WorldWideScience

Sample records for quantitative x-ray fluorescence

  1. Quantitative analysis with energy dispersive X-ray fluorescence analyser

    International Nuclear Information System (INIS)

    Kataria, S.K.; Kapoor, S.S.; Lal, M.; Rao, B.V.N.

    1977-01-01

    Quantitative analysis of samples using radioisotope excited energy dispersive x-ray fluorescence system is described. The complete set-up is built around a locally made Si(Li) detector x-ray spectrometer with an energy resolution of 220 eV at 5.94 KeV. The photopeaks observed in the x-ray fluorescence spectra are fitted with a Gaussian function and the intensities of the characteristic x-ray lines are extracted, which in turn are used for calculating the elemental concentrations. The results for a few typical cases are presented. (author)

  2. Analysis of archaeological ceramics by total-reflection X-ray fluorescence: Quantitative approaches

    International Nuclear Information System (INIS)

    Fernandez-Ruiz, R.; Garcia-Heras, M.

    2008-01-01

    This paper reports the quantitative methodologies developed for the compositional characterization of archaeological ceramics by total-reflection X-ray fluorescence at two levels. A first quantitative level which comprises an acid leaching procedure, and a second selective level, which seeks to increase the number of detectable elements by eliminating the iron present in the acid leaching procedure. Total-reflection X-ray fluorescence spectrometry has been compared, at a quantitative level, with Instrumental Neutron Activation Analysis in order to test its applicability to the study of this kind of materials. The combination of a solid chemical homogenization procedure previously reported with the quantitative methodologies here presented allows the total-reflection X-ray fluorescence to analyze 29 elements with acceptable analytical recoveries and accuracies

  3. Analysis of archaeological ceramics by total-reflection X-ray fluorescence: Quantitative approaches

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ruiz, R. [Servicio Interdepartamental de Investigacion, Facultad de Ciencias, Universidad Autonoma de Madrid, Modulo C-9, Laboratorio de TXRF, Crta. Colmenar, Km 15, Cantoblanco, E-28049, Madrid (Spain)], E-mail: ramon.fernandez@uam.es; Garcia-Heras, M. [Grupo de Arqueometria de Vidrios y Materiales Ceramicos, Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/ Albasanz, 26-28, 28037 Madrid (Spain)

    2008-09-15

    This paper reports the quantitative methodologies developed for the compositional characterization of archaeological ceramics by total-reflection X-ray fluorescence at two levels. A first quantitative level which comprises an acid leaching procedure, and a second selective level, which seeks to increase the number of detectable elements by eliminating the iron present in the acid leaching procedure. Total-reflection X-ray fluorescence spectrometry has been compared, at a quantitative level, with Instrumental Neutron Activation Analysis in order to test its applicability to the study of this kind of materials. The combination of a solid chemical homogenization procedure previously reported with the quantitative methodologies here presented allows the total-reflection X-ray fluorescence to analyze 29 elements with acceptable analytical recoveries and accuracies.

  4. Quantitative schemes in energy dispersive X-ray fluorescence implemented in AXIL

    International Nuclear Information System (INIS)

    Tchantchane, A.; Benamar, M.A.; Tobbeche, S.

    1995-01-01

    E.D.X.R.F (Energy Dispersive X-ray Fluorescence) has long been used for quantitative analysis of many types of samples including environment samples. the software package AXIL (Analysis of x-ray spectra by iterative least quares) is extensively used for the spectra analysis and the quantification of x-ray spectra. It includes several methods of quantitative schemes for evaluating element concentrations. We present the general theory behind each scheme implemented into the software package. The spectra of the performance of each of these quantitative schemes. We have also investigated their performance relative to the uncertainties in the experimental parameters and sample description

  5. Absorption correction factor in X-ray fluorescent quantitative analysis

    International Nuclear Information System (INIS)

    Pimjun, S.

    1994-01-01

    An experiment on absorption correction factor in X-ray fluorescent quantitative analysis were carried out. Standard samples were prepared from the mixture of Fe 2 O 3 and tapioca flour at various concentration of Fe 2 O 3 ranging from 5% to 25%. Unknown samples were kaolin containing 3.5% to-50% of Fe 2 O 3 Kaolin samples were diluted with tapioca flour in order to reduce the absorption of FeK α and make them easy to prepare. Pressed samples with 0.150 /cm 2 and 2.76 cm in diameter, were used in the experiment. Absorption correction factor is related to total mass absorption coefficient (χ) which varied with sample composition. In known sample, χ can be calculated by conveniently the formula. However in unknown sample, χ can be determined by Emission-Transmission method. It was found that the relationship between corrected FeK α intensity and contents of Fe 2 O 3 in these samples was linear. This result indicate that this correction factor can be used to adjust the accuracy of X-ray intensity. Therefore, this correction factor is essential in quantitative analysis of elements comprising in any sample by X-ray fluorescent technique

  6. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  7. Quantitative X ray analysis system. User's manual and guide to X ray fluorescence technique

    International Nuclear Information System (INIS)

    2009-01-01

    This guide covers trimmed and re-arranged version 3.6 of the Quantitative X ray Analysis System (QXAS) software package that includes the most frequently used methods of quantitative analysis. QXAS is a comprehensive quantitative analysis package that has been developed by the IAEA through research and technical contracts. Additional development has also been carried out in the IAEA Laboratories in Seibersdorf where QXAS was extensively tested. New in this version of the manual are the descriptions of the Voigt-profile peak fitting, the backscatter fundamental parameters' and emission-transmission methods of chemical composition analysis, an expanded chapter on the X ray fluorescence physics, and completely revised and increased number of practical examples of utilization of the QXAS software package. The analytical data accompanying this manual were collected in the IAEA Seibersdorf Laboratories in the years 2006/2007

  8. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  9. Quantitative x-ray fluorescent analysis using fundamental parameters

    International Nuclear Information System (INIS)

    Sparks, C.J. Jr.

    1976-01-01

    A monochromatic source of x-rays for sample excitation permits the use of pure elemental standards and relatively simple calculations to convert the measured fluorescent intensities to an absolute basis of weight per unit weight of sample. Only the mass absorption coefficients of the sample for the exciting and the fluorescent radiation need be determined. Besides the direct measurement of these absorption coefficients in the sample, other techniques are considered which require fewer sample manipulations and measurements. These fundamental parameters methods permit quantitative analysis without recourse to the time-consuming process of preparing nearly identical standards

  10. X-ray fluorescence analyzer arrangement

    International Nuclear Information System (INIS)

    Vatai, Endre; Ando, Laszlo; Gal, Janos.

    1981-01-01

    An x-ray fluorescence analyzer for the quantitative determination of one or more elements of complex samples is reported. The novelties of the invention are the excitation of the samples by x-rays or γ-radiation, the application of a balanced filter pair as energy selector, and the measurement of the current or ion charge of ionization detectors used as sensors. Due to the increased sensitivity and accuracy, the novel design can extend the application fields of x-ray fluorescence analyzers. (A.L.)

  11. Quantitative analysis by computer controlled X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Balasubramanian, T.V.; Angelo, P.C.

    1981-01-01

    X-ray fluorescence spectroscopy has become a widely accepted method in the metallurgical field for analysis of both minor and major elements. As encountered in many other analytical techniques, the problem of matrix effect generally known as the interelemental effects is to be dealt with effectively in order to make the analysis accurate. There are several methods by which the effects of matrix on the analyte are minimised or corrected for and the mathematical correction is one among them. In this method the characteristic secondary X-ray intensities are measured from standard samples and correction coefficients. If any, for interelemental effects are evaluated by mathematical calculations. This paper describes attempts to evaluate the correction coefficients for interelemental effects by multiple linear regression programmes using a computer for the quantitative analysis of stainless steel and a nickel base cast alloy. The quantitative results obtained using this method for a standard stainless steel sample are compared with the given certified values. (author)

  12. Single particle transfer for quantitative analysis with total-reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo

    2006-01-01

    The technique of single particle transfer was applied to quantitative analysis with total-reflection X-ray fluorescence (TXRF) spectrometry. The technique was evaluated by performing quantitative analysis of individual Cu particles with diameters between 3.9 and 13.2 μm. The direct quantitative analysis of the Cu particle transferred onto a Si carrier gave a discrepancy between measured and calculated Cu amounts due to the absorption effects of incident and fluorescent X-rays within the particle. By the correction for the absorption effects, the Cu amounts in individual particles could be determined with the deviation within 10.5%. When the Cu particles were dissolved with HNO 3 solution prior to the TXRF analysis, the deviation was improved to be within 3.8%. In this case, no correction for the absorption effects was needed for quantification

  13. X-ray fluorescence method for trace analysis and imaging

    International Nuclear Information System (INIS)

    Hayakawa, Shinjiro

    2000-01-01

    X-ray fluorescence analysis has a long history as conventional bulk elemental analysis with medium sensitivity. However, with the use of synchrotron radiation x-ray fluorescence method has become a unique analytical technique which can provide tace elemental information with the spatial resolution. To obtain quantitative information of trace elemental distribution by using the x-ray fluorescence method, theoretical description of x-ray fluorescence yield is described. Moreover, methods and instruments for trace characterization with a scanning x-ray microprobe are described. (author)

  14. X-ray fluorescence in geology

    International Nuclear Information System (INIS)

    Dutra, C.V.; Gomes, C.B.

    1990-01-01

    This work is about the X-ray fluorescence aplication in geology. It's showing the X-ray origin and excitation. About the instrumentation this work shows the following: X-ray tubes, colimators, analysers crystals, detectors, amplifiers, pulse height selector, and others electronic components. By X-ray fluorescente are done quantitative and qualitative geological analysis and this work shows this analysis and its detection limits. The problems determination is the example. In this work was done yet the comparative analysis of the various instrumental methods in geochemistry. (C.G.) [pt

  15. Quantitative analysis by X-ray fluorescence using first principles for matrix correction

    International Nuclear Information System (INIS)

    Hulett, L.D.; Dunn, H.W.; Tarter, J.G.

    1978-01-01

    The quantitative interpretation of X-ray fluorescence (XRF) data is often difficult because of matrix effects. The intensity of fluorescence measured for a given element is not only dependent on the element's concentration, but also on the mass absorption coefficients of the sample for the excitation and fluorescence radiation. Also, there are interelement effects in which high-energy fluorescence from heavier elements is absorbed by lighter elements with a resulting enhancement of their fluorescence. Recent theoretical treatments of this problem have shown that X-ray fluorescence data can be corrected for these matrix effects by calculations based on first principles. Fundamental constants, available in atomic physics data tables, are the only parameters needed. It is not necessary to make empirical calibrations. The application of this correctional procedure to alloys and alumina-supported catalysts is described. A description is given of a low-background spectrometer which uses monochromatic Ag Ksub(α) radiation for excitation. Matrix corrections by first principles can be easily applied to data from instruments of this type because fluorescence excitation cross-sections and mass absorption coefficients can be accurately defined for monochromatic radiation. (author)

  16. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  17. X-ray fluorescence imaging with synchrotron radiation

    International Nuclear Information System (INIS)

    Rivers, M.L.

    1987-01-01

    The micro-distribution of trace elements is of great interest in fields such as geochemistry, biology and material science. The synchrotron x-ray fluorescence microprobe provides a technique to quantitatively measure trace element compositions at individual points and to construct semiquantitative two dimensional maps of trace element compositions. This paper describes an x-ray fluorescence system used at the National Synchrotron Light Source

  18. A library for X-ray-matter interaction cross sections for X-ray fluorescence applications

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, A. [Istituto di Matematica e Fisica, Universita di Sassari, via Vienna 2, 07100 Sassari (Italy) and INFN, Sezione di Cagliari (Italy)]. E-mail: brunetti@uniss.it; Sanchez del Rio, M. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France); Golosio, B. [INFN, Sezione di Cagliari (Italy); European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France); Simionovici, A. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France); Laboratoire de Sciences de la Terre, Ecole Normale Superieure, Lyon, F-69364 (France); Somogyi, A. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France)

    2004-10-08

    Quantitative estimate of elemental composition by spectroscopic and imaging techniques using X-ray fluorescence requires the availability of accurate data of X-ray interaction with matter. Although a wide number of computer codes and data sets are reported in literature, none of them is presented in the form of freely available library functions which can be easily included in software applications for X-ray fluorescence. This work presents a compilation of data sets from different published works and an xraylib interface in the form of callable functions. Although the target applications are on X-ray fluorescence, cross sections of interactions like photoionization, coherent scattering and Compton scattering, as well as form factors and anomalous scattering functions, are also available.

  19. X-ray fluorescent elemental analysis. Ch. 16

    International Nuclear Information System (INIS)

    Baryshev, V.; Kulipanov, G.; Skrinsky, A.

    1991-01-01

    X-ray fluorescence analysis (XFA) is used worldwide to define a quantitative content of the elements as well as to visualize the distribution of elements in different regions (element mapping). Utilization of synchrotron radiation (SR) to excite X-ray fluorescence enables the XFA method to be qualitatively improved. This chapter reviews the experimental work in especially the last decade (author). 71 refs.; 24 figs.; 3 tabs

  20. The use of rapid quantitative x-ray fluorescence analysis in paper manufacturing and construction materials industry

    International Nuclear Information System (INIS)

    Kocman, V.; Foley, L.; Woodger, S.C.

    1985-01-01

    A modern analytical laboratory of a large corporation manufacturing paper, construction materials and chemicals must be sufficiently diversified in methodology to provide accurate results in the shortest possible time. Among other techniques the implementation of an automated ''menu'' driven wavelength dispersive spectrometer allowed for the setting-up of a variety of quantitative X-ray fluorescence methods. An overview of these methods is given as presented at the 33rd. Annual Conference on the Application of X-ray Fluorescence Analysis in Denver, Colorado, 1984

  1. Quantitative comparison of X-ray fluorescence microtomography setups: Standard and confocal collimator apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Chukalina, M. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail: marina@ipmt-hpm.ac.ru; Simionovici, A. [Laboratoire de Geophysique Interne et Tectonophysique, University of Grenoble, BP 53, 38041, Grenoble (France)], E-mail: alexandre.simionovici@ujf-grenoble.fr; Zaitsev, S. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail: zaitsev@ipmt-hpm.ac.ru; Vanegas, C.J. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail: vanegas@ipmt-hpm.ac.ru

    2007-07-15

    Recently, there has been a renewed interest for fluorescence spectroscopy, as provided by modern setups which allow 2D and 3D imaging of elemental distributions. Two directions are currently under development: the SR-based fluorescence tomography in polar scanning geometry, provided by the new generation of X-ray microprobes and the confocal scanning geometry, which can be fielded in both SR and laboratory environments. The new probes bring forth a new age in fluorescence spectrometry: high resolution, high intensity and high sensitivity which allow 3D elemental mapping of volumes. The major task now is the development of these complex tools into fully quantitative probes, reproducible and straightforward for general use. In this work we analyze two X-ray fluorescence microtomography techniques: an apparatus tomography using a confocal collimator for the data collection and a standard first generation Computed Tomography (CT) in the parallel scanning scheme. We calculate the deposited dose (amount of energy deposited and distributed in the sample during the data collection time) and find the conditions for the choice of the tomography scheme.

  2. Quantitative X-ray fluorescence analysis at the ESRF ID18F microprobe

    CERN Document Server

    Vekemans, B; Somogyi, A; Drakopoulos, M; Kempenaers, L; Simionovici, A; Adams, F

    2003-01-01

    The new ID18F end-station at the European synchrotron radiation facility (ESRF) in Grenoble (France) is dedicated to sensitive and accurate quantitative micro-X-ray fluorescence (XRF) analysis at the ppm level with accuracy better than 10% for elements with atomic numbers above 18. For accurate quantitative analysis, given a high level of instrumental stability, major steps are the extraction and conversion of experimental X-ray line intensities into elemental concentrations. For this purpose a two-step quantification approach was adopted. In the first step, the collected XRF spectra are deconvoluted on the basis of a non-linear least-squares fitting algorithm (AXIL). The extracted characteristic line intensities are then used as input for a detailed Monte Carlo (MC) simulation code dedicated to XRF spectroscopy taking into account specific experimental conditions (excitation/detection) as well as sample characteristics (absorption and enhancement effects, sample topology, heterogeneity etc.). The iterative u...

  3. Human thyroid specimen imaging by fluorescent x-ray computed tomography with synchrotron radiation

    Science.gov (United States)

    Takeda, Tohoru; Yu, Quanwen; Yashiro, Toru; Yuasa, Tetsuya; Hasegawa, Yasuo; Itai, Yuji; Akatsuka, Takao

    1999-09-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT system consists of a silicon (111) channel cut monochromator, an x-ray slit and a collimator for fluorescent x ray detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the fluorescent K(alpha) line, incident monochromatic x-ray was set at 37 keV. The FXCT clearly imaged a human thyroid gland and iodine content was estimated quantitatively. In a case of hyperthyroidism, the two-dimensional distribution of iodine content was not uniform, and thyroid cancer had a small amount of iodine. FXCT can be used to detect iodine within thyroid gland quantitatively and to delineate its distribution.

  4. Quantitative X-ray fluorescence analysis at the ESRF ID18F microprobe

    International Nuclear Information System (INIS)

    Vekemans, B.; Vincze, L.; Somogyi, A.; Drakopoulos, M.; Kempenaers, L.; Simionovici, A.; Adams, F.

    2003-01-01

    The new ID18F end-station at the European synchrotron radiation facility (ESRF) in Grenoble (France) is dedicated to sensitive and accurate quantitative micro-X-ray fluorescence (XRF) analysis at the ppm level with accuracy better than 10% for elements with atomic numbers above 18. For accurate quantitative analysis, given a high level of instrumental stability, major steps are the extraction and conversion of experimental X-ray line intensities into elemental concentrations. For this purpose a two-step quantification approach was adopted. In the first step, the collected XRF spectra are deconvoluted on the basis of a non-linear least-squares fitting algorithm (AXIL). The extracted characteristic line intensities are then used as input for a detailed Monte Carlo (MC) simulation code dedicated to XRF spectroscopy taking into account specific experimental conditions (excitation/detection) as well as sample characteristics (absorption and enhancement effects, sample topology, heterogeneity etc.). The iterative use of the MC code gives a 'no-compromise' solution for the quantification problem

  5. Quantitative X-ray fluorescence analysis at the ESRF ID18F microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Vekemans, B. E-mail: vekemans@uia.ua.ac.be; Vincze, L.; Somogyi, A.; Drakopoulos, M.; Kempenaers, L.; Simionovici, A.; Adams, F

    2003-01-01

    The new ID18F end-station at the European synchrotron radiation facility (ESRF) in Grenoble (France) is dedicated to sensitive and accurate quantitative micro-X-ray fluorescence (XRF) analysis at the ppm level with accuracy better than 10% for elements with atomic numbers above 18. For accurate quantitative analysis, given a high level of instrumental stability, major steps are the extraction and conversion of experimental X-ray line intensities into elemental concentrations. For this purpose a two-step quantification approach was adopted. In the first step, the collected XRF spectra are deconvoluted on the basis of a non-linear least-squares fitting algorithm (AXIL). The extracted characteristic line intensities are then used as input for a detailed Monte Carlo (MC) simulation code dedicated to XRF spectroscopy taking into account specific experimental conditions (excitation/detection) as well as sample characteristics (absorption and enhancement effects, sample topology, heterogeneity etc.). The iterative use of the MC code gives a 'no-compromise' solution for the quantification problem.

  6. Radionuclide X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Cechak, T.

    1994-01-01

    The author's achievements in the title field are summarized and discussed. The following topics are dealt with: (i) principles of radionuclide X-ray fluorescence analysis; (ii) mathematical methods in X-ray fluorescence analysis; (iii) Ross differential filters; (iv) application of radionuclide X-ray fluorescence analysis in the coal industry (with emphasis on the determination of the ash content, sulfur content, and arsenic content of coal); and (v) evaluation of the X-ray fluorescence analyzer from the radiological safety point of view. (P.A.)

  7. Multilayers quantitative X-ray fluorescence analysis applied to easel paintings.

    Science.gov (United States)

    de Viguerie, Laurence; Sole, V Armando; Walter, Philippe

    2009-12-01

    X-ray fluorescence spectrometry (XRF) allows a rapid and simple determination of the elemental composition of a material. As a non-destructive tool, it has been extensively used for analysis in art and archaeology since the early 1970s. Whereas it is commonly used for qualitative analysis, recent efforts have been made to develop quantitative treatment even with portable systems. However, the interpretation of the results obtained with this technique can turn out to be problematic in the case of layered structures such as easel paintings. The use of differential X-ray attenuation enables modelling of the various layers: indeed, the absorption of X-rays through different layers will result in modification of intensity ratio between the different characteristic lines. This work focuses on the possibility to use XRF with the fundamental parameters method to reconstruct the composition and thickness of the layers. This method was tested on several multilayers standards and gives a maximum error of 15% for thicknesses and errors of 10% for concentrations. On a painting test sample that was rather inhomogeneous, the XRF analysis provides an average value. This method was applied in situ to estimate the thickness of the layers a painting from Marco d'Oggiono, pupil of Leonardo da Vinci.

  8. Fundamental parameters method for quantitative energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Demirel, H.; Zararsiz, A.

    1986-01-01

    In this study, the requirement of the standart material in photon excited energy distributed X-ray fluorescence analysis has been removed. The interaction of X-rays with matter has been taken into account. A computer program has been developed by using the fundamental parameters of X-ray fluorescence technique and the spectral intensity 'K' of pure elements at saturation thickness has been obtained. For experimental purpose a convenient source-target-detector geometry has been designed. In order to excite the samples,Cd-109 radioisotope source has been used. The peak intensities has been obtained in a vacum chamber by counting the emitted X-rays. The calculation of concentration has been performed for double mixed samples correcting the effects of absorption and enchancement factors. The results were in conformity with their certificate values. (author)

  9. The Mapping X-ray Fluorescence Spectrometer (MapX)

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  10. Physical aspects of quantitative particles analysis by X-ray fluorescence and electron microprobe techniques

    International Nuclear Information System (INIS)

    Markowicz, A.

    1986-01-01

    The aim of this work is to present both physical fundamentals and recent advances in quantitative particles analysis by X-ray fluorescence (XRF) and electron microprobe (EPXMA) techniques. A method of correction for the particle-size effect in XRF analysis is described and theoretically evaluated. New atomic number- and absorption correction procedures in EPXMA of individual particles are proposed. The applicability of these two correction methods is evaluated for a wide range of elemental composition, X-ray energy and sample thickness. Also, a theoretical model for composition and thickness dependence of Bremsstrahlung background generated in multielement bulk specimens as well as thin films and particles are presented and experimantally evaluated. Finally, the limitations and further possible improvements in quantitative particles analysis by XFR and EPXMA are discussed. 109 refs. (author)

  11. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  12. Capacity of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Wobrauschek, P.; Kregsamer, P.

    1997-01-01

    X-Ray fluorescence analysis (XRF) is a powerful analytical tool for the qualitative and quantitative determination of chemical elements in a sample. Two different detection principles are accepted widely: wavelength dispersive and energy dispersive. Various sources for XRF are discussed: X-ray tubes, accelerators for particle induced XRF, radioactive isotopes, and the use of synchrotron radiation. Applications include environmental, technical, medical, fine art, and forensic studies. Due to the demands of research and application special techniques like total reflection XRF (TXRF) were developed with ultimately achievable detection limits in the femtogram region. The elements detectable by XRF range from Be to U. (author)

  13. Description of CORSET: a computer program for quantitative x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Stohl, F.V.

    1980-08-01

    Quantitative x-ray fluorescence analysis requires a method of correcting for absorption and secondary fluorescence effects due to the sample matrix. The computer program CORSET carries out these corrections without requiring a knowledge of the spectral distribution of the x-ray source, and only requires one standard per element or one standard containing all the elements. Sandia's version of CORSET has been divided into three separate programs to fit Sandia's specific requirements for on-line analysis in a melt facility. The melt facility is used to fabricate new alloys with very variable compositions and requires very rapid analyses during a run. Therefore, the standards must be analyzed several days in advance. Program DAT1 is used to set up a permanent file consisting of all the data related to the standards. Program UNINT is used to set up a permanent file with the intensities, background counts and counting times of the unknowns. Program CORSET uses the files created in UNINT and DAT1 to carry out the analysis. This report contains descriptions, listings, and sample runs for these programs. The accuracy of the analyses carried out with these three programs is about 1 to 2% relative with an elemental concentration of about 10 wt %

  14. Development of confocal micro X-ray fluorescence instrument using two X-ray beams

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Nakano, Kazuhiko; Ding Xunliang

    2007-01-01

    A new confocal micro X-ray fluorescence instrument was developed. This instrument has two independent micro X-ray tubes with Mo targets. A full polycapillary X-ray lens was attached to each X-ray tube. Another half polycapillary lens was attached to a silicon drift X-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The effects of the excitation of two X-ray beams were investigated. The instrument enabled highly sensitive three-dimensional X-ray fluorescence analysis. We confirmed that the X-ray fluorescence intensity from the sample increased by applying the two independent X-ray tubes in confocal configuration. Elemental depth profiling of black wheat was demonstrated with the result that each element in the surface coat of a wheat grain showed unique distribution

  15. The MicroAnalysis Toolkit: X-ray Fluorescence Image Processing Software

    International Nuclear Information System (INIS)

    Webb, S. M.

    2011-01-01

    The MicroAnalysis Toolkit is an analysis suite designed for the processing of x-ray fluorescence microprobe data. The program contains a wide variety of analysis tools, including image maps, correlation plots, simple image math, image filtering, multiple energy image fitting, semi-quantitative elemental analysis, x-ray fluorescence spectrum analysis, principle component analysis, and tomographic reconstructions. To be as widely useful as possible, data formats from many synchrotron sources can be read by the program with more formats available by request. An overview of the most common features will be presented.

  16. Determination of silver in ancient coins by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Pairatana, C.

    1976-01-01

    45 coins of late Ayudhaya and Bangkok periods was analyzed quantitatively by x-ray fluorescence technique using radioisotopic sources Pm - 147/A1 and Am - 241. The fluorescence x-rays were detected by Lithium drifted silicon detector and 1024 channels pulse height analyzer. The procedure was laid a stress on non-destructive methods which could be utilized for analysing various kinds of antiquities and work of arts such as metals, alloys, pottery, ceramics, paper, textile, wood etc

  17. Quantitative analysis of the sediments from the Solimoes/Amazonas river flood plain using energy dispersive x-ray fluorescence technique

    International Nuclear Information System (INIS)

    Carneiro, Ana E.V.

    1995-01-01

    A methodology for quantitative analysis of geological, biological and environmental samples with a high fraction of light elements (atomic number less than 13), using energy dispersive X-ray fluorescence technique with radioisotopic excitation, is proposed. The proposed procedure is based on the method of Fundamental Parameters for analytical elements (≥->13 evaluation, and coherent and incoherent scattered radiation for the quantitation of the light fraction of the matrix. In the order to obtain the characteristic X-ray of the elements in the Mn to Zr range a Cd-109 annular radioactive source (1,70 GBq) was used, and for Al to CR, Fe-55 (o,74 GBq). For the X-ray detection a Si (Li) detector coupled to a multichannel emulation card was employed. The characteristic X-ray net intensity as well as the coherent and incoherent scattered intensities were obtained by using the AXL software for spectrum analysis. (author). 89 refs., 37 figs., 32 tabs

  18. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    Science.gov (United States)

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  19. Results of improvement of simultaneous and sequential x-ray fluorescence equipment for quantitative routine analysis

    International Nuclear Information System (INIS)

    Zsamboky, Jozsef

    1985-01-01

    Two main types of x-ray fluorescence analyzers measuring sequentially and simultaneously, respectively, the intensities at given wave lengths are described. The main parts of an up to date x-ray fluorescence analyzer are surveyed in detail. The advantages and disadvantages of both methods are discussed. Some results on calibration and optimization are given. (D.Gy.)

  20. Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples

    International Nuclear Information System (INIS)

    Dhara, Sangita; Misra, N.L.; Maind, S.D.; Kumar, Sanjukta A.; Chattopadhyay, N.; Aggarwal, S.K.

    2010-01-01

    The possibility of applying Total Reflection X-ray Fluorescence for qualitative and quantitative differentiation of documents printed with rare earth tagged and untagged inks has been explored in this paper. For qualitative differentiation, a very small amount of ink was loosened from the printed documents by smoothly rubbing with a new clean blade without destroying the manuscript. 50 μL of Milli-Q water was put on this loose powder, on the manuscript, and was agitated by sucking and releasing the suspension two to three times with the help of a micropipette. The resultant dispersion was deposited on quartz sample support for Total Reflection X-ray Fluorescence measurements. The Total Reflection X-ray Fluorescence spectrum of tagged and untagged inks could be clearly differentiated. In order to see the applicability of Total Reflection X-ray Fluorescence for quantitative determinations of rare earths and also to countercheck such determinations in ink samples, the amounts of rare earth in painted papers with single rare earth tagged inks were determined by digesting the painted paper in HNO 3 /HClO 4 , mixing this solution with the internal standard and recording their Total Reflection X-ray Fluorescence spectra after calibration of the instrument. The results thus obtained were compared with those obtained by Inductively Coupled Plasma Mass Spectrometry and were found in good agreement. The average precision of the Total Reflection X-ray Fluorescence determinations was 5.5% (1σ) and the average deviation of Total Reflection X-ray Fluorescence determined values with that of Inductively Coupled Plasma Mass Spectrometry was 7.3%. These studies have shown that Total Reflection X-ray Fluorescence offers a promising and potential application in forensic work of this nature.

  1. Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples

    Energy Technology Data Exchange (ETDEWEB)

    Dhara, Sangita [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Misra, N.L., E-mail: nlmisra@barc.gov.i [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Maind, S.D. [NAA Unit of Central Forensic Science Laboratory Hyderabad at Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kumar, Sanjukta A. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Chattopadhyay, N. [NAA Unit of Central Forensic Science Laboratory Hyderabad at Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Aggarwal, S.K. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2010-02-15

    The possibility of applying Total Reflection X-ray Fluorescence for qualitative and quantitative differentiation of documents printed with rare earth tagged and untagged inks has been explored in this paper. For qualitative differentiation, a very small amount of ink was loosened from the printed documents by smoothly rubbing with a new clean blade without destroying the manuscript. 50 muL of Milli-Q water was put on this loose powder, on the manuscript, and was agitated by sucking and releasing the suspension two to three times with the help of a micropipette. The resultant dispersion was deposited on quartz sample support for Total Reflection X-ray Fluorescence measurements. The Total Reflection X-ray Fluorescence spectrum of tagged and untagged inks could be clearly differentiated. In order to see the applicability of Total Reflection X-ray Fluorescence for quantitative determinations of rare earths and also to countercheck such determinations in ink samples, the amounts of rare earth in painted papers with single rare earth tagged inks were determined by digesting the painted paper in HNO{sub 3}/HClO{sub 4}, mixing this solution with the internal standard and recording their Total Reflection X-ray Fluorescence spectra after calibration of the instrument. The results thus obtained were compared with those obtained by Inductively Coupled Plasma Mass Spectrometry and were found in good agreement. The average precision of the Total Reflection X-ray Fluorescence determinations was 5.5% (1sigma) and the average deviation of Total Reflection X-ray Fluorescence determined values with that of Inductively Coupled Plasma Mass Spectrometry was 7.3%. These studies have shown that Total Reflection X-ray Fluorescence offers a promising and potential application in forensic work of this nature.

  2. X-ray fluorescence holography.

    Science.gov (United States)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-07

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy.

  3. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu Wen; Matsushita, Tomohiro

    2012-01-01

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy. (topical review)

  4. X-ray Fluorescence Holography: Principles, Apparatus, and Applications

    Science.gov (United States)

    Hayashi, Kouichi; Korecki, Pawel

    2018-06-01

    X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.

  5. A method for the quantitative analysis of heavy elements by X-ray fluorescence

    International Nuclear Information System (INIS)

    Souza Caillaux, Z. de

    1981-01-01

    A study of quantitative analysis methodology by X-ray fluorescence analysis is presented. With no damage to precision it makes possible an analysis of heavy elements in samples with the form and texture as they present themselves. Some binary alloys were examined such as: FeCo; CuNi; CuZn; AgCd; AgPd; AuPt e PtIr. The possibility of application of this method is based on the compromise solutIon of wave lengths and the intensity of the homologous emission and absorption edges of constituents with the quantic efficiency of the detector, the dispersion and the wave lenght resolution of crystal analyser, and the uniformity of the excitation intensity. (Author) [pt

  6. Modern X-ray spectroscopy 3. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi

    2008-01-01

    X-ray fluorescence holography (XFH) provides three dimensional atomic images around specified elements. The XFH uses atoms as a wave source or monitor of interference field within a crystal sample, and therefore it can record both intensity and phase of scattered X-rays. Its current performance makes it possible to apply to ultra thin film, impurity and quasicrystal. In this article, I show the theory including solutions for twin image problem, advanced measuring system, data processing for reconstruction of the atomic images and for obtaining accurate atomic positions, applications using resonant X-ray scattering and X-ray excited optical luminescence, and an example of XFH result on the local structure around copper in silicon steal. (author)

  7. Fluorescent scanning x-ray tomography with synchrotron radiation

    Science.gov (United States)

    Takeda, Tohoru; Maeda, Toshikazu; Yuasa, Tetsuya; Akatsuka, Takao; Ito, Tatsuo; Kishi, Kenichi; Wu, Jin; Kazama, Masahiro; Hyodo, Kazuyuki; Itai, Yuji

    1995-02-01

    Fluorescent scanning (FS) x-ray tomography was developed to detect nonradioactive tracer materials (iodine and gadolinium) in a living object. FS x-ray tomography consists of a silicon (111) channel cut monochromator, an x-ray shutter, an x-ray slit system and a collimator for detection, a scanning table for the target organ, and an x-ray detector with pure germanium. The minimal detectable dose of iodine in this experiment was 100 ng in a volume of 2 mm3 and a linear relationship was shown between the photon counts of a fluorescent x ray and the concentration of iodine contrast material. A FS x-ray tomographic image was clearly obtained with a phantom.

  8. Review of X-ray Tomography and X-ray Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shear, Trevor A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    This literature review will focus on both laboratory and synchrotron based X-ray tomography of materials and highlight the inner workings of these instruments. X-ray fluorescence spectroscopy will also be reviewed and applications of the tandem use of these techniques will be explored. The real world application of these techniques during the internship will also be discussed.

  9. Micro-beam X-ray fluorescence and absorption imaging techniques at the IAEA Laboratories

    International Nuclear Information System (INIS)

    Wegrzynek, Dariusz; Markowicz, A.; Bamford, S.; Chinea-Cano, E.; Bogovac, M.

    2005-01-01

    X-ray tube based, micro-beam X-ray fluorescence scanning spectrometer has been equipped with two energy dispersive X-ray detectors. The two-detector configuration allows for simultaneous collection of X-ray fluorescence (XRF) and transmitted X-ray beam signals with a spatial resolution in the range of 10-50 μm, depending on the X-ray focussing element in use. The XRF signal is collected with a standard, liquid nitrogen cooled Si(Li) detector. The X-ray beam transmitted through the sample is acquired with a thermoelectrically cooled, silicon drift (SD) detector. The data acquisition is carried out in a fully automatic way under control of the SPECTOR-LOCATOR software. The software controls the scanning procedure and X-ray spectra acquisition during the scan. The energy dispersive X-ray spectra collected at every 'pixel' are stored for off-line processing. For selected regions of interest (ROI's), the element maps are constructed and displayed on-line. The spectrometer has been used for mapping elemental distributions and for performing 2D- and 3D-tomograpic imaging of minute objects in X-ray absorption and in X-ray fluorescence mode. A unique feature of the described system is simultaneous utilization of the two detectors, Si(Li) and SD, which adds new options for quantitative analysis and data interpretation. Examples of elemental mapping and 3D tomographic imaging as well as the advanced features of the SPECTOR-LOCATOR measurement control and data acquisition software are presented in this work

  10. Automated x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    O'Connell, A.M.

    1977-01-01

    A fully automated x-ray fluorescence analytical system is described. The hardware is based on a Philips PW1220 sequential x-ray spectrometer. Software for on-line analysis of a wide range of sample types has been developed for the Hewlett-Packard 9810A programmable calculator. Routines to test the system hardware are also described. (Author)

  11. Elemental analysis of air particulate samples in Jakarta area by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Yumiarti; Yusuf, M.; Mellawati, June; Menry, Yulizon; Surtipanti S

    1998-01-01

    Determination of elements in air particulate samples collected from Jakarta, especially from industrial area Pulo Gadung, also from residence, office, and recreation sites had been carried out. The samples collected periodically from August through December 1996. The elements were analyzed by X-ray fluorescence spectrometry method. Quantitative and qualitative analyses were done using QXAS AXIL (Quantitative X-ray Analysis System of x-ray Spectra by Iterative Least squares fitting) and QAES (Quantitative Analyses of Environmental Samples) package program. Results of the analyses showed that the content of heavy metal elements in air particulate samples from all areas studied were still below the maximum permissible concentration. (authors)

  12. Escape probabilities for fluorescent x-rays

    International Nuclear Information System (INIS)

    Dance, D.R.; Day, G.J.

    1985-01-01

    Computation of the energy absorption efficiency of an x-ray photon detector involves consideration of the histories of the secondary particles produced in any initial or secondary interaction which may occur within the detector. In particular, the K or higher shell fluorescent x-rays which may be emitted following a photoelectric interaction can carry away a large fraction of the energy of the incident photon, especially if this energy is just above an absorption edge. The effects of such photons cannot be ignored and a correction term, depending upon the probability that the fluorescent x-rays will escape from the detector, must be applied to the energy absorption efficiency. For detectors such as x-ray intensifying screens, it has been usual to calculate this probability by numerical integration. In this note analytic expressions are derived for the escape probability of fluorescent photons from planar detectors in terms of exponential integral functions. Rational approximations for these functions are readily available and these analytic expressions therefore facilitate the computation of photon absorption efficiencies. A table is presented which should obviate the need for calculating the escape probability for most cases of interest. (author)

  13. A borax fusion technique for quantitative X-ray fluorescence analysis

    NARCIS (Netherlands)

    van Willigen, J.H.H.G.; Kruidhof, H.; Dahmen, E.A.M.F.

    1971-01-01

    A borax fusion technique to cast glass discs for quantitative X-ray analysis is described in detail. The method is based on the “nonwetting” properties of a Pt/Au alloy towards molten borax, on the favourable composition of the flux and finally on the favourable form of the casting mould. The

  14. Analysis of fresco paintings by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Cechak, T.; Gerndt, J.; Musilek, L.; Kopecka, I.

    2000-01-01

    In this work we present the application of X-ray fluorescence analysis (XRFA) to examine fresco paintings from the Karlstejn castle. The X-ray fluorescence apparatus built and operated in the Laboratory of Quantitative Methods in Research of Ancient Monuments was used for the purpose of fresco paintings measurements. The X-ray sources (radionuclides) generate the characteristic X-ray photons from the sample. The Si(Li) detector measures numbers and energies of photons emitted from the specimen. The energy and number of photons detected can be converted into kind and amount of measured atoms. These results give data for qualitative and quantitative analysis of samples. XRFA is relatively simple and non-destructive method. Capability of in-situ measurement is one of big advantages of this method. The radionuclide sources of exciting radiation (e.g. 55 Fe enables the excitation of elements with Z up to 23, 238 Pu is used in interval of Z from 20 to 39 etc.) were used. An Si(Li) semiconductor detector with a 5 l Dewar vessel and portable spectroscopy system enable the in situ measurement. Narrow collimation of the exciting beam makes it possible to select the measured area of fresco painting. The valuable fresco paintings from the Karlstejn castle were investigated in this way. The measurements were carried out in collaboration with the Analytical Laboratory of the State Institute for the Preservation of Historic Monuments. A suitable analysis of paintings makes it possible to detect the kind of colours and evaluate changes in the surface colour of paintings and suggest useful and timely procedures for their conservation and restoration. (author)

  15. Role of importance of X-ray fluorescence analysis of forensic samples

    International Nuclear Information System (INIS)

    Jha, Shailendra; Sharma, M.

    2009-01-01

    Full text: In the field of forensic science, it is very important to investigate the evidential samples obtained at various crime scenes. X-ray fluorescence (XRF) is used widely in forensic science [1]. Its main strength is its non-destructive nature, thus preserving evidence [2, 3]. In this paper, we report the application of XRF to examine the evidences like purity gold and silver jewelry (Indian Ornaments), remnants of glass pieces and paint chips recovered from crime scenes. The experimental measurements on these samples have been made using X-ray fluorescence spectrometer (LAB Center XRF-1800) procured from Shimazdu Scientific Inst., USA. The results are explained in terms of quantitative/ qualitative analysis of trace elements. (author)

  16. X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ray, N.B.

    1977-01-01

    The principle, instrument and procedure of X-ray fluorescence spectrometry are described. It is a rapid, simple and sensitive method for the trace analysis of elements from sodium to uranium in powder, liquid or metal samples. (M.G.B.)

  17. Development of quantitative x-ray microtomography

    International Nuclear Information System (INIS)

    Deckman, H.W.; Dunsmuir, J.A.; D'Amico, K.L.; Ferguson, S.R.; Flannery, B.P.

    1990-01-01

    The authors have developed several x-ray microtomography systems which function as quantitative three dimensional x-ray microscopes. In this paper the authors describe the evolutionary path followed from making the first high resolution experimental microscopes to later generations which can be routinely used for investigating materials. Developing the instrumentation for reliable quantitative x-ray microscopy using synchrotron and laboratory based x-ray sources has led to other imaging modalities for obtaining temporal and spatial two dimensional information

  18. Quantitative micro x-ray fluorescence analyses without reference standard material; Referenzprobenfreie quantitative Mikro-Roentgenfluoreszenzanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Timo

    2009-07-15

    X-ray fluorescence analysis (XRF) is a standard method for non-destructive investigations. Due to the development of polycapillary optics and SDDdetectors requiring no cooling with liquid nitrogen, XRF becomes a suitable method for a large number of applications, e. g. for the analysis of objects in arts and archaeology. Spectrometers developed for those purposes allow investigations outside of laboratories und provide excitation areas with diameters of 10-70 {mu}m. In most applications, quantification of XRF data is realized by the usage of standard reference materials. Due to absorption processes in the samples the accuracy of the results depends strongly on the similarity of the sample and the reference standard. In cases where no suitable references are available, quantification can be done based on the ''fundamental parameter (fp) method''. This quantification procedure is based on a set of equations describing the fluorescence production and detection mathematical. The cross sections for the interaction of x-rays with matter can be taken from different databases. During an iteration process the element concentrations can be determined. Quantitative XRF based on fundamental parameters requires an accurate knowledge of the excitation spectrum. In case of a conventional setup this spectrum is given by the X-ray tube spectrum and can be calculated. The use of polycapillary optics in micro-XRF spectrometers changes the spectral distribution of the excitation radiation. For this reason it is necessary to access the transmission function of the used optic. The aim of this work is to find a procedure to describe this function for routine quantification based on fundamental parameters. Most of the measurements have been carried out using a commercial spectrometer developed for applications in arts and archaeology. On the one hand the parameters of the lens, used in the spectrometer, have been investigated by different experimental characterization

  19. Quantitative determination of uranium in organic solution by X-ray fluorescence

    International Nuclear Information System (INIS)

    Leyt, D.V. de; Colangelo, C.H.

    1987-01-01

    An X-ray fluorescent method for the determination of uranium in tributilphosphate-kerosene-nitriacid solution has been developed. Chemical properties of the matrix elements were studied in order to select a convenient procedure to determine samples and standards on the same way. The method avoids the destruction of the organic material and has proved to be very useful for the fast control of uranium concentration. (Author) [es

  20. Hyper-filter-fluorescer spectrometer for fusion x-ray diagnostics

    International Nuclear Information System (INIS)

    Wang, C.L.

    1981-01-01

    The filter-fluorescer spectrometer (FFS) is a powerful tool for measuring x-ray spectrum from high fluence x-ray sources. However, this technique is limited to energies less than 120 keV, because there are no practical absorption edges available above this energy. In this paper, we present a new method of utilizing the filter-fluorescer system for x-ray spectral measurement above 120 keV. The new apparatus is called hyper-filter-fluorescer spectrometer

  1. Relative probabilities of the uranium isotopes for thorium x-ray emission and fluorescence of uranium x-rays

    International Nuclear Information System (INIS)

    Parker, J.L.

    1991-01-01

    Both thorium x-rays from decaying uranium isotopes and self-fluoresced uranium x-rays are prominent in high-resolution gamma-ray spectra of uranium-bearing materials. Useful application of the information carried by those x-rays has been curtailed because the probabilities of the uranium isotopes for thorium x-ray emission and for uranium x-ray fluorescence have not been known. By analyzing enrichment-meter geometry spectra from uranium oxide standards whose enrichments ranged from 0.7% to 91%, relative values, primarily, have been obtained for the probabilities of both processes. Thorium x-ray emission is very heavily dominated by 235 U. In all ordinarily occurring uranium isotopic distributions, thorium x-rays may be used as a valid 235 U signature. The probability for a thorium K α1 x-ray to be emitted in the decay of a 235 U atom is 0.048 ±0.002. In infinitely thick uranium oxide materials, the relative ratios of effectiveness for self-fluorescence, on a per unit mass basis, are approximately 234 U : 235 U : 236 U : 238 U = 1.13 : 1.00 : 0.52 : 0.028. on a per decay basis, the approximate ratios are 0.00039 : 1.00 : 0.017 : 0.18. These results imply that, contrary to what has often been stated, gamma rays are far more important than alpha particles in the self-fluorescence of uranium. Because of the importance of gamma-ray self-fluorescence, the uranium x-ray yield will be somewhat influenced by the size, shape, and composition of the materials. 4 refs., 1 fig

  2. A bench-top K X-ray fluorescence system for quantitative measurement of gold nanoparticles for biological sample diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ricketts, K., E-mail: k.ricketts@ucl.ac.uk [Division of Surgery and Interventional Sciences, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF (United Kingdom); Guazzoni, C.; Castoldi, A. [Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano and INFN, Sezione di Milano P.za Leonardo da Vinci, 32-20133 Milano (Italy); Royle, G. [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT (United Kingdom)

    2016-04-21

    Gold nanoparticles can be targeted to biomarkers to give functional information on a range of tumour characteristics. X-ray fluorescence (XRF) techniques offer potential quantitative measurement of the distribution of such heavy metal nanoparticles. Biologists are developing 3D tissue engineered cellular models on the centimetre scale to optimise targeting techniques of nanoparticles to a range of tumour characteristics. Here we present a high energy bench-top K-X-ray fluorescence system designed for sensitivity to bulk measurement of gold nanoparticle concentration for intended use in such thick biological samples. Previous work has demonstrated use of a L-XRF system in measuring gold concentrations but being a low energy technique it is restricted to thin samples or superficial tumours. The presented system comprised a high purity germanium detector and filtered tungsten X-ray source, capable of quantitative measurement of gold nanoparticle concentration of thicker samples. The developed system achieved a measured detection limit of between 0.2 and 0.6 mgAu/ml, meeting specifications of biologists and being approximately one order of magnitude better than the detection limit of alternative K-XRF nanoparticle detection techniques. The scatter-corrected K-XRF signal of gold was linear with GNP concentrations down to the detection limit, thus demonstrating potential in GNP concentration quantification. The K-XRF system demonstrated between 5 and 9 times less sensitivity than a previous L-XRF bench-top system, due to a fundamental limitation of lower photoelectric interaction probabilities at higher K-edge energies. Importantly, the K-XRF technique is however less affected by overlying thickness, and so offers future potential in interrogating thick biological samples.

  3. Application of radionuclide sources for excitation in energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Hoffmann, P.

    1986-01-01

    X-ray fluorescence (XRF) analysis is in broad application in many fields of science where elemental determinations are necessary. Solid and liquid samples are analyzed by this method. Solids are introduced in thin or thick samples as melted glass, pellets, powders or as original specimen. The excitation of X-ray spectra can be performed by specific and polychromic radiation of X-ray tubes, by protons, deuterons, α-particles, heavy ions and synchrotron radiation from accelerators and by α-particles, X- and γ-rays and by bremsstrahlung generated by β - -particles from radionuclide sources. The radionuclides are devided into groups with respect to their decay mode and the energy of the emitted radiation. The broad application of radionuclides in XRF excitation is shown in examples as semi-quantitative analysis of glasses, as quantitative analysis of coarse ceramics and as quantitative determination of heavy elements (mainly actinides) in solutions. The advantages and disadvantages of radionuclide excitation in XRF analysis are discussed. (orig.) [de

  4. Account of spectral dependence of instrumental factor in quantitative X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Pershin, N.V.; Mosichev, V.I.

    1990-01-01

    A new method for calibration of X-ray fluorescence spectrometers using scanning spectrometric channel is proposed. The method is based on a separate account of matrix and instrumental effects and needs no calibration standards for the element analysed. For calibration in the whole spectral range of XRS (0.03-1.0 nm) it is sufficient to have from 10 to 15 pure element emitters made of most wide spread elements. The method provides rapid development of quantitative analysis for the elements which are not provided with standard samples and preparation of pure element emitters for which is impossible or problematic. The practical verification of the method was made by analysing a set of 146 standard samples covering a wide group of alloys. The mean relative error of the method was 3-5 % in an analytical range of 0.1-3.0 wt %

  5. X-ray fluorescence cross sections for K and L x rays of the elements

    International Nuclear Information System (INIS)

    Krause, M.O.; Nestor, C.W. Jr.; Sparks, C.J. Jr.; Ricci, E.

    1978-06-01

    X-ray fluorescence cross sections are calculated for the major x rays of the K series 5 less than or equal to Z less than or equal to 101, and the three L series 12 less than or equal to Z less than or equal to 101 in the energy range 1 to 200 keV. This calculation uses Scofield's theoretical partical photoionization cross sections, Krause's evaluation of fluorescence and Coster-Kronig yields, and Scofield's theoretical radiative rates. Values are presented in table and graph format, and an estimate of their accuracy is made. The following x rays are considered: Kα 1 , Kα 1 , 2 , Kβ 1 , Kβ 1 , 3 , Lα 1 , Lα 1 , 2 , Lβ 1 , Lβ 2 , 15 , Lβ 3 , Ll, Lγ 1 , Lγ 4 , and L 1 → L 2 , 3 . For use in x-ray fluorescence analysis, Kα and Lα fluorescence cross sections are presented at specific energies: TiK identical with 4.55 keV, CrK identical with 5.46 keV, CoK identical with 7.00 keV, CuK identical with 8.13 keV, MoKα identical with 17.44 keV, AgK identical with 22.5 keV, DyK identical with 47.0 keV, and 241 Am identical with 59.54 keV. Supplementary material includes fluorescence and Coster--Kronig yields, fractional radiative rates, fractional fluorescence yields, total L-shell fluorescence cross sections, fluorescence and Coster-Kronig yields in condensed matter, effective fluorescence yields, average L-shell fluorescence yield, L-subshell photoionization cross section ratios, and conversion factors from barns per atom to square centimeters per gram

  6. X-ray fluorescence analysis for trace element determination in foodstuff chemistry

    International Nuclear Information System (INIS)

    Wildanger, W.

    The physical fundamentals of X-ray fluorescence analysis are given and the routine spectrometers described. The basic principles are given of analytical methods used in qualitative and quantitative fluorescence analyses. Examples are given of the use of the method in a number of fields and the possibility and usefulness is discussed for the determination of trace elements in foodstuffs. The preparation of samples, preliminary concentration of components and calibration methods are discussed. (M.K.)

  7. Multi-elemental analysis of marine sediments of Sorsogon Bay using x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gonzales, Ralph Roly A.; Quirit, Leni L.; Rosales, Colleen Marciel F.; Pabroa, Preciosa Corazon B.; Sta Maria, Efren J.

    2011-01-01

    Metal composition and nutrient loadings of our bodies of water, when uncontrolled, may cause harmful bacterial contamination and pose threats in aquatic and human life. Toxic and trace element inputs in Sorsogon Bay sediments were determined using nuclear analytical techniques, more specifically, x-ray fluorescence spectrometry, in this study. Pre-treated marine sediment samples from Sorsogon Bay were homogenized using SPEX # 8000 mixer/mill and agate mortar and pestle, pelletized into 31-mm flat discs using SPEX 3630 X-Press and analyzed using PAN Analytical Epsilon 5 EDX X-ray Fluorescence Spectrometer with the emission and transmission method using silver and germanium secondary targets. Spectrum fitting performed using AXIL (Analysis of X-ray Spectra by Iterative Least-Squares Fitting), a subprogram in Quantitative X-ray Analysis System developed by the International Atomic Energy Agency and Quantitative Analysis of Environmental Samples program, was used for quantification of results. Results indicate generally moderate to high metal enrichment, specifically manganese, lead, cadmium, zinc and copper. Mercury and iron level enrichment are found to be low, marking an improvement from previous studies indicating high enrichment of these metals. (author)

  8. Application of X-ray fluorescence in investigation of historical monuments

    International Nuclear Information System (INIS)

    Cechak, Tomas; Trojek, Tomas; Musilek, Ladislav; Paulusova, Hana

    2008-01-01

    Full text: Nuclear techniques represent invaluable tools in non-destructive diagnostics applied to archaeological findings and objects of arts, mainly for dating and determining the composition of materials used in the production of artefacts. In this work we present the application of X-ray fluorescence analysis (XRFA). The X-ray fluorescence apparatus built and operated in the Laboratory of Quantitative Methods in Research of Ancient Monuments, constituent part of the Department of Dosimetry and Application of Ionizing Radiation, FNSPE, was used for the purpose of old relics measurements. The X-ray sources (radionuclides) generate the characteristic X-ray photons from the sample. After processing the resulting signal, we obtain information about the chemical composition of the tested sample. These results give data for qualitative and quantitative analysis of samples. XRFA is relatively simple and non-destructive method. Capability of in-situ measurement is one of big advantages of this method. The radionuclide sources of exciting radiation (e.g. 55 Fe enables the excitation of elements with Z up to 23, 238 Pu is used in interval of Z from 20 to 39 etc.) and X-ray tube with Mo anode were used. Narrow collimation of the exciting beam makes it possible to select the measured area of e.g. pigments in old manuscripts. X-ray fluorescence analysis, both in its energy form and in its wave dispersive form, is one of the most widespread methods using ionising radiation to study the elemental composition of materials. It is frequently used for studies of various cultural and historic relicts and objects of art. This work summarizes the author's experience with X-ray fluorescence analysis in investigating historical relicts namely by means of portable spectroscopic devices. Utilization of these methods is demonstrated in the investigation of fresco paintings, metal objects and old manuscripts. The results of these measurements provide the information on the composition of

  9. Portable x-ray fluorescence spectrometer for Works of art

    International Nuclear Information System (INIS)

    Mendoza, A.; Griesser, A.

    2001-01-01

    X-ray fluorescence is an analytical technique of prier importance in archaeometry, for restoration and art history investigation; it is because of non-destructive and multi-elemental character of the analysis simplicity and high speed of operation, ability to produce immediate analytical results for the objects, which can neither be sampled nor removed to the laboratory Recent advances in X-ray tubes, X-ray detectors and electronic provided an opportunity to produce portable high resolution XRF spectrometers characterized by a good reliability and analytical performance; in this paper a prototype portable XRF spectrometer based on a small size, low power X-ray tube and a thermometrically cooled Si-Pin detector is described. The spectrometer provides a possibility for direct and secondary target excitation geometry use of proper secondary target and filter and size adjustment of the primary photon bean by using a set of different beam collimators; the portable XRF spectrometer was successfully applied to study art objects in the Art History Museum in Vienna, including such objects as old master paintings bronze and brass alloys of antique as well as Renaissance objects and silver/copper coins produced at different locations. Quantitative and Quantitative analysis were amedee depending of the curator questions and discussed from the point of view of art History. The importance of the results for restoration and authentification of the art objects is also emphasized

  10. MSL Chemistry and Mineralogy X-Ray Diffraction X-Ray Fluorescence (CheMin) Instrument

    Science.gov (United States)

    Zimmerman, Wayne; Blake, Dave; Harris, William; Morookian, John Michael; Randall, Dave; Reder, Leonard J.; Sarrazin, Phillipe

    2013-01-01

    This paper provides an overview of the Mars Science Laboratory (MSL) Chemistry and Mineralogy Xray Diffraction (XRD), X-ray Fluorescence (XRF) (CheMin) Instrument, an element of the landed Curiosity rover payload, which landed on Mars in August of 2012. The scientific goal of the MSL mission is to explore and quantitatively assess regions in Gale Crater as a potential habitat for life - past or present. The CheMin instrument will receive Martian rock and soil samples from the MSL Sample Acquisition/Sample Processing and Handling (SA/SPaH) system, and process it utilizing X-Ray spectroscopy methods to determine mineral composition. The Chemin instrument will analyze Martian soil and rocks to enable scientists to investigate geophysical processes occurring on Mars. The CheMin science objectives and proposed surface operations are described along with the CheMin hardware with an emphasis on the system engineering challenges associated with developing such a complex instrument.

  11. A method of measuring gold nanoparticle concentrations by x-ray fluorescence for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu Di; Li Yuhua; Wong, Molly D.; Liu Hong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2013-05-15

    Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signal radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.

  12. X-ray Microprobe for Fluorescence and Diffraction Analysis

    International Nuclear Information System (INIS)

    Ice, G.E.

    2005-01-01

    X-ray diffraction (see unit 1.1) and x-ray excited fluorescence analysis are powerful techniques for the nondestructive measurement of crystal structure and chemical composition. X-ray fluorescence analysis is inherently nondestructive with orders of magnitude lower power deposited for the same detectable limit as with fluorescence excited by charged particle probes (Sparks, 1980). X-ray diffraction analysis is sensitive to crystal structure with orders-of-magnitude greater sensitivity to crystallographic strain than electron probes (Rebonato, et al. 1989). When a small-area x-ray microbeam is used as the probe, chemical composition (Z>14), crystal structure, crystalline texture, and crystalline strain distributions can be determined. These distributions can be studied both at the surface of the sample and deep within the sample (Fig. 1). Current state-of-the-art can achieve an ∼1 mm-D x-ray microprobe and an ∼0.1 mm-D x-ray microprobe has been demonstrated (Bilderback, et al., 1994). Despite their great chemical and crystallographic sensitivities, x-ray microprobe techniques have until recently been restricted by inefficient x-ray focusing optics and weak x-ray sources; x-ray microbeam analysis was largely superseded by electron techniques in the 50's. However, interest in x-ray microprobe techniques has now been revived (Howells, et al., 1983; Ice and Sparks, 1984; Chevallier, et al., 1997; Riekel 1992; Thompson, el al., 1992; and Making and Using... 1997) by the development of efficient x-ray focusing optics and ultra-high intensity synchrotron x-ray sources (Buras and Tazzari, 1984; Shenoy, et al., 1988). These advances have increased the achievable microbeam flux by more than 11 orders of magnitude (Fig. 2) (Ice, 1997); the flux in a tunable 1 mm-D beam on a 'so called' 3rd-generation synchrotron source such as the APS can exceed the flux in a fixed-energy mm2 beam on a conventional source. These advances make x-ray microfluorescence and x-ray

  13. Alloying effect on K shell X-ray fluorescence cross-sections and yields in Ti-Ni based shape memory alloys

    Directory of Open Access Journals (Sweden)

    Bünyamin Alım

    2018-04-01

    Full Text Available K shell X-ray fluorescence cross-sections (σKα, σKβ and σK, and K shell fluorescence yields (ωK of Ti, Ni both in pure metals and in different alloy compositions (TixNi1-x; x = 0.3, 0.4, 0.5, 0.6, 0.7 were measured by using energy dispersive X-ray fluorescence (EDXRF technique. The samples were excited by 22.69 keV X-rays from a 10 mCi Cd-109 radioactive point source and K X rays emitted by samples were counted by a high resolution Si(Li solid-state detector coupled to a 4 K multichannel analyzer (MCA. The alloying effects on the X-ray fluorescence (XRF parameters of Ti-Ni shape memory alloys (SMAs were investigated. It is clearly observed that alloying effect causes to change in K shell XRF parameter values in Ti-Ni based SMAs for different compositions of x. Also, the present investigation makes it possible to perform reliable interpretation of experimental σKα, σKβ and ωK values for Ti and Ni in SMAs and can also provide quantitative information about the changes of K shell X-ray fluorescence cross sections and fluorescence yields of these metals with alloy composition. Keywords: Alloying effect, XRF, K X-ray fluorescence cross-section, K shell fluorescence yield, Shape memory alloy

  14. Chemical Characterization of Nuclear Materials: Development a New Combined X-Ray Fluorescence and Raman Spectrometer

    International Nuclear Information System (INIS)

    Szaloki, I.; Gerenyi, A.

    2015-01-01

    New mobile analytical device based on combination of X-ray fluorescence and Raman spectrometer has been developed for prompt and quantitative characterization of chemical component from Al to U in nuclear waste or undeclared materials. The excitation source of the X-ray fluorescence spectrometer is an air-cooled X-ray tube with Ag transmission anode. For collection of secondary X-ray photons and data processing, a compact Amptek X-ray detector system is applied with silicon drift X-ray detector. The XRF system operates in confocal mode with focal volume around 1-4 mm 3 . Varying the geometrical position and orientation of the sample optional part of its surface can be analyzed. The Raman unit includes thermoelectrically cooled laser source having 500 mW power at wavelength 785 nm. In order to obtain spectral information from sample surface a reflection-type probe is connected by optical fibres to the Raman spectrometer. A mini focusing optics is set up to the sensor-fibre that provides the system to operate as confocal optical device in reflection mode. The XRF spectrometer with X-ray detector, Raman probe and X-ray tube are mechanically fixed and hermetically connected to an aluminium chamber, which can be optionally filled with helium. The chamber is mounted on a vertical stage that provides moving it to the sample surface. A new model and computer code have been developed for XRF quantitative analysis which describes the mathematical relationship between the concentration of sample elements and their characteristic X-ray intensities. For verification of the calculations standard reference alloy samples were measured. The results was in good agreement with certified concentrations in range of 0.001-100 w%. According to these numerical results this new method is successfully applicable for quick and non-destructive quantitative analysis of waste materials without using standard samples. (author)

  15. X-ray fluorescence in Member States (Italy): Full field X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F. P.; Masini, N.; Pappalardo, L., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Cosentino, L.; Gammino, S.; Mascali, D.; Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy)

    2014-02-15

    A full field X-ray camera for the X-Ray Fluorescence imaging of materials with high-energy and high-spatial resolution was designed and developed. The system was realized by coupling a pinhole collimator with a positionsensitive CCD detector. X-Ray fluorescence is induced on the samples by irradiation with an external X-ray tube. The characteristic X-ray spectra of the investigated materials are obtained by using a multi-frames acquisition in single-photon counting. The energy resolution measured at the Fe-Kα line was 157 eV. The spatial resolution of the system was determined by the analysis of a sharp-edge at different magnification values; it was estimated to be 90 μm at a magnification value of 3.2x and 190 μm at 0.8x. The present set-up of the system is suited to analyze samples with dimensions up to 5x4 cm{sup 2}. Typical measurement time is in the range between 1h to 4 h. (author)

  16. Analysis of selected elements in tobacco by wavelength dispersive X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Martin, J.M.

    1988-01-01

    A rapid method for the determination of 16 elements in tobacco by wavelength dispersive X-ray fluorescence spectrometry has been developed. The method is accurate and precise, and requires only 9 min per sample for quantitation. Sample preparation consists of placing a portion of dried, ground tobacco in a sample cup, and pressing at 25 tons pressure to make a compressed pellet. This pellet is then automatically analyzed by X-ray fluorescence for 16 elements. The results are stored on a computer disk for future recall and report generation. The elements are: Al, Br, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, S, Si, Sr, Ti and Zn

  17. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: a Monte Carlo study.

    Science.gov (United States)

    Manohar, Nivedh; Jones, Bernard L; Cho, Sang Hyun

    2014-10-01

    To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81-100 ke

  18. Quantitative analysis and metallic coating thickness measurements by X-ray fluorescence

    International Nuclear Information System (INIS)

    Negrea, Denis; Ducu, Catalin; Malinovschi, Viorel; Moga, Sorin; Boicea, Niculae

    2009-01-01

    This work deals with the use of X-ray fluorescence (XRF) for determining the concentration and the coating thickness on metallic samples. The analysis method presented here may also be applicable to other coatings, providing that the elemental nature of the coating and substrate are compatible with the technical aspects of XRF, such as the absorption coefficient of the system, primary radiation, fluorescent radiation and type of detection. For the coating thickness measurement it was used the substrate-line attenuation method and an algorithm was developed. Its advantage relies in the fact that no special calibration with standard samples having different layer thickness is needed. The samples used for evaluation were metallic pieces of iron with zinc-nickel coatings of different thickness obtained by electrochemical deposition. (authors)

  19. Advanced of X-ray fluorescence logging technique in China

    International Nuclear Information System (INIS)

    Zhou Sichun; Ge Liangquan; Lai Wanchang; Yang Qiang

    2010-01-01

    The paper discuses principle of X-ray fluorescence logging, and introduces advanced of X-ray fluorescence logging technique in China. By 2009, third generation XRF logging instrument has been developed in China, and good logging result has been obtained in Lala copper mine. (authors)

  20. Chemical analysis by X-ray fluorescence, of niobium in high-strength plate steels

    International Nuclear Information System (INIS)

    Iozzi, F.B.; Dias, M.J.P.

    1981-01-01

    The use of X-ray fluorescence spectrometry in quantitative analysis of niobium in steels, as an alternative solution for optical emission spectrometry, in the rapid chemical control of steel fabrication by LD type converters, is presented. (M.C.K.) [pt

  1. X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of Literature on x-ray fluorescence spectrometry starts with a list of conference proceedings on the subject, organised by the Philips organisation at regular intervals in various European countries. It is followed by a list of bulletins. The bibliography is subdivided according to spectra, equipment, applications and absorption analysis

  2. Confirmation of molecular formulas of metallic complexes through X-ray fluorescence quantitative analysis

    International Nuclear Information System (INIS)

    Filgueiras, C.A.L.; Marques, E.V.; Machado, R.M.

    1984-01-01

    X-ray fluorescence spectrophotometry was employed to determined the metal content in a series of five transition element complexes (Mn, Ti, Zn, V). The results confirmed the molecular formulas of these complexes, already proposed on the basis of elemental microanalysis, solution condutimetry and other analytical methods. (C.L.B.) [pt

  3. Sample analysis using gamma ray induced fluorescent X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Sood, B S; Allawadhi, K L; Gandhi, R; Batra, O P; Singh, N [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1983-01-01

    A non-destructive method for the analysis of materials using gamma ray-induced fluorescent x-ray emission has been developed. In this method, special preparation of very thin samples in which the absorption of the incident gamma rays and the emitted fluorescent x-rays is negligible, is not needed, and the absorption correction is determined experimentally. A suitable choice of the incident gamma ray energies is made to minimise enhancement effects through selective photoionization of the elements in the sample. The method is applied to the analysis of a typical sample of the soldering material using 279 keV and 59.5 keV gamma rays from /sup 203/Hg and /sup 241/Am radioactive sources respectively. The results of the analysis are found to agree well with those obtained from the chemical analysis.

  4. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  5. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Meirer, F.; Streli, C.; Wobrauschek, P.; Thiele, J.; Falkenberg, G.; Pepponi, G.

    2008-01-01

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 μm, 8.0-2.0 μm, 2.0-0.13 μm 0.13-0.015 μm (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 μm, 1-2 μm, 2-4 μm, 4-8 μm, 8-16 μm. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions

  6. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures

  7. Portable X-ray fluorescence analyzer of high sensitivity using X-ray tube excitation

    International Nuclear Information System (INIS)

    Vatai, E.; Ando, L.

    1982-01-01

    A review of the three main methods of X-ray fluorescence analysis and their problems is given. The attainable accuracy and effectiveness of each method are discussed. The main properties of portable X-ray analyzers required by the industry are described. The results and experiences of R and D activities in ATOMKI (Debrecen, Hungary) for developing portable X-ray analyzers are presented. The only way for increasing the accuracy and decreasing the measuring time is the application of X-ray tube excitation instead of radioactive sources. The new ATOMKI equipment presently under construction and patenting uses X-ray tube excitation; it will increase the accuracy of concentration determination by one order of magnitude. (D.Gy.)

  8. Quantitative analysis and metallic coating thickness measurements by X-ray fluorescence

    International Nuclear Information System (INIS)

    Negrea, Denis; Ducu, Catalin; Malinovschi, Viorel; Moga, Sorin; Boicea, Niculae

    2009-01-01

    Full text: This paperwork covers the use of X-ray fluorescence (XRF) for determining the concentration and the coating thickness on metallic samples. The analysis method presented here may also be applicable to other coatings, providing that the elemental nature of the coating and substrate are compatible with the technical aspects of XRF, such as the absorption coefficient of the system, primary radiation, fluorescent radiation and type of detection. For the coating thickness measurement it was used the substrate-line attenuation method and a computing algorithm was developed. Its advantage relies in the fact that no special calibration with standard samples having different layer thickness is needed. The samples used for evaluation were metallic pieces of iron with zinc-nickel coatings of different thickness obtained by electrochemical deposition. (authors)

  9. Fluorescent intensifying screens: contribution of secondary X-rays

    International Nuclear Information System (INIS)

    Barroso, R.C.; Goncalves, O.D.; Eichler, J.; Lopes, R.T.; Cardoso, S.C.

    1996-01-01

    The counting rate and angular distribution of secondary X-rays produced by fluorescent intensifying screens are studied. A source of 241 Am - gamma radiation of 59.54 keV - is used. Fluorescent intensifying screens reduce the radiation dose in radiology since they produce visible light which increases the efficiency of the film. In addition, secondary X-rays arise due to the photoelectric effect, elastic (Rayleigh) and inelastic (Compton) scattering

  10. System for Gamma an X rays fluorescence spectrometric

    International Nuclear Information System (INIS)

    Alonso Abad, D.; Arista Romeu, E.; Bolanos Perez, L. and others

    1997-01-01

    A system for spectrometry of gamma or fluorescence X rays is presented. It sis composed by a Si(Li) semiconductors detector, a charge sensitive preamplifier, a high voltage power supply, a spectrometric amplifier and a monolithic 1024 channels multichannel analyzers or an IBM compatible 4096 channels add - on- card multichannel analyzer. The system can be configured as a 1024 or 4096 channels gamma or fluorescent X rays spectrometer

  11. Preparation of specimens for analysis by: X-ray diffraction and X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Banos L, L.

    2004-01-01

    Specimen preparation is one of the most important requirements in the analysis of samples by X-ray Diffraction and X-ray Fluorescence. This statement is especially true for samples containing different types of materials. There are many forms of specimen suitable for X-ray analysis and the type of the sample as received will generally determine the method of pretreatment. It is convenient to refer to the material received for analysis as the sample, and that, which is actually analyzed as the specimen. The powder Diffraction method assumes that the particles in the specimen are ideally random orientation and that there are enough crystallites in the specimen to achieve a representative intensity distribution for these crystallites. X ray Fluorescence is essentially a comparative method of analysis, it is vital that all standards and unknowns be presented to the spectrometer in a reproducible and identical manner. (Author) 3 refs., 6 figs

  12. Total-reflection x-ray fluorescence with a brillant undulator x-ray source

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.; Numako, C.; Suzuki, M.; Inoue, K.; Yagi, N.

    2000-01-01

    Total-reflection x-ray fluorescence (TXRF) is a highly sensitive technique for analyzing trace elements, because of the very low background from the sample support. Use of third-generation synchrotron x-ray source could further enhance the detection power. However, while such high sensitivity permits the detection of signals from trace elements of interest, it also means that one can observe weak parasitic x-rays as well. If the sample surface becomes even slightly contaminated, owing to air particulates near the beamline, x-ray fluorescence lines of iron, zinc, copper, nickel, chromium, and titanium can be observed even for a blank sample. Another critical problem is the low-energy-side tail of the scattering x-rays, which ultimately restricts the detection capability of the technique using a TXRF spectrometer based on a Si(Li) detector. The present paper describes our experiments with brilliant undulator x-ray beams at BL39XU and BL40XU, at the SPring-8, Harima, Japan. The emphasis is on the development of instruments to analyze a droplet of 0.1 μl containing trace elements of ppb level. Although the beamline is not a clean room, we have employed equipment for preparing a clean sample and also for avoiding contamination during transferring the sample into the spectrometer. We will report on the successful detection of the peak from 0.8 ppb selenium in a droplet (absolute amount 80 fg). We will also present the results of recent experiments obtained from a Johansson spectrometer rather than a Si(Li) detector. (author)

  13. Fluorescent x-ray computed tomography to visualize specific material distribution

    Science.gov (United States)

    Takeda, Tohoru; Yuasa, Tetsuya; Hoshino, Atsunori; Akiba, Masahiro; Uchida, Akira; Kazama, Masahiro; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji

    1997-10-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT systems consists of a silicon channel cut monochromator, an x-ray slit and a collimator for detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the K(alpha) line, incident monochromatic x-ray was set at 37 keV. At 37 keV Monte Carlo simulation showed almost complete separation between Compton scattering and the K(alpha) line. Actual experiments revealed small contamination of Compton scattering on the K(alpha) line. A clear FXCT image of a phantom was obtained. Using this system the minimal detectable dose of iodine was 30 ng in a volume of 1 mm3, and a linear relationship was demonstrated between photon counts of fluorescent x-rays and the concentration of iodine contrast material. The use of high incident x-ray energy allows an increase in the signal to noise ratio by reducing the Compton scattering on the K(alpha) line.

  14. Studying atomic-resolution by X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Gao Hongyi; Chen Jianwen; Xie Honglan; Zhu Huafeng; Li Ruxin; Xu Zhizhan

    2005-01-01

    In this work, the results of numerical simulations of X-ray fluorescence holograms and the reconstructed atomic images for Fe single crystal are given. The influences of the recording angles ranges and the polarization effect on the reconstruction of the atomic images are discussed. The process for removing twin images by multiple energy fluorescence holography and expanding the energy range of the incident X-rays to improve the resolution of the reconstructed images is presented

  15. A guide for approval of x-ray fluorescence analysis devices

    International Nuclear Information System (INIS)

    1990-01-01

    This guide has been written to assist manufacturers, distributors and users of x-ray fluorescence analysis devices in the preparation of a submission to the Atomic Energy Control Board (AECB) in support of a request for approval of an x-ray fluorescence analysis device. Prior to the issuance of a Radioisotope licence authorizing the use or possession of an x-ray fluorescence analysis device in Canada, the design and construction of the device must be approved by the AECB. The AECB assessment is limited to the radiation safety aspects of use and packaging for transportation

  16. Sulfur content measurement in coal by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Cechak, T.; Thinova, L.

    2001-01-01

    X-ray fluorescence, using backscattering, was employed in the determination of sulfur content and ash content measurement in coal. The results of the methods are given to illustrate the differences between the chemical analysis and X-ray fluorescence method.

  17. Synchrotron X-ray fluorescence studies of a bromine-labelled cyclic RGD peptide interacting with individual tumor cells

    International Nuclear Information System (INIS)

    Sheridan, Erin J.; Austin, Christopher J. D.; Aitken, Jade B.; Vogt, Stefan; Jolliffe, Katrina A.; Harris, Hugh H.; Rendina, Louis M.

    2013-01-01

    The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells. The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells

  18. X-ray fluorescence beamline at LNLS: components and some associated techniques

    International Nuclear Information System (INIS)

    Perez, CArlos A.; Radtke, Martin; Perez, Carlos; Tolentino, Helio; Vicentin, Flavio; Sanchez, Hector Jorge; Perez, Roberto D.

    1997-01-01

    Full text. In this work a general description of the Total Reflection X-Ray Fluorescence (TXRF) and the X-Ray Fluorescence Microprobe (XRFM) is presented. Components, equipment and experimental stations for the x-ray fluorescence beamline are described, regarding to the techniques mentioned above. Results from the simulations of a pair bended mirrors in a Kirkpatrick-Baez configuration, are shown. The simulations were performed with Shadow program. (author)

  19. Development of a portable system of X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Mantuano, Andrea; Crisostomo, Jose V.V.; Barros, Mariana J.; Oliveira, Luis F.; Barroso, Regina C.

    2009-01-01

    This paper develops a compact and portable spectrometry system that will be used at the Laboratory of Applied Physics to the Biomedical and Environmental Sciences of the Institute of Physics/UERJ, Rio de Janeiro, Brazil. The laboratory both prepares the samples and develops the X-ray spectrometry techniques. The techniques of X-ray diffraction and fluorescence on various samples (biological, industrial and environmental) are used, attending to pos-graduation and graduation students, with multidisciplinary characteristics. The Mini-X system consists of X-ray mini tube MINI-X from Amptek with tungsten (W) target, and a compact spectrometer X123, also from Amptek that includes a detector, pre-amplifier, digital pulse processor, and multichannel. All the system is controlled by dedicated microprocessor. This work will present both a methodology for alignment and calibration of the system as far the first measurements performed using the X-ray fluorescence technique on standard samples. The multi elementary analysis by X-ray fluorescence (XRF) is based on the measurements of the characteristic X-ray intensity emitted by the chemical elements components of the samples when excited. Therefore, from the development of this compact and versatile system it will be possible to obtain the fluorescent intensities of the analysed samples at the Laboratory, not only at the research area but at the teaching area. Besides, new laboratory practices are being developed for the discipline of medical physics

  20. X-ray fluorescence microtomography analyzing prostate tissues

    International Nuclear Information System (INIS)

    Pereira, Gabriela R.; Rocha, Henrique S.; Calza, Cristiane; Lopes, Ricardo T.

    2009-01-01

    The objective of this work is to determine the elemental distribution map in reference samples and prostate tissue samples using X-Ray Fluorescence Microtomography (XRFCT) in order to verify concentrations of certain elements correlated with characteristics observed by the transmission microtomography. The experiments were performed at the X-Ray Fluorescence Facility of the Brazilian Synchrotron Light Laboratory. A quasi-monochromatic beam produced by a multilayer monochromator was used as an incident beam. The transmission CT images were reconstructed using filtered-back-projection algorithm, and the XRFCT images were reconstructed using filtered-back-projection algorithm with absorption corrections. (author)

  1. Polarized X-ray excitation for scatter reduction in X-ray fluorescence computed tomography.

    Science.gov (United States)

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses X-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized X-rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized X-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent X-rays are emitted isotropically, while scattered X-rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic X-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an X-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image

  2. Quantitative microanalysis of hafnium - zirconium system by X-ray fluorescence

    International Nuclear Information System (INIS)

    Majid, C.A.; Hussain, M.A.; Saeed, K.

    1986-01-01

    X-ray fluorescence technique has been used for the analysis of Hf in the presence of Zr by developing a method. In this method the spectral interference of Hf lines by Zr is eliminated completely and the Hf detection is accomplished using the most efficient Li line of its L-series. The principle of the method is based on the extinction properties of crystals for some orders of reflection. Ge(III) is used as the analyzing crystal. This method can be used accurately to detect Hf in any concentration of Zr at least from about 20 ppm to 100%. Also no information about the expected range of the analyte sample, is required in advance. (authors)

  3. X-ray imaging with monochromatic synchrotron radiation. Fluorescent and phase-contrast method

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-05-01

    To obtain the high sensitive x-ray images of biomedical object, new x-ray imaging techniques using fluorescent x-ray and phase-contrast x-ray are being developed in Japan. Fluorescent x-ray CT can detect very small amounts of specific elements in the order of ppm at one pixel, whereas phase-contrast x-ray imaging with interferometer can detect minute differences of biological object. Here, our recent experimental results are presented. (author)

  4. A new method for x-ray fluorescence analysis of contaminated material. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Grodzins, Lee; Niland, John

    2002-05-23

    Niton has successfully completed the objectives of the Phase II program to build a hand-held, x-ray fluorescent analyzer optimized for DOE decontamination and decommissioning activities in the field. A two-pound x-ray fluorescence analyzer was developed that contains 3 radioactive sources, emitting 3 widely spaced monochromatic x-rays, to give the lowest detection limits for the full range of toxic elements, from chromium to plutonium. A rapid, fundamental- parameters algorithm was developed that yields quantitative results in less than 1 second. High-resolution silicon drift detectors and silicon PIN diodes give excellent efficiency and speed. These results from Phase II have been introduced into the XL 300, 700 and 800 commercial products series. More than 800 of these instruments, yielding revenues of more than $20 million dollars, have been sold since the first 3-source instrument was introduced in 1998. A direct consequence of the Phase II funding has been the growth of Niton from 20 people to its present size of 60.

  5. A new method for x-ray fluorescence analysis of contaminated material. Final Report

    International Nuclear Information System (INIS)

    Grodzins, Lee; Niland, John

    2002-01-01

    Niton has successfully completed the objectives of the Phase II program to build a hand-held, x-ray fluorescent analyzer optimized for DOE decontamination and decommissioning activities in the field. A two-pound x-ray fluorescence analyzer was developed that contains 3 radioactive sources, emitting 3 widely spaced monochromatic x-rays, to give the lowest detection limits for the full range of toxic elements, from chromium to plutonium. A rapid, fundamental- parameters algorithm was developed that yields quantitative results in less than 1 second. High-resolution silicon drift detectors and silicon PIN diodes give excellent efficiency and speed. These results from Phase II have been introduced into the XL 300, 700 and 800 commercial products series. More than 800 of these instruments, yielding revenues of more than $20 million dollars, have been sold since the first 3-source instrument was introduced in 1998. A direct consequence of the Phase II funding has been the growth of Niton from 20 people to its present size of 60

  6. Millianalyser by x-ray fluorescence

    International Nuclear Information System (INIS)

    Kawamoto, A.; Hirao, O.; Kashiwakura, J.; Gohshi, Y.

    1976-01-01

    Research on the possibility of mm-size nondestructive analysis was carried out by the fluorescent x-ray method. With 0.2 mm pin-hole slit, source x-rays from a Cu target diffraction tube were collimated to a spot smaller than 1 mm phi at a slide stage placed about 5 cm distant from the pin-hole slit. Resultant x-rays from a sample placed on the slide stage, which is excited by the collimated x-ray, were detected with a head-on-type 6 mm SSD, placed so that its 12.5 micron Be window was about 5 cm beneath the stage. X-ray intensities sufficient for analysis (500 to 5000 CPS) could be obtained for various metallic samples with up to 40 kV-10 mA excitation. This instrument proved to be useful for mm-size qualitative analysis in measurements of tiny samples. Furthermore, the possibility of distribution analysis is expected based on the result of an investigation on c.a. 0.1 percent Cr in LiNbO 3 , where the ratios of Cr-Kα intensity to scattered Cu-Kα intensity varied between 0.094 and 0.19, with deviations of less than 7.5 percent at five successive points located at 2 mm intervals along the direction of growth

  7. Simulation and application of micro X-ray fluorescence based on an ellipsoidal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing; Li, Yude; Wang, Xingyi; Zhang, Xiaoyun; Lin, Xiaoyan, E-mail: yangjing_928@126.com

    2017-06-15

    Highlights: • A micro X-ray fluorescence setup based on an ellipsoidal capillary was presented. • The optimal parameters of ellipsoidal capillary were designed. • The 2D mapping image of biological sample was obtained. - Abstract: A micro X-ray fluorescence setup was presented, based on an ellipsoidal capillary and a traditional laboratorial X-ray source. Using Ray-tracing principle, we have simulated the transmission path of X-ray beam in the ellipsoidal capillary and designed the optimal parameters of the ellipsoidal capillary for the micro X-ray fluorescence setup. We demonstrate that ellipsoidal capillary is well suited as condenser for the micro X-ray fluorescence based on traditional laboratorial X-ray source. Furthermore, we obtain the 2D mapping image of the leaf blade sample by using the ellipsoidal capillary we designed.

  8. Total-reflection X-ray fluorescence analysis of Austrian wine

    International Nuclear Information System (INIS)

    Gruber, X.; Kregsamer, P.; Wobrauschek, P.; Streli, C.

    2006-01-01

    The concentration of major, minor and trace elements in Austrian wine was determined by total-reflection X-ray fluorescence using gallium as internal standard. A multi-elemental analysis was possible by pipetting 6 μl of wine directly on the reflector and drying. Total-reflection X-ray fluorescence analysis was performed with Atomika EXTRA II A (Cameca) X-rays from a Mo tube with a high-energy cut-off at 20 keV in total-reflection geometry. The results showed that it was possible to identify only by the elemental analysis as fingerprint the vineyards and year of vintage among 11 different wines

  9. Total-reflection X-ray fluorescence analysis of Austrian wine

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, X. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria); Kregsamer, P. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria); Wobrauschek, P. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria); Streli, C. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria)]. E-mail: streli@ati.ac.at

    2006-11-15

    The concentration of major, minor and trace elements in Austrian wine was determined by total-reflection X-ray fluorescence using gallium as internal standard. A multi-elemental analysis was possible by pipetting 6 {mu}l of wine directly on the reflector and drying. Total-reflection X-ray fluorescence analysis was performed with Atomika EXTRA II A (Cameca) X-rays from a Mo tube with a high-energy cut-off at 20 keV in total-reflection geometry. The results showed that it was possible to identify only by the elemental analysis as fingerprint the vineyards and year of vintage among 11 different wines.

  10. Simulation and application of micro X-ray fluorescence based on an ellipsoidal capillary

    Science.gov (United States)

    Yang, Jing; Li, Yude; Wang, Xingyi; Zhang, Xiaoyun; Lin, Xiaoyan

    2017-06-01

    A micro X-ray fluorescence setup was presented, based on an ellipsoidal capillary and a traditional laboratorial X-ray source. Using Ray-tracing principle, we have simulated the transmission path of X-ray beam in the ellipsoidal capillary and designed the optimal parameters of the ellipsoidal capillary for the micro X-ray fluorescence setup. We demonstrate that ellipsoidal capillary is well suited as condenser for the micro X-ray fluorescence based on traditional laboratorial X-ray source. Furthermore, we obtain the 2D mapping image of the leaf blade sample by using the ellipsoidal capillary we designed.

  11. Exploration in vivo by X-ray fluorescence (thyroid-brain)

    International Nuclear Information System (INIS)

    Delcroix, V.; Allemand, R.; Laval, M.; Dipaola, M.; Tubiana, M.

    1975-01-01

    X-ray fluorescence methods of medical exploration avoid the use of radioactive tracers and hence reduce the total dose received by the patient. In addition the collimation to the excitation source and detector respectively produces a tomographic effect which improves the spatial resolution of the system and even allows organs to be charted. The physical principles involved in X-ray fluorescence are outlined, with emphasis on the fact that the only elements useful for such applications are those of high enough atomic number to emit a fluorescence radiation of energy sufficient to pass through the tissues. The apparatus used, the excitation sources (radioactive source or X-ray tube), the detector and the measurement equipment are described. The experimental results obtained are given in two fields: measurement of blood flow in the tissues; thyroid imagery [fr

  12. Surface characterization of selected polymer thin films by total-reflection x-ray fluorescence spectroscopy and x-ray reflectivity

    International Nuclear Information System (INIS)

    Innis, Vallerie Ann A.

    2006-01-01

    Development of available x-ray characterizations tools for grazing incidence techniques was done to be able to probe nano-size thin films. Alignment of a Philips x-ray powder diffractometer was improved to let it perform as an x-ray reflectometer. X-ray reflectometry was coupled with total-reflection x-ray fluorescence spectroscopy. Evaluation of the performance of this grazing incidence techniques was done by preparing polymer thin films of carboxymethylcellulose, carrageenan and polyvinylpyrrolidone (PVP). The thickness of the films were varied by varying the process parameters such as concentration, spin speed and spin time. Angle-dispersive total-reflection x-ray fluorescence spectroscopy profiles of three films showed film formation only in carrageenan and PVP. For both carrageenan and PVP, an increase in concentration yielded a corresponding increase in intensity of the fluorescent or scattered peaks. XRR profiles of carrageenan thin films yielded a mean value for the critical angle close to quartz substrate. Thickness measurements of the prepared carrageenan thin films showed that concentration was the main determinant for final film thickness over the other process parameters. Sulfur fluorescent intensity derived from the TXRF measurement showed a linear relationship with the measured thickness by XRR. For PVP, measured critical angle is lower than quartz. Poor adhesion of the polymer onto the substrate yielded a limited number of thickness measurements made from the XRR profiles. (Author)

  13. Development of a fluorescent x-ray source for medical imaging

    Science.gov (United States)

    Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.

    1995-02-01

    A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.

  14. Multiple X-ray tomography using transmitted, scattered and fluorescent radiation

    International Nuclear Information System (INIS)

    Cesareo, R.; Brunetti, A.; Golosio, B.; Lopes, R.T.; Barroso, R.C.; Donativi, M.; Castellano, A.; Quarta, S.

    2003-01-01

    A multiple CT-scanner is described, which contemporaneously uses transmitted, scattered and fluorescent X-rays for Imaging. The scanner is characterized by a small size X-ray tube and by four detectors: a ''pencil'' X-ray NaI(Tl) for transmitted tomography, a larger size NaI(Tl) for 90 C o Compton tomography, a thermoelectrically cooled Si-PIN or CdZnTe for fluorescent imaging and a CdZnTe for Rayleigh (or diffraction) tomography. Examples of applications are shown

  15. In vivo X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Ahlgren, L.

    1980-02-01

    Measurements on five occupationally exposed persons have shown that it is possible to use X-ray fluorescence analysis for in vivo measurements of lead in the skeleton. The technique for calibrating in vivo X-ray fluorescence measurements of lead in bone tissue has been studied in detail and a two-component phantom simulating the bone and the soft tissue parts of the finger constructed. The technique has been used for in vivo measurements on 22 occupationally exposed persons. The minimum detectable concentration of lead in fingerbones was found to be around 20 μg x g -1 . The lead concentrations in their skeletons and blood were compared: the correlation was poor. The variations in lead concentrations in the skeleton have been studied in occupationally exposed persons and in samples from archaeological skeletons. The sensitivity and the minimum detectable concentration of cadmium in the kidney cortex in in vivo measurements has been studied by measurements on kidney models. The minimum detectable concentration was 20 μg x g -1 at a skin-kidney distance of 30 mm and 40 μg x g -1 at 40 mm. Five persons occupationally exposed were studied. (Author)

  16. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  17. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Hodoroaba, V.-D.; Radtke, M.; Vincze, L.; Rackwitz, V.; Reuter, D.

    2010-01-01

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  18. Disparity in formulations used for fluorescent X-ray intensity measurements

    International Nuclear Information System (INIS)

    Mittal, Raj; Gupta, Sheenu

    2011-01-01

    The paper presents a problem in computations of X-ray fluorescence cross-sections, shell/sub-shell fluorescence yields, Coster-Kronig yields, vacancy alignment, etc. from X-ray fluorescence (XRF) studies. While using barn/atom as a unit for cross-sections if the atomic masses are not considered it causes a discrepancy in the measured cross-section, yield and alignment values. Most of the earlier publications are being quoted where such an oversight has occurred and discrepancy is evident. - Highlights: → Manuscript gives basic formulation for measurements of fluorescent X-ray intensities. → Most publications ignored the fact that use of barn/atom units for cross-sections requires atomic masses. → Published experimental results higher by a factor ≥2 or less by factor 1/M K . → Inspection of published data on XRF parameters needed.

  19. X-ray fluorescence holography and multiple-energy x-ray holography: A critical comparison of atomic images

    International Nuclear Information System (INIS)

    Len, P.M.; Gog, T.; Fadley, C.S.; Materlik, G.

    1997-01-01

    We compare x-ray fluorescence holography (XFH) and multiple-energy x-ray holography (MEXH), two techniques that have recently been used to obtain experimental three-dimensional atomic images. For single-energy holograms, these methods are equivalent by virtue of the optical reciprocity theorem. However, XFH can only record holographic information at the characteristic fluorescence energies of the emitting species, while MEXH can record holographic information at any energy above the fluorescent edge of the emitter, thus enabling the suppression of real-twin overlaps and other aberrations and artifacts in atomic images. copyright 1997 The American Physical Society

  20. 2D/3D cryo x-ray fluorescence imaging at the bionanoprobe at the advanced photon source

    International Nuclear Information System (INIS)

    Chen, S.; Vine, D. J.; Lai, B.; Paunesku, T.; Yuan, Y.; Woloschak, G. E.; Deng, J.; Jin, Q.; Hong, Y. P.; Flachenecker, C.; Hornberger, B.; Brister, K.; Jacobsen, C.; Vogt, S.

    2016-01-01

    Trace elements, particularly metals, play very important roles in biological systems. Synchrotron-based hard X-ray fluorescence microscopy offers the most suitable capabilities to quantitatively study trace metals in thick biological samples, such as whole cells and tissues. In this manuscript, we have demonstrated X-ray fluorescence imaging of frozen-hydrated whole cells using the recent developed Bionanoprobe (BNP). The BNP provides spatial resolution down to 30 nm and cryogenic capabilities. Frozen-hydrated biological cells have been directly examined on a sub-cellular level at liquid nitrogen temperatures with minimal sample preparation

  1. Sensitivity of in vivo X-ray fluorescence determination of skeletal lead stores

    International Nuclear Information System (INIS)

    Sokas, R.K.; Besarab, A.; McDiarmid, M.A.; Shapiro, I.M.; Bloch, P.

    1990-01-01

    Eighteen patients with known past occupational lead exposure underwent parenteral diagnostic chelation with ethylenediaminetetraacetic acid and x-ray fluorescent determination of in vivo skeletal lead stores at the distal styloid process of the ulna and at the temporal base bone using a cobalt 57 source and measuring lead Ka x-rays. X-ray fluorescent lead measurements in both locations correlated with results of diagnostic chelation. Using a post-chelation urinary excretion of greater than 600 micrograms lead/24 h as the definition of high-lead stores, sensitivity of x-ray fluorescence at the wrist and temple was 56% and 39%, respectively

  2. Numerical simulation study for atomic-resolution x-ray fluorescence holography

    International Nuclear Information System (INIS)

    Xie Honglan; Gao Hongyi; Chen Jianwen; Xiong Shisheng; Xu Zhizhan; Wang Junyue; Zhu Peiping; Xian Dingchang

    2003-01-01

    Based on the principle of x-ray fluorescence holography, an iron single crystal model of a body-centred cubic lattice is numerically simulated. From the fluorescence hologram produced numerically, the Fe atomic images were reconstructed. The atomic images of the (001), (100), (010) crystallographic planes were consistent with the corresponding atomic positions of the model. The result indicates that one can obtain internal structure images of single crystals at atomic-resolution by using x-ray fluorescence holography

  3. X-ray fluorescence camera for imaging of iodine media in vivo.

    Science.gov (United States)

    Matsukiyo, Hiroshi; Watanabe, Manabu; Sato, Eiichi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Abderyim, Purkhet; Aizawa, Katsuo; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ehara, Shigeru; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2009-01-01

    X-ray fluorescence (XRF) analysis is useful for measuring density distributions of contrast media in vivo. An XRF camera was developed for carrying out mapping for iodine-based contrast media used in medical angiography. Objects are exposed by an X-ray beam from a cerium target. Cerium K-series X-rays are absorbed effectively by iodine media in objects, and iodine fluorescence is produced from the objects. Next, iodine Kalpha fluorescence is selected out by use of a 58-microm-thick stannum filter and is detected by a cadmium telluride (CdTe) detector. The Kalpha rays are discriminated out by a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by iodine mapping are shown on a personal computer monitor. The scan pitch of the x and y axes was 2.5 mm, and the photon counting time per mapping point was 2.0 s. We carried out iodine mapping of non-living animals (phantoms), and iodine Kalpha fluorescence was produced from weakly remaining iodine elements in a rabbit skin cancer.

  4. Development of portable X-ray diffractometer equipped with X-ray fluorescence spectrometer and its application to archaeology

    International Nuclear Information System (INIS)

    Yamashita, Daisuke; Ishizaki, Atsushi; Uda, Masayuki

    2009-01-01

    A portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer was improved so as to obtain a diffraction pattern and a fluorescence spectrum in air from one and the same small area of a specimen. The reason why the portable XRD with an XRF spectrometer was specially designed for archaeology may be understood from the following facts: (1) some objects exhibited in museums are not allowed to be transferred from the open air to a vacuum, even if their volumes are small; (2) some objects are very difficult to move from their original sites; (3) some parts of exhibits are extremely fragile and cannot be examined in a vacuum; and (4) information on the chemical composition and structure from the same area of an object offers a better understanding of the constitutive materials of the object. Some examples of the use of a portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer in the field are also introduced. Experimental results of Sho-kannon, Snew's mask and Tutankhamun's golden mask are shown here. (author)

  5. Quantitative x-ray dark-field computed tomography

    International Nuclear Information System (INIS)

    Bech, M; Pfeiffer, F; Bunk, O; Donath, T; David, C; Feidenhans'l, R

    2010-01-01

    The basic principles of x-ray image formation in radiology have remained essentially unchanged since Roentgen first discovered x-rays over a hundred years ago. The conventional approach relies on x-ray attenuation as the sole source of contrast and draws exclusively on ray or geometrical optics to describe and interpret image formation. Phase-contrast or coherent scatter imaging techniques, which can be understood using wave optics rather than ray optics, offer ways to augment or complement the conventional approach by incorporating the wave-optical interaction of x-rays with the specimen. With a recently developed approach based on x-ray optical gratings, advanced phase-contrast and dark-field scatter imaging modalities are now in reach for routine medical imaging and non-destructive testing applications. To quantitatively assess the new potential of particularly the grating-based dark-field imaging modality, we here introduce a mathematical formalism together with a material-dependent parameter, the so-called linear diffusion coefficient and show that this description can yield quantitative dark-field computed tomography (QDFCT) images of experimental test phantoms.

  6. Quantitative determination of iron, copper, lead, chromium and nickel in electronic waste samples using total reflection x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Elaseer, A. S.; Musbah, A. S; Ammar, M. M. G.; Salah, M. A.; Aisha, E. A.

    2015-01-01

    Total reflection x-ray fluorescence spectroscopy in conjunction with microwave assisted extraction technique was used for the analysis of twenty electronic waste samples. The analysis was limited to the printed circuit boards of electronic devices. Iron, copper, lead, chromium and nickel were quantitatively determined in the samples. The samples were carefully milled to fine powder and 50mg was digested by acid using microwave digestion procedure. The digested samples solution was spread together with gallium as internal standard on the reflection disk and analyzed. The results showed that the cassette recorder boards contain the highest concentration of iron, lead and nickel. The average concentrations of these metals were 78, 73 and 71g/Kg respectively. Computer boards contained the highest copper average concentration 39g/Kg. the highest chromium average concentration 3.6 g/Kg was in mobile phone boards. Measurements were made using PicoTAX portable x-ray device. the instrument was used for quantitative multi-element analysis. An air cooled x-ray tube (40KV, 1 mA) with Mo target and Be window was used as x-ray source. The optics of the device was a multilayer Ni/C, 17.5 keV, 80% reflectivity provides analysis of elements from Si to Zr (K series) and Rh to U (L series). A Si PIN-diode detector (7mm"2, 195eV) was used for the elements detection. In this study heavy metals average concentration in electronic circuit boards in the in the order of iron (35.25g/kg), copper (21.14g/Kg), lead (16.59g/Kg), nickel (16.01g/Kg) and chromium (1.07g/Kg).(author)

  7. Characterization of uranium in bituminized radioactive waste drums by self-induced X-ray fluorescence

    International Nuclear Information System (INIS)

    Pin, Patrick; Perot, Bertrand

    2013-06-01

    This paper reports the experimental qualification of an original uranium characterization method based on fluorescence X rays induced by the spontaneous gamma emission of bituminized radioactive waste drums. The main 661.7 keV gamma ray following the 137 Cs decay produces by Compton scattering in the bituminized matrix an intense photon continuum around 100 keV, i.e. in the uranium X-ray fluorescence region. 'Self-induced' X-rays produced without using an external source allow a quantitative assessment of uranium as 137 Cs and uranium are homogeneously mixed and distributed in the bituminized matrix. The paper presents the experimental qualification of the method with real waste drums, showing a detection limit well below 1 kg of uranium in 20 min acquisitions while the usual gamma rays of 235 U (185 keV) or 238 U (1001 keV of 234m Pa in the radioactive decay chain) are not detected. The relative uncertainty on the uranium mass assessed by self-induced X-ray fluorescence (SXRF) is about 50%, with a 95% confidence level, taking into account the correction of photon attenuation in the waste matrix. This last indeed contains high atomic numbers elements like uranium, but also barium, in quantities which are not known for each drum. Attenuation is estimated thanks to the peak-to-Compton ratio to limit the corresponding uncertainty. The SXRF uranium masses measured in the real drums are in good agreement with long gamma-ray spectroscopy measurements (1001 keV peak) or with radiochemical analyses. (authors)

  8. Mineralogical analysis of clays in hardsetting soil horizons, by X-ray fluorescence and X-ray diffraction using Rietveld method

    International Nuclear Information System (INIS)

    Prandel, L.V.; Saab, S.C.; Brinatti, A.M.; Giarola, N.F.B.; Leite, W.C.; Cassaro, F.A.M.

    2014-01-01

    Diffraction and spectroscopic techniques have been shown to be suitable for obtaining physical and mineralogical properties in polycrystalline soil samples, and also in their precursor compounds. For instance, the X-ray fluorescence (XRF) spectroscopy allows obtaining the elemental composition of an investigated sample, while the X-ray diffraction (XRD) technique permits obtaining qualitative and quantitative composition of the soil minerals through the Rietveld method (RM). In this study Yellow Latosol (Oxisol), Yellow Argisol (Ultisol) and Gray Argisol (Ultisol) soil samples, classified as “hardsetting soils”, extracted from areas located at Northeast and Southeast of Brazilian coast were investigated. The soils and their fractions were analyzed in an EDX-700 and an XRD-6000 (Cu K α radiation). XRF results indicate high percentages of Si and Al, and small percentage of Fe and Ti in the investigated samples. The DRX data and RM indicate that there was a predominance of kaolinite and halloysite minerals (kaolin group minerals) in the clay fractions, which are presumably responsible for the formation of kaolinitic plasma in these soils. Also, the obtained results showed that the XRF, XRD techniques and RM were very helpful for investigating the mineralogical composition of a hardsetting soil. - Highlights: ► Elemental composition of soil samples through X-Ray fluorescence. ► Mineralogical quantification through X-ray diffraction and Rietveld method. ► Oxisol and Ultisol, Brazil ‘Barreiras’ formation. ► High amounts of Si and Al oxides and low amounts of Fe and Ti oxides. ► Predominance of kaolinite in the clay fraction

  9. X-ray fluorescence spectrometry and related techniques an introduction

    CERN Document Server

    Margui, Eva

    2013-01-01

    X-ray fluorescence spectrometry (XRF) is a well-established analytical technique for qualitative and quantitative elemental analysis of a wide variety of routine quality control and research samples. Among its many desirable features, it delivers true multi-element character analysis, acceptable speed and economy, easy of automation, and the capacity to analyze solid samples. This remarkable contribution to this field provides a comprehensive and up-to-date account of basic principles, recent developments, instrumentation, sample preparation procedures, and applications of XRF analysis. If you are a professional in materials science, analytic chemistry, or physics, you will benefit from not only the review of basics, but also the newly developed technologies with XRF. Those recent technological advances, including the design of low-power micro- focus tubes and novel X-ray optics and detectors, have made it possible to extend XRF to the analysis of low-Z elements and to obtain 2D or 3D information on a microme...

  10. Determination of fission products in irradiated fuel by X-ray fluorescence

    International Nuclear Information System (INIS)

    Mogensen, M.; Als-Nielsen, J.; Hessel Andersen, N.

    1986-08-01

    X-ray fluorescence is a well established analytical tool for measuring elemental composition of fairly large (approximately 5 cm 2 ) ''cold'' samples. A version of this technique has been developed for analysis of radial distribution of fission products Xe, Cs and Ba in irradiated UO 2 fuel samples. About 0.1 mm thin slices of fuel pellets (full cross sections) are irradiated by 50 keV X-rays. The intensity of the Xe (Cs, Ba) K α fluorescence radiation generated is measured by means of a Ge detector fitted with a collimator. The slit is 0.5 mm wide in the scanning direction and 2 mm long. The measured Xe K α X-ray intensities are converted to absolute concentrations by comparing to the intensity from a Xe gas standard. In the case of Cs and Ba solid standards may be used. The X-ray fluorescence analysis is compared to other techniques used to obtain radial fission product profiles. It is shown how a combination of X-ray fluorescence and electron probe micro analysis is able to reveal the amount of Xe in the grain boundary porosities. (author)

  11. X-ray fluorescence holography: A different approach to data collection

    International Nuclear Information System (INIS)

    Busetto, E.; Kopecky, M.; Lausi, A.; Menk, R.H.; Miculin, M.; Savoia, A.

    2000-01-01

    The images of nearest neighbors of gallium atoms in a GaAs crystal were obtained by the x-ray fluorescence holography technique. The fluorescence from gallium atoms was selected by means of a thin zinc foil filter that made possible the use of an x-ray silicon photodiode detector without energy resolution. This method makes possible the detection of a much higher signal with respect to all previous experiments, thus reducing drastically measuring times, that is a basic and essential step from contemporary demonstration experiments to possible practical applications of x-ray holography in structure analysis

  12. X-ray fluorescence analyzers for investigating postmediaeval pottery from Southern Moravia

    International Nuclear Information System (INIS)

    Trojek, Tomas; Hlozek, Matin; Cechak, Tomas; Musilek, Ladislav

    2010-01-01

    This paper deals with an investigation of ceramic archaeological finds with the use of in-situ X-ray fluorescence analysis. Firstly, three configurations of X-ray fluorescence analyzers constructed and used at the Czech Technical University in Prague are described and compared for use in a non-destructive survey of siliceous materials. Detection limits, depth of analysis, the relation of the analyzed area, the homogeneity of the samples, and variations in the element concentrations are discussed. Secondly, many shards of postmediaeval pottery from Southern Moravia are analyzed with X-ray fluorescence analysis and some of them also with electron microprobe analysis. Selected results are described.

  13. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A.; Desbrée, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 31, Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses (France); Carvalho, A. [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); Chaves, P.C. [C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal); Reis, M.A., E-mail: mareis@ctn.tecnico.ulisboa.pt [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal)

    2016-08-15

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 10{sup 3} barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing {sup 57}Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  14. The X-ray fluorescent method for determination of total sulphur in bituminous coals

    International Nuclear Information System (INIS)

    Widowska-Kusmierska, J.; Siess, K.

    1979-01-01

    The X-ray fluorescent technique for the determination of total sulphur covering concentrations from 0,1 to 10% has been applied for bituminous coals showing a great variability in qualitative and quantitative composition of mineral matter (ash). The described method is a quick one giving results during one hour. The obtained good accuracy of determinations gives prospects for wide industrial application. (author)

  15. Method for detecting binding events using micro-X-ray fluorescence spectrometry

    Science.gov (United States)

    Warner, Benjamin P.; Havrilla, George J.; Mann, Grace

    2010-12-28

    Method for detecting binding events using micro-X-ray fluorescence spectrometry. Receptors are exposed to at least one potential binder and arrayed on a substrate support. Each member of the array is exposed to X-ray radiation. The magnitude of a detectable X-ray fluorescence signal for at least one element can be used to determine whether a binding event between a binder and a receptor has occurred, and can provide information related to the extent of binding between the binder and receptor.

  16. Synchrotron X-ray fluorescence analysis in environmental and earth sciences

    Directory of Open Access Journals (Sweden)

    Adams F.

    2010-12-01

    Full Text Available Compared to other microscopic analytical tools X-ray microscopy techniques have the advantage that the large penetration depth of X-rays in matter allows one to investigate the interior of an object without destructive sample preparation. In combination with X-ray fluorescence tomography, analytical information from inside of a specimen can be obtained. Different X-ray analytical techniques can be used to produce contrast, X-ray absorption, fluorescence, and diffraction, to yield chemical, elemental, and structural information about the sample. Scanning microscopy on the basis of various lens systems in synchrotron radiation sources provides a routine spatial resolution of now about 100 nanometer but in the foreseeable future a 10–20 nanometer spatial resolution can be expected. X-ray absorption spectrometry can also provide chemical (speciation information on the sample. All this makes X-ray microscopy attractive to many fields of science. In this paper the techniques are briefly reviewed and a number of applications in the earth, planetary and cosmos sciences are illustrated with state-of-the art examples, while applications in the environmental sciences and biology are also briefly discussed.

  17. Radionuclide X-ray fluorescence analysis of components of the environment

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Havranek, E.; Dejmkova, E.

    1983-12-01

    The physical foundations and methodology are described of radionuclide X-ray fluorescence analysis. The sources are listed of air, water and soil pollution, and the transfer of impurities into biological materials is described. A detailed description is presented of the sampling of air, soil and biological materials and their preparation for analysis. Greatest attention is devoted to radionuclide X-ray fluorescence analysis of the components of the environment. (ES)

  18. TU-G-207-03: High Spatial Resolution and High Sensitivity X-Ray Fluorescence Imaging

    International Nuclear Information System (INIS)

    Xing, L.

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  19. X-ray fluorescence (XRF) set-up with a low power X-ray tube

    International Nuclear Information System (INIS)

    Gupta, Sheenu; Deep, Kanan; Jain, Lalita; Ansari, M.A.; Mittal, Vijay Kumar; Mittal, Raj

    2010-01-01

    The X-ray fluorescence set-up with a 100 W X-ray tube comprises a computer controlled system developed for remote operation and monitoring of tube and an adjustable stable 3D arrangement to procure variable excitation energies with low scattered background. The system was tested at different filament currents/anode voltages. The MDL of the set-up at 0.05-1.00 mA/4-12 kV is found ∼(1-100) ppm for K and L excitations and ∼(200-700) ppm for M excitations of elements and improves with filament current and anode voltage. Moreover, L measurements for Sm and Eu at five K X-ray energies of elements(Z=29-40) and analytical determination in some synthetic samples were undertaken.

  20. Application of X-ray fluorescence analysis in environmental research

    International Nuclear Information System (INIS)

    Kliment, V.; Kliman, J.; Turzo, I.

    1978-01-01

    A description is presented of the X-ray fluorescence analysis principles and of its possibilities in the study of environmental pollution impact. Experiments with X-ray fluorescence analysis using 241-Am and a Ge(Li) semiconductor detector are discussed. The reproducibility of determinations in dependence on the sample preparation and the evaluation of peak surfaces of characteristic radiation is shown. The dependence of the peak surface on the elemental contents in the sample was linear. Detection limits of the investigated elements ranged in tenths of μg for 300 s measurement. (author)

  1. Fluorescent X-ray computed tomography using synchrotron radiation for imaging nonradioactive tracer materials

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Masahiro; Yuasa, Tetsuya; Uchida, Akira; Akatsuka, Takao [Yamagata Univ., Yonezawa (Japan). Electrical and Information of Engineering; Takeda, Tohoru; Hyodo, Kazuyuki; Itai, Yuji

    1997-09-01

    We describe a system of fluorescent X-ray computed tomography using synchrotron radiation (SR-FXCT) to image nonradioactive contrast materials. The system operates on the basis of computed tomography (CT) scanned by the pencil beam. In the previous experiment, we have imaged an acrylic cylindrical phantom with cross-shaped channel, filled with a diluted iodine-based tracer material of 200 {mu}g/ml. This research is aimed to improve image quality, to select the optimum energy of the incident X-ray, to confirm quantitative evaluation of the image, and to demonstrate FXCT image for living body. First, we simulated output energy profile by the Monte Carlo simulation and confirmed to predetermine the incident X-ray energy at 37 keV, in order to separate the fluorescent photons from background scattering components. Next, the imaging experiment was performed by using conventional CT algorithm under the optimum parameter at the Tristan Accumulation Ring, KEK, Japan. An acrylic phantom containing five paraxial channels of 5 and 4 mm in diameter, could be imaged; where each channel was respectively filled with diluted iodine-based contrast materials of 50, 100, 200 and 500 {mu}g/ml. From the reconstructed image, we confirmed quantitativity in the FXCT image. Finally, a rat`s brain was imaged in vitro by FXCT and monochromatic transmission CT. The comparison between these results showed that the iodine-rich region in the FXCT image corresponded with that in the monochromatic transmission CT image. (author)

  2. Qualitative and quantitative determination of sediments phases in Chillon River by x-ray diffraction

    International Nuclear Information System (INIS)

    Miramira Tipula, Biviano; Zeballos Velasquez, Elvira; Chui Betancur, Heber; Valencia Salazar, Edilberto; Huaypar Vasquez, Yesena; Olivera de Lescano, Paula

    2008-01-01

    With this paper, we pretend to contribute with the recovery of Chillon River from a characterization of sediments. The objectives are the identification of pollution places along the bed of the Chillon River, from the Canta Province to Lima Province (Comas) and the determination of the preponderant factors of pollution. The qualitative and semi-quantitative determination of the sediments components have been carried out using the x-ray diffraction and x-ray fluorescence techniques, both of them will allow us to identify the pollute elements, for example the lead level in the Chillon River. (author)

  3. Application of synchrotron radiation to x-ray fluorescence analysis of trace elements

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.

    1986-08-01

    The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented

  4. Use of X-Ray Fluorescence Spectrometry to Determine Trace ...

    African Journals Online (AJOL)

    This paper deals with application of X-ray fluorescence spectrometry for the detection of trace elements in graphic. An X-ray spectrometer was constructed and used to carry out measurements on graphite spheres impregnated with different chemical elements. The intensities of the lines of these trace elements, as function of ...

  5. Quantitative X-ray mapping, scatter diagrams and the generation of correction maps to obtain more information about your material

    Science.gov (United States)

    Wuhrer, R.; Moran, K.

    2014-03-01

    Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper.

  6. Quantitative X-ray mapping, scatter diagrams and the generation of correction maps to obtain more information about your material

    International Nuclear Information System (INIS)

    Wuhrer, R; Moran, K

    2014-01-01

    Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper

  7. X-ray fluorescence in IAEA Member States: Spain

    International Nuclear Information System (INIS)

    Roldan, C.; Ferrero, J.L.

    2004-01-01

    Full text: Instrumental facilities of the ICMUV include: a Total-reflection X-Ray Fluorescence (TXRF), laboratory and portable Energy Dispersive X-Ray Fluorescence (EDXRF) spectrometers. These equipments are employed in the field of the art and archaeometry. Current projects are: EDXRF analysis of blue pigments used in Valencian ceramics. EDXRF analyses of cobalt-blue pigments were made on 73 pieces of Valencian ceramics from the beginning of the 14th century up to 20th century. These ceramic samples have the pigment decoration applied together with a tin opacified lead glaze cover on the clay body. The comparison between EDXRF spectra from coloured and non-coloured areas provides information about the pigment composition. The following elements: Mn, Fe, Co, Ni, Cu, Zn and As are identified as characteristics of the blue pigments. Different association of these elements as well as correlation with the chronology of the samples were found. These results can be used for identifying the different types of cobalt ores employed in the manufacture of the blue pigments to study their provenance. Non-destructive analysis of paper supports used in prints: In paper based works of art it is not possible to separate the support from the work of the author. Then, the maximum knowledge of the support in this kind of works is desirable. In this work, Energy Dispersive X-Ray Fluorescence (EDXRF) was used to determine the elemental composition of a set of European and Oriental papers from the 20th century and an Arabian paper from the 14th century. These papers were manufactured with different production techniques and used as support for writing, drawing and printing. Normalised fluorescence yields of the elements to the weight of the paper show that there are some correlations between its elemental composition and the type of paper, provenance and use. Therefore, the Energy Dispersive X-Ray Fluorescence (EDXRF) technique could be used for a better characterization and

  8. Rare earth aerosol analysis by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Citron, I.M.; Mausner, L.F.

    1982-01-01

    An analytical method for the determination of four lanthanides in air filter samples is described. The method involves simultaneous quantitative determinations of La, Ce, Pr, and Nd at the microgram level by x-ray fluorescence spectrometry without chemical separation of these rare earths and without serious interferences from the dust matrices on the filters. The method has been used successfully to analyze some air filter samples collected at a rare earth processing refinery in Illinois. A description of the development of the method is given as well as the results obtained by using this method on the air filter samples. The reproducibility of the results was generally +-5%

  9. Preparation of tissue samples for X-ray fluorescence microscopy

    International Nuclear Information System (INIS)

    Chwiej, Joanna; Szczerbowska-Boruchowska, Magdalena; Lankosz, Marek; Wojcik, Slawomir; Falkenberg, Gerald; Stegowski, Zdzislaw; Setkowicz, Zuzanna

    2005-01-01

    As is well-known, trace elements, especially metals, play an important role in the pathogenesis of many disorders. The topographic and quantitative elemental analysis of pathologically changed tissues may shed some new light on processes leading to the degeneration of cells in the case of selected diseases. An ideal and powerful tool for such purpose is the Synchrotron Microbeam X-ray Fluorescence technique. It enables the carrying out of investigations of the elemental composition of tissues even at the single cell level. The tissue samples for histopathological investigations are routinely fixed and embedded in paraffin. The authors try to verify the usefulness of such prepared tissue sections for elemental analysis with the use of X-ray fluorescence microscopy. Studies were performed on rat brain samples. Changes in elemental composition caused by fixation in formalin or paraformaldehyde and embedding in paraffin were examined. Measurements were carried out at the bending magnet beamline L of the Hamburger Synchrotronstrahlungslabor HASYLAB in Hamburg. The decrease in mass per unit area of K, Br and the increase in P, S, Fe, Cu and Zn in the tissue were observed as a result of the fixation. For the samples embedded in paraffin, a lower level of most elements was observed. Additionally, for these samples, changes in the composition of some elements were not uniform for different analyzed areas of rat brain

  10. Preparation of tissue samples for X-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chwiej, Joanna [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)]. E-mail: jchwiej@novell.ftj.agh.edu.pl; Szczerbowska-Boruchowska, Magdalena [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Lankosz, Marek [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Wojcik, Slawomir [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Falkenberg, Gerald [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron, Notkestr. 85, Hamburg (Germany); Stegowski, Zdzislaw [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Setkowicz, Zuzanna [Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Cracow (Poland)

    2005-12-15

    As is well-known, trace elements, especially metals, play an important role in the pathogenesis of many disorders. The topographic and quantitative elemental analysis of pathologically changed tissues may shed some new light on processes leading to the degeneration of cells in the case of selected diseases. An ideal and powerful tool for such purpose is the Synchrotron Microbeam X-ray Fluorescence technique. It enables the carrying out of investigations of the elemental composition of tissues even at the single cell level. The tissue samples for histopathological investigations are routinely fixed and embedded in paraffin. The authors try to verify the usefulness of such prepared tissue sections for elemental analysis with the use of X-ray fluorescence microscopy. Studies were performed on rat brain samples. Changes in elemental composition caused by fixation in formalin or paraformaldehyde and embedding in paraffin were examined. Measurements were carried out at the bending magnet beamline L of the Hamburger Synchrotronstrahlungslabor HASYLAB in Hamburg. The decrease in mass per unit area of K, Br and the increase in P, S, Fe, Cu and Zn in the tissue were observed as a result of the fixation. For the samples embedded in paraffin, a lower level of most elements was observed. Additionally, for these samples, changes in the composition of some elements were not uniform for different analyzed areas of rat brain.

  11. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    International Nuclear Information System (INIS)

    Chen, Dongmei; Zhu, Shouping; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-01-01

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging

  12. Chemical analysis of zinc electroplating solutions by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jung, Sung-Mo; Cho, Young-Mo; Na, Han-Gil

    2007-01-01

    A quantitative analysis method used to analyze chlorine, iron and zinc in electroplating solutions, using X-ray spectrometry in atmospheric He mode, is proposed. The present research concerns the replacement of the conventional analyses of electroplating solutions with rapid and reproducible quantification using X-ray fluorescence spectrometer. An in-depth investigation conducted in the present study identifies the species present in the real electroplating solutions. XRD patterns and semi-quantitative results for the electroplating solutions show synthetic standards based on the compositional range of solutions by analyzing the electroplating solutions obtained in real processes. 28 calibration standard solutions are prepared by diluting liquid standard solutions certified by titration and ICP-OES analyses used to construct the XRF calibration curves for Cl, Fe and Zn. The suggested method showed satisfactory precision and accuracy in the analysis of electroplating solutions. The present study provides evidences that the proposed XRF spectrometry could be an alternative analytical method to replace the conventional techniques by comparing the uncertainties estimated for each method. (author)

  13. Effect of Electric Voltage and Current of X-ray Chamber on the Element inthe Zirconium Alloy Analysis X-ray by X-ray Fluorescence

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Narko-Wibowo, L; Rosika-Krisnawati; Nudia-Barenzani

    2000-01-01

    The using of x-ray fluorescence in the chemical analysis depend heavilyon the parameters of x-ray chamber, for examples : electric voltage andelectric current. That parameter give effect in the result of determine ofSn, Cr, Fe and Ni in the zirconium alloy. 20 kV electric voltages are used onthe Mo x-ray chamber shall product x-ray of zirconium in the sample materialcan give effect in the stability of the analysis result (deviation more than5%). The result of analysis of elements in the zirconium alloy shall givedeviation less than 5% when using of electric voltage of the x-ray chamberless than 19 kV. The sensitivity of analysis can be reached by step upelectric current of x-ray chamber. (author)

  14. Basic design of on-line analyzer for sheet paper using X-ray fluorescence (XRF) technique

    International Nuclear Information System (INIS)

    Rony Djokorayono; Ahmad Suntoro; Ikhsan Shobari; Usep Setia Gunawan

    2016-01-01

    Basic design of on-line analyzer for sheet paper using X-ray fluorescence technique has been carried out. Compared with sampling technique, this X-ray fluorescence technique has some advantages in term of analysis accuracy and time. The design activities performed including the establishment of design requirements, functional requirements, technical requirements, technical specification, detection sub-system design, data acquisition sub-system design, and operator computer console design. This program will use silicon drift or CdTe X-ray detector to detect X-ray fluorescence emitted by elements in sheet paper due to X-ray interaction of a X-ray source, 55 Fe (Ferro-55).This basic design of on-line analyzer for sheet paper using X-ray fluorescence technique should be followed up with the development of detailed design, prototype construction, and field testing. (author)

  15. Characterization of a confocal three-dimensional micro X-ray fluorescence facility based on polycapillary X-ray optics and Kirkpatrick-Baez mirrors

    International Nuclear Information System (INIS)

    Sun Tianxi; Ding Xunliang; Liu Zhiguo; Zhu Guanghua; Li Yude; Wei Xiangjun; Chen Dongliang; Xu Qing; Liu Quanru; Huang Yuying; Lin Xiaoyan; Sun Hongbo

    2008-01-01

    A new confocal three-dimensional micro X-ray fluorescence (3D micro-XRF) facility based on polycapillary X-ray optics in the detection channel and Kirkpatrick-Baez (KB) mirrors in the excitation channel is designed. The lateral resolution (l x , l y ) of this confocal three-dimensional micro-X-ray fluorescence facility is 76.3(l x ) and 53.4(l y ) μm respectively, and its depth resolution d z is 77.1 μm at θ = 90 o . A plant sample (twig of B. microphylla) and airborne particles are analyzed

  16. Analysis of signal to background ratio in synchrotron radiation X-ray fluorescence

    International Nuclear Information System (INIS)

    Sakurai, Kenji; Gohshi, Yohichi; Iida, Atsuo.

    1988-01-01

    The signal to background (S/B) ratio in energy dispersive X-ray fluorescence using synchrotron radiation (SR) was quantitatively analyzed. The S/B ratio, which has been significantly improved by taking advantage of the polarized nature of SR, was found to be strongly dependent on geometrical factors of the measurement system. From the analysis on the origin of the scattered background, the dependence of the S/B ratio on the geometry was quantitatively explained, mainly by the polarization properties of SR. Experimental conditions could be optimized by adjusting the degree of polarization of the incident beam and the detector solid angle. (author)

  17. Determination of chlorine in coal by X-ray fluorescence spectrometry method

    Energy Technology Data Exchange (ETDEWEB)

    Marek, S.; Bojarska, K. [Central Mining Institute, Katowice (Poland). Dept. of Environmental Monitoring

    1997-12-31

    Determination of chlorine contents in coal is essential for both environmental protection and its technological use. The existing method of chlorine determination in coal are titration methods which have considerable errors particularly in the low concentration range. The elaborated method with the use of X-ray fluorescence spectrometry in a comparison to the other methods is much faster and has better precision and accuracy. The principle of the method lies in the measurement of X-ray fluorescence radiation intensity which is emitted by chlorine in a sample and its comparison with standards. The calibration of the elaborated XRF method is based on natural coals having various concentrations of chlorine within the whole range of its occurrence in Polish coals. Concentrations for the calibration purpose were obtained by the determination of chlorine contents in selected coals by atomic absorption spectrometry method. The procedure of sample preparation for direct X-ray measurements, instrumental measuring conditions and the way of calibration curve preparation are described in the paper. All X-ray measurements were done with a Phillips sequential X-ray fluorescence spectrometer. A double anode Cr-Au X-ray tube with maximum power 3000 MW was used as the excitation source. 5 figs., 4 tabs.

  18. Quantification of phosphorus in single cells using synchrotron X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Núñez-Milland, Daliángelis R. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Baines, Stephen B. [Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11755 (United States); Vogt, Stefan [Experimental Facilities Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Twining, Benjamin S., E-mail: btwining@bigelow.org [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)

    2010-07-01

    Phosphorus abundance was quantified in individual phytoplankton cells by synchrotron X-ray fluorescence and compared with bulk spectrophotometric measurements to confirm accuracy of quantification. Figures of merit for P quantification on three different types of transmission electron microscopy grids are compared to assess possible interferences. Phosphorus is required for numerous cellular compounds and as a result can serve as a useful proxy for total cell biomass in studies of cell elemental composition. Single-cell analysis by synchrotron X-ray fluorescence (SXRF) enables quantitative and qualitative analyses of cell elemental composition with high elemental sensitivity. Element standards are required to convert measured X-ray fluorescence intensities into element concentrations, but few appropriate standards are available, particularly for the biologically important element P. Empirical P conversion factors derived from other elements contained in certified thin-film standards were used to quantify P in the model diatom Thalassiosira pseudonana, and the measured cell quotas were compared with those measured in bulk by spectrophotometry. The mean cellular P quotas quantified with SXRF for cells on Au, Ni and nylon grids using this approach were not significantly different from each other or from those measured spectrophotometrically. Inter-cell variability typical of cell populations was observed. Additionally, the grid substrates were compared for their suitability to P quantification based on the potential for spectral interferences with P. Nylon grids were found to have the lowest background concentrations and limits of detection for P, while background concentrations in Ni and Au grids were 1.8- and 6.3-fold higher. The advantages and disadvantages of each grid type for elemental analysis of individual phytoplankton cells are discussed.

  19. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Py, J. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France); Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Hubinois, J.-C.; Cardona, D. [Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France)

    2015-04-21

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1–20 g L{sup −1} is given.

  20. Theoretical Influence Coefficients For X-Ray Fluorescence Analysis Of Alloys

    International Nuclear Information System (INIS)

    Okunade, I.O.

    2004-01-01

    The problem of quantifications in X-ray fluorescence analysis has over the years been narrowed down to matrix effects arising from the presence of other elements in the sample, which may either lead to the reduction or enhancement in the measured intensities of the analytic element. This paper describes a mathematical matrix correction method, which yield certain fundamental coefficients that account for the inter-element effects. The application of these influence coefficients in quantitative analysis however relies on the knowledge of pure element intensities of the analyse element, its mass absorption coefficients (for exciting and fluorescent radiation) of other elements in the sample that are responsible for the matrix effects. The quantification method using these coefficients are thereafter established for binary systems and further extended to multi-component systems such as ternary and quaternary alloys

  1. X-ray fluorescence analysis of thin films at glancing-incident and -takeoff angles

    International Nuclear Information System (INIS)

    Tsuji, K.; Sato, S.; Hirokawa, K.

    1995-01-01

    We have developed a new analytical method, Glancing-Incidence and -Takeoff X-Ray Fluorescence (GIT-XRF) method for the first time. Here, we present an idea for a thin-film analysis and a surface analysis by the GIT-XRF method. In this method, the dependence of the fluorescent x-ray intensity on takeoff angle is measured at various incident angles of the primary x-ray. Compared with a total reflection x-ray fluorescence method, the GIT-XRF method allows a detailed thin-film analysis, because the thin film is cross-checked by many experimental curves. Moreover, a surface-sensitive analysis is also possible by the GIT-XRF method. (author)

  2. Dispersive X-ray fluorescence applications in energy in environmental problems diagnostic

    International Nuclear Information System (INIS)

    Odino, R.; Souto, B.; Roca, S.; Campomar, W.

    1994-01-01

    X-ray fluorescence energy was used to detect the grade of contamination due to a Portland cement factory. X-ray fluorescence was used to determine the incidence of a Portland cement plant in the quality of air in its surroundings. Many contaminants (Cu, Pb, Ni, Br) do not come from the Portland cement industry but other industries in the zone

  3. Quantitative determination on heavy metals in different stages of wine production by Total Reflection X-ray Fluorescence and Energy Dispersive X-ray Fluorescence: Comparison on two vineyards

    Energy Technology Data Exchange (ETDEWEB)

    Pessanha, Sofia [Centro Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Carvalho, Maria Luisa, E-mail: luisa@cii.fc.ul.p [Centro Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Becker, Maria; Bohlen, Alex von [Institute for analytical Sciences, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund (Germany)

    2010-06-15

    The purpose of this study is to determine the elemental content, namely heavy metals, of samples of vine-leaves, grapes must and wine. In order to assess the influence of the vineyard age on the elemental content throughout the several stages of wine production, elemental determinations of trace elements were made on products obtained from two vineyards aged 6 and 14 years from Douro region. The elemental content of vine-leaves and grapes was determined by Energy Dispersive X-Ray Fluorescence (EDXRF), while analysis of the must and wine was performed by Total Reflection X-ray Fluorescence (TXRF). Almost all elements present in wine and must samples did not exceed the recommended values found in literature for wine. Bromine was present in the 6 years old wine in a concentration 1 order of magnitude greater than what is usually detected. The Cu content in vine-leaves from the older vineyard was found to be extremely high probably due to excessive use of Cu-based fungicides to control vine downy mildew. Higher Cu content was also detected in grapes although not so pronounced. Concerning the wine a slightly higher level was detected on the older vineyard, even so not exceeding the recommended value.

  4. Quantitative determination on heavy metals in different stages of wine production by Total Reflection X-ray Fluorescence and Energy Dispersive X-ray Fluorescence: Comparison on two vineyards

    International Nuclear Information System (INIS)

    Pessanha, Sofia; Carvalho, Maria Luisa; Becker, Maria; Bohlen, Alex von

    2010-01-01

    The purpose of this study is to determine the elemental content, namely heavy metals, of samples of vine-leaves, grapes must and wine. In order to assess the influence of the vineyard age on the elemental content throughout the several stages of wine production, elemental determinations of trace elements were made on products obtained from two vineyards aged 6 and 14 years from Douro region. The elemental content of vine-leaves and grapes was determined by Energy Dispersive X-Ray Fluorescence (EDXRF), while analysis of the must and wine was performed by Total Reflection X-ray Fluorescence (TXRF). Almost all elements present in wine and must samples did not exceed the recommended values found in literature for wine. Bromine was present in the 6 years old wine in a concentration 1 order of magnitude greater than what is usually detected. The Cu content in vine-leaves from the older vineyard was found to be extremely high probably due to excessive use of Cu-based fungicides to control vine downy mildew. Higher Cu content was also detected in grapes although not so pronounced. Concerning the wine a slightly higher level was detected on the older vineyard, even so not exceeding the recommended value.

  5. Application of x-ray fluorescence to the measurement of additives in paper

    International Nuclear Information System (INIS)

    Buchnea, A.; McNelles, L.A.; Sinclair, A.H.; Hewitt, J.S.

    1976-01-01

    Titanium dioxide content in paper was measured by x-ray fluorescence analysis using an 55 Fe source and an x-ray proportional counter to determine the feasibility of an on-line instrument. X-ray calibration curves for 60- and 100-g/m 2 paper samples were obtained using neutron activation to measure the titanium dioxide concentration. The predictions of a simple model were in good agreement with the experimental calibration curves. The measurements and calculations were extended to investigate the effects of clay and moisture. The presence of clay has a significant effect on the x-ray fluorescence determination of the titanium dioxide concentration; however, this can be well accounted for by the model. The calculations indicated that the effect of typical moisture levels on the titanium dioxide determination was small and can be ignored. It is not possible to measure the clay content by x-ray fluorescence; however, preliminary results for the determination of calcium carbonate concentration are promising

  6. Submicron, soft x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    La Fontaine, B.; MacDowell, A.A.; Tan, Z.; White, D.L.; Taylor, G.N.; Wood, O.R. II; Bjorkholm, J.E.; Tennant, D.M.; Hulbert, S.L.

    1995-01-01

    Submicron fluorescence imaging of soft x-ray aerial images, using a high resolution fluorescent crystal is reported. Features as small as 0.1 μm were observed using a commercially available single-crystal phosphor, STI-F10G (Star Tech Instruments Inc. P. O. Box 2536, Danbury, CT 06813-2536), excited with 139 A light. Its quantum efficiency was estimated to be 5--10 times that of sodium salicylate and to be constant over a broad spectral range from 30 to 400 A. A comparison with a terbium-activated yttrium orthosilicate fluorescent crystal is also presented. Several applications, such as the characterization of the aerial images produced by deep ultraviolet or extreme ultraviolet lithographic exposure tools, are envisaged

  7. Energy dispersive X-Ray fluorescence spectrometric study of ...

    African Journals Online (AJOL)

    Energy dispersive X-Ray fluorescence spectrometric study of compositional differences in trace elements in dried Moringa oleifera leaves grown in two different agro-ecological locations in Ebonyi State, Nigeria.

  8. Quantitative X-ray microtomography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Donath, T. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2007-07-01

    Synchrotron-radiation-based computed microtomography (SR{sub {mu}}CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR{sub {mu}}CT measurements have been further improved by enhancements that were made to the SR{sub {mu}}CT apparatus and to the reconstruction chain. For high-resolution SR{sub {mu}}CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR{sub {mu}}CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  9. Quantitative X-ray microtomography with synchrotron radiation

    International Nuclear Information System (INIS)

    Donath, T.

    2007-01-01

    Synchrotron-radiation-based computed microtomography (SR μ CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR μ CT measurements have been further improved by enhancements that were made to the SR μ CT apparatus and to the reconstruction chain. For high-resolution SR μ CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR μ CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  10. Sedimentation separation and fluorescent X-ray analysis of very small amount of cobalt in pure iron

    International Nuclear Information System (INIS)

    Kato, Kensaku

    1990-01-01

    As the simple method of separation and analysis of very small amount of cobalt up to 1 ppm in pure iron, the application of sedimentation separation and fluorescent X-ray analysis was examined. By adding citric acid to the sample solution, the masking of the main components was carried out, and cobalt was deposited with 2-nitroso 1-naphtol separated and concentrated on a membrane filter. The reagents and equipments used are shown. The operation of the fundamental quantitative determination was determined. The condition of measurement, the condition of sedimentation separation, the effect of coexisting elements, the rate of recovery of cobalt, the calibration curve, and the analysis of actual samples are reported. By separating and concentrating cobalt on a membrane filter, this method eliminates the obstruction of coexisting elements to the object element, which is the problem in fluorescent X-ray measurement, and has the merit of simple operation and wide range of quantitative determination. (K.I.)

  11. Direct comparison of soft x-ray images of organelles with optical fluorescence images

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Kado, Masataka; Kishimoto, Maki; Nishikino, Masaharu; Ohba, Toshiyuki; Kaihori, Takeshi; Kawachi, Tetsuya; Tamotsu, Satoshi; Yasuda, Keiko; Mikata, Yuji; Shinohara, Kunio

    2011-01-01

    Soft x-ray microscopes operating in the water window region are capable of imaging living hydrated cells. Up to now, we have been able to take some soft x-ray images of living cells by the use of a contact x-ray microscope system with laser produced plasma soft x-ray source. Since the soft x-ray images are different from the optical images obtained with an ordinary microscope, it is very important to identify what is seen in the x-ray images. Hence, we have demonstrated the direct comparison between the images of organelles obtained with a fluorescence microscope and those with a soft x-ray microscope. Comparing the soft x-ray images to the fluorescence images, the fine structures of the organelles could be identified and observed. (author)

  12. X-ray fluorescence control of chemical composition of cast iron

    International Nuclear Information System (INIS)

    Prekina, I.M.; Rozova, O.F.; Loran, A.V.; Teplitskaya, G.A.; Smagunova, A.N.

    1995-01-01

    A method of x-ray fluorescence analysis developed for analytical set (KRF-18 diffractometer/DVK-3 computer) is used to control cast iron composition. A quantitative evaluation of errors attributed to the violation of conditions of cast iron sampling from the flow and to the quality of preparing samples for XFA is obtained. It is shown that the main component of the integral experimental error is attributed to nonuniformity of chemical composition of cast iron. Metrological studies show that reproductibility, convergence, accuracy, and sensitivity of the method match the requirements characteristic of the control process. 4 refs.; 2 tabs

  13. In vivo x-ray fluorescence of lead and other toxic trace elements

    International Nuclear Information System (INIS)

    Chettle, D.R.

    1995-01-01

    The first in vivo x-ray fluorescence measurements of lead in bone used y-rays from a 57 Co source to excite Pb K x-rays. Later systems used γ-rays from 109 Cd to excite Pb K x-rays or polarized x-rays to excite Ph L x-rays. All three approaches involve an extremely low effective dose to the subject. Of the two K x-ray techniques, 109 Cd is more precise and more flexible in choice of measurement site. Pb L x-ray fluorescence (L-XRF) effectively samples lead at bone surfaces, whereas Ph K x-ray fluorescence (K-XRF) samples through the bulk of a bone. Both the polarized L-XRF and 109 Cd K-XRF achieve similar precision. Renal mercury has recently been determined using a polarized x-ray source, Both renal and hepatic cadmium can be measured using polarized x-rays in conjunction with a Si(Li) detector. Platinum and gold have been measured both by radioisotopic source excitation and by using polarized x-rays, but the latter is to be preferred. Applications of Pb K-XRF have shown that measured bone lead relates strongly to cumulative lead exposure. Secondly, biological half lives of lead in different bone types have been estimated from limited longitudinal data sets and from some cross sectional surveys. Thirdly, the effect of bone lead as an endogenous source of lead has been demonstrated and it has been shown that a majority of circulating blood lead can be mobilized from bone, rather than deriving from new exposure, in some retired lead workers. 35 refs., 5 tabs

  14. X-ray fluorescence hologram data collection with a cooled avalanche photodiode

    CERN Document Server

    Hayashi, K; Matsubara, E I; Kishimoto, S; Mori, T; Tanaka, M

    2002-01-01

    A high counting rate X-ray detector with an appropriate energy resolution is desired for high quality X-ray fluorescence hologram measurements because a holographic pattern is detected as extremely small intensity variations of X-ray fluorescence on a large intensity background. A cooled avalanche photodiode (APD), which has about 10% energy resolution and is designed for a high counting rate, fits the above requirements. Reconstructed atomic images from experimental holograms using the APD system provide us a clear view of the first and second neighbor atoms around an emitter. The present result proved that a combination of this APD system and a synchrotron X-ray source enables us to measure a high quality hologram for a reasonable measurement time.

  15. MCNP calculation for calibration curve of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Tan Chunming; Wu Zhifang; Guo Xiaojing; Xing Guilai; Wang Zhentao

    2011-01-01

    Due to the compositional variation of the sample, linear relationship between the element concentration and fluorescent intensity will not be well maintained in most X-ray fluorescence analysis. To overcome this, we use MCNP program to simulate fluorescent intensity of Fe (0∼100% concentration range) within binary mixture of Cr and O which represent typical strong absorption and weak absorption conditions respectively. The theoretic calculation shows that the relationship can be described as a curve determined by parameter p and value of p can be obtained with given absorption coefficient of substrate elements and element under detection. MCNP simulation results are consistent with theoretic calculation. Our research reveals that MCNP program can calculate the Calibration Curve of X-ray fluorescence very well. (authors)

  16. Development and applications of grazing exit micro X-ray fluorescence instrument using a polycapillary X-ray lens

    International Nuclear Information System (INIS)

    Emoto, T.; Sato, Y.; Konishi, Y.; Ding, X.; Tsuji, K.

    2004-01-01

    A polycapillary X-ray lens is an effective optics to obtain a μm-size X-ray beam for micro-X-ray fluorescence spectrometry (μ-XRF). We developed a μ-XRF instrument using a polycapillary X-ray lens, which also enabled us to perform Grazing Exit μ-XRF (GE-μ-XRF). The evaluated diameter of the primary X-ray beam was 48 μm at the focal distance of the X-ray lens. Use of this instrument enabled two-dimensional mapping of the elemental distributions during growth of the plant 'Quinoa'. The results of the mapping revealed elemental transition during growth. In addition, a small region of thin film was analyzed by GE-μ-XRF. We expect that GE-μ-XRF will become an effective method of estimating the film thickness of a small region

  17. Fluorescence imaging as a diagnostic of M-band x-ray drive condition in hohlraum with fluorescent Si targets

    International Nuclear Information System (INIS)

    Li, Qi; Hu, Zhimin; Yao, Li; Huang, Chengwu; Yuan, Zheng; Zhao, Yang; Xiong, Gang; Qing, Bo; Lv, Min; Zhu, Tuo; Deng, Bo; Li, Jin; Wei, Minxi; Zhan, Xiayu; Li, Jun; Yang, Yimeng; Su, Chunxiao; Yang, Guohong; Zhang, Jiyan; Li, Sanwei

    2017-01-01

    Fluorescence imaging of surrogate Si-doped CH targets has been used to provide a measurement for drive condition of high-energy x-ray (i.e. M-band x-ray) drive symmetry upon the capsule in hohlraum on Shenguang-II laser facility. A series of experiments dedicated to the study of photo-pumping and fluorescence effect in Si-plasma are presented. To investigate the feasibility of fluorescence imaging in Si-plasma, an silicon plasma in Si-foil target is pre-formed at ground state by the soft x-ray from a half-hohlraum, which is then photo-pumped by the K-shell lines from a spatially distinct laser-produced Si-plasma. The resonant Si photon pump is used to improve the fluorescence signal and cause visible image in the Si-foil. Preliminary fluorescence imaging of Si-ball target is performed in both Si-doped and pure Au hohlraum. The usual capsule at the center of the hohlraum is replaced with a solid Si-doped CH-ball (Si-ball). Since the fluorescence is proportional to the photon pump upon the Si-plasma, high-energy x-ray drive symmetry is equal to the fluorescence distribution of the Si-ball. (paper)

  18. Fluorescence versus X-ray cholangiography during laparoscopic cholecystectomy

    DEFF Research Database (Denmark)

    Lehrskov, Lars Lang; Larsen, Søren S; Kristensen, Billy B

    2016-01-01

    INTRODUCTION: Intraoperative fluorescent cholangiography is a novel non-invasive imaging technique to visualise the extrahepatic biliary tract during laparoscopic cholecystectomy. It has been proven feasible, fast and cost effective. Never-theless, there is only sparse data on the capacity...... of fluorescent cholangiography to visualise the biliary anatomy. METHODS: Based on a non-inferiority design, patients with complicated gallstone disease are randomised to either -intraoperative conventional X-ray cholangiography (reference group, n = 60) or intraoperative fluorescent cholangiography (n = 60......). The primary outcome is visualisation of the junction between the cystic duct, the common hepatic duct and the common bile duct. CONCLUSION: The present study may show that fluorescent cholangiography is as valid for visualisation of important structures of the extrahepatic biliary tract as conventional X...

  19. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    International Nuclear Information System (INIS)

    Minami, K; Saito, Y; Kai, H; Shirota, K; Yada, K

    2009-01-01

    We have newly developed an open type fine-focus X-ray tube 'TX-510' to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The 'TX-510' employs a ZrO/W(100) Schottky emitter and an 'In-Lens Field Emission Gun'. The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  20. A low power x-ray tube for use in energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Kataria, S.K.; Govil, Rekha; Lal, M.

    1980-01-01

    A low power X-ray tube with thin molybdenum transmission target for use in energy dispersive X-ray fluorescence (ENDXRF) element analysis has been indigenously built, along with its power supply. The X-ray tube has been in operation since August 1979, and it has been operated upto maximum target voltage of 35 KV and tube current upto 200 μA which is more than sufficient for trace element analysis. This X-ray tube has been used alongwith the indigenously built Si(Li) detector X-ray spectrometer with an energy resolution of 200 eV at 5.9 Kev MnKsub(α) X-ray peak for ENDXRF analysis. A simple procedure of calibration has been developed for thin samples based on the cellulose diluted, thin multielement standard pellets. Analytical sensitivities of the order of a few p.p.m. have been obtained with the experimental setup for elements with 20 < = Z < = 38 and 60 < = Z < = 90. A number of X-ray spectra for samples of environmental, biological, agricultural, industrial and metallurgical interest are presented to demonstrate the salient features of the experimental sep up. (auth.)

  1. Quantitative X-ray microanalysis of biological specimens

    International Nuclear Information System (INIS)

    Roomans, G.M.

    1988-01-01

    Qualitative X-ray microanalysis of biological specimens requires an approach that is somewhat different from that used in the materials sciences. The first step is deconvolution and background subtraction on the obtained spectrum. The further treatment depends on the type of specimen: thin, thick, or semithick. For thin sections, the continuum method of quantitation is most often used, but it should be combined with an accurate correction for extraneous background. However, alternative methods to determine local mass should also be considered. In the analysis of biological bulk specimens, the ZAF-correction method appears to be less useful, primarily because of the uneven surface of biological specimens. The peak-to-local background model may be a more adequate method for thick specimens that are not mounted on a thick substrate. Quantitative X-ray microanalysis of biological specimens generally requires the use of standards that preferably should resemble the specimen in chemical and physical properties. Special problems in biological microanalysis include low count rates, specimen instability and mass loss, extraneous contributions to the spectrum, and preparative artifacts affecting quantitation. A relatively recent development in X-ray microanalysis of biological specimens is the quantitative determination of local water content

  2. Quantitative analysis of phosphosilicate glass films on silicon wafers for calibration of x-ray fluorescence spectrometry standards

    International Nuclear Information System (INIS)

    Weissman, S.H.

    1983-01-01

    The phosphorus and silicon contents of phosphosilicate glass films deposited by chemical vapor deposition (CVD) on silicon wafers were determined. These films were prepared for use as x-ray fluorescence (XRF) spectrometry standards. The thin films were removed from the wafer by etching with dilute hydrofluoric acid, and the P and Si concentrations in solution were determined by inductively coupled plasma atomic emission spectroscopy (ICP). The calculated phosphorus concentration ranged from 2.2 to 12 wt %, with an uncertainty of 2.73 to 10.1 relative percent. Variation between the calculated weight loss (summation of P 2 O 5 and SiO 2 amounts as determined by ICP) and the measured weight loss (determined gravimetrically) averaged 4.9%. Results from the ICP method, Fourier transform-infrared spectroscopy (FT-IR), dispersive infrared spectroscopy, electron microprobe, and x-ray fluorescence spectroscopy for the same samples are compared

  3. X-ray fluorescence analysis of praseodymium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Mohile, A.N.

    1976-01-01

    A method for the determination of lanthanum, cerium, neodymium and samarium oxides in praseodymium oxide is described. The sample in the oxalate form is mixed with boric acid binder in the weight ratio of 1:1 and pressed into a pellet. The pellet is irradiated by X-rays from a tungsten tube and fluorescent X-rays are dispersed by a LiF (200) crystal in a Philips semiautomatic X-ray fluorescence spectrometer. The intensity of the characteristic X-rays of the impurity elements is measured by a flow proportional counter at selected 20 angles. The minium determination limit is 0.01% for all impurities. (author)

  4. Semi-Quantitative Evaluation of Secondary Carbonates via Portable X-ray Fluorescence Spectrometry

    Science.gov (United States)

    Chakraborty, Somsubhra; Weindorf, David; Weindorf, Camille; Duda, Bogdan; Pennington, Sarah; Ortiz, Rebekah

    2017-04-01

    Secondary calcium carbonate commonly occurs in subsoils of semi-arid soils worldwide. In US Soil Taxonomy, such horizons are frequently described as Bk, Bkk, Bkm, Bkkm, or Ck horizons at variable stages of development. Specifically, the Soil Survey Staff uses a qualitative scale of one through six to indicate differential developmental stages. However, considerable disagreement exists even among experienced soil scientists. Evaluating 75 soil samples from across four US states, a portable X-ray fluorescence (PXRF) spectrometer was used to quantify the total soil Ca content and compare it to average developmental stage scores as determined by a panel of Soil Survey Staff personnel. Samples were evaluated both as intact aggregates as well as ground (human eye.

  5. Development of glancing-incidence and glancing-take-off X-ray fluorescence apparatus for surface and thin-film analyses

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Wagatsuma, Kazuaki; Yamada, Takashi; Utaka, Tadashi

    1997-01-01

    We have studied X-ray fluorescence analysis under glancing incidence and glancing take-off conditions. Recently, we have developed a third apparatus for detecting glancing-incidence and take-off X-ray fluorescence, which makes it possible to measure the incident-angle dependence, the take-off-angle dependence. X-ray reflectivity, and X-ray diffraction. Primarily, we have measured the take-off angular dependence of X-ray fluorescence using this apparatus. Glancing take-off X-ray fluorescence has some advantages in comparison with glancing-incidence X-ray fluorescence. The surface density and the absolute angles were determined by analysing the take-off angle dependence of the fluorescent X-rays emitted from identical atoms with the aid of the reciprocity theorem. (Author)

  6. Determination of non-ionic surfactants in technologic liquors and effluents by X-ray fluorescent spectrometry

    International Nuclear Information System (INIS)

    Dankowski, P.; Majda, J.

    1977-01-01

    The method has been worked out for determination of non-ionic surfactants in technological liquors and effluents, based on the X-ray fluorescent spectrometry with an initial concentration by means of the phosphomolybdic acid. The method is suitable for a quantitative determination of ethylene oxide adducts in a wide range of applicable concentrations, the trace-ones included. (M.Z.)

  7. Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography

    International Nuclear Information System (INIS)

    Cordes, Nikolaus L.; Seshadri, Srivatsan; Havrilla, George J.; Yuan, Xiaoli; Feser, Michael; Patterson, Brian M.

    2015-01-01

    Current non-destructive elemental characterization methods, such as scanning electron microscopy-based energy dispersive spectroscopy (SEM–EDS) and micro-X-ray fluorescence spectroscopy (MXRF), are limited to either elemental identification at the surface (SEM–EDS) or suffer from an inability to discriminate between surface or depth information (MXRF). Thus, a non-destructive elemental characterization of individual embedded particles beneath the surface is impossible with either of these techniques. This limitation can be overcome by using laboratory-based 3D confocal micro-X-ray fluorescence spectroscopy (confocal MXRF). This technique utilizes focusing optics on the X-ray source and detector which allows for spatial discrimination in all three dimensions. However, the voxel-by-voxel serial acquisition of a 3D elemental scan can be very time-intensive (~ 1 to 4 weeks) if it is necessary to locate individual embedded particles of interest. As an example, if each point takes a 5 s measurement time, a small volume of 50 × 50 × 50 pixels leads to an acquisition time of approximately 174 h, not including sample stage movement time. Initially screening the samples for particles of interest using micro-X-ray computed tomography (micro-CT) can significantly reduce the time required to spatially locate these particles. Once located, these individual particles can be elementally characterized with confocal MXRF. Herein, we report the elemental identification of high atomic number surface and subsurface particles embedded in a mineralogical matrix by coupling micro-CT and confocal MXRF. Synergistically, these two X-ray based techniques first rapidly locate and then elementally identify individual subsurface particles. - Highlights: • Coupling of confocal X-ray fluorescence spectroscopy and X-ray computed tomography • Qualitative elemental identification of surface and subsurface mineral particles • Non-destructive particle size measurements • Utilization of

  8. Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, Nikolaus L., E-mail: ncordes@lanl.gov [Polymers and Coatings Group, Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Seshadri, Srivatsan, E-mail: srivatsan.seshadri@zeiss.com [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA 94588 (United States); Havrilla, George J. [Chemical Diagnostics and Engineering, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Yuan, Xiaoli [Julius Kruttschnitt Mineral Research Centre, University of Queensland, Indooroopilly, Brisbane, QLD 4068 (Australia); Feser, Michael [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA 94588 (United States); Patterson, Brian M. [Polymers and Coatings Group, Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-01-01

    Current non-destructive elemental characterization methods, such as scanning electron microscopy-based energy dispersive spectroscopy (SEM–EDS) and micro-X-ray fluorescence spectroscopy (MXRF), are limited to either elemental identification at the surface (SEM–EDS) or suffer from an inability to discriminate between surface or depth information (MXRF). Thus, a non-destructive elemental characterization of individual embedded particles beneath the surface is impossible with either of these techniques. This limitation can be overcome by using laboratory-based 3D confocal micro-X-ray fluorescence spectroscopy (confocal MXRF). This technique utilizes focusing optics on the X-ray source and detector which allows for spatial discrimination in all three dimensions. However, the voxel-by-voxel serial acquisition of a 3D elemental scan can be very time-intensive (~ 1 to 4 weeks) if it is necessary to locate individual embedded particles of interest. As an example, if each point takes a 5 s measurement time, a small volume of 50 × 50 × 50 pixels leads to an acquisition time of approximately 174 h, not including sample stage movement time. Initially screening the samples for particles of interest using micro-X-ray computed tomography (micro-CT) can significantly reduce the time required to spatially locate these particles. Once located, these individual particles can be elementally characterized with confocal MXRF. Herein, we report the elemental identification of high atomic number surface and subsurface particles embedded in a mineralogical matrix by coupling micro-CT and confocal MXRF. Synergistically, these two X-ray based techniques first rapidly locate and then elementally identify individual subsurface particles. - Highlights: • Coupling of confocal X-ray fluorescence spectroscopy and X-ray computed tomography • Qualitative elemental identification of surface and subsurface mineral particles • Non-destructive particle size measurements • Utilization of

  9. Elimination of matrix effect in quantitative analysis of elements using x-ray fluorescence

    International Nuclear Information System (INIS)

    Sampaio, R.V.

    1973-07-01

    The emission-transmission method of Leroux and Mahmud, an experimental technique for compensating matrix effects in photon excited X-ray fluorescence analysis, was used to determine the concentration of lead and antimony in pellets of galalith. The effect of interfering elements was studied by adding various concentrations of mercury and tin to the respective pellets. To illustrate possible environmental applications, a number of pellets was prepared from leaves of almond trees located in different regions of Rio de Janeiro. Lead concentrations were determined for the dried leaf material and showed values ranging from 50 to 145 parts per million [pt

  10. A low cost multi-purpose experimental arrangement for variants in energy dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Nascimento Filho, V.F.; Silva, R.M.C.; Moraes, L.M.B.; Parreira, P.S.; Appoloni, R.C.; Silva, R.M.C.

    2005-01-01

    Based in an X-ray tower with four exits (two line and two point beams) experimental conditions were arranged to carry out variants in energy dispersive X-ray fluorescence analysis: (1) the conventional one (EDXRF), with excitation/detection of thin and thick samples, under vacuum and air atmosphere, (2) the X-ray energy dispersive micro- fluorescence analysis(μ-EDXRF), with 2D mapping, using a quartz capillar, (3) the total reflection X-ray fluorescence (TXRF), under He and air atmosphere, and (4) secondary target/polarized X-ray fluorescence (P-EDXRF). It was possible to use a Cu, Mo or W target on the X-ray tube, with or without filter (V, Fe, Ni and Zr), and Si(Li) or Si-PIN semicondutor detectors coupled to a multichannel analyzer. In addition, it was possible to use the point beam to carry out experiments on (5) X-ray radiography and (6) X-ray absorption, and the line beam on (7) X-ray diffractometry studies.

  11. Development and applications of grazing exit micro X-ray fluorescence instrument using a polycapillary X-ray lens

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, T.; Sato, Y.; Konishi, Y.; Ding, X.; Tsuji, K. E-mail: tsuji@a-chem.eng.osaka-cu.ac.jp

    2004-08-31

    A polycapillary X-ray lens is an effective optics to obtain a {mu}m-size X-ray beam for micro-X-ray fluorescence spectrometry ({mu}-XRF). We developed a {mu}-XRF instrument using a polycapillary X-ray lens, which also enabled us to perform Grazing Exit {mu}-XRF (GE-{mu}-XRF). The evaluated diameter of the primary X-ray beam was 48 {mu}m at the focal distance of the X-ray lens. Use of this instrument enabled two-dimensional mapping of the elemental distributions during growth of the plant 'Quinoa'. The results of the mapping revealed elemental transition during growth. In addition, a small region of thin film was analyzed by GE-{mu}-XRF. We expect that GE-{mu}-XRF will become an effective method of estimating the film thickness of a small region.

  12. use of x-ray fluorescence spectrometry to determine trace elements ...

    African Journals Online (AJOL)

    NIJOTECH

    Abstract. This paper deals with application of X-ray fluorescence spectrometry for the detection of trace elements in graphic. An X-ray spectrometer was constructed and used to carry out measurements on graphite spheres impregnated with different chemical elements. The intensities of the lines of these trace elements, ...

  13. X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques

    Science.gov (United States)

    Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.

    2012-12-01

    X-ray fluorescence from the surface of airless bodies has been studied since the Apollo X-ray fluorescence experiment mapped parts of the lunar surface in 1971-1972. That experiment used a collimated proportional counter with a resolving power of ~1 and a beam size of ~1degree. Filters separated only Mg, Al and SI lines. We review progress in X-ray detectors and imaging for astrophysics and show how these advances enable much more powerful use of X-ray fluorescence for the study of airless bodies. Astrophysics X-ray instrumentation has developed enormously since 1972. Low noise, high quantum efficiency, X-ray CCDs have flown on ASCA, XMM-Newton, the Chandra X-ray Observatory, Swift and Suzaku, and are the workhorses of X-ray astronomy. They normally span 0.5 to ~8 keV with an energy resolution of ~100 eV. New developments in silicon based detectors, especially individual pixel addressable devices, such as CMOS detectors, can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs mean near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines.such as CMOS detectors, promise advances. X-ray imaging has advanced similarly far. Two types of imager are now available: specular reflection and coded apertures. X-ray mirrors have been flown on the Einstein Observatory, XMM-Newton, Chandra and others. However, as X-ray reflection only occurs at small (~1degree) incidence angles, which then requires long focal lengths (meters), mirrors are not usually practical for planetary missions. Moreover the field of view of X-ray mirrors is comparable to the incident angle, so can only image relatively small regions. More useful

  14. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    Science.gov (United States)

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  15. Determination of rare-earth elements in rocks by isotope-excited X-ray fluorescence spectrometry

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Wollenberg, H.A.

    1970-01-01

    Isotope-excited X-ray fluorescence spectrometry furnishes a rapid determination of rare-earth elements in unprepared rock samples. The samples are excited by 241Am γ-rays, generating X-ray spectra on a multichannel pulse-height analyser. Gaussian peaks of the Kα and Kβ X-ray energies are treated ......-ray spectrometric scan of a longitudinally sliced drill core showed a close correlation between rare-earth abundances and appropriate minerals.......Isotope-excited X-ray fluorescence spectrometry furnishes a rapid determination of rare-earth elements in unprepared rock samples. The samples are excited by 241Am γ-rays, generating X-ray spectra on a multichannel pulse-height analyser. Gaussian peaks of the Kα and Kβ X-ray energies are treated...

  16. Simulation study of two-energy X-ray fluorescence holograms reconstruction algorithm to remove twin images

    International Nuclear Information System (INIS)

    Xie Honglan; Hu Wen; Luo Hongxin; Deng Biao; Du Guohao; Xue Yanling; Chen Rongchang; Shi Shaomeng; Xiao Tiqiao

    2008-01-01

    Unlike traditional outside-source holography, X-ray fluorescence holography is carded out with fluorescent atoms in a sample as source light for holographic imaging. With the method, three-dimensional arrangement of atoms into crystals can be observed obviously. However, just like traditional outside-source holography, X-ray fluorescence holography suffers from the inherent twin-image problem, too. With a 27-Fe-atoms cubic lattice as model, we discuss in this paper influence of the photon energy of incident source in removing twin images in reconstructed atomic images by numerical simulation and reconstruction with two-energy X-ray fluorescence holography. The results indicate that incident X-rays of nearer energies have better effect of removing twin images. In the detector of X-ray holography, minimum difference of the two incident energies depends on energy resolution of the monochromator and detector, and for inside source X-ray holography, minimum difference of the two incident energies depends on difference of two neighboring fluorescent energies emitting from the element and energy resolution of detector. The spatial resolution of atomic images increases with the incident energies. This is important for experiments of X-ray fluorescence holography, which is being developed on Shanghai Synchrotron Radiation Facility. (authors)

  17. Development of Total Reflection X-ray fluorescence spectrometry quantitative methodologies for elemental characterization of building materials and their degradation products

    Science.gov (United States)

    García-Florentino, Cristina; Maguregui, Maite; Marguí, Eva; Torrent, Laura; Queralt, Ignasi; Madariaga, Juan Manuel

    2018-05-01

    In this work, a Total Reflection X-ray fluorescence (TXRF) spectrometry based quantitative methodology for elemental characterization of liquid extracts and solids belonging to old building materials and their degradation products from a building of the beginning of 20th century with a high historic cultural value in Getxo, (Basque Country, North of Spain) is proposed. This quantification strategy can be considered a faster methodology comparing to traditional Energy or Wavelength Dispersive X-ray fluorescence (ED-XRF and WD-XRF) spectrometry based methodologies or other techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In particular, two kinds of liquid extracts were analysed: (i) water soluble extracts from different mortars and (ii) acid extracts from mortars, black crusts, and calcium carbonate formations. In order to try to avoid the acid extraction step of the materials and their degradation products, it was also studied the TXRF direct measurement of the powdered solid suspensions in water. With this aim, different parameters such as the deposition volume and the measuring time were studied for each kind of samples. Depending on the quantified element, the limits of detection achieved with the TXRF quantitative methodologies for liquid extracts and solids were set around 0.01-1.2 and 2-200 mg/L respectively. The quantification of K, Ca, Ti, Mn, Fe, Zn, Rb, Sr, Sn and Pb in the liquid extracts was proved to be a faster alternative to other more classic quantification techniques (i.e. ICP-MS), accurate enough to obtain information about the composition of the acidic soluble part of the materials and their degradation products. Regarding the solid samples measured as suspensions, it was quite difficult to obtain stable and repetitive suspensions affecting in this way the accuracy of the results. To cope with this problem, correction factors based on the quantitative results obtained using ED-XRF were calculated to improve the accuracy of

  18. X-ray fluorescence spectrometry - an introduction course

    International Nuclear Information System (INIS)

    Salvador, V.L.R.

    1989-01-01

    The theoretical and experimental principles of the X-ray fluorescence spectrometry, is presented the text is a synthesis of the most important literature in this area. The authors included are: E.P. Bertin, R. Jenkins, J.L. Devries, R. Muller, R. Tertian, F. Claisse e K.L. Willians. (author)

  19. Investigation of elemental distribution in lung samples by X-ray fluorescence microtomography

    International Nuclear Information System (INIS)

    Pereira, Gabriela R.; Rocha, Henrique S.; Lopes, Ricardo T.

    2007-01-01

    X-Ray Fluorescence Microtomography (XRFCT) is a suitable technique to find elemental distributions in heterogeneous samples. While x-ray transmission microtomography provides information about the linear attenuation coefficient distribution, XRFCT allows one to map the most important elements in the sample. The x-ray fluorescence tomography is based on the use of the X-ray fluorescence emitted from the elements contained in a sample so as to give additional information to characterize the object under study. In this work a rat lung and two human lung tissue samples have been investigated in order to verify the efficiency of the system in determination of the internal distribution of detected elements in these kinds of samples and to compare the elemental distribution in the lung tissue of an old human and a fetus. The experiments were performed at the X-Ray Fluorescence beamline (XRF) of the Brazilian Synchrotron Light Source (LNLS), Campinas, Brazil. A white beam was used for the excitation of the elements and the fluorescence photons have been detected by a HPGe detector. All the tomographies have been reconstructed using a filtered-back projection algorithm. It was possible to visualize the distribution of high atomic number elements on both, artificial and tissues samples. It was compared the quantity of Zn, Cu and Fe for the lung human tissue samples and verify that these elements have a higher concentration on the fetus tissue sample than the adult tissue sample. (author)

  20. The application of X-ray fluorescence spectrometry to prospecting potential gold deposits

    International Nuclear Information System (INIS)

    Shang Fengjun; Wang Haixia; Zhou Rongsheng

    2001-01-01

    The fieldwork high-sensitivity X-ray fluorescence analysis (FXFA) adopting miniaturized X-ray tube, Si-PIN detector with peltier cooler and notebook PC spectrometry is presented. Using this system, the authors carried out a preliminary research of its application to some gold mine in Sichuan. According to the close relationship between the high-grade element arsenic and gold in ore-forming components, X-ray fluorescence spectrometry can be used to reveal the existence of potential gold mineralization in fields rapidly. This is of great significance in guiding the field geological collection

  1. Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials.

    Science.gov (United States)

    Lawrence, J R; Swerhone, G D W; Dynes, J J; Korber, D R; Hitchcock, A P

    2016-02-01

    There is a critical need for methods that provide simultaneous detection, identification, quantitation and visualization of nanomaterials at their interface with biological and environmental systems. The approach should allow speciation as well as elemental analysis. Using the intrinsic X-ray absorption properties, soft X-ray scanning transmission X-ray spectromicroscopy (STXM) allows characterization and imaging of a broad range of nanomaterials, including metals, oxides and organic materials, and at the same time is able to provide detailed mapping of biological components. Thus, STXM offers considerable potential for application to research on nanomaterials in biology and the environment. The potential and limitations of STXM in this context are discussed using a range of examples, focusing on the interaction of nanomaterials with microbial cells, biofilms and extracellular polymers. The studies outlined include speciation and mapping of metal-containing nanomaterials (Ti, Ni, Cu) and carbon-based nanomaterials (multiwalled carbon nanotubes, C60 fullerene). The benefits of X-ray fluorescence detection in soft X-ray STXM are illustrated with a study of low levels of Ni in a natural river biofilm. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  2. Use of X-ray fluorescence in a laboratory for the treatment of uranium ores (1960); Utilisation de la fluorescence X dans un laboratoire de traitements de minerais d'uranium (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, H [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    A brief description will be given of some aspects of the experience gained over a year during which X-ray fluorescence was used at the laboratory or the present Section Autonome d'Etudes, Recherches et Applications Chimiques of the Commissariat a l'Energie Atomique. First part. - Reproducibility of results. A standard is tested daily. The observations made during the months from december 58 to may 59 are described. Second part. - Study of two chemical treatment processes using X-ray fluorescence, without development of a detailed method of analysis. a) Acid lixiviation of uranium ores. The residues are analysed by X-Ray fluorescence directly in powder form. b) Fixation and elution of vanadium on ion exchange resin. Third part. - Method for the quantitative analysis of the uranium in solution. A method of analysis of the uranium in solution is described for concentrations between 30 {gamma}/cc and 600 {gamma}/cc, whatever may be the impurities present (except for the elements between Zn and Rb, and between Ir and Pa). (author) [French] On se propose de decrire brievement quelques aspects de l'experience acquise en une annee d'utilisation de fluorescence X au laboratoire de l'actuelle Section Autonome d'Etudes, Recherches et Applications chimiques du Commissariat a l'Energie Atomique. Premiere Partie. - Etude de la reproductibilite des resultats. Un standard est teste quotidiennement. On donne la description des observations faites durant les mois de decembre 58 a mai 59. Deuxieme Partie. - Etude de deux procedes de traitements chimiques au moyen de la fluorescence X sans mise au point de methode d'analyse elaboree. a) Liziviation acide de minerais d'uranium. Les residus sont analyses par fluorescence X directement sous forme pulverulente. b) Fixation et elution du vanadium sur resine echangeuse d'ions. Troisieme partie. - Methode d'analyse quantitative de l'uranium en solution. On decrit une methode d'analyse de l'uranium en solution pour des concentrations allant

  3. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    International Nuclear Information System (INIS)

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  4. Certification of reference materials by energy-dispersive x-ray fluorescence spectrometry?

    DEFF Research Database (Denmark)

    Christensen, Leif Højslet; Heydorn, Kaj

    1985-01-01

    This paper studies the precision and accuracy that can be achieved using energy-dispersive x-ray fluorescence spectrometry for the determination of total sulphur content in BCR 38 Fly Ash issued by the European Community Bureau of Reference.......This paper studies the precision and accuracy that can be achieved using energy-dispersive x-ray fluorescence spectrometry for the determination of total sulphur content in BCR 38 Fly Ash issued by the European Community Bureau of Reference....

  5. Use of x-ray fluorescence for in-situ detection of metals

    Science.gov (United States)

    Elam, W. T. E.; Whitlock, Robert R.; Gilfrich, John V.

    1995-01-01

    X-ray fluorescence (XRF) is a well-established, non-destructive method of determining elemental concentrations at ppm levels in complex samples. It can operate in atmosphere with no sample preparation, and provides accuracies of 1% or better under optimum conditions. This report addresses two sets of issues concerning the use of x-ray fluorescence as a sensor technology for the cone penetrometer, for shipboard waste disposal, or for other in-situ, real- time environmental applications. The first issue concerns the applicability of XRF to these applications, and includes investigation of detection limits and matrix effects. We have evaluated the detection limits and quantitative accuracy of a sensor mock-up for metals in soils under conditions expected in the field. In addition, several novel ways of improving the lower limits of detection to reach the drinking water regulatory limits have been explored. The second issue is the engineering involved with constructing a spectrometer within the 1.75 inch diameter of the penetrometer pipe, which is the most rigorous physical constraint. Only small improvements over current state-of-the-art are required. Additional advantages of XRF are that no radioactive sources or hazardous materials are used in the sensor design, and no reagents or any possible sources of ignition are involved.

  6. X-ray fluorescence analysis of low concentrations metals in geological samples and technological products

    Science.gov (United States)

    Lagoida, I. A.; Trushin, A. V.

    2016-02-01

    For the past several years many nuclear physics methods of quantitative elemental analysis have been designed. Many of these methods have applied in different devices which have become useful and effective instrument in many industrial laboratories. Methods of a matter structure analysis are based on the intensity detection of the X-ray radiation from the nuclei of elements which are excited by external X-ray source. The production of characteristic X-rays involves transitions of the orbital electrons of atoms in the target material between allowed orbits, or energy states, associated with ionization of the inner atomic shells. One of these methods is X-ray fluorescence analysis, which is widespread in metallurgical and processing industries and is used to identify and measure the concentration of the elements in ores and minerals on a conveyor belt. Samples of copper ore with known concentrations of elements, were taken from the Ural deposit. To excite the characteristic X-rays radionuclide sources 109Cd, with half-life 461.4 days were used. After finding the calibration coefficients, control measurements of samples and averaging of overall samples were made. The measurement error did not exceed 3%.

  7. Handbook of practical X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Beckhoff, B.; Wedell, R.; Wolff, H.

    2006-01-01

    X-ray fluorescence analysis (XRF) is a reliable multi-elemental and nondestructive analytical method widely used in research and industrial applications. This practical handbook provides self-contained modules featuring XRF instrumentation, quantification methods, and most of the current applications. The broad spectrum of topics is due to the efforts of a large number of authors from a variety of different types of institutions such as universities, research institutes, and companies. The book gives a survey of the theoretical fundamentals, analytical instrumentation, software for data processing, various excitation regimes including gracing incidents and microfocus measurements, quantitative analysis, applications in routine and micro analysis, mineralogy, biology, medicine, criminal investigations, archeology, metallurgy, abrasion, microelectronics, environmental air and water analysis. It gives the basic knowledge on this technique, information on analytical equipment and guides the reader to the various applications. This practical handbook is intended as a resource for graduate students, research scientists, and industrial users. (orig.)

  8. Handbook of practical X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beckhoff, B. [Physikalisch-Technische Bundesanstalt, Berlin (Germany). X-ray Spectrometry; Kanngiesser, B. [Technische Univ. Berlin (Germany). Inst. fuer Atomare Physik und Fachdidaktik; Langhoff, N. [IfG-Institute for Scientific Instruments GmbH, Berlin (Germany); Wedell, R.; Wolff, H. (eds.) [Institut fuer Angewandte Photonik e.V., Berlin (Germany)

    2006-07-01

    X-ray fluorescence analysis (XRF) is a reliable multi-elemental and nondestructive analytical method widely used in research and industrial applications. This practical handbook provides self-contained modules featuring XRF instrumentation, quantification methods, and most of the current applications. The broad spectrum of topics is due to the efforts of a large number of authors from a variety of different types of institutions such as universities, research institutes, and companies. The book gives a survey of the theoretical fundamentals, analytical instrumentation, software for data processing, various excitation regimes including gracing incidents and microfocus measurements, quantitative analysis, applications in routine and micro analysis, mineralogy, biology, medicine, criminal investigations, archeology, metallurgy, abrasion, microelectronics, environmental air and water analysis. It gives the basic knowledge on this technique, information on analytical equipment and guides the reader to the various applications. This practical handbook is intended as a resource for graduate students, research scientists, and industrial users. (orig.)

  9. Confocal total reflection X-ray fluorescence technology based on an elliptical monocapillary and a parallel polycapillary X-ray optics.

    Science.gov (United States)

    Zhu, Yu; Wang, Yabing; Sun, Tianxi; Sun, Xuepeng; Zhang, Xiaoyun; Liu, Zhiguo; Li, Yufei; Zhang, Fengshou

    2018-07-01

    A total reflection X-ray fluorescence (TXRF) spectrometer based on an elliptical monocapillary X-ray lens (MXRL) and a parallel polycapillary X-ray lens (PPXRL) was designed. This TXRF instrument has micro focal spot, low divergence and high intensity of incident X-ray beam. The diameter of the focal spot of MXRL was 16.5 µm, and the divergence of the incident X-ray beam was 3.4 mrad. We applied this TXRF instrument to the micro analysis of a single-layer film containing Ni deposited on a Si substrate by metal vapor vacuum arc ion source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. X-ray fluorescence holography studies for a Cu3Au crystal

    Science.gov (United States)

    Dąbrowski, K. M.; Dul, D. T.; Jaworska-Gołąb, T.; Rysz, J.; Korecki, P.

    2015-12-01

    In this work we show that performing a numerical correction for beam attenuation and indirect excitation allows one to fully restore element sensitivity in the three-dimensional reconstruction of the atomic structure. This is exemplified by a comparison of atomic images reconstructed from holograms measured for ordered and disordered phases of a Cu3Au crystal that clearly show sensitivity to changes in occupancy of the atomic sites. Moreover, the numerical correction, which is based on quantitative methods of X-ray fluorescence spectroscopy, was extended to take into account the influence of a disturbed overlayer in the sample.

  11. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    Science.gov (United States)

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; Beerwerth, Randolf; Holmes, Michael; Aldrich, Jeff; Lin, Ming-Fu; Minitti, Michael; Osipov, Timur; Schlotter, William; Cederbaum, Lorenz S.; Fritzsche, Stephan; Berrah, Nora

    2018-02-01

    We measured the fluorescence photon yield of neon upon soft x-ray ionization (∼1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  12. Sampling, storage and sample preparation procedures for X ray fluorescence analysis of environmental materials

    International Nuclear Information System (INIS)

    1997-06-01

    X ray fluorescence (XRF) method is one of the most commonly used nuclear analytical technique because of its multielement and non-destructive character, speed, economy and ease of operation. From the point of view of quality assurance practices, sampling and sample preparation procedures are the most crucial steps in all analytical techniques, (including X ray fluorescence) applied for the analysis of heterogeneous materials. This technical document covers recent modes of the X ray fluorescence method and recent developments in sample preparation techniques for the analysis of environmental materials. Refs, figs, tabs

  13. Limestone rocks analysis by X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Izquierdo M, G.; Ponce R, R.; Vazquez J, J.

    1996-01-01

    By request of a private company, employing basically X-ray fluorescence analysis (X RF), was established a fast and accurate method for the analysis of the major elements in limestone rocks. Additionally, for complementing analysis was determined by ion chromatography, the chlorides appearance and by atomic absorption of sodium. By gravimetry, was determined the losses by ignition and the alpha quartz. (Author)

  14. X-ray fluorescence in some medium-Z elements excited by 59.5 keV photons

    International Nuclear Information System (INIS)

    Han, I.; Shahin, M.; Demir, L.; Narmanli, E.

    2010-01-01

    K X-ray fluorescence parameters cross sections and average shell fluorescence yields) for selected ten elements in the atomic range 42 ≤ Z ≤ 66 have been experimentally determined at photon excitation energy of 59.5 keV. K X-rays emitted from the samples have been counted by a Si (Li) detector. The K spectra for investigated elements have been derived from the measured K shell X-ray spectra by peak fitting process. Experimental results of K X-ray fluorescence parameters have been compared with theory. In general there is an agreement within the standard uncertainties of the experimental and theoretical values

  15. Viability of exploiting L-shell fluorescence for X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, M C; Elsner, R F; Ramsey, B D [National Aeronautics and Space Administration, Huntsville, AL (USA). Space Sciences Lab.; Sutherland, P G [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Physics

    1985-05-15

    It has been suggested that one may build an X-ray polarimeter by exploiting the polarization dependence of the angular distribution of L-shell fluorescence photons. In this paper we examine, theoretically, the sensitivity of this approach to polarimetry. We apply our calculations to several detection schemes using imaging proportional counters that would have direct application in X-ray astronomy. We find, however, that the sensitivity of this method for measuring X-ray polarization is too low to be of use for other than laboratory applications.

  16. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X-ray

  17. Total reflection X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Michaelis, W.; Prange, A.

    1987-01-01

    In the past few years, total reflection X-ray flourescence analysis (TXRF) has found an increasing number of assignments and applications. Experience of trace element analysis using TXRF and examples of applications are already widespread. Therefore, users of TXRF had the opportunity of an intensive exchange of their experience at the 1st workshop on total reflection X-ray fluorescence analysis which took place on May 27th and 28th 1986 at the GKSS Research Centre at Geesthacht. In a series of lectures and discussions dealing with the analytical principle itself, sample preparation techniques and applications as well as comuter programs for spectrum evaluation, the present state of development and the range of applications were outlined. 3 studies out of a total of 14 were included separately in the INIS and ENERGY databases. With 61 figs., 12 tabs [de

  18. Quantitative energy-dispersive electron probe X-ray microanalysis ...

    Indian Academy of Sciences (India)

    Abstract. An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique us- ing an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle. EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such ...

  19. New x-ray optical system for fluorescence beamline at Hasylab

    International Nuclear Information System (INIS)

    Falkenberg, G.; Tschentscher, T.

    2000-01-01

    Beamline L at HASYLAB/DESY is actually dedicated to micro x-ray fluorescence (μ-XRF) experiments using the white beam from a bending magnet of the storage ring DORIS III. To extend the applicability of beamline L to other x-ray fluorescence techniques, such as synchrotron radiation total reflection x-ray fluorescence (SR-TXRF) and micro x-ray absorption near edge structures in fluorescence mode (μ-XANES), new x-ray optics have been designed and are under installation at the moment. The suitability of beamline L for SR-TXRF experiments has been shown previously in a number of studies using temporary setups for beam monochromatization and collimation. The new optical system comprises a slit system, a pair of x-ray mirrors for focussing, collimation and high energy cut-off (12 keV and 30 keV), a double multilayer monochromator for broad bandpass applications (TXRF) and a double perfect-crystal monochromator for spectroscopy (XANES, speciation). The multilayer monochromator will utilize a pair of NiC with a spacing of 4.0 nm for the energy range 2-10 keV and a second pair of WB 4 C with a spacing of 3.0 nm for the range 4-30 keV. To extend the energy range for broad bandpass applications to higher photon energies SiGe gradient crystals are foreseen (ΔE/E ∼ 10 -3 ). For the perfect-crystal monochromator we have chosen a pair of Ge 111 crystals for the energy range 2-10 keV and Si 111 crystals for 7-90 keV. To enable the use of low photon energies down to 2 keV the monochromator vessel is sealed to the ring vacuum by a 25 μm thick carbon window. The mirrors and monochromators deflect the beam vertically and can be moved out of the beam independently. Fixed exit geometry permits the illumination of the same sample spot with different wavelength and energy bands. All optical elements accept the full vertical beam opening in order to enable both vertical and horizontal geometries for sample and detector. (author)

  20. Provenance study of Gothic paintings from North-East Slovakia by handheld x-ray fluorescence, microscopy and x-ray microdiffraction

    Czech Academy of Sciences Publication Activity Database

    Hradil, David; Hradilová, J.; Bezdička, Petr; Švarcová, Silvie

    2008-01-01

    Roč. 37, č. 4 (2008), s. 376-382 ISSN 0049-8246 R&D Projects: GA ČR(CZ) GA203/07/1324 Institutional research plan: CEZ:AV0Z40320502 Keywords : Gothic paintings * X-ray fluorescence * X-ray microdiffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 1.390, year: 2008

  1. Study of properties of chemically modified samples of halloysite mineral with X-ray fluorescence and X-ray powder diffraction methods

    International Nuclear Information System (INIS)

    Banaś, D.; Kubala-Kukuś, A.; Braziewicz, J.; Majewska, U.; Pajek, M.; Wudarczyk-Moćko, J.; Czech, K.; Garnuszek, M.; Słomkiewicz, P.; Szczepanik, B.

    2013-01-01

    Elemental and chemical composition of raw and activated samples of halloysite mineral using wavelength dispersive X-ray fluorescence (WDXRF), total reflection X-ray fluorescence (TXRF) and X-ray powder diffraction (XRPD) methods were determined. As the result, it has been shown that application of the complementary X-ray spectrometry techniques allows very precise observation of changes in composition of halloysite mineral samples caused by its chemical modifications. Sample preparation procedure and usability of the research methods applied are described in details. Procedure of activation of raw halloysite mineral samples by etching them in sulfuric acid of various concentrations has been described and discussed. The ability of the samples to adsorb lead from intentionally contaminated water was tested and confirmed. - Author-Highlights: • We measured elemental and chemical composition of raw and activated halloysite mineral samples. • We showed that X-ray techniques allow precise study of changes in the sample composition. • We describe procedure of activation of the samples by etching them in sulfuric acid. • We tested ability of halloysite mineral to absorb lead from contaminated water

  2. X-ray fluorescence analysis of neodymium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Mohile, A.N.

    1977-01-01

    An X-ray fluorescence method for the determination of cesium, praseodymium, samarium, europium and gadolinium in pure neodymium oxide and oxalate is described. The oxide sample is converted to oxalate and mixed with a binder (boric acid) to obtain a pressed circular pellet. The amount of sample needed for analysis is reduced by making use of the double layer pellet technique. A tungsten target X-ray tube is employed to irradiate the sample and a Philips PW 1220 semiautomatic X-ray spectrometer with a LiF (200) crystal is used to analyse the fluorescent X-rays. The minimum determination limit is 0.01 percent for all rare earths determined except for europium for which the limit is 0.005 percent. Three sigma detection limits have been calculated. (author)

  3. Microprocessor-based system for automatic X-ray diffraction and fluorescence

    International Nuclear Information System (INIS)

    Souza, A.M. de; Carmo, L.C.S. do; Pereira, V.J.E.; Soares, E.A.

    1984-01-01

    A data acquisition and processing device appropriate for X-ray analysis and goniometer control was built. The Z-80 based system as well as the whole architeture is described. The advantages and new possibilities of the automated instrument as compared to the traditional ones are listed. The X-ray diffraction and fluorescence techniques can take advantage of the automation. (Author) [pt

  4. Proton induced X-Ray fluorescence study as a tool trace element analysis

    International Nuclear Information System (INIS)

    El-Kady, Ahmed A.

    1978-01-01

    Usefulness and limitations of trace elemental analysis by high energy charged particles and photon induced X-ray have been discussed. Comparison with the well established neutron activation analysis technique is also given. Back-ground radiation due to bremsstrahlung from secondary electrons and due to charged particle bremsstrahlung have been reviewed for different projectiles. The sensitivity of elemental analysis by proton induced X-ray fluorescence have been examined by measuring the characteristic X-ray emission cross section for K and L transitions of many elements and for different proton energies and compared with theroretical values. The discussion given in this report show that with suitable proton generator and a high resolution X-ray detector, proton X-ray fluorescence technique is capable of analyzing many elements simultaneously at the part per million level and offers a rapid and reliable method for trace element analysis. Data on water, blood and tissue samples given in this report are few examples of many possible applications

  5. Development of suitable plastic standards for X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mans, Christian [University of Applied Sciences Muenster, Department of Chemical Engineering, Advanced Analytical Chemistry, Stegerwaldstr. 39, 48565 Steinfurt (Germany)], E-mail: c.mans@fh-muenster.de; Hanning, Stephanie [University of Applied Sciences Muenster, Department of Chemical Engineering, Advanced Analytical Chemistry, Stegerwaldstr. 39, 48565 Steinfurt (Germany)], E-mail: hanning@fh-muenster.de; Simons, Christoph [University of Applied Sciences Muenster, Department of Chemical Engineering, Advanced Analytical Chemistry, Stegerwaldstr. 39, 48565 Steinfurt (Germany)], E-mail: simons@fh-muenster.de; Wegner, Anne [University of Applied Sciences Muenster, Department of Chemical Engineering, Advanced Analytical Chemistry, Stegerwaldstr. 39, 48565 Steinfurt (Germany)], E-mail: awegner@fh-muenster.de; Janssen, Anton [University of Applied Sciences Muenster, Department of Chemical Engineering, Advanced Analytical Chemistry, Stegerwaldstr. 39, 48565 Steinfurt (Germany)], E-mail: janssena@fh-muenster.de; Kreyenschmidt, Martin [University of Applied Sciences Muenster, Department of Chemical Engineering, Advanced Analytical Chemistry, Stegerwaldstr. 39, 48565 Steinfurt (Germany)], E-mail: martin.kreyenschmidt@fh-muenster.de

    2007-02-15

    For the adoption of the EU directive 'Restriction on use of certain Hazardous Substances' and 'Waste Electrical and Electronic Equipment' using X-ray fluorescence analysis suitable standard materials are required. Plastic standards based on acrylonitrile-butadiene-styrene terpolymer, containing the regulated elements Br, Cd, Cr, Hg and Pb were developed and produced as granulates and solid bodies. The calibration materials were not generated as a dilution from one master batch but rather the element concentrations were distributed over nine independent calibration samples. This was necessary to enable inter-elemental corrections and empirical constant mass absorption coefficients. The produced standard materials are characterized by a homogenous element distribution, which is more than sufficient for X-ray fluorescence analysis. Concentrations for all elements except for Br could be determined by Inductively Coupled Plasma Atomic Emission Spectroscopy after microwave assisted digestion. The concentration of Br was determined by use of Neutron Activation Analysis at Hahn-Meitner-Institute in Berlin, Germany. The correlation of the X-ray fluorescence analysis measurements with the values determined using Inductively Coupled Plasma Atomic Emission Spectroscopy and Neutron Activation Analysis showed a very good linearity.

  6. Artificial neural networks as a multivariate calibration tool: modelling the Fe-Cr-Ni system in X-ray fluorescence spectroscopy

    NARCIS (Netherlands)

    Bos, A.; Bos, A.; Bos, M.; van der Linden, W.E.

    1993-01-01

    The performance of artificial neural networks (ANNs) for modeling the Cr---Ni---Fe system in quantitative x-ray fluorescence spectroscopy was compared with the classical Rasberry-Heinrich model and a previously published method applying the linear learning machine in combination with singular value

  7. Research Note: Energy dispersive x-ray fluorescence analysis ...

    African Journals Online (AJOL)

    Energy Dispersive X-Ray fluorescence (EDXRF) technique for the analysis of geological, biological and environmental samples is described. The technique has been applied in the analysis of 10 (geological, biological, environmental) standard reference materials. The accuracy and precision of the technique were attested ...

  8. Abstracts of the 8th Conference on total reflection x-ray fluorescence analysis and related methods

    International Nuclear Information System (INIS)

    Wobrauschek, P.

    2000-01-01

    The 8. conference on total reflection x-ray fluorescence analysis and related methods held from 25.9 to 29.9.2000 contains 79 abstracts about x-ray fluorescence analysis (XRFA) as a powerful tool used for industrial production, geological prospecting and for environmental control. Total reflection x-ray fluorescence spectroscopy is also a tool used for chemical analysis in medicine, industry and research. (E.B.)

  9. Combined phase and X-Ray fluorescence imaging at the sub-cellular level

    International Nuclear Information System (INIS)

    Kosior, Ewelina

    2013-01-01

    This work presents some recent developments in the field of hard X-ray imaging applied to biomedical research. As the discipline is evolving quickly, new questions appear and the list of needs becomes bigger. Some of them are dealt with in this manuscript. It has been shown that the ID22NI beamline of the ESRF can serve as a proper experimental setup to investigate diverse aspects of cellular research. Together with its high spatial resolution, high flux and high energy range the experimental setup provides bigger field of view, is less sensitive to radiation damages (while taking phase contrast images) and suits well chemical analysis with emphasis on endogenous metals (Zn, Fe, Mn) but also with a possibility for exogenous one's like these found in nanoparticles (Au, Pt, Ag) study. Two synchrotron-based imaging techniques, fluorescence and phase contrast imaging were used in this research project. They were correlated with each other on a number of biological cases, from bacteria E.coli to various cells (HEK 293, PC12, MRC5VA, red blood cells). The explorations made in the chapter 5 allowed preparation of more established and detailed analysis, described in the next chapter where both techniques, X-ray fluorescence and phase contrast imaging, were exploited in order to access absolute metal projected mass fraction in a whole cell. The final image presents for the first time true quantitative information at the sub-cellular level, not biased by the cell thickness. Thus for the first time a fluorescence map serves as a complete quantitative image of a cell without any risk of misinterpretation. Once both maps are divided by each other pixel by pixel (fluorescence map divided by the phase map) they present a complete and final result of the metal (Zn in this work) projected mass fraction in ppm of dry weight. For the purpose of this calculation the analysis was extended to calibration (non-biological) samples. Polystyrene spheres of a known diameter and known

  10. Application of X-ray fluorescence (WDXRF): thickness and chemical composition determination of thin films

    International Nuclear Information System (INIS)

    Scapin, Valdirene de Oliveira.

    2004-01-01

    In this work a procedure is described for thickness and quantitative chemical composition of thin films by wavelength dispersion X-ray fluorescence (WDXRF) using Fundamental Parameters method. This method was validated according to quality assurance standard and applied sample Al, Cr, TiO2, Ni, ZrO2 (single thickness) and Ni/Cr (double thickness) on glass; Ni on steel and metallic zinc and TiO2 on metallic iron (single thickness), all the sample were prepared for physical deposition of vapor (PVD). The thickness had been compared with Absorption (FRX-A) and Rutherford Backscattering Spectrometry (RBS) methods; the result showed good efficiency of the fundamental parameters method. Sample structural characteristics analyzed by X ray diffraction (XRD) showed any influence in the thickness determinations. (author)

  11. Assembly of positioner of automated two-dimensional scan coupled to X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Silva, Leonardo Santiago Melgaço

    2011-01-01

    This work describes the design and assembling of a prototype automated positioner two-dimensional scanning coupled to X-ray fluorescence spectrometry. The work aims to achieve a portable and easy to use, device of broad utility in the analysis of samples by X-ray fluorescence area of expertise and research. The two-dimensional scanning of the positioner is by means of two stepper motors controlled by a microcontroller PIC 16F877A, encoder and optical sensors. The user interacts with the XY table through an interface program for the Windows operating system, which communicates with the microcontroller through the serial port. The system of Fluorescence Spectroscopy incorporated into the positioner consists of a system commercially available system from the company AMPTEK, where the primary source of excitation of the sample was a source of 241 Am of 59.5 KeV emissions. Resolution and accuracy of tests were performed in the XY scanning process and reproducibility of the same kit with the fluorescence spectrometry X-ray. Qualitative tests by X-ray fluorescence spectrometry in samples were performed to demonstrate the applicability and versatility of the project. It follows that the prototype illustrates a possible adequately to portable device for X-ray spectrometry of two-dimensional. (author)

  12. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  13. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wilson, Matthew D.; Seller, Paul; Veale, Matthew C.; Connolley, Thomas; Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal; Grant, Patrick S.; Liotti, Enzo; Lui, Andrew

    2016-01-01

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm"2 with one of the 80×80 pixels imaging an area equivalent to 13µm"2. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  14. Determination of Fission Products in Irradiated Fuel by X-Ray Fluorescence

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Als-Nielsen, Jens Aage; Andersen, Niels Hessel

    X-ray fluorescence i s a well e s t a b l i s h e d analytical tool for measuring elemental composition of fairly large (~ 5 cm2) "cold" samples. A version of t h i s technique has been developed for a n a l y s i s of radial d i s t r i b u t i o n of f i s s i o n products Xe, Cs and Ba...... in the scanning d i rection and 2 mm long. The measured Xe Ko x-ray i n t e n s i t i e s are converted to absolute concentrations by comparing to the intens i t y from a Xe gas standard. In the case of Cs and Ba s o l id standards may be used. The X-ray fluorescence analysis i s compared to other techniques used...... to obtain radial f i s s i o n product profiles, i t i s shown how a combination of X-ray fluorescence and electron probe micro a n a l y s i s i s able to reveal the amount of Xe in the grain boundary porosities....

  15. X-ray microtome by fluorescence tomography

    CERN Document Server

    Simionovici, A S; Guenzler, F; Schrör, C; Snigirev, A; Snigireva, I; Tümmler, J; Weitkamp, T

    2001-01-01

    The X-ray fluorescence microtomography method is presented, which is capable of virtually slicing samples to obtain cross-sections of their inner structure. High precision experimental results of fluo-tomography in 'pencil-beam' geometry with up to 1.2 mu m resolution are described. Image reconstructions are based on either a simplified algebraic reconstruction method (ART) or the filtered back-projection method (FBP). Phantoms of inhomogeneous test objects as well as biological samples are successfully analyzed.

  16. X-ray fluorescence analysis of ytterbium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.; Thomas, A.

    1982-01-01

    An XRF method for the determination of Ho, Er, Tm, Lu and Y oxides in Yb 2 O 3 is described. 450 mg sample in the oxalate form is mixed with 150 mg boric acid binding material and pressed into 1.25 inch diameter pellet over a supporting pellet of boric acid. The sample is irradiated by X-rays from a tungsten tube and the fluorescent X-rays are dispersed by a LiF(200) crystal in a Philips PW 1220 semiautomatic X-ray fluorescence spectrometer. The intensities of characteristic X-rays of the impurity elements are measured by a flow proportional counter or a scintillation counter. The lowest determination limit is 0.005% for Ho, Er, Tm and Y and 0.01% for Lu. Calculations for theoretical detection limit, standard deviation and uncertainty are done and presented. (author)

  17. Silicon lithium detector for x ray fluorescence

    International Nuclear Information System (INIS)

    Rodriguez Cabal, A. E.; Diaz Garcia, A.; Noriega Scull, C.; Martinez Munoz, O.; Diaz Cepeda, R.

    1997-01-01

    The Silicon Lithium detector is the system for the detection of nuclear radiation. It transforms the charge that was produced inside of Silicon material as a result of the incidence of particles and X rays, in voltage pulses at the output of the preamplifier. In this work was made the adjustment of the technological process of manufacture of the detector. Also was made the design and construction of the cryostat and preamplifier and then the validation of the system in a Cuban Dewar. The system, which was made for the first time in our country, has an energy resolution of 185 eV for the Fe-55 source (E=5.9 KeV), which has permitted its implementation in energy dispersive X ray fluorescence. (author) [es

  18. X-ray fluorescence analysis of Fe - Ni - Mo systems

    International Nuclear Information System (INIS)

    Belyaev, E.E.; Ershov, A.V.; Mashin, A.I.; Mashin, N.I.; Rudnevskij, N.K.

    1998-01-01

    Procedures for the X-ray fluorescence determination of the composition and thickness of Fe - Ni - Mo thin films and the concentration of elements in thick films of the Fe - Ni - Mo alloy are developed [ru

  19. OI Fluorescent Line Contamination in Soft X-Ray Diffuse Background Obtained with Suzaku/XIS

    OpenAIRE

    Sekiya, Norio; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Takei, Yoh

    2014-01-01

    The quantitative measurement of OVII line intensity is a powerful method for understanding the soft X-ray diffuse background. By systematically analyzing the OVII line intensity in 145 high-latitude Suzaku/XIS observations, the flux of OI fluorescent line in the XIS spectrum, contaminating the OVII line, is found to have an increasing trend with time especially after 2011. For these observations, the OVII line intensity would be overestimated unless taking into consideration the OI fluorescen...

  20. Energy Dispersive X-Ray Fluorescence Spectrometric Study of ...

    African Journals Online (AJOL)

    MBI

    2017-06-11

    Jun 11, 2017 ... Compositional Differences in Trace Elements in Dried Moringa oleifera ... Ti, Cu, Mo, Fe, Zn, Ni, Re, Eu and Pb using Energy Dispersive X-ray fluorescence ... Africa, Southeast Asia (Valdez-Solana et al., 2015). ... vegetable in many countries, including Nigeria .... of other elements in environmental samples.

  1. X-Ray Fluorescence Spectroscopy for Analysis of Explosive-Related Materials and Unknowns

    Science.gov (United States)

    2017-08-01

    instrument uses a 50 W X-ray tube with a Pd target and has a sample chamber with a six- sample turret. The maximum sample size is 44 mm in diameter by...absorbance of X-rays by the elements present, and the X-ray fluorescence following excitation from other X-rays produced by the sample . Qualitative data...CAN2 Big Approximately 7.6 g of weathered CAN, enough to fill a sample cup To investigate possible errors associated with small sample size

  2. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zeniya, T.; Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T

    2001-07-21

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  3. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Science.gov (United States)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  4. Envelope method for background elimination from X-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Monakhov, V.V.; Naumenko, P.A.; Chashinskaya, O.A.

    2006-01-01

    The influence of the background noise caused by Bremsstrahlung on the accuracy of the envelope method at x-ray fluorescence spectra processing is studied. This is carried out by the example of model spectra at different forms of Bremsstrahlung noise as well as at the presence of background noise in spectra. The interpolation by parabolic splines is used for the estimation of the error of the envelope method for the elimination of continuos background noise. It is found out that the error of the proposed method constitutes decimal parts of percent. It is shown that the envelope method is the effective technique for the elimination of the continuous Bremsstrahlung from x-ray fluorescence spectra of the first order [ru

  5. Quantitative mineralogical analysis of sandstones using x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Ward, C.R.; Taylor, J.C.

    1999-01-01

    Full text: X-ray diffraction has long been used as a definitive technique for mineral identification based on the measuring the internal atomic or crystal structures present in powdered rocks; soils and other mineral mixtures. Recent developments in data gathering and processing, however, have provided an improved basis for its use as a quantitative tool, determining not only the nature of the minerals but also the relative proportions of the different minerals present. The mineralogy of a series of sandstone samples from the Sydney and Bowen Basins of eastern Australia has been evaluated by X-ray diffraction (XRD) on a quantitative basis using the Australian-developed SIROQUANT data processing technique. Based on Rietveld principles, this technique generates a synthetic X-ray diffractogram by adjusting and combining full-profile patterns of minerals nominated as being present in the sample and interactively matches the synthetic diffractogram under operator instructions to the observed diffractogram of the sample being analysed. The individual mineral patterns may be refined in the process, to allow for variations in crystal structure of individual components or for factors such as preferred orientation in the sample mount. The resulting output provides mass percentages of the different minerals in the mixture, and an estimate of the error associated with each individual percentage determination. The chemical composition of the mineral mixtures indicated by SIROQUANT for each individual sandstone studied was estimated using a spreadsheet routine, and the indicated proportion of each oxide in each sample compared to the actual chemical analysis of the same sandstone as determined independently by X-ray fluorescence spectrometry. The results show a high level of agreement for all major chemical constituents, indicating consistency between the SIROQUANT XRD data and the whole-rock chemical composition. Supplementary testing with a synthetic corundum spike further

  6. X-ray fluorescence holography studies for a Cu{sub 3}Au crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dąbrowski, K.M., E-mail: karol.dabrowski@uj.edu.pl; Dul, D.T.; Jaworska-Gołąb, T.; Rysz, J.; Korecki, P.

    2015-12-01

    In this work we show that performing a numerical correction for beam attenuation and indirect excitation allows one to fully restore element sensitivity in the three-dimensional reconstruction of the atomic structure. This is exemplified by a comparison of atomic images reconstructed from holograms measured for ordered and disordered phases of a Cu{sub 3}Au crystal that clearly show sensitivity to changes in occupancy of the atomic sites. Moreover, the numerical correction, which is based on quantitative methods of X-ray fluorescence spectroscopy, was extended to take into account the influence of a disturbed overlayer in the sample.

  7. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    International Nuclear Information System (INIS)

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    A method for a direct measurement of X-ray projections of the atomic structure is described. Projections of the atomic structure around Nb atoms in a LiNbO 3 single crystal were obtained from a white-beam X-ray absorption anisotropy pattern detected using Nb K fluorescence. Projections of the atomic structure around Nb atoms in a LiNbO 3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples

  8. X-ray fluorescence analysis of erbium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.; Thomas, A.

    1981-01-01

    A method for the determination of Tb, Dy, Ho, Tm, Yb, Lu and Y oxides in Er 2 O 3 is described. 450 mg sample in the oxalate form is mixed with 150 mg boric acid binding material and pressed into a 1.25 inch diameter pellet over a supporting pellet of boric acid. The sample is then irradiated by X-rays from a tungsten tube and the fluorescent X-rays are dispersed by a LiF (200) crystal in a Philips PW 1220 semiautomatic X-ray fluorescence spectrometer. The intensities of characteristic X-rays of the impurity elements are measured by a flow proportional counter for all elements except yttrium for which the intensities are measured by a scintillation counter. The lowest determination limit is 0.005% for all impurities except for Yb for which it is 0.01%. Calculations for theoretical detection limit are given. (author)

  9. Quantitative analysis of thorium in the presence of rare earth by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jesus, Camila S. de; Taam, Isabel; Vianna, Claudio A.

    2013-01-01

    The occurrence of Thorium in ores is normally associated to other elements such as Uranium and Cerium, as well as some Rare-Earths (RE). The separation of these elements by traditional analytic chemistry techniques is both time and reagent consuming, thus increasing the analysis cost. The hereby proposed method consists in the direct determination of Thorium in rare earths ores and compounds by X-ray fluorescence spectroscopy without any prior chemical separation from other matrix elements. This non-destructive technique is used to determine which elements are present in solid and liquid samples, as well as their concentrations. The studied matrix contains Lanthanum, Cerium, Praseodymium, Neodymium, Samarium, Gadolinium and Yttrium. This study evaluated the analytical lines of radiation emission for each rare earth contained in the matrix, comparing it to the Thorium main analytical line. The Thorium quantification was measured through the Th L line, where there is no influence or interference from the rare earths analytical lines. The studied samples are certified standards and the obtained results have been compared to Ethylenediaminetetraacetic acid (EDTA) titration results, an already well-established and widely trusted method. We also measured the matrix effect thus using complex rare earths liquor. This liquor contains also elements commonly found in monazites sands: phosphates, aluminum, iron. Obtained results state the efficiency of X-ray Fluorescence to determine Thorium in the presence of rare earths without any prior chemical separation. (author)

  10. Quantitative Phase Imaging Using Hard X Rays

    International Nuclear Information System (INIS)

    Nugent, K.A.; Gureyev, T.E.; Cookson, D.J.; Paganin, D.; Barnea, Z.

    1996-01-01

    The quantitative imaging of a phase object using 16keV xrays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. We find that our phase image is in quantitative agreement with independent measurements of the object. copyright 1996 The American Physical Society

  11. Precision scan-imaging for paperboard quality inspection utilizing X-ray fluorescence

    Science.gov (United States)

    Norlin, B.; Reza, S.; Fröjdh, C.; Nordin, T.

    2018-01-01

    Paperboard is typically made up of a core of cellulose fibers [C6H10O5] and a coating layer of [CaCO3]. The uniformity of these layers is a critical parameter for the printing quality. Current quality control methods include chemistry based visual inspection methods as well as X-ray based methods to measure the coating thickness. In this work we combine the X-ray fluorescence signals from the Ca atoms (3.7 keV) in the coating and from a Cu target (8.0 keV) placed behind the paper to simultaneously measure both the coating and the fibers. Cu was selected as the target material since its fluorescence signal is well separated from the Ca signal while its fluorescence's still are absorbed sufficiently in the paper. A laboratory scale setup is built using stepper motors, a silicon drift detector based spectrometer and a collimated X-ray beam. The spectroscopic image is retrieved by scanning the paperboard surface and registering the fluorescence signals from Ca and Cu. The exposure time for this type of setups can be significantly improved by implementing spectroscopic imaging sensors. The material contents in the layers can then be retrieved from the absolute and relative intensities of these two signals.

  12. Application of the nuclear x-ray fluorescence method to prospecting for gold in-situ

    International Nuclear Information System (INIS)

    Zhang, Y.; Xie, T.; Zhou, S.; Ge, L.

    1989-01-01

    Arsenic and chalcophile elements are often associated with gold, and can be considered indicator elements when prospecting for gold deposits. The nuclear geophysics X-ray fluorescence method can be used to search for hidden gold deposits by measuring fluorescence intensities of the indicator elements in situ. The method can speed geologic investigation and reduce exploration cost. Three types of portable radioisotope X-ray fluorescence analyzers, designed and manufactured by Chengdu College of Geology and Chongqing Geological Instrument Factory, are briefly introduced. These analyzers are widely used in different stages of geologic investigation for gold in China. In the two case histories presented five anomalous zones of X-ray fluorescence intensity related to gold mineralization are located and one hidden gold deposit is discovered with gold content of 23 g/t

  13. Simultaneous analysis of gaseous and particulate sulphur in the atmosphere by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Matsuda, Yatsuka; Mamuro, Tetsuo

    1975-01-01

    An analytical technique for the simultaneous measurements of the atmospheric concentrations of SO 2 gas and sulphur absorbed by aerosol particles has been developed. Aerosol particles are collected on membrane filter and at the same time SO 2 gas is captured on alkali impregnated filter. The sulphur content in each filter is measured by an energy dispersive X -ray fluorescence spectrometer consisting of a Si(Li) semiconductor detector connected to a multi-channel pulse height analyzer and an excitation source of 55 Fe. Two methods are acceptable for the determination of the sulphur content in impregnated filter by X-ray fluorescence analysis. In the first method X-ray fluorescence analysis is made after the collected sulphur gas diffused and distributed uniformly enough throughout the filter, and in the second method X-ray fluorescence analysis gas to be finished before the diffusion of the collected sulphur becomes appreciable. (author)

  14. Combined X-ray fluorescence and absorption computed tomography using a synchrotron beam

    International Nuclear Information System (INIS)

    Hall, C

    2013-01-01

    X-ray computed tomography (CT) and fluorescence X-ray computed tomography (FXCT) using synchrotron sources are both useful tools in biomedical imaging research. Synchrotron CT (SRCT) in its various forms is considered an important technique for biomedical imaging since the phase coherence of SR beams can be exploited to obtain images with high contrast resolution. Using a synchrotron as the source for FXCT ensures a fluorescence signal that is optimally detectable by exploiting the beam monochromaticity and polarisation. The ability to combine these techniques so that SRCT and FXCT images are collected simultaneously, would bring distinct benefits to certain biomedical experiments. Simultaneous image acquisition would alleviate some of the registration difficulties which comes from collecting separate data, and it would provide increased information about the sample: functional X-ray images from the FXCT, with the morphological information from the SRCT. A method is presented for generating simultaneous SRCT and FXCT images. Proof of principle modelling has been used to show that it is possible to recover a fluorescence image of a point-like source from an SRCT apparatus by suitably modulating the illuminating planar X-ray beam. The projection image can be successfully used for reconstruction by removing the static modulation from the sinogram in the normal flat and dark field processing. Detection of the modulated fluorescence signal using an energy resolving detector allows the position of a fluorescent marker to be obtained using inverse reconstruction techniques. A discussion is made of particular reconstruction methods which might be applied by utilising both the CT and FXCT data.

  15. Identification of ginseng root using quantitative X-ray microtomography.

    Science.gov (United States)

    Ye, Linlin; Xue, Yanling; Wang, Yudan; Qi, Juncheng; Xiao, Tiqiao

    2017-07-01

    The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ , and three-dimensional quantitative imaging properties. The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

  16. Quantitative X-ray analysis of pigments

    International Nuclear Information System (INIS)

    Araujo, M. Marrocos de

    1987-01-01

    The 'matrix-flushing' and the 'adiabatic principle' methods have been applied for the quantitative analysis through X-ray diffraction patterns of pigments and extenders mixtures, frequently used in paint industry. The results obtained have shown the usefulness of these methods, but still ask for improving their accuracy. (Author) [pt

  17. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    Science.gov (United States)

    Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian

    2007-08-01

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  18. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lin [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiation Center, Beijing, 100875 (China)], E-mail: chenglin@bnu.edu.cn; Ding Xunliang; Liu Zhiguo; Pan Qiuli; Chu Xuelian [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiation Center, Beijing, 100875 (China)

    2007-08-15

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  19. Trace elements in airborne particles in internal industrial environments: spectrometric analysis of x-ray fluorescence (XRF)

    International Nuclear Information System (INIS)

    Salazar Matarrita, Alfonso

    2001-01-01

    Fluorescence spectroscopy x-ray, is a technique of non-destructive analysis, that allows quantitative determination of the absolute concentration of chemical elements that make up a given matrix. The detected elements depend on atomic number and energy of the secondary target used for irradiation of samples. X-rays are detected and counted in a spectroscopy system based on a multichannel analyzer, that discriminates by energy and form a spectrum of independent photopeaks, whose energy identifies the element and its intensity is proportional to its concentration. The quantification requires the irradiation and counting of a set of pattern comparators, of the same elements identified in the samples. The x-ray emission shows only during the time that the selected sample is subjected to irradiation by x-ray tube. This irradiation does not change the structure nor the chemical composition of the matrix, so the sample remains unchanged, after irradiation. This condition non-destructive characterizes the fluorescence x-ray. The trace elements present in airborne particles, are determined and collected on a Nuclepore filter. The collection sites selected are: Taller de Mecanica de Precision de la Escuela de Fisica, Universidad de Costa Rica; Taller J. V. G. Precision, San Antonio de Coronado; Taller de Muflas, MUFLASA, Alto de Guadalupe; Industria Silvania S. A., Pavas. In addition, it is attached the service rendered to the enterprise Sellos Generales S. A. The working conditions and physical conditions of facilities were considered. An aerosol sampler with a temporal variation was used. Irradiation of samples and an evaluation of the concentrations have been made. (author) [es

  20. Analysis of kiwi fruit (Accented deliciosa) by energy dispersive X-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Oliveira, Ana Claudia S.; Oliveira, Marcia L. de; Silva, Lucia C.A.S.; Arthur, Valter; Almeida, Eduardo

    2011-01-01

    The search for a healthy life has led consumers to eat fruits and vegetables in place of manufactured products, however, the demand for minimally processed products has evolved rapidly. The kiwi has at least eight nutrients beneficial to health: calcium, magnesium, manganese, phosphorus, iron, potassium, sodium and has also high vitamin C, which has wide acceptance in consumer markets. Energy dispersive spectroscopy X-ray (EDX) is the analytical technique used for elemental analysis or chemical characterization of a sample. It is a variant of fluorescence spectroscopy X-ray based on the sample through an investigation of interactions between electromagnetic radiation and matter, analyzing X-rays emitted by matter in response to being struck by charged particles. The aim of this study were to determine potassium, calcium, iron and bromine (K, Ca, Fe and Br, respectively) present in kiwifruit using the technique of fluorescence X-ray energy dispersive (EDXRF). Kiwifruit were peeled, washed and cut into slices and freeze-dried. After drying the sample was held digestion and subsequent reading of the same equipment in the X-ray fluorescence energy dispersive (EDXRF). The results indicated that the contents of potassium, calcium, iron and bromine are present in kiwifruit as expected when compared to Brazilian Table of Food Composition. (author)

  1. Optimization of a spectrometry for energy-dispersive x-ray fluorescence analysis by x-ray tube in combination with secondary target for multielements determination of sediment samples

    International Nuclear Information System (INIS)

    Zaidi Embong; Husin Wagiran

    1997-01-01

    The design of an energy-dispersive X-ray fluorescence spectrometer equipped with a conventional X-ray tube and secondary target is described. The spectrometer system constructed in our laboratory consists of a semiconductor detector system, irradiation chamber and X-ray tube. Primary source from X-ray tube was used to produced secondary X-ray from selenium, molybdenum and cadmium targets. The fluorescence X-ray from the sample was detected using Si(Li) detector with resolution of 0. 175 keV (Mn-K(x). The spectrometer was used for determination of multi-elements with atomic number between 20 to 44 in river sediment samples. The X-ray spectrum, from the samples were analysed using computer software which was developed based on Marquardt method. Optimal conditions and detection limits are determined experimentally by variation of excitation parameters for each combination of secondary target and tube voltage

  2. Sweeping total reflection X-ray fluorescence optimisation to monitor the metallic contamination into IC manufacturing

    International Nuclear Information System (INIS)

    Borde, Yannick; Danel, Adrien; Roche, Agnes; Veillerot, Marc

    2008-01-01

    Among the methods available on the market today to control as metallic contamination in integrated circuit manufacturing, Sweeping Total reflection X-ray Fluorescence mode appears a very good method, providing fast and entire wafer mapping. With the goal of a pertinent use of Sweeping Total reflection X-ray Fluorescence in advanced Integrated Circuit manufacturing this work discusses how acceptable levels of contamination specified by the production (low levels to be detected) can be taken into account. The relation between measurement results (surface coverage, throughput, low limit of detection, limit of quantification, quantification of localized contamination) and Sweeping Total reflection X-ray Fluorescence parameters (number of measurement points and integration time per point) is presented in details. In particular, a model is proposed to explain the mismatch between actual surface contamination in a localized spot on wafer and Total reflection X-ray Fluorescence reading. Both calibration and geometric issues have been taken into account

  3. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.

    Science.gov (United States)

    Chung, Frank H

    2017-05-01

    For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.

  4. Development of an X-ray fluorescence holographic measurement system for protein crystals

    International Nuclear Information System (INIS)

    Sato-Tomita, Ayana; Shibayama, Naoya; Okabe, Takahiro; Happo, Naohisa; Kimura, Koji; Matsushita, Tomohiro; Park, Sam-Yong; Sasaki, Yuji C.; Hayashi, Kouichi

    2016-01-01

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α_2β_2 tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm"3) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules.

  5. X-ray fluorescence analysis of lutetium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.

    1985-01-01

    An X-ray fluorescence spectrometric method for the analysis of lutetium oxide is described. The sample in the oxalate form is mixed with boric acid binding material and pressed into a pellet over supporting pellet of boric acid. A Philips PW 1220 wavelength dispersive semiautomatic X-ray fluorescence spectrometer is used for the analysis. The minimum determination limit is 0.002 percent for Y, Er and Yb and 0.005 percent for Tm. Calculations for theoretical minimum detection limits and percent standard deviations at each concentration of the standard are carried out. (author)

  6. X-ray fluorescence spectrometry applied to soil analysis

    International Nuclear Information System (INIS)

    Salvador, Vera Lucia Ribeiro; Sato, Ivone Mulako; Scapin Junior, Wilson Santo; Scapin, Marcos Antonio; Imakima, Kengo

    1997-01-01

    This paper studies the X-ray fluorescence spectrometry applied to the soil analysis. A comparative study of the WD-XRFS and ED-XRFS techniques was carried out by using the following soil samples: SL-1, SOIL-7 and marine sediment SD-M-2/TM, from IAEA, and clay, JG-1a from Geological Survey of Japan (GSJ)

  7. The comparative study of contents of zinc and lead in ore samples of Namtu-Bawdwin Mine by wet analysis, X-ray fluorescence and X-ray diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Kyaw-Soe,

    1990-05-01

    Lead-zinc ores taken from Namtu-Bawdwin area had been analyzed by wet processes in the Department of Chemistry, 1984. These ore samples have been analyzed by energy dispersive X-ray fluorescence method in the Department of Physics and X-ray diffraction method is also used to determine elements of lead and zinc compounds in these ore samples in the University`s Research Centre. In brief, we study comparatively the contents of lead and zinc and their compounds using the methods of wet processes, X-ray fluorescence and X-ray diffraction. (author).

  8. Non-conventional applications of a noninvasive portable X-ray diffraction/fluorescence instrument

    International Nuclear Information System (INIS)

    Chiari, Giacomo; Sarrazin, Philippe; Heginbotham, Arlen

    2016-01-01

    Noninvasive techniques have become widespread in the cultural heritage analytical domain. The popular handheld X-ray fluorescence (XRF) devices give the elemental composition of all the layers that X-rays can penetrate, but no information on how atoms are bound together or at which depth they are located. A noninvasive portable X-ray powder diffraction/X-ray fluorescence (XRD/XRF) device may offer a solution to these limitations, since it can provide information on the composition of crystalline materials. This paper introduces applications of XRD beyond simple phase recognition. The two fundamental principles for XRD are: (1) the crystallites should be randomly oriented, to ensure proper intensity to all the diffraction peaks, and (2) the material should be positioned exactly in the focal plane of the instrument, respecting its geometry, as any displacement of the sample would results in 2θ shifts of the diffraction peaks. In conventional XRD, the sample is ground and set on the properly positioned sample holder. Using a noninvasive portable instrument, these two requirements are seldom fulfilled. The position, size and orientation of a given crystallite within a layered structure depend on the object itself. Equation correlating the displacement (distance from the focal plane) versus peak shift (angular difference in 2θ from the standard value) is derived and used to determine the depth at which a given substance is located. The quantitative composition of two binary Cu/Zn alloys, simultaneously present, was determined measuring the cell volume and using Vegard's law. The analysis of the whole object gives information on the texture and possible preferred orientations of the crystallites, which influences the peak intensity. This allows for the distinction between clad and electroplated daguerreotypes in the case of silver and between ancient and modern gilding for gold. Analyses of cross sections can be carried out successfully. Finally, beeswax, used in Roman

  9. Determinations of silicon and phosphorus in Pepperbush standard reference material by neutron activation and x-ray fluorescence methods

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Nishio, Hirofumi; Hayashi, Takeshi; Kusakabe, Toshio; Iwata, Shiro.

    1987-01-01

    Silicon and phosphorus contents in Pepperbush standard reference material were determined by neutron activation and X-ray fluorescence methods. In neutron activation analysis, β-ray spectra of 32 P produced by 31 P(n,γ) 32 P reaction on Pepperbush and standard samples were measured by a low background β-ray spectrometer. In X-ray fluorescence analysis, the standard samples were prepared by mixing the Pepperbush powder with silicon dioxide and diammonium hydrogenphosphate. Characteristic X-rays from the samples were analyzed by a wavelength dispersive X-ray fluorescence spectrometer. From the β and X-ray intensities, silicon and phosphorus contents in Pepperbush were determined to be 1840 ± 80 and 1200 ± 50 μg g -1 , respectively. (author)

  10. Quantitative determination of Sulfur and Chlorine in Crude Oils by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ayala Jimenez, R.E.

    1986-01-01

    Given the importance of sulfur and chlorine content in crude petroleum, and that the actual methods used in the country to its determination are slow and cumbersome, the present work consisted in applying a new method, based on X-ray fluorescence spectrometry, to make this analysis as fast as possible with greater sensibility and precision. Samples of crude petroleum were analyzed using two different quantitative methods: a) through calibration curves elaborated with standard aqueous solutions of inorganic salts of S and Cl and b) through standard addition method using CS 2 as standard for S and CCl 4 for Cl. The measuring system consisted of Fe-55 radioactive source (10 mCi), Si-Li semiconductor detector, spectrum amplifier, multichannel analyzer and a DIGITAL Computer. The peak areas and their deviations were obtained through AXIL software. The values of area and deviation joined to weight of sample and amount of standard added were used to calculate the concentration of the analite and its deviation. In conclusion, calibration curves enable only semiquantitative analysis. However, the standard addition method has advantages over ASTM methods D 129-64 and D 808-63 for sulfur and chlorine respectively. The main advantage is the great speed with which an analysis is made: 20 minutes, while ASTM methods need approximately 16 hours. Likewise it was obtained: sensibility 0.05%; accuracy: maximum 0.02%, minimum 10%; and precision: maximum 2%, minimum 10%. (author)

  11. Investigation of radiation absorption and X-ray fluorescence properties of medical imaging scintillators by Monte Carlo methods

    International Nuclear Information System (INIS)

    Nikolopoulos, D.; Kandarakis, I.; Cavouras, D.; Valais, I.; Linardatos, D.; Michail, C.; David, S.; Gaitanis, A.; Nomicos, C.; Louizi, A.

    2006-01-01

    X-ray absorption and X-ray fluorescence properties of medical imaging scintillating screens were studied by Monte Carlo methods as a function of the incident photon energy and screen-coating thickness. The scintillating materials examined were Gd 2 O 2 S (GOS) Gd 2 SiO 5 (GSO) YAlO 3 (YAP), Y 3 Al 5 O 12 (YAG), LuSiO 5 (LSO), LuAlO 3 (LuAP) and ZnS. Monoenergetic photon exposures were modeled in the range from 10 to 100 keV. The corresponding ranges of coating thicknesses of the investigated scintillating screens ranged up to 200 mg cm -2 . Results indicated that X-ray absorption and X-ray fluorescence are affected by the incident photon energy and the screen's coating thickness. Regarding incident photon energy, this X-ray absorption and fluorescence was found to exhibit very intense changes near the corresponding K edge of the heaviest element in the screen's scintillating material. Regarding coating thickness, thicker screens exhibited higher X-ray absorption and X-ray fluorescence. Results also indicated that a significant fraction of the generated X-ray fluorescent quanta escape from the scintillating screen. This fraction was found to increase with screen's coating thickness. At the energy range studied, most of the incident photons were found to be absorbed via one-hit photoelectric effect. As a result, the reabsorption of scattered radiation was found to be of rather minor importance; nevertheless this was found to increase with the screen's coating thickness. Differences in X-ray absorption and X-ray fluorescence were found among the various scintillators studied. LSO scintillator was found to be the most attractive material for use in many X-ray imaging applications, exhibiting the best absorption properties in the largest part of the energy range studied. Y-based scintillators were also found to be of significant absorption performance within the low energy ranges

  12. Investigation of Pink Tourmalines by X-ray Fluorescent Technique

    International Nuclear Information System (INIS)

    Sangariyavanich, A.; Na Songkhla, S.; Pimjum, S.

    1998-01-01

    X-ray fluorescent technique has been employed in the study of trace elements in six samples of gamma irradiated pink tourmalines, namely, red-pink (rubellite), light-pink, orange-pink, brownish orange-pink, purple red and purple orange-pink. The analysis of their characteristic X-ray indicated the existence of manganese in all samples. Trace amounts of iron, zinc, lead, bismuth or gallium were also investigated in certain samples. Since these elements were not present in red-pink tourmaline, therefore, we believed that manganese is the major cause of pink color in tourmaline while other elements produce various types of pink color

  13. Submicron hard X-ray fluorescence imaging of synthetic elements.

    Science.gov (United States)

    Jensen, Mark P; Aryal, Baikuntha P; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E

    2012-04-13

    Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as μ-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L(3) or L(2)-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope (242)Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 μm(2) cell is 1.4 fg Pu or 2.9×10(-20) moles Pu μm(-2), which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its L(α) X-ray emission. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Energy dispersion X-ray fluorescence techniques in water pollution analysis

    International Nuclear Information System (INIS)

    Holynska, B.

    1980-01-01

    Advantages and limitations of energy dispersion X-ray fluorescence methods for analysis of pollutants in water are discussed. The necessary equipment for X-ray measurement of insoluble and dissolved trace metals in water is described. Different techniques of enrichment of trace metals are presented: ion exchange on selective Chelex-100 exchanger, precipitation with chelating agents DDTC and APDC, and adsorption on activated carbon. Some results obtained using different preconcentration methods for trace metals determination in different waters are presented. (author)

  15. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy.

    Science.gov (United States)

    Jiang, Tian-Jia; Guo, Zheng; Liu, Jin-Huai; Huang, Xing-Jiu

    2015-08-18

    An analytical technique based on electroadsorption and transmission X-ray fluorescence (XRF) for the quantitative determination of arsenic in aqueous solution with ppb-level limits of detection (LOD) is proposed. The approach uses electroadsorption to enhance the sensitivity and LOD of the arsenic XRF response. Amine-functionalized carbonaceous microspheres (NH2-CMSs) are found to be the ideal materials for both the quantitative adsorption of arsenic and XRF analysis due to the basic amine sites on the surface and their noninterference in the XRF spectrum. In electroadsorptive X-ray fluorescence (EA-XRF), arsenic is preconcentrated by a conventional three-electrode system with a positive electricity field around the adsorbents. Then, the quantification of arsenic on the adsorbents is achieved using XRF. The electroadsorption preconcentration can realize the fast transfer of arsenic from the solution to the adsorbents and improve the LOD of conventional XRF compared with directly determining arsenic solution by XRF alone. The sensitivity of 0.09 cnt ppb(-1) is obtained without the interferences from coexisted metal ions in the determination of arsenic, and the LOD is found to be 7 ppb, which is lower than the arsenic guideline value of 10 ppb given by the World Health Organization (WHO). These results demonstrated that XRF coupled with electroadsorption was able to determine trace arsenic in real water sample.

  16. Characterization of a pulsed x-ray source for fluorescent lifetime measurements

    International Nuclear Information System (INIS)

    Blankespoor, S.C.; Derenzo, S.E.; Moses, W.W.; Rossington, C.S.; Ito, M.; Oba, K.

    1994-01-01

    To search for new, fast, inorganic scintillators, the authors have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 μA maximum average cathode current. The laser produces 3 x 10 7 photons at 650 nm per ∼100 ps pulse, with up to 10 7 pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray energy at tube biases of 20, 25, and 30 kV is 9.4, 10.3, and 11.1 keV, respectively. The authors measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian, at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 x 10 6 and 3 x 10 6 photons/sec/steradian at biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented

  17. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  18. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    Science.gov (United States)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  19. Filter-fluorescer x-ray spectrometer using solid state detectors for γ-ray background reduction

    International Nuclear Information System (INIS)

    Yokoi, Takashi; Kitagawa, Yoneyoshi; Shiraga, Hiroyuki; Matsunaga, Hirohide; Kato, Yoshiaki; Yamanaka, Chiyoe.

    1986-01-01

    Filter-fluorescer x-ray spectrometer using solid state photo-detectors instead of the photomultiplier tubes in order to reduce the γ-ray background noise is reported. A significant reduction of the γ-ray background noise is expected, because solid state photo-detectors are very small in size compared with the photomultiplier tubes. It has been confirmed that the γ-ray background is reduced in the target irradiation experiments with the Gekko MII glass laser. (author)

  20. Wavelength Dispersive X-ray Fluorescence Spectrometry for the Analysis of Organic Polymer Film

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Park, Yong Joon; Kim, Jong Yun

    2008-01-01

    Recently, many studies have been focused on the thin films because there are numerous industrial processes relevant to thin films such as fuel cells, sensors, lubricants, coatings, and so on. Physical and chemical properties of solid surface have been modified by ultra-thin coatings such as Langmuir-Blodgett (LB) method with a variety of types of organic functional materials for the specific purposes in many applications. In addition, the layer-by-layer technique using polyelectrolyte films are now of interest as biosensors, electrochromic and electroluminescent devices, etc. In general, several methods such as X-ray or neutron reflectivity, and quartz crystal microbalance (QCM) have been utilized for the thin film analysis. These optical techniques can measure the film thicknesses up to hundreds of nanometers while X-ray photoelectron spectroscopy is widely used to study a few nanometers thick films. Other methods such as X-ray Photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom force microscopy (AFM) have also been used in the film analysis in spite of some disadvantages for each method. X-ray fluorescence (XRF) has long been used as a rapid and simple analytical tool for the analysis of elemental composition of materials. XRF technique is suitable for on-line or in-line real-time monitoring because it is a non-destructive and rapid analysis with good precision and good accuracy at low cost. The aim of this work is to develop a new analytical technique for the quantitative analysis of polymer film on metal substrate. In the present study, Compton peak profile was investigated under different experimental conditions by using wavelength-dispersive XRF (WD-XRF). Compared to energy-dispersive XRF (ED-XRF), WD-XRF is more adequate in an accurate quantitative analysis of thin organic film

  1. Determinations of elements in pepperbush standard reference material by neutron activation and X-ray fluorescence analyses

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Okada, Takayuki; Tatsumi, Toshiya; Kusakabe, Toshio; Katsurayama, Kousuke; Iwata, Shiro.

    1988-01-01

    Elemental contents in Pepperbush standard reference material have been determined by neutron activation and X-ray fluorescence analyses. The standard samples of orchard leaves, tomato leaves, pine needles and Kale are used for the experiment. In the neutron activation analysis, gamma-ray spectra of nuclei produced by (n,γ) reaction on Pepperbush and standard samples are measured with Ge detectors. In the X-ray fluorescence analysis, the samples are excited with X-rays from X-ray tube with rhodium anode, and the characteristic X-rays from samples are measured with a proportional counter or NaI(Tl) detector. From the gamma- and X-ray intensities, the elemental contents in Pepperbush are determined. As a result, the contents of seventeen elements, such as sodium, calcium, iron, etc., in Pepperbush are determined. (author)

  2. X-ray fluorescence analysis of bimetallic complexes on the basis of tantalocene trihydride

    International Nuclear Information System (INIS)

    Shurupova, T.I.; Sokolova, T.A.

    1989-01-01

    Methods of X-ray fluorescence determination of metals in tantalocene trihydride complexes of Cp 2 TaH 3 ·nMeHalm composition where Me=Cu, Mg, Hal=Cl, I, n=1 or 2, m=1 or 2 are developed. To obtain the form, stable in relation to the air oxygen and water vapours, the complexes were burut off up to metal oxides. Possibility of direct X-ray fluorescent determination is tested taking the most stable iodide copper-containing complex as an example

  3. Dose distribution calculation for in-vivo X-ray fluorescence scanning

    International Nuclear Information System (INIS)

    Figueroa, R. G.; Lozano, E.; Valente, M.

    2013-01-01

    In-vivo X-ray fluorescence constitutes a useful and accurate technique, worldwide established for constituent elementary distribution assessment. Actually, concentration distributions of arbitrary user-selected elements can be achieved along sample surface with the aim of identifying and simultaneously quantifying every constituent element. The method is based on the use of a collimated X-ray beam reaching the sample. However, one common drawback for considering the application of this technique for routine clinical examinations was the lack of information about associated dose delivery. This work presents a complete study of the dose distribution resulting from an in-vivo X-ray fluorescence scanning for quantifying biohazard materials on human hands. Absorbed dose has been estimated by means of dosimetric models specifically developed to this aim. In addition, complete dose distributions have been obtained by means of full radiation transport calculations in based on stochastic Monte Carlo techniques. A dedicated subroutine has been developed using the Penelope 2008 main code also integrated with dedicated programs -Mat Lab supported- for 3 dimensional dose distribution visualization. The obtained results show very good agreement between approximate analytical models and full descriptions by means of Monte Carlo simulations. (Author)

  4. The description of compton lines in energy-dispersive x-ray Fluorescence

    International Nuclear Information System (INIS)

    Van Gysel, Mon; Van Espen, P.J.M.

    2001-01-01

    Energy-Dispersive X-Ray Fluorescence (ED-XRF) is a non-destructive technique for the element analysis in a concentration range ppm - % making use of X rays up to 100 keV. Generally, two photon matter interactions occur, respectively absorption and scattering. The absorption of incident photons gives raise to characteristic lines. Scattering gives an incoherent and a coherent line. A Gaussian peak model is adequate to describe the characteristic and coherent scattered lines. Incoherent lines appear as non-Gaussian, broadened peaks. The profile of a Compton peak is complex. It depends on the geometry and the composition of the sample. Especially, when analyzing a low Z matrix; dominant scattering and multiple scattering may cause large interferences. The absence of an appropriate fitting model makes the Compton profile seen as a limiting factor in the evaluation of spectra. An accurate description of incoherent lines should improve quantitative analysis. Therefore, a suitable fitting model, making use of the expertise of non-linear least squares procedures and Monte-Carlo calculations was systematically investigated. The proposed model, containing a modified Gaussian, is tested on experimental data recorded with a HPGe detector

  5. Determination of rare-earth elements in rocks by isotope-excited X-ray fluorescence spectrometry

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Wollenberg, H.A.

    1970-01-01

    Isotope-excited X-ray fluorescence spectrometry furnishes a rapid determination of rare-earth elements in unprepared rock samples. The samples are excited by 241Am γ-rays, generating X-ray spectra on a multichannel pulse-height analyser. Gaussian peaks of the Kα and Kβ X-ray energies are treated......-ray spectrometric scan of a longitudinally sliced drill core showed a close correlation between rare-earth abundances and appropriate minerals....

  6. A set-up of micro-X-ray fluorescence system based on polycapillary X-ray optics and applications for archaeology

    International Nuclear Information System (INIS)

    Cheng Lin; Pan Qiuli; Ding Xunliang; Liu Zhiguo

    2008-01-01

    The paper concerns in the structures, performances and characteristics and applications for archaeology of a new micro-X-ray fluorescence system based on rotating anode X-ray generator and polycapillary X-ray optics. The polycapillary X-ray optics used here can focus the primary X-ray beam down to some tens of micrometers in diameters that allows for non-destructive and local analysis of sub-mm samples with minor/ trace level sensitivity. In order to prove the potentials of this instrument used in archaeology, a piece of Chinese ancient blue and white porcelain produced in Ming Dynasty was analyzed. The results show that intensities of Mn-Kα, Co-Kα are variable in agree with the thick of blue glaze. The correlation analysis indicates the Mn and Co have the best correlations. So, the concentrations or ratios of Mn and Co are crucial to determine the provenance and identify from a fake one of Chinese ancient blue and white porcelain. (authors)

  7. X-Ray Fluorescence Spectrometry. II. Determination of Uranium in ores

    International Nuclear Information System (INIS)

    Bermudez Polonio, J.; Crus Castillo, F. de la; Fernandez Cellini, R.

    1961-01-01

    A method of analysis of uranium in ores by X-ray spectrometry was developed, using the internal standard technique. Strontium was found to be the most suitable internal standard for general use. A Norelco Philips X-ray fluorescent spectrometer was used in this work, equipped with a lithium fluoride crystal acting as a diffraction grating analyzer. The intensity of the uranium-L α 1 spectral line is calculated and related to corresponding strontium-K α spectral line, both detected with a Scintillation Counter. (Author) 31 refs

  8. Hard x-ray phase contrastmicroscopy - techniques and applications

    Science.gov (United States)

    Holzner, Christian

    In 1918, Einstein provided the first description of the nature of the refractive index for X-rays, showing that phase contrast effects are significant. A century later, most x-ray microscopy and nearly all medical imaging remains based on absorption contrast, even though phase contrast offers orders of magnitude improvements in contrast and reduced radiation exposure at multi-keV x-ray energies. The work presented is concerned with developing practical and quantitative methods of phase contrast for x-ray microscopy. A theoretical framework for imaging in phase contrast is put forward; this is used to obtain quantitative images in a scanning microscope using a segmented detector, and to correct for artifacts in a commercial phase contrast x-ray nano-tomography system. The principle of reciprocity between scanning and full-field microscopes is then used to arrive at a novel solution: Zernike contrast in a scanning microscope. These approaches are compared on a theoretical and experimental basis in direct connection with applications using multi-keV x-ray microscopes at the Advanced Photon Source at Argonne National Laboratory. Phase contrast provides the best means to image mass and ultrastructure of light elements that mainly constitute biological matter, while stimulated x-ray fluorescence provides high sensitivity for studies of the distribution of heavier trace elements, such as metals. These approaches are combined in a complementary way to yield quantitative maps of elemental concentration from 2D images, with elements placed in their ultrastructural context. The combination of x-ray fluorescence and phase contrast poses an ideal match for routine, high resolution tomographic imaging of biological samples in the future. The presented techniques and demonstration experiments will help pave the way for this development.

  9. X-ray fluorescence analysis of ancient and medieval brass artifacts from south Moravia

    International Nuclear Information System (INIS)

    Hložek, M.; Komoróczy, B.; Trojek, T.

    2012-01-01

    This paper deals with an investigation of archeological finds using X-ray fluorescence analysis and microanalysis. The main aim of the investigation was to prove the production of brass in the South Moravian Region (part of the Czech Republic) in former times. The probable brass production technology is described. Various objects dating back to Antiquity and to the Middle Ages were investigated using two X-ray fluorescence systems, and the results of the analyses are discussed. The measurements showed, e.g., that fragments of Roman scale armor and a belt fitting dating back to Antiquity were made of brass. Brass was also identified on the surfaces of various ancient and medieval molds and melting pots. - Highlights: ► Semiquantitative X-ray fluorescence analysis of archeological finds. ► Two different gilding techniques of a brass belt terminal found in Brno. ► Use of brass before the Great Moravian period. ► Evidence of brass casting in the 12th century in Brno.

  10. An engineering development of fluoroscopic X-ray medical equipment based-on fluorescent screen

    International Nuclear Information System (INIS)

    Ferry Suyatno; I Putu Susila; Djoko Sukmono

    2011-01-01

    Fluoroscopic x-ray medical equipment uses fluorescent screen to capture structural image of organs. Unlike conventional x-ray equipment which uses film, in the fluoroscopic x-ray, the resulting image is visualized on the fluorescent screen and directly observed by physicians in the patients' rooms. In this study, we developed an image capture system that transforms the image on the fluorescent screen into digital data, which is then transferred to computer for visualization and further processing. By using this system, the observation of the resulting image can be done on a computer that is placed in the control room. The image can also be stored easily and at low cost compared to conventional film. The experiment shows that the system could be used to capture image of the object. However, its quality needs to be improved. In the future, the system will be modified and tested with different types of cameras to obtain better results. (author)

  11. Use of fluorescent-metal intensifying screens with RT-type films for X-ray radiography using pulse devices

    International Nuclear Information System (INIS)

    Morgovskij, L.Ya.; Khakim'yanov, R.R.

    1985-01-01

    A study was made on characteristics of combination of fluorescent-metal Kyokko SMP-308 (Japan) and RCF (Agfa-Gevert) screens with domestic X-ray RT-1, RT-2, RT-5 films. Pulse X-ray MIRA-3D and NORA devices at 200 kV voltage amplitude in X-ray tube were used as radiation source. Testing was conducted for steel samples of 5-40 mm thickness. Comparative exposures for various film combinations with fluorescent-metal screens, fluorescent VP-2 screens and lead foils of 27 μm thickness were determined at that. It is shown that fluorescent-metal screens can be successfully applied with domestic X-ray technical films. They enable to decrease exposure by one order with insignificant deterioration of sensitivity. It is important for testing of pipeline welds

  12. Development of an X-ray fluorescence holographic measurement system for protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sato-Tomita, Ayana, E-mail: ayana.sato@jichi.ac.jp, E-mail: shibayam@jichi.ac.jp, E-mail: hayashi.koichi@nitech.ac.jp; Shibayama, Naoya, E-mail: ayana.sato@jichi.ac.jp, E-mail: shibayam@jichi.ac.jp, E-mail: hayashi.koichi@nitech.ac.jp; Okabe, Takahiro [Division of Biophysics, Department of Physiology, Jichi Medical University, Yakushiji, Shimotsuke 329-0498 (Japan); Happo, Naohisa [Department of Computer and Network Engineering, Graduate School of Information Sciences, Hiroshima City University, Asa-Minami-Ku, Hiroshima 731-3194 (Japan); Kimura, Koji [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan); Matsushita, Tomohiro [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198 (Japan); Park, Sam-Yong [Drug Design Laboratory, Department of Medical Life Science, Yokohama City University, Suehiro, Tsurumi, Yokohama 230-0045 (Japan); Sasaki, Yuji C. [Department of Advanced Material Science, Graduate School of Frontier Science, The University of Tokyo, Kashiwanoha, Kashiwa 277-8561 (Japan); Hayashi, Kouichi, E-mail: ayana.sato@jichi.ac.jp, E-mail: shibayam@jichi.ac.jp, E-mail: hayashi.koichi@nitech.ac.jp [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan); Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan)

    2016-06-15

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α{sub 2}β{sub 2} tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm{sup 3}) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules.

  13. A high-quality multilayer structure characterization method based on X-ray fluorescence and Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Antonio; Golosio, Bruno [Universita degli Studi di Sassari, Dipartimento di Scienze Politiche, Scienze della Comunicazione e Ingegneria dell' Informazione, Sassari (Italy); Melis, Maria Grazia [Universita degli Studi di Sassari, Dipartimento di Storia, Scienze dell' Uomo e della Formazione, Sassari (Italy); Mura, Stefania [Universita degli Studi di Sassari, Dipartimento di Agraria e Nucleo di Ricerca sulla Desertificazione, Sassari (Italy)

    2014-11-08

    X-ray fluorescence (XRF) is a well known nondestructive technique. It is also applied to multilayer characterization, due to its possibility of estimating both composition and thickness of the layers. Several kinds of cultural heritage samples can be considered as a complex multilayer, such as paintings or decorated objects or some types of metallic samples. Furthermore, they often have rough surfaces and this makes a precise determination of the structure and composition harder. The standard quantitative XRF approach does not take into account this aspect. In this paper, we propose a novel approach based on a combined use of X-ray measurements performed with a polychromatic beam and Monte Carlo simulations. All the information contained in an X-ray spectrum is used. This approach allows obtaining a very good estimation of the sample contents both in terms of chemical elements and material thickness, and in this sense, represents an improvement of the possibility of XRF measurements. Some examples will be examined and discussed. (orig.)

  14. A high-quality multilayer structure characterization method based on X-ray fluorescence and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Brunetti, Antonio; Golosio, Bruno; Melis, Maria Grazia; Mura, Stefania

    2015-01-01

    X-ray fluorescence (XRF) is a well known nondestructive technique. It is also applied to multilayer characterization, due to its possibility of estimating both composition and thickness of the layers. Several kinds of cultural heritage samples can be considered as a complex multilayer, such as paintings or decorated objects or some types of metallic samples. Furthermore, they often have rough surfaces and this makes a precise determination of the structure and composition harder. The standard quantitative XRF approach does not take into account this aspect. In this paper, we propose a novel approach based on a combined use of X-ray measurements performed with a polychromatic beam and Monte Carlo simulations. All the information contained in an X-ray spectrum is used. This approach allows obtaining a very good estimation of the sample contents both in terms of chemical elements and material thickness, and in this sense, represents an improvement of the possibility of XRF measurements. Some examples will be examined and discussed. (orig.)

  15. 3D Synchrotron μ-x-ray fluorescence analysis on human bones

    International Nuclear Information System (INIS)

    Zoeger, N.; Wobrauschek, P.; Streli, C.; Chinea-Cano, E.; Wegrzynek, D.; Roschger, P.; Simon, R.; Staub, S.; Falkenberg, G.

    2004-01-01

    A comparison between μ-x-ray fluorescence tomography and confocal μ-x-ray fluorescence analysis (μ-XRF) will be presented. These techniques were used to study the three dimensional (3D) elemental distribution in human bone. Since bone shows very strong inhomogeneities in structure as well as in distribution of the chemical elements, two dimensional (2D) analysis (element mapping) of the samples always led to difficulties in interpreting the results and assigning elemental distributions to microscopic structures. Tomography scans in fluorescence and absorption mode have been carried out simultaneously at the fluo-topo beamline at ANKA, Karlsruhe, to determine the distribution of the elements over the depth of the previously prepared sample from human patella. A monochromatized x-ray beam (17 keV) from a bending magnet station focused by a compound refractive lens to a beamsize of 10 x 5 μm was used to perform the measurements. The transmitted beam signal measured with the SD detector was utilized to apply a simplified absorption correction to XRF tomographic images. Based on the XRF sinograms the elemental distribution within the object cross-section was reconstructed by means of filtered backprojection. The same section of human bone has been analyzed by confocal μ-XRF at HASYLAB, Hamburg, Germany beamline L. With this experiment two polycapillary half lenses were used; one for focusing the previously monochromatized primary x-ray beam onto the sample and the second half lens in front of a Si(Li) detector to get a small inspected area. By overlapping the two foci of the lenses a very well defined volume of investigation could be defined. Scanning the sample up- and downstream it was possible to determine the elemental distribution in depth of the sample. An absorption correction has been applied to get a corrected fluorescence image of the sample. Both methods showed consistent results and allowed a precise localization of the elements of interest. (author)

  16. On the viability of exploiting L-shell fluorescence for X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Weisskopf, M C; Elsner, R F; Ramsey, B D; Sutherland, P G

    1985-05-15

    It has been suggested that one may build an X-ray polarimeter by exploiting the polarization dependence of the angular distribution of L-shell fluorescence photons. In this paper we examine, theoretically, the sensitivity of this approach to polarimetry. We apply our calculations to several detection schemes using imaging proportional counters that would have direct application in X-ray astronomy. We find, however, that the sensitivity of this method for measuring X-ray polarization is too low to be of use for other than laboratory applications. (orig.).

  17. Determination of copper in geological materials by X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1981-01-01

    X-ray fluorescence has been applied to the determination of copper content of geological materials in the concentration range of 0.01 to % CuO. A molybdenum target tube Is used, samples being presented in finely-ground powder form. Various methods for the correction for background and Instrumental copper interferences have been considered. To correct for matrix effects different tube scattered primary radiations have been tested as references or internal standards. MoK(41 - (C) provides the most suitable results. The use of influence empirical coefficients for the effect of iron on copper and of mass absorption coefficients has also been considered. For samples with a high content of lead, several procedures to correct for I t s influence have been investigated. Comparison between data obtained by X-ray fluorescence and wet-chemical techniques indicated good agreement. (Author) 6 refs

  18. X-ray fluorescence spectroscopic determination of heavy metals and ...

    African Journals Online (AJOL)

    Purpose: To determine the heavy metal and trace element composition of the powdered aerial parts of Origanum sipyleum L. and its water extract. Methods: The heavy metal and trace elements content of the powdered plant material and 2 % aqueous extract were evaluated by x-ray fluorescence spectroscopy with silicon ...

  19. The application of a microstrip gas counter to energy-dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Veloso, J.F.C.A.; Santos, J.M.F. dos; Conde, C.A.N.

    1996-01-01

    Performance characteristics of a microstrip gas counter operated as a x-ray fluorescence spectrometer are reported. Gas amplification as a function of microstrip anode-cathode voltage was measured, and the breakdown threshold voltage was determined in pure xenon. The detector temporal stability and the effect of gas purity were assessed. Energy resolution and linearity, detection efficiency, and uniformity of spatial response in the 2- to 60-keV x-ray energy range were determined from the pulse-height distributions of the fluorescence x-ray spectra induced in a variety of single- and multi-element sample materials. Energy resolution similar to conventional proportional counters was achieved at 6 keV

  20. Method and device for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Jagoutz, E.; Palme, C.

    1978-01-01

    In the x-ray fluorescence analyzer the useful signal can be completely separated from the spurious signals, and especially the pulse can be determined. For this purpose the output of the radiation detector is connected with a multichannel pulse height discriminator. The measured signal determined in the pulse heigth discriminator may be indicated by a visual display or processed by a computer (coincidence circuits). (DG) [de

  1. Trends in environmental science using microscopic X-ray fluorescence

    International Nuclear Information System (INIS)

    Fittschen, Ursula Elisabeth Adriane; Falkenberg, Gerald

    2011-01-01

    Microscopic X-ray fluorescence (micro-XRF) is a versatile tool in environmental analysis. We review work done in this field from 2008 to 2010 and highlight new aspects. Overall, there is a strong trend to combine fluorescence data with other data like diffraction or absorption spectroscopy. Also, the use of laboratory based instrumentation has become wide spread as more commercial instruments are available. At laboratories and synchrotron sites the trend towards higher spatial resolution is still persistent hitting sub micrometer values in case of synchrotron set ups.

  2. Trends in environmental science using microscopic X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Falkenberg, Gerald [Deutsches Elektronen-Synchrotron, Notkestr. 85, 22603 Hamburg (Germany)

    2011-08-15

    Microscopic X-ray fluorescence (micro-XRF) is a versatile tool in environmental analysis. We review work done in this field from 2008 to 2010 and highlight new aspects. Overall, there is a strong trend to combine fluorescence data with other data like diffraction or absorption spectroscopy. Also, the use of laboratory based instrumentation has become wide spread as more commercial instruments are available. At laboratories and synchrotron sites the trend towards higher spatial resolution is still persistent hitting sub micrometer values in case of synchrotron set ups.

  3. Local structure analysis of Cu(In,Ga)Se{sub 2} by X-ray fluorescence holography

    Energy Technology Data Exchange (ETDEWEB)

    Shirakata, Sho; Kitamura, Yuma [Faculty of Engineering, Ehime University, Matsuyama 790-8577 (Japan); Happo, Naohisa [Graduate School of Information Sciences, Hiroshima City University, Hiroshima 731-3194 (Japan); Hosokawa, Shinya [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Hayashi, Kouichi [Faculty of Engineering, Nagoya Institute of technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 (Japan)

    2017-06-15

    X-ray Fluorescence Holography (XFH) study of Cu(In,Ga)Se{sub 2} single crystals has been performed using an inverse mode. Energies of incident X-ray are from 9.2 to 13.2 keV. The Cu-Kα X-ray fluorescence hologram has been constructed, and atomic images were reconstructed using Barton's algorithm. Dependence of fluorescent X-ray, either Cu or Ga, on the reconstructed atomic images of CuIn{sub 0.2}Ga{sub 0.8}Se{sub 2} was examined. The atomic image of CuIn{sub 0.2}Ga{sub 0.8}Se{sub 2} was compared with that of CuIn{sub 0.8}Ga{sub 0.2}Se{sub 2}. The reconstructed atomic images of the cation (Cu, Ga, and In) plane and that of the anion (Se) plane are discussed in terms of the alloy composition. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Application of the X-ray fluorescence analysis and X-ray diffraction in geochemical studies of the Pleistocene tills from Holy Cross Mountains

    International Nuclear Information System (INIS)

    Kubala-Kukuś, A.; Ludwikowska-Kedzia, M.; Banaś, D.; Braziewicz, J.; Majewska, U.; Pajek, M.; Wudarczyk-Moćko, J.

    2013-01-01

    X-ray fluorescence analysis methods (wavelength dispersive X-ray fluorescence analysis (WDXRF) and total reflection X-ray fluorescence (TXRF)) and X-ray powder diffraction (XRPD) have been applied in complementary geochemical studies of the Pleistocene till samples. The XRPD technique gave information about the mineral composition of the analyzed samples while the WDXRF and TXRF studies allowed the fast elemental analysis. The till samples were collected from different regions of Holy Cross Mountains (located in central Poland) which are still not unambiguously described in the context of the geochemical studies of the Quaternary sediments. The analysis was concentrated on the geochemical composition of the till samples both for materials occurring on the surface (characterized by continuous weathering processes) and for samples taken from core borehole. The overriding purpose of these studies is determination of the local lithotype of the tills and its lithologic and petrographic diagnostic properties, including the chemical composition of clay and minerals found in the clay. In the presented work the experimental sets up, sample preparation procedure and measurements programme will be discussed in details. Finally, the elemental and mineral compositions will be presented for studied different groups of the samples. - Highlights: • XRF analysis and X-ray diffraction used in studies of the till samples. • The till samples were collected from different regions of Holy Cross Mountains. • The analysis concentrates both on the samples from surface and from core borehole. • The purpose is determination of the local lithotype of the tills. • The experimental setup, sample preparation, measurements and results are discussed

  5. X-ray fluorescence from the element with atomic number Z=120

    International Nuclear Information System (INIS)

    Fregeau, M.O.; Morjean, M.; Bonnet, E.; Chbihi, A.; Frankland, J.D.; Jacquet, D.; Rivet, M.F.; Tassan-Got, L.; Dechery, F.; Drouart, A.; Nalpas, L.; Ledoux, X.; Parlog, M.; Parlog, M.; Ciortea, C.; Dumitriu, D.; Fluerasu, D.; Gugiu, M.; Gramegna, F.; Kravchuk, V.L.; Marchi, T.; Marchi, T.; Fabris, D.; Corsi, A.; Barlini, S.

    2012-01-01

    An atomic clock based on x-ray fluorescence yields has been used to estimate the mean characteristic time for fusion followed by fission in reactions 238 U + 64 Ni at 6.6 MeV/A. Inner shell vacancies are created during the collisions in the electronic structure of the possibly formed Z = 120 compound nuclei. The filling of these vacancies accompanied by a x-ray emission with energies characteristic of Z = 120 can take place only if the atomic transitions occur before nuclear fission. Therefore, the x-ray yield characteristic of the united atom with 120 protons is strongly related to the fission time and to the vacancy lifetimes. K x rays from the element with Z = 120 have been unambiguously identified from a coupled analysis of the involved nuclear reaction mechanisms and of the measured photon spectra. A minimum mean fission time τ f = 2.5 * 10 -18 s has been deduced for Z = 120 from the measured x-ray multiplicity. (authors)

  6. Automating X-ray Fluorescence Analysis for Rapid Astrobiology Surveys.

    Science.gov (United States)

    Thompson, David R; Flannery, David T; Lanka, Ravi; Allwood, Abigail C; Bue, Brian D; Clark, Benton C; Elam, W Timothy; Estlin, Tara A; Hodyss, Robert P; Hurowitz, Joel A; Liu, Yang; Wade, Lawrence A

    2015-11-01

    A new generation of planetary rover instruments, such as PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman Luminescence for Organics and Chemicals) selected for the Mars 2020 mission rover payload, aim to map mineralogical and elemental composition in situ at microscopic scales. These instruments will produce large spectral cubes with thousands of channels acquired over thousands of spatial locations, a large potential science yield limited mainly by the time required to acquire a measurement after placement. A secondary bottleneck also faces mission planners after downlink; analysts must interpret the complex data products quickly to inform tactical planning for the next command cycle. This study demonstrates operational approaches to overcome these bottlenecks by specialized early-stage science data processing. Onboard, simple real-time systems can perform a basic compositional assessment, recognizing specific features of interest and optimizing sensor integration time to characterize anomalies. On the ground, statistically motivated visualization can make raw uncalibrated data products more interpretable for tactical decision making. Techniques such as manifold dimensionality reduction can help operators comprehend large databases at a glance, identifying trends and anomalies in data. These onboard and ground-side analyses can complement a quantitative interpretation. We evaluate system performance for the case study of PIXL, an X-ray fluorescence spectrometer. Experiments on three representative samples demonstrate improved methods for onboard and ground-side automation and illustrate new astrobiological science capabilities unavailable in previous planetary instruments. Dimensionality reduction-Planetary science-Visualization.

  7. Improving accuracy and capabilities of X-ray fluorescence method using intensity ratios

    Energy Technology Data Exchange (ETDEWEB)

    Garmay, Andrey V., E-mail: andrew-garmay@yandex.ru; Oskolok, Kirill V.

    2017-04-15

    An X-ray fluorescence analysis algorithm is proposed which is based on a use of ratios of X-ray fluorescence lines intensities. Such an analytical signal is more stable and leads to improved accuracy. Novel calibration equations are proposed which are suitable for analysis in a broad range of matrix compositions. To apply the algorithm to analysis of samples containing significant amount of undetectable elements a use of a dependence of a Rayleigh-to-Compton intensity ratio on a total content of these elements is suggested. The technique's validity is shown by analysis of standard steel samples, model metal oxides mixture and iron ore samples.

  8. X-ray fluorescence analysis of thulium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.

    1986-01-01

    An X-ray fluorescence spectrometric method for the analysis of thulium oxide is described. For the analysis, the sample in oxalate form is mixed with boric acid binding material and pressed into a pellet over a supporting pellet of boric acid. A wavelength dispersive Philips PW 1220 X-ray fluorescence spectrometer is used for the experiments; the minimum determination limits are 0.002per cent for Ho, Lu and Y, 0.005per cent for Dy and Er and 0.01per cent for Yb. Calculations for theoretical minimum detection limits and percent standard deviation at each concentration of the standard are carried out. (author)

  9. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    Science.gov (United States)

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\\bullet{\\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more

  10. Trace Element Mapping of a Biological Specimen by a Full-Field X-ray Fluorescence Imaging Microscope with a Wolter Mirror

    International Nuclear Information System (INIS)

    Hoshino, Masato; Yamada, Norimitsu; Ishino, Toyoaki; Namiki, Takashi; Watanabe, Norio; Aoki, Sadao

    2007-01-01

    A full-field X-ray fluorescence imaging microscope with a Wolter mirror was applied to the element mapping of alfalfa seeds. The X-ray fluorescence microscope was built at the Photon Factory BL3C2 (KEK). X-ray fluorescence images of several growing stages of the alfalfa seeds were obtained. X-ray fluorescence energy spectra were measured with either a solid state detector or a CCD photon counting method. The element distributions of iron and zinc which were included in the seeds were obtained using a photon counting method

  11. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop LUNA, a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for mineralogical analysis of regolith, rock...

  12. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for analysis of mineralogical composition of regolith,...

  13. X-ray specular reflection and fluorescence study of nano-films

    International Nuclear Information System (INIS)

    Zheludeva, S.; Novikova, N.

    2001-01-01

    The techniques that combine the advantages of high-resolution structure sensitive x-ray methods with spectroscopic selectivity of data obtained are shown to be extremely promising for characterization of organic and inorganic nano films and nano structures. Fluorescence yield angular dependences exited by complicated evanescent wave / x-ray standing wave pattern at total reflection and glancing incidence can be used to detect structure position of different ions in organic systems and alien interfacial layers in inorganic multilayers;, to get information about interdiffusion at the interfaces of Langmuir- Blodgett (L-B) films and artificial inorganic - x-ray mirrors; to study ion permeation through L-B nano structures - models of biomembrans; to obtain nano - film thickness and density; to get precisely the parameters of small d-space multilayer mirrors, ets

  14. Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies

    International Nuclear Information System (INIS)

    Necemer, Marijan; Kump, Peter; Scancar, Janez; Jacimovic, Radojko; Simcic, Jurij; Pelicon, Primoz; Budnar, Milos; Jeran, Zvonka; Pongrac, Paula; Regvar, Marjana; Vogel-Mikus, Katarina

    2008-01-01

    Phytoremediation is an emerging technology that employs the use of higher plants for the clean-up of contaminated environments. Progress in the field is however handicapped by limited knowledge of the biological processes involved in plant metal uptake, translocation, tolerance and plant-microbe-soil interactions; therefore a better understanding of the basic biological mechanisms involved in plant/microbe/soil/contaminant interactions would allow further optimization of phytoremediation technologies. In view of the needs of global environmental protection, it is important that in phytoremediation and plant biology studies the analytical procedures for elemental determination in plant tissues and soil should be fast and cheap, with simple sample preparation, and of adequate accuracy and reproducibility. The aim of this study was therefore to present the main characteristics, sample preparation protocols and applications of X-ray fluorescence-based analytical techniques (energy dispersive X-ray fluorescence spectrometry-EDXRF, total reflection X-ray fluorescence spectrometry-TXRF and micro-proton induced X-ray emission-micro-PIXE). Element concentrations in plant leaves from metal polluted and non-polluted sites, as well as standard reference materials, were analyzed by the mentioned techniques, and additionally by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). The results were compared and critically evaluated in order to assess the performance and capability of X-ray fluorescence-based techniques in phytoremediation and plant biology studies. It is the EDXRF, which is recommended as suitable to be used in the analyses of a large number of samples, because it is multi-elemental, requires only simple preparation of sample material, and it is analytically comparable to the most frequently used instrumental chemical techniques. The TXRF is compatible to FAAS in sample preparation, but relative to AAS it is fast, sensitive and

  15. Improved fluorescent X-ray image intensifying screen

    International Nuclear Information System (INIS)

    Landeghem, W.K. van; Suys, A.R.

    1981-01-01

    An X-ray image intensifying screen is described, which includes at least one fluorescent layer comprising phosphor particles dispersed in a binder and on top of such layer a protective layer containing a crosslinked polymer mass obtained by an acid-catalyzed reaction of a polymer or mixture of polymers containing reactive hydrogen atoms and a cross-linking agent, the cross-linking agent being an organic compound containing a plurality of etherified N-methylol groups. Examples are given of appropriate polymers and cross-linking agents. (author)

  16. Assembly of positioner of automated two-dimensional scan coupled to X-ray fluorescence spectrometry; Montagem de posicionador de varredura bidimensional automatizada acoplado a espectrometria de fluorescência de raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo Santiago Melgaço

    2011-07-01

    This work describes the design and assembling of a prototype automated positioner two-dimensional scanning coupled to X-ray fluorescence spectrometry. The work aims to achieve a portable and easy to use, device of broad utility in the analysis of samples by X-ray fluorescence area of expertise and research. The two-dimensional scanning of the positioner is by means of two stepper motors controlled by a microcontroller PIC 16F877A, encoder and optical sensors. The user interacts with the XY table through an interface program for the Windows operating system, which communicates with the microcontroller through the serial port. The system of Fluorescence Spectroscopy incorporated into the positioner consists of a system commercially available system from the company AMPTEK, where the primary source of excitation of the sample was a source of {sup 241}Am of 59.5 KeV emissions. Resolution and accuracy of tests were performed in the XY scanning process and reproducibility of the same kit with the fluorescence spectrometry X-ray. Qualitative tests by X-ray fluorescence spectrometry in samples were performed to demonstrate the applicability and versatility of the project. It follows that the prototype illustrates a possible adequately to portable device for X-ray spectrometry of two-dimensional. (author)

  17. Quantitative analysis or rare earths by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Taam, Isabel; Mantovano, J.L.; Gante, Valdir; Jesus, Camila S.

    2013-01-01

    Rare earths ores and compounds are of growing importance to the worldwide industry. Its applications range from raw material to catalysts, manufacturing of electronics and even super magnets. Therefore, the demand for quick and accurate quantitative analysis methods is continuously growing. Current quantification methods of rare earths involve the separation of these elements by ion exchange and liquid-liquid extraction prior to the analysis itself, processes both time and reagent consuming. In the present work, we propose a method that directly quantifies by XRF technique the following rare earths: La, Pr, Nd, Sm and Gd in a concentrated liquor whose matrix also contains Ca, Y, PO4, U and Th. We evaluated the analytical interference of each element present on the sample on X-rays spectrum. The studied samples are certified standards and the obtained results have been compared to EDTA titration results, an already well-established and widely trusted method.We also measured the matrix effect thus using a complex rare earths standard. Results show that quantification by XRF technique is as accurate as the results in dose titration with EDTA for the same elements, with the advantage of exempting the previous separation step from each rare earth and from other elements present in the matrix (such as U and Th). (author)

  18. Measurement of plutonium in spent nuclear fuel by self-induced x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Andrew S [Los Alamos National Laboratory; Rudy, Cliff R [Los Alamos National Laboratory; Tobin, Steve J [Los Alamos National Laboratory; Charlton, William S [Los Alamos National Laboratory; Stafford, A [TEXAS A& M; Strohmeyer, D [TEXAS A& M; Saavadra, S [ORNL

    2009-01-01

    Direct measurement of the plutonium content in spent nuclear fuel is a challenging problem in non-destructive assay. The very high gamma-ray flux from fission product isotopes overwhelms the weaker gamma-ray emissions from plutonium and uranium, making passive gamma-ray measurements impossible. However, the intense fission product radiation is effective at exciting plutonium and uranium atoms, resulting in subsequent fluorescence X-ray emission. K-shell X-rays in the 100 keV energy range can escape the fuel and cladding, providing a direct signal from uranium and plutonium that can be measured with a standard germanium detector. The measured plutonium to uranium elemental ratio can be used to compute the plutonium content of the fuel. The technique can potentially provide a passive, non-destructive assay tool for determining plutonium content in spent fuel. In this paper, we discuss recent non-destructive measurements of plutonium X-ray fluorescence (XRF) signatures from pressurized water reactor spent fuel rods. We also discuss how emerging new technologies, like very high energy resolution microcalorimeter detectors, might be applied to XRF measurements.

  19. Simultaneous analyses of gaseous and particulate sulphur compounds in the atmosphere by x-ray fluorescence spectrometry, (1)

    International Nuclear Information System (INIS)

    Matsuda, Yatsuka; Mamuro, Tetsuo

    1974-01-01

    An analytical technique for the simultaneous measurements of the atmospheric concentrations of SO 2 gas and sulphur absorbed by aerosol particles has been developed. Aerosol particles are collected on membrane filter and at the same time SO 2 gas is captured on alkali impregnated filter. The sulphur content in each filter is measured by an energy dispersive X-ray fluorescence spectrometer consisting of a Si(Li) semiconductor detector connected to a multichannel pulse hight analyzer and an excitation source of 55 Fe. Two methods are acceptable for the determination of the sulphur content in impregnated filter by X-ray fluorescence analysis. In the first method X-ray fluorescence analysis is made after the collected sulphur has diffused and distributed uniformly enough throughout filter, and in the second method X-ray fluorescence analysis has to be finished before the diffusion of the collected sulphur becomes appreciable. (auth.)

  20. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    Science.gov (United States)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  1. X-ray fluorescence analysis of ancient and medieval brass artifacts from south Moravia

    Energy Technology Data Exchange (ETDEWEB)

    Hlozek, M. [Methodical Centre of Conservation-Technical Museum in Brno, Purkynova 105, 612 00 Brno (Czech Republic); Komoroczy, B. [Institute of Archeology of the Academy of Science of the Czech Republic, Kralovopolska 147, 612 00 Brno (Czech Republic); Trojek, T., E-mail: tomas.trojek@fjfi.cvut.cz [Department of Dosimetry and Application of Ionizing Radiation, Czech Technical University in Prague, Brehova 7, 115 19 Praha 1 (Czech Republic)

    2012-07-15

    This paper deals with an investigation of archeological finds using X-ray fluorescence analysis and microanalysis. The main aim of the investigation was to prove the production of brass in the South Moravian Region (part of the Czech Republic) in former times. The probable brass production technology is described. Various objects dating back to Antiquity and to the Middle Ages were investigated using two X-ray fluorescence systems, and the results of the analyses are discussed. The measurements showed, e.g., that fragments of Roman scale armor and a belt fitting dating back to Antiquity were made of brass. Brass was also identified on the surfaces of various ancient and medieval molds and melting pots. - Highlights: Black-Right-Pointing-Pointer Semiquantitative X-ray fluorescence analysis of archeological finds. Black-Right-Pointing-Pointer Two different gilding techniques of a brass belt terminal found in Brno. Black-Right-Pointing-Pointer Use of brass before the Great Moravian period. Black-Right-Pointing-Pointer Evidence of brass casting in the 12th century in Brno.

  2. Fluorescence X-ray microscopy on hydrated tributyltin-clay mineral suspensions

    Science.gov (United States)

    Neuhäusler, U.; Schmidt, C.; Hoch, M.; Susini, J.

    2003-03-01

    Using the scanning transmission X-ray microscope at ID21 beamline of the ESRF in fluorescence mode, we mapped tin at a bulk concentration of 1000 μg(Sn)/ml within hydrated tributyltin (TBT)-clay mineral (Kaolinite) dispersion with sub-300 nm spatial resolution. Using the L absorption edges of tin at 3929, 4156 and 4465 eV fluorescence radiation was excited in tin atoms with incident photon energies of 4 and 4.5 keV. When using 4 keV radiation, only tin fluorescence is excited. For 4.5 keV X rays, both the fluorescence of tin and calcium (which is present in the solid phase) can be measured. Methodologically, we were interested in assessing and proving the possibilities and limitations of fluorescence mapping using the L absorption edges of tin, where the fluorescence yield is significantly lower compared to other elements with their K edges in the same energy range. Scientifically, organotin-clay mineral interactions are of environmental concern because this factor influences significantly the distribution of toxic TBT in the aquatic System. On one hand, the half-life of TBT deposited to the sediment phase increases, and consequently the time of its bioavailability. On the other hand, the adsorption process is reversible, which means that contaminated sediments can act as a source of pollution. The adsorption and desorption effects can be studied directly with high spatial resolution and brought into connection to the surface properties of the clay mineral under study as well as to other experimental parameters, like pH or salinity.

  3. Elementary analysis by means of the x fluorescence and energy dispersion

    International Nuclear Information System (INIS)

    Jbeli, H.

    1988-10-01

    Three actualisation reports are shown, in the three first chapters, concerning the following subjects: x fluorescence principle, energy dispersive X ray spectroscopy and excitation spectrum characteristics. The matrice effects, the energy equivalence concept, and the correction methods of the interelement effects, related to a calibration curve, are discussed. For the last ones, it is shown that they are supplied to rough values. Quantitative analysis results are shown. A new possibility has been added to those of data processing program usually applied in quantitative analysis. In the second method applied in quantitative analysis, standard samples are used. In both methods an error appreciation analysis is carried out. It is shown that energy dispersive X fluorescence analysis can be applied to thin layers composition and thickness characterization [fr

  4. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  5. Quantitative analysis of heavy metals in water samples of the Chapala lake by X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Perez Novara, Ana Ma.

    1987-01-01

    Seven samples of water from Chapala Lake were sent to the ININ X-Ray Fluorescence Laboratory. The presence of Fe, Ni, Cu, Hg and Pb in general could be observed, The results for Pb and Hg were compared with those obtained by atomic absorption in laboratories at the SARH (Ministry of Agriculture and Hydraulic Resources). Corrections had to be made in order to quantify the amount of mercury. There are good working conditions to perform routine analyses of heavy metals ions in water. (author)

  6. Advances in low atomic number element analysis by wavelength dispersive x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Vrebos, B.

    1996-01-01

    Traditionally, the analysis of low atomic number has been a chal1enging task for wavelength dispersive x-ray fluorescence spectrometry. Among the most important factors influencing analysis of the low atomic number elements (from Z=11 downwards) are the fluorescence yield, absorption and the dispersion. The effect of each of these factors on the overall performance will be illustrated. The long wavelengths involved (longer than I nm) used to pose severe problems concerning the monochromator used. Early instruments relied on lead stearate or Blodgett Langmuir soap films for the diffraction of the characteristic radiation. Nowadays, synthetic multilayers are commonly used. The performance of these multilayers is determined by the reflectivity, the resolution and the absorption of the characteristic radiation to be diffracted. These parameters can be optimised by adequately selecting the composition of the materials involved. The sensitivity of the modem instruments is sufficient to allow quantitative analysis. However, this aspect of WDS XRF is still met with considerable scepticism. Examples of quantitative analysis will be given to illustrate the current capability

  7. Analyses of archaeological pottery samples using X-ray fluorescence technique for provenance study

    International Nuclear Information System (INIS)

    Tamilarasu, S.; Swain, K.K.; Singhal, R.K; Reddy, A.V.R.; Acharya, R.; Velraj, G.

    2015-01-01

    Archaeological artifacts reveal information on past human activities, artifact preparation technology, art and possible trade. Ceramics are the most stable and abundant material in archaeological context. Pottery is the most abundant tracers in all archaeological excavations. Compared to major elements, elements present at trace concentrations levels are source specific and they maintain same concentration levels in source clay as well as finished products e.g., fired clay potteries. As it is difficult to find out exact source or origin, provenance study is carried out first to establish whether objects under study are from the same or different sources/origin. Various analytical techniques like instrumental neutron activation analysis (INAA), Ion beam analysis (IBA) and X-ray fluorescence (XRF) have been used for obtaining elemental concentrations in archaeological potteries. Portable X-ray fluorescence (pXRF) spectrometry provides a non-destructive means for elemental characterization of a wide range of archaeological materials. Ten archaeological pottery samples were collected from Kottapuram, Kerala under the supervision of archaeological survey of India. Portable X-ray fluorescence (pXRF) spectrometry using a handheld Olympus Innov-X Delta XRF device, ACD BARC, has been used for chemical characterization of the pottery samples. The instrument is equipped with the Delta Rhodium (Rh) anode X-Ray tube and uses a Silicon Drift Detector (resolution <200 eV at 5.95 keV Mn Kα X-ray). NIST 2781 SRM was analyzed for quality control purpose. Ten elements namely Fe, Ti, Mn, Co, Cu, Zn, Pb, Zr, Mo and Se were chosen for cluster analysis and their concentration values were utilized for multivariate statistical analysis using WinSTAT 9.0

  8. MapX: An In Situ, Full-Frame X-Ray Spectroscopic Imager for the Biogenic Elements

    Science.gov (United States)

    Blake, David; Sarrazin, Philippe; Thompson, Kathy; Bristow, Thomas

    2016-01-01

    Microbial life exploits microscale disequilibria at boundaries where valence, chemical potential, pH, Eh, etc. vary on a length scale commensurate with the organisms themselves - tens to hundreds of micrometers. These disequilibria can exist within cracks or veins in rocks and ice, at inter- or intra-crystalline boundaries, at sediment/water or sediment/atmosphere interfaces, or even within fluid inclusions trapped inside minerals. The detection of accumulations of the biogenic elements C,N,O,P,S at appropriate concentrations on or in a mineral/ice substrate would constitute permissive evidence of extant life, but context is also required. Does the putative biosignature exist in a habitable environment? Under what conditions of P, T, and chemical potential was the host mineralogy formed? MapX is an arm-deployed contact instrument that directly images the biogenic elements C, N, O, P, S, as well as the cations of the rock-forming minerals (Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe) and important anions such as Cl, Fl. The instrument provides element images having =100 micron lateral spatial resolution over a 2.5 cm X 2.5 cm area, as well as quantitative XRF spectra from ground-selected or instrument-selected Regions of Interest (ROI) on the sample. Quantitative XRF spectra from ROI can be translated into mineralogies using ground- or instrument-based algorithms. Either an X-ray tube source (X-ray fluorescence) or a radioisotope source such as 244-Cm (alpha-particle and gamma-ray fluorescence) can be used, and characteristic X-rays emitted from the sample are imaged onto an X-ray sensitive CCD through an X-ray MicroPore Optic (MPO). As a fluorescent source, 244-Cm is highly desirable in a MapX instrument intended for life detection since high-energy alpha-particles are unrivaled in fluorescence yield for the low-Z elements. The MapX design as well as baseline performance requirements for a MapX instrument intended for life detection/identification of habitable

  9. Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lombi, E.; Donner, E. [University of South Australia, Centre for Environmental Risk Assessment and Remediation, Mawson Lakes, South Australia (Australia); CRC CARE, PO Box 486, Salisbury, South Australia (Australia); Jonge, M.D. de; Paterson, D. [Australian Synchrotron, X-ray Fluorescence Microscopy, 800 Blackburn Road, Clayton, Victoria (Australia); Ryan, C.G. [CSIRO Earth Science and Resource Engineering, Normanby Road, Clayton, Victoria (Australia)

    2011-06-15

    Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence ({mu}XRF) tomography increasingly feasible. This article focuses on {mu}XRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches. (orig.)

  10. Characterization of LiF-based soft X-ray imaging detectors by confocal fluorescence microscopy

    International Nuclear Information System (INIS)

    Bonfigli, F; Gaudio, P; Lupelli, I; Nichelatti, E; Richetta, M; Vincenti, M A; Montereali, R M

    2010-01-01

    X-ray microscopy represents a powerful tool to obtain images of samples with very high spatial resolution. The main limitation of this technique is represented by the poor spatial resolution of standard imaging detectors. We proposed an innovative high-performance X-ray imaging detector based on the visible photoluminescence of colour centres in lithium fluoride. In this work, a confocal microscope in fluorescence mode was used to characterize LiF-based imaging detectors measuring CC integrated visible fluorescence signals of LiF crystals and films (grown on several kinds of substrates) irradiated by soft X-rays produced by a laser plasma source in different exposure conditions. The results are compared with the CC photoluminescence spectra measured on the same samples and discussed.

  11. The X-ray spectrometry Si(Li) system and it's application in quantitative analysis of rare-earth elements

    International Nuclear Information System (INIS)

    Barbosa, J.B.S.

    1985-11-01

    The basic principles involved in Si(Li) system used in X-ray spectrometry is described. It also demonstrates its application in the energy range where the resolution is better than that characteristic of conventional spectrometers. The theoretical principles underlying the interaction between the electromagnetic radiation and matter, and a review on semiconductors are presented at first. It emphasizes the fluorescence phenomenon and the process of photon detection by semiconductor crystals whose properties and characteristics allow, in the specific case of Si-crystal, the confection of detectors with large sensitivity volume useful for X-ray spectrometry. In addition, the components of the Si(Li) system are described individually, with special attention to the operating aspects, and to the parameters affecting the quality of pulse height spectrum. Finally, the spectrometer performance is experimentally evaluated though the quantitative analyses of rare-earth element oxides (La, Ce, Pr, Nd). It should be stressed that this research indicates that the X-ray emission-transmission analysis is the most adequate method under the activation conditions provided by the spectrometer, where Am 241 emissor UPSILON of 60KeV is the photon source for the fluorescence. Therefore, the experimental work was extended in order to include all the necessary treatment. (Author) [pt

  12. X-ray fluorescence spectroscopy technology applied to the materials elementary characterization

    International Nuclear Information System (INIS)

    Marambio A, Cristian Gilberto.

    1997-01-01

    A thorough study of the different applications of energy dispersive x-ray fluorescence spectrometry is presented, using different excitation sources and measurement geometries. The adaptation of these systems focuses on the analytical solution for different sample types by studying distinct parameters such as: volume of saturation for liquid samples, inter elemental effects from the matrix and the interferences associated with the measurement reading statistical parameters: as reproducibility, precision and detection limits. The application of the technique using radioisotopic sources gave satisfactory results in the analysis of geologic samples, in analytical control of concentration processes for rare earths and for the manufacturing of fuel elements. In the case of a system with an x-ray generator two measurement geometries were studied: 45 deg geometry and total reflection. There were major results in the analysis of polymer impurities and alloy impurities, aluminums and thin semiconductor films, respectively, after non destructive in situ analysis of the material. The results show that x-ray fluorescence spectrometry is a powerful tool for analysis and process control, with prospects for the solution of analytical problems in the materials area. (author)

  13. Quantitative determination of phases by X-ray diffraction

    International Nuclear Information System (INIS)

    Azevedo, A.L.T.

    1979-01-01

    The internal standard method for the quantitative determination of phases by X-ray diffraction is presented. The method is applicable to multi-phase materials which may be treated as powder. A discussion on sample preparation and some examples follow. (Author) [pt

  14. Improvement of graphite crystal analyzer for light elements on X-ray fluorescence holography measurement

    Science.gov (United States)

    Happo, Naohisa; Hada, Takuma; Kubota, Atsushi; Ebisu, Yoshihiro; Hosokawa, Shinya; Kimura, Koji; Tajiri, Hiroo; Matsushita, Tomohiro; Hayashi, Kouichi

    2018-05-01

    Using a graphite crystal analyzer, focused monochromatic fluorescent X-rays can be obtained on an X-ray fluorescence holography (XFH) measurement. To measure the holograms of elements lighter than Ti, we improved a cylindrical-type crystal analyzer and constructed a small C-shaped analyzer. Using the constructed C-shaped analyzer, a Ca Kα hologram of a fluorite single crystal was obtained, from which we reconstructed a clear atomic image. The XFH measurements for the K, Ca, and Sc elements become possible using the presently constructed analyzer.

  15. X-Ray fluorescence determination of the mobile forms of toxic elements in meadow chernozems

    International Nuclear Information System (INIS)

    Belikov, K.N.; Blank, A.B.; Shevtsov, N.I.

    1997-01-01

    An X-ray fluorescence method for determining mobile forms of Mn, V, Cr, Co, Ni, Zn, and Pb in meadow chernozems was developed. It is based on the extraction of analytes with an acetate-ammonia buffer solution and the evaporation of the obtained filtrate with carbon powder followed by the X-ray fluorescence analysis of the dry residue. The effect of concomitants on the analytical signals of elements under determination was examined. It was suggested to spike samples with barium in order to decrease analytical errors. (author)

  16. A portable tube exciting X-ray fluorescence analysis system

    International Nuclear Information System (INIS)

    Yang Qiang; Lai Wanchang; Ge Liangquan

    2009-01-01

    Article introduced a portable tube exciting X-ray fluorescence analysis system which is based on arm architecture. Also, we designed Tube control circuit and finished preliminary application. The energy and the intensity of the photon can be adjusted continuously by using the tube. Experiments show that high excitation efficiency obtained by setting the appropriate parameters of the tube for the various elements. (authors)

  17. Modelling of a total reflection X-ray fluorescence (TXRF) system ...

    African Journals Online (AJOL)

    The simulation of the different stages involved in x-ray fluorescence emissions was carried out by writing a suite of computer programs using FORTRAN programming language. These computer simulated XRF stages were then integrated together to generate a general robust model which was run with the digital visual ...

  18. Anomalous scattering, transport, and spatial distribution of X-ray fluorescence at the exit of polycapillary structures

    Energy Technology Data Exchange (ETDEWEB)

    Mazuritskiy, M. I., E-mail: mazurmik@gmail.com; Lerer, A. M.; Makhno, P. V. [Southern Federal University (Russian Federation)

    2016-12-15

    The angular distribution of the X-ray intensity at the exit of microchannel plates at grazing incidence of monochromatic radiation on the walls of microcapillaries has been investigated. The angles and energies of the primary radiation quanta at which the synchrotron beam excites X-ray fluorescence propagating inside polycapillary structures have been determined. The angular dependences of the intensity distribution of X-rays transmitted through the microcapillaries have been studied theoretically and experimentally for energies corresponding to the region of anomalous dispersion near the L{sub 2,3} absorption edges of silicon. The propagation of waves in hollow polycapillary waveguides, the excitation of X-ray fluorescence, and the X-ray diffraction at the exit of microchannel plates have been modeled mathematically. The mathematical model takes into account the presence of a transition layer on the microchannel surface.

  19. Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements

    Science.gov (United States)

    Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.

    2013-01-01

    Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530

  20. Advanced in X-ray fluorescence holography

    CERN Document Server

    Hayashi, K

    2002-01-01

    X-ray fluorescence holography (XFH) can resolve 'phase problem' in crystal diffraction and therefore it provides 3D atomic images around specific elements. Since first demonstration of the XFH in 1996, view of atoms has been improved rapidly with the refinement of the hologram data collection method. The present performance of the XFH makes it possible to apply to impurity, thin film and quasicrystal, and opens a way to practical tool for determination of local structure. In this paper, theory including solutions for twin image problem, advanced experimental systems and application to Si sub 0 sub . sub 9 sub 9 sub 9 Ge sub 0 sub . sub 0 sub 0 sub 1 are discussed. (author)

  1. Total reflection x-ray fluorescence - an approach to nanoanalysis

    International Nuclear Information System (INIS)

    Klockenkaemper, R.

    2000-01-01

    X-ray fluorescence analysis (XRFA) is a powerful tool used for industrial production, geological prospecting and for environmental control. However, the method suffers from a lack of sensitivity so that analyses are restricted to microanalytical investigations. That means: the sample amount needed for analysis is above some 10 micrograms, concentrations to be determined have to be on the μg/ml level, and thin layers to be characterized must be of micrometer thickness. In contrast to conventional XRFA, total-reflection X-ray fluorescence (TXRF) is extremely sensitive and even allows nano-analytical investigations. Three different ways can be taken: (i) use of minute sample amounts of only 10 nano-grams, (ii) determination of extreme traces below ng/ml and (iii) surface analysis and depth profiling of shallow layers with nano-meter thickness. In this lecture, the basic physical phenomena of total reflection and standing waves are outlined. The experimental equipment for TXRF is sketched out and commercially available instruments of different manufacturers are compared. Furthermore, examples are given for the three kinds of nano-analytical applications: ultra-micro, analysis, ultra trace analysis and mono- and thin-layer analysis. (author)

  2. Analysis of siliceous geologic materials by energy-dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1987-01-01

    The determination of the elements Al, Si, K, Ca, Ti, Cr, Mn and Fe in siliceous geologic samples by energy-dispersive X-ray fluorescence is investigated using the most adequate excitation conditions: direct excitation mode (rhodium anode X-ray tube) for the former two elements, and the secondary targets titanium for K and Ca, and germanium for Ti, Cr, Mn and Fe. For the correction of matrix effects the use of ratio methods has been tested. Procedure files have been defined allowing the automatic simultaneous acquisition and processing of spectra. (author)

  3. Ferro-metry and X-ray fluorescence to measure wear

    International Nuclear Information System (INIS)

    Catherin, J.Y.

    1997-01-01

    The determination of wear of metallic structures is carried out by measuring metallic particles in the lubricating oil. This method is routinely used by SNCF, the French railroad company to control the motors of the high speed trains (TGV). Four methods, plasma emission spectrometry, X-ray fluorescence analysis, ferro-metry and magnetometry are used. The field of application and advantage of each method is described. (C.B.)

  4. X-ray Peltier cooled detectors for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Loupilov, A.; Sokolov, A.; Gostilo, V.

    2001-01-01

    The recent results on development of X-ray Si(Li), Si-planar and CdTe p-i-n detectors cooled by Peltier coolers for fabrication of laboratory and portable XRF analysers for different applications are discussed. Low detection limits of XRF analysers are provided by increasing of detectors sensitive surface; improvement of their spectrometrical characteristics; decreasing of front-end-electronics noise level; Peltier coolers and vacuum chambers cooling modes optimization. Solution of all mentioned tasks allowed to develop Peltier cooled detectors with the following performances: (1.) Si(Li) detectors: S=20 mm 2 , thickness=3.5 mm, 175 eV (5.9 keV), 430 eV (59.6 keV); S=100 mm 2 ; thickness=4.5 mm, 270 eV (5.9 keV), 485 eV (59.6 keV). (2.) Si-planar detector: S=10 mm 2 , thickness=0.4 mm, 230 eV (5.9 keV), 460 eV (59.6 keV). (3.) CdTe p-i-n detectors: S=16 mm 2 , thickness=0.5 mm, 350 eV (5.9 keV), 585 eV (59.6 keV). S=16 mm 2 , thickness=1.2 mm, 310 eV (5.9 keV), 600 eV (59.6 keV). Advantages and disadvantages of all types of detectors for X-ray fluorescence analysis are compared. Spectra are presented. Application of different XRF analysers based on developed detectors in medicine, environmental science, industry, cryminalistics and history of art are demonstrated

  5. X-ray Peltier cooled detectors for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Loupilov, A.; Sokolov, A.; Gostilo, V.

    2000-01-01

    The recent results on development of X-ray Si(Li), Si-planar and CdTe p-i- n detectors cooled by Peltier coolers for fabrication of laboratory and portable XRF analysers for different applications are discussed. Low detection limits of XRF analysers are provided by increasing of detectors sensitive surface; improvement of their spectrometrical characteristics; decreasing of front-end-electronics noise level; Peltier coolers and vacuum chambers cooling modes optimization. Solution of all mentioned tasks allowed to develop Peltier cooled detectors with the following performances: (1) Si(Li) detectors: S = 20 mm 2 , thickness = 3.5 mm, 175 eV (5.9 keV), 430 eV (59.6 keV); S = 100 mm 2 ; thickness = 4.5 mm, 270 eV (5.9 keV), 485 eV (59,6 keV). (2) Si-planar detector: S = 10 mm 2 , thickness = 0.4 mm, 230 eV (5.9 keV), 460 eV (59.6 keV). (3) CdTe p-i-n detectors: S = 16 mm 2 , thickness 0.5 mm, 350 eV (5.9 keV), 585 eV (59.6 keV). S = 16 mm 2 , thickness = 1.2 mm, 310 eV (5.9 keV), 600 eV (59.6 keV). Advantages and disadvantages of all types of detectors for X-ray fluorescence analysis are compared. Spectra are presented. Application of different XRF analysers based on developed detectors in medicine, environmental science, industry, criminalistics and history of art are demonstrated. (author)

  6. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Jonge, Martin D. de, E-mail: martin.dejonge@synchrotron.org.au [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Ryan, Christopher G. [CSIRO Earth Science and Research Engineering, Clayton, Victoria 3168 (Australia); Jacobsen, Chris J. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Department of Physics, Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208 (United States)

    2014-08-27

    Nanoscale X-ray scanning microscopes, or X-ray nanoprobes, will benefit greatly from diffraction-limited storage rings. Here the requirements for nanoscale fluorescence tomography are explored to gain insight into the scientific opportunities and technical challenges that such sources offer. X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer.

  7. Analysis of thin films prepared by vacuum-evaporation and dropping solution by Takeoff Angle-Dependent X-Ray Fluorescence spectroscopy at glancing incidence

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Hirokawa, Kichinosuke; Mitose, Kengo.

    1995-01-01

    We have introduced Takeoff Angle-Dependent X-Ray Fluorescence (TAD-XRF) method for thin film and surface analysis. In this method, the sample on the optically flat substrate is irradiated with the glancing incidence of the primary X-ray, and the fluorescent X-rays emitted from the sample are detected at the glancing takeoff angle. We had previously calculated the relationship between the fluorescent X-ray intensity and the takeoff angle at the glancing incidence. The characterization of the thin film is achieved by investigating the dependence of the fluorescent X-ray intensity on the takeoff angle with the calculated curve. Using this analytical method, we have reported the results of the TAD-XRF measured for the evaporated thin films and the dried films from dropping solution in this paper. The effect of the thickness of the thin film, the density of the substrate and the incident angle on the TAD-XRF curve has been reported. In the case of the dried film from the dropping solution, a broad peak was observed at the takeoff angle which was close to the critical angle for the total reflection of the fluorescent X-ray in the TAD-XRF curve. This broad peak was explained by the double-excitation of the incident beam and the refracted beam of the fluorescent X-ray with the assumption that the X-ray which has a same wavelength to the observed fluorescent X-ray impinges upon the sample surface, because the reciprocity theorem is expected in the X-ray region. (author)

  8. X-ray fluorescence analysis of welding fume particles

    International Nuclear Information System (INIS)

    Carsey, T.P.

    1982-01-01

    A commercial standard filter set and two laboratory-made standard filter sets are compared via the analysis of generated welding fume samples by X-ray fluorescence. The latter standards are made by (1) hydrophobic-edge membrane filters spiked with prepared metal ion solutions, and (2) filters through which a dispersion of metal oxide powder in isopropanol has been drawn. The results are presented in table form. Precision (Pre) is the relative standard deviation of the six samples. Four main conclusions are enumerated

  9. X-ray fluorescence analysis of terbium oxide for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Machado, I.J.; Mohile, A.N.

    1975-01-01

    A method for the determination of Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Dy 2 O 3 , Ho 2 O 3 and Y 2 O 3 in terbium oxide is described. The sample is converted to terbium oxalate, mixed with boric acid binder in the ratio 2:1, pelleted at a pressure of 20 tons over a boric acid backing pellet and irradiated with x-rays from a tungsten tube operated by Philips PW 1140 generator. The secondary x-rays thus generated are analysed by a LiF (200) crystal in Philips PW 1220 x-ray fluorescence spectrometer using suitable detectors. The minimum determination limit (MDL) is 0.01% for all rare earth oxides determined except for Y 2 O 3 for which it is 0.005%. (author)

  10. The determination of lanthanum and lanthanide elements by means of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Kuelcue, N.

    1982-01-01

    The quantitative analysis of all lanthanide elements (except Pm) was carried out concurrently using X-ray fluorescence analysis. By choice of suitable preparative methods (thin layer samples prepared by pipetting solutions onto filter paper) and use of an internal standard (Sr) it was possible to obtain linear calibration curves up to high concentrations in the solution (85 g/l) and to suppress disturbances caused by absorption and secondary fluorescence. A correction procedure was developed for reflection superimpositions in the L-spectra of the lanthanide elements which, through selection of the most favourable reflections for analysis, permitted concurrent determination of all 14 elements. Main and secondary constitutents can be analysed whereas enrichment is required for trace analysis. Under routine usage the actual limits of detection range from 3 to 17 μg/cm 2 or alternatively 0.3 to 1.7 mg/ml. (orig.) [de

  11. Investigation of the human spleen by X-ray microanalysis

    International Nuclear Information System (INIS)

    Kopani, M.; Jakubovsky, J.; Polak, S.

    2001-01-01

    Qualitative and quantitative topographic analysis using X-ray fluorescence (XRF), X-ray powder diffraction (XRD) and scanning electron microscopy was performed in tissue samples of rat and human spleens. The presence of silico-aluminium and silico-calcareous particles of various sizes could be seen. The presence of the inorganic substances mentioned in the human red pulp cords is assumed to be a consequence of the purifying function of the spleen. (Authors)

  12. A simple, semi-quantitative method for measuring pulsed soft x-rays

    International Nuclear Information System (INIS)

    Takahama, Y.; Du, J.; Yanagidaira, T.; Hirano, K.

    1993-01-01

    A simple semi-quantitative measurement and image processing system for pulsed soft X-rays with a time and spatial resolution is proposed. Performance of the system is examined using a cylindrical soft X-ray source generated with a plasma device. The system consists of commercial facilities which are easily obtained such as a microchannel plate-phosphor screen combination, a CCD camera, an image memory board and a personal computer. To make a quantitative measurement possible, the image processing and observation of the phosphor screen current are used in conjunction. (author)

  13. Instrumental fundamental parameters and selected applications of the microfocus X-ray fluorescence analysis at a scanning electron microscope

    International Nuclear Information System (INIS)

    Rackwitz, Vanessa

    2012-01-01

    For a decade X-ray sources have been commercially available for the microfocus X-ray fluorescence analysis (μ-XRF) and offer the possibility of extending the analytics at a scanning electron microscope (SEM) with an attached energy dispersive X-ray spectrometer (EDS). By using the μ-XRF it is possible to determine the content of chemical elements in a microscopic sample volume in a quantitative, reference-free and non-destructive way. For the reference-free quantification with the XRF the Sherman equation is referred to. This equation deduces the intensity of the detected X-ray intensity of a fluorescence peak to the content of the element in the sample by means of fundamental parameters. The instrumental fundamental parameters of the μ-XRF at a SEM/EDS system are the excitation spectrum consisting of X-ray tube spectrum and the transmission of the X-ray optics, the geometry and the spectrometer efficiency. Based on a calibrated instrumentation the objectives of this work are the development of procedures for the characterization of all instrumental fundamental parameters as well as the evaluation and reduction of their measurement uncertainties: The algorithms known from the literature for the calculation of X-ray tube spectrum are evaluated with regard to their deviations in the spectral distribution. Within this work a novel semi-empirical model is improved with respect to its uncertainties and enhanced in the low energy range as well as extended for another three anodes. The emitted X-ray tube spectrum is calculated from the detected one, which is measured at an especially developed setup for the direct measurement of X-ray tube spectra. This emitted X-ray tube spectrum is compared to the one calculated on base of the model of this work. A procedure for the determination of the most important parameters of an X-ray semi-lens in parallelizing mode is developed. The temporal stability of the transmission of X-ray full lenses, which have been in regular use at

  14. Determination of Mn, Fe, Ni, Cu, Zn and Pb contents in samples in samples of apple trees by radionuclide X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Bumbalova, A.; Havranek, E.; Harangozo, M.

    1982-01-01

    The applicability of the radionuclide X-ray fluorescence analysis (RXFA) for qualitative and quantitative evaluation of environmental plant samples is discussed and examples of determination of Mn, Fe, Ni, Cu, Zn, Pb in samples of apple trees are given. The instrumentation, the standard and sample preparation are also presented. (author)

  15. X-ray fluorescence spectrometers: a comparison of wavelength and energy dispersive instruments

    International Nuclear Information System (INIS)

    Slates, R.V.

    1977-11-01

    Wavelength dispersive and energy dispersive x-ray fluorescence spectrometers are compared. Separate sections are devoted to principles of operation, sample excitation, spectral resolution, and x-ray detection. Tabulated data from the literature are cited in the comparison of accuracy, precision, and detection limits. Spectral interferences and distortions are discussed. Advantages and limitations are listed for simultaneous wavelength dispersive spectrometers, sequential wavelength dispersive spectrometers, and Si(Li) energy dispersive spectrometers. Accuracy, precision, and detection limits are generally superior for wavelength dispersive spectrometers

  16. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    International Nuclear Information System (INIS)

    Arp, U.

    1996-01-01

    Argon L 2.3 -M 2.3 M 2.3 Auger-electron spectra were measured in coincidence with Kα fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons

  17. Quantification procedures in micro X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Kanngiesser, Birgit

    2003-01-01

    For the quantification in micro X-ray fluorescence analysis standardfree quantification procedures have become especially important. An introduction to the basic concepts of these quantification procedures is given, followed by a short survey of the procedures which are available now and what kind of experimental situations and analytical problems are addressed. The last point is extended by the description of an own development for the fundamental parameter method, which renders the inclusion of nonparallel beam geometries possible. Finally, open problems for the quantification procedures are discussed

  18. Technique of sample preparation for analysis of gasoline and lubricating oils by X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Avila P, P.

    1990-03-01

    The X-ray fluorescence laboratory of the National Institute of Nuclear Research when not having a technique for the analysis of oils it has intended, with this work, to develop a preparation technique for the analysis of the metals of Pb, Cr, Ni, V and Mo in gasolines and oils, by means of the spectrometry by X-ray fluorescence analysis. The obtained results, its will be of great utility for the one mentioned laboratory. (Author)

  19. Total reflection x-ray fluorescence spectrometers for multielemental analysis: status of commercial equipment

    International Nuclear Information System (INIS)

    Ayala Jimenez, R.E.

    2000-01-01

    Multi-elemental analysis by total reflection x-ray fluorescence spectrometry has evolved during two decades. At the present there are commercial equipment available for the chemical analysis in all kind of biological and mineral samples. The electronic industry has also been benefited from the scientific and technological developments in the field of TXRF. The basic components of the spectrometers can be summarized as follow: a) excitation source; b) geometric arrangement (optics) for collimation and monochromatization of the primary radiation; c) x-ray detector; d) hardware and software for operation of the instrument, data acquisition and spectral deconvolution to determine the concentrations of the element present in the sample (quantitative analysis). As optional there are manufacturers offering the conventional 45 degrees geometry for direct excitation of bulky liquid or solid samples. Personal communications of the author and the commercial brochures available at the moment of writing this presentation have allowed to list the following type of components used in the TXRF spectrometers for multi-elemental analysis (the devices used in the electronic industry to analyze silicon wafers are excluded). Excitation: high power x-ray tube, output from 1300 to 2000 watts; metal ceramic low power-ray tube, output up to 50 watts. Different anodes are used but molybdenum, tungsten and copper are frequent. The excitation systems can be customized according to the requirements of the laboratory. Detector: Si-Li semi-conductor liquid nitrogen cooled; silicon solid state thermoelectrically cooled (silicon drift detector SDD and Si-PIN diode). Optics: multilayer monochromator of Si-W or Ni-C; double multilayer monochromator. Electronics: spectroscopy amplifier, analog to digital converter adapted to a PC compatible computer with software in Windows environment for the whole operation of the spectrometer and for qualy/quantitative analysis of samples are standards in the

  20. The measurement of X-rays radiation temperature with a new developed filter-fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Zhang Chuanfei; Lin Libin; Lou Fuhong; Peng Taiping

    2001-01-01

    The author introduces how to measure the energy spectra of X-rays by filter-fluorescence spectroscopy. The design principle and structure of new-developed double diaphragms and filter-fluorescence spectroscopy with 5 channels are depicted. The parameters of optimized spectroscopy by numerical method are given. The filter-fluorescence spectroscopy designed according as Rousseau balance principle improves signal-noises ratio

  1. TX 2000: total reflection and 45o energy dispersive x-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Pasti, F.; Torboli, A.; Valdes, M.

    2000-01-01

    This equipment, developed by Ital Structures, combines two kinds of energy dispersive X-ray fluorescence techniques, the first using total reflection geometry and the second conventional 45 o geometry. The equipment is completely controlled by a PC and to reach the condition of total reflection is very easy because it is enough to load the file with the right position for the corresponding energy. In this apparatus we used an x-ray tube with an alloy anode of Mo/W with a long fine focus at 2200 W. To monochromatize the x-ray beam while choosing, for example, the Mo K alpha or W L alpha or a piece of white spectrum of 33 keV, we use a highly reflective multilayer made of Si/W with 2d = 45.5 A o . The detector used in the equipment is a lithium drifted silicon detector (Si(Li)) with an excellent energy resolution of 135 eV at 5.9 keV and 1000 cps. We developed two programs written in Windows 95, 98 and NT for a 32 bit microprocessor. The first one is called TYACQ32 and has the following functions: first, complete control of the hardware, second automatic alignment of the TX 2000 spectrometer and third acquisition of spectra. The second program is EDXRF32. This is a program to accomplish spectrum and quantitative analysis for TXRF and EDXRF 45 o degrees analysis. (author)

  2. Applications of X-ray fluorescence holography to determine local lattice distortions

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya

    2014-01-01

    Highlights: • We summarized topics of X-ray fluorescence holography focused on the local lattice distortions. • We found details of behaviors of nearest neighbor atoms around dopants. • We found the average distributions of the atoms at the individual sites in mixed crystals. • Distorted and undistorted sires sometimes coexist in a same mixed crystal. - Abstract: X-ray fluorescence holography (XFH) is a method for investigating atomic order up to the medium ranges, and can provide 3D atomic images around specific elements within a radius of nm order. In addition to these characteristics, XFH is sensitive to positional fluctuations of atoms, and therefore it is useful for characterizing the local lattice distortions around specific elements. We have applied XFH to dopants and mixed crystals. We found interesting features in local lattice distortions, such as the displacements of first-neighbor atoms around dopants, far-sighted views of the atomistic fluctuations in mixed crystals, and the coexistence of distorted/undistorted sites in the same material

  3. Development of off-line layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation

    International Nuclear Information System (INIS)

    Mihucz, Victor G.; Moricz, Agnes M.; Kroepfl, Krisztina; Szikora, Szilvia; Tatar, Eniko; Parra, Lue Meru Marco; Zaray, Gyula

    2006-01-01

    Rapid and low cost off-line thin layer chromatography-total reflection X-ray fluorescence spectrometry and overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods have been developed for separation of 25 ng of each As(III), As(V), monomethyl arsonic acid and dimethylarsinic acid applying a PEI cellulose stationary phase on plastic sheets and a mixture of acetone/acetic acid/water = 2:1:1 (v/v/v) as eluent system. The type of eluent systems, the amounts (25-1000 ng) of As species applied to PEI cellulose plates, injection volume, development distance, and flow rate (in case of overpressured thin layer chromatography) were taken into consideration for the development of the chromatographic separation. Moreover, a microdigestion method employing nitric acid for the As spots containing PEI cellulose scratched from the developed plates divided into segments was developed for the subsequent total reflection X-ray fluorescence spectrometry analysis. The method was applied for analysis of root extracts of cucumber plants grown in As(III) containing modified Hoagland nutrient solution. Both As(III) and As(V) were detected by applying the proposed thin layer chromatography/overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods

  4. Development of off-line layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary); Moricz, Agnes M. [L. Eoetvoes University, Department of Chemical Technology and Environmental Chemistry, P.O. Box 32, H-1518 Budapest (Hungary); Kroepfl, Krisztina [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Szikora, Szilvia [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, P.O. Box 32, H-1518 Budapest (Hungary); Parra, Lue Meru Marco [Universidad Centro-occidental Lisandro Alvarado, Decanato de Agronomia, Departamento de Quimica y Suelos Unidad de Analisis Instrumental, Apartado Postal 4076, Cabudare 3023 (Venezuela); Zaray, Gyula [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary) and Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary) and L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, P.O. Box 32, H-1518 Budapest (Hungary)]. E-mail: zaray@ludens.elte.hu

    2006-11-15

    Rapid and low cost off-line thin layer chromatography-total reflection X-ray fluorescence spectrometry and overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods have been developed for separation of 25 ng of each As(III), As(V), monomethyl arsonic acid and dimethylarsinic acid applying a PEI cellulose stationary phase on plastic sheets and a mixture of acetone/acetic acid/water = 2:1:1 (v/v/v) as eluent system. The type of eluent systems, the amounts (25-1000 ng) of As species applied to PEI cellulose plates, injection volume, development distance, and flow rate (in case of overpressured thin layer chromatography) were taken into consideration for the development of the chromatographic separation. Moreover, a microdigestion method employing nitric acid for the As spots containing PEI cellulose scratched from the developed plates divided into segments was developed for the subsequent total reflection X-ray fluorescence spectrometry analysis. The method was applied for analysis of root extracts of cucumber plants grown in As(III) containing modified Hoagland nutrient solution. Both As(III) and As(V) were detected by applying the proposed thin layer chromatography/overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods.

  5. Detection and quantitative determination of heavy metals in electronic cigarette refill liquids using Total Reflection X-ray Fluorescence Spectrometry.

    Science.gov (United States)

    Kamilari, Eleni; Farsalinos, Konstantinos; Poulas, Konstantinos; Kontoyannis, Christos G; Orkoula, Malvina G

    2018-06-01

    Electronic cigarettes are considered healthier alternatives to conventional cigarettes containing tobacco. They produce vapor through heating of the refill liquids (e-liquids) which consist of propylene glycol, vegetable glycerin, nicotine (in various concentrations), water and flavoring agents. Heavy metals may enter the refill liquid during the production, posing a risk for consumer's health due to their toxicity. The objective of the present study was the development of a methodology for the detection and quantitative analysis of cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), arsenic (As) and chromium (Cr), employing Total Reflection X-Ray Fluorescence Spectroscopy (TXRF) as an alternative technique to ICP-MS or ICP-OES commonly used for this type of analysis. TXRF was chosen due to its advantages, which include short analysis time, promptness, simultaneous multi-element analysis capability and minimum sample preparation, low purchase and operational cost. The proposed methodology was applied to a large number of electronic cigarette liquids commercially available, as well as their constituents, in order to evaluate their safety. TXRF may be a valuable tool for probing heavy metals in electronic cigarette refill liquids to serve for the protection of human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Recent results of synchrotron radiation induced total reflection X-ray fluorescence analysis at HASYLAB, beamline L

    Energy Technology Data Exchange (ETDEWEB)

    Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Vienna (Austria)]. E-mail: streli@ati.ac.at; Pepponi, G. [ITC-irst, Povo (Italy); Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Vienna (Austria); Jokubonis, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Vienna (Austria); Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22603 Hamburg (Germany); Zaray, G. [Institute of Inorganic and Applied Chemistry, 3 EOTVOS Univ, Budapest (Hungary); Broekaert, J. [Institute of Anorganic and Applied Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fittschen, U. [Institute of Anorganic and Applied Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Peschel, B. [Institute of Anorganic and Applied Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2006-11-15

    At the Hamburger Synchrotronstrahlungslabor (HASYLAB), Beamline L, a vacuum chamber for synchrotron radiation-induced total reflection X-ray fluorescence analysis, is now available which can easily be installed using the adjustment components for microanalysis present at this beamline. The detector is now in the final version of a Vortex silicon drift detector with 50-mm{sup 2} active area from Radiant Detector Technologies. With the Ni/C multilayer monochromator set to 17 keV extrapolated detection limits of 8 fg were obtained using the 50-mm{sup 2} silicon drift detector with 1000 s live time on a sample containing 100 pg of Ni. Various applications are presented, especially of samples which are available in very small amounts: As synchrotron radiation-induced total reflection X-ray fluorescence analysis is much more sensitive than tube-excited total reflection X-ray fluorescence analysis, the sampling time of aerosol samples can be diminished, resulting in a more precise time resolution of atmospheric events. Aerosols, directly sampled on Si reflectors in an impactor were investigated. A further application was the determination of contamination elements in a slurry of high-purity Al{sub 2}O{sub 3}. No digestion is required; the sample is pipetted and dried before analysis. A comparison with laboratory total reflection X-ray fluorescence analysis showed the higher sensitivity of synchrotron radiation-induced total reflection X-ray fluorescence analysis, more contamination elements could be detected. Using the Si-111 crystal monochromator also available at beamline L, XANES measurements to determine the chemical state were performed. This is only possible with lower sensitivity as the flux transmitted by the crystal monochromator is about a factor of 100 lower than that transmitted by the multilayer monochromator. Preliminary results of X-ray absorption near-edge structure measurements for As in xylem sap from cucumber plants fed with As(III) and As(V) are

  7. Recent results of synchrotron radiation induced total reflection X-ray fluorescence analysis at HASYLAB, beamline L

    International Nuclear Information System (INIS)

    Streli, C.; Pepponi, G.; Wobrauschek, P.; Jokubonis, C.; Falkenberg, G.; Zaray, G.; Broekaert, J.; Fittschen, U.; Peschel, B.

    2006-01-01

    At the Hamburger Synchrotronstrahlungslabor (HASYLAB), Beamline L, a vacuum chamber for synchrotron radiation-induced total reflection X-ray fluorescence analysis, is now available which can easily be installed using the adjustment components for microanalysis present at this beamline. The detector is now in the final version of a Vortex silicon drift detector with 50-mm 2 active area from Radiant Detector Technologies. With the Ni/C multilayer monochromator set to 17 keV extrapolated detection limits of 8 fg were obtained using the 50-mm 2 silicon drift detector with 1000 s live time on a sample containing 100 pg of Ni. Various applications are presented, especially of samples which are available in very small amounts: As synchrotron radiation-induced total reflection X-ray fluorescence analysis is much more sensitive than tube-excited total reflection X-ray fluorescence analysis, the sampling time of aerosol samples can be diminished, resulting in a more precise time resolution of atmospheric events. Aerosols, directly sampled on Si reflectors in an impactor were investigated. A further application was the determination of contamination elements in a slurry of high-purity Al 2 O 3 . No digestion is required; the sample is pipetted and dried before analysis. A comparison with laboratory total reflection X-ray fluorescence analysis showed the higher sensitivity of synchrotron radiation-induced total reflection X-ray fluorescence analysis, more contamination elements could be detected. Using the Si-111 crystal monochromator also available at beamline L, XANES measurements to determine the chemical state were performed. This is only possible with lower sensitivity as the flux transmitted by the crystal monochromator is about a factor of 100 lower than that transmitted by the multilayer monochromator. Preliminary results of X-ray absorption near-edge structure measurements for As in xylem sap from cucumber plants fed with As(III) and As(V) are reported. Detection

  8. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    International Nuclear Information System (INIS)

    Moreira, Silvana; Melo Junior, Ariston; Vives, Ana Elisa S. de; Nascimento Filho, Virgilio F.

    2005-01-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence (μ-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 μm and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 μm diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  9. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Melo Junior, Ariston [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)]. E-mail: perez@lnls.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence ({mu}-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 {mu}m and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 {mu}m diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  10. Monitoring body iron burden using X-ray fluorescence (XRF)

    International Nuclear Information System (INIS)

    Farquharson, M.J.; Bagshaw, A.P.

    2001-01-01

    X-ray fluorescence, using Cu K alpha and K beta radiation, has been used to measure the Fe content of skin of two groups of rats, one Fe overloaded and one control group. These skin Fe levels were compared to the liver and heart Fe levels measured using colorimetry. Correlation coefficients of 0.86 and 0.88 respectively were found indicating that skin Fe levels may be a potential marker for body iron burden.

  11. X-ray fluorescence analysis and optical emission spectrometry of an roman mirror from Tomis, Romania

    International Nuclear Information System (INIS)

    Belc, M.; Bogoi, M.; Ionescu, D.; Guita, D.; Caiteanu, S.; Caiteanu, D.

    2000-01-01

    The miscellaneous population of Roman Empire, their diverse cultural tradition, their ability to assimilate the roman civilization spirits, had determined a permanent reassessment superimposed upon the roman contribution. Analysis was undertaken using optical emission spectrometry and non-destructive X-ray fluorescence. X-ray fluorescence analysis is a well-established method and is often used in archaeometry and other work dealing with valuable objects pertaining to the history of art and civilization. Roman mirror analysed has been found not to be made of speculum (a high tin bronze). (authors)

  12. Some aspects of detectors and electronics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Goulding, F.S.

    1976-08-01

    Some of the less recognized and potentially important parameters of the electronics and detectors used in X-ray fluorescence spectrometers are discussed. Detector factors include window (dead-layer) effects, time-dependent background and excess background. Noise parameters of field-effect transistors and time-variant pulse shaping are also discussed

  13. Blood selenium content determination by X-ray fluorescence

    International Nuclear Information System (INIS)

    Mainardi, R.T.

    1987-01-01

    The presence of some elements in small amounts (traces) in the human body is of foremost importance for the prevention and treatment of several diseases. It has been recently shown that traces of selenium in blood are closely related to the occurrence of miotonic distrophy, a muscular disease that is affecting a significant percentage of the population. This work describes a simple procedure to determine selenium in human blood serum by energy dispersive X-ray fluorescence analysis. Final quantification is achieved through the addition of titanium as an internal standard. (Author) [es

  14. Beer analysis by synchrotron radiation total reflection X-ray fluorescence (SR-TXRF)

    International Nuclear Information System (INIS)

    Moreira, Silvana; Vives, Ana Elisa S. de; Nascimento Filho, Virgilio F.; Zucchi, Orgheda L.D.A.

    2005-01-01

    In this work the concentrations of P, S, Cl, K, Ca, Mn, Fe, Zn and Br in twenty-nine brands of national and international beers were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence analysis (SR-TXRF). The results were compared with the limits established by the Brazilian Legislation and the nutritive values established by National Agricultural Library (NAL). The measurements were performed at the X-ray Fluorescence Beamline at Synchrotron Light Source Laboratory, in Campinas, Sao Paulo, Brazil, using a polychromatic beam for excitation. A small volume of 5 μL of sample beers containing just an internal standard, used to correct geometry effects, were analyzed without any pre-treatment. The measuring time was 100 s and the detection limits obtained varied from 1μg.L -1 for Mn and Fe to 15μg.L -1 for P. (author)

  15. Fission times studies of the Z=124 superheavy nucleus by X-ray fluorescence

    International Nuclear Information System (INIS)

    Airiau, Maud

    2016-01-01

    Since the 1960's nuclear structure model have predicted the existence of an island of stability of superheavy elements. It should be located around the next magic numbers expected at N=172 or 184 and between Z=114 and 126 depending on the model. Very high fission barrier of a few MeV are predicted to be generated by microscopic effects for those nuclei for which large fission times distributions extended to very high fission times are induced. Fission time measurements of the superheavy element Z=124 have been made by us using the X-ray fluorescence technique, a method based on the filling of inner-shell electronic vacancies created during the collision leading to the formation of the compound nucleus. The aim of this experiment was to detect in coincidence both fission fragments and characteristic X-rays from the Z=124, created by the reaction 238 U+ 70,76 Ge. The main difficulty was to identify those X-rays due to the fact that gamma-rays from fission fragments were emitted in the same energy range, which affected our photon multiplicities for any fragment selection. This new difficulty brings an important limitation to the study of some particular superheavy elements by the X-ray fluorescence method. K X-rays spectra have been simulated using MCDF (Multi-Configuration-Dirac-Fock) and then compared to the experimental ones in order to get a maximal K X-ray multiplicity compatible with our data. The extracted results were about 6-7% for 76 Ge and from 12 to 14% for 70 Ge. Those values remain compatible with the experimental signature of long lifetime component observed for the same system but using a blocking technique in single crystals. (author) [fr

  16. Feasibility study for the in vivo measurement of lead in bone using L-x-ray fluorescence

    International Nuclear Information System (INIS)

    Wielopolski, L.; Slatkin, D.N.; Vartsky, D.; Ellis, K.J.; Cohn, S.H.

    1980-01-01

    Lead deposits in bone were detected by x-ray fluorescence using x-rays from either a 125 I or a 109 Cd source. Measurements were taken from tibia in intact human legs, post-mortem. On the basis of preliminary measurements, it was concluded that an exposure of one rad is adequate for determination of lead in bone. Both the advantages and the disadvantages of L-x-rays, used in the technique developed for this study, are compared with those of K-x-rays

  17. X-ray fluorescence in some rare earth and high Z elements excited ...

    Indian Academy of Sciences (India)

    section and X-ray fluorescence yield values for different elements at various photoion- ization energies ... In the present method, the K-shell vacancies are created by photons and filled by outer electrons leading to ... The well type detector pro-.

  18. Quantitative x-ray fractographic analysis of fatigue fractures

    International Nuclear Information System (INIS)

    Saprykin, Yu.V.

    1983-01-01

    The study deals with quantitative X-ray fractographic investigation of fatigue fractures of samples with sharp notches tested at various stresses and temperatures with the purpose of establishing a connection between material crack resistance parameters and local plastic instability zones restraining and controlling the crack growth. At fatigue fractures of notched Kh18N9T steel samples tested at +20 and -196 deg C a zone of sharp ring notch effect being analogous to the zone in which crack growth rate is controlled by the microshifting mechanisms is singled out. The size of the notched effect zone in the investigate steel is unambiguosly bound to to the stress amplitude. This provides the possibility to determine the stress value by the results of quantitative fractographic analysis of notched sample fractures. A possibility of determining one of the threshold values of cyclic material fracture toughness by the results of fatigue testing and fractography of notched sample fractures is shown. Correlation between the size of the hsub(s) crack effect zone in the notched sample, delta material yield limit and characteristic of cyclic Ksub(s) fracture toughness has been found. Such correlation widens the possibilities of quantitative diagnostics of fractures by the methods of X-ray fractography

  19. Analytical characterization of artists' pigments used in old and modern paintings by total-reflection x-ray fluorescence

    International Nuclear Information System (INIS)

    Klockenkaemper, R.; Bohlen, A. von; Moens, L.; Devos, W.

    1993-01-01

    The analytical characterization of artists' pigments is a most helpful tool for art history, conservation and restoration of paintings. A very gentle method of ultra-microsampling was developed that is especially applicable to paintings under restoration. It provides a sample mass of about 1 μg and is virtually non-destructive. This minute amount is sufficient for total-reflection X-ray fluorescence (TXRF) to determine most of those elements building inorganic pigments. The convenient and fast method was applied to oil paintings. Various pigments were identified and their mixing proportion was determined even quantitatively. (author)

  20. Determination of elements in bone of tuberculous-arthritis patients by radioisotope X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Akyuez, T.; Bassari, A.; Akyuez, S.

    1998-01-01

    The quantitative analysis of the human femoral bone of 17 tuberculosis-arthritis (Koch-arthritis) patients (9 males and 8 females) in the age range of 45-65, for Ca, P, Zn, Sr, Ba, La and Ce were performed by using radioisotope energy dispersive X-ray fluorescence (EDXRF) and the results were compared with those of 12 healthy control groups (8 males and 4 females) in the range of 37-58. The results indicate that the concentrations of P, Ca and Sr in the control group are higher than those in the patient group, while the concentrations of Zn, Ba, La and Ce are not significantly different. (author)

  1. Radiation applications in art and archaeometry X-ray fluorescence applications to archaeometry. Possibility of obtaining non-destructive quantitative analyses

    International Nuclear Information System (INIS)

    Milazzo, Mario

    2004-01-01

    The possibility of obtaining quantitative XRF analysis in archaeometric applications is considered in the following cases: - Examinations of metallic objects with irregular surface: coins, for instance. - Metallic objects with a natural or artificial patina on the surface. - Glass or ceramic samples for which the problems for quantitative analysis rise from the non-detectability of matrix low Z elements. The fundamental parameter method for quantitative XRF analysis is based on a numerical procedure involving he relative values of XRF lines intensity. As a consequence it can be applied also to the experimental XRF spectra obtained for metallic objects if the correction for the irregular shape consists only in introducing a constant factor which does not affect the XRF intensity relative value. This is in fact possible in non-very-restrictive conditions for the experimental set up. The finenesses of coins with a superficial patina can be evaluated by resorting to the measurements of Rayleigh to Compton scattering intensity ratio at an incident energy higher than the one of characteristic X-ray. For glasses and ceramics the measurements of the Compton scattered intensity of the exciting radiation and the use of a proper scaling law make possible to evaluate the matrix absorption coefficients for all characteristic X-ray line energies

  2. Intracellular distribution and stability of a luminescent rhenium(I) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wedding, Jason L.; Harris, Hugh H.; Bader, Christie A.; Plush, Sally E.; Mak, Rachel

    2016-01-01

    Optical fluorescence microscopy was used in conjunction with X-ray fluorescence microscopy to monitor the stability and intracellular distribution of the luminescent rhenium(I) complex fac-[Re(CO) 3 (phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex, in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence techniques. Furthermore, X-ray fluorescence also showed that the Re-I complex disrupted the homeostasis of some biologically relevant elements, such as chlorine, potassium and zinc.

  3. Standard test methods for chemical analysis of ceramic whiteware materials using wavelength dispersive X-Ray fluorescence spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover the determination of ten major elements (SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, P2O5, MnO, and LOI in ceramic whitewares clays and minerals using wavelength dispersive X-ray fluorescence spectrometry (WDXRF). The sample is first ignited, then fused with lithium tetraborate and the resultant glass disc is introduced into a wavelength dispersive X-ray spectrometer. The disc is irradiated with X-rays from an X-ray tube. X-ray photons emitted by the elements in the samples are counted and concentrations determined using previously prepared calibration standards. (1) In addition to 10 major elements, the method provides a gravimetric loss-on-ignition. Note 1—Much of the text of this test method is derived directly from Major element analysis by wavelength dispersive X-ray fluorescence spectrometry, included in Ref (1). 1.2 Interferences, with analysis by WDXRF, may result from mineralogical or other structural effects, line overlaps, and matrix effects. The structure of the...

  4. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    International Nuclear Information System (INIS)

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system.Methods: 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg/cm 3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm 3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence/scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm × 15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm.Results: XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73 × 10 −2 cm 3 ). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations.Conclusions: L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts

  5. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Vives, Ana Elisa Sirito de; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario

    2005-01-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of ∼ 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  6. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Silva, Richard Maximiliano da Cunha [Centro de Energia Nuclear na Agricultura, Piracicaba, SP (Brazil)]. E-mail: maxcunha@cena.usp.br; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]. E-mail: jeangm@esalq.usp.br; mtomazel@esalq.usp.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: Silvana@fec.unicamp.br; Zucchi, Orgheda Luiza Araujo Domingues [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Barroso, Regina Cely [Universidade do Estado, Rio de Janeiro, RJ (Brazil)]. E-mail: cely@uerj.br

    2005-07-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of {approx} 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  7. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  8. Use of planar HPGe detector as a part of X-ray fluorescent spectrometer for educational purposes

    International Nuclear Information System (INIS)

    Verenchikova, M.S.; Kalinin, V.N.; Mikhajlov, V.A.

    2011-01-01

    This work shows the possibility of use of the nondedicated gamma and X-ray detection head on the basis of planar HPGe detector with a big sensitive area equal to 2000 mm''2 as a part of X-ray fluorescent spectrometer during students' practicum.

  9. Characterization of the Carancas-Puno meteorite by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ceron Loayza, Maria L., E-mail: malucelo@hotmail.com; Bravo Cabrejos, Jorge A. [Universidad Nacional Mayor de San Marcos, Laboratorio de Analisis de Suelos, Facultad de Ciencias Fisicas (Peru)

    2011-11-15

    We report the results of the study of a meteorite that impacted an inhabited zone on 15 September 2007 in the neighborhood of the town of Carancas, Puno Region, about 1,300 km south of Lima. The analysis carried out by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Moessbauer spectroscopy (at room temperature and at 4.2 K), reveal the presence in the meteorite sample of magnetic sites assigned to taenite (Fe,Ni) and troilite (Fe,S) phases, and of two paramagnetic doublets assigned to Fe{sup 2 + }, one associated with olivine and the other to pyroxene. In accord with these results, this meteorite is classified as a type IV chondrite meteorite.

  10. Quantitative X-ray determination of CFRP micro structures

    International Nuclear Information System (INIS)

    Hentschel, Manfred P.; Mueller, Bernd R.; Lange, Axel; Wald, Oliver

    2008-01-01

    Beyond imaging the mass distribution of materials by X-ray absorption techniques recent synchrotron and laboratory X-ray refraction techniques provide interface contrast imaging of micro structures. This is of specific relevance to carbon fibre composites (CFRP) which constitute advanced aerospace components. Apart from merely finding isolated flaws like cracks or pores within the natural high interface density only the quantitative measurement of the differences after defined mechanical treatment provides a reliable understanding of the related macroscopic properties. The contribution of the fibre matrix interface of CFRP laminates to the mechanical properties is investigated by relating the mechanical damage to the additional fibre debonding after impact and fatigue. Composites of industrially sized carbon fibres for aerospace applications and of unsized fibres are compared. (orig.)

  11. Choice of excitation source for determination of rare earth elements with radioisotope excited X ray fluorescence

    International Nuclear Information System (INIS)

    Zhang Quanshi; Chang Yongfu

    2000-01-01

    The comparisons of two radioisotope source ( 241 Am and 238 Pu) which are the most available in the radioisotope excited X Ray Fluorescence (XRF) analysis technique and two characteristic X ray series (KX and LX) analyzed for the determination of the rare-earth (RE) elements were investigated in detail. According to the principle of emission and detection of X ray , the relative excitation efficiencies were calculated by the some fundamental physical parameters including the photoelectric mass attenuation coefficient, the fluorescent yield, the absorption jump factor, the emission probability of the detected fluorescent line with reference to other liens of the same series etc., The advantages and disadvantages of the two conditions are discussed. These results may determine the optimal excitation and detection conditions for different rare-earth elements. The experimental results with nine rare-earth elements (Ce, Nd, Sm, Tb, Tm, Ho, Er, Yb and Lu) are in agreement with the results of theoretical calculations

  12. X-ray fluorescence determination of cobalt in iron-manganese oceanic concretions

    International Nuclear Information System (INIS)

    Ivanenko, V.V.; Kustov, V.N.; Metelev, A.Yu.; Rakita, K.A.

    1989-01-01

    A method was developed for resolution of weak analytical lines for elements determined by radionuclide-excited X-ray fluorescence multi-element analysis. The method was used aboart for determining cobalt and some other commercially valuable elements in iron-manganese concretions of Pacific ocean 109 Cd was used as an ionizing radiation source

  13. Initial idea to use optical flats for x-ray fluorescence analysis and recent applications to diffraction studies

    International Nuclear Information System (INIS)

    Horiuchi, T.

    1993-01-01

    Described in this work is the initial idea of using an optical flat for X-ray fluorescence analysis based upon studies of anomalous surface reflection (ASR). To develop total-reflection X-ray fluorescence analysis (TXRF) as one of the most powerful tools for microchemical analysis, various experiments such as the micro-determinations of uranium in sea-water, iron in human blood and rare earth elements in hot spring-water were attempted. Furthermore, the physically interesting experiment on Compton scattering under total-reflection conditions was conducted. Recent applications of the total-reflection phenomenon to diffraction studies, i.e. total-reflection X-ray diffraction (TXRD), are also presented. (author)

  14. Non-scanning x-ray fluorescence microscope: application to real time micro-imaging

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.

    2000-01-01

    So far, x-ray fluorescence (XRF) micro-imaging has been performed by a 2D positional scan of a sample against a collimated beam. Obtaining information on specific elements in a nondestructive manner is an attractive prospect for many scientific applications. Furthermore, a synchrotron micro-beam can enhance the spatial resolution down to 0.1 μm. However, the total measuring time becomes quite long (a few hours to a half day), since one needs a number of scanning points in order to obtain a high-quality image. It is possible to obtain an x-ray image with 1 M pixels and with 20 μm resolution in a very short time of 20 sec - 3 min using a non-scanning XRF microscope, which is based on completely different concept. In the present report, we discuss the application of this technique to real time micro-imaging. The experiments were carried out at BL-4A, Photon Factory, Tsukuba, Japan. We employed a grazing-incidence arrangement to make primary x-rays illuminate the whole sample surface. We adopted parallel-beam optics and extremely-close-geometry in order to detect x-ray fluorescence with a CCD camera. The selective-excitation capability of tunable monochromatic synchrotron radiation is a feasible method for distinguishing the elements of interest. One can obtain an image of each element by differentiating the images obtained above and below the absorption edges of interest. The growth of metallic dendrites from a solution dropped on a substrate was studied successfully. Several different growth patterns, corresponding to concentration and other conditions for diffusion, were observed as x-ray images. Since the present technique requires only 40 sec for each shot, it is possible to record a growing process through repeated exposures like a movie. The authors would like to thank Prof. A. Iida (Photon Factory) for his valuable comments. (author)

  15. X-ray fluorescent scanning of the thyroid

    International Nuclear Information System (INIS)

    Jonckheer, M.H.; Deconinck, F.

    1983-01-01

    The main emphasis of the technical chapters of this monograph lies on the aspects which are of direct importance to thyroid scanning: the general principles of X-ray fluorescence, the choice and characteristics of appropriate sources and detectors, a stationary system, quantification problems, and the pitfalls in the interpretation of the intrathyroidal iodine imaging and quantification. The clinical part of the monograph consists of chapters on the role of stable iodine and the thyroid function, on endemic non-toxic goiter, on hyperthyroidism as a result of iodine overload, on feasibility of dynamic studies, on stable iodine stores in thyroiditis, and on a general review of the clinical usefulness of XRF in thyroid disease. (Auth.)

  16. Beer analysis by synchrotron radiation total reflection X-ray fluorescence (SR-TXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br; Zucchi, Orgheda L.D.A. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas de Ribeirao Preto]. E-mail: olzucchi@fcfrp.usp.br

    2005-07-01

    In this work the concentrations of P, S, Cl, K, Ca, Mn, Fe, Zn and Br in twenty-nine brands of national and international beers were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence analysis (SR-TXRF). The results were compared with the limits established by the Brazilian Legislation and the nutritive values established by National Agricultural Library (NAL). The measurements were performed at the X-ray Fluorescence Beamline at Synchrotron Light Source Laboratory, in Campinas, Sao Paulo, Brazil, using a polychromatic beam for excitation. A small volume of 5 {mu}L of sample beers containing just an internal standard, used to correct geometry effects, were analyzed without any pre-treatment. The measuring time was 100 s and the detection limits obtained varied from 1{mu}g.L{sup -1} for Mn and Fe to 15{mu}g.L{sup -1} for P. (author)

  17. Elemental analysis of bronze artifacts by muonic X-ray spectroscopy

    International Nuclear Information System (INIS)

    Ninomiya, Kazuhiko; Shinohara, Atsushi; Kubo, Michael K.; Strasser, Patrick; Nagatomo, Takashi; Kawamura, Naritoshi; Shimomura, Koichiro; Miyake, Yasuhiro; Kobayashi, Yoshio; Ishida, Katsuhiko; Higemoto, Wataru; Suzuki, Takao; Saito, Tsutomu

    2015-01-01

    A quantitative and multi-elemental analysis method for bulk samples based on muonic X-ray spectroscopy was applied to bronze artifacts (Tempo-Tsuho coins and a Seiun-kyo mirror). This method is based on the measurement of the characteristic high-energy muonic X-rays emitted in a sample after muon irradiation. The elemental compositions of these bronze artifacts were determined from muonic X-ray intensities in a non-destructive manner, using the relation between the muonic X-ray intensity and the elemental composition of the Cu–Sn–Pb alloy system. The analyzed values agreed well with those determined by X-ray fluorescence spectroscopy. We also estimated the detection limit of this method in the present experimental setup as 0.81 wt% of the background signal of the muonic X-ray spectra. (author)

  18. Applications of synchrotron-based X-ray fluorescence technique in materials science-possibilities at INDUS-2

    International Nuclear Information System (INIS)

    Tiwari, Manoj K.

    2016-01-01

    X-ray fluorescence (XRF) spectroscopy has seen remarkable progress over the last few decades. Numerous applications in basic and applied sciences demonstrate its importance. Various advantages of XRF technique have motivated us to construct a microfocus XRF beamline (BL-16) on Indus-2 national synchrotron radiation facility. The BL-16 beamline offers a wide range of usages - both from research laboratories and industries; and for researchers working in diverse fields. Apart from the fields of pure sciences like physics and chemistry, the beamline provides an attractive platform to exercise material science applications, interdisciplinary applied sciences like medical, forensic and environmental studies etc. In addition to micro-XRF characterization, BL-16 beamline allows a user to perform studies using other advanced synchrotron based experimental methodologies, viz; grazing incidence X-ray fluorescence (GIXRF) analysis, chemical speciation, near-edge absorption spectroscopy and X-ray reflectivity studies of thin layered materials etc. The combined XRR-GIXRF analysis feature of the BL-16 beamline offers a novel capability to perform GIXRF assisted depth resolved X-ray studies to investigate chemical state and electronic structure of the thin nano-structured materials. The design aspects and various salient features of the BL-16 beamline X-ray reflectometer will be presented along with the measured performance. (author)

  19. Energy dispersive soft X-ray fluorescence analysis by radioisotopic α-particle excitation

    International Nuclear Information System (INIS)

    Robertson, R.

    1977-01-01

    A Si(Li) X-ray detector system and 210 Po α-particle excitation source are combined to form a spectrometer for low energy X-rays. Its response in terms of Ksub(α) X-ray rate is shown for thick targets of elements from fluorine to copper. Potential applications of the equipment to useful quantitative elemental analysis of geological, biological and organic materials are explored. The results of analyses for oxygen and silicon in rocks and potassium in vegetation samples are included. A semi-empirical method of correcting for absorption and enhancement effects is employed. This is based upon X-ray production and photon absorption cross-sections taken from the literature and upon a minimal number of experimentally derived coefficients. (Auth.)

  20. X-ray fluorescence activities at Saha Institute of Nuclear Physics, India

    Indian Academy of Sciences (India)

    X-ray fluorescence (EDXRF) system was developed to analyse alloys by exposing them directly under the tube bremsstrahlung .... A detailed description of the analysis of these data is given in [11]. ..... samples were first dried, ground in an agate mortar with pestle, and if necessary, mixed with a binder to make pellets in a ...

  1. Fast, versatile x-ray fluorescence method for measuring tin in impregnated wood

    DEFF Research Database (Denmark)

    Drabæk, I.; Christensen, Leif Højslet

    1985-01-01

    The present paper describes an energy-dispersive x-ray fluorescence method for measuring tin in bis(tri-n-butyl)tin-oxide impregnated wood. The proposed method is of the backscatter/fundamental parameter type. Its versatility, precision, and accuracy is demonstrated by analyses of eleven samples...

  2. Direct analysis of biological samples by total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Lue M, Marco P.; Hernandez-Caraballo, Edwin A.

    2004-01-01

    The technique of total reflection X-ray fluorescence (TXRF) is well suited for the direct analysis of biological samples due to the low matrix interferences and simultaneous multi-element nature. Nevertheless, biological organic samples are frequently analysed after digestion procedures. The direct determination of analytes requires shorter analysis time, low reactive consumption and simplifies the whole analysis process. On the other hand, the biological/clinical samples are often available in minimal amounts and routine studies require the analysis of large number of samples. To overcome the difficulties associated with the analysis of organic samples, particularly of solid ones, different procedures of sample preparation and calibration to approach the direct analysis have been evaluated: (1) slurry sampling, (2) Compton peak standardization, (3) in situ microwave digestion, (4) in situ chemical modification and (5) direct analysis with internal standardization. Examples of analytical methods developed by our research group are discussed. Some of them have not been previously published, illustrating alternative strategies for coping with various problems that may be encountered in the direct analysis by total reflection X-ray fluorescence spectrometry

  3. L-shell x-ray fluorescence computed tomography (XFCT) imaging of Cisplatin

    International Nuclear Information System (INIS)

    Bazalova, Magdalena; Ahmad, Moiz; Pratx, Guillem; Xing, Lei

    2014-01-01

    X-ray fluorescence computed tomography (XFCT) imaging has been focused on the detection of K-shell x-rays. The potential utility of L-shell x-ray XFCT is, however, not well studied. Here we report the first Monte Carlo (MC) simulation of preclinical L-shell XFCT imaging of Cisplatin. We built MC models for both L- and K-shell XFCT with different excitation energies (15 and 30 keV for L-shell and 80 keV for K-shell XFCT). Two small-animal sized imaging phantoms of 2 and 4 cm diameter containing a series of objects of 0.6 to 2.7 mm in diameter at 0.7 to 16 mm depths with 10 to 250 µg mL −1  concentrations of Pt are used in the study. Transmitted and scattered x-rays were collected with photon-integrating transmission detector and photon-counting detector arc, respectively. Collected data were rearranged into XFCT and transmission CT sinograms for image reconstruction. XFCT images were reconstructed with filtered back-projection and with iterative maximum-likelihood expectation maximization without and with attenuation correction. While K-shell XFCT was capable of providing an accurate measurement of Cisplatin concentration, its sensitivity was 4.4 and 3.0 times lower than that of L-shell XFCT with 15 keV excitation beam for the 2 cm and 4 cm diameter phantom, respectively. With the inclusion of excitation and fluorescence beam attenuation correction, we found that L-shell XFCT was capable of providing fairly accurate information of Cisplatin concentration distribution. With a dose of 29 and 58 mGy, clinically relevant Cisplatin Pt concentrations of 10 µg mg −1  could be imaged with L-shell XFCT inside a 2 cm and 4 cm diameter object, respectively. (paper)

  4. Nondestructive, energy-dispersive x-ray fluorescence analysis of product-stream concentrations from reprocessed LWR fuels

    International Nuclear Information System (INIS)

    Camp, D.C.; Ruhter, W.D.; Benjamin, S.

    1979-01-01

    Energy-dispersive x-ray fluorescence analysis can be used for quantitative on-line monitoring of the product concentrations in single- or dual-element process streams in a reprocessing plant. The 122-keV gamma ray from 57 Co is used to excite the K x-rays of uranium and/or plutonium in nitric acid solution streams. A collimated HPGe detector is used to measure the excited x-ray intensities. Net solution radioactivity may be measured by eclipsing the exciting radiation, or by measuring it simultaneously with a second detector. The technique is nondestructive and noninvasive, and is easily adapted directly to pipes containing the solution of interest. The dynamic range of the technique extends from below 1 to 500 g/l. Measurement times depend on concentration, but better than 1% counting statistics can be obtained in 100 s for 400 g/l concentrations, and in 1000 s for as little as 10 g/l. Calibration accuracies of 0.3% or better over the entire dynamic range can be achieved easily using carefully prepared standards. Computer-based analysis equipment allows concentration changes in flowing streams to be dynamically monitored. Changes in acid normality of the stream will affect the concentration determined, hence it must also be determined by measuring the intensity of a transmitted 57 Co beam. The computer/disk-based pulse-height analysis system allows all necessary calculations to be done on-line. Experimental requirements for an in-plant installation or a test and evaluation are discussed

  5. New generation quantitative x-ray microscopy encompassing phase-contrast

    International Nuclear Information System (INIS)

    Wilkins, S.W.; Mayo, S.C.; Gureyev, T.E.; Miller, P.R.; Pogany, A.; Stevenson, A.W.; Gao, D.; Davis, T.J.; Parry, D.J.; Paganin, D.

    2000-01-01

    Full text: We briefly outline a new approach to X-ray ultramicroscopy using projection imaging in a scanning electron microscope (SEM). Compared to earlier approaches, the new approach offers spatial resolution of ≤0.1 micron and includes novel features such as: i) phase contrast to give additional sample information over a wide energy range, rapid phase/amplitude extraction algorithms to enable new real-time modes of microscopic imaging widespread applications are envisaged to fields such as materials science, biomedical research, and microelectronics device inspection. Some illustrative examples are presented. The quantitative methods described here are also very relevant to X-ray projection microscopy using synchrotron sources

  6. Diffraction peaks in x-ray spectroscopy: Friend or foe?

    International Nuclear Information System (INIS)

    Tissot, R.G.; Goehner, R.P.

    1992-01-01

    Diffraction peaks can occur as unidentifiable peaks in the energy spectrum of an x-ray spectrometric analysis. Recently, there has been increased interest in oriented polycrystalline films and epitaxial films on single crystal substrates for electronic applications. Since these materials diffract x-rays more efficiently than randomly oriented polycrystalline materials, diffraction peaks are being observed more frequently in x-ray fluorescent spectra. In addition, micro x-ray spectrometric analysis utilizes a small, intense, collimated x-ray beam that can yield well defined diffraction peaks. In some cases these diffraction peaks can occur at the same position as elemental peaks. These diffraction peaks, although a possible problem in qualitative and quantitative elemental analysis, can give very useful information about the crystallographic structure and orientation of the material being analyzed. The observed diffraction peaks are dependent on the geometry of the x-ray spectrometer, the degree of collimation and the distribution of wavelengths (energies) originating from the x-ray tube and striking the sample

  7. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    International Nuclear Information System (INIS)

    Havrilla, George J.; Gao, Ning

    2002-01-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites

  8. A new spectrometer for grazing incidence X-ray fluorescence for the characterization of Arsenic implants and Hf based high-k layers

    International Nuclear Information System (INIS)

    Ingerle, D.; Meirer, F.; Zoeger, N.; Pepponi, G.; Giubertoni, D.; Steinhauser, G.; Wobrauschek, P.; Streli, C.

    2010-01-01

    Grazing Incidence X-ray Fluorescence Analysis (GIXRF) is a powerful technique for depth-profiling and characterization of thin layers in depths up to a few hundred nanometers. By measurement of fluorescence signals at various incidence angles Grazing Incidence X-ray Fluorescence Analysis provides information on depth distribution and total dose of the elements in the layers. The technique is very sensitive even in depths of a few nanometers. As Grazing Incidence X-ray Fluorescence Analysis does not provide unambigous depth profile information and needs a realistic input depth profile for fitting, in the context of the EC funded European Integrated Activity of Excellence and Networking for Nano and Micro-Electronics Analysis (ANNA) Grazing Incidence X-ray Fluorescence Analysis is used as a complementary technique to Secondary Ion Mass Spectrometry (SIMS) for the characterization of Ultra Shallow Junctions (USJ). A measuring chamber was designed, constructed and tested to meet the requirements of Grazing Incidence X-ray Fluorescence Analysis. A measurement protocol was developed and tested. Some results for As implants as well as Hf based high k layers on Silicon are shown. For the determination of the bulk As content of the wafers, Instrumental Neutron Activation Analysis has also been applied for comparison.

  9. Energy-dispersive X-ray fluorescence analysis of traces of heavy metals (Mn, Fe, Co, Ni, Cu, Zn, Ta, Pb, U) in mineral waters after separation on the cellulose-exchanger Hyphan

    International Nuclear Information System (INIS)

    Burba, P.; Lieser, K.H.

    1979-01-01

    Trace elements in mineral water are separated in small columns on the cellulose-exchanger Hyphan, eluted by diluted hydrochloric acid, bound on 100 mg of Hyphan by shaking and determined by energy-dispersive X-ray fluorescence. The following heavy metals can be analysed quantitatively if present in water in concentrations >= 1 ppb: Mn, Fe, Co, Ni, Cu, Zn, Ta, Pb and U. Several commercial mineral waters, a sodium chloride spring and seawater were analyzed for trace elements. The results obtained by X-ray fluorescence and by atomic absorption agree within the limits of error. (orig.) [de

  10. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    Science.gov (United States)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  11. Microanalysis of old violin varnishes by total-reflection X-ray fluorescence

    Science.gov (United States)

    von Bohlen, Alex; Meyer, Friedrich

    1997-07-01

    Total reflection X-ray fluorescence was used to characterize elements (with Z>13) contained in varnishes applied by prominent violin makers during the last five centuries. Direct analyses of small flakes with masses varnish. Higher amounts of Fe, As and Pb were found in old products, Mn, Co, Cu, Zn and Pb were used in more recent varnishes.

  12. Rapid extraction and x-ray fluorescence determination of gold in rock

    International Nuclear Information System (INIS)

    Lobanov, F.I.; Logunova, S.A.; Popov, A.M.; Krasnopevtseva, E.V.

    1994-01-01

    The optimal conditions for gold extractional recovery by melts of aliphatic monocarboxylic acids mixtures (C ≥ 16) with additions of di-2-ethylhexyldithiophosphoric acid, di-n-oxtylsulfide and alkylaniline were determined. A rapid method of extraction and X-ray fluorescence detection of gold in the presence of considerable amounts of Fe, Cu, Pb, Cd, Zn and Bi was developed

  13. LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer.

    Science.gov (United States)

    Wrobel, Pawel; Czyzycki, Mateusz; Furman, Leszek; Kolasinski, Krzysztof; Lankosz, Marek; Mrenca, Alina; Samek, Lucyna; Wegrzynek, Dariusz

    2012-05-15

    Confocal micro-beam X-ray fluorescence microscope was constructed. The system was assembled from commercially available components - a low power X-ray tube source, polycapillary X-ray optics and silicon drift detector - controlled by an in-house developed LabVIEW software. A video camera coupled to optical microscope was utilized to display the area excited by X-ray beam. The camera image calibration and scan area definition software were also based entirely on LabVIEW code. Presently, the main area of application of the newly constructed spectrometer is 2-dimensional mapping of element distribution in environmental, biological and geological samples with micrometer spatial resolution. The hardware and the developed software can already handle volumetric 3-D confocal scans. In this work, a front panel graphical user interface as well as communication protocols between hardware components were described. Two applications of the spectrometer, to homogeneity testing of titanium layers and to imaging of various types of grains in air particulate matter collected on membrane filters, were presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Study of Cr/Sc-based multilayer reflecting mirrors using soft x-ray reflectivity and standing wave-enhanced x-ray fluorescence

    Science.gov (United States)

    Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe

    2017-11-01

    We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.

  15. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis.

    Science.gov (United States)

    Leonardo, T; Farhi, E; Boisson, A-M; Vial, J; Cloetens, P; Bohic, S; Rivasseau, C

    2014-02-01

    The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the

  16. Quantitative determination of alpha-quartz in airborne dust samples by x-ray diffraction

    International Nuclear Information System (INIS)

    Bayon, A.; Roca, M.

    1982-01-01

    The quantitative determination by X-ray diffractometry of alpha-quartz In airborne respirable dust samples on silver membrane filters is considered. A cobalt anode X-ray tube Is employed. NiO is used as Internal standard In order to compensate for both the variations of specimen absorption and the effect due to the nonuniformity of the incident X-ray beam and to the incomplete homogeneity on the filters of samples and standards. (Author) 17 refs

  17. Quantitative determination of alpha-quartz in airbone dust samples by X-ray diffraction

    International Nuclear Information System (INIS)

    Bayon, A.; Roca, M.

    1982-01-01

    The quantitative determination by X-ray diffractometry of alpha-quartz in airbone respirable dust samples on silver membrane filters is considered. A cobalt anode X-ray tube is employec. NiO is used as internal standard in order to compensate for both the variations of specimen absorption and the effect due to the nonuniformity of the incident X-ray beam and to the incomplete homogeneity on the filters of samples and standards. (auth.) [es

  18. The application of energy-dispersive x-ray fluorescence spectrometry (EDXRF) to the analysis of cosmetic evidence in Indian nail polishes

    International Nuclear Information System (INIS)

    Misra, G.; Sawhney, K.J.S.; Lodha, G.S.; Mittal, V.K.; Sahota, H.S.

    1992-01-01

    The application of energy-dispersive x-ray fluorescence (EDXRF) spectrometry in the quantitative analysis of samples of Indian nail polishes of apparently similar shades from different manufacturers has been examined by evaluating the possibility of detecting spurious material which is marketed under the guise of a popular brand. On the basis of the number of elements detected, and from the ratios of particular elements [Fe/Ti,Fe/Cu,Ti/Cu] the results are very encouraging. (author)

  19. The application of energy-dispersive x-ray fluorescence spectrometry (EDXRF) to the analysis of cosmetic evidence in Indian nail polishes

    Energy Technology Data Exchange (ETDEWEB)

    Misra, G. (Forensic Science Lab., Chandigarh (India)); Sawhney, K.J.S.; Lodha, G.S. (Nuclear Research Lab., Srinagar (India)); Mittal, V.K.; Sahota, H.S. (Punjabi Univ., Patiala (India). Dept. of Physics)

    1992-05-01

    The application of energy-dispersive x-ray fluorescence (EDXRF) spectrometry in the quantitative analysis of samples of Indian nail polishes of apparently similar shades from different manufacturers has been examined by evaluating the possibility of detecting spurious material which is marketed under the guise of a popular brand. On the basis of the number of elements detected, and from the ratios of particular elements (Fe/Ti,Fe/Cu,Ti/Cu) the results are very encouraging. (author).

  20. Radioisotope x-ray fluorescence and neutron activation analyses of the trace element concentrations of the rainbow trout

    International Nuclear Information System (INIS)

    Akyuz, T.; Bassari, A.; Bolcal, C.; Sener, E.; Yildiz, M.; Kucer, R.; Kaplan, Z.; Dogan, G.; Akyuz, S.

    1999-01-01

    The muscles and livers of the ten rainbow trouts (Oncorhynchus mykiss; N, 1752) obtained from Sapanca, Aquaculture Facility of Aquatic Products Faculty, The University of Istanbul (Turkey), have been analysed quantitatively for some minor elements using the radioisotope energy dispersive X-ray fluorescence (EDXRF) and neutron activation analysis (NAA) methods. It was found that samples contain Na, K, Ca, Sc, Cs, Fe, Co, Cu, Zn, Se, Br, Rb, Sr, Au, La and Ce in different amounts. Comparison of the results with those of reference river fish samples indicated that agricultural rainbow trout samples from Sapanca region have higher Fe level. (author)

  1. Radioisotope X-ray fluorescence and neutron activation analyses of the trace element concentrations of the rainbow trout

    Science.gov (United States)

    Akyuz, T.; Bassari, A.; Bolcal, C.; Sener, E.; Yildiz, M.; Kucer, R.; Kaplan, Z.; Dogan, G.; Akyuz, S.

    1999-01-01

    The muscles and livers of the ten rainbow trouts ( Oncorhynchus mykiss; N, 1752) obtained from Sapanca, Aquaculture Facility of Aquatic Products Faculty, The University of Istanbul (Turkey), have been analysed quantitatively for some minor elements using the radioisotope energy dispersive X-ray fluorescence (EDXRF) and neutron activation analysis (NAA) methods. It was found that samples contain Na, K, Ca, Sc, Cs, Fe, Co, Cu, Zn, Se, Br, Rb, Sr, Au, La and Ce in different amounts. Comparison of the results with those of reference river fish samples indicated that agricultural rainbow trout samples from Sapanca region have higher Fe level.

  2. Preparation of uranium standard solutions for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Wong, C.M.; Cate, J.L.; Pickles, W.L.

    1978-03-01

    A method has been developed for gravimetrically preparing uranium nitrate standards with an estimated mean error of 0.1% (1 sigma) and a maximum error of 0.2% (1 sigma) for the total uranium weight. Two source materials, depleted uranium dioxide powder and NBS Standard Reference Material 960 uranium metal, were used to prepare stock solutions. The NBS metal proved to be superior because of the small but inherent uncertainty in the stoichiometry of the uranium oxide. These solutions were used to prepare standards in a freeze-dried configuration suitable for x-ray fluorescence analysis. Both gravimetric and freeze-drying techniques are presented. Volumetric preparation was found to be unsatisfactory for 0.1% precision for the sample size of interest. One of the primary considerations in preparing uranium standards for x-ray fluorescence analysis is the development of a technique for dispensing a 50-μl aliquot of a standard solution with a precision of 0.1% and an accuracy of 0.1%. The method developed corrects for variation in aliquoting and for evaporation loss during weighing. Two sets, each containing 50 standards have been produced. One set has been retained by LLL and one set retained by the Savannah River project

  3. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    Science.gov (United States)

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  4. X-ray detector for a panoramic X-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, D; Ensslin, F H

    1976-01-15

    The discovery deals with an X-ray detector suitable for the controlling of panoramic X-ray systems. It consists of a fluorescent image screen and a semiconductor photo cell. The output signal of the detector is proportional to the intensity of the X-radiation and the response time is large enough to follow the change of amplitude of the contours of the modulated X radiation. The detector with band-pass filter regulates, via a control system, the moving rate of the X-ray source and of the film opposite it in dependence of the intensity, so that a uniform exposure is ensured.

  5. Pre-Columbian alloys from the royal tombs of Sipan; energy dispersive X-ray fluorescence analysis with a portable equipment

    International Nuclear Information System (INIS)

    Cesareo, R.; Calza, C.; Dos Anjos, M.; Lopes, R.T.; Bustamante, A.; Fabian S, J.; Alva, W.; Chero Z, L.

    2010-01-01

    On the north coast of present-day Peru flourished approximately between 50 and 700 AD, the Moche civilization. It was an advanced culture and the Moche were sophisticated metalsmiths, so that they are considered as the finest producers of jewels and artefacts of the region. The Moche metalworking ability was impressively demonstrated by the objects discovered by Walter Alva and coworkers in 1987, in the excavations of the 'Tumbas Reales de Sipan'. About 50 metal objects from these excavations, now at the namesake Museum, in Lambayeque, north of Peru, were analyzed with a portable equipment using energy-dispersive X-ray fluorescence. This portable equipment is mainly composed of a small size X-ray tube and a thermoelectrically cooled X-ray detector. Standard samples of gold and silver alloys were employed for quantitative analysis. It was determined that the analyzed artefacts from the 'Tumbas Reales de Sipan' are mainly composed of gold, silver and copper alloys, of gilded copper and of tumbaga, the last being a poor gold alloy enriched at the surface by depletion gilding, i.e. removing copper from the surface.

  6. Application of a radiation detector in the interdisciplinary study. 1. Portable fluorescent X-ray analysis using the Si-PIN photodiode

    International Nuclear Information System (INIS)

    Ito, Yutaka

    2000-01-01

    As a semiconductor used for X-ray detector has excellent resolution, it must be cooled by liquid nitrogen at its use, which is a limitation on its actual use and applications. Then, a compound detector with wider bandwidth such as CdTe and HgI 2 has conventionally been used to attempt to use the detector at room temperature. Here was adopted an Si-PIN photodiode for a representative small type semiconductor detector unnecessary for liquid nitrogen, to introduce small and portable fluorescent X-ray analyzer for its application. As Si-PIN can work at room temperature, it has large leak current and insufficiently spread empty phase, so it is used by cooling due to Peltier element and so on. Then, here was used an X-ray detector, XR-100CR of AMPTEK Inc. composed of Si-PIN photodiode and a Pre-AMP. And, for a portable fluorescent X-ray analyzer, the Si-PIN photodiode detector of AMPTEK Inc., and a closely sealed small radiation source of 50 μ Ci 241 Am for excitation of X-ray in specimen were used. Its working principle consists of excitation of elements in a specimen with X- and gamma-ray from 241 Am, and detection of emitted fluorescent X-ray with Si-PIN photodiode. (G.K.)

  7. Angle-resolved X-ray fluorescence spectrometry using synchrotron radiation at ELSA

    International Nuclear Information System (INIS)

    Schmitt, W.; Rothe, J.; Hormes, J.; Gries, W.H.

    1994-01-01

    Measurements on the centroid depth of ion-implanted phosphorus-in-silicon specimen by the method of angle-resolved, self-ratio X-ray fluorescence spectrometry (AR/SR/XFS) have been carried out using 'white' synchrotron radiation (SR). The measurements were performed using a modified wavelength-dispersive fluorescence spectrometer. Problems due to the use of SR, like carbonaceous specimen contamination and sample heating were overcome by flooding the specimen chamber with helium and by pre-absorbing the non-exciting parts of the incident SR with suitable filters, respectively. The decaying primary intensity was monitored by measuring the compensation current of the photoelectrons emitted from a tungsten wire stretched across the primary beam. Results have been obtained for specimen with dose density levels of 10 16 cm -2 and 3x10 15 cm -2 . (orig.)

  8. Stabilized x-ray generator power supply

    International Nuclear Information System (INIS)

    Saha, Subimal; Purushotham, K.V.; Bose, S.K.

    1986-01-01

    X-ray diffraction and X-ray fluorescence analysis are very much adopted in laboratories to determine the type and structure of the constituent compounds in solid materials, chemical composition of materials, stress developed on metals etc. These experiments need X-ray beam of fixed intensity and wave length. This can only be achieved by X-ray generator having highly stabilized tube voltage and tube current. This paper describes how X-ray tube high voltage and electron beam current are stabilized. This paper also highlights generation of X-rays, diffractometry and X-ray fluorescence analysis and their wide applications. Principle of operation for stabilizing the X-ray tube voltage and current, different protection circuits adopted, special features of the mains H.V. transformer and H.T. tank are described in this report. (author)

  9. Surface extended x-ray absorption fine structure of low-Z absorbates using fluorescence detection

    International Nuclear Information System (INIS)

    Stoehr, J.; Kollin, E.B.; Fischer, D.A.; Hastings, J.B.; Zaera, F.; Sette, F.

    1985-05-01

    Comparison of x-ray fluorescence yield (FY) and electron yield surface extended x-ray absorption fine structure spectra above the S K-edge for c(2 x 2) S on Ni(100) reveals an order of magnitude higher sensitivity of the FY technique. Using FY detection, thiophene (C 4 H 4 S) chemisorption on Ni(100) is studied with S coverages down to 0.08 monolayer. The molecule dissociates at temperatures as low as 100K by interaction with fourfold hollow Ni sites. Blocking of these sites by oxygen leaves the molecule intact

  10. Energy-dispersive X-ray fluorescence analysis of cerium in ferrosilicon

    International Nuclear Information System (INIS)

    Marbec, E.R.

    1987-01-01

    The cerium was determined in ferrosilicon samples by energy-dispersive X-ray fluorescence techniques (XRF) techniques, with a secondary target of gadolinium. The methods employed were: comparison and linear regression with reference materials with cerium concentration between 0.4 and 1.0%. The samples were prepared in the form of pellets and the analytical results are reported as an average of five determinations with a confidence limits at 95% probability. (Author) [es

  11. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    International Nuclear Information System (INIS)

    Conconi, M.S.; Gauna, M.R.; Serra, M.F.; Suarez, G.; Aglietti, E.F.; Rendtorff, N.M.

    2014-01-01

    The firing transformations of traditional (clay based) ceramics are of technological and archaeological interest, and are usually reported qualitatively or semi quantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite), the low crystalline (metakaolinite and/or spinel type pre-mullite) and glassy phases evolution of a triaxial (clay-quartz-feldspar) ceramic fired in a wide temperature range between 900 and 1300 deg C. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 deg C) spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy) phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and materials

  12. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Conconi, M.S.; Gauna, M.R.; Serra, M.F. [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC), Buenos Aires (Argentina); Suarez, G.; Aglietti, E.F.; Rendtorff, N.M., E-mail: rendtorff@cetmic.unlp.edu.ar [Universidad Nacional de La Plata (UNLP), Buenos Aires (Argentina). Fac. de Ciencias Exactas. Dept. de Quimica

    2014-10-15

    The firing transformations of traditional (clay based) ceramics are of technological and archaeological interest, and are usually reported qualitatively or semi quantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite), the low crystalline (metakaolinite and/or spinel type pre-mullite) and glassy phases evolution of a triaxial (clay-quartz-feldspar) ceramic fired in a wide temperature range between 900 and 1300 deg C. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 deg C) spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy) phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and materials

  13. A gas microstrip X-ray detector for soft energy fluorescence EXAFS

    CERN Document Server

    Smith, A D; Derbyshire, G E; Duxbury, D M; Lipp, J; Spill, E J; Stephenson, R

    2001-01-01

    Gas microstrip detectors have been previously developed by the particle physics community, where their robustness, compactness and high counting speed have been recognised. These features are particularly attractive to synchrotron radiation use. In this paper, we describe a gas microstrip detector employing multi-element readout and specifically developed for high count rate fluorescence EXAFS at soft X-ray energies below 4 keV.

  14. X-ray optics for scanning fluorescence microscopy and other applications

    International Nuclear Information System (INIS)

    Ryon, R.W.; Warburton, W.K.

    1992-05-01

    Scanning x-ray fluorescence microscopy is analogous to scanning electron microscopy. Maps of chemical element distribution are produced by scanning with a very small x-ray beam. Goal is to perform such scanning microscopy with resolution in the range of <1 to 10 μm, using standard laboratory x-ray tubes. We are investigating mirror optics in the Kirkpatrick-Baez (K-B) configuration. K-B optics uses two curved mirrors mounted orthogonally along the optical axis. The first mirror provides vertical focus, the second mirror provides horizontal focus. We have used two types of mirrors: synthetic multilayers and crystals. Multilayer mirrors are used with lower energy radiation such as Cu Kα. At higher energies such as Ag Kα, silicon wafers are used in order to increase the incidence angles and thereby the photon collection efficiency. In order to increase the surface area of multilayers which reflects x-rays at the Bragg angle, we have designed mirrors with the spacing between layers graded along the optic axis in order to compensate for the changing angle of incidence. Likewise, to achieve a large reflecting surface with silicon, the wafers are placed on a specially designed lever arm which is bent into a log spiral by applying force at one end. In this way, the same diffracting angle is maintained over the entire surface of the wafer, providing a large solid angle for photon collection

  15. A note on the assay of special nuclear materials in solution by x-ray fluorescence

    International Nuclear Information System (INIS)

    Canada, T.R.; Hsue, S.T.

    1982-01-01

    Presents a formulation that allows empirical results of the ''internal standard'' approach to be understood in a quantifiable manner, and suggests an alternative measurement procedure that removes many of the technique's undesirable features while maintaining those that add to instrumental accuracy. Assumes that the reader is familiar with x-ray fluorescence (XRF) technology. Promises a more detailed presentation, including proof-of-principle experimental results, in the future. Points out that practical applications of this approach may be achieved with both K- and L-x-ray fluorescence. Concludes that the formulation and alternative measurement procedure suggested indicates that the ''internal standard'' approach may be improved by making measurements at one or more additional x-ray energies of the element to be assayed. Effects of solution acidity variations and the relative concentrations of plutonium and uranium may be avoided. Because of the inherent stability of ratio techniques, little or no modification to this formulation is anticipated for cylindrical near-field geometries

  16. Quantum electrodynamics of the internal source x-ray holographies: Bremsstrahlung, fluorescence, and multiple-energy x-ray holography

    International Nuclear Information System (INIS)

    Miller, G.A.; Sorensen, L.B.

    1997-01-01

    Quantum electrodynamics (QED) is used to derive the differential cross sections measured in the three new experimental internal source ensemble x-ray holographies: bremsstrahlung (BXH), fluorescence (XFH), and multiple-energy (MEXH) x-ray holography. The polarization dependence of the BXH cross section is also obtained. For BXH, we study analytically and numerically the possible effects of the virtual photons and electrons which enter QED calculations in summing over the intermediate states. For the low photon and electron energies used in the current experiments, we show that the virtual intermediate states produce only very small effects. This is because the uncertainty principle limits the distance that the virtual particles can propagate to be much shorter than the separation between the regions of high electron density in the adjacent atoms. We also find that using the asymptotic form of the scattering wave function causes about a 5 10% error for near forward scattering. copyright 1997 The American Physical Society

  17. Studies of some alloys using x-ray fluorescence

    International Nuclear Information System (INIS)

    Elmahi, Elamin Musaid

    1997-01-01

    In this project an attempt has been made for the study of alloys commonly used using x-ray fluorescence ( XRF ) technique. The alloys selected for the study included gold jewellery, steels, brasses and coins. The XRF method proved to be simple, fast, non-destructive and reliable as compared to chemical methods. The results showed that most of the gold jewellery used in this country have carat value of 18 and 21. Also most coins used in different countries are alloys of Cu and Ni. A simple spark method was used for the determination of C in steels, since C is not possible to analyze by XRF. ( Author )

  18. Elemental Composition of Mars Return Samples Using X-Ray Fluorescence Imaging at the National Synchrotron Light Source II

    Science.gov (United States)

    Thieme, J.; Hurowitz, J. A.; Schoonen, M. A.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    NSLS-II at BNL provides a unique and critical capability to perform assessments of the elemental composition and the chemical state of Mars returned samples using synchrotron radiation X-ray fluorescence imaging and X-ray absorption spectroscopy.

  19. Kα resonance fluorescence in Al, Ti, Cu and potential applications for X-ray sources

    Science.gov (United States)

    Nahar, Sultana N.; Pradhan, Anil K.

    2015-04-01

    The Kα resonance fluorescence (RFL) effect via photoabsorptions of inner shell electrons as the element goes through multiple ionization states is studied. We demonstrate that the resonances observed recently in Kα (1s-2p) fluorescence in aluminum plasmas by using a high-intensity X-ray free-electron laser [1] are basically K-shell resonances in hollow atoms going through multiple ionization states at resonant energies as predicted earlier for gold and iron ions [2]. These resonances are formed below the K-shell ionization edge and shift toward higher energies with ionization states, as observed. Fluorescence emission intensities depend on transition probabilities for each ionization stage of the given element for all possible Kα (1 s → 2 p) transition arrays. The present calculations for resonant photoabsorptions of Kα photons in Al have reproduced experimentally observed features. Resonant cross sections and absorption coefficients are presented for possible observation of Kα RFL in the resonant energy ranges of 4.5-5.0 keV for Ti ions and 8.0-8.7 keV for Cu ions respectively. We suggest that theoretically the Kα RFL process may be driven to enhance the Auger cycle by a twin-beam monochromatic X-ray source, tuned to the K-edge and Kα energies, with potential applications such as the development of narrow-band biomedical X-ray devices.

  20. Quantitative 3D elemental analysis inside plant roots by means of synchrotron confocal micro X-ray fluorescence

    Science.gov (United States)

    Terzano, R.; Vekemans, B.; Tomasi, N.; Spagnuolo, M.; Schoonjans, T.; Vincze, L.; Pinton, R.; Cesco, S.; Ruggiero, P.

    2009-04-01

    The knowledge of the distribution and concentration of elements within plants is a fundamental step to better understand how these plants uptake specific elements from the medium of growth and how they manage acquisition and compartmentalisation of nutrients as well as toxic metals. For some elements, either nutrients or toxicants, it can be of relevance to know their concentration level within microscopic volumes in plant organs, where they are stored or accumulated. Usually, this type of microscopic analysis requires complex cutting procedures and extensive sample manipulations. In this research, the technique of synchrotron micro X-ray fluorescence in the confocal mode was applied to image the distribution of elements in selected key-planes of tomato roots without the need of any sample preparation, except washing and freeze-drying. Using this method, a first polycapillary lens focussed the X-ray beam with an energy of 12.4 keV down to a 20 µm beam that is penetrating the sample, and a second polycapillary half-lens, that was positioned at the detection side at 90 degrees to the first polycapillary, could then restrict further the view on this irradiated volume to a defined microscopic volume (typically 20x20x20 µm3) from which the induced fluorescent radiation is finally collected by the energy dispersive detector. In this way, it was possible to investigate the concentration levels of some elements such as K, Ca, Mn, Fe, Cu and Zn within the roots of tomato plants. The quantification was performed by means of a dedicated XRF Fundamental Parameter (FP) method in order to calculate the concentrations of trace elements within the analysed plants. Utilizing fundamental atomic parameters, the applied FP method is taking into account the influence of sample self-absorption and especially the specific detection processes by the polycapillary lens. Quantification was assessed and validated by using different standards: NIST SRM 1573a (trace elements in tomato leaves

  1. Fluorescent x-ray computed tomography with synchrotron radiation using fan collimator

    Science.gov (United States)

    Takeda, Tohoru; Akiba, Masahiro; Yuasa, Tetsuya; Kazama, Masahiro; Hoshino, Atsunori; Watanabe, Yuuki; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji

    1996-04-01

    We describe a new system of fluorescent x-ray computed tomography applied to image nonradioactive contrast materials in vivo. The system operates on the basis of computed tomography (CT) of the first generation. The experiment was also simulated using the Monte Carlo method. The research was carried out at the BLNE-5A bending-magnet beam line of the Tristan Accumulation Ring in Kek, Japan. An acrylic cylindrical phantom containing five paraxial channels of 5 and 4 mm diameters was imaged. The channels were filled with a diluted iodine-based contrast material, with iodine concentrations of 2 mg/ml and 500 (mu) g/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated clearly the K(alpha ) and K(beta 1) x-ray fluorescent lines, and the Compton scattering. CT images were reconstructed from projections generated by integrating the counts in these spectral lines. The method had adequate sensitivity and detection power, as shown by the experiment and predicted by the simulations, to show the iodine content of the phantom channels, which corresponded to 1 and 4 (mu) g iodine content per pixel in the reconstructed images.

  2. X-ray fluorescence analysis of ancient and medieval brass artifacts from south Moravia

    Czech Academy of Sciences Publication Activity Database

    Hložek, M.; Komoróczy, Balázs; Trojek, T.

    2012-01-01

    Roč. 7, č. 70 (2012), s. 1250-1253 ISSN 0969-8043 Institutional research plan: CEZ:AV0Z80010507 Institutional support: RVO:68081758 Keywords : x-ray fluorescence analysis * brass * Moravia Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 1.179, year: 2012

  3. Quantitative determination of mineral composition by powder X-ray diffraction

    International Nuclear Information System (INIS)

    Pawloski, G.A.

    1986-01-01

    A method is described of quantitatively determining the mineral composition in a test sample containing a number (m) of minerals from a group (n) of known minerals, wherein n=13, where mless than or equal ton, by x-ray diffraction, comprising: determining from standard samples of the known minerals a set of (n) standard coefficients K/sub j/=(X/sub j//X/sub l/)(I/sub l//I/sub j/) for each mineral (j=2...n) in the group of known minerals (j=2...n) relative to one mineral (l) in the group selected as a reference mineral, where X is the weight fraction of the mineral in a standard sample, and I is the x-ray integrated intensity peak of each mineral obtained from the standard sample; obtaining an x-ray diffraction pattern of the test sample; identifying each of the (m) minerals in the test sample for the x-ray diffraction pattern; calculating the relative weight fractions X/sub j//X/sub l/ for each mineral (j=2...m) compared to the reference mineral (l) from the ratio of the measured highest integrated intensity peak I/sub j/ of each mineral in the test sample to the measured highest integrated intensity peak I/sub l/ of the reference mineral in the test sample, and from the previously determined standard coefficients, X/sub j//X/sub l/=K/sub j/(I/sub j//I/sub l/

  4. The method of quantitative X-ray microanalysis of fine inclusions in copper

    International Nuclear Information System (INIS)

    Morawiec, H.; Kubica, L.; Piszczek, J.

    1978-01-01

    The method of correction for the matrix effect in quantitative x-ray microanalysis was presented. The application of the method was discussed on the example of quantitative analysis of fine inclusions of Cu 2 S and Cu 2 O in copper. (author)

  5. Application of the Total Reflection X-ray Fluorescence technique to trace elements determination in tobacco

    International Nuclear Information System (INIS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2008-01-01

    Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples

  6. Application of the Total Reflection X-ray Fluorescence technique to trace elements determination in tobacco

    Science.gov (United States)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2008-12-01

    Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples.

  7. Energy dispersive X-ray fluorescence analysis with Bragg polarized Mo radiation. Energiedispersive Roentgenfluoreszenzanalyse mit Bragg-polarisierter Mo Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckl, H

    1983-01-01

    The aim of introducing energy dispersive analysis into X-ray fluorescence analysis is to suppress background from the Bremsstrahlung spectrum and the characteristic radiation without an undue reduction of the signal. The variant under consideration uses linearly polarization radiation obtained after a Bragg reflection,under delta = 90/sup 0/. In an introductory part, Bragg reflection, fluorescence and strong radiation are considered quantitatively with respect to counting statistics and detection limits. In the experimental part two combinations are describe, of a Ta crystal with a Cr tube and of a Mo crystal with a Mo tube. Details of adjustment, sample preparation and calibration and detection limits are given. The pros and cons of the Ta/Cr and the Mo/Mo are contrasted and proposals for further improvements are given.

  8. Trace elements determination in red and white wines using total-reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Anjos, M.J.; Lopes, R.T.; Jesus, E.F.O. de; Moreira, S.; Barroso, R.C.; Castro, C.R.F.

    2003-01-01

    Several wines produced in different regions from south of Brazil and available in markets in Rio de Janeiro were analyzed for their contents of elements such as: P, S, Cl, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Rb and Sr. Multi-element analysis was possible with simple sample preparation and subsequent analysis by total-reflection X-ray fluorescence using synchrotron radiation. The measurement was carried at the X-ray fluorescence beamline in the Synchrotron Light Source Laboratory in Campinas, Brazil. The levels of the various elements obtained were lower in the Brazilian wines than the values generally found in the literature. The present study indicates the capability of multi-element analysis for determining the contents of various elements present in wines coming from Brazil vineyards by using a simple, sensitive and precise method

  9. X-ray proportional counter for the Viking Lander

    International Nuclear Information System (INIS)

    Glesius, F.L.; Kroon, J.C.; Castro, A.J.; Clark, B.C.

    1978-01-01

    A set of four sealed proportional counters with optimized energy response is employed in the X-ray fluorescence spectrometer units aboard the two Viking Landers. The instruments have provided quantitative elemental analyses of soil samples taken from the Martian surface. This paper discusses the design and development of these miniature proportional counters, and describes their performance on Mars

  10. Elemental investigation on Spanish dinosaur bones by x-ray fluorescence

    International Nuclear Information System (INIS)

    Brunetti, Antonio; Golosio, Bruno; Stegel, Giovanni; Piga, Giampaolo; Lasio, Barbara; Oliva, Piernicola; Enzo, Stefano

    2013-01-01

    In this paper we examine the chemical composition results obtained on a collection of 18 dinosaur fossil bones from Spain studied using a portable x-ray fluorescence spectrometer together with a reverse Monte Carlo numerical technique of data analysis. This approach is applied to the hypothesis of arbitrarily rough surfaces in order to account for the influence of the surface state of specimens on the chemical content evaluation. It is confirmed that the chemical content of elements is essential for understanding the changes brought about by diagenetic and taphonomic processes. However, for precise knowledge of what changes fossil bones have undergone after animal life and burial, it is necessary to use a multi-technique approach making use of other instruments like x-ray diffraction in order to describe accurately the transformations undergone by the mineralogical and bioinorganic phases and the properties of specific molecular groups. (paper)

  11. Total reflection X-ray fluorescence and archaeometry: Application in the Argentinean cultural heritage

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, Cristina [Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); Laboratorio de Quimica de Sistemas Heterogeneos, Facultad de Ingenieria, Universidad de Buenos Aires, P. Colon 850 (C1063ACU), Buenos Aires (Argentina)], E-mail: Cristina.Vazquez@cnea.gov.ar; Albornoz, Ana [Agencia Rio Negro Cultura, Museo de la Patagonia F.P.Moreno, Centro Civico s/n Bariloche, Rio Negro (Argentina); Hajduk, Adam [CONICET, Museo de la Patagonia F.P.Moreno, Centro Civico s/n Bariloche, Rio Negro (Argentina); Elkin, Dolores [CONICET Instituto Nacional de Antropologia y Pensamiento Latinoamericano, 3 de febrero 1378 (C1426AEL) Buenos Aires (Argentina); Custo, Graciela; Obrustky, Alba [Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina)

    2008-12-15

    Archaeometry is an interdisciplinary research area involved in the development and use of scientific methods in order to answer questions concerned with the human history. In this way the knowledge of archaeological objects through advanced chemical and physical analyses permits a better preservation and conservation of the cultural heritage and also reveals materials and technologies used in the past. In this sense, analytical techniques play an important role in order to provide chemical information about cultural objects. Considering the non destructive characteristic of this study, analytical techniques must be adequate in order to prevent any alteration or damage and in addition to allow the conservation of their integrity. Taking into account the irreplaceable character of the archaeological and artistic materials considered in this study, analytical techniques must be adequate in order to prevent any alteration or damage and in addition to allow the conservation of their integrity. Total Reflection X-ray Fluorescence Spectrometry as a geometric variant of conventional X-ray fluorescence is a proved microanalytical technique considering the small amount of sample required for the analysis. A few micrograms are enough in order to reveal valuable information about elemental composition and in this context it is highly recommended for artwork studies. In this paper a case study is presented in which Total Reflection X-Ray Fluorescence Spectrometry has been successfully employed in the archaeometry field. Examples from Argentinean cultural heritage sites related with the determination of pigments in paintings on canvas and in rock sites as well as in underwater archaeology research are shown.

  12. Extraction X-ray fluorescence determination of gold in natural samples

    International Nuclear Information System (INIS)

    Dmitriev, S.N.; Shishkina, T.V.; Zhuravleva, E.L.; Chimehg, Zh.

    1990-01-01

    The behaviour of gold and other elements impeding its X-ray fluorescence (XRF) determination, namely, of zinc, lead, and arsenic, has been studied during their extraction by TBP from hydrochloric, nitric, and aqua regia solutions using solid extractant (SE(TBP)). Gold extraction from pulps after aqua regia leaching, with the gold distribution coefficient (D) being equal to about 10 4 , was observed as the most favourable one for the quantitative and selective recovery of gold. For extraction from hydrochloric solutions the D Au value does not depend on the gold content of initial solutions (10 -8 - 10 -4 M), but it decreases substantially with increasing extraction temperature (from 5x10 5 at 20 deg C to 9x10 3 at 70 deg C). An anomalously high distribution coefficient of lead (D Pb =10 3 ) was observed during extraction from hydrochloric solutions in the presence of chlorine. This fact could be explained by the formation of the chlorocomplexes of lead (IV). The XRF method of gold determination in natural samples has been developed, which includes the aqua regia decomposition of the samples, recovery of gold from the pulp after its leaching by SE(TBP) and back - extraction using a 0.025 M hot thiourea solution providing a thin sample film for secondary XRF spectrometry. For 25 g of the sample material the limit of determination is set at 0.01 g per ton (10 -6 %). The accuracy of the technique has been checked on different reference materials. The results agree within 10%. 16 refs.; 5 figs.; 1 tab

  13. Identification of ginseng root using quantitative X-ray microtomography

    Directory of Open Access Journals (Sweden)

    Linlin Ye

    2017-07-01

    Conclusion: This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

  14. Development of a portable fluorescent X-ray analyser and its application to the study on cultural properties

    International Nuclear Information System (INIS)

    Ito, Yutaka; Imamura, Mineo; Kanba, Nobuyuki

    1999-01-01

    X-ray fluorescence analysis is well recognized as an effective tool for archaeometric analysis. For examples elemental compositions provide the researchers with basic information on the materials involved in the cultural properties under study and thus provide a clue to its historical background. The same information is also essential when the conservators try to preserve cultural properties. In this paper we studied a portable and inexpensive system for X-ray fluorescence analysis, making use of a small Si-PIN diode spectrometer. The system is convenient for the study of cultural properties in the outdoors. (author)

  15. Topics: in vivo measurement of thyroidal iodine content by x-ray fluorescent technique

    International Nuclear Information System (INIS)

    Imamura, Keiko

    1979-01-01

    Thyroidal iodine content gives useful informations in the fields of physiology, clinical medicine, health physics etc. Iodine content has been determined mainly for resected thyroids. Recently, x-ray fluorescent analysis has been extended as the in vivo technique first in the clinical medicine. Exciting sources used for the analysis of the thyroid are Am-241 or x-ray tube. Am-241 has a half-life of 438 years and emits #betta#-ray of 60 keV. Thyroid can be imaged by fluorescent scan utilizing strong (10 - 15 Ci) Am-241 source. Examination time is about 15 min and the radiation dose to the gland is about 15 - 60 mrad. Iodine content is determined by static fluorescent technique equipped with weaker source of less than 1 Ci. Thyroidal iodine content in normal subjects were analysed by this technique and the results were in good accordance with those obtained by in vitro analysis. Difference in the thyroidal iodine content between the Japanese population and other countries is not clear. Application to the pathological cases has provided many findings about the iodine content and its distribution which could not be obtained by in vitro analysis. This in vivo technique can be safely performed for infants and for pregnancies, and the relatively compact size of this apparatus could be widely used in the study of health physics and environmental problems. (author)

  16. Development and testing of an X-ray fluorescence source holder

    International Nuclear Information System (INIS)

    Csikai, J.

    1983-02-01

    For elemental analysis of low Z materials, the techniques of radioisotope excited X-ray emission was improved by the application of a vacuum chamber permitting the analysis of several samples without destroying the vacuum. The optimal geometry was determined, and the chamber designed and constructed to allow improved quantitative analysis of elements with Z<25. The contents of Ar in air permits the easy monitoring of the vacuum in the chamber, as this gas is also excited and emits characteristic X-rays. To maintain a low vacuum on the top of a solid-state detector, is important in laboratories with a high relative humidity, which can be detrimental to the thin Be window of the detector

  17. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  18. Quantitative method of X-ray diffraction phase analysis of building materials

    International Nuclear Information System (INIS)

    Czuba, J.; Dziedzic, A.

    1978-01-01

    Quantitative method of X-ray diffraction phase analysis of building materials, with use of internal standard, has been presented. The errors committed by determining the content of particular phases have been also given. (author)

  19. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.; Scott, H. A.; Biener, M. M.; Fein, J. R.; Fournier, K. B.; Gamboa, E. J.; Kemp, G. E.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J. -E.; Wan, W. C.; Drake, R. P.

    2016-09-28

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  20. SAVLOC, computer program for automatic control and analysis of X-ray fluorescence experiments

    Science.gov (United States)

    Leonard, R. F.

    1977-01-01

    A program for a PDP-15 computer is presented which provides for control and analysis of trace element determinations by using X-ray fluorescence. The program simultaneously handles data accumulation for one sample and analysis of data from previous samples. Data accumulation consists of sample changing, timing, and data storage. Analysis requires the locating of peaks in X-ray spectra, determination of intensities of peaks, identification of origins of peaks, and determination of a real density of the element responsible for each peak. The program may be run in either a manual (supervised) mode or an automatic (unsupervised) mode.

  1. Synchrotron Radiation and Energy Dispersive X-Ray Fluorescence Applications on Elemental Distribution in Human Hair and Bones

    International Nuclear Information System (INIS)

    Carvalho, M.L.; Marques, A.F.; Brito, J.

    2003-01-01

    This work is an application of synchrotron microprobe X- Ray fluorescence in order to study elemental distribution along human hair samples of contemporary citizens. Furthermore, X-Ray fluorescence spectrometry is also used to analyse human bones of different historical periods: Neolithic and contemporary subjects. The elemental content in the bones allowed us to conclude about environmental contamination, dietary habits and health status influence in the corresponding citizens. All samples were collected post-mortem. Quantitative analysis was performed for Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr and Pb. Mn and Fe concentration were much higher in bones from pre-historic periods. On the contrary, Pb bone concentrations of contemporary subjects are much higher than in pre-historical ones, reaching 100 μg g-1, in some cases. Very low concentrations for Co, Ni, Br and Rb were found in all the analysed samples. Cu concentrations, allows to distinguish Chalcolithic bones from the Neolithic ones. The distribution of trace elements along human hair was studied for Pb and the obtained pattern was consistent with the theoretical model, based on the diffusion of this element from the root and along the hair. Therefore, the higher concentrations in hair for Pb of contemporary individuals were also observed in the bones of citizens of the same sampling sites. All samples were analysed directly without any chemical treatment

  2. Monitoring the mass of UF6 gas and uranium deposits in aluminium pipes using X-ray fluorescence and X-ray transmission gauges

    International Nuclear Information System (INIS)

    Packer, T.W.; Smith, S.M.

    1984-12-01

    In order to determine the enrichment of UF 6 gas in centrifuge plant pipework it is necessary to measure the mass of the gas (pressure) and the mass per unit area of any uranium deposited on the pipe. This paper shows that it is possible to determine the pressure of the UF 6 gas in pipes 120 mm in diameter using an energy-dispersive X-ray fluorescence spectrometer. Results are also given of transmission measurements made using a low power X-ray generator operated at two different applied voltages. A method of using the two measurements to determine the mass per unit area of deposited uranium is described. (author)

  3. Correction for interelement effect in X-Ray fluorescence analysis of trace elements in geological materials

    International Nuclear Information System (INIS)

    El-Behay, A.Z.; Attawiya, M.Y.; Khattab, F.M.

    1984-01-01

    In a trial to obtain accurate results from X-ray fluorescence technique for the analysis of trace elements in geological materials, two corrections were used for the obtained data, namely, correction for the observed x-ray intensities for absorption and/or enhancement effects due to the presence of other elements in the system and correction for spectral deconvolution to account for the overlapping lines. Significant improvement in the precision and accuracy was obtained and evaluated

  4. Rapid Chemometric X-Ray Fluorescence approaches for spectral Diagnostics of Cancer utilizing Tissue Trace Metals and Speciation profiles

    International Nuclear Information System (INIS)

    Okonda, J.J.

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectroscopy is an analytical method for identification and quantification of elements in materials by measurement of their spectral energy and intensity. EDXRFS spectroscopic technique involves simultaneous non-invasive acquisition of both fluorescence and scatter spectra from samples for quantitative determination of trace elemental content in complex matrix materials. The objective is develop a chemometric-aided EDXRFS method for rapid diagnosis of cancer and its severity (staging) based on analysis of trace elements (Cu, Zn, Fe, Se and Mn), their speciation and multivariate alterations of the elements in cancerous body tissue samples as cancer biomarkers. The quest for early diagnosis of cancer is based on the fact that early intervention translates to higher survival rate and better quality of life. Chemometric aided EDXRFS cancer diagnostic model has been evaluated as a direct and rapid superior alternative for the traditional quantitative methods used in XRF such as FP method. PCA results of cultured samples indicate that it is possible to characterize cancer at early and late stage of development based on trace elemental profiles

  5. Energy-dispersive X-ray fluorescence spectrometry of industrial paint samples

    International Nuclear Information System (INIS)

    Christensen, L.H.; Drabaek, I.

    1986-01-01

    An energy-dispersive X-ray fluorescence method for the direct, simultaneous determination of major and minor elements in coatings is described. The method relies on the back-scatter/fundamental parameter concept and provides a general solution to matrix problems. The method has been implemented and verified on spectrometers based both on tube excitation and radioisotope excitation. Results demonstrating some performance characteristics are presented. Sample inhomogeneity problems that impede quantification of low-Z elements in some types of paint are discussed. (Auth.)

  6. TU-A-9A-05: First Experimental Demonstration of the Anisotropic Detection Principle in X-Ray Fluorescence Computed Tomography

    International Nuclear Information System (INIS)

    Ahmad, M; Bazalova, M; Fahrig, R; Xing, L

    2014-01-01

    Purpose: To improve the sensitivity of X-ray fluorescence computed tomography (XFCT) for in vivo molecular imaging. Is the maximum sensitivity achieved with an isotropic (4π) detector configuration? We prove that this is not necessarily true, and that a greater sensitivity is possible with anisotropic detector configuration. Methods: An XFCT imaging system was constructed consisting of 1) a collimated pencil beam x-ray source using a fluoroscopy grade x-ray tube; 2) a CdTe x-ray photon counting detector to detect fluorescent x-rays; and 3) a rotation/translation stage for tomographic imaging. We created a 6.5-cm diameter water phantom with 2-cm inserts of low gold concentration (0.25%–1%) to simulate tumors targeted by gold nano-particles. The placement of x-ray fluorescence detector were chosen to minimize scatter x-rays. XFCT imaging was performed at three different detector positions (60°, 90°, 145°) to determine the impact of forward-scatter, side-scatter, and back-scatter on imaging performance. The three data sets were also combined to estimate the imaging performance with an isotropic detector. Results: The highest imaging performance was achieved when the XF detector was in the backscatter 145° configuration. The signal-to-noise ratio (SNR) was 5.5 for the 0.25% gold concentration compared to SNRs of 1.4, 0, and 2.4 for 60°, 90°, and combined (60°+90°+145°) datasets. Only the 145° detector arrangement alone could detect the 0.25% concentration. The imaging dose was 14 mGy for each detector arrangement experiment. Conclusion: This study experimentally proves, for the fist time, the Anisotropic Detection Principle in XF imaging, which holds that optimized anisotropic x-ray fluorescence detection provides greater sensitivity than isotropic detection. The optimized detection arrangement was used to improve the sensitivity of the XFCT experiment. The achieved XFCT sensitivity is the highest ever for a phantom at least this large using a benchtop x-ray

  7. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods

    Directory of Open Access Journals (Sweden)

    M. S. Conconi

    2014-12-01

    Full Text Available The firing transformations of traditional (clay based ceramics are of technological and archeological interest, and are usually reported qualitatively or semiquantitatively. These kinds of systems present an important complexity, especially for X-ray diffraction techniques, due to the presence of fully crystalline, low crystalline and amorphous phases. In this article we present the results of a qualitative and quantitative X-ray diffraction Rietveld analysis of the fully crystalline (kaolinite, quartz, cristobalite, feldspars and/or mullite, the low crystalline (metakaolinite and/or spinel type pre-mullite and glassy phases evolution of a triaxial (clay-quartz-feldspar ceramic fired in a wide temperature range between 900 and 1300 ºC. The employed methodology to determine low crystalline and glassy phase abundances is based in a combination of the internal standard method and the use of a nanocrystalline model where the long-range order is lost, respectively. A preliminary sintering characterization was carried out by contraction, density and porosity evolution with the firing temperature. Simultaneous thermo-gravimetric and differential thermal analysis was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, the quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed. The kaolinite decomposition into metakaolinite was determined quantitatively; the intermediate (980 ºC spinel type alumino-silicate formation was also quantified; the incongruent fusion of the potash feldspar was observed and quantified together with the final mullitization and the amorphous (glassy phase formation.The methodology used to analyze the X-ray diffraction patterns proved to be suitable to evaluate quantitatively the thermal transformations that occur in a complex system like the triaxial ceramics. The evaluated phases can be easily correlated with the processing variables and

  8. Analysis of metals in organic compounds by energy dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Anjos, Marcelino J.; Lopes, Ricardo T.; Jesus, Edgar F.O. de

    2000-01-01

    Using energy dispersive X-ray fluorescence analysis with an X-ray tube filtered with Ti. It was possible to determine the concentration of the elements at ppm level of several elements: K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn As, Rb, Sr, Y, Zr, and Pb in two types of organic compound enough used in the agriculture: organic compound of urban garbage (Fertilurb) and aviary bed (birds manure). The experimental setup is composed of: x-ray tube (Oxford, 30 kV, 50 μA and W anode), an ORTEC Si-Li detector, with an energy resolution of about 180 eV at 5.9 keV and an ORTEC multichannel-analyser. The X-ray beam is quasi- monochromatic by using Ti filter. The samples were prepared in pellet form with superficial density in the range of 100 mg/cm 2 . The fundamental parameter method was used in order to verify the elemental concentration. The radiation transmission method was going used to the radiation absorption effects correction in the samples. (author)

  9. Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum

    Science.gov (United States)

    Mikhailov, I. F.; Baturin, A. A.; Mikhailov, A. I.; Borisova, S. S.; Fomina, L. P.

    2018-02-01

    An alternative method is proposed for the determination of the inorganic constituent mass fraction (ash) in solid fuel by the ratio of Compton and Rayleigh X-ray scattering peaks IC/IR subject to the iron fluorescence intensity. An original X-ray optical scheme with a Ti/Mo (or Sc/Cu) double-layer secondary radiator allows registration of the combined fluorescence-and-scattering spectrum at the specified scattering angle. An algorithm for linear calibration of the Compton-to-Rayleigh IC/IR ratio is proposed which uses standard samples with two certified characteristics: mass fractions of ash (Ad) and iron oxide (WFe2O3). Ash mass fractions have been determined for coals of different deposits in the wide range of Ad from 9.4% to 52.7% mass and WFe2O3 from 0.3% to 4.95% mass. Due to the high penetrability of the probing radiation with energy E > 17 keV, the sample preparation procedure is rather simplified in comparison with the traditional method of Ad determination by the sum of fluorescence intensities of all constituent elements.

  10. Dosage of silicon in a soluble silicate using an x-ray-fluorescence radioisotopic method

    International Nuclear Information System (INIS)

    Wasilewska, M.; Robert, A.

    1969-01-01

    A description is given of a spectrometer for X ray fluorescence analysis having a radio active excitation source. It has been applied to the analysis of the silicon contained in an industrial soluble silicate. A theoretical study has been made for this analysis of the operational conditions such as: the effect of the particle size, the dilution of the sample, the sensitivity as a function of the X ray excitation energy. It is possible to obtain a relative accuracy of 0,87 per cent for the silicon determination, for one standard deviation. A comparison is made of the sensitivity obtained using this apparatus for the Si determination with that which can be obtained using a conventional apparatus fitted with an X ray tube. (author) [fr

  11. Sensitometric curve of radiographic films by X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, E.A.S., E-mail: elicardo.goncalves@ifrj.edu.br [Instituto Federal do Rio de Janeiro (IFRJ), RJ (Brazil); Oliveira, D.F.; Anjos, M.J. dos; Oliveira, L.F. de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil); Lopes, R.T. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Radiographic film exposure is traditionally measured by the transmittance of a beam of light through the film. There are many mathematical and computational models to characterize the curve behavior and its properties, but almost none of them considers the limitations caused by the equipment used. As long as exposure in film increases, light intensity measured after the film decreases in a way that from a certain exposure, light could not be distinguished from any kind of noise. This work aims to propose x-ray fluorescence as a solution for better measure high exposed films and show how it could be modeled mathematically. (author)

  12. Nondestructive analysis of silver in gold foil using synchrotron radiation X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Kasamatsu, Masaaki; Suzuki, Yasuhiro; Suzuki, Shinichi; Nakanishi, Toshio; Shimoda, Osamu; Nishiwaki, Yoshinori; Miyamoto, Naoki

    2005-01-01

    Small particles of gold foil detached from an indoor decoration might be important evidence to associate a suspect with a crime scene. We have investigated the application of elemental analysis using synchrotron radiation X-ray fluorescence spectrometry to discriminate small particles of gold foil. Eight kinds of gold foil samples collected in Japan were used in the experiments. As a result of synchrotron radiation X-ray fluorescence spectrometry, only two elements, gold and silver, were detected from all gold foil samples. The intensity ratios of AgK α /AuL α showed good correlation with the content ratios of Ag/Au. The variation of intensity ratio within a same sample was sufficiently small compared with those of different samples. Therefore the comparison of this intensity ratio can be an effective method to discriminate small particles originating from different types of gold foil. (author)

  13. Study of uranium contamination of ground water in Punjab using X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Alrakabi, Muhanad; Singh, Gurjeet; Bhalla, Atul; Kumar, Sunil; Kumar, Sanjeev; Rai, Bimal; Singh, N.; Shahi, J.S.; Mehta, D.; Srivastava, Alok

    2010-01-01

    A number of reports have appeared in public media about uranium ingestion being a possible cause for cancer and increased birth rate abnormalities among children in the Malwa region of Punjab state in India. These reports link problems like cancer and Autism, with the presence of uranium in the ground waters of Malwa region. The concentration of uranium in drinking water from sources as varied as ground water, canal water supply and reverse osmosis system have been investigated using X-ray fluorescence technique. Samples from the thermal power plants in the regions and nearby ground waters were also analyzed to identify the source of contamination. The samples were collected with assistance of the officials from the Government of Punjab. More than half a litre of each of the water samples was dried at 60 deg-80 deg in an oven. Residue was collected using larger quantities of water samples in case of RO water samples. The elemental analysis of the residue was carried out using the Energy-Dispersive X-Ray Fluorescence (EDXRF) spectrometer consisting of an 42 Mo-anode X-ray tube (Panalytical, 2.5 kW) as an excitation source and a Si(Li) detector. A combination of selective absorbers of 30 Zn, 38 Sr, and 39 Y was used in the incident beam for improving the detection limit for Uranium by reducing the background and removing the 42 Mo K X-rays. The detection limit in ppb/litre depends upon the amount of residue

  14. Structural Basis of X-ray-Induced Transient Photo-bleaching in a Photoactivatable Green Fluorescent Protein

    Energy Technology Data Exchange (ETDEWEB)

    Adam, V. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex (France); Carpentier, Ph.; Lelimousin, M.; Darnault, C.; Bourgeois, D. [IBS, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UniVersite Joseph Fourier, 41 rue Jules Horowitz, 38027 Grenoble (France); Violot, S. [Laboratoire de Physiologie Cellulaire Vegetale, Institut de Recherches en Technologie et Sciences pour le ViVant, CEA, CNRS, INRA, UniVersite Joseph Fourier, 17 rue des Martyrs, F-38054 Grenoble (France); Nienhaus, U. [Institute of Applied Physics and Center for Functional nano-structures (CFN), Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Nienhaus, U. [Department of Physics, UniVersity of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (US)

    2009-07-01

    We have observed the photoactivatable fluorescent protein IrisFP in a transient dark state with near-atomic resolution. This dark state is assigned to a radical species that either relaxes to the ground state or evolves into a permanently bleached chromophore. We took advantage of X-rays to populate the radical, which presumably forms under illumination with visible light by an electron-transfer reaction in the triplet state. The combined X-ray diffraction and in crystallo UV-vis absorption, fluorescence, and Raman data reveal that radical formation in IrisFP involves pronounced but reversible distortion of the chromophore, suggesting a transient loss of {pi} conjugation. These results reveal that the methylene bridge of the chromophore is the Achilles' heel of fluorescent proteins and help unravel the mechanisms of blinking and photo-bleaching in FPs, which are of importance in the rational design of photo-stable variants. and is also partly reversible. (authors)

  15. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  16. Pre-Columbian alloys from the royal tombs of Sipan; energy dispersive X-ray fluorescence analysis with a portable equipment

    Energy Technology Data Exchange (ETDEWEB)

    Cesareo, R. [Dip. di Matematica e Fisica, Universita di Sassari, via Vienna 2, 07100, Sassari (Italy)], E-mail: cesareo@uniss.it; Calza, C.; Dos Anjos, M.; Lopes, R.T. [Nuclear Instrumentation Laboratory, COPPE, Universidade Federal do Rio de Janeiro (Brazil); Bustamante, A.; Fabian S, J. [Universidad Nacional Mayor de San Marcos, Lima (Peru); Alva, W.; Chero Z, L. [Museo ' Tumbas Reales de Sipan' , Lambayeque (Peru)

    2010-04-15

    On the north coast of present-day Peru flourished approximately between 50 and 700 AD, the Moche civilization. It was an advanced culture and the Moche were sophisticated metalsmiths, so that they are considered as the finest producers of jewels and artefacts of the region. The Moche metalworking ability was impressively demonstrated by the objects discovered by Walter Alva and coworkers in 1987, in the excavations of the 'Tumbas Reales de Sipan'. About 50 metal objects from these excavations, now at the namesake Museum, in Lambayeque, north of Peru, were analyzed with a portable equipment using energy-dispersive X-ray fluorescence. This portable equipment is mainly composed of a small size X-ray tube and a thermoelectrically cooled X-ray detector. Standard samples of gold and silver alloys were employed for quantitative analysis. It was determined that the analyzed artefacts from the 'Tumbas Reales de Sipan' are mainly composed of gold, silver and copper alloys, of gilded copper and of tumbaga, the last being a poor gold alloy enriched at the surface by depletion gilding, i.e. removing copper from the surface.

  17. Quantitative analysis of minerals by X-ray diffraction

    International Nuclear Information System (INIS)

    Pietroluongo, L.R.V.; Veiga, M.M. da

    1982-01-01

    Considerations about the X-ray diffraction technique for quantitative analyses are made; some experiments carried out at CETEM - Centro de Tecnologia Mineral (Rio de Janeiro, Brazil) with synthetic samples and real samples of diatomites (from northeastern region of Brazil) are described. Quartz quantification has been a problem for analytical chemists and is of great importance to the industries which use this raw material. Comments are made about the main factors influencing the intensity of diffracted X-rays, such as: the crystallinity of the mineral phase; the granulometry, the preferential orientation; sample preparation and pressing, the chemical composition of standards and experimental analytical conditions. Several analytical methods used are described: direct measurement of the height or area of a peak resulting from a particular reflection and comparison with a pre-calibrated curve; method of sequential addition of the mineral of interest in the sample and extrapolation of results for ZERO addition; methods of external and internal standards. (C.L.B.) [pt

  18. Portable and micro x-ray fluorescence investigations of the wall paintings belonging to different periods of anatolian history

    International Nuclear Information System (INIS)

    Zararsiz, A.; Ozen, L.; Kalayci, Y.

    2014-01-01

    Full text: In this study portable x-ray fluorescence spectrometer and micro x-ray fluorescence spectrometer were used for investigating the pigments on the Chatalhoyuk wall paintings from the neolithic period which are located in Museum of Anatolian Civilizations. Totally 15 artifacts were investigated in this study and the elemental compositions of the pigments were identified on this paintings. The communities which have lived in different periods of time have revealed different cultures during the 12 000 years old cultural heritage in our country

  19. Forensic classification of counterfeit banknote paper by X-ray fluorescence and multivariate statistical methods.

    Science.gov (United States)

    Guo, Hongling; Yin, Baohua; Zhang, Jie; Quan, Yangke; Shi, Gaojun

    2016-09-01

    Counterfeiting of banknotes is a crime and seriously harmful to economy. Examination of the paper, ink and toners used to make counterfeit banknotes can provide useful information to classify and link different cases in which the suspects use the same raw materials. In this paper, 21 paper samples of counterfeit banknotes seized from 13 cases were analyzed by wavelength dispersive X-ray fluorescence. After measuring the elemental composition in paper semi-quantitatively, the normalized weight percentage data of 10 elements were processed by multivariate statistical methods of cluster analysis and principle component analysis. All these paper samples were mainly classified into 3 groups. Nine separate cases were successfully linked. It is demonstrated that elemental composition measured by XRF is a useful way to compare and classify papers used in different cases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. X-ray fluorescence analysis of archaeological finds and art objects: Recognizing gold and gilding

    International Nuclear Information System (INIS)

    Trojek, Tomáš; Hložek, Martin

    2012-01-01

    Many cultural heritage objects were gilded in the past, and nowadays they can be found in archeological excavations or in historical buildings dating back to the Middle Ages, or from the modern period. Old gilded artifacts have been studied using X-ray fluorescence analysis and 2D microanalysis. Several techniques that enable the user to distinguish gold and gilded objects are described and then applied to investigate artifacts. These techniques differ in instrumentation, data analysis and numbers of measurements. The application of Monte Carlo calculation to a quantitative analysis of gilded objects is also introduced. - Highlights: ► Three techniques of gilding identification with XRF analysis are proposed. ► These techniques are applied to gold and gilded art and archeological objects. ► Composition of a substrate material is determined by a Monte Carlo simulation.

  1. Separation of substandard tin ores by x-ray fluorescence method

    International Nuclear Information System (INIS)

    Kotler, N.I.; Konovalov, V.M.; Kamenskij, Yu.V.; Neverov, A.D.; Ogorodnikov, Yu.V.

    1987-01-01

    Analysis of pure tin ores on X-ray fluorescence separation (XFS) is carried out. The volumes of lump sampling are substantiated; several variants of technical and economical efficiency of XFS application have been calculated. It is shown that at XFS of -400+25 mm classes conditional as to tin content intermediate product with high efficiency factor may be prepared. Separation of -25+10 mm class is unsuitable, as it doesn't allow to increase tin content to conditional, and the process efficiency is low

  2. Cu,Cr and As determination in preserved woods (Eucalyptus ssp.) by X-ray fluorescence spectrometries

    International Nuclear Information System (INIS)

    Pereira Junior, Sergio Matias

    2014-01-01

    Brazil produces around 2.2 millions of cubic meters of treated wood to meet the annual demand of railway, electric, rural and construction sectors. The most used wood species are eucalyptus (Eucalyptus ssp.) and pine (Pinus ssp.).The treated woods used for poles, sleepers, fence posts and plywoods should be according to Brazilian norms requirements. The most usual wood preservative products used in Brazil are CCA (chromated copper arsenate) and CCB (copper chromium and boron salt). The analytical methods, such as flame atomic absorption spectrometry (FAAS), plasma inductively coupled optical emission spectrometry (ICPOES) and X-ray fluorescence spectrometry (XRFS) have been used for the analytical control of those treatment processes. In this work, the eucalyptus trees (Eucalyptus ssp) samples was obtained from Minas Gerais State, Brazil, cut plantation areas. Under pressure, eucalyptus wood samples were submitted to different concentration of CCA solution reaching 3.9, 6.7, 9.1, 12.4 and 14.0 kg of CCA by m-³ sapwood retentions. Samples in cylinders and sawdust forms were obtained from treated wood samples. Copper, chromium and arsenic determination was performed using the energy dispersive X-ray fluorescence spectrometry (EDXRFS), portable X-ray fluorescence spectrometry (PXRFS), flame atomic absorption spectrometry (FAAS) and instrumental neutron activation analysis. In this work, the method of analysis, sensitivity, precision and accuracy performances of the related techniques were outlined. (author)

  3. Thin coating thickness determination using radioisotope-excited x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Del Castillo, Lorena A.; Calix, Virginia S.

    2001-01-01

    Three different approaches on thin coating thickness determination using a radioisotope-excited x-ray fluorescence spectrometry were demonstrated and results were compared. A standard of thin layer of gold (Au) on a nickel (Ni) substrate from the US National Bureau of Standards (with a nominal thickness of 0.300505 microns of at least 99.9% Au electrodeposited over 2 nils of Ni) on low carbon steel (1010) was analyzed using a Cd 109-excited XRF system. Au thickness computations were done using the (a) thin standard approach, (b) thick standard approach, and (c) x-ray absorption method (ASTM A754-79 1982). These three methods yielded results within the limit set by the American Society for Testing Materials (ASTM), which is +/-3%. Of the three methods, the thick standard yielded the best result with 0.124% error. (Author)

  4. Oxidation states by X-ray fluorescence and electron probe microanalysis techniques

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Riveros, J.A.

    1987-01-01

    Many years ago, several studies showed the effect of a chemical state in X-ray spectra. The effect, however, has rarely been utilized in quantitative chemical analysis. The purpose of this work is to show observed shifts due to different chemical states in iron compounds. (Author) [es

  5. Thin film characterization by total reflection x-ray fluorescence

    International Nuclear Information System (INIS)

    Danel, Adrien; Nolot, Emmanuel; Veillerot, Marc; Olivier, Segolene; Decorps, Tifenn; Calvo-Munoz, Maria-Luisa; Hartmann, Jean-Michel; Lhostis, Sandrine; Kohno, Hiroshi; Yamagami, Motoyuki; Geoffroy, Charles

    2008-01-01

    Sensitive and accurate characterization of films thinner than a few nm used in nanoelectronics represents a challenge for many conventional production metrology tools. With capabilities in the 10 10 at/cm 2 , methods usually dedicated to contamination analysis appear promising, especially Total-reflection X-Ray Fluorescence (TXRF). This study shows that under usual configuration for contamination analysis, with incident angle smaller than the critical angle of the substrate, TXRF signal saturation occurs very rapidly for dense films (below 0.5 nm for HfO 2 films on Si wafers using a 9.67 keV excitation at 0.5 deg.). Increasing the incident angle, the range of linear results can be extended, but on the other hand, the TXRF sensitivity is degraded because of a strong increase of the measurement dead time. On HfO 2 films grown on Si wafers, an incident angle of 0.32 deg. corresponding to a dead time of 95% was used to achieve linear analysis up to 2 nm. Composition analysis by TXRF, and especially the detection of minor elements into thin films, requires the use of a specific incident angle to optimize sensitivity. Although quantitative analyses might require specific calibration, this work shows on Co-based films that the ratio between minor elements (W, P, Mo) and Co taking into account their relative sensitivity factors is a good direct reading of the composition

  6. Optimizing Monocapillary Optics for Synchrotron X-ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications

    International Nuclear Information System (INIS)

    Bilderback, Donald H.; Kazimirov, Alexander; Gillilan, Richard; Cornaby, Sterling; Woll, Arthur; Zha, Chang-Sheng; Huang Rong

    2007-01-01

    A number of synchrotron x-ray applications such as powder diffraction in diamond anvil cells, microbeam protein crystallography, x-ray fluorescence imaging, etc. can benefit from using hollow glass monocapillary optics to improve the flux per square micron on a sample. We currently draw glass tubing into the desired elliptical shape so that only one-bounce under total reflection conditions is needed to bring the x-ray beam to a focus at a 25 to 50 mm distance beyond the capillary tip. For modest focal spot sizes of 10 to 20 microns, we can increase the intensity per square micron by factors of 10 to 1000. We show some of the results obtained at CHESS and Hasylab with capillaries focusing 5 to 40 keV radiation, their properties, and how even better the experimental results could be if more ideal capillaries were fabricated in the future

  7. The studies of post-medieval glass by multivariate and X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Kierzek, J.; Kunicki-Goldfinger, J.

    2002-01-01

    Multivariate statistical analysis of the results obtained by energy dispersive X-ray fluorescence analysis has been used in the study of baroque vessel glasses originated from central Europe. X-ray spectrometry can be applied as a completely non-destructive, non-sampling and multi-element method. It is very useful in the studies of valuable historical artefacts. For the last years, multivariate statistical analysis has been developed as an important tool for the archaeometric purposes. Cluster, principal component and discriminant analysis were applied for the classification of the examined objects. The obtained results show that these statistical tools are very useful and complementary in the studies of historical objects. (author)

  8. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis

    OpenAIRE

    Kehr, Sebastian; Malinouski, Mikalai; Finney, Lydia; Vogt, Stefan; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Carlson, Bradley A.; Zhou, You; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2009-01-01

    Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular and subcellular topography of Se. We applied this techn...

  9. Applications of total reflection X-ray fluorescence in multi-element analysis

    International Nuclear Information System (INIS)

    Michaelis, W.; Prange, A.; Knoth, J.

    1985-01-01

    Although Total Reflection X-Ray Fluorescence Analysis (TXRF) became available for practical applications and routine measurements only few years ago, the number of programmes that make use of this method is increasing rapidly. The scope of work is widespread over environmental research and monitoring, mineralogy, mineral exploration, oceanography, biology, medicine and biochemistry. The present paper gives a brief survey of these applications and summarizes some of them which are typical for quite different matrices. (orig.)

  10. Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer.

    Science.gov (United States)

    Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis

    2013-05-01

    The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.

  11. Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem.

    Science.gov (United States)

    Hyde, Damon; Schulz, Ralf; Brooks, Dana; Miller, Eric; Ntziachristos, Vasilis

    2009-04-01

    Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.

  12. Optimization of tube parameters in a tube excited X-ray fluorescence (TEXRF) system using secondary fluorescers

    International Nuclear Information System (INIS)

    Islam, A.; Biswas, S.K.

    1995-12-01

    A study of the optimization of excitation parameters in a tube excited X-ray fluorescence system (TEXRF) having Mo as the primary target has been carried out for biological matrix. Fe, Zn and Mo were used as the secondary fluorecers. For the present investigation a cellulose based synthetic standard containing K, Cr, Ni, Zn, Se and Y was excited with the TEXRF system. All experiments were carried out under the same experimental conditions except the tube potential. For each fluorescer the minimum detection limits (MDL) of excited elements were calculated for the corresponding tube voltage. The MDLs were found to be increasing with decreasing atomic number and it was also observed that the maximum sensitivity with Fe and Zn secondary fluorescers for elements analyzed occurred around 35 kV of the excitation potential. For Mo secondary fluorescer maximum sensitivity was found at higher excitation potential. In most cases MDLs were minimum at 40-45 kV of the excitation potential. 5 refs., 12 figs

  13. Determination of Fe and Zn in healing plants by radionuclide X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Harangozo, M.; Toelgyessy, J.; Tomecek, O.; Ruzicka, I.; Cejpek, K.

    1999-01-01

    Radionuclide X-ray fluorescence method was used for the determination of Fe and Zn in healing plants (Sage, Peppermint, Stinging, Common Agrimony, Milfoil, Ribwort, Tansy, White Dead-Nettle). 238 Pu exciting source and Si/Li semiconductor detector were used for the determination. (author)

  14. Determination of Ti, Cr, Cu and Ta in niobium oxide by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Dixit, R.M.; Deshpande, S.S.

    1986-01-01

    An x-ray fluorescence method for the determination of Ti, Cr, Cu and Ta in niobium oxide has been developed. Samples/standards in powder form are mixed with boric acid in the proportion of 1:1 (400 mg. each). Double layer pellets are prepared by pressing this mixture over a primary boric acid pellet. Philips PW-1220, a semiautomatic x-ray spectrometer with tungsten target x-ray tube for excitation and LiF (200) crystal for dispersion have been used. The determination range is from 0.005 to 0.1per cent for Ti and Cr, 0.01 to 0.1per cent for Cu and 0.05 to 1per cent for Ta. (author)

  15. Rapid analysis of molybdenum contents in molybdenum master alloys by X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Tongkong, P.

    1985-01-01

    Determination of molybdenum contents in molybdenum master alloy had been performed using energy dispersive x-ray fluorescence (EDX) technique where analysis were made via standard additions and calibration curves. Comparison of EDX technique with other analyzing techniques, i.e., wavelength dispersive x-ray fluorescence, neutron activation analysis and inductive coupled plasma spectrometry, showed consistency in the results. This technique was found to yield reliable results when molybdenum contents in master alloys were in the range of 13 to 50 percent using HPGe detector or proportional counter. When the required error was set at 1%, the minimum analyzing time was found to be 30 and 60 seconds for Fe-Mo master alloys with molybdenum content of 13.54 and 49.09 percent respectively. For Al-Mo master alloys, the minimum times required were 120 and 300 seconds with molybdenum content of 15.22 and 47.26 percent respectively

  16. Determination of technetium by total reflection x-ray fluorescence

    International Nuclear Information System (INIS)

    Bermudez, J.I.; Greaves, E.D.; Nemeth, P.

    2000-01-01

    We describe a technique using total reflection x-ray fluorescence (TXRF) for determination of Technetium produced by elution of chromatography generators with physiological saline solutions. The analysis with the 18.41 keV K α line of Technetium was accomplished with monochromatized K α radiation from a silver anode x-ray tube operated at 45 keV and 20 mA. This radiation at 22.104 keV is efficiently coupled to the 21.054 keV absorption edge of Tc. It is also of advantage in the direct analysis of organic and saline properties of the Tc-bearing samples. Quantification was accomplished by internal standard addition of Ga and using an interpolated value of the sensitivity for Tc between Molybdenum and Rhenium. Data processing was carried out with the QXAS-AXIL software package. System sensitivity was found adequate for direct Tc determination of eluted saline solutions. The interest and advantages of the use of the technique as an auxiliary in the synthesis and characterization of Tc-labeled radiopharmaceuticals used for diagnosis in nuclear medicine are discussed. Detection limits in the matrices analyzed are reported. (author)

  17. X-ray fluorescence and imaging analyses of paintings by the Brazilian artist Oscar Pereira Da Silva

    International Nuclear Information System (INIS)

    Campos, P.H.O.V.; Kajiya, E.A.M.; Rizzutto, M.A.; Neiva, A.C.; Pinto, H.P.F.; Almeida, P.A.D.

    2014-01-01

    Non-destructive analyses, such as EDXRF (Energy-Dispersive X-Ray Fluorescence) spectroscopy, and imaging were used to characterize easel paintings. The analyzed objects are from the collection of the Pinacoteca do Estado de São Paulo. EDXRF results allowed us to identify the chemical elements present in the pigments, showing the use of many Fe-based pigments, modern pigments, such as cobalt blue and cadmium yellow, as well as white pigments containing lead and zinc used by the artist in different layers. Imaging analysis was useful to identify the state of conservation, the localization of old and new restorations and also to detect and unveil the underlying drawings revealing the artist's creative processes. - Highlights: • Performed Energy-Dispersive X-Ray Fluorescence spectroscopy and image analysis to characterize easel paintings • The analyses allow the identification of the pigments elements • Intensity ratio between the emitted characteristic rays is affected by the absorption of the outgoing rays. • Image analysis allow some identification as hidden underlying lines,

  18. Comparison of sensitivities and detection limits between direct excitation and secondary excitation modes in energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Artz, B.E.; Short, M.A.

    1976-01-01

    A comparison was made between the direct tube excitation mode and the secondary target excitation mode using a Kevex 0810 energy dispersive x-ray fluorescence system. Relative sensitivities and detection limits were determined with two system configurations. The first configuration used a standard, high power, x-ray fluorescence tube to directly excite the specimen. Several x-ray tubes, including chromium, molybdenum, and tungsten, both filtered and not filtered, were employed. The second configuration consisted of using the x-ray tube to excite a secondary target which in turn excited the specimen. Appropriate targets were compared to the direct excitation results. Relative sensitivities and detection limits were determined for K-series lines for elements from magnesium to barium contained in a low atomic number matrix and in a high atomic number matrix

  19. Tumour-cell killing by X-rays and immunity quantitated in a mouse model system

    International Nuclear Information System (INIS)

    Porteous, D.D.; Porteous, K.M.; Hughes, M.J.

    1979-01-01

    As part of an investigation of the interaction of X-rays and immune cytotoxicity in tumour control, an experimental mouse model system has been used in which quantitative anti-tumour immunity was raised in prospective recipients of tumour-cell suspensions exposed to varying doses of X-rays in vitro before injection. Findings reported here indicate that, whilst X-rays kill a proportion of cells, induced immunity deals with a fixed number dependent upon the immune status of the host, and that X-rays and anti-tumour immunity do not act synergistically in tumour-cell killing. The tumour used was the ascites sarcoma BP8. (author)

  20. The study of chemical composition and elemental mappings of colored over-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence

    International Nuclear Information System (INIS)

    Cheng Lin; Li Meitian; Kim Youshi; Fan Changsheng; Wang Shanghai; Pan Qiuli; Liu Zhiguo; Li Rongwu

    2011-01-01

    It is very difficult to measure the chemical composition of colored pigments of over-glaze porcelain by X-ray fluorescence because it contains high concentration of Pb. One of the disadvantages of our polycapillary optics is that it has low transmission efficiency to the high energy X-ray. However, it is beneficial to measure the chemical compositions of rich Pb sample. In this paper, we reported the performances of a tabletop setup of micro-X-ray fluorescence system base on slightly focusing polycapillary and its applications for analysis of rich Pb sample. A piece of Chinese ancient over-glaze porcelain was analyzed by micro-X-ray fluorescence. The experimental results showed that the Cu, Fe and Mn are the major color elements. The possibilities of the process of decorative technology were discussed in this paper, also.