生产中处理高钴、高铜矿几点心得。

  16. Evaluation of micronutrient (zinc, copper and iron) levels in periodontitis patients with and without diabetes mellitus type 2: A biochemical study

    OpenAIRE

    Biju Thomas; Anshuman Gautam; Rajendra Prasad, B.; Suchetha Kumari

    2013-01-01

    Context: Periodontal tissue destruction is caused by an inappropriate host response to microorganisms. Diabetes is a metabolic disease and most of its complications are due to hyperglycemia. Periodontitis is considered as its sixth complication. Micronutrients such as zinc, copper and iron are essential for human health. There is accumulating evidence that the metabolism of several trace elements is altered in diabetes mellitus and that these nutrients might have specific roles in the pathoge...

  17. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken

    OpenAIRE

    P. Patric Joshua; Valli, C.; Balakrishnan, V.

    2016-01-01

    Background and Aim: Nanoparticles can bypass conventional physiological ways of nutrient distribution and transport across tissue and cell membranes, as well as protect compounds against destruction prior to reaching their targets. In ovo administration of nanoparticles, may be seen as a new method of nano-nutrition, providing embryos with an additional quantity of nutrients. The aim of the study is to examine the effect of in ovo supplementation of nano forms of zinc, copper and selenium on ...

  18. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Inês C. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Mesquita, Raquel B.R. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Laboratório de Hidrobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto (Portugal); Rangel, António O.S.S., E-mail: arangel@porto.ucp.pt [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal)

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60–160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11–21 for the metal ions. A LOD of 0.23 μg L{sup −1} for cadmium, 2.39 μg L{sup −1} for zinc, and 0.11 μg L{sup −1} for copper and a sampling rate of 12, 13, and 15 h{sup −1} for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. - Highlights: • Multi-parametric determination of cadmium, zinc, and copper at the μg L{sup −1} level. • In-line metal ions preconcentration using NTA resin. • Minimization of matrix interferences by performing solid phase spectrometry in a SI-LOV platform. • Successful application to metal ions determination in freshwaters.

  19. 澳大利亚蒙特艾萨锌-铅-银-铜矿山%The Mount Isa Zinc-Lead-Silver-Copper Mine in Australia

    Institute of Scientific and Technical Information of China (English)

    李长根

    2012-01-01

    The Mount Isa zinc-lead-silver-copper Mine is the one of the large mining and metallurgical industry. To the end of June 2007 Mount Isa Zinc-Lead-Silver Mine has the proved and probable copper ore reserves of 84 Mt containing 1. 8% ~3.4% Cu as well as the proved and probable zinc-lead-silver ore reserves of 84 Mt containing 4. 8% ~ 8. 8% zinc ,2. 2% ~ 5. 5% lead and 39 ~ 125g/t silvero The copper orebody worked using a sub-level open stoping. Stopes are backfilled with cemented aggregate. The zinc-lead-silver orebody worked using a sub-level open stoping and cut-and-fill. The copper concentrator uses SAG/ball mill-preflotation of easy flotation minerals - copper roughing - column cleaning - recleaning flowsheet to obtain copper concentrates. The zinc-lead-silver concentrator uses rod mill/ball mill-lead roughing - regrinding in Isa mills - lead cleaning - preflotaion - zinc roughing - regrinding in Isa mills - zinc cleaning flowsheet to obtain zinc concentrates and lead concentrates containing silver. In 2007 production measure of Mount Isa zinc-lead-silver-copper mine was 6. 7Mt/a of copper ore,6. 5Mt/a of zinc-lead-silver ore,226529t/a of zinc (in zinc concentrates) , 125195 t/a lead bullion, 8. 26 Moz/a of sil-ver(in crude) ,172552t/a copper(in copper concentrates)and 217907t/a copper anode.%澳大利亚蒙特艾萨锌-铅-银-铜矿山是澳大利亚大型矿冶企业之一.它由两个独立的锌—铅—银矿山和选矿厂,以及铜矿山和选矿厂组成.截至2007年6月底,证实和控制的铜矿石储量为8400万t,含铜1.8%~3.4%;锌—铅—银矿石储量为8400万t,含锌4.8%~8.8%,铅2.2% ~5.5%和银39~125g/t.铜矿山采用分段空场采矿法开采矿石;锌-铅-银矿山采用分段空场采矿法和落顶充填采矿法开采矿石.铜选矿厂采用半自磨/球磨—易浮矿物预先浮选—铜粗选—浮选柱精选—浮选机再精选工艺流程,得到铜精矿.锌—铅—银矿石选矿工艺流程包括

  20. Cytotoxic activity, X-ray crystal structures and spectroscopic characterization of cobalt(II), copper(II) and zinc(II) coordination compounds with 2-substituted benzimidazoles.

    Science.gov (United States)

    Sánchez-Guadarrama, Obdulia; López-Sandoval, Horacio; Sánchez-Bartéz, Francisco; Gracia-Mora, Isabel; Höpfl, Herbert; Barba-Behrens, Noráh

    2009-09-01

    Herein we present the synthesis, structural and spectroscopic characterization of coordination compounds of cobalt(II), copper(II) and zinc(II) with 2-methylbenzimidazole (2mbz), 2-phenylbenzimidazole (2phbz), 2-chlorobenzimidazole (2cbz), 2-benzimidazolecarbamate (2cmbz) and 2-guanidinobenzimidazole (2gbz). Their cytotoxic activity was evaluated using human cancer cell lines, PC3 (prostate), MCF-7 (breast), HCT-15 (colon), HeLa (cervic-uterine), SKLU-1 (lung) and U373 (glioblastoma), showing that the zinc(II) and copper(II) compounds [Zn(2mbz)(2)Cl(2)].0.5H(2)O, [Zn(2cmbz)(2)Cl(2)].EtOH, [Cu(2cmbz)Br(2)].0.7H(2)O and [Cu(2gbz)Br(2)] had significant cytotoxic activity. The isostructural cobalt(II) complexes showed not significant activity. The cytotoxic activity is related to the presence of halides in the coordination sphere of the metal ion. Recuperation experiments with HeLa cells, showed that the cells recuperated after removing the copper(II) compounds and, on the contrary, the cells treated with the zinc(II) compounds did not. These results indicate that the mode of action of the coordination compounds is different.

  1. Assessment of serum zinc, selenium and copper in simple febrile convulsions in children aged 6 to 60 months in Mohammad Kermanshahi Hospital in 2012 year

    Directory of Open Access Journals (Sweden)

    Simin Gheini

    2015-04-01

    Full Text Available Background: Some trace elements may play a role in the etiology of febrile convulsions. This study was aimed to determine the relationship between serum zinc, selenium and copper level and febrile convulsion. Methods: In this case – control study, 114 children with febrile disease and 101 children with simple febrile convulsion were selected as control and case groups, respectively. After collecting all samples, serum levels of selenium, zinc and copper were measured and the obtained data were analyzed by Spss software using independent t-test Results: Mean serum zinc level in control group (80.24±10.06 was significantly higher than that of the case group (63.54±6.7 (P<0.001. Mean serum selenium level in control group (80.78±10.12 was significantly higher that that of the case group (59.32±6.92 (P<0.001. Mean serum copper level in the male control group (73.08±9.68 was significantly lower than that of the case group (81.80 ±10.81 (P<0.001. Conclusion: The causal correlation between variables cannot be determined by only one case-control study. Only the differences between groups are reported.

  2. Effect of the Inclusion of Organic Copper, Manganese, And Zinc in The Diet of Layers on Mineral Excretion, Egg Production, and Eggshell Quality

    Directory of Open Access Journals (Sweden)

    LSS Carvalho

    2015-12-01

    Full Text Available ABSTRACT This study aimed at evaluating the replacement of inorganic copper, manganese, and zinc sources by organic sources in the diet of laying hens during the second laying cycle in trace mineral excretion, egg production, and eggshell quality. Two hundred and fifty 100-week-old Dekalb hens were distributed according to a completely randomized design into five treatments with five replicates of ten birds each. The control treatment consisted of a basal diet with all trace minerals in the inorganic form. The other treatments consisted of a basal diet with a mixture of the minerals copper, manganese, and zinc in the organic form with concentrations of 100%, 90%, 80%, and 70% of the levels of inclusion of inorganic mineral sources in the control treatment. Trace mineral excretion was determined in five layers per treatment by the method of total excreta collection. Excreta trace mineral contents were determined by atomic absorption spectrophotometry. Egg production and eggshell quality were determined by the mass of the eggs and the egg specific gravity, respectively. For all trace minerals examined, the dietary supplementation with organic sources reduced trace mineral excretion compared with the control group, even at 70% inclusion level, without compromising egg production or eggshell quality. The replacement of the inorganic trace mineral sources by organics source effectively reduced the excretion of copper, manganese, and zinc by laying hens in the second laying cycle.

  3. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters.

    Science.gov (United States)

    Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60-160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11-21 for the metal ions. A LOD of 0.23 μg L(-1) for cadmium, 2.39 μg L(-1) for zinc, and 0.11 μg L(-1) for copper and a sampling rate of 12, 13, and 15 h(-1) for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples.

  4. Prediction of the presence of ovarian cancer at surgery by an immunochemical panel: CA 125 and copper-to-zinc ratio.

    Science.gov (United States)

    Gal, D; Lischinsky, S; Friedman, M; Zinder, O

    1989-11-01

    Preoperative levels of the trace elements copper and zinc, in addition to the level of the known marker CA 125, were studied in sera of 32 patients undergoing exploratory laparotomy for suspicion of ovarian cancer and in sera of 49 patients with the diagnosis of ovarian cancer prior to second-look operation. Most patients (63/81) had stage III or IV disease. CA 125 levels greater than 35 U/ml, copper levels greater than 1.5 mg/liter, and zinc levels less than 0.9 mg/liter were considered pathologic. An immunochemical panel composed of CA 125 serum level and ratio of copper to zinc (Cu/Zn) (normal less than 1.65) was found to be most sensitive (98%) in predicting the existence of ovarian cancer before laparotomy, and its overall predictability was 89%. In 14 of 14 patients (100%) who had complete primary surgery for ovarian cancer, the panel was correct in predicting no tumor at second-look operation. In 13 of 14 patients (93%) who had incomplete primary surgery but had no clinical evidence of disease prior to second-look operation, the panel was correct in predicting ovarian cancer. In these two groups of patients, second-look operation could have been replaced by the results of the immunochemical panel.

  5. FAAS测定电解镉中的Zn、Cu和Fe%Determination of Zinc and Copper and Iron in Electrolysis Cadmium by FAAS

    Institute of Scientific and Technical Information of China (English)

    李文东; 张林; 陈自辉; 王琼; 邹立明; 黄大生

    2009-01-01

    采用火焰原子吸收光谱法测定电解镉中铜、铁和锌的方法,确定了最佳仪器工作条件和样品处理方法.在选择好的实验条件下.测定铜的特征浓度为0.006#g/mL/1%吸收;铁的特征浓度为0.015μg/mL/1%吸收;锌的特征浓度为0.0031μg/mL/1%吸收.回收率分别为铜97.5%-98.0%,铁99.1%-100.2%,锌97.4%-99.1%.%A method for determining zinc,copper and iron in electrolysis cadmium by FAAS was established. Under experimental conditions, characteristic mass are 0.006μg/mL/1% for copper, 0.015μg/mL/1% for iron, 0.003μg/mL/1% for zinc,recovery is 97.5%-98.0% for copper, 99.1%-100.2%for iron,97.4%-99.1% for zinc.

  6. Zinc/copper imbalance reflects immune dysfunction in human leishmaniasis: an ex vivo and in vitro study

    Directory of Open Access Journals (Sweden)

    Carvalho Edgar M

    2004-11-01

    Full Text Available Abstract Background The process of elimination of intracellular pathogens, such as Leishmania, requires a Th1 type immune response, whereas a dominant Th2 response leads to exacerbated disease. Experimental human zinc deficiency decreases Th1 but not Th2 immune response. We investigated if zinc and copper levels differ in different clinical forms of leishmaniasis, and if these trace metals might be involved in the immune response towards the parasite. Methods Blood was collected from 31 patients with either localized cutaneous (LCL, mucosal (ML or visceral (VL leishmaniasis, as well as from 25 controls from endemic and non-endemic areas. Anti-Leishmania humoral and cellular immune response were evaluated by quantifying specific plasma IgG, lymphoproliferation and cytokine production, respectively. Plasma levels of Cu and Zn were quantified by atomic absorption spectrophotometry. Results A significant decrease in plasma Zn was observed in all three patient groups (p Leishmania IgG (Spearman r = 0.65, p = 0.0028. Cu/Zn ratios were highest in patients with deficient cellular (VLLCL>ML immune response. Ex vivo production of parasite-induced IFN-γ was negatively correlated to plasma Cu levels in LCL (r = -0.57, p = 0.01. In vitro, increased Cu levels inhibited IFN-γ production. Conclusions 1. Zn deficiency in VL and ML indicate possible therapeutic administration of Zn in these severe forms of leishmaniasis. 2. Plasma Cu positively correlates to humoral immune response across patient groups. 3. Environmentally or genetically determined increases in Cu levels might augment susceptibility to infection with intracellular pathogens, by causing a decrease in IFN-γ production.

  7. Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Diana [Department of Biology, University of Padova, Padova (Italy); Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster (Germany); Franchi, Nicola [Department of Biology, University of Padova, Padova (Italy); Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Mangano, Valentina [Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Bakiu, Rigers [Department of Crop Production, Agricultural University of Tirana, Tirana (Albania); Cammarata, Matteo; Parrinello, Nicolò [Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Santovito, Gianfranco, E-mail: gianfranco.santovito@unipd.it [Department of Biology, University of Padova, Padova (Italy); Ballarin, Loriano [Department of Biology, University of Padova, Padova (Italy)

    2013-09-15

    Highlights: •Ciona intestinalis express two copper-zinc superoxide dismutases (Cu,Zn SODs), one extracellular (Ci-SODa) and one intracellular isoform (Ci-SODb). •Promoters contain consensus sequences similar to mammalian MRE. •Metal exposure results in a significant increase of gene transcription: ci-soda is induced especially by copper and zinc, the increase of ci-sodb transcription is more evident after cadmium exposure. •Genes are mostly transcribed in circulating hemocytes and in ovarian follicular cells. -- Abstract: Antioxidant enzymes are known to protect living organisms against the oxidative stress risk, also induced by metals. In the present study, we describe the purification and molecular characterization of two Cu,Zn superoxide dismutases (SODs), referred to as Ci-SODa and Ci-SODb, from Ciona intestinalis, a basal chordate widely distributed in temperate shallow seawater. The putative amino acid sequences were compared with Cu,Zn SODs from other metazoans and phylogenetic analyses indicate that the two putative Ci-SODs are more related to invertebrate SODs than vertebrate ones. Both phylogenetic and preliminary homology modeling analyses suggest that Ci-SODa and Ci-SODb are extracellular and intracellular isoform, respectively. The mRNA of the two Cu,Zn SODs was localized in hemocytes and in ovarian follicular cells, as revealed by in situ hybridization. The time course of SOD mRNA levels in the presence of three different metals showed upregulation of ci-soda and inhibition of ci-sodb. Spectrophotometric analysis confirms the presence of SOD activity in Ciona tissues. Our in silico analyses of the ci-soda promoter region revealed putative consensus sequences similar to mammalian metal-responsive elements (MRE), suggesting that the transcription of these genes directly depends on metals. These data emphasize the importance of complex metal regulation of ci-soda and ci-sodb transcription, as components of an efficient detoxification pathway

  8. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering

    Directory of Open Access Journals (Sweden)

    Barba, Antonio

    2014-04-01

    Full Text Available Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX analysis, X-ray diffraction (XRD, and X-ray photoelectron spectroscopy (XPS. These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering.En este trabajo se han estudiado los cambios microestructurales que se producen durante el tratamiento térmico de las ferritas de cobre-níquel-cinc y se ha analizado el proceso de precipitación de los dos tipos de cristales que aparecen durante el proceso de sinterización. Se ha encontrado que este proceso depende de la densidad relativa en seco de las muestras compactadas y de las siguientes variables de la etapa de sinterización: temperatura y tiempo de sinterización y velocidad de enfriamiento. La caracterización de los cristales precipitados se ha realizado por microscopía electrónica de barrido (MEB, microanálisis por dispersión de energía de rayos X (EDX, difracción de rayos X (DRX, y espectroscopía de fotoelectrones de rayos X (XPS. Estas técnicas han permitido determinar la naturaleza de estos cristales, que en este caso corresponden a los óxidos de cinc y de cobre. Se han propuesto dos reacciones químicas que permiten explicar el proceso de precipitación y la posterior re-disolución de estos cristales precipitados durante la

  9. SERUM ZINC, COPPER AND ALPHA TOCOPHEROL CONCENTRATIONS IN DOGS WITH ECZEMA

    OpenAIRE

    Alev AKDOĞAN KAYMAZ; ALTUĞ, TUNCAY; BAKIREL, Utku; GÖNÜL, Remzi; GÜZEL, Ömer; Tan, Hüseyin

    2017-01-01

    SummaryIn Istanbul, most cases of eczema have been seen in dogs which have been fed with only meat or bread. Only the dogs with eczema, that were fed with unbalanced home diets were included in this study. The eczema group contained the dogs of Karabash, German Shepherd and mixed breeds and control group contained healthy dogs (Karabash). Skin samples were examined microscopically. Serum zinc (Zn), cop­per (Cu) concentrations and alpha tocopherol (a-TCP) levels were measured in all dogs. Seru...

  10. SERUM ZINC, COPPER AND ALPHA TOCOPHEROL CONCENTRATIONS IN DOGS WITH ECZEMA

    OpenAIRE

    Alev AKDOĞAN KAYMAZ; ALTUĞ, TUNCAY; BAKIREL, Utku; GÖNÜL, Remzi; GÜZEL, Ömer; Tan, Hüseyin

    2013-01-01

    SummaryIn Istanbul, most cases of eczema have been seen in dogs which have been fed with only meat or bread. Only the dogs with eczema, that were fed with unbalanced home diets were included in this study. The eczema group contained the dogs of Karabash, German Shepherd and mixed breeds and control group contained healthy dogs (Karabash). Skin samples were examined microscopically. Serum zinc (Zn), cop­per (Cu) concentrations and alpha tocopherol (a-TCP) levels were measured in all dogs. Seru...

  11. Regional distributions of manganese, iron, copper, and zinc in the brains of 6-hydroxydopamine-induced parkinsonian rats.

    Science.gov (United States)

    Tarohda, Tohru; Ishida, Yasushi; Kawai, Keiichi; Yamamoto, Masayoshi; Amano, Ryohei

    2005-09-01

    Time courses of changes in manganese, iron, copper, and zinc concentrations were examined in regions of the brain of a 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations were simultaneously determined in brain section at the level of the substantia nigra 1, 3, 7, 10, 14, and 21 days after the 6-OHDA treatment and compared with those of control rats. The distributions of these elements were obtained for 18 regions of the sagittal section (1-mm thick). The ICP-MS results indicated that Mn, Fe, Cu, and Zn levels of the 6-OHDA-induced parkinsonian brain were observed to increase in all regions that lay along the dopaminergic pathway. In the substantia nigra, the increase in Mn level occurred rapidly from 3 to 7 days and preceded those in the other elements, reaching a plateau in the 6-OHDA brain. Iron and Zn levels increased gradually until 7 days and then increased rapidly from 7 to 10 days. The increase in the copper level was slightly delayed. In other regions, such as the globus pallidus, putamen, and amygdala, the levels of Mn, Fe, Cu, and Zn increased with time after 6-OHDA treatment, although the time courses of their changes were region-specific. These findings contribute to our understanding of the roles of Mn and Fe in the induction of neurological symptoms and progressive loss of dopaminergic neurons in the development of Parkinson's disease. Manganese may hold the key to disturbing cellular Fe homeostasis and accelerating Fe levels, which play the most important role in the development of Parkinson's disease.

  12. Copper-zinc superoxide dismutase of Caulobacter crescentus: Cloning, sequencing, and mapping of the gene and periplasmic location of the enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Steinman, H.M. (Albert Einstein College of Medicine, Bronx, NY (USA)); Ely, B. (Univ. of South Carolina, Columbia (USA))

    1990-06-01

    To investigate the function of the copper-zinc form of superoxide dismutase (CuZnSOD) (and its structural relationship to the eucaryotic CuZnSoDs) in the freshwater bacterium Caulobacter crecentus, the gene encoding CuZnSOD (sodC) of C. crescentus CB15 was cloned and sequenced. By hybridization to pulsed-field electrophoresis gels, sodC was mapped near cysE in the C. crescentus chromosome. Through analysis of spheroplasts, the two SODs of C. crescentus were shown to be differently localized, CuZnSOD in the periplasm and FeSOD in the cytoplasm. In its natural habitat, C. crescentus is frequently associated with blue-green algae (cyanobacteria). The oxygen evolved by these photosynthetic algae may create an extracellular oxidative stress against which the periplasmic CuZnSOD may defend more effectively than the cytoplasmic FeSOD. Amino acid sequence alignments of C. crescentus CuZnSOD with eucaryotic CuZnSODs and with CuZnSOD of Photobacterium leiognathi (the only other bacterium from which CuZnSOD has been isolated and sequenced) suggest similar supersecondary structures for bacterial and eucaryotic CuZnSODs but reveal four novel substitutions in C. crescentus CuZnSOD: a phenylalanine critical to intrasubunit hydrophobic bonding replaced by alanine, a histidine ligand of zinc replaced by aspartate, and substitutions of two other previously invariant residues that stabilize zinc or both copper and zinc.

  13. Hydrogen-environment-assisted cracking of an aluminum-zinc-magnesium(copper) alloy

    Science.gov (United States)

    Young, George Aloysius, Jr.

    There is strong evidence to indicate that hydrogen embrittlement plays a significant, if not controlling, role in the environmentally assisted cracking of 7XXX series aluminum alloys. In order to better understand hydrogen environment assisted cracking (HEAC), crack growth rate tests in the K-independent stage II crack growth regime were conducted on fracture mechanics specimens of an Al-6.09Zn-2.14Mg-2.19Cu alloy (AA 7050) and a low copper variant (Al-6.87Zn-2.65Mg-0.06Cu). Crack growth rate tests were performed in 90% relative humidity (RH) air between 25 and 90°C to assure hydrogen embrittlement control. The underaged, peak aged, and overaged tempers were investigated. Hydrogen uptake in humid air, hydrogen diffusion, and hydrogen trapping were investigated for each temper. Lastly, near crack tip hydrogen concentration depth profiles were analyzed via nuclear reaction analysis (NRA) and secondary ion mass spectroscopy (SIMS) using a liquid gallium, focused ion beam sputtering source (FIB/SIMS). The results of this study help explain and quantify empirically known trends concerning HEAC resistance and also establish new findings. In the copper bearing alloy, overaged tempers are more resistant but not immune to HEAC. Humid air is an aggressive environment for Al-Zn-Mg alloys because water vapor reacts with bare aluminum to produce high surface concentrations of hydrogen. This occurs in all tempers. Hydrogen diffuses from the near surface region to the high triaxial stress region ahead of the crack tip and collects at the high angle grain boundaries. The combination of tensile stress and high hydrogen concentration at the grain boundaries then causes intergranular fracture. Crack extension bares fresh metal and the process of hydrogen production, uptake, diffusion to the stressed grain boundary, and crack extension repeats. One reason increased degree of aging improves HEAC resistance in copper bearing 7XXX series alloys is that volume lattice and effective

  14. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from

  15. 某铜铅锌矿石浮选试验研究%Floatation experimental research on a copper-lead-zinc ore

    Institute of Scientific and Technical Information of China (English)

    张晗; 张海鹏; 郑晔; 赵明福

    2011-01-01

    According to the ore characteristics, the combination of XY - 09 non-poisonous depressor and XYB -09 collecting agent is used in copper-lead bulk floatation. The restraint of blende is strengthened and the blende acti vation problem caused by secondary-originated copper is soloved basically. The research provides favorable conditions to ensure the efficient division of copper-lead mixed concentrate, zinc concentrate quality and recovery rate.%根据矿石性质,铜铅混合浮选采用XY - 09型抑制剂和XYB - 09型捕收剂,强化抑制闪锌矿,基本解决次生铜活化闪锌矿问题,为保证铜铅混合精矿有效分离、锌精矿质量及回收率创造了有利条件.

  16. 某铜矿铜锌分离新工艺和新药剂的研究%Research on New Technology and Pharmaceutical to Separate Copper and Zinc in Copper Mine

    Institute of Scientific and Technical Information of China (English)

    王世辉

    2011-01-01

    In this paper, a ore in Xinjiang is regarded as the object of study. By the new technology which part of copper has the priority to flotated and mixed copper and zinc mill are re-floated and re-separated then, and by the new pharmaceutical Zj900 as the collector which has a good position to select for the flotation of copper operations, the small-scale closed-circuit pilot test got good indicators.%以新疆某矿石为研究对象,采用铜部分优先、铜锌混浮、再磨再分离新工艺,以新药剂Zj900为捕收剂用于铜浮选作业,该药剂有较优越的选择性,小型闭路试验获得良好的试验指标.

  17. Quantitative monitoring of microbial species during bioleaching of a copper concentrate

    Directory of Open Access Journals (Sweden)

    Sabrina Hedrich

    2016-12-01

    Full Text Available Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately-thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP and capillary electrophoresis single strand conformation polymorphism (CE-SSCP on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations.

  18. Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate

    Science.gov (United States)

    Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine

    2016-01-01

    Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations. PMID:28066365

  19. Flame atomic absorption spectrometric (FAAS) determination of copper, iron and zinc in food samples after solid-phase extraction on Schiff base-modified duolite XAD 761.

    Science.gov (United States)

    Ghaedi, M; Mortazavi, K; Montazerozohori, M; Shokrollahi, A; Soylak, M

    2013-05-01

    The present study involves the development of solid-phase extraction (SPE) procedure for the preconcentration of trace amounts of copper (Cu(2+)), iron (Fe(3+)) and zinc (Zn(2+)) ions on duolite XAD 761 modified by bis(2-hydroxyacetophenone)-2,2-dimethyl-1,3-propanediimine(BHAPDMPDI). The complexation between the metal ions and the proposed ligand was investigated potentiometrically. The metal ions retained on the sorbent were quantitatively determined via complexation with BHAPDMPDI. The complexed metal ions were efficiently eluted using 6 mL of 4 mol L(-1) nitric acid in acetone. The influences of the analytical parameters, including pH, amounts of the ligand and the solid phase, eluent conditions and sample volume, on the recoveries of the metal ions were optimized. Using the optimized parameters, the linear response of the SPE method for Cu(2+), Zn(2+) and Fe(3+) ions were in the ranges of 0.01-0.34, 0.01-0.28 and 0.02-0.31 μg mL(-1), respectively, and the detection limits for Cu(2+), Zn(2+) and Fe(3+) ions were 1.8, 1.6 and 2.4 μg mL(-1), respectively. The proposed method exhibits a preconcentration factor of 208 for all of the ions studied and an enhancement factor for Cu(2+), Fe(3+) and Zn(2+) ions of 34, 28 and 38, respectively. The presented results demonstrate the successful application of the proposed method for the determination of these metal ions in some real samples with high recoveries (> 95%) and reasonable relative standard deviation (RDS <5%).

  20. Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis.

    Science.gov (United States)

    Yazar, M; Sarban, S; Kocyigit, A; Isikan, U E

    2005-08-01

    In recent years, a great number of studies have investigated the possible role of trace elements in the etiology and pathogenesis of rheumatoid arthritis (RA) and osteoartritis (OA). We studied synovial fluid and plasma concentrations of selenium (Se), zinc (Zn), copper (Cu), and iron (Fe) in patients with RA and OA and compared them with sex- and age-matched healthy subjects. Plasma albumin levels were measured as an index of nutritional status. Plasma Se, Cu, and Zn concentrations were determined by atomic absorption spectrophotometry and Fe concentrations were determined by the colorimetric method. Although plasma and synovial fluid Se concentration were found to be significantly lower (p 0.05). On the other hand, synovial fluid Cu and Fe concentrations were significantly higher in patients with OA than those of healthy subjects (p < 0.05). There was a significantly positive correlation between synovial fluid Se-Cu values and Zn-Fe values in patients with RA. Our results showed that synovial fluid and plasma trace element concentrations, excluding Zn, change in inflammatory RA, but not in OA. These alterations in trace element concentrations in inflammatory RA might be a result of the changes of the immunoregulatory cytokines.

  1. Virtual electrochemical nitric oxide analyzer using copper, zinc superoxide dismutase immobilized on carbon nanotubes in polypyrrole matrix.

    Science.gov (United States)

    Madasamy, Thangamuthu; Pandiaraj, Manickam; Balamurugan, Murugesan; Karnewar, Santosh; Benjamin, Alby Robson; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Kotamraju, Srigiridhar; Karunakaran, Chandran

    2012-10-15

    In this work, we have designed and developed a novel and cost effective virtual electrochemical analyzer for the measurement of NO in exhaled breath and from hydrogen peroxide stimulated endothelial cells using home-made potentiostat. Here, data acquisition system (NI MyDAQ) was used to acquire the data from the electrochemical oxidation of NO mediated by copper, zinc superoxide dismutase (Cu,ZnSOD). The electrochemical control programs (graphical user-interface software) were developed using LabVIEW 10.0 to sweep the potential, acquire the current response and process the acquired current signal. The Cu,ZnSOD (SOD1) immobilized on the carbon nanotubes in polypyrrole modified platinum electrode was used as the NO biosensor. The electrochemical behavior of the SOD1 modified electrode exhibited the characteristic quasi-reversible redox peak at the potential, +0.06 V vs. Ag/AgCl. The biological interferences were eliminated by nafion coated SOD1 electrode and then NO was measured selectively. Further, this biosensor showed a wide linear range of response over the concentration of NO from 0.1 μM to 1 mM with a detection limit of 0.1 μM and high sensitivity of 1.1 μA μM(-1). The electroanalytical results obtained here using the developed virtual electrochemical instrument were also compared with the standard cyclic voltammetry instrument and found in agreement with each other.

  2. Synthesis, Deposition, and Microstructure Development of Thin Films Formed by Sulfidation and Selenization of Copper Zinc Tin Sulfide Nanocrystals

    Science.gov (United States)

    Chernomordik, Boris David

    Significant reduction in greenhouse gas emission and pollution associated with the global power demand can be accomplished by supplying tens-of-terawatts of power with solar cell technologies. No one solar cell material currently on the market is poised to meet this challenge due to issues such as manufacturing cost, material shortage, or material toxicity. For this reason, there is increasing interest in efficient light-absorbing materials that are comprised of abundant and non-toxic elements for thin film solar cell. Among these materials are copper zinc tin sulfide (Cu2ZnSnS4, or CZTS), copper zinc tin selenide (Cu2ZnSnSe4, or CZTSe), and copper zinc tin sulfoselenide alloys [Cu2ZnSn(SxSe1-x )4, or CZTSSe]. Laboratory power conversion efficiencies of CZTSSe-based solar cells have risen to almost 13% in less than three decades of research. Meeting the terawatt challenge will also require low cost fabrication. CZTSSe thin films from annealed colloidal nanocrystal coatings is an example of solution-based methods that can reduce manufacturing costs through advantages such as high throughput, high material utilization, and low capital expenses. The film microstructure and grain size affects the solar cell performance. To realize low cost commercial production and high efficiencies of CZTSSe-based solar cells, it is necessary to understand the fundamental factors that affect crystal growth and microstructure evolution during CZTSSe annealing. Cu2ZnSnS4 (CZTS) nanocrystals were synthesized via thermolysis of single-source cation and sulfur precursors copper, zinc and tin diethyldithiocarbamates. The average nanocrystal size could be tuned between 2 nm and 40 nm, by varying the synthesis temperature between 150 °C and 340 °C. The synthesis is rapid and is completed in less than 10 minutes. Characterization by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy confirm that the nanocrystals are nominally

  3. Selenium, zinc and copper in plasma of patients with type 1 diabetes mellitus in different metabolic control states

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C.; Alegria, A.; Barbera, R.; Farre, R.; Lagarda, M.J. [Valencia Univ. (Spain). Lab. of Nutrition and Food Chemistry

    1998-07-01

    The Studies of selenium (Se), zinc (Zn) and copper (Cu) levels in diabetic patients have led to contradictory findings as to the possible relationship between the degree of diabetic control and the changes in mineral contents. In the present study the plasma Cu, Se and Zn contents of diabetic patients and healthy people were measured and the relationship between these contents and diabetic metabolic control, as determined by glycosylated hemoglobin (HbA{sub 1c}), was studied. The mean plasma Se content in diabetic patients was significantly lower than in controls (p<0.01) and a negative correlation between the plasma contents of Se and HbA{sub 1c} was found. No statistically significant differences in plasma Zn contents, either between patients with type 1 diabetes mellitus and controls, or between patients with type 1 diabetes mellitus but different degrees of metabolic control, were found. A statistically significant sex difference in plasma Cu contents was observed in the control population. In females, statistically significant differences were found in plasma Cu contents between the control subjects and the diabetic patients with medium or poor metabolic control, as well as between diabetic patients with good and poor metabolic control. In males, the only statistically significant differences were between the control subjects and diabetic patients with poor metabolic control. The correlation between plasma contents of Cu and HbA{sub 1c} is not significant. (orig.)

  4. The effects of Brazilian green propolis that contains flavonols against mutant copper-zinc superoxide dismutase-mediated toxicity.

    Science.gov (United States)

    Ueda, Tomoyuki; Inden, Masatoshi; Shirai, Katsuhiro; Sekine, Shin-Ichiro; Masaki, Yuji; Kurita, Hisaka; Ichihara, Kenji; Inuzuka, Takashi; Hozumi, Isao

    2017-06-06

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective and progressive loss of motor neurons. The purpose of this study was to clarify effects of brazilian green propolis and the active ingredient against ALS-associated mutant copper-zinc superoxide dismutase (SOD1)-mediated toxicity. Ethanol extract of brazilian green propolis (EBGP) protected N2a cells against mutant SOD1-induced neurotoxicity and reduced aggregated mutant SOD1 by induction of autophagy. Kaempferide and kaempferol, the active ingredients of EBGP, also inhibited mutant SOD1-induced cell death and reduced the intracellular mutant SOD1 aggregates. Both kaempferide and kaempferol significantly suppressed mutant SOD1-induced superoxide in mitochondria. Western blot analysis showed that kaempferol potentially induced autophagy via the AMP-activated protein kinase (AMPK) - the mammalian target of rapamycin (mTOR) pathway. These results suggest that EBGP containing the active ingredient against mutant SOD1-mediated toxicity is a promising medicine or health food for prevention and treatment of ALS.

  5. Elements in rice on the Swedish market: part 2. Chromium, copper, iron, manganese, platinum, rubidium, selenium and zinc.

    Science.gov (United States)

    Jorhem, L; Astrand, C; Sundstrom, B; Baxter, M; Stokes, P; Lewis, J; Grawe, K P

    2008-07-01

    A survey of the levels of some essential and non-essential trace elements in different types of rice available on the Swedish retail market was carried out in 2001-03. The types of rice included long and short grain, brown, white, and parboiled white. The mean levels found were: chromium (Cr) = 0.008 mg kg(-1), copper (Cu) = 1.9 mg kg(-1), iron (Fe) = 4.7 mg kg(-1), manganese (Mn) = 16 mg kg(-1), platinum (Pt) < 0.0003 mg kg(-1), rubidium (Rb) = 3.3 mg kg(-1), selenium (Se) =0.1 mg kg(-1); and zinc (Zn) = 15 mg kg(-1). Inductively coupled plasma-mass spectrometry (ICP-MS) was used for the determination of Pt, Rb, and Se, after acid digestion. All other elements were determined using atomic absorption spectrometry (AAS) after dry ashing. Intake calculations were performed and it was concluded that rice may contribute considerably to the daily requirements of the essential elements Cu, Fe, Mn, Se, and Zn if rice consumption is high. The levels of some elements, e.g. Fe and Mn, were significantly higher in brown compared with white rice.

  6. Kinematic gait analysis and lactation performance in dairy cows fed a diet supplemented with zinc, manganese, copper and cobalt.

    Science.gov (United States)

    Yamamoto, Satoshi; Ito, Kazuhiko; Suzuki, Kii; Matsushima, Yuki; Watanabe, Izumi; Watanabe, Yutaka; Abiko, Keima; Kamada, Toshihiko; Sato, Kan

    2014-03-01

    This study investigated how supplementation of the diet of dairy cows with trace minerals (zinc, manganese, copper and cobalt) affected kinematic gait parameters and lactation performance. Eight Holstein cows were divided into two groups, with each group receiving a different dietary treatment (control diet, or control diet supplemented with trace minerals) in a two-period crossover design. Kinematic gait parameters were calculated by using image analysis software. Compared to cows fed the control diet, cows that received the trace mineral-supplemented diet exhibited significantly increased walking and stepping rates, and had a shorter stance duration. Feed intake and milk production increased in cows fed the trace mineral-supplemented diet compared with control groups. The plasma manganese concentration was not different in control and experimental cows. In contrast, cobalt was only detected in the plasma of cows fed the supplemented diet. These results provide the first evidence that trace mineral supplementation of the diet of dairy cows affects locomotion, and that the associated gait changes can be detected by using kinematic gait analysis. Moreover, trace mineral supplementation improved milk production and only minimally altered blood and physiological parameters in dairy cows.

  7. Assessment of Copper and Zinc in Soils of a Vineyard Region in the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Gláucia Cecília Gabrielli dos Santos

    2013-01-01

    Full Text Available This soil acidification may increase the bioavailability of copper (Cu and zinc (Zn in soils. The objective of this study was to verify the concentrations of Cu and Zn in soils of a vineyard region, including sample acidification, to simulate acid rain. The study was developed in an area of vineyard cultivation, with an adjacent land having other crops grown, in the state of São Paulo, Brazil. Soil samples were collected and GPS located under different uses and coverings. The extracted solutions used to determine the available Cu and Zn forms were diethylenetriaminepentaacetic acid (DTPA, pH 7.3, and calcium chloride 0.01 M. The total forms were obtained by HNO3 digestion. The amounts of Cu and Zn extracted using DTPA were considered high in most of the samples and were greater in the areas cultivated with vineyards that had received fungicide applications for several decades. The total forms were higher in vineyard soils. The amounts of Cu and Zn extracted using CaCl2 did not have good correlation with vineyards or with other metals' forms. The results confirmed that the soil was enriched with Cu and Zn due to the management of the vineyards with chemicals for several decades.

  8. Salivary estimation of copper, iron, zinc and manganese in oral submucous fibrosis patients: A case-control study

    Directory of Open Access Journals (Sweden)

    Akshata Raghavendra Okade

    2015-01-01

    Full Text Available Background: Trace elements (TEs are required for physiological functioning and alterations are noted in potentially malignant disorders and oral cancer. These TEs are used in early diagnosis, treatment and also as an indicator of disease progress and prognosis. Aims: To estimate the TEs such as copper (Cu, zinc (Zn, iron (Fe, manganese (Mn and Cu/Zn ratio in the saliva of oral submucous fibrosis (OSF patients and controls. Settings and Design: The hospital-based study was conducted to estimate salivary TEs using atomic absorption spectrometry (AAS in 60 individuals. Methods and Material: 5 ml saliva was collected from OSF cases (n=30 and controls (n=30 and was centrifuged and prepared by using the Wet Ashing method. The TEs were estimated in parts per million (ppm by using AAS. Statistical Analysis Used: The data obtained was statistically analyzed using non parametric tests such as Mann Whitney U and Kruskal Wallis tests. Results: Significant difference in the mean salivary Zn, Mn and Fe levels in OSF when compared to that of controls. Mean salivary Cu levels were increased and Cu/ Zn ratio was decreased in OSF when compared to the controls. Conclusions: To conclude TEs play a role in the pathogenesis and progression of OSF. Betel quid and areca nut chewing habits are frequently associated with OSF and alters the salivary TE levels. Concerted efforts would, therefore, help in early detection, management and monitoring the efficacy of treatment.

  9. Direct Determination of Zinc, Cadmium, Lead, Copper Metal in Tap Water of Delhi (India by Anodic Stripping Voltammetry Technique

    Directory of Open Access Journals (Sweden)

    Raj J.

    2013-04-01

    Full Text Available Salts of Zinc, Cadmium, Lead and Copper are taken incidentally or accidently and has become of great toxicological importance having toxic effect. In the present study direct determination of Zn, Cd, Pb and Cu metal was carried out from tap water of Delhi (India using differential pulse anodic stripping Voltammeter (DPASV at Hanging mercury dropping electrode (HMDE.Determination of Zn, Cd, Pb, Cu was done using Ammonium acetate buffer (pH 4.6 with a sweep rate (scan rate of 59.5 mV/s and pulse amplitude 50mV by HMDE by standard addition method. The solution was stirred during pre-electrolysis at -1150mV (vs. Ag/AgCl for 90 seconds and the potential was scanned from -1150V to +100V (vs..Ag/AgCl. As a result the minimum level of Zn, Cd, Pb, Cu was Zero and the concentration observed in the tap water sample of Delhi (India was determined as 0.174 mg/L-1, 0.001 mg/L-1, 0.002 mg/L-1, 0.011 mg/L-1 respectively.

  10. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings.

    Science.gov (United States)

    Shi, Xiang; Chen, Yi-Tai; Wang, Shu-Feng; Pan, Hong-Wei; Sun, Hai-Jing; Liu, Cai-Xia; Liu, Jian-Feng; Jiang, Ze-Ping

    2016-11-01

    Selecting plant species that can overcome unfavorable conditions and increase the recovery of degraded mined lands remains a challenge. A pot experiment was conducted to evaluate the feasibility of using transplanted tree seedlings for the phytoremediation of lead/zinc and copper mine tailings. One-year-old bare-root of woody species (Rhus chinensis Mill, Quercus acutissima Carruth, Liquidambar formosana Hance, Vitex trifolia Linn. var. simplicifolia Cham, Lespedeza cuneata and Amorpha fruticosa Linn) were transplanted into pots with mine tailings and tested as potential metal-tolerant plants. Seedling survival, plant growth, root trait, nutrient uptake, and metal accumulation and translocation were assessed. The six species grew in both tailings and showed different tolerance level. A. fruticosa was highly tolerant of Zn, Pb and Cu, and grew normally in both tailings. Metal concentrations were higher in the roots than in the shoots of the six species. All of the species had low bioconcentration and translocation factor values. However, R. chinensis and L. formosana had significantly higher translocation factor values for Pb (0.88) and Zn (1.78) than the other species. The nitrogen-fixing species, A. fruticosa, had the highest tolerance and biomass production, implying that it has great potential in the phytoremediation of tailing areas in southern China.

  11. Impact of manganese, copper and zinc ions on the transcriptome of the nosocomial pathogen Enterococcus faecalis V583.

    Directory of Open Access Journals (Sweden)

    Marta Coelho Abrantes

    Full Text Available Mechanisms that enable Enterococcus to cope with different environmental stresses and their contribution to the switch from commensalism to pathogenicity of this organism are still poorly understood. Maintenance of intracellular homeostasis of metal ions is crucial for survival of these bacteria. In particular Zn(2+, Mn(2+ and Cu(2+ are very important metal ions as they are co-factors of many enzymes, are involved in oxidative stress defense and have a role in the immune system of the host. Their concentrations inside the human body vary hugely, which makes it imperative for Enterococcus to fine-tune metal ion homeostasis in order to survive inside the host and colonize it. Little is known about metal regulation in Enterococcus faecalis. Here we present the first genome-wide description of gene expression of E. faecalis V583 growing in the presence of high concentrations of zinc, manganese or copper ions. The DNA microarray experiments revealed that mostly transporters are involved in the responses of E. faecalis to prolonged exposure to high metal concentrations although genes involved in cellular processes, in energy and amino acid metabolisms and genes related to the cell envelope also seem to play important roles.

  12. Quantitative serine protease assays based on formation of copper(II)-oligopeptide complexes.

    Science.gov (United States)

    Ding, Xiaokang; Yang, Kun-Lin

    2015-01-07

    A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence.

  13. Urinary excretion of copper, zinc and iron with and without D-penicillamine administration in relation to hepatic copper concentration in dogs

    NARCIS (Netherlands)

    Fieten, H.; Hugen, S.; Ingh, van den T.S.G.A.M.; Hendriks, W.H.; Vernooij, J.C.M.; Bode, P.; Watson, A.L.; Leegwater, P.A.J.; Rothuizen, J.

    2013-01-01

    Hereditary copper-associated hepatitis in dogs resembles Wilson’s disease, a copper storage disease in humans. Values for urinary copper excretion are well established in the diagnostic protocol of Wilson’s disease, whereas in dogs these have not been evaluated. The objectives of this study were to

  14. Urinary excretion of copper, zinc and iron with and without D-penicillamine administration in relation to hepatic copper concentration in dogs

    NARCIS (Netherlands)

    Fieten, H.; Hugen, S.; van den Ingh, T.S.G.A.M.; Hendriks, W.H.; Vernooij, Hans; Bode, P.; Watson, A.L.; Leegwater, P.A.J.; Rothuizen, J.

    2013-01-01

    Abstract Hereditary copper-associated hepatitis in dogs resembles Wilson’s disease, a copper storage disease in humans. Values for urinary copper excretion are well established in the diagnostic protocol of Wilson’s disease, whereas in dogs these have not been evaluated. The objectives of this study

  15. Urinary excretion of copper, zinc and iron with and without D-penicillamine administration in relation to hepatic copper concentration in dogs

    NARCIS (Netherlands)

    Fieten, H.; Hugen, S.; van den Ingh, T.S.G.A.M.; Hendriks, W.H.; Vernooij, Hans; Bode, P.; Watson, A.L.; Leegwater, P.A.J.; Rothuizen, J.

    2013-01-01

    Abstract Hereditary copper-associated hepatitis in dogs resembles Wilson’s disease, a copper storage disease in humans. Values for urinary copper excretion are well established in the diagnostic protocol of Wilson’s disease, whereas in dogs these have not been evaluated. The objectives of this study

  16. Urinary excretion of copper, zinc and iron with and without D-penicillamine administration in relation to hepatic copper concentration in dogs

    NARCIS (Netherlands)

    Fieten, H.; Hugen, S.; Ingh, van den T.S.G.A.M.; Hendriks, W.H.; Vernooij, J.C.M.; Bode, P.; Watson, A.L.; Leegwater, P.A.J.; Rothuizen, J.

    2013-01-01

    Hereditary copper-associated hepatitis in dogs resembles Wilson’s disease, a copper storage disease in humans. Values for urinary copper excretion are well established in the diagnostic protocol of Wilson’s disease, whereas in dogs these have not been evaluated. The objectives of this study were to

  17. Copper sludge from printed circuit board production/recycling for ceramic materials: a quantitative analysis of copper transformation and immobilization.

    Science.gov (United States)

    Tang, Yuanyuan; Lee, Po-Heng; Shih, Kaimin

    2013-08-06

    The fast development of electronic industries and stringent requirement of recycling waste electronics have produced a large amount of metal-containing waste sludge. This study developed a waste-to-resource strategy to beneficially use such metal-containing sludge from the production and recycling processes of printed circuit board (PCBs). To observe the metal incorporation mechanisms and phase transformation processes, mixtures of copper industrial waste sludge and kaolinite-based materials (kaolinite and mullite) were fired between 650 and 1250 °C for 3 h. The different copper-hosting phases were identified by powder X-ray diffraction (XRD) in the sintered products, and CuAl2O4 was found to be the predominant hosting phase throughout the reactions, regardless of the strong reduction potential of copper expected at high temperatures. The experimental results indicated that CuAl2O4 was generated more easily and in larger quantities at low-temperature processing when using the kaolinite precursor. Maximum copper transformations reached 86% and 97% for kaolinite and mullite systems, respectively, when sintering at 1000 °C. To monitor the stabilization effect after thermal process, prolonged leaching tests were carried out using acetic acid with an initial pH value of 2.9 to leach the sintered products for 20 days. The results demonstrated the decrease of copper leachability with the formation of CuAl2O4, despite different sintering behavior in kaolinite and mullite systems. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering copper sludge with aluminosilicate materials, and suggests a promising and reliable technique for reusing metal-containing sludge as ceramic materials.

  18. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding.

    Science.gov (United States)

    Tottey, Steve; Waldron, Kevin J; Firbank, Susan J; Reale, Brian; Bessant, Conrad; Sato, Katsuko; Cheek, Timothy R; Gray, Joe; Banfield, Mark J; Dennison, Christopher; Robinson, Nigel J

    2008-10-23

    Metals are needed by at least one-quarter of all proteins. Although metallochaperones insert the correct metal into some proteins, they have not been found for the vast majority, and the view is that most metalloproteins acquire their metals directly from cellular pools. However, some metals form more stable complexes with proteins than do others. For instance, as described in the Irving-Williams series, Cu(2+) and Zn(2+) typically form more stable complexes than Mn(2+). Thus it is unclear what cellular mechanisms manage metal acquisition by most nascent proteins. To investigate this question, we identified the most abundant Cu(2+)-protein, CucA (Cu(2+)-cupin A), and the most abundant Mn(2+)-protein, MncA (Mn(2+)-cupin A), in the periplasm of the cyanobacterium Synechocystis PCC 6803. Each of these newly identified proteins binds its respective metal via identical ligands within a cupin fold. Consistent with the Irving-Williams series, MncA only binds Mn(2+) after folding in solutions containing at least a 10(4) times molar excess of Mn(2+) over Cu(2+) or Zn(2+). However once MncA has bound Mn(2+), the metal does not exchange with Cu(2+). MncA and CucA have signal peptides for different export pathways into the periplasm, Tat and Sec respectively. Export by the Tat pathway allows MncA to fold in the cytoplasm, which contains only tightly bound copper or Zn(2+) (refs 10-12) but micromolar Mn(2+) (ref. 13). In contrast, CucA folds in the periplasm to acquire Cu(2+). These results reveal a mechanism whereby the compartment in which a protein folds overrides its binding preference to control its metal content. They explain why the cytoplasm must contain only tightly bound and buffered copper and Zn(2+).

  19. Effect of Zinc Sulfate on Quantitative and Qualitative Characteristics of Corn (Zea Mays) in Drought Stress

    National Research Council Canada - National Science Library

    F. Vazin

    2012-01-01

    .... To study the effect of drought stress and zinc spray on the yield and yield components of corn, an experiment was carried out during the crop seasons of 2010 and 2011 on Research Farm, Islamic Azad...

  20. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006 Anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos: resultados de la ENSANUT 2006

    Directory of Open Access Journals (Sweden)

    Vanessa De la Cruz-Góngora

    2012-04-01

    Full Text Available OBJETIVE: To describe the frequency of anemia and iron, zinc, copper and magnesium deficiencies among Mexican adolescents in the probabilistic survey ENSANUT 2006. MATERIALS AND METHODS: The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium. Logistic regression models were constructed to assess the risk for mineral deficiencies. RESULTS: The overall prevalence of anemia was 11.8 and 4.6%, body iron deficiency 18.2 and 7.9% for females and males, respectively. Overall prevalence of tissue iron deficiency was 6.9%, low serum copper were14.4 and 12.25%; zinc 28.4 and 24.5%, magnesium 40 and 35.3%; for females and males, respectively. CONCLUSIONS: There is a high prevalence of mineral deficiency in Mexican adolescents; females were more prone to have more mineral deficiencies. Nutritional interventions are necessaries in order to reduce and control them.OBJETIVO: Describir la prevalencia de anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos en la encuesta probabilística ENSANUT 2006. MATERIAL Y MÉTODOS: La muestra incluyó 2447 adolescentes de 12 a 19 años de edad. Se tomó hemoglobina capilar y muestras de sangre venosa para medir las concentraciones séricas de ferritina, sTFR, CRP, zinc, hierro, cobre y magnesio. Se construyeron modelos de regresión logística para evaluar el riesgo de deficiencia de minerales. RESULTADOS: La prevalencia de anemia fue de 11.8% en mujeres y 4.6% en hombres. Las deficiencias de hierro fueron de 18.2 y 7.9% La deficiencia tisular de hierro fue 6.9%; la baja concentración de cobre fue de 14.4 y 12.25% la de zinc de 28.4 y 24.5%, la de magnesio fue 40 y 35.3% en mujeres y hombres, respectivamente. CONCLUSIONES: Existe una alta prevalencia de deficiencia de minerales en los adolescentes; las mujeres tuvieron mayor riesgo. Son necesarias

  1. Disponibilidad de cobre, hierro, manganeso, zinc en suelos del NO argentino Pant availability of copper, iron, manganesum and zinc in the north west of Agentina

    Directory of Open Access Journals (Sweden)

    Núria Roca

    2007-07-01

    Full Text Available Cobre, hierro, manganeso y zinc son cuatro metales esenciales para el crecimiento vegetal. A pesar de las pequeñas cantidades requeridas por las plantas, los suelos agrícolas suelen ser deficitarios en uno o más micronutrientes de forma que su concentración en los tejidos de los vegetales cae por debajo de los niveles que permiten un crecimiento óptimo. La naturaleza del suelo juega un papel fundamental en la disponibilidad de micronutrientes y en su comportamiento a nivel suelo-planta. Los objetivos planteados en el presente estudio son: a establecer la relación entre los parámetros edáficos y la dinámica de los metales dentro del perfil del suelo, y b determinar la biodisponibilidad y zonas de deficiencia de micronutrientes en suelos agrícolas y suelos con riesgo de salinización. El porcentaje de materia orgánica es el factor determinante en el contenido y distribución de los micronutrientes en el suelo objeto de estudio, siendo el horizonte superficial el de mayor acumulación. Tanto CuDTPA, FeDTPA como MnDTPA tienen cierta movilidad en el perfil, mientras que ZnDTPA permanece adsorbido sin un desplazamiento vertical. El ZnDTPA es el único metal que además, muestra diferencias como consecuencia de la salinidad y granulometría de los suelos. No obstante, las condiciones geoquímicas del suelo implican una baja extractabilidad y una cierta dificultad de absorción de los micronutrientes por parte de las plantas.Copper, iron, manganese and zinc are among the essential elements for plant growth. Despite the small amounts required by plants, agricultural soils are usually deficient in one or more of these micronutrients. Therefore, their concentration in plant tissues falls below the optimum levels. Soil nature plays a fundamental role in the availability of micronutrients and their behavior at a soil-plant level. The aims of this paper were: a to establish the relationship between soil properties and micronutrient dynamics within

  2. Geology, Geochemistry and Minerogenesis of the Shijuligou Zinc-Copper Deposit in Gansu, China

    Institute of Scientific and Technical Information of China (English)

    LI Wenyuan; DENG Jun; GAO Yongbao; GUO Zhouping; ZHANG Zhaowei; SONG Zhongbao

    2009-01-01

    The Shijuligou deposit was separated by an arcuate ductile shear zone cross the center of the deposit region, resulting in the difference between the southern and northern ore bodies. The lead (Pb) isotopic data of ores of the Shijuligou copper deposit have averages of ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb in 17.634, 15.444, and 37.312, respectively. It has been shown that ore-forming metals originated from intrusive and extrusive rocks in the upper part of ophiolites. The sulfur isotopic data of pyrite and chalcopyrite in the northern part change from +7.61‰ to +8.09‰ and +4.95‰ to +8.88‰ in the southern part. Isotopes of δ~(18)O in the Shijuligou copper deposit are between +11.1‰ and +18.6‰, with the calculated δ~(18)O_(H_2O) at +0.65‰. It is suggested that the mineralized fluid is a mixture of magma fluid, meteorological water, and seawater through circulating and leaching metals from the volcanic rocks. The zircon uranium-lead (U-Pb) dating of gabbro is 457.9±1.2 Ma, and the lower crossing age of the discordant and concordia curves of pyroxene spilite of zircon is 454±15 Ma. It is indicated that the Shijuligou deposit formed in a new ocean crust (ophiolite) of the back-arc basin in the late Ordovician. Mineralization should occur in the intermittence period after strong volcanic activity, and the age should be the late Ordovician. Moreover, the mineralization of ophiolite-hosted massive sulfide deposits in the ancient orogenic belt of the late Ordovician in the northern Qilian Mountains was controlled by the primary fault/fracture, with the forming of a metallogenic hydrothermai system by a mixture of volcanic magma fluid and seawater, which circularly leached the metaliogenic metals from the volcanic rocks, resulting in their accumulation. The ore bodies were transformed with morphology and metallogeuic elements. Jasperoid is an important sign for prospecting such deposits. There were many island arcs in the continent of

  3. In vitro bioaccessibility of copper, iron, zinc and antioxidant compounds of whole cashew apple juice and cashew apple fibre (Anacardium occidentale L.) following simulated gastro-intestinal digestion.

    Science.gov (United States)

    de Lima, Ana Cristina Silva; Soares, Denise Josino; da Silva, Larissa Morais Ribeiro; de Figueiredo, Raimundo Wilane; de Sousa, Paulo Henrique Machado; de Abreu Menezes, Eveline

    2014-10-15

    Considering the lack of research studies about nutrients' bioaccessibility in cashew apple, in this study the whole cashew apple juice and the cashew apple fibre were submitted to simulated in vitro gastrointestinal digestion. The samples were analysed before and after digestion and had their copper, iron, zinc, ascorbic acid, total extractable phenols and total antioxidant activity assessed. As a result, for the whole cashew apple juice, the content of copper and iron minerals bioaccessible fraction were 15% and 11.5% and for zinc this level was 3.7%. Regarding the cashew apple fibre, the bioaccessible fraction for these minerals was lower than 5%. The ascorbic acid, total extractable polyphenols and total antioxidant activity bioaccessible fraction for whole cashew apple juice showed bioaccessibility percentages of 26.2%, 39% and 27%, respectively, while for the cashew apple fibre, low bioaccessibles levels were found. The bioacessible percentage of zinc, ascorbic acid and total extractable polyphenols were higher in cashew apple juice than cashew apple fibre. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Lead and zinc geochemical behavior based on geological characteristics in Parkam Porphyry Copper System, Kerman, Iran

    Institute of Scientific and Technical Information of China (English)

    Seyyed; Saeed; Ghannadpour; Ardeshir; Hezarkhani

    2015-01-01

    Parkam(Sarah) porphyry system is located on the metallogenic belt of Kerman, Iran. Due to existence of some copper-rich resources in this region, finding out the exact statistical characteristics such as distribution of data population, mean, variance and data population behavior of elements like Cu, Mo, Pb and Zn is necessary for interpreting their geological behavior. For this reason, precise calculation of statistical characteristics of Pb and Zn grade datasets was performed and results were interpreted geologically. The natures of Pb and Zn distributions were initially identified and their distributions were normalized through statistical treatment. Subsequently, the variograms were calculated for each exploration borehole and show that both Pb and Zn geochemical variates are spatially correlated. According to the similarity of the behavior of Pb and Zn in these calculations, it is decided to measure their exact behavior applying K-means clustering method. K-means clustering results show that the Zn grade varies linearly relative to that of Pb values and their behavior is similar. Based on the geochemical behavior similarity of Pb and Zn, throughout the pervasive secondary hydrothermal activity, they are remobilized in the similar manner, from the deep to the shallow levels of the mineralization zones. However, statistical analysis suggests that hydrothermal activity associated with secondary waters in Parkam is effective in remobilizing and enriching both Pb and Zn since they have similar geochemical characteristics. However, the process does not result in generation of economic concentrations.

  5. Photocatalytic, optical and electrical properties of copper-doped zinc sulfide thin films

    Science.gov (United States)

    Mohamed, S. H.

    2010-01-01

    Thin films of ZnS : Cu nanoparticles were prepared by electron beam evaporation on glass substrates. The Cu content was varied from 0 to 9 at%. XRD examination of the as-prepared films revealed the presence of polycrystalline hexagonal ZnS with preferred orientation depending on the Cu content. As annealing was carried out, grain growth was observed and a new orthorhombic copper sulfate phase emerged. The photocatalytic behaviour of ZnS : Cu was mainly evaluated by measuring the decomposition of methylene blue. The photocatalytic activities were found to decrease with increasing Cu content as well as with increasing annealing temperature. The optical transmittance and reflectance measurements were performed using a spectrophotometer. The spectral transmittance was decreased and the band gap energy was shifted from 3.45 to 3.20 eV with increasing Cu content. The refractive index was determined from transmittance using the Swanepoel method. The refractive index was found to depend on Cu content as well as annealing temperature. A strong decrease in room temperature resistivity was obtained with increasing Cu content. The obtained results are interesting and may find applications in photodegradation of pollutants and future display devices.

  6. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype).

    Science.gov (United States)

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M H; Götz, Birgit; Küpper, Hendrik

    2009-10-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 microm Cu(2+) remained in the nonaccumulator range (hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the "sun reaction" type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here.

  7. Standard Practice for Use of Mattsson's Solution of pH 7.2 to Evaluate the Stress- Corrosion Cracking Susceptibility of Copper-Zinc Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers the preparation and use of Mattsson's solution of pH 7.2 as an accelerated stress-corrosion cracking test environment for brasses (copper-zinc base alloys). The variables (to the extent that these are known at present) that require control are described together with possible means for controlling and standardizing these variables. 1.2 This practice is recommended only for brasses (copper-zinc base alloys). The use of this test environment is not recommended for other copper alloys since the results may be erroneous, providing completely misleading rankings. This is particularly true of alloys containing aluminum or nickel as deliberate alloying additions. 1.3 This practice is intended primarily where the test objective is to determine the relative stress-corrosion cracking susceptibility of different brasses under the same or different stress conditions or to determine the absolute degree of stress corrosion cracking susceptibility, if any, of a particular brass or brass component ...

  8. Consumption of organic diets does not affect intake and absorption of zinc and copper in men-evidence from two cross-over trials

    DEFF Research Database (Denmark)

    Mark, Alicja Budek; Kápolna, Emese; Laursen, Kristian H.;

    2013-01-01

    Agricultural methods may affect the nutritional composition of plants and cause complex changes in the food matrix. Whether this affects the dietary absorption of minerals that are important for maintaining health thorough life remains unclear. We compared the effects of organic and conventional...... diets on intake and absorption of zinc and copper in men. Two double-blinded, cross-over, intervention trials (3 dietary periods of 12 days with 2-week-long wash-out) were performed in 2008 (n = 17) and 2009 (n = 16) in young men. The diets were based on 9 crops grown in rigidly controlled organic......; 12.35 ± 0.47 mg per 10 MJ and 44.6% ± 12.1, respectively) and copper (overall mean ± SD; 2.12 ± 0.28 mg per 10 MJ and 41.2% ± 13.2, respectively) were not different between the organic and conventional diets. The growing season had no effect on zinc intake and absorption, but the copper intake...

  9. Changed Plasma Levels of Zinc and Copper to Zinc Ratio and Their Possible Associations with Parent- and Teacher-Rated Symptoms in Children with Attention-Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Viktorinova, Alena; Ursinyova, Monika; Trebaticka, Jana; Uhnakova, Iveta; Durackova, Zdenka; Masanova, Vlasta

    2016-01-01

    Attention-deficit hyperactivity disorder (ADHD) is associated with alterations in the metabolism of some trace elements which may participate in the pathogenesis of this disorder. The aims of the present study were to investigate the trace element status (copper (Cu), zinc (Zn), copper to zinc ratio (Cu/Zn ratio), selenium (Se), and lead (Pb)) of ADHD children and compare them with the control group. Associations between examined elements and ratings of ADHD symptoms were also assessed. Fifty-eight ADHD children and 50 healthy children (aged 6-14 years) were included in the study. The concentrations of Cu, Zn, and Se in the plasma and Pb in the whole blood were measured by atomic absorption spectrometry. We found lower Zn level (p = 0.0005) and higher Cu/Zn ratio (p = 0.015) in ADHD children when compared with the control group. Copper levels in ADHD children were higher than those in the control group, but not significantly (p > 0.05). No significant differences in levels of Se and Pb between both groups were found. Zinc levels correlated with parent-rated score for inattention (r = -0.231, p = 0.029) as well as with teacher-rated score for inattention (r = -0.328, p = 0.014). Cu/Zn ratio correlated with teacher-rated score for inattention (r = 0.298, p = 0.015). Significant associations of Se and Pb with parent- and teacher-rated symptoms were not observed. The results of this study indicate that there are alterations in plasma levels of Cu and Zn as well as significant relationships to symptoms of ADHD.

  10. Determination of silver, gold, zinc and copper in mineral samples by various techniques of instrumental neutron activation analysis; Determinacion de plata, oro, zinc y cobre en muestras minerales mediante diversas tecnicas de analisis por activacion de neutrones instrumental

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez R, N. I.; Rios M, C.; Pinedo V, J. L. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Yoho, M.; Landsberger, S., E-mail: neisla126@hotmail.com [University of Texas at Austin, Nuclear Engineering Teaching Laboratory, Austin 78712, Texas (United States)

    2015-09-15

    Using the method of instrumental neutron activation analysis, mineral exploration samples were analyzed in order to determine the concentrations of silver, gold, zinc and copper; these minerals being the main products of benefit of Tizapa and Cozamin mines. Samples were subjected to various techniques, where the type of radiation and counting methods were chosen based on the specific isotopic characteristics of each element. For calibration and determination of concentrations the comparator method was used, certified standards were subjected to the same conditions of irradiation and measurement that the prospecting samples. The irradiations were performed at the research reactor TRIGA Mark II of the University of Texas at Austin. The silver concentrations were determined by Cyclical Epithermal Neutron Activation Analysis. This method in combination with the transfer pneumatic system allowed a good analytical precision and accuracy in prospecting for silver, from photo peak measurement 657.7 keV of short half-life radionuclide {sup 110}Ag. For the determination of gold and zinc, Epithermal Neutron Activation Analysis was used, the photo peaks analyzed corresponded to the energies 411.8 keV of radionuclide {sup 199}Au and 438.6 keV of metastable radionuclide {sup 69m}Zn. On the other hand, copper quantification was based on the photo peak analysis of 1039.2 keV produced by the short half-life radionuclide {sup 66}Cu, by Thermal Neutron Activation Analysis. The photo peaks measurement corresponding to gold, zinc and copper was performed using a Compton suppression system, which allowed an improvement in the signal to noise relationship, so that better detection limits and low uncertainties associated with the results were obtained. Comparing elemental concentrations the highest values in silver, zinc and copper was for samples of mine Tizapa. Regarding gold values were found in the same range for both mines. To evaluate the precision and accuracy of the methods used

  11. Soil Copper and Zinc Accumulation and Bioavailability under a Long Term Vineyard Cultivation in South Italy

    Directory of Open Access Journals (Sweden)

    Anna Maria Corea

    2007-03-01

    Full Text Available Soil metal contamination, particularly by copper, is a phenomenon which often occurs in the surface layer of vineyard soils, due to the widespread application of Cu-based products in the plant disease management. Our study was focused on soil Cu and Zn accumulation and bioavailability as related to some soil properties under a long term vineyard cultivation, in a D.O.C. wine area of South Italy (Calabria region. Soils selected from different landscape units, ranging from acid to alkaline, under homogeneous climate conditions and vineyard management system, were investigated. Each soil was sampled in both a vineyard and a fallow area, at the depth levels of 0-10 cm, 10-25 cm and 25-50 cm. The experimental data were analysed by ANOVA, correlation and multiple stepwise regression procedures. As expected, the results indicated a contamination of the vineyard soils by Cu due to the repeated application of Cu-based products in the plant disease control, with increments of total Cu content up to 150% against the fallow soils. On the contrary, the results led to exclude any soil Zn pollution due to the vineyard management and to suppose a main pedogenic origin for this metal. According to the relationships between Cu content and soil properties, Cu accumulation was promoted by higher pH, clay and organic matter contents. These soil properties also showed a strong influence on metal bioavailability, which underwent a significant reduction in soils with higher pH and clay contents. A further result of great significance was the adverse impact of soil erosion, enhanced by the application of not suitable management systems in hilly areas, on soil capability to retain polluting metals. Soil pH, organic matter content and texture, as well as soil management system, are key factors in soil capability to limit polluting metal dispersion in the environment.

  12. Soil Copper and Zinc Accumulation and Bioavailability under a Long Term Vineyard Cultivation in South Italy

    Directory of Open Access Journals (Sweden)

    Anna Maria Corea

    2011-02-01

    Full Text Available Soil metal contamination, particularly by copper, is a phenomenon which often occurs in the surface layer of vineyard soils, due to the widespread application of Cu-based products in the plant disease management. Our study was focused on soil Cu and Zn accumulation and bioavailability as related to some soil properties under a long term vineyard cultivation, in a D.O.C. wine area of South Italy (Calabria region. Soils selected from different landscape units, ranging from acid to alkaline, under homogeneous climate conditions and vineyard management system, were investigated. Each soil was sampled in both a vineyard and a fallow area, at the depth levels of 0-10 cm, 10-25 cm and 25-50 cm. The experimental data were analysed by ANOVA, correlation and multiple stepwise regression procedures. As expected, the results indicated a contamination of the vineyard soils by Cu due to the repeated application of Cu-based products in the plant disease control, with increments of total Cu content up to 150% against the fallow soils. On the contrary, the results led to exclude any soil Zn pollution due to the vineyard management and to suppose a main pedogenic origin for this metal. According to the relationships between Cu content and soil properties, Cu accumulation was promoted by higher pH, clay and organic matter contents. These soil properties also showed a strong influence on metal bioavailability, which underwent a significant reduction in soils with higher pH and clay contents. A further result of great significance was the adverse impact of soil erosion, enhanced by the application of not suitable management systems in hilly areas, on soil capability to retain polluting metals. Soil pH, organic matter content and texture, as well as soil management system, are key factors in soil capability to limit polluting metal dispersion in the environment.

  13. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Science.gov (United States)

    Xue, Yanfang; Yue, Shanchao; Zhang, Wei; Liu, Dunyi; Cui, Zhenling; Chen, Xinping; Ye, Youliang; Zou, Chunqin

    2014-01-01

    The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N) levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively) were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60%) and decreased Zn concentrations in straw (a 56% decrease) and grain (decreased from 16.9 to 12.2 mg kg-1) rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively). The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  14. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Directory of Open Access Journals (Sweden)

    Yanfang Xue

    Full Text Available The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn, iron (Fe, manganese (Mn and copper (Cu in maize (Zea mays L. were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain. Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60% and decreased Zn concentrations in straw (a 56% decrease and grain (decreased from 16.9 to 12.2 mg kg-1 rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively. The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  15. Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings.

    Science.gov (United States)

    Shi, Xiang; Zhang, Xiaolei; Chen, Guangcai; Chen, Yitai; Wang, Ling; Shan, Xiaoquan

    2011-01-01

    A greenhouse pot experiment was conducted to evaluate the potential of selected woody plants for revegetation in copper (Cu) and lead/zinc (Pb/Zn) mine tailing areas. Five woody species (Amorpha fruticosa Linn, Vitex trifolia Linn. var. simplicifolia Cham, Glochidion puberum (Linn.) Hutch, Broussonetia papyrifera, and Styrax tonkinensis) and one herbaceous species (Sesbania cannabina Pers) were planted in Cu and Pb/Zn tailings to assess their growth, root morphology, nutrition uptake, metal accumulation, and translocation in plants. Amorpha fruticosa maintained normal growth, while the other species demonstrated stress related growth and root development. Sesbania cannabina showed the highest biomass among the plants, although it decreased by 30% in Cu tailings and 40% in Pb/Zn tailings. Calculated tolerance index (TI) values suggested that A. fruticosa, an N-fixing shrub, was the most tolerant species to both tailings (TI values 0.92-1.01), while S. cannabina had a moderate TI of 0.65-0.81 and B. papyrifera was the most sensitive species, especially to Pb/Zn tailings (TI values 0.15-0.19). Despite the high concentrations of heavy metals in the mine tailings and plants roots, only a small transfer of these elements to the aboveground parts of the woody plants was evident from the low translocation factor (TF) values. Among the woody plants, V. trifolia var. simplicifolia had the highest TF values for Zn (1.32), Cu (0.78), and Pb/Zn (0.78). The results suggested that A. fruticosa and S. cannabina, which have the highest tolerance and biomass production, respectively, demonstrated the potential for tailings revegetation in southern China.

  16. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2007-04-01

    The present study focuses on the conversion of heavy metals involved in molten incineration fly ashes to metal sulfides which could be thereafter separated by flotation. The sulfidation treatment was carried out for five molten incineration fly ashes (Fly ash-A to Fly ash-E) by contacting each fly ash with Na(2)S solution for a period of 10 min to 6h. The initial molar ratio of S(2-) to Me(2+) was adjusted to 1.20. The conversion of heavy metals to metal sulfides was evaluated by measuring the S(2-) residual concentrations using an ion selective electrode. The formation of metal sulfides was studied by XRD and SEM-EDS analyses. In the case of Fly ash-A to Fly ash-D, more than 79% of heavy metals of zinc, lead and copper was converted to metal sulfides within the contacting period of 0.5h owing to a fast conversion of metal chlorides to metal sulfides. By contrast, the conversion of about 35% was achieved for Fly ash-E within the same contacting period, which was attributed to a high content of metal oxides. Further, the S(2-) to Me(2+) molar ratio was reduced to 1.00 to minimize Na(2)S consumption and the conversions obtained within the contacting period of 0.5h varied from 76% for Fly ash-D to 91% for Fly ash-C. Finally, soluble salts such as NaCl and KCl were removed during the sulfidation treatment, which brought about a significant enrichment in metals content by a factor varying from 1.5 for Fly ash-D to 4.9 for Fly ash-A.

  17. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in the equine liver and kidneys.

    Science.gov (United States)

    Paßlack, Nadine; Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Neumann, Konrad; Zentek, Jürgen

    2014-01-01

    The concentrations of specific elements in the equine liver and kidneys are of practical relevance since horses are not only food-producing animals, but also partially serve as an indicator for the environmental pollution, as the basic feed includes plants like grass, grain and fruits. In this study, the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se) and lead (Pb) were measured in the liver, renal cortex and renal medulla of 21 horses (8 male; 13 female; aged between 5 months-28 years), using inductively coupled plasma mass spectrometry. Comparable Cu and Zn concentrations were detected in the liver and renal cortex, while approximately 50% lower concentrations were measured in the renal medulla. The lowest Sr, Cd and Se, but the highest Mn, Sb and Pb concentrations were measured in the liver. The Ba concentrations were comparable in the renal cortex and medulla, but lower in the liver of the horses. Gender-related differences were observed for Cd, Mn and Cr, with higher Cd concentrations in the liver, but lower Mn concentrations in the renal cortex and lower Cr concentrations in the renal medulla of female horses. Age-related differences were detected for most measured elements, however, the animal number per age-group was only low. In conclusion, the present study provides important reference data for the storage of Sr, Ba, Cd, Cu, Zn, Mn, Cr, Sb, Se and Pb in the liver and kidneys of horses, which are of practical relevance for an evaluation of the exposure of horses to these elements, either via feed or the environment.

  18. Mineralogic, fluid inclusion, and sulfur isotope evidence for the genesis of Sechangi lead-zinc (-copper) deposit, Eastern Iran

    Science.gov (United States)

    Malekzadeh Shafaroudi, Azadeh; Karimpour, Mohammad Hassan

    2015-07-01

    The Sechangi lead-zinc (-copper) deposit lies in the Lut block metallogenic province of Eastern Iran. This deposit consists of ore-bearing vein emplaced along fault zone and hosted by Late Eocene monzonite porphyry. Hydrothermal alteration minerals developed in the wall rock include quartz, kaolinite, illite, and calcite. Microscopic studies reveal that the vein contains galena and sphalerite with minor chalcopyrite and pyrite as hypogene minerals and cerussite, anglesite, covellite, malachite, hematite, and goethite as secondary minerals. Fluorite and quartz are the dominant gangue minerals and show a close relationship with sulfide mineralization. Calculated δ34S values for the ore fluid vary between -9.9‰ and -5.9‰. Sulfur isotopic compositions suggest that the ore-forming aqueous solutions were derived from magmatic source and mixed with isotopically light sulfur, probably leached from the volcanic and plutonic country rocks. Microthermometric study of fluid inclusions indicates homogenization temperatures of 151-352 °C. Salinities of ore-forming fluids ranged from 0.2 to 16.5 wt.% NaCl equivalent. The ore-forming fluids of the Sechangi deposit are medium- to low-temperature and salinity. Fluid mixing may have played an important role during Pb-Zn (-Cu) mineralization. The key factors allowing for metal transport and precipitation during ore formation include the sourcing of magmatic fluids with high contents of metallogenic elements and the mixing of these hydrothermal fluids with meteoric waters resulting in the formation of deposit. In terms of the genetic type of deposit, the Sechangi is classified as a volcanic-subvolcanic hydrothermal-related vein deposit.

  19. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues.

    Science.gov (United States)

    Sethurajan, Manivannan; Huguenot, David; Lens, Piet N L; Horn, Heinrich A; Figueiredo, Luiz H A; van Hullebusch, Eric D

    2016-07-15

    Zinc plant purification residue (ZPR), a typical Zn-hydrometallurgical waste, was collected from the Três Marias Zn plant (MG, Brazil). ZPR was characterized for its metal content and fractionation, mineralogy, toxicity and leachability. Toxicity characteristics leaching procedure (TCLP) and European Community Bureau of Reference (BCR) sequential extraction results revealed that this ZPR displays high percentages of metals (Cd, Cu, Zn and Pb) in the highly mobilizable fractions, increasing its hazardous potential. Bulk chemical analysis, pH dependent leaching and acid (H2SO4) leaching studies confirm that the ZPR is polymetallic, rich in Cd, Cu and Zn. The sulfuric acid concentration (1 M), agitation speed (450 rpm), temperature (40 °C) and pulp density (20 g L(-1)) were optimized to leach the maximum amount of heavy metals (Cd, Cu and Zn). Under optimum conditions, more than 50%, 70% and 60% of the total Cd, Cu and Zn present in the ZPR can be leached, respectively. The metals in the acid leachates were investigated for metal sulfide precipitation with an emphasis on selective Cu recovery. Metal sulfide precipitation process parameters such as initial pH and Cu to sulfide ratio were optimized as pH 1.5 and 1:0.5 (Cu:sulfide) mass ratio, respectively. Under optimum conditions, more than 95% of Cu can be selectively recovered from the polymetallic ZPR leachates. The Cu precipitates characterization studies reveal that they are approximately 0.1 μm in diameter and mainly consist of Cu and S. XRD analysis showed covellite (CuS), chalcanthite (CuSO4·5H2O) and natrochalcite (NaCu2(SO4)2(OH)·H2O) as the mineral phases. ZPRs can thus be considered as an alternative resource for copper production.

  20. The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of Salmonella choleraesuis.

    Science.gov (United States)

    Sansone, Assunta; Watson, Patricia R; Wallis, Timothy S; Langford, Paul R; Kroll, J Simon

    2002-03-01

    Periplasmic copper- and zinc-cofactored superoxide dismutases ([Cu,Zn]-SODs, SodC) of several Gram-negative pathogens can protect against superoxide-radical-mediated host defences, and thus contribute to virulence. This role has been previously defined for one [Cu,Zn]-SOD in various Salmonella serovars. Following the recent discovery of a second periplasmic [Cu,Zn]-SOD in Salmonella, the effect of knockout mutations in one or both of the original sodC-1 and the new sodC-2 on the virulence of the porcine pathogen Salmonella choleraesuis is investigated here. In comparison to wild-type, while sodC mutants--whether single or double--showed no impairment in growth, they all showed equally enhanced sensitivity to superoxide and a dramatically increased sensitivity to the combination of superoxide and nitric oxide in vitro. This observation had its correlate in experimental infection both ex vivo and in vivo. Mutation of sodC significantly impaired survival of S. choleraesuis in interferon gamma-stimulated murine macrophages compared to wild-type organisms, and all S. choleraesuis sodC mutants persisted in significantly lower numbers than wild-type in BALB/c (Ity(s)) and C3H/HeN (Ity(r)) mice after experimental infection, but in no experimental system were sodC-1 sodC-2 double mutants more attenuated than either single mutant. These data suggest that both [Cu,Zn]-SODs are needed to protect bacterial periplasmic or membrane components. While SodC plays a role in S. choleraesuis virulence, the data presented here suggest that this is through overcoming a threshold effect, probably achieved by acquisition of sodC-1 on a bacteriophage. Loss of either sodC gene confers maximum vulnerability to superoxide on S. choleraesuis.

  1. Molecular characterization of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta.

    Science.gov (United States)

    Shin, Seung-Yong; Lee, Haeng-Soon; Kwon, Suk-Yoon; Kwon, Soon-Tae; Kwak, Sang-Soo

    2005-01-01

    Superoxide dismutase (SOD) cDNA, mSOD2, encoding cytosolic copper/zinc SOD (CuZnSOD) cDNA was isolated from suspension-cultured cells of cassava (Manihot esculenta Crantz) by cDNA library screening, and its expression was investigated in relation to environmental stress. mSOD2 is 774 bp in length with an open reading frame (ORF) of 152 amino acids, corresponding to a protein of predicted molecular mass 15 kDa and a pI of 5.22. One copy of the mSOD2 gene was found to be present in the cassava genome by Southern analysis using an mSOD2 cDNA-specific probe. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed diverse expression patterns for the mSOD2 gene in various tissues of intact cassava plants, at various stages of the growth in suspension cultures, and in the leaf tissues exposed to different stresses. The mSOD2 gene was highly expressed in suspension-cultured cells and in the stems of intact plants. However, it was expressed at low levels in leaves and roots. During suspension cell growth, the mSOD2 transcript progressively increased during culture. Moreover, the mSOD2 gene in excised cassava leaves responded to various stresses in different ways. In particular, it was highly induced in leaf tissue by several abiotic stresses, including high temperature (37 degrees C), chilling (4 degrees C), methyl viologen (MV) exposure, and wounding treatment. These results indicate that the mSOD2 gene is involved in the antioxidative process triggered by oxidative stress induced by environmental change.

  2. Copper, zinc, calcium and magnesium content of alcoholic beverages and by-products from Spain: nutritional supply.

    Science.gov (United States)

    Navarro-Alarcon, M; Velasco, C; Jodral, A; Terrés, C; Olalla, M; Lopez, H; Lopez, M C

    2007-07-01

    Levels of copper, zinc, calcium and magnesium were measured in alcoholic beverages (whiskies, gins, rums, liquors, brandies, wines and beers) and by-products (non-alcoholic liquors and vinegars) using flame atomic absorption spectrometry (FAAS). Mineral concentrations were found to be significantly different between the nine alcoholic and non-alcoholic by-products studied (p < 0.001). In distilled alcoholic beverages, concentrations measured in rums and brandies were statistically lower than those determined in gins and alcoholic liquors (p = 0.001). For Cu, measured concentrations were statistically different for each of the five groups of distilled alcoholic beverages studied (p < 0.001). In fermented beverages, Zn, Ca and Mg levels were significantly higher than those concentrations determined in distilled drinks (p < 0.005). Contrarily, Cu concentrations were statistically lower (p < 0.001). Wines designated as sherry had significantly higher Ca and Mg levels (p < 0.005). White wines had significantly higher Ca and Zn levels (p < 0.05) compared with red wines and, contrarily, Cu concentrations were significantly lower (p < 0.005). In wine samples and corresponding by-products (brandy and vinegar), statistical differences were established for all minerals analysed (p < 0.01). Remarkably, for Cu, the concentrations determined in brandies were statistically higher. On the basis of element levels and the official data on consumption of alcoholic beverages and by-products in Spain, their contribution to the daily dietary intake (DDI) was calculated to be 124.6 microg Cu day(-1) and 193.3 microg Zn day(-1), 40.3 mg Ca day(-1) and 19.9 mg Mg day(-1). From all studied elements, Cu was the one for which alcoholic beverages constitute a significant source (more than 10% of recommended daily intake). These findings are of potential use to food composition tables.

  3. Synthesis and antibacterial activity of cephradine metal complexes : part II complexes with cobalt, copper, zinc and cadmium.

    Science.gov (United States)

    Sultana, Najma; Arayne, M Saeed; Afzal, M

    2005-01-01

    Cephradine, the first generation cephalosporin, is active against a wide range of Gram-positive and Gram-negative bacteria including penicillinase-producing Staphylococci. Since the presence of complexing ligand may affect the bioavailability of a metal in the blood or tissues, therefore, in order to study the probable interaction of cephradine with essential and trace elements present in human body, cephradine has been reacted with cobalt, copper, zinc and cadmium metal halides in L:M ratio of 2:1 in methanol and the products recrystallized from suitable solvents to pure crystals of consistent melting points. Infrared and ultraviolet studies of these complexes were carried out and compared with ligand. Magnetic susceptibility studies of these complexes were also carried out showing their paramagnetic behavior. From the infra red studies and elemental analysis of the complexes, it has been shown that the drug molecule serves as a bidentate ligand coordinating through both its carboxylate at C-3 and beta-lactam nitrogen and the metal having a square planar or octahedral geometry. To evaluate the changes in microbiological activity of cephradine after complexation, antibacterial studies were carried out by observing the changes in MIC (minimum inhibitory concentration) of the complexes and compared with the parent drug by measuring the zone of inhibition of complexes and compared with the parent cephalosporin against both Gram-positive and Gram-negative organisms. For MIC observation, serial dilution method was employed and zone series were determined by disk diffusion method. Our investigations reveal that formation of complexes results in decrease in antibacterial activity of cephradine and MIC values are increased.

  4. In vitro DNA binding studies of the sweetening agent saccharin and its copper(II) and zinc(II) complexes.

    Science.gov (United States)

    Icsel, Ceyda; Yilmaz, Veysel T

    2014-01-05

    The interactions of fish sperm DNA (FS-DNA) with the sodium salt of sweetener saccharin (sacH) and its copper and zinc complexes, namely [M(sac)2(H2O)4]·2H2O (M=Cu(II) or Zn(II)) were studied by using UV-Vis titration, fluorometric competition, thermal denaturation, viscosity and gel electrophoresis measurements. The intrinsic binding constants (Kb) obtained from absorption titrations were estimated to be 2.86 (±0.06)×10(4)M(-1) for Na(sac), 6.67 (±0.12)×10(4)M(-1) for Cu-sac and 4.01 (±0.08)×10(4)M(-1) for Zn-sac. The Cu-sac complex binds to FS-DNA via intercalation with a KA value of 50.12 (±0.22)×10(4)M(-1) as evidenced by competitive binding studies with ethidium bromide. Moreover, competition experiments with Hoechst 33258 are indicative of a groove binding mode of Na(sac) and Zn-sac with binding constants of 3.13 (±0.16)×10(4)M(-1) and 5.25 (±0.22)×10(4)M(-1), respectively. The spectroscopic measurements indicate a moderate DNA binding affinity of Na(sac) and its metal complexes. The suggested binding modes are further confirmed by the thermal denaturation and viscosity measurements. In addition, Cu-sac and Zn-sac show weak ability to damage to pBR322 supercoiled plasmid DNA.

  5. (Bi)sulfite Oxidation by Copper,Zinc-Superoxide Dismutase: Sulfite-Derived, Radical-Initiated Protein Radical Formation

    Science.gov (United States)

    Ranguelova, Kalina; Bonini, Marcelo G.; Mason, Ronald P.

    2010-01-01

    Background Sulfur dioxide, formed during the combustion of fossil fuels, is a major air pollutant near large cities. Its two ionized forms in aqueous solution, sulfite and (bi)sulfite, are widely used as preservatives and antioxidants to prevent food and beverage spoilage. (Bi)sulfite can be oxidized by peroxidases to form the very reactive sulfur trioxide anion radical (•SO3−). This free radical further reacts with oxygen to form the peroxymonosulfate anion radical (−O3SOO•) and sulfate anion radical (SO4• −). Objective To explore the critical role of these radical intermediates in further oxidizing biomolecules, we examined the ability of copper,zinc-superoxide dismutase (Cu,Zn-SOD) to initiate this radical chain reaction, using human serum albumin (HSA) as a model target. Methods We used electron paramagnetic resonance, optical spectroscopy, oxygen uptake, and immuno-spin trapping to study the protein oxidations driven by sulfite-derived radicals. Results We found that when Cu,Zn-SOD reacted with (bi)sulfite, •SO3− was produced, with the concomitant reduction of SOD-Cu(II) to SOD-Cu(I). Further, we demonstrated that sulfite oxidation mediated by Cu,Zn-SOD induced the formation of radical-derived 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin-trapped HSA radicals. Conclusions The present study suggests that protein oxidative damage resulting from (bi)sulfite oxidation promoted by Cu,Zn-SOD could be involved in oxidative damage and tissue injury in (bi)sulfite-exacerbated allergic reactions. PMID:20348042

  6. Galvanic zinc-copper microparticles produce electrical stimulation that reduces the inflammatory and immune responses in skin.

    Science.gov (United States)

    Kaur, Simarna; Lyte, Peter; Garay, Michelle; Liebel, Frank; Sun, Ying; Liu, Jue-Chen; Southall, Michael D

    2011-10-01

    The human body has its own innate electrical system that regulates the body's functions via communications among organs through the well-known neural system. While the effect of low-level electrical stimulation on wound repair has been reported, few studies have examined the effect of electric potential on non-wounded, intact skin. A galvanic couple comprised of elemental zinc and copper was used to determine the effects of low-level electrical stimulation on intact skin physiology using a Dermacorder device. Zn-Cu induced the electrical potential recorded on intact skin, enhanced H(2)O(2) production and activated p38 MAPK and Hsp27 in primary keratinocytes. Treatment with Zn-Cu was also found to reduce pro-inflammatory cytokines, such as IL-1α, IL-2, NO and TNF-α in multiple cell types after stimulation with PHA or Propionibacterium acnes bacteria. The Zn-Cu complex led to a dose-dependent inhibition of TNF-α-induced NF-κB levels in keratinocytes as measured by a dual-luciferase promoter assay, and prevented p65 translocation to the nucleus observed via immunofluorescence. Suppression of NF-κB activity via crosstalk with p38 MAPK might be one of the potential pathways by which Zn-Cu exerted its inflammatory effects. Topical application of Zn-Cu successfully mitigated TPA-induced dermatitis and oxazolone-induced hypersensitivity in mice models of ear edema. Anti-inflammatory activity induced by the Zn-Cu galvanic couple appears to be mediated, at least in part, by production of low level of hydrogen peroxide since this activity is reversed by the addition of Catalase enzyme. Collectively, these results show that a galvanic couple containing Zn-Cu strongly reduces the inflammatory and immune responses in intact skin, providing evidence for the role of electric stimulation in non-wounded skin.

  7. Copper and Zinc Ions Specifically Promote Nonamyloid Aggregation of the Highly Stable Human γ-D Crystallin.

    Science.gov (United States)

    Quintanar, Liliana; Domínguez-Calva, José A; Serebryany, Eugene; Rivillas-Acevedo, Lina; Haase-Pettingell, Cameron; Amero, Carlos; King, Jonathan A

    2016-01-15

    Cataract is the leading cause of blindness in the world. It results from aggregation of eye lens proteins into high-molecular-weight complexes, causing light scattering and lens opacity. Copper and zinc concentrations in cataractous lens are increased significantly relative to a healthy lens, and a variety of experimental and epidemiological studies implicate metals as potential etiological agents for cataract. The natively monomeric, β-sheet rich human γD (HγD) crystallin is one of the more abundant proteins in the core of the lens. It is also one of the most thermodynamically stable proteins in the human body. Surprisingly, we found that both Cu(II) and Zn(II) ions induced rapid, nonamyloid aggregation of HγD, forming high-molecular-weight light-scattering aggregates. Unlike Zn(II), Cu(II) also substantially decreased the thermal stability of HγD and promoted the formation of disulfide-bridged dimers, suggesting distinct aggregation mechanisms. In both cases, however, metal-induced aggregation depended strongly on temperature and was suppressed by the human lens chaperone αB-crystallin (HαB), implicating partially folded intermediates in the aggregation process. Consistently, distinct site-specific interactions of Cu(II) and Zn(II) ions with the protein and conformational changes in specific hinge regions were identified by nuclear magnetic resonance. This study provides insights into the mechanisms of metal-induced aggregation of one of the more stable proteins in the human body, and it reveals a novel and unexplored bioinorganic facet of cataract disease.

  8. Trace elements in the human endometrium. I. Zinc, copper, manganese, sodium and potassium concentrations at various phases of the normal menstrual cycle.

    Science.gov (United States)

    Hagenfeldt, K; Plantin, L O; Diczfalusy, E

    1970-11-01

    The cyclic variations in the content of 5 trace elements in the normal human endometrium were studied by means of neutron activation analysis. The concentrations of zinc, copper, manganese, sodium, and potassium were measured in endometrial biopsy specimens taken from 6 healthy, normally menstruating volunteers from 10 to 32 years of age. 4 specimens were obtained from each during 4 consecutive cycles in the following phases: a) early proliferative (Days 6-10); late proliferative (Days 11-14); c) early secretory (Days 15-18); and d) late secretory Days 22-27). Biopsies were taken with a Novak type suction curette without anesthesia and without dilation of the cervix. Chemical methodology is described. An analysis of variance of the data revealed that in the early proliferative phase the human endometrium is characterized by significantly elevated concentrations of manganese (p greater than .001), sodium (p greater than .01), and potassium (p greater than .001). However, the late secretory endometrium is characterized by a highly significant rise in its zinc concentration (p greater than .001), accompanied by a highly significantly decreased concentration of sodium (p greater than .001) and potassium (p greater than .001). The copper concentration of the secretory endometria was significantly higher than that of the proliferative endometria (p greater than .001). The significance of the findings was the same whether values were expressed per g protein or per g wet tissue. It is suggested that the high concentrations of zinc and copper associated with low levels of manganese, sodium, and potassium at the expected time of implantation may be a reflection of changes in endometrial enzyme activities. Investigations are in progress to explore this possibility.

  9. Copper and zinc fractionation in apple orchard soil in the village of Bukevje (Croatia) using the revised four-step BCR extraction procedure.

    Science.gov (United States)

    Medunić, Gordana; Juranović Cindrić, Iva; Lovrenčić Mikelić, Ivanka; Tomašić, Nenad; Balen, Dražen; Oreščanin, Višnja; Kampić, Štefica; Ivković, Ivana

    2013-12-01

    The aim of this study was to establish the fractionation of copper and zinc in a small apple orchard using the revised (four-step) Bureau Communautaire de Référence (BCR) sequential extraction procedure and assess their potential mobility in soil. Soil samples were collected at the depth of 10 cm to 25 cm, sixteen from the orchard and five control samples from a meadow located some 200 m away from the orchard. As the distribution of trace-element concentrations in the control samples was normal, they were used for comparison as background levels. We also determined soil mineralogical composition, carbonate content, soil pH, cation exchange capacity, and soil organic matter. The extraction yields of Cu and Zn from the control soil were lower than from the orchard soil (25% vs. 34% and 47% vs. 52%, respectively), which pointed to natural processes behind metal bonding in the control soil and greater influence of man-made activities in the orchard soil. Compared to control, the orchard soil had significantly higher concentrations of total Cu (P=0.0009), possibly due to the application of Cu-based fungicides. This assumption was further supported by greater speciation variability of Cu than of zinc, which points to different origins of the two, Cu from pesticides and Zn from the parent bedrock. Copper levels significantly better (P=0.01) correlated with the oxidisable fraction of the orchard soil than of control soil. Residual and organically bound copper and zinc constituted the most important fractions in the studied soils. However, the use of Cu-based fungicides in the apple orchard did not impose environmental and health risk from Cu exposure.

  10. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium.

    Science.gov (United States)

    Ognik, Katarzyna; Stępniowska, Anna; Cholewińska, Ewelina; Kozłowski, Krzysztof

    2016-09-01

    Copper nanoparticles used as a dietary supplement for poultry could affect the absorption of mineral elements. Hence the aim of the study was to determine the effect of administration of copper nanoparticles to chickens in drinking water on intestinal absorption of iron, zinc, and calcium. The experiment was carried out on 126 chicks assigned to seven experimental groups of 18 birds each (3 replications of 6 individuals each). The control group (G-C) did not receive copper nanoparticles. Groups: Cu-5(7), Cu-10(7), and Cu-15(7) received gold nanoparticles in their drinking water in the amounts of 5 mg/L for group Cu-5(7), 10 mg/L for group Cu-10(7), and 15 mg/L for group Cu-15(7) during 8 to 14, 22 to 28, and 36 of 42 days of the life of the chicks. The birds in groups Cu-5(3), Cu-10(3), and Cu-15(3) received copper nanoparticles in the same amounts, but only during 8 to 10, 22 to 24, and 36 to 38 days of life. Blood for analysis was collected from the wing vein of all chicks at the age of 42 days. After the rearing period (day 42), six birds from each experimental group with body weight similar to the group average were slaughtered. The carcasses were dissected and samples of the jejunum were collected for analysis of absorption of selected minerals. Mineral absorption was tested using the in vitro gastrointestinal sac technique. Oral administration of copper nanoparticles to chickens in the amount of 5, 10, and 15 mg/L led to accumulation of this element in the intestinal walls. The highest level of copper nanoparticles applied increased Cu content in the blood plasma of the birds. The in vitro study suggests that copper accumulated in the intestines reduces absorption of calcium and zinc, but does not affect iron absorption. © 2016 Poultry Science Association Inc.

  11. Comparison of plasma vitamin A and E, copper and zinc levels in free-ranging and captive greater flamingos (Phoenicopterus roseus) and their relation to pododermatitis.

    Science.gov (United States)

    Wyss, F; Wolf, P; Wenker, C; Hoby, S; Schumacher, V; Béchet, A; Robert, N; Liesegang, A

    2014-12-01

    Pododermatitis is a worldwide problem in captive flamingos. Studies in domestic poultry showed that nutrition is a possible influencing factor for pododermatitis. Vitamin A and E, copper and zinc levels were analysed in two different diets (diet 1 = in-house mix and diet 2 = commercial diet) and in plasma of captive greater flamingos fed these diets and compared to those of free-ranging greater flamingos. Results were analysed with respect to type and severity of foot lesions of the individuals from the different groups. Juvenile and subadult/adult captive flamingos on diet 1 showed various types and severities of foot lesions, whereas no foot lesions were found at the time of blood sampling in juvenile captive flamingos on diet 2. Juvenile captive flamingos on diet 1 had significantly lower plasma zinc levels than juvenile captive flamingos on diet 2 and juvenile free-ranging flamingos; data were also lower than reference ranges for flamingos, poultry and cranes. There were no significant differences in plasma vitamin A, vitamin E, copper or zinc levels between animals with different types of foot lesions or with different severity scores. Shortly after the change to diet 2 (fed to juvenile captive flamingos that did not show any foot lesion), the flooring of the outdoor water pools was covered with fine granular sand. Because both factors (nutrition and flooring) were changed during the same evaluation period, it cannot be concluded which factor contributed in what extent to the reduction of foot lesions. While it is assumed that low plasma zinc levels identified in the group of juvenile captive flamingos on diet 1 were not directly responsible for foot lesions observed in these animals, they may have played a role in altering the skin integrity of the feet and predisposing them to pododermatitis. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  12. Binding of transition metal ions [cobalt, copper, nickel and zinc] with furanyl-, thiophenyl-, pyrrolyl-, salicylyl- and pyridyl-derived cephalexins as potent antibacterial agents.

    Science.gov (United States)

    Chohan, Zahid H; Pervez, Humayun; Khan, Khalid Mohammed; Rauf, A; Supuran, Claudiu T

    2004-02-01

    A method is described for the preparation of novel cephalexin-derived furanyl-, thiophenyl-, pyrrolyl-, salicylyl- and pyridyl-containing compounds showing potent antibacterial activity. The binding of these newly synthesized antibacterial agents with metal ions such as cobalt(II), copper(II), nickel(II) and zinc(II) has been studied and their inhibitory properties against various bacterial species such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae are also reported. These results suggest that metal ions to possess an important role in the designing of metal-based antibacterials and that such complexes are more effective against infectious diseases compared to the uncomplexed drugs.

  13. Cadmium, copper, lead and zinc in cultured oysters under two contrasting climatic conditions in coastal lagoons from SE Gulf of California, Mexico.

    Science.gov (United States)

    Osuna-Martínez, Carmen C; Páez-Osuna, Federico; Alonso-Rodríguez, Rosalba

    2011-09-01

    In order to determine the metal concentrations in cultured oysters from four coastal lagoons from SE Gulf of California, several individuals of Crassostrea gigas and C. corteziensis were collected and their cadmium, copper, lead and zinc levels were measured by atomic absorption spectrometry after acid digestion. The concentration of metals in oyster soft tissue was Zn > Cu > Cd > Pb. In two lagoons, Cd concentrations (10.1-13.5 μg g(-1) dw) exceeded the maximum level allowed according to the Official Mexican Standard (NOM-031-SSA1-1993), which is equivalent to the WHO recommended Cd levels in organisms used for human consumption.

  14. 锌铜法加工无铅皮蛋技术%Studies on processing technology of lead-free preserved egg with zinc and copper salt

    Institute of Scientific and Technical Information of China (English)

    张献伟; 郭善广; 蒋爱民; 张佳玲

    2011-01-01

    以新鲜鸭蛋为试材,采用浸泡法工艺,研究NaOH浓度及金属盐种类与用量对皮蛋加工品质的影响,探讨锌法、铜法和锌铜混合法加工皮蛋的可行性.结果表明:单独使用Zn、Cu,时,浸液NaOH浓度对皮蛋加工具有重大影响,其中最适浓度为4.5%;锌法和铜法都能加工成各具特点的合格皮蛋,锌铜盐混合能产生协同效应,一定程度缩短加工时间,且加工品质优良;选用腌制液 NaOH 浓度4.5%,Zn添加量0.3%,Cu添加量0.05%~0.075%腌制25 d左右出缸,皮蛋具有较好品质.%Investigated the influence of NaOH concentration and metal-salt's variety and use-level on the quality properties of preserved egg based on the immersion processing with fresh duck egg, for the sake of discussing the possibility of preserved egg with zinc salt and copper salt and their mixture. The result enunciated the NaOH concentration of immersion which best value is 4.5% had a great influence on the process of preserved egg with exclusive use of zinc salt and copper salt, both of which could process the qualified preserved egg with different characteristic. The mixture of zinc and copper salt could have a cooperative effect, to certain extent reduced the process period, and processed excellently in quality. When the NaOH concentration of immersion was 4. 5% ,the usage amount of zinc salt was 0. 3%, copper salt was appended during the range of 0. 05% ~0. 075%, the products had ideal quality after pickling 25 d approximately.

  15. Complexes cobalt(II, zinc(II and copper(II with some newly synthesized benzimidazole derivatives and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    1999-05-01

    Full Text Available The preparation and properties of some complexes of cobalt(II, zinc(II and copper(II with several newly synthesized benzimidazole derivatives (L are reported. The complexes, of the general formula [MCl2L2] (M=Co(II, Zn(II and [CuCl2L(H2O], have a tetrahedral structure. The complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility measurements, IR and absorption electronic spectra. The antibacterial activitiy of the benzimidazoles and their complexes was evaluated against Erwinia carotovora subsp. carotovora and Erwinia amylovora. The complexes were found to be more toxic than the ligands.

  16. Serum copper, follicular stimulating hormone, luteinizing hormone, prolactin, spermatic count, viability, progression and seminal zinc correlations in a human (male) infertility study

    Energy Technology Data Exchange (ETDEWEB)

    Sella, G.E. (Laval Univ., Quebec City, Canada); Cunnane, S.C.; McInnes, R.A.

    1981-06-01

    The role of copper and its correlations to other parameters has been investigated in a male-fertility pilot study at a University infertility clinic in Montreal. Serum and semen Cu concentrations were determined in 100 men (age 25 to 54 years) referred to the clinic for infertility evaluation. The results of the significant correlations between serum Cu concentrations and male fertility parameters such as (1) the serum concentrations of the hormones FSH, LH and prolactin; (2) spermatozoal count, viability and progression and (3) seminal zinc concentrations are reported.

  17. Concentration of copper, iron, zinc, cadmium, lead, and nickel in bull and ram semen and relation to the occurrence of pathological spermatozoa.

    Science.gov (United States)

    Massányi, P; Trandzik, J; Nad, P; Koreneková, B; Skalická, M; Toman, R; Lukac, N; Halo, M; Strapak, P

    2004-01-01

    In this study the concentration of copper, iron, zinc, cadmium, lead, and nickel in bull and ram semen and relation of these metals to spermatozoa morphology was investigated. Analysis by atomic absorption spectrophotometry showed that copper concentration was significantly higher (pzinc concentration was higher in bull semen in comparison with ram semen. The iron and cadmium concentrations in the semen were similar. Higher concentration of lead was found in ram semen. Higher levels of nickel were found in ram semen in comparison with bulls. In bull semen 11.79+/-4.88% of pathological spermatozoa was found. Higher occurrence of pathological spermatozoa was in ram semen (17.17+/-3.76) in comparison with the semen of bulls. Separated tail, tail torso, and knob twisted tail were the most frequent forms of pathological spermatozoa in both species. Correlation analysis in bulls showed high positive relation between iron and zinc (r = 0.72), nickel and separated tail (r = 0.76), separated tail and tail torso (r = 0.71), tail torso and total number of pathological spermatozoa (r=0.72), and between tail ball and total number of pathological spermatozoa (r = 0.78). In rams high positive correlation between cadmium and lead (r=0.98), nickel and separated tail (r=0.77), separated tail and total number of pathological spermatozoa (r=0.69), knob twisted tail and retention of cytoplasmic drop (r=0.78), and between knob twisted tail and other pathological spermatozoa (r = 0.71) was found. High negative correlation in ram semen was observed between copper and nickel (r=0.71), copper and separated tail (r=0.70), and between iron and tail torso (r=0.67). The results suggest that the studied metals have a direct effect on spermatozoa quality.

  18. One-shot flow injection spectrophotometric simultaneous determination of copper, iron and zinc in patients' sera with newly developed multi-compartment flow cell

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, Norio [Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Gotoh, Shingo [Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Ida, Kazunori [Murakami Memorial Hospital, Asahi University, 3-23 Hashimoto-cho, Gifu 500-8523 (Japan); Sakai, Tadao [Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan)]. E-mail: tadsakai@aitech.ac.jp

    2006-01-31

    We propose here an affordable flow injection method for simultaneous spectrophotometric determination of copper, iron and zinc in patients' sera. The use of a newly designed multi-compartment flow cell allowed the simultaneous determination of the three metals with a single injection ('one-shot') and a double beam spectrophotometer. The chemistry relied on the reactions of these metals with 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) to form corresponding colored complexes. At pH 3.8, only copper-nitro-PAPS complex was formed in the presence of pyrophosphate as a masking agent for iron, and then the copper and iron(II) complexes were formed in the presence of reductant (ascorbic acid) at the same pH, and finally all three metals reacted with nitro-PAPS at pH 8.6. The characteristics were introduced into the flow system to determine each metal selectively and sensitively. Under the optimum conditions, linear calibration curves for the three metals were obtained in the range of 0.01-1 mg L{sup -1} with a sample throughput rate of 20 h{sup -1}. The limits of detection (3{sigma}) were 3.9 {mu}g L{sup -1} for copper, 4.1 {mu}g L{sup -1} for iron and 4.0 {mu}g L{sup -1} for zinc. The proposed method was applied to analysis of some patients' sera.

  19. Acute sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to copper, cadmium, or zinc in water-only laboratory exposures.

    Science.gov (United States)

    Calfee, Robin D; Little, Edward E; Puglis, Holly J; Scott, Erinn; Brumbaugh, William G; Mebane, Christopher A

    2014-10-01

    The acute toxicity of cadmium, copper, and zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) were determined for 7 developmental life stages in flow-through water-only exposures. Metal toxicity varied by species and by life stage. Rainbow trout were more sensitive to cadmium than white sturgeon across all life stages, with median effect concentrations (hardness-normalized EC50s) ranging from 1.47 µg Cd/L to 2.62 µg Cd/L with sensitivity remaining consistent during later stages of development. Rainbow trout at 46 d posthatch (dph) ranked at the 2nd percentile of a compiled database for Cd species sensitivity distribution with an EC50 of 1.46 µg Cd/L and 72 dph sturgeon ranked at the 19th percentile (EC50 of 3.02 µg Cd/L). White sturgeon were more sensitive to copper than rainbow trout in 5 of the 7 life stages tested with biotic ligand model (BLM)-normalized EC50s ranging from 1.51 µg Cu/L to 21.9 µg Cu/L. In turn, rainbow trout at 74 dph and 95 dph were more sensitive to copper than white sturgeon at 72 dph and 89 dph, indicating sturgeon become more tolerant in older life stages, whereas older trout become more sensitive to copper exposure. White sturgeon at 2 dph, 16 dph, and 30 dph ranked in the lower percentiles of a compiled database for copper species sensitivity distribution, ranking at the 3rd (2 dph), 5th (16 dph), and 10th (30 dph) percentiles. White sturgeon were more sensitive to zinc than rainbow trout for 1 out of 7 life stages tested (2 dph with an biotic ligand model-normalized EC50 of 209 µg Zn/L) and ranked in the 1st percentile of a compiled database for zinc species sensitivity distribution.

  20. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement

    Science.gov (United States)

    Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.

    2007-01-01

    The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different

  1. STUDY ON QUANTITATIVE SPECIATION, BY BCR METHOD, OF ZINC CONTENT FROM RIVER SEDIMENTS

    Directory of Open Access Journals (Sweden)

    Georgiana Vasile

    2008-06-01

    Full Text Available The present work presents the results obtained during investigation of the zinc content of the water and river sediments in an area polluted by mining activities, to provide information on the mobility and availability of this element. Sediment and water samples have been collected from significant sites in a former mining area in which with some sterile pits, which represent a major environmental hazard.

  2. Cloning, Characterization and Expression Pattern Analysis of a Cytosolic Copper/Zinc Superoxide Dismutase (SaCSD1 in a Highly Salt Tolerant Mangrove (Sonneratia alba

    Directory of Open Access Journals (Sweden)

    Enze Yang

    2015-12-01

    Full Text Available Mangroves are critical marine resources for their remarkable ability to tolerate seawater. Antioxidant enzymes play an especially significant role in eliminating reactive oxygen species and conferring abiotic stress tolerance. In this study, a cytosolic copper/zinc superoxide dismutase (SaCSD1 cDNA of Sonneratia alba, a mangrove species with high salt tolerance, was successfully cloned and then expressed in Escherichia coli Rosetta-gami (designated as SaCSD1. SaCSD1 comprised a complete open reading frame (ORF of 459 bp which encoded a protein of 152 amino acids. Its mature protein is predicted to be 15.32 kDa and the deduced isoelectric point is 5.78. SaCSD1 has high sequence similarity (85%–90% with the superoxide dismutase (CSD of some other plant species. SaCSD1 was expressed with 30.6% yield regarding total protein content after being introduced into the pET-15b (Sma I vector for expression in Rosetta-gami and being induced with IPTG. After affinity chromatography on Ni-NTA, recombinant SaCSD1 was obtained with 3.2-fold purification and a specific activity of 2200 U/mg. SaCSD1 showed good activity as well as stability in the ranges of pH between 3 and 7 and temperature between 25 and 55 °C. The activity of recombinant SaCSD1 was stable in 0.25 M NaCl, Dimethyl Sulphoxide (DMSO, glycerol, and chloroform, and was reduced to a great extent in β-mercaptoethanol, sodium dodecyl sulfate (SDS, H2O2, and phenol. Moreover, the SaCSD1 protein was very susceptive to pepsin digestion. Real-time Quantitative Polymerase Chain Reaction (PCR assay demonstrated that SaCSD1 was expressed in leaf, stem, flower, and fruit organs, with the highest expression in fruits. Under 0.25 M and 0.5 M salt stress, the expression of SaCSD1 was down-regulated in roots, but up-regulated in leaves.

  3. Flame atomic absorption spectrometric (FAAS) determination of copper, iron and zinc in food samples after solid-phase extraction on Schiff base-modified duolite XAD 761

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, M., E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Mortazavi, K. [Chemistry Department, Gachsaran Branch, Islamic Azad University, Gachsaran (Iran, Islamic Republic of); Montazerozohori, M. [Chemistry Department, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of); Shokrollahi, A. [Chemistry Department, Gachsaran Branch, Islamic Azad University, Gachsaran (Iran, Islamic Republic of); Soylak, M. [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2013-05-01

    The present study involves the development of solid-phase extraction (SPE) procedure for the preconcentration of trace amounts of copper (Cu{sup 2+}), iron (Fe{sup 3+}) and zinc (Zn{sup 2+}) ions on duolite XAD 761 modified by bis(2-hydroxyacetophenone)-2,2-dimethyl-1,3-propanediimine(BHAPDMPDI). The complexation between the metal ions and the proposed ligand was investigated potentiometrically. The metal ions retained on the sorbent were quantitatively determined via complexation with BHAPDMPDI. The complexed metal ions were efficiently eluted using 6 mL of 4 mol L{sup −1} nitric acid in acetone. The influences of the analytical parameters, including pH, amounts of the ligand and the solid phase, eluent conditions and sample volume, on the recoveries of the metal ions were optimized. Using the optimized parameters, the linear response of the SPE method for Cu{sup 2+}, Zn{sup 2+} and Fe{sup 3+} ions were in the ranges of 0.01–0.34, 0.01–0.28 and 0.02–0.31 μg mL{sup −1}, respectively, and the detection limits for Cu{sup 2+}, Zn{sup 2+} and Fe{sup 3+} ions were 1.8, 1.6 and 2.4 μg mL{sup −1}, respectively. The proposed method exhibits a preconcentration factor of 208 for all of the ions studied and an enhancement factor for Cu{sup 2+}, Fe{sup 3+} and Zn{sup 2+} ions of 34, 28 and 38, respectively. The presented results demonstrate the successful application of the proposed method for the determination of these metal ions in some real samples with high recoveries (> 95%) and reasonable relative standard deviation (RDS < 5%). Highlights: ► Highly efficient adsorbent for dye removal was synthesized. ► The sorbent was fully characterized. ► The proposed method has a potential of a waste water treatment alternative. ► Excellent properties of the sorbent have been illustrated in detail.

  4. Iron sulfide attenuates the methanogenic toxicity of elemental copper and zinc oxide nanoparticles and their soluble metal ion analogs.

    Science.gov (United States)

    Gonzalez-Estrella, Jorge; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A

    2016-04-01

    Elemental copper (Cu(0)) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu(0) and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25-75μm) and coarse (500 to 1200μm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu(0) and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu(0) NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excess of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu(0) and ZnO NPs and their soluble ion analogs to methanogens.

  5. Synthesis of cobalt-, nickel-, copper-, and zinc-based, water-stable, pillared metal-organic frameworks.

    Science.gov (United States)

    Jasuja, Himanshu; Jiao, Yang; Burtch, Nicholas C; Huang, You-gui; Walton, Krista S