WorldWideScience

Sample records for quantitative structure-property relationship

  1. Quantitative structure-property relationship (correlation analysis) of phosphonic acid-based chelates in design of MRI contrast agent.

    Science.gov (United States)

    Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K

    2009-07-01

    Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.

  2. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    Science.gov (United States)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  3. A Quantitative Structure-Property Relationship (QSPR Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure

    Directory of Open Access Journals (Sweden)

    Bin Cheng

    2011-04-01

    Full Text Available A quantitative structure–property relationship (QSPR analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP, n-octanol–water partition coefficient (lg POW, water solubility (lg W and the chromatographic retention indices (RI on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI, previously developed by Cao, the novel molecular polarizability effect index (MPEI combined with odd-even index (OEI, the sum eigenvalues of bond-connecting matrix (SX1CH previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99 and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable.

  4. Synthesis, quantitative structure-property relationship study of novel fluorescence active 2-pyrazolines and application

    Science.gov (United States)

    Girgis, Adel S.; Basta, Altaf H.; El-Saied, Houssni; Mohamed, Mohamed A.; Bedair, Ahmad H.; Salim, Ahmad S.

    2018-03-01

    A variety of fluorescence-active fluorinated pyrazolines 13-33 was synthesized in good yields through cyclocondensation reaction of propenones 1-9 with aryl hydrazines 10-12. Some of the synthesized compounds provided promising fluorescence properties with quantum yield (Φ) higher than that of quinine sulfate (standard reference). Quantitative structure-property relationship studies were undertaken supporting the exhibited fluorescence properties and estimating the parameters governing properties. Five synthesized fluorescence-active pyrazolines (13, 15, 18, 19 and 23) with variable Φ were selected for treating two types of paper sheets (Fabriano and Bible paper). These investigated fluorescence compounds, especially compounds 19 and 23, provide improvements in strength properties of paper sheets. Based on the observed performance they can be used as markers in security documents.

  5. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    Science.gov (United States)

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  6. A New Variable Selection Method Based on Mutual Information Maximization by Replacing Collinear Variables for Nonlinear Quantitative Structure-Property Relationship Models

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Jahan B.; Zolfonoun, Ehsan [Toosi University of Technology, Tehran (Korea, Republic of)

    2012-05-15

    Selection of the most informative molecular descriptors from the original data set is a key step for development of quantitative structure activity/property relationship models. Recently, mutual information (MI) has gained increasing attention in feature selection problems. This paper presents an effective mutual information-based feature selection approach, named mutual information maximization by replacing collinear variables (MIMRCV), for nonlinear quantitative structure-property relationship models. The proposed variable selection method was applied to three different QSPR datasets, soil degradation half-life of 47 organophosphorus pesticides, GC-MS retention times of 85 volatile organic compounds, and water-to-micellar cetyltrimethylammonium bromide partition coefficients of 62 organic compounds.The obtained results revealed that using MIMRCV as feature selection method improves the predictive quality of the developed models compared to conventional MI based variable selection algorithms.

  7. A New Variable Selection Method Based on Mutual Information Maximization by Replacing Collinear Variables for Nonlinear Quantitative Structure-Property Relationship Models

    International Nuclear Information System (INIS)

    Ghasemi, Jahan B.; Zolfonoun, Ehsan

    2012-01-01

    Selection of the most informative molecular descriptors from the original data set is a key step for development of quantitative structure activity/property relationship models. Recently, mutual information (MI) has gained increasing attention in feature selection problems. This paper presents an effective mutual information-based feature selection approach, named mutual information maximization by replacing collinear variables (MIMRCV), for nonlinear quantitative structure-property relationship models. The proposed variable selection method was applied to three different QSPR datasets, soil degradation half-life of 47 organophosphorus pesticides, GC-MS retention times of 85 volatile organic compounds, and water-to-micellar cetyltrimethylammonium bromide partition coefficients of 62 organic compounds.The obtained results revealed that using MIMRCV as feature selection method improves the predictive quality of the developed models compared to conventional MI based variable selection algorithms

  8. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    Science.gov (United States)

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  9. Structure modification and functionality of whey proteins: quantitative structure-activity relationship approach.

    Science.gov (United States)

    Nakai, S; Li-Chan, E

    1985-10-01

    According to the original idea of quantitative structure-activity relationship, electric, hydrophobic, and structural parameters should be taken into consideration for elucidating functionality. Changes in these parameters are reflected in the property of protein solubility upon modification of whey proteins by heating. Although solubility is itself a functional property, it has been utilized to explain other functionalities of proteins. However, better correlations were obtained when hydrophobic parameters of the proteins were used in conjunction with solubility. Various treatments reported in the literature were applied to whey protein concentrate in an attempt to obtain whipping and gelling properties similar to those of egg white. Mapping simplex optimization was used to search for the best results. Improvement in whipping properties by pepsin hydrolysis may have been due to higher protein solubility, and good gelling properties resulting from polyphosphate treatment may have been due to an increase in exposable hydrophobicity. However, the results of angel food cake making were still unsatisfactory.

  10. Adsorption of s-triazines onto polybenzimidazole: A quantitative structure-property relationship investigation

    Energy Technology Data Exchange (ETDEWEB)

    D' Archivio, Angelo Antonio, E-mail: angeloantonio.darchivio@univaq.it [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi dell' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Incani, Angela; Mazzeo, Pietro; Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi dell' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)

    2009-09-21

    The adsorption of 25 symmetric triazines (s-triazines) on polybenzimidazole (PBI) beads is investigated under equilibrium (batch) conditions. The observed adsorption isotherms of the selected compounds are accurately described by the Freundlich model, while the agreement between the Langmuir model and the experimental data is moderately worse, which seems to reflect the heterogeneous meso- and micro-porosity of PBI and polydispersion in the interaction mechanism. Methylthio- and methoxytriazines exhibit a greater adsorption tendency as compared with chlorotriazines, moreover, progressive dealkylation of amino groups results in a progressive increase of triazine uptake on PBI. Based on these evidences, the adsorption mechanism seems to be governed by a combination of {pi}-{pi} and hydrogen-bonding interactions. Genetic algorithm (GA) variable selection and multilinear regression (MLR) are combined in order to describe the effect of triazine structure on the extraction performance of PBI according to the quantitative structure-property relationship (QSPR) method. q{sub max}, the amount of triazine adsorbed per weight unit of PBI assuming homogeneous monolayer (Langmuir) mechanism, exhibits a great variability within the set of investigated triazines and is the quantity here modelled by QSPR. On the other hand, the Freundlich constant, K{sub F}, which expresses the adsorption efficiency under multilayer heterogeneous conditions, even if markedly increases passing from chloro- to methylthio- or methoxytriazines, is less noticeably affected by the fine details of the adsorbate structure, as the number or nature of alkyl fragments bound to the amino groups. To quantitatively relate q{sub max} with the triazine structure GA-MLR analysis is performed on the set of 1664 theoretical molecular descriptors provided by the software Dragon. Finally, a four-dimensional QSPR model is selected based on leave-one-out cross-validation and its prediction ability is further tested on

  11. Adsorption of s-triazines onto polybenzimidazole: A quantitative structure-property relationship investigation

    International Nuclear Information System (INIS)

    D'Archivio, Angelo Antonio; Incani, Angela; Mazzeo, Pietro; Ruggieri, Fabrizio

    2009-01-01

    The adsorption of 25 symmetric triazines (s-triazines) on polybenzimidazole (PBI) beads is investigated under equilibrium (batch) conditions. The observed adsorption isotherms of the selected compounds are accurately described by the Freundlich model, while the agreement between the Langmuir model and the experimental data is moderately worse, which seems to reflect the heterogeneous meso- and micro-porosity of PBI and polydispersion in the interaction mechanism. Methylthio- and methoxytriazines exhibit a greater adsorption tendency as compared with chlorotriazines, moreover, progressive dealkylation of amino groups results in a progressive increase of triazine uptake on PBI. Based on these evidences, the adsorption mechanism seems to be governed by a combination of π-π and hydrogen-bonding interactions. Genetic algorithm (GA) variable selection and multilinear regression (MLR) are combined in order to describe the effect of triazine structure on the extraction performance of PBI according to the quantitative structure-property relationship (QSPR) method. q max , the amount of triazine adsorbed per weight unit of PBI assuming homogeneous monolayer (Langmuir) mechanism, exhibits a great variability within the set of investigated triazines and is the quantity here modelled by QSPR. On the other hand, the Freundlich constant, K F , which expresses the adsorption efficiency under multilayer heterogeneous conditions, even if markedly increases passing from chloro- to methylthio- or methoxytriazines, is less noticeably affected by the fine details of the adsorbate structure, as the number or nature of alkyl fragments bound to the amino groups. To quantitatively relate q max with the triazine structure GA-MLR analysis is performed on the set of 1664 theoretical molecular descriptors provided by the software Dragon. Finally, a four-dimensional QSPR model is selected based on leave-one-out cross-validation and its prediction ability is further tested on four

  12. Multivariate characterisation and quantitative structure-property relationship modelling of nitroaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, S. [Man-Technology-Environment Research Centre, Department of Natural Sciences, Orebro University, 701 82 Orebro (Sweden)], E-mail: sofie.jonsson@nat.oru.se; Eriksson, L.A. [Department of Natural Sciences and Orebro Life Science Center, Orebro University, 701 82 Orebro (Sweden); Bavel, B. van [Man-Technology-Environment Research Centre, Department of Natural Sciences, Orebro University, 701 82 Orebro (Sweden)

    2008-07-28

    A multivariate model to characterise nitroaromatics and related compounds based on molecular descriptors was calculated. Descriptors were collected from literature and through empirical, semi-empirical and density functional theory-based calculations. Principal components were used to describe the distribution of the compounds in a multidimensional space. Four components described 76% of the variation in the dataset. PC1 separated the compounds due to molecular weight, PC2 separated the different isomers, PC3 arranged the compounds according to different functional groups such as nitrobenzoic acids, nitrobenzenes, nitrotoluenes and nitroesters and PC4 differentiated the compounds containing chlorine from other compounds. Quantitative structure-property relationship models were calculated using partial least squares (PLS) projection to latent structures to predict gas chromatographic (GC) retention times and the distribution between the water phase and air using solid-phase microextraction (SPME). GC retention time was found to be dependent on the presence of polar amine groups, electronic descriptors including highest occupied molecular orbital, dipole moments and the melting point. The model of GC retention time was good, but the precision was not precise enough for practical use. An important environmental parameter was measured using SPME, the distribution between headspace (air) and the water phase. This parameter was mainly dependent on Henry's law constant, vapour pressure, log P, content of hydroxyl groups and atmospheric OH rate constant. The predictive capacity of the model substantially improved when recalculating a model using these five descriptors only.

  13. Quantitative Structure-Activity Relationship Analysis of the ...

    African Journals Online (AJOL)

    Erah

    Quantitative Structure-Activity Relationship Analysis of the Anticonvulsant ... Two types of molecular descriptors, including the 2D autocorrelation ..... It is based on the simulation of natural .... clustering anticonvulsant, antidepressant, and.

  14. Quantitative structure-property relationships for octanol-water partition coefficients of polybrominated diphenyl ethers.

    Science.gov (United States)

    Li, Linnan; Xie, Shaodong; Cai, Hao; Bai, Xuetao; Xue, Zhao

    2008-08-01

    Theoretical molecular descriptors were tested against logK(OW) values for polybrominated diphenyl ethers (PBDEs) using the Partial Least-Squares Regression method which can be used to analyze data with many variables and few observations. A quantitative structure-property relationship (QSPR) model was successfully developed with a high cross-validated value (Q(cum)(2)) of 0.961, indicating a good predictive ability and stability of the model. The predictive power of the QSPR model was further cross-validated. The values of logK(OW) for PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied molecular orbital and the net atomic charges on the oxygen atom. All these descriptors have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk property of the molecules represented by molecular surface area is the leading factor, and K(OW) values increase with the increase of molecular surface area. Higher energy of the lowest unoccupied molecular orbital and higher net atomic charge on the oxygen atom of PBDEs result in smaller K(OW). The energy of the lowest unoccupied molecular orbital and the net atomic charge on PBDEs oxygen also play important roles in affecting the partition of PBDEs between octanol and water by influencing the interactions between PBDEs and solvent molecules.

  15. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design.

    Science.gov (United States)

    Du, Qi-Shi; Huang, Ri-Bo; Wei, Yu-Tuo; Pang, Zong-Wen; Du, Li-Qin; Chou, Kuo-Chen

    2009-01-30

    In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus. (c) 2008 Wiley Periodicals, Inc.

  16. Evaluating Molecular Properties Involved in Transport of Small Molecules in Stratum Corneum: A Quantitative Structure-Activity Relationship for Skin Permeability.

    Science.gov (United States)

    Chen, Chen-Peng; Chen, Chan-Cheng; Huang, Chia-Wen; Chang, Yen-Ching

    2018-04-15

    The skin permeability ( Kp ) defines the rate of a chemical penetrating across the stratum corneum. This value is widely used to quantitatively describe the transport of molecules in the outermost layer of epidermal skin and indicate the significance of skin absorption. This study defined a Kp quantitative structure-activity relationship (QSAR) based on 106 chemical substances of Kp measured using human skin and interpreted the molecular interactions underlying transport behavior of small molecules in the stratum corneum. The Kp QSAR developed in this study identified four molecular descriptors that described the molecular cyclicity in the molecule reflecting local geometrical environments, topological distances between pairs of oxygen and chlorine atoms, lipophilicity, and similarity to antineoplastics in molecular properties. This Kp QSAR considered the octanol-water partition coefficient to be a direct influence on transdermal movement of molecules. Moreover, the Kp QSAR identified a sub-domain of molecular properties initially defined to describe the antineoplastic resemblance of a compound as a significant factor in affecting transdermal permeation of solutes. This finding suggests that the influence of molecular size on the chemical's skin-permeating capability should be interpreted with other relevant physicochemical properties rather than being represented by molecular weight alone.

  17. Three-dimensional quantitative structure-property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (PCBs): enthalpy of vaporization.

    Science.gov (United States)

    Puri, Swati; Chickos, James S; Welsh, William J

    2002-01-01

    Three-dimensional Quantitative Structure-Property Relationship (QSPR) models have been derived using Comparative Molecular Field Analysis (CoMFA) to correlate the vaporization enthalpies of a representative set of polychlorinated biphenyls (PCBs) at 298.15 K with their CoMFA-calculated physicochemical properties. Various alignment schemes, such as inertial, as is, and atom fit, were employed in this study. The CoMFA models were also developed using different partial charge formalisms, namely, electrostatic potential (ESP) charges and Gasteiger-Marsili (GM) charges. The most predictive model for vaporization enthalpy (Delta(vap)H(m)(298.15 K)), with atom fit alignment and Gasteiger-Marsili charges, yielded r2 values 0.852 (cross-validated) and 0.996 (conventional). The vaporization enthalpies of PCBs increased with the number of chlorine atoms and were found to be larger for the meta- and para-substituted isomers. This model was used to predict Delta(vap)H(m)(298.15 K) of the entire set of 209 PCB congeners.

  18. Evaluating Molecular Properties Involved in Transport of Small Molecules in Stratum Corneum: A Quantitative Structure-Activity Relationship for Skin Permeability

    Directory of Open Access Journals (Sweden)

    Chen-Peng Chen

    2018-04-01

    Full Text Available The skin permeability (Kp defines the rate of a chemical penetrating across the stratum corneum. This value is widely used to quantitatively describe the transport of molecules in the outermost layer of epidermal skin and indicate the significance of skin absorption. This study defined a Kp quantitative structure-activity relationship (QSAR based on 106 chemical substances of Kp measured using human skin and interpreted the molecular interactions underlying transport behavior of small molecules in the stratum corneum. The Kp QSAR developed in this study identified four molecular descriptors that described the molecular cyclicity in the molecule reflecting local geometrical environments, topological distances between pairs of oxygen and chlorine atoms, lipophilicity, and similarity to antineoplastics in molecular properties. This Kp QSAR considered the octanol-water partition coefficient to be a direct influence on transdermal movement of molecules. Moreover, the Kp QSAR identified a sub-domain of molecular properties initially defined to describe the antineoplastic resemblance of a compound as a significant factor in affecting transdermal permeation of solutes. This finding suggests that the influence of molecular size on the chemical’s skin-permeating capability should be interpreted with other relevant physicochemical properties rather than being represented by molecular weight alone.

  19. Quantitative Structure-Activity Relationships and Docking Studies of Calcitonin Gene-Related Peptide Antagonists

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Mehrabian, Mohadeseh; Kyani, Anahita

    2012-01-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range...... of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression....... The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model...

  20. Structure-Property Relationships in Polycyanurate / Graphene Networks

    Science.gov (United States)

    2015-12-12

    Briefing Charts 3. DATES COVERED (From - To) 17 Nov 2015 – 12 Dec 2015 4. TITLE AND SUBTITLE Structure-Property Relationships in Polycyanurate...ANSI Std. 239.18 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Structure-Property Relationships in...the attractive processing characteristics of LECy are retained in graphene oxide / LECy mixtures. Impurities, such as aryl phenols and transition metals

  1. 2D Quantitative Structure-Property Relationship Study of Mycotoxins by Multiple Linear Regression and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Fereshteh Shiri

    2010-08-01

    Full Text Available In the present work, support vector machines (SVMs and multiple linear regression (MLR techniques were used for quantitative structure–property relationship (QSPR studies of retention time (tR in standardized liquid chromatography–UV–mass spectrometry of 67 mycotoxins (aflatoxins, trichothecenes, roquefortines and ochratoxins based on molecular descriptors calculated from the optimized 3D structures. By applying missing value, zero and multicollinearity tests with a cutoff value of 0.95, and genetic algorithm method of variable selection, the most relevant descriptors were selected to build QSPR models. MLRand SVMs methods were employed to build QSPR models. The robustness of the QSPR models was characterized by the statistical validation and applicability domain (AD. The prediction results from the MLR and SVM models are in good agreement with the experimental values. The correlation and predictability measure by r2 and q2 are 0.931 and 0.932, repectively, for SVM and 0.923 and 0.915, respectively, for MLR. The applicability domain of the model was investigated using William’s plot. The effects of different descriptors on the retention times are described.

  2. Quantitative structure--property relationships for enhancing predictions of synthetic organic chemical removal from drinking water by granular activated carbon.

    Science.gov (United States)

    Magnuson, Matthew L; Speth, Thomas F

    2005-10-01

    Granular activated carbon is a frequently explored technology for removing synthetic organic contaminants from drinking water sources. The success of this technology relies on a number of factors based not only on the adsorptive properties of the contaminant but also on properties of the water itself, notably the presence of substances in the water which compete for adsorption sites. Because it is impractical to perform field-scale evaluations for all possible contaminants, the pore surface diffusion model (PSDM) has been developed and used to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into this model to account for kinetics of adsorption and competition for adsorption sites. This work further evaluates and expands this model, through the use of quantitative structure-property relationships (QSPRs) to predict the effect of natural organic matter fouling on activated carbon adsorption of specific contaminants. The QSPRs developed are based on a combination of calculated topographical indices and quantum chemical parameters. The QSPRs were evaluated in terms of their statistical predictive ability,the physical significance of the descriptors, and by comparison with field data. The QSPR-enhanced PSDM was judged to give results better than what could previously be obtained.

  3. Quantitative structure-property relationship study of n-octanol-water partition coefficients of some of diverse drugs using multiple linear regression

    International Nuclear Information System (INIS)

    Ghasemi, Jahanbakhsh; Saaidpour, Saadi

    2007-01-01

    A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structures of 150 drug organic compounds to their n-octanol-water partition coefficients (log P o/w ). Molecular descriptors derived solely from 3D structures of the molecular drugs. A genetic algorithm was also applied as a variable selection tool in QSPR analysis. The models were constructed using 110 molecules as training set, and predictive ability tested using 40 compounds. Modeling of log P o/w of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR). Four descriptors for these compounds molecular volume (MV) (geometrical), hydrophilic-lipophilic balance (HLB) (constitutional), hydrogen bond forming ability (HB) (electronic) and polar surface area (PSA) (electrostatic) are taken as inputs for the model. The use of descriptors calculated only from molecular structure eliminates the need for experimental determination of properties for use in the correlation and allows for the estimation of log P o/w for molecules not yet synthesized. Application of the developed model to a testing set of 40 drug organic compounds demonstrates that the model is reliable with good predictive accuracy and simple formulation. The prediction results are in good agreement with the experimental value. The root mean square error of prediction (RMSEP) and square correlation coefficient (R 2 ) for MLR model were 0.22 and 0.99 for the prediction set log P o/w

  4. On the Development and Use of Large Chemical Similarity Networks, Informatics Best Practices and Novel Chemical Descriptors Towards Materials Quantitative Structure Property Relationships

    Science.gov (United States)

    Krein, Michael

    After decades of development and use in a variety of application areas, Quantitative Structure Property Relationships (QSPRs) and related descriptor-based statistical learning methods have achieved a level of infamy due to their misuse. The field is rife with past examples of overtrained models, overoptimistic performance assessment, and outright cheating in the form of explicitly removing data to fit models. These actions do not serve the community well, nor are they beneficial to future predictions based on established models. In practice, in order to select combinations of descriptors and machine learning methods that might work best, one must consider the nature and size of the training and test datasets, be aware of existing hypotheses about the data, and resist the temptation to bias structure representation and modeling to explicitly fit the hypotheses. The definition and application of these best practices is important for obtaining actionable modeling outcomes, and for setting user expectations of modeling accuracy when predicting the endpoint values of unknowns. A wide variety of statistical learning approaches, descriptor types, and model validation strategies are explored herein, with the goals of helping end users understand the factors involved in creating and using QSPR models effectively, and to better understand relationships within the data, especially by looking at the problem space from multiple perspectives. Molecular relationships are commonly envisioned in a continuous high-dimensional space of numerical descriptors, referred to as chemistry space. Descriptor and similarity metric choice influence the partitioning of this space into regions corresponding to local structural similarity. These regions, known as domains of applicability, are most likely to be successfully modeled by a QSPR. In Chapter 2, the network topology and scaling relationships of several chemistry spaces are thoroughly investigated. Chemistry spaces studied include the

  5. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.

    Science.gov (United States)

    Naik, P K; Singh, T; Singh, H

    2009-07-01

    Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.

  6. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    NARCIS (Netherlands)

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural

  7. Atomic-level structure and structure-property relationship in metallic glass

    Science.gov (United States)

    Cheng, Yongqiang

    One of the key tasks in material science is to understand the structure and structure-property relationship. The recently emerging bulk metallic glasses (BMGs) have demonstrated unique properties, especially intriguing mechanical properties such as their high strength and high propensity to localize deformation in shear bands. However, a comprehensive understanding of the structure of BMGs has been hindered by the complexity of these amorphous materials. Even more challenging is the structure-property correlation, which has been well established in crystals but has been seriously lacking for BMGs. This thesis presents a systematic study of the atomic-level structures of two representative BMGs, Cu-Zr and Cu-Zr-Al. The interpenetrating Cu-centered icosahedral clusters have been identified to be the primary structural feature. The fraction of icosahedra increases with increasing Cu or Al contents, and with decreasing cooling rate. The effect of Al in improving the icosahedral order is two-fold: the geometric effect due to the atomic-size mismatch and the chemical effect originated from the Cu-Al bond shortening. The resolved structure is used to study the structure-property relationship. The full icosahedra are found to be responsible for the dynamical slowdown of the supercooled liquid, which underlies the non-Arrhenius behavior, and explains the composition dependence of glass transition temperature, glass forming ability, and the room temperature strength. By simulated deformation, the initiation of plasticity and tendency for strain localization are also investigated. The full icosahedra are found to be the most rigid and resistant cluster with solid-like character, while the unstable clusters with liquid-like character serve as the fertile sites for initiating shear transformations. In addition, the elastic moduli are calculated and analyzed, and the origins of the different configurational dependence of shear modulus (G) and bulk modulus ( B) are explained. The

  8. Evolution of the international workshops on quantitative structure-activity relationships (QSARs) in environmental toxicology.

    Science.gov (United States)

    Kaiser, K L E

    2007-01-01

    This presentation will review the evolution of the workshops from a scientific and personal perspective. From their modest beginning in 1983, the workshops have developed into larger international meetings, regularly held every two years. Their initial focus on the aquatic sphere soon expanded to include properties and effects on atmospheric and terrestrial species, including man. Concurrent with this broadening of their scientific scope, the workshops have become an important forum for the early dissemination of all aspects of qualitative and quantitative structure-activity research in ecotoxicology and human health effects. Over the last few decades, the field of quantitative structure/activity relationships (QSARs) has quickly emerged as a major scientific method in understanding the properties and effects of chemicals on the environment and human health. From substances that only affect cell membranes to those that bind strongly to a specific enzyme, QSARs provides insight into the biological effects and chemical and physical properties of substances. QSARs are useful for delineating the quantitative changes in biological effects resulting from minor but systematic variations of the structure of a compound with a specific mode of action. In addition, more holistic approaches are being devised that result in our ability to predict the effects of structurally unrelated compounds with (potentially) different modes of action. Research in QSAR environmental toxicology has led to many improvements in the manufacturing, use, and disposal of chemicals. Furthermore, it has led to national policies and international agreements, from use restrictions or outright bans of compounds, such as polychlorinated biphenyls (PCBs), mirex, and highly chlorinated pesticides (e.g. DDT, dieldrin) for the protection of avian predators, to alternatives for ozone-depleting compounds, to better waste treatment systems, to more powerful and specific acting drugs. Most of the recent advances

  9. Composition-Structure-Property Relationships in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, M.; Mauro, J.C.

    2012-01-01

    boroaluminosilicate glasses from peralkaline to peraluminous compositions by substituting Al2O3 for SiO2. Our results reveal a pronounced change in all the measured physical properties (density, elastic moduli, hardness, glass transition temperature, and liquid fragility) around [Al2O3]–[Na2O]=0. The structural......The complicated structural speciation in boroaluminosilicate glasses leads to a mixed network former effect yielding nonlinear variation in many macroscopic properties as a function of chemical composition. Here we study the composition–structure–property relationships in a series of sodium...

  10. Notes on quantitative structure-properties relationships (QSPR) (1): A discussion on a QSPR dimensionality paradox (QSPR DP) and its quantum resolution.

    Science.gov (United States)

    Carbó-Dorca, Ramon; Gallegos, Ana; Sánchez, Angel J

    2009-05-01

    Classical quantitative structure-properties relationship (QSPR) statistical techniques unavoidably present an inherent paradoxical computational context. They rely on the definition of a Gram matrix in descriptor spaces, which is used afterwards to reduce the original dimension via several possible kinds of algebraic manipulations. From there, effective models for the computation of unknown properties of known molecular structures are obtained. However, the reduced descriptor dimension causes linear dependence within the set of discrete vector molecular representations, leading to positive semi-definite Gram matrices in molecular spaces. To resolve this QSPR dimensionality paradox (QSPR DP) here is proposed to adopt as starting point the quantum QSPR (QQSPR) computational framework perspective, where density functions act as infinite dimensional descriptors. The fundamental QQSPR equation, deduced from employing quantum expectation value numerical evaluation, can be approximately solved in order to obtain models exempt of the QSPR DP. The substitution of the quantum similarity matrix by an empirical Gram matrix in molecular spaces, build up with the original non manipulated discrete molecular descriptor vectors, permits to obtain classical QSPR models with the same characteristics as in QQSPR, that is: possessing a certain degree of causality and explicitly independent of the descriptor dimension. 2008 Wiley Periodicals, Inc.

  11. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    Science.gov (United States)

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  12. In silico prediction of nematic transition temperature for liquid crystals using quantitative structure-property relationship approaches.

    Science.gov (United States)

    Fatemi, Mohammad Hossein; Ghorbanzad'e, Mehdi

    2009-11-01

    Quantitative structure-property relationship models for the prediction of the nematic transition temperature (T (N)) were developed by using multilinear regression analysis and a feedforward artificial neural network (ANN). A collection of 42 thermotropic liquid crystals was chosen as the data set. The data set was divided into three sets: for training, and an internal and external test set. Training and internal test sets were used for ANN model development, and the external test set was used for evaluation of the predictive power of the model. In order to build the models, a set of six descriptors were selected by the best multilinear regression procedure of the CODESSA program. These descriptors were: atomic charge weighted partial negatively charged surface area, relative negative charged surface area, polarity parameter/square distance, minimum most negative atomic partial charge, molecular volume, and the A component of moment of inertia, which encode geometrical and electronic characteristics of molecules. These descriptors were used as inputs to ANN. The optimized ANN model had 6:6:1 topology. The standard errors in the calculation of T (N) for the training, internal, and external test sets using the ANN model were 1.012, 4.910, and 4.070, respectively. To further evaluate the ANN model, a crossvalidation test was performed, which produced the statistic Q (2) = 0.9796 and standard deviation of 2.67 based on predicted residual sum of square. Also, the diversity test was performed to ensure the model's stability and prove its predictive capability. The obtained results reveal the suitability of ANN for the prediction of T (N) for liquid crystals using molecular structural descriptors.

  13. A biology-based approach for quantitative structure-activity relationships (QSARs) in ecotoxicity.

    NARCIS (Netherlands)

    Jager, T.; Kooijman, S.A.L.M.

    2009-01-01

    Quantitative structure-activity relationships (QSARs) for ecotoxicity can be used to fill data gaps and limit toxicity testing on animals. QSAR development may additionally reveal mechanistic information based on observed patterns in the data. However, the use of descriptive summary statistics for

  14. Quantitative Structure–Property Relationships for Aryldiazonia

    Directory of Open Access Journals (Sweden)

    Oxana I. Zhelezko

    2002-07-01

    Full Text Available Abstract: By the fact of finding 43 relationships, we have shown that the reduction potentials, dimerization potentials and potentials in half-equivalent point on titration of aryldiazonium cations XC6H4N+≡N (chemical reduction with K4[Fe(CN6] and TiCl3 in water, (C2H53N, (í-C4H94N+−OH, CH3OK and C10H8•−Na+ in acetone; polarographic reduction in nitromethane, sulfolane, and N,N-dimethylformamide are related linearly to the quantum chemically evaluated electron affinities (A and to the stabilization energies of radicals formed on diazonium cations reduction. Sixty six linear correlations of frequencies (ν characterizing a collection of bonds stretching vibrations of the C-N+≡N fragment in the XC6H4N+≡NY− salts with different anions in vaseline oil, N,N-dimethylformamide, acetone, ethylacetate, methanol, water, with the bonds orders of N≡N and C-N, with the charges on carbon atoms in para positions of the C6H5X molecules aromatic rings, with the mesomeric dipole moments (μm of X substituents have been found. Twelve quantitative relationships combining the μm and ν quantities with the A values have been established. The interrelations obtained have an explicitly expressed physical meaning, are featured by rather high correlation coefficients and have a predictive power in respect to redox properties, electron affinities, vibrational frequencies of aryldiazonia, as well as to mesomeric dipole moments of atomic groups in organic molecules.

  15. A modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model for predicting liquid viscosity of pure organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongmin; Park, Kiho; Yang, Dae Ryook [Korea University, Seoul (Korea, Republic of); Kwon, Yunkyung; Park, Taeyun [ChemEssen Inc., Seoul (Korea, Republic of)

    2017-10-15

    Liquid viscosity is an important physical property utilized in engineering designs for transportation and processing of fluids. However, the measurement of liquid viscosity is not always easy when the materials have toxicity and instability. In this study, a modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model is suggested and analyzed in terms of its performance of prediction for liquid viscosity compared to the conventional SVRC-QSPR model and the other methods. The modification was conducted by changing the initial point from triple point to ambient temperature (293 K), and assuming that the liquid viscosity at critical temperature is 0 cP. The results reveal that the prediction performance of the modified SVRC-QSPR model is comparable to the other methods as showing 7.90% of mean absolute percentage error (MAPE) and 0.9838 of R{sup 2}. In terms of both the number of components and the performance of prediction, the modified SVRC-QSPR model is superior to the conventional SVRC-QSPR model. Also, the applicability of the model is improved since the condition of the end points of the modified model is not so restrictive as the conventional SVRC-QSPR model.

  16. A modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model for predicting liquid viscosity of pure organic compounds

    International Nuclear Information System (INIS)

    Lee, Seongmin; Park, Kiho; Yang, Dae Ryook; Kwon, Yunkyung; Park, Taeyun

    2017-01-01

    Liquid viscosity is an important physical property utilized in engineering designs for transportation and processing of fluids. However, the measurement of liquid viscosity is not always easy when the materials have toxicity and instability. In this study, a modified scaled variable reduced coordinate (SVRC)-quantitative structure property relationship (QSPR) model is suggested and analyzed in terms of its performance of prediction for liquid viscosity compared to the conventional SVRC-QSPR model and the other methods. The modification was conducted by changing the initial point from triple point to ambient temperature (293 K), and assuming that the liquid viscosity at critical temperature is 0 cP. The results reveal that the prediction performance of the modified SVRC-QSPR model is comparable to the other methods as showing 7.90% of mean absolute percentage error (MAPE) and 0.9838 of R 2 . In terms of both the number of components and the performance of prediction, the modified SVRC-QSPR model is superior to the conventional SVRC-QSPR model. Also, the applicability of the model is improved since the condition of the end points of the modified model is not so restrictive as the conventional SVRC-QSPR model.

  17. Quantitative structure-retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography.

    Science.gov (United States)

    Santoro, Adriana Leandra; Carrilho, Emanuel; Lanças, Fernando Mauro; Montanari, Carlos Alberto

    2016-06-10

    The pharmacokinetic properties of flavonoids with differing degrees of lipophilicity were investigated using immobilized artificial membranes (IAMs) as the stationary phase in high performance liquid chromatography (HPLC). For each flavonoid compound, we investigated whether the type of column used affected the correlation between the retention factors and the calculated octanol/water partition (log Poct). Three-dimensional (3D) molecular descriptors were calculated from the molecular structure of each compound using i) VolSurf software, ii) the GRID method (computational procedure for determining energetically favorable binding sites in molecules of known structure using a probe for calculating the 3D molecular interaction fields, between the probe and the molecule), and iii) the relationship between partition and molecular structure, analyzed in terms of physicochemical descriptors. The VolSurf built-in Caco-2 model was used to estimate compound permeability. The extent to which the datasets obtained from different columns differ both from each other and from both the calculated log Poct and the predicted permeability in Caco-2 cells was examined by principal component analysis (PCA). The immobilized membrane partition coefficients (kIAM) were analyzed using molecular descriptors in partial least square regression (PLS) and a quantitative structure-retention relationship was generated for the chromatographic retention in the cholesterol column. The cholesterol column provided the best correlation with the permeability predicted by the Caco-2 cell model and a good fit model with great prediction power was obtained for its retention data (R(2)=0.96 and Q(2)=0.85 with four latent variables). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Free and Open Source Chemistry Software in Research of Quantitative Structure-Toxicity Relationship of Pesticides

    Directory of Open Access Journals (Sweden)

    Rastija Vesna

    2017-01-01

    Full Text Available Pesticides are toxic chemicals aimed for the destroying pest on crops. Numerous data evidence about toxicity of pesticides on aquatic organisms. Since pesticides with similar properties tend to have similar biological activities, toxicity may be predicted from structure. Their structure feature and properties are encoded my means of molecular descriptors. Molecular descriptors can capture quite simple two-dimensional (2D chemical structures to highly complex three-dimensional (3D chemical structures. Quantitative structure-toxicity relationship (QSTR method uses linear regression analyses for correlation toxicity of chemical with their structural feature using molecular descriptors. Molecular descriptors were calculated using open source software PaDEL and in-house built PyMOL plugin (PyDescriptor. PyDescriptor is a new script implemented with the commonly used visualization software PyMOL for calculation of a large and diverse set of easily interpretable molecular descriptors encoding pharmacophoric patterns and atomic fragments. PyDescriptor has several advantages like free and open source, can work on all major platforms (Windows, Linux, MacOS. QSTR method allows prediction of toxicity of pesticides without experimental assay. In the present work, QSTR analysis for toxicity of a dataset of mixtures of 5 classes of pesticides comprising has been performed.

  19. Calculation of Quantitative Structure-Activity Relationship Descriptors of Artemisinin Derivatives

    Directory of Open Access Journals (Sweden)

    Jambalsuren Bayarmaa

    2008-06-01

    Full Text Available Quantitative structure-activity relationships are based on the construction of predictive models using a set of known molecules and associated activity value. This accurate methodology, developed with adequate mathematical and computational tools, leads to a faster, cheaper and more comprehensive design of new products, reducing the experimental synthesis and testing on animals. Preparation of the QSAR models of artemisinin derivatives was carried out by the genetic function algorithm (GFA method for 91 molecules. The results show some relationships to the observed antimalarial activities of the artemisinin derivatives. The most statistically signi fi cant regression equation obtained from the fi nal GFA relates to two molecular descriptors.

  20. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M. K. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  1. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi-Kyung [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  2. A quantitative structure- property relationship of gas chromatographic/mass spectrometric retention data of 85 volatile organic compounds as air pollutant materials by multivariate methods

    Directory of Open Access Journals (Sweden)

    Sarkhosh Maryam

    2012-05-01

    Full Text Available Abstract A quantitative structure-property relationship (QSPR study is suggested for the prediction of retention times of volatile organic compounds. Various kinds of molecular descriptors were calculated to represent the molecular structure of compounds. Modeling of retention times of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR and artificial neural network (ANN. The stepwise regression was used for the selection of the variables which gives the best-fitted models. After variable selection ANN, MLR methods were used with leave-one-out cross validation for building the regression models. The prediction results are in very good agreement with the experimental values. MLR as the linear regression method shows good ability in the prediction of the retention times of the prediction set. This provided a new and effective method for predicting the chromatography retention index for the volatile organic compounds.

  3. Distributing Correlation Coefficients of Linear Structure-Activity/Property Models

    Directory of Open Access Journals (Sweden)

    Sorana D. BOLBOACA

    2011-12-01

    Full Text Available Quantitative structure-activity/property relationships are mathematical relationships linking chemical structure and activity/property in a quantitative manner. These in silico approaches are frequently used to reduce animal testing and risk-assessment, as well as to increase time- and cost-effectiveness in characterization and identification of active compounds. The aim of our study was to investigate the pattern of correlation coefficients distribution associated to simple linear relationships linking the compounds structure with their activities. A set of the most common ordnance compounds found at naval facilities with a limited data set with a range of toxicities on aquatic ecosystem and a set of seven properties was studied. Statistically significant models were selected and investigated. The probability density function of the correlation coefficients was investigated using a series of possible continuous distribution laws. Almost 48% of the correlation coefficients proved fit Beta distribution, 40% fit Generalized Pareto distribution, and 12% fit Pert distribution.

  4. Prediction of the Formulation Dependence of the Glass Transition Temperature for Amine-Epoxy Copolymers Using a Quantitative Structure-Property Relationship Based on the AM1 Method

    National Research Council Canada - National Science Library

    Morrill, Jason

    2004-01-01

    A designer Quantitative Structure-Property Relationsbip (QSPR) based upon molecular properties calculated using the AM1 semi-empirical quantum mechanical metbod was developed to predict the glass transition temperature (Tg...

  5. A Quantitative Property-Property Relationship for Estimating Packaging-Food Partition Coefficients of Organic Compounds

    DEFF Research Database (Denmark)

    Huang, L.; Ernstoff, Alexi; Xu, H.

    2017-01-01

    Organic chemicals encapsulated in beverage and food packaging can migrate to the food and lead to human exposures via ingestion. The packaging-food (Kpf) partition coefficient is a key parameter to estimate the chemical migration from packaging materials. Previous studies have simply set Kpf to 1...... or 1000, or provided separate linear correlations for several discrete values of ethanol equivalencies of food simulants (EtOH-eq). The aim of the present study is to develop a single quantitative property-property relationship (QPPR) valid for different chemical-packaging combinations and for water...... because only two packaging types are included. This preliminary QPPR demonstrates that the Kpf for various chemicalpackaging-food combinations can be estimated by a single linear correlation. Based on more than 1000 collected Kpf in 15 materials, we will present extensive results for other packaging types...

  6. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J M [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); [Durham Univ. (United Kingdom); Howard, J A.K. [Durham Univ. (United Kingdom); McIntyre, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  7. Tools to Understand Structural Property Relationships for Wood Cell Walls

    Science.gov (United States)

    Joseph E. Jakes; Daniel J. Yelle; Charles R. Frihart

    2011-01-01

    Understanding structure-property relationships for wood cell walls has been hindered by the complex polymeric structures comprising these cell walls and the difficulty in assessing meaningful mechanical property measurements of individual cell walls. To help overcome these hindrances, we have developed two experimental methods: 1) two-dimensional solution state nuclear...

  8. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds

    International Nuclear Information System (INIS)

    Helguera, Aliuska Morales; Cordeiro, M. Natalia D.S.; Perez, Miguel Angel Cabrera; Combes, Robert D.; Gonzalez, Maykel Perez

    2008-01-01

    In this work, Quantitative Structure-Activity Relationship (QSAR) modelling was used as a tool for predicting the carcinogenic potency of a set of 39 nitroso-compounds, which have been bioassayed in male rats by using the oral route of administration. The optimum QSAR model provided evidence of good fit and performance of predicitivity from training set. It was able to account for about 84% of the variance in the experimental activity and exhibited high values of the determination coefficients of cross validations, leave one out and bootstrapping (q 2 LOO = 78.53 and q 2 Boot = 74.97). Such a model was based on spectral moments weighted with Gasteiger-Marsilli atomic charges, polarizability and hydrophobicity, as well as with Abraham indexes, specifically the summation solute hydrogen bond basicity and the combined dipolarity/polarizability. This is the first study to have explored the possibility of combining Abraham solute descriptors with spectral moments. A reasonable interpretation of these molecular descriptors from a toxicological point of view was achieved by means of taking into account bond contributions. The set of relationships so derived revealed the importance of the length of the alkyl chains for determining carcinogenic potential of the chemicals analysed, and were able to explain the difference between mono-substituted and di-substituted nitrosoureas as well as to discriminate between isomeric structures with hydroxyl-alkyl and alkyl substituents in different positions. Moreover, they allowed the recognition of structural alerts in classical structures of two potent nitrosamines, consistent with their biotransformation. These results indicate that this new approach has the potential for improving carcinogenicity predictions based on the identification of structural alerts

  9. Modeling process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Yu, Cheng; Liu, Zeliang; Lian, Yanping; Wolff, Sarah; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-02-01

    This paper presents our latest work on comprehensive modeling of process-structure-property relationships for additive manufacturing (AM) materials, including using data-mining techniques to close the cycle of design-predict-optimize. To illustrate the processstructure relationship, the multi-scale multi-physics process modeling starts from the micro-scale to establish a mechanistic heat source model, to the meso-scale models of individual powder particle evolution, and finally to the macro-scale model to simulate the fabrication process of a complex product. To link structure and properties, a highefficiency mechanistic model, self-consistent clustering analyses, is developed to capture a variety of material response. The model incorporates factors such as voids, phase composition, inclusions, and grain structures, which are the differentiating features of AM metals. Furthermore, we propose data-mining as an effective solution for novel rapid design and optimization, which is motivated by the numerous influencing factors in the AM process. We believe this paper will provide a roadmap to advance AM fundamental understanding and guide the monitoring and advanced diagnostics of AM processing.

  10. Structure/property relationships in multipass GMA welding of beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, P. W. (Patrick W.); Hults, W. L. (William L.); Thoma, D. J. (Dan J.); Dave, V. R. (Vivek R.); Kelly, A. M. (Anna Marie); Pappin, P. A. (Pallas A.); Cola, M. J. (Mark J.); Burgardt, P. (Paul)

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  11. Structure-Property Relationship in High Tg Thermosetting Polyimides

    Science.gov (United States)

    Chuang, Kathy C.; Meador, Mary Ann B.; HardyGreen, DeNise

    2000-01-01

    This viewgraph presentation gives an overview of the structure-property relationship in high glass transition temperatures (T(sub g)) thermosetting polyimides. The objectives of this work are to replace MDA in PMR-15 with 2,2-substituted benzidine and to evaluate the thermo-oxidative stability and mechanical properties of DMBZ-15 against PMR-15. Details are given on the T(sub g) of polyimide resins, the x-ray crystal structure of 2,2-Bis(trifluoro)benzidine (BFBZ), the isothermal aging of polyimide resins at 288 C under 1 atm of circulating air, the compressive strength of polyimide composites, and a gas evaluation profile of DMBZ-15 polyimide resins.

  12. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors.

    Science.gov (United States)

    Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana

    2013-10-30

    In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

  13. Quantitative Structure – Antioxidant Activity Relationships of Flavonoid Compounds

    Directory of Open Access Journals (Sweden)

    Károly Héberger

    2004-12-01

    Full Text Available A quantitative structure – antioxidant activity relationship (QSAR study of 36 flavonoids was performed using the partial least squares projection of latent structures (PLS method. The chemical structures of the flavonoids have been characterized by constitutional descriptors, two-dimensional topological and connectivity indices. Our PLS model gave a proper description and a suitable prediction of the antioxidant activities of a diverse set of flavonoids having clustering tendency.

  14. A Quantitative Property-Property Relationship for the Internal Diffusion Coefficients of Organic Compounds in Solid Materials

    DEFF Research Database (Denmark)

    Huang, Lei; Fantke, Peter; Jolliet, Olivier

    2017-01-01

    of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32......Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number...... consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R2 of 0.93). The internal validations showed...

  15. Quantitative structure-toxicity relationship study of some natural and synthetic coumarins using retention parameters

    Directory of Open Access Journals (Sweden)

    Rabtti El Hadi M.A.

    2012-01-01

    Full Text Available Four lipophilicity descriptors (RM0, b, C0, PC1 for twelve coumarine derivatives were determined by reversed-phase thin-layer chromatography in order to analyze which descriptor best describes the lipophilicity of coumarines investigated. Moreover, possible chemical toxicity of coumarins, expressed as the probability of a compound to cause organ-specific health effects, was calculated using ACD/Tox Suite program. The quantitative relationships between toxicity and molecular descriptors, including experimentally determined lipophilicity descriptors obtained in current study, were investigated using partial least square regression. The best models were obtained for kidney and liver health effects. Quantitative structure-toxicity relationship models revealed the importance of electric polarization descriptors, size descriptors and lipophilicity descriptors. Obtained models were used for the selection of the structural features of the compounds that are significantly affecting their absorption, distribution, metabolism, excretion, and toxicity. [Acknowledgements. This work has been supported by the Ministry of Education and Science of Serbia, Grant 172017.

  16. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size

    International Nuclear Information System (INIS)

    Ma Bin; Chen Huaihai; Xu Minmin; Hayat, Tahir; He Yan; Xu Jianming

    2010-01-01

    Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation. - Effect size based on meta-analysis was used for building PAHs dissipation quantitative structure-activity relationship (QSAR) models.

  17. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size

    Energy Technology Data Exchange (ETDEWEB)

    Ma Bin; Chen Huaihai; Xu Minmin; Hayat, Tahir [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); He Yan, E-mail: yhe2006@zju.edu.c [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China); Xu Jianming, E-mail: jmxu@zju.edu.c [Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou 310029 (China)

    2010-08-15

    Rhizoremediation is a significant form of bioremediation for polycyclic aromatic hydrocarbons (PAHs). This study examined the role of molecular structure in determining the rhizosphere effect on PAHs dissipation. Effect size in meta-analysis was employed as activity dataset for building quantitative structure-activity relationship (QSAR) models and accumulative effect sizes of 16 PAHs were used for validation of these models. Based on the genetic algorithm combined with partial least square regression, models for comprehensive dataset, Poaceae dataset, and Fabaceae dataset were built. The results showed that information indices, calculated as information content of molecules based on the calculation of equivalence classes from the molecular graph, were the most important molecular structural indices for QSAR models of rhizosphere effect on PAHs dissipation. The QSAR model, based on the molecular structure indices and effect size, has potential to be used in studying and predicting the rhizosphere effect of PAHs dissipation. - Effect size based on meta-analysis was used for building PAHs dissipation quantitative structure-activity relationship (QSAR) models.

  18. Multivariate quantitative structure-pharmacokinetic relationships (QSPKR) analysis of adenosine A(1) receptor agonists in rat

    NARCIS (Netherlands)

    Van der Graaf, PH; Nilsson, J; Van Schaick, EA; Danhof, M

    The aim of this study was to investigate the feasibility of a quantitative structure-pharmacokinetic relationships (QSPKR) method based on contemporary three-dimensional (3D) molecular characterization and multivariate statistical analysis. For this purpose, the programs SYBYL/CoMFA, GRID, and

  19. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    Science.gov (United States)

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    2017-07-01

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural diverse polymers which are capable to estimate green algae growth inhibition (EC50). The model (N = 43, R 2  = 0.73, RMSE = 0.28) is a regression-based decision tree using one structural descriptor for each of three polymer classes separated based on charge. The QSAR is applicable to linear homo polymers as well as copolymers and does not require information on the size of the polymer particle or underlying core material. Highly branched polymers, non-nitrogen cationic polymers and polymeric surfactants are not included in the model and thus cannot be evaluated. The model works best for cationic and non-ionic polymers for which cellular adsorption, disruption of the cell wall and photosynthesis inhibition were the mechanisms of action. For anionic polymers, specific properties of the polymer and test characteristics need to be known for detailed assessment. The data and QSAR results for anionic polymers, when combined with molecular dynamics simulations indicated that nutrient depletion is likely the dominant mode of toxicity. Nutrient depletion in turn, is determined by the non-linear interplay between polymer charge density and backbone flexibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Quantitative structure-cytotoxicity relationship of phenylpropanoid amides.

    Science.gov (United States)

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Saito, Takayuki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-07-01

    A total of 12 phenylpropanoid amides were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to investigate on their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean CC50 (50% cytotoxic concentration) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of CC50 to EC50 (50% cytoprotective concentration from HIV infection). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method followed by density functional theory (DFT) method. Twelve phenylpropanoid amides showed moderate cytotoxicity against both normal and OSCC cell lines. N-Caffeoyl derivatives coupled with vanillylamine and tyramine exhibited relatively higher tumor selectivity. Cytotoxicity against normal cells was correlated with descriptors related to electrostatic interaction such as polar surface area and chemical hardness, whereas cytotoxicity against tumor cells correlated with free energy, surface area and ellipticity. The tumor-selective cytotoxicity correlated with molecular size (surface area) and electrostatic interaction (the maximum electrostatic potential). The molecular size, shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of phenylpropanoid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials.

    NARCIS (Netherlands)

    Chen, Guangchao; Vijver, Martina G; Xiao, Yinlong; Peijnenburg, Willie J G M

    2017-01-01

    Gathering required information in a fast and inexpensive way is essential for assessing the risks of engineered nanomaterials (ENMs). The extension of conventional (quantitative) structure-activity relationships ((Q)SARs) approach to nanotoxicology, i.e., nano-(Q)SARs, is a possible solution. The

  2. Quantitative structure-cytotoxicity relationship of piperic acid amides.

    Science.gov (United States)

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Miyashiro, Takaki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-09-01

    A total of 12 piperic acid amides, including piperine, were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to find new biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean 50% cytotoxic concentration (CC50) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of the CC50 to 50% HIV infection-cytoprotective concentration (EC50). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by LowModeMD method followed by density functional theory method. All compounds showed low-to-moderate tumor selectivity, but no anti-HIV activity. N-Piperoyldopamine ( 8: ) which has a catechol moiety, showed the highest tumor selectivity, possibly due to its unique molecular shape and electrostatic interaction, especially its largest partial equalization of orbital electronegativities and vsurf descriptors. The present study suggests that molecular shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of piperic acid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. The uridine diphosphate glucuronosyltransferases: quantitative structure-activity relationships for hydroxyl polychlorinated biphenyl substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Degao [Dalian University of Technology, Department of Environmental Science and Technology, Dalian (China)

    2005-10-01

    Quantitative structure-activity relationships (QSARs), which relate the glucuronidation of hydroxyl polychlorinated biphenyls (OH-PCBs) - catalyzed by the uridine diphosphate glucuronosyltransferases (UGTs) - to their physicochemical properties and molecular structural parameters, can be used to predict the rate constants and interpret the mechanism of glucuronidation. In this study, QSARs have been developed that use 23 semi-empirical calculated quantum chemical descriptors to predict the logarithms of the constants 1/K{sub m} and V{sub max}, related to enzyme kinetics. A partial least squares regression method was used to select the optimal set of descriptors to minimize the multicollinearity between the descriptors, as well as to maximize the cross-validated coefficient (Q{sup 2} {sub cum}) values. The key descriptors affecting log(1/K{sub m}) were E{sub lumo}- E{sub homo} (the energy gap between the lowest unoccupied molecular orbital and the highest occupied molecular orbital) and q{sub C}{sup -} (the largest negative net atomic charge on a carbon atom), while the key descriptors affecting log V{sub max} were the polarizability {alpha}, the Connolly solvent-excluded volume (CSEV), and logP (the logarithm of the partition coefficient for octanol/water). From the results obtained it can be concluded that hydrophobic and electronic aspects of OH-PCBs are important in the glucuronidation of OH-PCBs. (orig.)

  4. New Insights Toward Quantitative Relationships between Lignin Reactivity to Monomers and Their Structural Characteristics.

    Science.gov (United States)

    Ma, Ruoshui; Zhang, Xiumei; Wang, Yi; Zhang, Xiao

    2018-04-27

    The heterogeneous and complex structural characteristics of lignin present a significant challenge to predict its processability (e.g. depolymerization, modifications etc) to valuable products. This study provides a detailed characterization and comparison of structural properties of seven representative biorefinery lignin samples derived from forest and agricultural residues, which were subjected to representative pretreatment methods. A range of wet chemistry and spectroscopy methods were applied to determine specific lignin structural characteristics such as functional groups, inter-unit linkages and peak molecular weight. In parallel, oxidative depolymerization of these lignin samples to either monomeric phenolic compounds or dicarboxylic acids were conducted, and the product yields were quantified. Based on these results (lignin structural characteristics and monomer yields), we demonstrated for the first time to apply multiple-variable linear estimations (MVLE) approach using R statistics to gain insight toward a quantitative correlation between lignin structural properties and their conversion reactivity toward oxidative depolymerization to monomers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    Science.gov (United States)

    Yilmaz, Hayriye; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2015-01-01

    The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR) approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs) in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807), with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size) most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs. PMID:28347035

  6. Modeling the Dispersibility of Single Walled Carbon Nanotubes in Organic Solvents by Quantitative Structure-Activity Relationship Approach

    Directory of Open Access Journals (Sweden)

    Hayriye Yilmaz

    2015-05-01

    Full Text Available The knowledge of physico-chemical properties of carbon nanotubes, including behavior in organic solvents is very important for design, manufacturing and utilizing of their counterparts with improved properties. In the present study a quantitative structure-activity/property relationship (QSAR/QSPR approach was applied to predict the dispersibility of single walled carbon nanotubes (SWNTs in various organic solvents. A number of additive descriptors and quantum-chemical descriptors were calculated and utilized to build QSAR models. The best predictability is shown by a 4-variable model. The model showed statistically good results (R2training = 0.797, Q2 = 0.665, R2test = 0.807, with high internal and external correlation coefficients. Presence of the X0Av descriptor and its negative term suggest that small size solvents have better SWCNTs solubility. Mass weighted descriptor ATS6m also indicates that heavier solvents (and small in size most probably are better solvents for SWCNTs. The presence of the Dipole Z descriptor indicates that higher polarizability of the solvent molecule increases the solubility. The developed model and contributed descriptors can help to understand the mechanism of the dispersion process and predictorganic solvents that improve the dispersibility of SWNTs.

  7. Excited States and Photodebromination of Selected Polybrominated Diphenyl Ethers: Computational and Quantitative Structure—Property Relationship Studies

    Directory of Open Access Journals (Sweden)

    Jin Luo

    2015-01-01

    Full Text Available This paper presents a density functional theory (DFT/time-dependent DFT (TD-DFT study on the lowest lying singlet and triplet excited states of 20 selected polybrominateddiphenyl ether (PBDE congeners, with the solvation effect included in the calculations using the polarized continuum model (PCM. The results obtained showed that for most of the brominated diphenyl ether (BDE congeners, the lowest singlet excited state was initiated by the electron transfer from HOMO to LUMO, involving a π–σ* excitation. In triplet excited states, structure of the BDE congeners differed notably from that of the BDE ground states with one of the specific C–Br bonds bending off the aromatic plane. In addition, the partial least squares regression (PLSR, principal component analysis-multiple linear regression analysis (PCA-MLR, and back propagation artificial neural network (BP-ANN approaches were employed for a quantitative structure-property relationship (QSPR study. Based on the previously reported kinetic data for the debromination by ultraviolet (UV and sunlight, obtained QSPR models exhibited a reasonable evaluation of the photodebromination reactivity even when the BDE congeners had same degree of bromination, albeit different patterns of bromination.

  8. Quantitative magnetometry analysis and structural characterization of multisegmented cobalt–nickel nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Cantu-Valle, Jesus [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Díaz Barriga-Castro, Enrique [Centro de Investigación de Ciencias Físico Matemáticas/Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de Los Garza, Nuevo León 66450 (Mexico); Vega, Víctor; García, Javier [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, Oviedo 33007 (Spain); Mendoza-Reséndez, Raquel [Facultad de Ingeniería Mecánica y Eléctrica. Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de Los Garza, Nuevo León 66450 (Mexico); Luna, Carlos [Centro de Investigación de Ciencias Físico Matemáticas/Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de Los Garza, Nuevo León 66450 (Mexico); Manuel Prida, Víctor [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, Oviedo 33007 (Spain); and others

    2015-04-01

    Understanding and measuring the magnetic properties of an individual nanowire and their relationship with crystalline structure and geometry are of scientific and technological great interest. In this work, we report the localized study of the magnetic flux distribution and the undisturbed magnetization of a single ferromagnetic nanowire that poses a bar-code like structure using off-axis electron holography (EH) under Lorentz conditions. The nanowires were grown by template-assisted electrodeposition, using AAO templates. Electron holography allows the visualization of the magnetic flux distribution within and surroundings as well as its quantification. The magnetic analysis performed at individual nanowires was correlated with the chemical composition and crystalline orientation of the nanowires. - Highlights: • The structure-magnetic property relationship of CoNi nanowires is determined. • Off axis electron holography for the magnetic nanowires is used for the analysis. • The magnetization is quantitatively obtained from the retrieved phase images. • These results lead to a better comprehension of the magneto-crystalline phenomena.

  9. Quantitative magnetometry analysis and structural characterization of multisegmented cobalt–nickel nanowires

    International Nuclear Information System (INIS)

    Cantu-Valle, Jesus; Díaz Barriga-Castro, Enrique; Vega, Víctor; García, Javier; Mendoza-Reséndez, Raquel; Luna, Carlos; Manuel Prida, Víctor

    2015-01-01

    Understanding and measuring the magnetic properties of an individual nanowire and their relationship with crystalline structure and geometry are of scientific and technological great interest. In this work, we report the localized study of the magnetic flux distribution and the undisturbed magnetization of a single ferromagnetic nanowire that poses a bar-code like structure using off-axis electron holography (EH) under Lorentz conditions. The nanowires were grown by template-assisted electrodeposition, using AAO templates. Electron holography allows the visualization of the magnetic flux distribution within and surroundings as well as its quantification. The magnetic analysis performed at individual nanowires was correlated with the chemical composition and crystalline orientation of the nanowires. - Highlights: • The structure-magnetic property relationship of CoNi nanowires is determined. • Off axis electron holography for the magnetic nanowires is used for the analysis. • The magnetization is quantitatively obtained from the retrieved phase images. • These results lead to a better comprehension of the magneto-crystalline phenomena

  10. Development of Quantitative Structure-Property Relationship Models for Self-Emulsifying Drug Delivery System of 2-Aryl Propionic Acid NSAIDs

    Directory of Open Access Journals (Sweden)

    Chen-Wen Li

    2011-01-01

    Full Text Available We developed the quantative structure-property relationships (QSPRs models to correlate the molecular structures of surfactant, cosurfactant, oil, and drug with the solubility of poorly water-soluble 2-aryl propionic acid nonsteroidal anti-inflammatory drugs (2-APA-NSAIDs in self-emulsifying drug delivery systems (SEDDSs. The compositions were encoded with electronic, geometrical, topological, and quantum chemical descriptors. To obtain reliable predictions, we used multiple linear regression (MLR and artificial neural network (ANN methods for model development. The obtained equations were validated using a test set of 42 formulations and showed a great predictive power, and linear models were found to be better than nonlinear ones. The obtained QSPR models would greatly facilitate fast screening for the optimal formulations of SEDDS at the early stage of drug development and minimize experimental effort.

  11. Quantitative Structure Activity Relationship of Cinnamaldehyde Compounds against Wood-Decaying Fungi

    Directory of Open Access Journals (Sweden)

    Dongmei Yang

    2016-11-01

    Full Text Available Cinnamaldehyde, of the genius Cinnamomum, is a major constituent of the bark of the cinnamon tree and possesses broad-spectrum antimicrobial activity. In this study, we used best multiple linear regression (BMLR to develop quantitative structure activity relationship (QSAR models for cinnamaldehyde derivatives against wood-decaying fungi Trametes versicolor and Gloeophyllun trabeum. Based on the two optimal QSAR models, we then designed and synthesized two novel cinnamaldehyde compounds. The QSAR models exhibited good correlation coefficients: R2Tv = 0.910 for Trametes versicolor and R2Gt = 0.926 for Gloeophyllun trabeum. Small errors between the experimental and calculated values of two designed compounds indicated that these two QSAR models have strong predictability and stability.

  12. Quantitative Structure-Activity Relationships Predicting the Antioxidant Potency of 17β-Estradiol-Related Polycyclic Phenols to Inhibit Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Katalin Prokai-Tatrai

    2013-01-01

    Full Text Available The antioxidant potency of 17β-estradiol and related polycyclic phenols has been well established. This property is an important component of the complex events by which these types of agents are capable to protect neurons against the detrimental consequences of oxidative stress. In order to relate their molecular structure and properties with their capacity to inhibit lipid peroxidation, a marker of oxidative stress, quantitative structure-activity relationship (QSAR studies were conducted. The inhibition of Fe3+-induced lipid peroxidation in rat brain homogenate, measured through an assay detecting thiobarbituric acid reactive substances for about seventy compounds were correlated with various molecular descriptors. We found that lipophilicity (modeled by the logarithm of the n-octanol/water partition coefficient, logP was the property that influenced most profoundly the potency of these compounds to inhibit lipid peroxidation in the biological medium studied. Additionally, the important contribution of the bond dissociation enthalpy of the phenolic O-H group, a shape index, the solvent-accessible surface area and the energy required to remove an electron from the highest occupied molecular orbital were also confirmed. Several QSAR equations were validated as potentially useful exploratory tools for identifying or designing novel phenolic antioxidants incorporating the structural backbone of 17β-estradiol to assist therapy development against oxidative stress-associated neurodegeneration.

  13. Quantitative structure-activity relationship of some 1-benzylbenzimidazole derivatives as antifungal agents

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2007-01-01

    Full Text Available In the present study, the antifungal activity of some 1-benzylbenzimidazole derivatives against yeast Saccharomyces cerevisiae was investigated. The tested benzimidazoles displayed in vitro antifungal activity and minimum inhibitory concentration (MIC was determined for all the compounds. Quantitative structure-activity relationship (QSAR has been used to study the relationships between the antifungal activity and lipophilicity parameter, logP, calculated by using CS Chem-Office Software version 7.0. The results are discussed on the basis of statistical data. The best QSAR model for prediction of antifungal activity of the investigated series of benzimidazoles was developed. High agreement between experimental and predicted inhibitory values was obtained. The results of this study indicate that the lipophilicity parameter has a significant effect on antifungal activity of this class of compounds, which simplify design of new biologically active molecules.

  14. Structure-Property Relationships and the Mixed Network Former Effect in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    compositions by substituting Al2O3 for SiO2. We also investigate the various roles of sodium in the glasses including charge compensation of tetrahedral aluminum and boron atoms and formation of non-bridging oxygen. We find that mechanical properties (density, elastic moduli, and hardness), glass transition......Boroaluminosilicate glasses are important materials for various applications, e.g., liquid crystal display substrates, glass fibers for reinforcement, and thermal shock-resistant glass containers. The complicated structural speciation in these glasses leads to a mixed network former effect yielding...... nonlinear variation in many macroscopic properties. It is therefore crucial to investigate and understand structure-property correlations in boroaluminosilicate glasses. Here we study the structure-property relationships of a range of sodium boroaluminosilicate glasses from peralkaline to peraluminous...

  15. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio

    NARCIS (Netherlands)

    Zvinavashe, E.; Du, T.; Griff, T.; Berg, van den J.H.J.; Soffers, A.E.M.F.; Vervoort, J.J.M.; Murk, A.J.; Rietjens, I.

    2009-01-01

    Within the REACH regulatory framework in the EU, quantitative structure-activity relationships (QSAR) models are expected to help reduce the number of animals used for experimental testing. The objective of this study was to develop QSAR models to describe the acute toxicity of organothiophosphate

  16. Designing a Quantitative Structure-Activity Relationship for the ...

    Science.gov (United States)

    Toxicokinetic models serve a vital role in risk assessment by bridging the gap between chemical exposure and potentially toxic endpoints. While intrinsic metabolic clearance rates have a strong impact on toxicokinetics, limited data is available for environmentally relevant chemicals including nearly 8000 chemicals tested for in vitro bioactivity in the Tox21 program. To address this gap, a quantitative structure-activity relationship (QSAR) for intrinsic metabolic clearance rate was developed to offer reliable in silico predictions for a diverse array of chemicals. Models were constructed with curated in vitro assay data for both pharmaceutical-like chemicals (ChEMBL database) and environmentally relevant chemicals (ToxCast screening) from human liver microsomes (2176 from ChEMBL) and human hepatocytes (757 from ChEMBL and 332 from ToxCast). Due to variability in the experimental data, a binned approach was utilized to classify metabolic rates. Machine learning algorithms, such as random forest and k-nearest neighbor, were coupled with open source molecular descriptors and fingerprints to provide reasonable estimates of intrinsic metabolic clearance rates. Applicability domains defined the optimal chemical space for predictions, which covered environmental chemicals well. A reduced set of informative descriptors (including relative charge and lipophilicity) and a mixed training set of pharmaceuticals and environmentally relevant chemicals provided the best intr

  17. Quantitative Structure-Retention Relationships (QSRR) for Chromatographic Separation of Disazo and Trisazo 4,4'-Diaminobenzanilide-based Dyes

    OpenAIRE

    Funar-Timofei, Simona; Fabian, Walter M. F.; Simu, Georgeta M.; Suzukic, Takahiro

    2006-01-01

    For a series of 23 disazo and trisazo 4,4'-diaminobenzanilide-based direct dye molecules, thechromatographic mobilities, extrapolated to modifier-free conditions (RM0 values), were determinedfrom reverse-phase thin-layer chromatography (RP-TLC) experiments. Traditional and rational QSAR/QSPR modelling techniques have been applied to find a quantitative structure-retention relationship (QSRR) for the dyes. Molecular dye structures were energy minimized by both molecular mechanics and quantum c...

  18. Quantitative Structure activity relationship and risk analysis of some pesticides in the cattle milk

    OpenAIRE

    Faqir Muhammad*, Ijaz Javed, Masood Akhtar1, Zia-ur-Rahman, Mian Muhammad Awais1, Muhammad Kashif Saleemi2 and Muhammad Irfan Anwar3

    2012-01-01

    Milk of cattle was collected from various localities of Faisalabad, Pakistan. Pesticides concentration was determined by HPLC using solid phase microextraction. The residue analysis revealed that about 40% milk samples were contaminated with pesticides. The mean±SE levels (ppm) of cyhalothrin, endosulfan, chlorpyrifos and cypermethrin were 0.38±0.02, 0.26±0.02, 0.072±0.01 and 0.085±0.02, respectively. Quantitative structure activity relationship (QSAR) models were used to predict the residues...

  19. Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins

    Directory of Open Access Journals (Sweden)

    Gheorghe Stan

    2017-04-01

    Full Text Available The exploitation of nanoscale size effects to create new nanostructured materials necessitates the development of an understanding of relationships between molecular structure, physical properties and material processing at the nanoscale. Numerous metrologies capable of thermal, mechanical, and electrical characterization at the nanoscale have been demonstrated over the past two decades. However, the ability to perform nanoscale molecular/chemical structure characterization has only been recently demonstrated with the advent of atomic-force-microscopy-based infrared spectroscopy (AFM-IR and related techniques. Therefore, we have combined measurements of chemical structures with AFM-IR and of mechanical properties with contact resonance AFM (CR-AFM to investigate the fabrication of 20–500 nm wide fin structures in a nanoporous organosilicate material. We show that by combining these two techniques, one can clearly observe variations of chemical structure and mechanical properties that correlate with the fabrication process and the feature size of the organosilicate fins. Specifically, we have observed an inverse correlation between the concentration of terminal organic groups and the stiffness of nanopatterned organosilicate fins. The selective removal of the organic component during etching results in a stiffness increase and reinsertion via chemical silylation results in a stiffness decrease. Examination of this effect as a function of fin width indicates that the loss of terminal organic groups and stiffness increase occur primarily at the exposed surfaces of the fins over a length scale of 10–20 nm. While the observed structure–property relationships are specific to organosilicates, we believe the combined demonstration of AFM-IR with CR-AFM should pave the way for a similar nanoscale characterization of other materials where the understanding of such relationships is essential.

  20. Connecting Structure-Property and Structure-Function Relationships across the Disciplines of Chemistry and Biology: Exploring Student Perceptions

    Science.gov (United States)

    Kohn, Kathryn P.; Underwood, Sonia M.; Cooper, Melanie M.

    2018-01-01

    While many university students take science courses in multiple disciplines, little is known about how they perceive common concepts from different disciplinary perspectives. Structure-property and structure-function relationships have long been considered important explanatory concepts in the disciplines of chemistry and biology, respectively.…

  1. A Review of Recent Advances towards the Development of (Quantitative Structure-Activity Relationships for Metallic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Guangchao Chen

    2017-08-01

    Full Text Available Gathering required information in a fast and inexpensive way is essential for assessing the risks of engineered nanomaterials (ENMs. The extension of conventional (quantitative structure-activity relationships ((QSARs approach to nanotoxicology, i.e., nano-(QSARs, is a possible solution. The preliminary attempts of correlating ENMs’ characteristics to the biological effects elicited by ENMs highlighted the potential applicability of (QSARs in the nanotoxicity field. This review discusses the current knowledge on the development of nano-(QSARs for metallic ENMs, on the aspects of data sources, reported nano-(QSARs, and mechanistic interpretation. An outlook is given on the further development of this frontier. As concluded, the used experimental data mainly concern the uptake of ENMs by different cell lines and the toxicity of ENMs to cells lines and Escherichia coli. The widely applied techniques of deriving models are linear and non-linear regressions, support vector machine, artificial neural network, k-nearest neighbors, etc. Concluded from the descriptors, surface properties of ENMs are seen as vital for the cellular uptake of ENMs; the capability of releasing ions and surface redox properties of ENMs are of importance for evaluating nanotoxicity. This review aims to present key advances in relevant nano-modeling studies and stimulate future research efforts in this quickly developing field of research.

  2. Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships (MCBIOS)

    Science.gov (United States)

    Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships Jie Liu1,2, Richard Judson1, Matthew T. Martin1, Huixiao Hong3, Imran Shah1 1National Center for Computational Toxicology (NCCT), US EPA, RTP, NC...

  3. Quantitative structure-activity relationship modeling on in vitro endocrine effects and metabolic stability involving 26 selected brominated flame retardants

    NARCIS (Netherlands)

    Harju, M.; Hamers, T.; Kamstra, J.H.; Sonneveld, E.; Boon, J.P.

    2007-01-01

    In this work, quantitative structure-activity relationships (QSARs) were developed to aid human and environmental risk assessment processes for brominated flame retardants (BFRs). Brominated flame retardants, such as the high-production-volume chemicals polybrominated diphenyl ethers (PBDEs),

  4. Understanding nanocellulose chirality and structure-properties relationship at the single fibril level

    Science.gov (United States)

    Usov, Ivan; Nyström, Gustav; Adamcik, Jozef; Handschin, Stephan; Schütz, Christina; Fall, Andreas; Bergström, Lennart; Mezzenga, Raffaele

    2015-06-01

    Nanocellulose fibrils are ubiquitous in nature and nanotechnologies but their mesoscopic structural assembly is not yet fully understood. Here we study the structural features of rod-like cellulose nanoparticles on a single particle level, by applying statistical polymer physics concepts on electron and atomic force microscopy images, and we assess their physical properties via quantitative nanomechanical mapping. We show evidence of right-handed chirality, observed on both bundles and on single fibrils. Statistical analysis of contours from microscopy images shows a non-Gaussian kink angle distribution. This is inconsistent with a structure consisting of alternating amorphous and crystalline domains along the contour and supports process-induced kink formation. The intrinsic mechanical properties of nanocellulose are extracted from nanoindentation and persistence length method for transversal and longitudinal directions, respectively. The structural analysis is pushed to the level of single cellulose polymer chains, and their smallest associated unit with a proposed 2 × 2 chain-packing arrangement.

  5. Food structure: Its formation and relationships with other properties.

    Science.gov (United States)

    Joardder, Mohammad U H; Kumar, Chandan; Karim, M A

    2017-04-13

    Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food.

  6. Quantitative structure-retention relationship studies with immobilized artificial membrane chromatography II: partial least squares regression.

    Science.gov (United States)

    Li, Jie; Sun, Jin; He, Zhonggui

    2007-01-26

    We aimed to establish quantitative structure-retention relationship (QSRR) with immobilized artificial membrane (IAM) chromatography using easily understood and obtained physicochemical molecular descriptors and to elucidate which descriptors are critical to affect the interaction process between solutes and immobilized phospholipid membranes. The retention indices (logk(IAM)) of 55 structurally diverse drugs were determined on an immobilized artificial membrane column (IAM.PC.DD2) directly or obtained by extrapolation method for highly hydrophobic compounds. Ten simple physicochemical property descriptors (clogP, rings, rotatory bond, hydro-bond counting, etc.) of these drugs were collected and used to establish QSRR and predict the retention data by partial least squares regression (PLSR). Five descriptors, clogP, rotatory bond (RotB), rings, molecular weight (MW) and total surface area (TSA), were reserved by using the Variable Importance for Projection (VIP) values as criterion to build the final PLSR model. An external test set was employed to verify the QSRR based on the training set with the five variables, and QSRR by PLSR exhibited a satisfying predictive ability with R(p)=0.902 and RMSE(p)=0.400. Comparison of coefficients of centered and scaled variables by PLSR demonstrated that, for the descriptors studied, clogP and TSA have the most significant positive effect but the rotatable bond has significant negative effect on drug IAM chromatographic retention.

  7. Using quantitative structure-activity relationships (QSAR) to predict toxic endpoints for polycyclic aromatic hydrocarbons (PAH).

    Science.gov (United States)

    Bruce, Erica D; Autenrieth, Robin L; Burghardt, Robert C; Donnelly, K C; McDonald, Thomas J

    2008-01-01

    Quantitative structure-activity relationships (QSAR) offer a reliable, cost-effective alternative to the time, money, and animal lives necessary to determine chemical toxicity by traditional methods. Additionally, humans are exposed to tens of thousands of chemicals in their lifetimes, necessitating the determination of chemical toxicity and screening for those posing the greatest risk to human health. This study developed models to predict toxic endpoints for three bioassays specific to several stages of carcinogenesis. The ethoxyresorufin O-deethylase assay (EROD), the Salmonella/microsome assay, and a gap junction intercellular communication (GJIC) assay were chosen for their ability to measure toxic endpoints specific to activation-, induction-, and promotion-related effects of polycyclic aromatic hydrocarbons (PAH). Shape-electronic, spatial, information content, and topological descriptors proved to be important descriptors in predicting the toxicity of PAH in these bioassays. Bioassay-based toxic equivalency factors (TEF(B)) were developed for several PAH using the quantitative structure-toxicity relationships (QSTR) developed. Predicting toxicity for a specific PAH compound, such as a bioassay-based potential potency (PP(B)) or a TEF(B), is possible by combining the predicted behavior from the QSTR models. These toxicity estimates may then be incorporated into a risk assessment for compounds that lack toxicity data. Accurate toxicity predictions are made by examining each type of endpoint important to the process of carcinogenicity, and a clearer understanding between composition and toxicity can be obtained.

  8. [Relationships between microscope structure and thermodynamic properties

    International Nuclear Information System (INIS)

    Wu, R.S.; Lee, L.L.; Cochran, D.

    1990-01-01

    This paper exhibits on the molecular level, the relationships between the microscopic structure and thermodynamic properties of dilute supercritical solutions by application of the integral equation theories for molecular distribution functions. To solve the integral equations, the authors use Baxter's Wiener-Hopf factorization of the Ornstein-Zernike equations and then apply this method to binary Lennard-Jones mixtures. A number of closure relations have been used: such as the Percus-Yevick (PY), the reference hypernetted chain (RHNC), the hybrid mean spherical approximation (HMSA), and the reference interaction-site (RISM) methods. The authors examine the microstructures of several important classes of supercritical mixtures, including the usual attractive-type and the less known repulsive-type solutions. The clustering of solvent molecules for solvent-solute structures in the attractive mixtures and, correspondingly, the solvent cavitation in the repulsive mixtures are clearly demonstrated. These are shown to be responsible for the large negative growth of the solute partial molar volumes in the attractive case and the positive growth in the repulsive case

  9. Processing-structure-property relationships of carbon nanotube and nanoplatelet enabled piezoresistive sensors

    Science.gov (United States)

    Luo, Sida

    Individual carbon nanotubes (CNTs) possess excellent piezoresistive performance, which is manifested by the significant electrical resistance change when subject to mechanical deformation. In comparison to individual CNTs, the CNT thin films, formed by a random assembly of individual tubes or bundles, show much lower piezoresistive sensitivity. Given the progress made to date in developing CNT ensemble based-piezoresistive sensors, the related piezoresistive mechanism(s) are still not well understood. The crucial step to obtain a better understanding of this issue is to study the effects of CNT structure in the dispersion on the piezoresistivity of CNT ensemble based-piezoresistive sensors. To reach this goal, my Ph.D. research first focuses on establishing the processing-structure-property relationship of SWCNT thin film piezoresistive sensors. The key accomplishment contains: 1) developing the combined preparative ultracentrifuge method (PUM) and dynamic light scattering (DLS) method to quantitatively characterized SWCNT particle size in dispersions under various sonication conditions; 2) designing combined ultrasonication and microfluidization processing protocol for high throughput and large-scale production of high quality SWCNT dispersions; 3) fabricating varied SWCNT thin film piezoresistive sensors through spray coating technique and immersion-drying post-treatment; and 4) investigating the effect of microstructures of SWCNTs on piezoresistivity of SWCNT thin film sensors. This experimental methodology for quantitative and systematic investigation of the processing-structure-property relationships provides a means for the performance optimization of CNT ensemble based piezoresistive sensors. As a start to understand the piezoresistive mechanism, the second focus of my Ph.D. research is studying charge transport behaviors in SWCNT thin films. It was found that the temperature-dependent sheet resistance of SWCNT thin films could be explained by a 3D variable

  10. Quantitative structure activity relationship for the computational prediction of nitrocompounds carcinogenicity

    International Nuclear Information System (INIS)

    Morales, Aliuska Helguera; Perez, Miguel Angel Cabrera; Combes, Robert D.; Gonzalez, Maykel Perez

    2006-01-01

    Several nitrocompounds have been screened for carcinogenicity in rodents, but this is a lengthy and expensive process, taking two years and typically costing 2.5 million dollars, and uses large numbers of animals. There is, therefore, much impetus to develop suitable alternative methods. One possible way of predicting carcinogenicity is to use quantitative structure-activity relationships (QSARs). QSARs have been widely utilized for toxicity testing, thereby contributing to a reduction in the need for experimental animals. This paper describes the results of applying a TOPological substructural molecular design (TOPS-MODE) approach for predicting the rodent carcinogenicity of nitrocompounds. The model described 79.10% of the experimental variance, with a standard deviation of 0.424. The predictive power of the model was validated by leave-one-out validation, with a determination coefficient of 0.666. In addition, this approach enabled the contribution of different fragments to carcinogenic potency to be assessed, thereby making the relationships between structure and carcinogenicity to be transparent. It was found that the carcinogenic activity of the chemicals analysed was increased by the presence of a primary amine group bonded to the aromatic ring, a manner that was proportional to the ring aromaticity. The nitro group bonded to an aromatic carbon atom is a more important determinant of carcinogenicity than the nitro group bonded to an aliphatic carbon. Finally, the TOPS-MODE approach was compared with four other predictive models, but none of these could explain more than 66% of the variance in the carcinogenic potency with the same number of variables

  11. Applying quantitative structure–activity relationship approaches to nanotoxicology: Current status and future potential

    International Nuclear Information System (INIS)

    Winkler, David A.; Mombelli, Enrico; Pietroiusti, Antonio; Tran, Lang; Worth, Andrew; Fadeel, Bengt; McCall, Maxine J.

    2013-01-01

    The potential (eco)toxicological hazard posed by engineered nanoparticles is a major scientific and societal concern since several industrial sectors (e.g. electronics, biomedicine, and cosmetics) are exploiting the innovative properties of nanostructures resulting in their large-scale production. Many consumer products contain nanomaterials and, given their complex life-cycle, it is essential to anticipate their (eco)toxicological properties in a fast and inexpensive way in order to mitigate adverse effects on human health and the environment. In this context, the application of the structure–toxicity paradigm to nanomaterials represents a promising approach. Indeed, according to this paradigm, it is possible to predict toxicological effects induced by chemicals on the basis of their structural similarity with chemicals for which toxicological endpoints have been previously measured. These structure–toxicity relationships can be quantitative or qualitative in nature and they can predict toxicological effects directly from the physicochemical properties of the entities (e.g. nanoparticles) of interest. Therefore, this approach can aid in prioritizing resources in toxicological investigations while reducing the ethical and monetary costs that are related to animal testing. The purpose of this review is to provide a summary of recent key advances in the field of QSAR modelling of nanomaterial toxicity, to identify the major gaps in research required to accelerate the use of quantitative structure–activity relationship (QSAR) methods, and to provide a roadmap for future research needed to achieve QSAR models useful for regulatory purposes

  12. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.

    Science.gov (United States)

    Kaija, A R; Wilmer, C E

    2017-09-08

    Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.

  13. Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout.

    Science.gov (United States)

    Mendenhall, Jeffrey; Meiler, Jens

    2016-02-01

    Dropout is an Artificial Neural Network (ANN) training technique that has been shown to improve ANN performance across canonical machine learning (ML) datasets. Quantitative Structure Activity Relationship (QSAR) datasets used to relate chemical structure to biological activity in Ligand-Based Computer-Aided Drug Discovery pose unique challenges for ML techniques, such as heavily biased dataset composition, and relatively large number of descriptors relative to the number of actives. To test the hypothesis that dropout also improves QSAR ANNs, we conduct a benchmark on nine large QSAR datasets. Use of dropout improved both enrichment false positive rate and log-scaled area under the receiver-operating characteristic curve (logAUC) by 22-46 % over conventional ANN implementations. Optimal dropout rates are found to be a function of the signal-to-noise ratio of the descriptor set, and relatively independent of the dataset. Dropout ANNs with 2D and 3D autocorrelation descriptors outperform conventional ANNs as well as optimized fingerprint similarity search methods.

  14. Quantitative Structure activity relationship and risk analysis of some pesticides in the cattle milk

    Directory of Open Access Journals (Sweden)

    Faqir Muhammad*, Ijaz Javed, Masood Akhtar1, Zia-ur-Rahman, Mian Muhammad Awais1, Muhammad Kashif Saleemi2 and Muhammad Irfan Anwar3

    2012-10-01

    Full Text Available Milk of cattle was collected from various localities of Faisalabad, Pakistan. Pesticides concentration was determined by HPLC using solid phase microextraction. The residue analysis revealed that about 40% milk samples were contaminated with pesticides. The mean±SE levels (ppm of cyhalothrin, endosulfan, chlorpyrifos and cypermethrin were 0.38±0.02, 0.26±0.02, 0.072±0.01 and 0.085±0.02, respectively. Quantitative structure activity relationship (QSAR models were used to predict the residues of unknown pesticides in the milk of cattle using their known physicochemical properties such as molecular weight (MW, melting point (MP, and log octanol to water partition coefficient (Ko/w as well as the milk characteristics such as pH, % fat, and specific gravity (SG in this species. The analysis revealed good correlation coefficients (R2 = 0.91 for cattle QSAR model. The coefficient for Ko/w for the studied pesticides was higher in cattle milk. Risk analysis was conducted based upon the determined pesticide residues and their provisional tolerable daily intakes. The daily intake levels of pesticide residues including cyhalothrin, chlorpyrifos and cypermethrin in present study were 3, 11, 2.5 times higher, respectively in cattle milk. This intake of pesticide contaminated milk might pose health hazards to humans in this locality.

  15. Composition - structure - properties relationships of peraluminous glasses for nuclear waste containment

    International Nuclear Information System (INIS)

    Piovesan, Victor

    2016-01-01

    Part of the Research and Development program concerning high level nuclear waste conditioning aims to assess new glass formulations able to incorporate a high waste content with enhanced properties in terms of homogeneity, thermal stability, long term behavior and process ability. This study focuses on peraluminous glasses, defined by an excess of aluminum ions Al"3"+ in comparison with modifier elements such as Na"+, Li"+ or Ca"2"+. A Design of Experiment approach has been employed to determine relationships between composition of simplified peraluminous glasses (SiO_2 - B_2O_3 - Al_2O_3 - Na_2O - Li_2O - CaO - La_2O_3) and their physical properties such as viscosity, glass transition temperature and glass homogeneity. Moreover, some structural investigation (NMR) was performed in order to better understand the structural role of Na"+, Li"+ and Ca"2"+ and the structural organization of peraluminous glasses. Then, physical and chemical properties of fully simulated peraluminous glasses were characterized to evaluate transposition between simplified and fully simulated glasses and also to put forward the potential of peraluminous glasses for nuclear waste containment. (author) [fr

  16. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    Science.gov (United States)

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  17. Three-dimensional quantitative structure-permeability relationship analysis for a series of inhibitors of rhinovirus replication.

    Science.gov (United States)

    Ekins, S; Durst, G L; Stratford, R E; Thorner, D A; Lewis, R; Loncharich, R J; Wikel, J H

    2001-01-01

    Multiple three-dimensional quantitative structure-activity relationship (3D-QSAR) approaches were applied to predicting passive Caco-2 permeability for a series of 28 inhibitors of rhinovirus replication. Catalyst, genetic function approximation (GFA) with MS-WHIM descriptors, CoMFA, and VolSurf were all used for generating 3D-quantitative structure permeability relationships utilizing a training set of 19 molecules. Each of these approaches was then compared using a test set of nine molecules not present in the training set. Statistical parameters for the test set predictions (r(2) and leave-one-out q(2)) were used to compare the models. It was found that the Catalyst pharmacophore model was the most predictive (test set of predicted versus observed permeability, r(2) = 0.94). This model consisted of a hydrogen bond acceptor, hydrogen bond donor, and ring aromatic feature with a training set correlation of r(2) = 0.83. The CoMFA model consisted of three components with an r(2) value of 0.96 and produced good predictions for the test set (r(2) = 0.84). VolSurf resulted in an r(2) value of 0.76 and good predictions for the test set (r(2) = 0.83). Test set predictions with GFA/WHIM descriptors (r(2) = 0.46) were inferior when compared with the Catalyst, CoMFA, and VolSurf model predictions in this evaluation. In summary it would appear that the 3D techniques have considerable value in predicting passive permeability for a congeneric series of molecules, representing a valuable asset for drug discovery.

  18. Structure Property Relationships in Organic Conjugated Systems

    OpenAIRE

    O'Neill, Luke; Lynch, Patrick; McNamara, Mary

    2005-01-01

    A series of π conjugated oligomers were studied by absorption and photoluminescence spectroscopy. A linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Sto...

  19. Structure Property Relationships in Organic Conjugated Systems

    OpenAIRE

    O'Neill, Luke

    2008-01-01

    A series of pi(п) conjugated oligomers containing 1 to 6 monomer units were studied by absorption and photoluminescence spectroscopies. The results are discussed and examined with regard to the variation of the optical properties with the increase of effective conjugation length. It was found that there was a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length. The relationships are in good agreement with the si...

  20. Quantitative structure-activity relationship analysis of substituted arylazo pyridone dyes in photocatalytic system: Experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Dostanić, J., E-mail: jasmina@nanosys.ihtm.bg.ac.rs [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Lončarević, D. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Zlatar, M. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade (Serbia); Vlahović, F. [University of Belgrade, Innovation center of the Faculty of Chemistry, 11000 Belgrade (Serbia); Jovanović, D.M. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia)

    2016-10-05

    Highlights: • Electronic effects of para substituted arylazo pyridone dyes. • Linear relationship between Hammett σ{sub p} constants and dyes photoreactivity. • The photocatalytic reactions facilitated by el.-acceptors and retarded by el.-donors. • Fukui functions to analyze the reactivity on concurrent sites within a molecule. • Hydroxyl radicals sustain attack from two reaction sites, depending on a substituent type. - Abstract: A series of arylazo pyridone dyes was synthesized by changing the type of the substituent group in the diazo moiety, ranging from strong electron-donating to strong electron-withdrawing groups. The structural and electronic properties of the investigated dyes was calculated at the M062X/6-31 + G(d,p) level of theory. The observed good linear correlations between atomic charges and Hammett σ{sub p} constants provided a basis to discuss the transmission of electronic substituent effects through a dye framework. The reactivity of synthesized dyes was tested through their decolorization efficiency in TiO{sub 2} photocatalytic system (Degussa P-25). Quantitative structure-activity relationship analysis revealed a strong correlation between reactivity of investigated dyes and Hammett substituent constants. The reaction was facilitated by electron-withdrawing groups, and retarded by electron-donating ones. Quantum mechanical calculations was used in order to describe the mechanism of the photocatalytic oxidation reactions of investigated dyes and interpret their reactivities within the framework of the Density Functional Theory (DFT). According to DFT based reactivity descriptors, i.e. Fukui functions and local softness, the active site moves from azo nitrogen atom linked to benzene ring to pyridone carbon atom linked to azo bond, going from dyes with electron-donating groups to dyes with electron-withdrawing groups.

  1. Quantitative structure-activity relationship analysis of substituted arylazo pyridone dyes in photocatalytic system: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Dostanić, J.; Lončarević, D.; Zlatar, M.; Vlahović, F.; Jovanović, D.M.

    2016-01-01

    Highlights: • Electronic effects of para substituted arylazo pyridone dyes. • Linear relationship between Hammett σ_p constants and dyes photoreactivity. • The photocatalytic reactions facilitated by el.-acceptors and retarded by el.-donors. • Fukui functions to analyze the reactivity on concurrent sites within a molecule. • Hydroxyl radicals sustain attack from two reaction sites, depending on a substituent type. - Abstract: A series of arylazo pyridone dyes was synthesized by changing the type of the substituent group in the diazo moiety, ranging from strong electron-donating to strong electron-withdrawing groups. The structural and electronic properties of the investigated dyes was calculated at the M062X/6-31 + G(d,p) level of theory. The observed good linear correlations between atomic charges and Hammett σ_p constants provided a basis to discuss the transmission of electronic substituent effects through a dye framework. The reactivity of synthesized dyes was tested through their decolorization efficiency in TiO_2 photocatalytic system (Degussa P-25). Quantitative structure-activity relationship analysis revealed a strong correlation between reactivity of investigated dyes and Hammett substituent constants. The reaction was facilitated by electron-withdrawing groups, and retarded by electron-donating ones. Quantum mechanical calculations was used in order to describe the mechanism of the photocatalytic oxidation reactions of investigated dyes and interpret their reactivities within the framework of the Density Functional Theory (DFT). According to DFT based reactivity descriptors, i.e. Fukui functions and local softness, the active site moves from azo nitrogen atom linked to benzene ring to pyridone carbon atom linked to azo bond, going from dyes with electron-donating groups to dyes with electron-withdrawing groups.

  2. Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors

    Science.gov (United States)

    Li, Yao-Wang; Li, Bo; He, Jiguo; Qian, Ping

    2011-07-01

    A database consisting of 214 tripeptides which contain either His or Tyr residue was applied to study quantitative structure-activity relationships (QSAR) of antioxidative tripeptides. Partial Least-Squares Regression analysis (PLSR) was conducted using parameters individually of each amino acid descriptor, including Divided Physico-chemical Property Scores (DPPS), Hydrophobic, Electronic, Steric, and Hydrogen (HESH), Vectors of Hydrophobic, Steric, and Electronic properties (VHSE), Molecular Surface-Weighted Holistic Invariant Molecular (MS-WHIM), isotropic surface area-electronic charge index (ISA-ECI) and Z-scale, to describe antioxidative tripeptides as X-variables and antioxidant activities measured with ferric thiocyanate methods were as Y-variable. After elimination of outliers by Hotelling's T 2 method and residual analysis, six significant models were obtained describing the entire data set. According to cumulative squared multiple correlation coefficients ( R2), cumulative cross-validation coefficients ( Q2) and relative standard deviation for calibration set (RSD c), the qualities of models using DPPS, HESH, ISA-ECI, and VHSE descriptors are better ( R2 > 0.6, Q2 > 0.5, RSD c 0.44). Furthermore, the predictive ability of models using DPPS descriptor is best among the six descriptors systems (cumulative multiple correlation coefficient for predict set ( Rext2) > 0.7). It was concluded that the DPPS is better to describe the amino acid of antioxidative tripeptides. The results of DPPS descriptor reveal that the importance of the center amino acid and the N-terminal amino acid are far more than the importance of the C-terminal amino acid for antioxidative tripeptides. The hydrophobic (positively to activity) and electronic (negatively to activity) properties of the N-terminal amino acid are suggested to play the most important significance to activity, followed by the hydrogen bond (positively to activity) of the center amino acid. The N-terminal amino acid

  3. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  4. Investigations on the structureProperty relationships of electron beam welded Inconel 625 and UNS 32205

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Sridhar, R.; Periwal, Saurabh; Oza, Smitkumar; Saxena, Vimal; Hidad, Preyas; Arivazhagan, N.

    2015-01-01

    Highlights: • Joining of dissimilar metals of Inconel 625 and UNS S32205 using electron beam welding. • Detailed structureproperty relationship of dissimilar welds. • Improved metallurgical and tensile properties from the EB welding. - Abstract: The metallurgical and mechanical properties of electron beam welded Ni based superalloy Inconel 625 and UNS S32205 duplex stainless steel plates have been investigated in the present study. Interface microstructure studies divulged the absence of any grain coarsening effects or the formation of any secondary phases at the heat affected zone (HAZ) of the electron beam (EB) weldments. Tensile studies showed that the fracture occurred at the weld zone in all the trials and the average weld strength was reported to be 850 MPa. Segregation of Mo rich phases was witnessed at the inter-dendritic arms of the fusion zone. The study recommended the use of EB welding for joining these dissimilar metals by providing detailed structureproperty relationships

  5. Designing quantitative structure activity relationships to predict specific toxic endpoints for polybrominated diphenyl ethers in mammalian cells.

    Science.gov (United States)

    Rawat, S; Bruce, E D

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are known as effective flame retardants and have vast industrial application in products like plastics, building materials and textiles. They are found to be structurally similar to thyroid hormones that are responsible for regulating metabolism in the body. Structural similarity with the hormones poses a threat to human health because, once in the system, PBDEs have the potential to affect thyroid hormone transport and metabolism. This study was aimed at designing quantitative structure-activity relationship (QSAR) models for predicting toxic endpoints, namely cell viability and apoptosis, elicited by PBDEs in mammalian cells. Cell viability was evaluated quantitatively using a general cytotoxicity bioassay using Janus Green dye and apoptosis was evaluated using a caspase assay. This study has thus modelled the overall cytotoxic influence of PBDEs at an early and a late endpoint by the Genetic Function Approximation method. This research was a twofold process including running in vitro bioassays to collect data on the toxic endpoints and modeling the evaluated endpoints using QSARs. Cell viability and apoptosis responses for Hep G2 cells exposed to PBDEs were successfully modelled with an r(2) of 0.97 and 0.94, respectively.

  6. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    International Nuclear Information System (INIS)

    Sadat Hayatshahi, Sayyed Hamed; Abdolmaleki, Parviz; Safarian, Shahrokh; Khajeh, Khosro

    2005-01-01

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k i values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, the previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%

  7. Structure-Property Relationships in Amorphous Transparent Conducting Oxides

    Science.gov (United States)

    Moffitt, Stephanie Lucille

    Over the last 20 years a new field of amorphous transparent conducting oxides (a-TCOs) has developed. The amorphous nature of these films makes them well suited for large area applications. In addition, a-TCOs can be made at low temperatures and through solution processing methods. These assets provide promising opportunities to improve applications such as solar cells and back-lit displays where traditional crystalline TCOs are used. In addition, it opens the door for new technological applications including the possibility for transparent, flexible electronics. Despite the recent growth in this field, fundamental understanding of the true nature of conductivity and the amorphous structure in this materials system is still progressing. To develop a greater understanding of a-TCOs, structure-property relationships were developed in the a-IGO and a-IZO systems. From the combination of element-specific local structure studies and liquid quench molecular dynamics simulations it is clear that a degree of structure remains in a-TCOs. By understanding this structure, the effect of gallium on thermal stability, carrier concentration and carrier mobility is understood. The source of charge carriers in a-IZO is identified as oxygen vacancies through the application of in situ Brouwer analysis. The continued development of the Brouwer analysis technique for use in amorphous oxides adds to the available methods for studying defects in amorphous systems. Finally, the foundational knowledge gained from the in-depth study of a-IGO was extended to understand the role of combustion processing and pulsed laser deposition as growth methods for transistors based on a-IGO.

  8. Obscure phenomena in statistical analysis of quantitative structure-activity relationships. Part 1: Multicollinearity of physicochemical descriptors.

    Science.gov (United States)

    Mager, P P; Rothe, H

    1990-10-01

    Multicollinearity of physicochemical descriptors leads to serious consequences in quantitative structure-activity relationship (QSAR) analysis, such as incorrect estimators and test statistics of regression coefficients of the ordinary least-squares (OLS) model applied usually to QSARs. Beside the diagnosis of the known simple collinearity, principal component regression analysis (PCRA) also allows the diagnosis of various types of multicollinearity. Only if the absolute values of PCRA estimators are order statistics that decrease monotonically, the effects of multicollinearity can be circumvented. Otherwise, obscure phenomena may be observed, such as good data recognition but low predictive model power of a QSAR model.

  9. Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS filled PS nanocomposites

    Directory of Open Access Journals (Sweden)

    J. J. Schwab

    2012-07-01

    Full Text Available The polyhedral oligomeric silsesquioxane (POSS additivated polystyrene (PS based nanocomposites were prepared by melt processing and the structure-properties relationships of the POSS-PS systems were compared to those of the neat PS. In order to investigate the effect of these structural parameters on the final properties of the polymer nanocomposites, five different kinds of POSS samples were used, in particular, POSS with different inorganic cage and with different organic pendent groups. The rheological investigation suggests clearly that the POSS acts as a plasticizer and that the processability of the PS was positively modified. The affinity between the POSS samples and the PS matrix was estimated by the calculated theoretical solubility parameters, considering the Hoy’s method and by morphology analysis. Minor difference between the solubility parameter of POSS and the matrix means better compatibility and no aggregation tendency. Furthermore, the POSS loading leads to a decrease of the rigidity, of the glass transition temperature and of the damping factor of the nanocomposite systems. The loading of different POSS molecules with open cage leads to a more pronounced effect on all the investigated properties that the loading of the POSS molecules with closed cage. Moreover, the melt properties are significantly influenced by the type of inorganic framework, by the type of the pendent organic groups and by the interaction between the POSS organic groups and the host matrix, while, the solid state properties appears to be influenced more by the kind of cage.

  10. Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: A review of methods and resources

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baiyang, E-mail: poplar_chen@hotmail.com [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Zhang, Tian [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China); Bond, Tom [Department of Civil and Environmental Engineering, Imperial College, London SW7 2AZ (United Kingdom); Gan, Yiqun [Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055 (China)

    2015-12-15

    Quantitative structure–activity relationship (QSAR) models are tools for linking chemical activities with molecular structures and compositions. Due to the concern about the proliferating number of disinfection byproducts (DBPs) in water and the associated financial and technical burden, researchers have recently begun to develop QSAR models to investigate the toxicity, formation, property, and removal of DBPs. However, there are no standard procedures or best practices regarding how to develop QSAR models, which potentially limit their wide acceptance. In order to facilitate more frequent use of QSAR models in future DBP research, this article reviews the processes required for QSAR model development, summarizes recent trends in QSAR-DBP studies, and shares some important resources for QSAR development (e.g., free databases and QSAR programs). The paper follows the four steps of QSAR model development, i.e., data collection, descriptor filtration, algorithm selection, and model validation; and finishes by highlighting several research needs. Because QSAR models may have an important role in progressing our understanding of DBP issues, it is hoped that this paper will encourage their future use for this application.

  11. Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: A review of methods and resources

    International Nuclear Information System (INIS)

    Chen, Baiyang; Zhang, Tian; Bond, Tom; Gan, Yiqun

    2015-01-01

    Quantitative structure–activity relationship (QSAR) models are tools for linking chemical activities with molecular structures and compositions. Due to the concern about the proliferating number of disinfection byproducts (DBPs) in water and the associated financial and technical burden, researchers have recently begun to develop QSAR models to investigate the toxicity, formation, property, and removal of DBPs. However, there are no standard procedures or best practices regarding how to develop QSAR models, which potentially limit their wide acceptance. In order to facilitate more frequent use of QSAR models in future DBP research, this article reviews the processes required for QSAR model development, summarizes recent trends in QSAR-DBP studies, and shares some important resources for QSAR development (e.g., free databases and QSAR programs). The paper follows the four steps of QSAR model development, i.e., data collection, descriptor filtration, algorithm selection, and model validation; and finishes by highlighting several research needs. Because QSAR models may have an important role in progressing our understanding of DBP issues, it is hoped that this paper will encourage their future use for this application.

  12. Quantitative structure-property relationships of electroluminescent ...

    Indian Academy of Sciences (India)

    Thus, support vector machine is a good method to build QSPR models to predict the ... For high-quality OLED dis- ... it provides a guide to the development process and speeds up ... The free software ChemSketch 12.0 was used to draw 2-D.

  13. Quantitative structure activity relationship (QSAR) of piperine analogs for bacterial NorA efflux pump inhibitors.

    Science.gov (United States)

    Nargotra, Amit; Sharma, Sujata; Koul, Jawahir Lal; Sangwan, Pyare Lal; Khan, Inshad Ali; Kumar, Ashwani; Taneja, Subhash Chander; Koul, Surrinder

    2009-10-01

    Quantitative structure activity relationship (QSAR) analysis of piperine analogs as inhibitors of efflux pump NorA from Staphylococcus aureus has been performed in order to obtain a highly accurate model enabling prediction of inhibition of S. aureus NorA of new chemical entities from natural sources as well as synthetic ones. Algorithm based on genetic function approximation method of variable selection in Cerius2 was used to generate the model. Among several types of descriptors viz., topological, spatial, thermodynamic, information content and E-state indices that were considered in generating the QSAR model, three descriptors such as partial negative surface area of the compounds, area of the molecular shadow in the XZ plane and heat of formation of the molecules resulted in a statistically significant model with r(2)=0.962 and cross-validation parameter q(2)=0.917. The validation of the QSAR models was done by cross-validation, leave-25%-out and external test set prediction. The theoretical approach indicates that the increase in the exposed partial negative surface area increases the inhibitory activity of the compound against NorA whereas the area of the molecular shadow in the XZ plane is inversely proportional to the inhibitory activity. This model also explains the relationship of the heat of formation of the compound with the inhibitory activity. The model is not only able to predict the activity of new compounds but also explains the important regions in the molecules in quantitative manner.

  14. A Quantitative Exploration of the Effect of Interfacial Phenomena on the Thermomechanical Properties of Polymer Nanocomposites

    Science.gov (United States)

    Natarajan, Bharath

    Polymer nanocomposites (PNC) are complex material systems in which the prevailing length scales, i.e., the particle size, radii of gyration of the polymer and the interparticle spacing, converge. This convergence leads to an increased dominance of the interface polymer over bulk properties, when compared to conventional "microcomposites". The development of fascinating nanoscopic filler materials (C60, nanotubes, graphene, quantum dots) along with this potential gain in interfacial area has fueled the expansion of PNCs. Nanocomposites literature has demonstrated a myriad of potential chemistries and self assembled structures that could significantly impact a diverse range of applications. However, most noteworthy results in this field are serendipitous and/or are outcomes of resource-intensive "trial and error" experiments supplemented by intuition. Intuition suggests, qualitatively, that the properties of PNCs depend on the individual properties of the participating species, the interphase and the spatial distribution of filler particles. However, the individual roles of these parameters are difficult to identify, since they are interrelated due to their co-dependence on the chemical constitution of the filler and matrix. A quantitative unifying picture is yet to emerge and the commercialization of this material class has been severely hampered by the lack of design rules and structure-property constitutive relationships that would aid in the prediction of bulk properties. In this thesis, a quantitative understanding of interfacial phenomena was sought and structure-property relationships between the filler/matrix interface chemistry and the dispersion and thermomechanical properties of PNCs were obtained by systematic experiments on 2 distinct kinds of nanocomposite systems (a) Enthalpic short silane modified fillers and (b) Entropic long polymer chain grafted filler embedded PNCs. In order to quantitatively understand the role of enthalpic compatibility, an

  15. A quantitative structure-activity relationship to predict efficacy of granular activated carbon adsorption to control emerging contaminants.

    Science.gov (United States)

    Kennicutt, A R; Morkowchuk, L; Krein, M; Breneman, C M; Kilduff, J E

    2016-08-01

    A quantitative structure-activity relationship was developed to predict the efficacy of carbon adsorption as a control technology for endocrine-disrupting compounds, pharmaceuticals, and components of personal care products, as a tool for water quality professionals to protect public health. Here, we expand previous work to investigate a broad spectrum of molecular descriptors including subdivided surface areas, adjacency and distance matrix descriptors, electrostatic partial charges, potential energy descriptors, conformation-dependent charge descriptors, and Transferable Atom Equivalent (TAE) descriptors that characterize the regional electronic properties of molecules. We compare the efficacy of linear (Partial Least Squares) and non-linear (Support Vector Machine) machine learning methods to describe a broad chemical space and produce a user-friendly model. We employ cross-validation, y-scrambling, and external validation for quality control. The recommended Support Vector Machine model trained on 95 compounds having 23 descriptors offered a good balance between good performance statistics, low error, and low probability of over-fitting while describing a wide range of chemical features. The cross-validated model using a log-uptake (qe) response calculated at an aqueous equilibrium concentration (Ce) of 1 μM described the training dataset with an r(2) of 0.932, had a cross-validated r(2) of 0.833, and an average residual of 0.14 log units.

  16. Pathways to Structure-Property Relationships of Peptide-Materials Interfaces: Challenges in Predicting Molecular Structures.

    Science.gov (United States)

    Walsh, Tiffany R

    2017-07-18

    An in-depth appreciation of how to manipulate the molecular-level recognition between peptides and aqueous materials interfaces, including nanoparticles, will advance technologies based on self-organized metamaterials for photonics and plasmonics, biosensing, catalysis, energy generation and harvesting, and nanomedicine. Exploitation of the materials-selective binding of biomolecules is pivotal to success in these areas and may be particularly key to producing new hierarchically structured biobased materials. These applications could be accomplished by realizing preferential adsorption of a given biomolecule onto one materials composition over another, one surface facet over another, or one crystalline polymorph over another. Deeper knowledge of the aqueous abiotic-biotic interface, to establish clear structure-property relationships in these systems, is needed to meet this goal. In particular, a thorough structural characterization of the surface-adsorbed peptides is essential for establishing these relationships but can often be challenging to accomplish via experimental approaches alone. In addition to myriad existing challenges associated with determining the detailed molecular structure of any molecule adsorbed at an aqueous interface, experimental characterization of materials-binding peptides brings new, complex challenges because many materials-binding peptides are thought to be intrinsically disordered. This means that these peptides are not amenable to experimental techniques that rely on the presence of well-defined secondary structure in the peptide when in the adsorbed state. To address this challenge, and in partnership with experiment, molecular simulations at the atomistic level can bring complementary and critical insights into the origins of this abiotic/biotic recognition and suggest routes for manipulating this phenomenon to realize new types of hybrid materials. For the reasons outlined above, molecular simulation approaches also face

  17. Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties.

    Science.gov (United States)

    Spurgeon, David J; Keith, Aidan M; Schmidt, Olaf; Lammertsma, Dennis R; Faber, Jack H

    2013-12-01

    Change in land use and management can impact massively on soil ecosystems. Ecosystem engineers and other functional biodiversity in soils can be influenced directly by such change and this in turn can affect key soil functions. Here, we employ meta-analysis to provide a quantitative assessment of the effects of changes in land use and land management across a range of successional/extensification transitions (conventional arable → no or reduced tillage → grassland → wooded land) on community metrics for two functionally important soil taxa, earthworms and fungi. An analysis of the relationships between community change and soil structural properties was also included. Meta-analysis highlighted a consistent trend of increased earthworm and fungal community abundances and complexity following transitions to lower intensity and later successional land uses. The greatest changes were seen for early stage transitions, such as introduction of reduced tillage regimes and conversion to grassland from arable land. Not all changes, however, result in positive effects on the assessed community metrics. For example, whether woodland conversion positively or negatively affects community size and complexity depends on woodland type and, potentially, the changes in soil properties, such as pH, that may occur during conversion. Alterations in soil communities tended to facilitate subsequent changes in soil structure and hydrology. For example, increasing earthworm abundances and functional group composition were shown to be positively correlated with water infiltration rate (dependent on tillage regime and habitat characteristics); while positive changes in fungal biomass measures were positively associated with soil microaggregate stability. These findings raise the potential to manage landscapes to increase ecosystem service provision from soil biota in relation to regulation of soil structure and water flow.

  18. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Aschi, Massimiliano; D'Archivio, Angelo Antonio; Maggi, Maria Anna; Mazzeo, Pietro; Ruggieri, Fabrizio

    2007-01-01

    In this paper, a quantitative structure-retention relationships (QSRR) method is employed to predict the retention behaviour of pesticides in reversed-phase high-performance liquid chromatography (HPLC). A six-parameter nonlinear model is developed by means of a feed-forward artificial neural network (ANN) with back-propagation learning rule. Accurate description of the retention factors of 26 compounds including commonly used insecticides, herbicides and fungicides and some metabolites is successfully achieved. In addition to the acetonitrile content, included to describe composition of the water-acetonitrile mobile phase, the octanol-water partition coefficient (from literature) and four quantum chemical descriptors are considered to account for the effect of solute structure on the retention. These are: the total dipole moment, the mean polarizability, the anisotropy of polarizability and a descriptor of hydrogen bonding ability based on the atomic charges on hydrogen bond donor and acceptor chemical functionalities. The proposed nonlinear QSRR model exhibits a high degree of correlation between observed and computed retention factors and a good predictive performance in wide range of mobile phase composition (40-65%, v/v acetonitrile) that supports its application for the prediction of the chromatographic behaviour of unknown pesticides. A multilinear regression model based on the same six descriptors shows a significantly worse predictive capability

  19. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Aschi, Massimiliano [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); D' Archivio, Angelo Antonio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)]. E-mail: darchivi@univaq.it; Maggi, Maria Anna [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Mazzeo, Pietro [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)

    2007-01-23

    In this paper, a quantitative structure-retention relationships (QSRR) method is employed to predict the retention behaviour of pesticides in reversed-phase high-performance liquid chromatography (HPLC). A six-parameter nonlinear model is developed by means of a feed-forward artificial neural network (ANN) with back-propagation learning rule. Accurate description of the retention factors of 26 compounds including commonly used insecticides, herbicides and fungicides and some metabolites is successfully achieved. In addition to the acetonitrile content, included to describe composition of the water-acetonitrile mobile phase, the octanol-water partition coefficient (from literature) and four quantum chemical descriptors are considered to account for the effect of solute structure on the retention. These are: the total dipole moment, the mean polarizability, the anisotropy of polarizability and a descriptor of hydrogen bonding ability based on the atomic charges on hydrogen bond donor and acceptor chemical functionalities. The proposed nonlinear QSRR model exhibits a high degree of correlation between observed and computed retention factors and a good predictive performance in wide range of mobile phase composition (40-65%, v/v acetonitrile) that supports its application for the prediction of the chromatographic behaviour of unknown pesticides. A multilinear regression model based on the same six descriptors shows a significantly worse predictive capability.

  20. Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-01-01

    Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.

  1. Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing

    Science.gov (United States)

    Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam

    2018-05-01

    Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.

  2. PLS-based quantitative structure-activity relationship for substituted benzamides of clebopride type. Application of experimental design in drug design.

    Science.gov (United States)

    Norinder, U; Högberg, T

    1992-04-01

    The advantageous approach of using an experimentally designed training set as the basis for establishing a quantitative structure-activity relationship with good predictive capability is described. The training set was selected from a fractional factorial design scheme based on a principal component description of physico-chemical parameters of aromatic substituents. The derived model successfully predicts the activities of additional substituted benzamides of 6-methoxy-N-(4-piperidyl)salicylamide type. The major influence on activity of the 3-substituent is demonstrated.

  3. Processing, structure, property and performance relationships for the thermal spray of the internal surface of aluminum cylinders

    Science.gov (United States)

    Cook, David James

    The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips

  4. Deep neural nets as a method for quantitative structure-activity relationships.

    Science.gov (United States)

    Ma, Junshui; Sheridan, Robert P; Liaw, Andy; Dahl, George E; Svetnik, Vladimir

    2015-02-23

    Neural networks were widely used for quantitative structure-activity relationships (QSAR) in the 1990s. Because of various practical issues (e.g., slow on large problems, difficult to train, prone to overfitting, etc.), they were superseded by more robust methods like support vector machine (SVM) and random forest (RF), which arose in the early 2000s. The last 10 years has witnessed a revival of neural networks in the machine learning community thanks to new methods for preventing overfitting, more efficient training algorithms, and advancements in computer hardware. In particular, deep neural nets (DNNs), i.e. neural nets with more than one hidden layer, have found great successes in many applications, such as computer vision and natural language processing. Here we show that DNNs can routinely make better prospective predictions than RF on a set of large diverse QSAR data sets that are taken from Merck's drug discovery effort. The number of adjustable parameters needed for DNNs is fairly large, but our results show that it is not necessary to optimize them for individual data sets, and a single set of recommended parameters can achieve better performance than RF for most of the data sets we studied. The usefulness of the parameters is demonstrated on additional data sets not used in the calibration. Although training DNNs is still computationally intensive, using graphical processing units (GPUs) can make this issue manageable.

  5. TOXICOPHORES AND QUANTITATIVE STRUCTURE -TOXICITY RELATIONSHIPS FOR SOME ENVIRONMENTAL POLLUTANTS

    Directory of Open Access Journals (Sweden)

    N. N. Gorinchoy

    2008-06-01

    Full Text Available The electron-conformational (EC method is employed to reveal the toxicophore and to predict aquatic toxicity quantitatively using as a training set a series of 51 compounds that have aquatic toxicity to fish. By performing conformational analysis (optimization of geometries of the low-energy conformers by the PM3 method and electronic structure calculations (by ab initio method corrected within the SM54/PM3 solvatation model, the Electron-Conformational Matrix of Congruity (ECMC was constructed for each conformation of these compounds. The toxicophore defined as the EC sub-matrix of activity (ECSA, a sub-matrix with matrix elements common to all the active compounds under consideration within minimal tolerances, is determined by an iterative procedure of comparison of their ECMC’s, gradually minimizing the tolerances. Starting with only the four most toxic compounds, their ECSA (toxicophore was found to consists of a 4x4 matrix (four sites with certain electronic and topologic characteristics which was shown to be present in 17 most active compounds. A structure-toxicity correlation between three toxicophore parameters and the activities of these 17 compounds with R2=0.94 was found. It is shown that the same toxicophore with larger tolerances satisfies the compounds with les activity, thus explicitly demonstrating how the activity is controlled by the tolerances quantitatively and which atoms (sites are most flexible in this respect. This allows for getting slightly different toxicophores for different levels of activity. For some active compounds that have no toxicophore a bimolecular mechanism of activity is suggested. Distinguished from other QSAR methods, no arbitrary descriptors and no statistics are involved in this EC structure-activity investigation.

  6. QUANTITATIVE ELECTRONIC STRUCTURE - ACTIVITY RELATIONSHIP OF ANTIMALARIAL COMPOUND OF ARTEMISININ DERIVATIVES USING PRINCIPAL COMPONENT REGRESSION APPROACH

    Directory of Open Access Journals (Sweden)

    Paul Robert Martin Werfette

    2010-06-01

    Full Text Available Analysis of quantitative structure - activity relationship (QSAR for a series of antimalarial compound artemisinin derivatives has been done using principal component regression. The descriptors for QSAR study were representation of electronic structure i.e. atomic net charges of the artemisinin skeleton calculated by AM1 semi-empirical method. The antimalarial activity of the compound was expressed in log 1/IC50 which is an experimental data. The main purpose of the principal component analysis approach is to transform a large data set of atomic net charges to simplify into a data set which known as latent variables. The best QSAR equation to analyze of log 1/IC50 can be obtained from the regression method as a linear function of several latent variables i.e. x1, x2, x3, x4 and x5. The best QSAR model is expressed in the following equation,  (;;   Keywords: QSAR, antimalarial, artemisinin, principal component regression

  7. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    Science.gov (United States)

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science

  8. Composition-structure-property relation of oxide glasses

    DEFF Research Database (Denmark)

    Hermansen, Christian

    also increases such properties. Yet, these rules are not strictly followed even for the simplest binary oxide glasses, such as alkali silicates, borates and phosphates. In this thesis it is argued that the missing link between composition and properties is the glass structure. Structural models...... are proposed based on topological selection rules and experimentally verified. The relation between structure and properties is evaluated using topological constraint theory, which in its essence is a theory that quantifies the two intuitions of the glass scientist. The end result is a quantitative model...

  9. Heterogeneous fenton degradation of azo dyes catalyzed by modified polyacrylonitrile fiber fe complexes: QSPR (quantitative structure peorperty relationship) study.

    Science.gov (United States)

    Li, Bing; Dong, Yongchun; Ding, Zhizhong

    2013-07-01

    The amidoximated polyacrylonitrile (PAN) fiber Fe complexes were prepared and used as the heterogeneous Fenton catalysts for the degradation of 28 anionic water soluble azo dyes in water under visible irradiation. The multiple linear regression (MLR) method was employed to develop the quantitative structure property relationship (QSPR) model equations for the decoloration and mineralization of azo dyes. Moreover, the predictive ability of the QSPR model equations was assessed using Leave-one-out (LOO) and cross-validation (CV) methods. Additionally, the effect of Fe content of catalyst and the sodium chloride in water on QSPR model equations were also investigated. The results indicated that the heterogeneous photo-Fenton degradation of the azo dyes with different structures was conducted in the presence of the amidoximated PAN fiber Fe complex. The QSPR model equations for the dye decoloration and mineralization were successfully developed using MLR technique. MW/S (molecular weight divided by the number of sulphonate groups) and NN=N (the number of azo linkage) are considered as the most important determining factor for the dye degradation and mineralization, and there is a significant negative correlation between MW/S or NN=N and degradation percentage or total organic carbon (TOC) removal. Moreover, LOO and CV analysis suggested that the obtained QSPR model equations have the better prediction ability. The variation in Fe content of catalyst and the addition of sodium chloride did not alter the nature of the QSPR model equations.

  10. First-Principles Study of Structure Property Relationships of Monolayer (Hydroxy)Oxide-Metal Bifunctional Electrocatalysts

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip

    2015-01-01

    step towards accurate identification and prediction of a variety of oxide/electrode interfacial structure-properties relationships, but also provides the foundation for rational design and control of ‘targeted active phases’ at catalytic interfaces. The successful design of bifunctional......In the present study, on the basis of detailed density functional theory (DFT) calculations, and using Ni hydroxy(oxide) films on Pt(111) and Au(111) electrodes as model systems, we describe a detailed structural and electrocatalytic analysis of hydrogen evolution (HER) at three-phase boundaries...... under alkaline electrochemical conditions. We demonstrate that the structure and oxidation state of the films can be systematically tuned by changing the applied electrode potential and/or the nature of substrates. Structural features determined from the theoretical calculations provide a wealth...

  11. Application of quantitative structure-activity relationship to the determination of binding constant based on fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Wen Yingying [Department of Applied Chemistry, Yantai University, Yantai 264005 (China); Liu Huitao, E-mail: liuht-ytu@163.co [Department of Applied Chemistry, Yantai University, Yantai 264005 (China); Luan Feng; Gao Yuan [Department of Applied Chemistry, Yantai University, Yantai 264005 (China)

    2011-01-15

    Quantitative structure-activity relationship (QSAR) model was used to predict and explain binding constant (log K) determined by fluorescence quenching. This method allowed us to predict binding constants of a variety of compounds with human serum albumin (HSA) based on their structures alone. Stepwise multiple linear regression (MLR) and nonlinear radial basis function neural network (RBFNN) were performed to build the models. The statistical parameters provided by the MLR model (R{sup 2}=0.8521, RMS=0.2678) indicated satisfactory stability and predictive ability while the RBFNN predictive ability is somewhat superior (R{sup 2}=0.9245, RMS=0.1736). The proposed models were used to predict the binding constants of two bioactive components in traditional Chinese medicines (isoimperatorin and chrysophanol) whose experimental results were obtained in our laboratory and the predicted results were in good agreement with the experimental results. This QSAR approach can contribute to a better understanding of structural factors of the compounds responsible for drug-protein interactions, and can be useful in predicting the binding constants of other compounds. - Research Highlights: QSAR models for binding constants of some compounds to HSA were developed. The models provide a simple and straightforward way to predict binding constant. QSAR can give some insight into structural features related to binding behavior.

  12. Materials science in microelectronics II the effects of structure on properties in thin films

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    The subject matter of thin-films - which play a key role in microelectronics - divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: Electrical properties Magnetic properties Optical properties Mechanical properties Mass transport properties Interface and junction properties Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties.

  13. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    Science.gov (United States)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  14. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    Science.gov (United States)

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  15. Towards the Development of Global Nano-Quantitative Structure–Property Relationship Models: Zeta Potentials of Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Andrey A. Toropov

    2018-04-01

    Full Text Available Zeta potential indirectly reflects a charge of the surface of nanoparticles in solutions and could be used to represent the stability of the colloidal solution. As processes of synthesis, testing and evaluation of new nanomaterials are expensive and time-consuming, so it would be helpful to estimate an approximate range of properties for untested nanomaterials using computational modeling. We collected the largest dataset of zeta potential measurements of bare metal oxide nanoparticles in water (87 data points. The dataset was used to develop quantitative structure–property relationship (QSPR models. Essential features of nanoparticles were represented using a modified simplified molecular input line entry system (SMILES. SMILES strings reflected the size-dependent behavior of zeta potentials, as the considered quasi-SMILES modification included information about both chemical composition and the size of the nanoparticles. Three mathematical models were generated using the Monte Carlo method, and their statistical quality was evaluated (R2 for the training set varied from 0.71 to 0.87; for the validation set, from 0.67 to 0.82; root mean square errors for both training and validation sets ranged from 11.3 to 17.2 mV. The developed models were analyzed and linked to aggregation effects in aqueous solutions.

  16. Validation of Quantitative Structure-Activity Relationship (QSAR Model for Photosensitizer Activity Prediction

    Directory of Open Access Journals (Sweden)

    Sharifuddin M. Zain

    2011-11-01

    Full Text Available Photodynamic therapy is a relatively new treatment method for cancer which utilizes a combination of oxygen, a photosensitizer and light to generate reactive singlet oxygen that eradicates tumors via direct cell-killing, vasculature damage and engagement of the immune system. Most of photosensitizers that are in clinical and pre-clinical assessments, or those that are already approved for clinical use, are mainly based on cyclic tetrapyrroles. In an attempt to discover new effective photosensitizers, we report the use of the quantitative structure-activity relationship (QSAR method to develop a model that could correlate the structural features of cyclic tetrapyrrole-based compounds with their photodynamic therapy (PDT activity. In this study, a set of 36 porphyrin derivatives was used in the model development where 24 of these compounds were in the training set and the remaining 12 compounds were in the test set. The development of the QSAR model involved the use of the multiple linear regression analysis (MLRA method. Based on the method, r2 value, r2 (CV value and r2 prediction value of 0.87, 0.71 and 0.70 were obtained. The QSAR model was also employed to predict the experimental compounds in an external test set. This external test set comprises 20 porphyrin-based compounds with experimental IC50 values ranging from 0.39 µM to 7.04 µM. Thus the model showed good correlative and predictive ability, with a predictive correlation coefficient (r2 prediction for external test set of 0.52. The developed QSAR model was used to discover some compounds as new lead photosensitizers from this external test set.

  17. Microstructure mechanical properties relationship in bainitic structures

    International Nuclear Information System (INIS)

    Altuna, M. A.; Gutierrez, I.

    2005-01-01

    In the present work, the microstructures and their mechanical properties have been studies in different bainitic structures. therefore, different bainitic morphologies have been produced by isothermal treatments carried out at different temperatures. For these steels, 400-450 degree centigree is the optimum range of temperatures in order to obtain bainitic structures. If the Temperature is higher, perlite is also formed and if it is lower, martensite is obtained during quenching. SEM and EBSD/OIM techniques were applied in order to study the microstructure. Tensile tests were carried out for mechanical characterization. (Author) 20 refs

  18. Quantitative structure-retention relationship studies using immobilized artificial membrane chromatography I: amended linear solvation energy relationships with the introduction of a molecular electronic factor.

    Science.gov (United States)

    Li, Jie; Sun, Jin; Cui, Shengmiao; He, Zhonggui

    2006-11-03

    Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.

  19. Elucidation of the structure-property relationship of p-type organic semiconductors through rapid library construction via a one-pot, Suzuki-Miyaura coupling reaction.

    Science.gov (United States)

    Fuse, Shinichiro; Matsumura, Keisuke; Wakamiya, Atsushi; Masui, Hisashi; Tanaka, Hiroshi; Yoshikawa, Susumu; Takahashi, Takashi

    2014-09-08

    The elucidation of the structure-property relationship is an important issue in the development of organic electronics. Combinatorial synthesis and the evaluation of systematically modified compounds is a powerful tool in the work of elucidating structure-property relationships. In this manuscript, D-π-A structure, 32 p-type organic semiconductors were rapidly synthesized via a one-pot, Suzuki-Miyaura coupling with subsequent Knoevenagel condensation. Evaluation of the solubility and photovoltaic properties of the prepared compounds revealed that the measured solubility was strongly correlated with the solubility parameter (SP), as reported by Fedors. In addition, the SPs were correlated with the Jsc of thin-film organic solar cells prepared using synthesized compounds. Among the evaluated photovoltaic properties of the solar cells, Jsc and Voc had strong correlations with the photoconversion efficiency (PCE).

  20. Relationship between pore structure and compressive strength

    Indian Academy of Sciences (India)

    Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and ...

  1. Synthetic Study on the Relationship Between Structure and Sweet Taste Properties of Steviol Glycosides

    Directory of Open Access Journals (Sweden)

    Grant Dubois

    2012-04-01

    Full Text Available The structure activity relationship between the C16-C17 methylene double bond on the aglycone of steviol glycosides and the corresponding impact on their sweet taste has been reported here for the first time. It has been observed that converting stevioside and rebaudioside A to their corresponding ketones by switching the doubly bonded methylene on C-17 for a ketone group actually removes the sweet taste properties of these molecules completely. Regenerating the original molecules tends to restore the sweet taste of both the steviol glycosides. Thus this C16-C17 methylene double bond in rebaudioside A and stevioside can be regarded as a pharmacophore essential for the sweetness property of these molecules.

  2. Three-dimensional quantitative structure-activity relationships and docking studies of some structurally diverse flavonoids and design of new aldose reductase inhibitors

    Directory of Open Access Journals (Sweden)

    Utpal Chandra De

    2015-01-01

    Full Text Available Aldose reductase (AR plays an important role in the development of several long-term diabetic complications. Inhibition of AR activities is a strategy for controlling complications arising from chronic diabetes. Several AR inhibitors have been reported in the literature. Flavonoid type compounds are shown to have significant AR inhibition. The objective of this study was to perform a computational work to get an idea about structural insight of flavonoid type compounds for developing as well as for searching new flavonoid based AR inhibitors. The data-set comprising 68 flavones along with their pIC 50 values ranging from 0.44 to 4.59 have been collected from literature. Structure of all the flavonoids were drawn in Chembiodraw Ultra 11.0, converted into corresponding three-dimensional structure, saved as mole file and then imported to maestro project table. Imported ligands were prepared using LigPrep option of maestro 9.6 version. Three-dimensional quantitative structure-activity relationships and docking studies were performed with appropriate options of maestro 9.6 version installed in HP Z820 workstation with CentOS 6.3 (Linux. A model with partial least squares factor 5, standard deviation 0.2482, R 2 = 0.9502 and variance ratio of regression 122 has been found as the best statistical model.

  3. Strategy for reduced calibration sets to develop quantitative structure-retention relationships in high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Andries, Jan P.M. [University of Professional Education, Department of Life Sciences, P.O. Box 90116, 4800 RA Breda (Netherlands); Claessens, Henk A. [University of Professional Education, Department of Life Sciences, P.O. Box 90116, 4800 RA Breda (Netherlands); Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, Laboratory of Polymer Chemistry, P.O. Box 513 (Helix, STW 1.35), 5600 MB Eindhoven (Netherlands); Heyden, Yvan Vander [Department of Analytical Chemistry and Pharmaceutical Technology, Vrije Universiteit Brussel-VUB, Laarbeeklaan 103, B-1090 Brussels (Belgium); Buydens, Lutgarde M.C., E-mail: L.Buydens@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands)

    2009-10-12

    In high-performance liquid chromatography, quantitative structure-retention relationships (QSRRs) are applied to model the relation between chromatographic retention and quantities derived from molecular structure of analytes. Classically a substantial number of test analytes is used to build QSRR models. This makes their application laborious and time consuming. In this work a strategy is presented to build QSRR models based on selected reduced calibration sets. The analytes in the reduced calibration sets are selected from larger sets of analytes by applying the algorithm of Kennard and Stone on the molecular descriptors used in the QSRR concerned. The strategy was applied on three QSRR models of different complexity, relating logk{sub w} or log k with either: (i) log P, the n-octanol-water partition coefficient, (ii) calculated quantum chemical indices (QCI), or (iii) descriptors from the linear solvation energy relationship (LSER). Models were developed and validated for 76 reversed-phase high-performance liquid chromatography systems. From the results we can conclude that it is possible to develop log P models suitable for the future prediction of retentions with as few as seven analytes. For the QCI and LSER models we derived the rule that three selected analytes per descriptor are sufficient. Both the dependent variable space, formed by the retention values, and the independent variable space, formed by the descriptors, are covered well by the reduced calibration sets. Finally guidelines to construct small calibration sets are formulated.

  4. MR morphology of triangular fibrocartilage complex: correlation with quantitative MR and biomechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Won C.; Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, Radiology Service, San Diego, CA (United States); University of California-San Diego, Department of Radiology, San Diego, CA (United States); Ruangchaijatuporn, Thumanoon [Mahidol University, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Rachathewi, Bangkok (Thailand); Biswas, Reni; Du, Jiang; Statum, Sheronda [University of California-San Diego, Department of Radiology, San Diego, CA (United States)

    2016-04-15

    To evaluate pathology of the triangular fibrocartilage complex (TFCC) using high-resolution morphologic magnetic resonance (MR) imaging, and compare with quantitative MR and biomechanical properties. Five cadaveric wrists (22-70 years) were imaged at 3 T using morphologic (proton density weighted spin echo, PD FS, and 3D spoiled gradient echo, 3D SPGR) and quantitative MR sequences to determine T2 and T1rho properties. In eight geographic regions, morphology of TFC disc and laminae were evaluated for pathology and quantitative MR values. Samples were disarticulated and biomechanical indentation testing was performed on the distal surface of the TFC disc. On morphologic PD SE images, TFC disc pathology included degeneration and tears, while that of the laminae included degeneration, degeneration with superimposed tear, mucinous transformation, and globular calcification. Punctate calcifications were highly visible on 3D SPGR images and found only in pathologic regions. Disc pathology occurred more frequently in proximal regions of the disc than distal regions. Quantitative MR values were lowest in normal samples, and generally higher in pathologic regions. Biomechanical testing demonstrated an inverse relationship, with indentation modulus being high in normal regions with low MR values. The laminae studied were mostly pathologic, and additional normal samples are needed to discern quantitative changes. These results show technical feasibility of morphologic MR, quantitative MR, and biomechanical techniques to characterize pathology of the TFCC. Quantitative MRI may be a suitable surrogate marker of soft tissue mechanical properties, and a useful adjunct to conventional morphologic MR techniques. (orig.)

  5. MR morphology of triangular fibrocartilage complex: correlation with quantitative MR and biomechanical properties

    International Nuclear Information System (INIS)

    Bae, Won C.; Chang, Eric Y.; Chung, Christine B.; Ruangchaijatuporn, Thumanoon; Biswas, Reni; Du, Jiang; Statum, Sheronda

    2016-01-01

    To evaluate pathology of the triangular fibrocartilage complex (TFCC) using high-resolution morphologic magnetic resonance (MR) imaging, and compare with quantitative MR and biomechanical properties. Five cadaveric wrists (22-70 years) were imaged at 3 T using morphologic (proton density weighted spin echo, PD FS, and 3D spoiled gradient echo, 3D SPGR) and quantitative MR sequences to determine T2 and T1rho properties. In eight geographic regions, morphology of TFC disc and laminae were evaluated for pathology and quantitative MR values. Samples were disarticulated and biomechanical indentation testing was performed on the distal surface of the TFC disc. On morphologic PD SE images, TFC disc pathology included degeneration and tears, while that of the laminae included degeneration, degeneration with superimposed tear, mucinous transformation, and globular calcification. Punctate calcifications were highly visible on 3D SPGR images and found only in pathologic regions. Disc pathology occurred more frequently in proximal regions of the disc than distal regions. Quantitative MR values were lowest in normal samples, and generally higher in pathologic regions. Biomechanical testing demonstrated an inverse relationship, with indentation modulus being high in normal regions with low MR values. The laminae studied were mostly pathologic, and additional normal samples are needed to discern quantitative changes. These results show technical feasibility of morphologic MR, quantitative MR, and biomechanical techniques to characterize pathology of the TFCC. Quantitative MRI may be a suitable surrogate marker of soft tissue mechanical properties, and a useful adjunct to conventional morphologic MR techniques. (orig.)

  6. MR morphology of triangular fibrocartilage complex: correlation with quantitative MR and biomechanical properties.

    Science.gov (United States)

    Bae, Won C; Ruangchaijatuporn, Thumanoon; Chang, Eric Y; Biswas, Reni; Du, Jiang; Statum, Sheronda; Chung, Christine B

    2016-04-01

    To evaluate pathology of the triangular fibrocartilage complex (TFCC) using high-resolution morphologic magnetic resonance (MR) imaging, and compare with quantitative MR and biomechanical properties. Five cadaveric wrists (22-70 years) were imaged at 3 T using morphologic (proton density weighted spin echo, PD FS, and 3D spoiled gradient echo, 3D SPGR) and quantitative MR sequences to determine T2 and T1rho properties. In eight geographic regions, morphology of TFC disc and laminae were evaluated for pathology and quantitative MR values. Samples were disarticulated and biomechanical indentation testing was performed on the distal surface of the TFC disc. On morphologic PD SE images, TFC disc pathology included degeneration and tears, while that of the laminae included degeneration, degeneration with superimposed tear, mucinous transformation, and globular calcification. Punctate calcifications were highly visible on 3D SPGR images and found only in pathologic regions. Disc pathology occurred more frequently in proximal regions of the disc than distal regions. Quantitative MR values were lowest in normal samples, and generally higher in pathologic regions. Biomechanical testing demonstrated an inverse relationship, with indentation modulus being high in normal regions with low MR values. The laminae studied were mostly pathologic, and additional normal samples are needed to discern quantitative changes. These results show technical feasibility of morphologic MR, quantitative MR, and biomechanical techniques to characterize pathology of the TFCC. Quantitative MRI may be a suitable surrogate marker of soft tissue mechanical properties, and a useful adjunct to conventional morphologic MR techniques.

  7. Research on the relationship between the structural properties of bedding layer in spring mattress and sleep quality.

    Science.gov (United States)

    Shen, Liming; Chen, Yu-xia; Guo, Yong; Zhong, ShiLu; Fang, Fei; Zhao, Jing; Hu, Tian-Yi

    2012-01-01

    Mattress, as a sleep platform, its types and physical properties has an important effect on sleep quality and rest efficiency. In this paper, by subjective evaluations, analysis of sleeping behaviors and tests of depth of sleep, the relationship between characteristics of the bedding materials, the structure of mattress, sleep quality and sleep behaviors were studied. The results showed that: (1) Characteristics of the bedding materials and structure of spring mattress had a remarkable effect on sleep behaviors and sleep quality. An optimum combination of the bedding materials, the structure of mattress and its core could improve the overall comfort of mattress, thereby improving the depth of sleep and sleep quality. (2) Sleep behaviors had a close relationship with sleeping postures and sleep habits. The characteristics of sleep behaviors vary from person to person.

  8. The quantitative structure-insecticidal activity relationships from plant derived compounds against chikungunya and zika Aedes aegypti (Diptera:Culicidae) vector.

    Science.gov (United States)

    Saavedra, Laura M; Romanelli, Gustavo P; Rozo, Ciro E; Duchowicz, Pablo R

    2018-01-01

    The insecticidal activity of a series of 62 plant derived molecules against the chikungunya, dengue and zika vector, the Aedes aegypti (Diptera:Culicidae) mosquito, is subjected to a Quantitative Structure-Activity Relationships (QSAR) analysis. The Replacement Method (RM) variable subset selection technique based on Multivariable Linear Regression (MLR) proves to be successful for exploring 4885 molecular descriptors calculated with Dragon 6. The predictive capability of the obtained models is confirmed through an external test set of compounds, Leave-One-Out (LOO) cross-validation and Y-Randomization. The present study constitutes a first necessary computational step for designing less toxic insecticides. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Imidazole derivatives as angiotensin II AT1 receptor blockers: Benchmarks, drug-like calculations and quantitative structure-activity relationships modeling

    Science.gov (United States)

    Alloui, Mebarka; Belaidi, Salah; Othmani, Hasna; Jaidane, Nejm-Eddine; Hochlaf, Majdi

    2018-03-01

    We performed benchmark studies on the molecular geometry, electron properties and vibrational analysis of imidazole using semi-empirical, density functional theory and post Hartree-Fock methods. These studies validated the use of AM1 for the treatment of larger systems. Then, we treated the structural, physical and chemical relationships for a series of imidazole derivatives acting as angiotensin II AT1 receptor blockers using AM1. QSAR studies were done for these imidazole derivatives using a combination of various physicochemical descriptors. A multiple linear regression procedure was used to design the relationships between molecular descriptor and the activity of imidazole derivatives. Results validate the derived QSAR model.

  10. Quantitative structural analysis of lignin by diffuse reflectance fourier transform infrared spectrometry

    International Nuclear Information System (INIS)

    Schultz, T.P.; Glasser, W.G.

    1986-01-01

    Empirical quantitative relationships were established between infrared (IR) spectral information and several structural features in lignins as determined by conventional methods. The structural composition of average phenylpropane (C g ) units which significantly correlated (0.01 level) with IR peak intensities included methoxy content, aromatic hydrogen content, phenolic hydroxy content, guaiacyl/syringyl ratio, and ''hydrolysis'' and ''condensation'' ratios

  11. Study of Chemistry and Structure-Property Relationship on Tunable Plasmonic Nanostructures

    Science.gov (United States)

    Jing, Hao

    In this dissertation, the rational design and controllable fabrication of an array of novel plasmonic nanostructures with geometrically tunable optical properties are demonstrated, including metal-semiconductor hybrid hetero-nanoparticles, bimetallic noble metal nanoparticles and hollow nanostructures (nanobox and nanocage). Firstly, I have developed a robust wet chemistry approach to the geometry control of Ag-Cu2O core-shell nanoparticles through epitaxial growth of Cu2O nanoshells on the surfaces of various Ag nanostructures, such as quasi-spherical nanoparticles, nanocubes, and nanocuboids. Precise control over the core and the shell geometries enables me to develop detailed, quantitative understanding of how the Cu2O nanoshells introduce interesting modifications to the resonance frequencies and the extinction spectral line shapes of multiple plasmon modes of the Ag cores. Secondly, I present a detailed and systematic study of the controlled overgrowth of Pd on Au nanorods. The overgrowth of Pd nanoshells with fine-controlled dimensions and architectures on single-crystalline Au nanorods through seed-mediated growth protocol in the presence of various surfactants is investigated. Thirdly, I have demonstrated that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, I have controllably fabricated nanorice and nanodumbbell particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high index facets abundant on the particle surfaces. And the nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time

  12. Molecular Descriptors Family on Structure Activity Relationships 1. Review of the Methodology

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2005-01-01

    Full Text Available This review cumulates the knowledge about the use of Molecular Descriptors Family usage on Structure Activity Relationships. The methodology is augmented through the general Structure Activity Relationships methodology. The obtained models in a series of five papers are quantitatively analyzed by comparing with previous reported results by using of the correlated correlations tests. The scores for a series of 13 data sets unpublished yet results are presented. Two unrestricted online access portals to the Molecular Descriptors Family Structure Activity Relationship models results are given.

  13. Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models

    International Nuclear Information System (INIS)

    Ruiz, Patricia; Mumtaz, Moiz; Gombar, Vijay

    2011-01-01

    Experimental determination of toxicity profiles consumes a great deal of time, money, and other resources. Consequently, businesses, societies, and regulators strive for reliable alternatives such as Quantitative Structure Toxicity Relationship (QSTR) models to fill gaps in toxicity profiles of compounds of concern to human health. The use of glycol ethers and their health effects have recently attracted the attention of international organizations such as the World Health Organization (WHO). The board members of Concise International Chemical Assessment Documents (CICAD) recently identified inadequate testing as well as gaps in toxicity profiles of ethylene glycol mono-n-alkyl ethers (EGEs). The CICAD board requested the ATSDR Computational Toxicology and Methods Development Laboratory to conduct QSTR assessments of certain specific toxicity endpoints for these chemicals. In order to evaluate the potential health effects of EGEs, CICAD proposed a critical QSTR analysis of the mutagenicity, carcinogenicity, and developmental effects of EGEs and other selected chemicals. We report here results of the application of QSTRs to assess rodent carcinogenicity, mutagenicity, and developmental toxicity of four EGEs: 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol and their metabolites. Neither mutagenicity nor carcinogenicity is indicated for the parent compounds, but these compounds are predicted to be developmental toxicants. The predicted toxicity effects were subjected to reverse QSTR (rQSTR) analysis to identify structural attributes that may be the main drivers of the developmental toxicity potential of these compounds.

  14. Process, structure, property and applications of metallic glasses

    Directory of Open Access Journals (Sweden)

    B. Geetha Priyadarshini

    2016-07-01

    Full Text Available Metallic glasses (MGs are gaining immense technological significance due to their unique structure-property relationship with renewed interest in diverse field of applications including biomedical implants, commercial products, machinery parts, and micro-electro-mechanical systems (MEMS. Various processing routes have been adopted to fabricate MGs with short-range ordering which is believed to be the genesis of unique structure. Understanding the structure of these unique materials is a long-standing unsolved mystery. Unlike crystalline counterpart, the outstanding properties of metallic glasses owing to the absence of grain boundaries is reported to exhibit high hardness, excellent strength, high elastic strain, and anti-corrosion properties. The combination of these remarkable properties would significantly contribute to improvement of performance and reliability of these materials when incorporated as bio-implants. The nucleation and growth of metallic glasses is driven by thermodynamics and kinetics in non-equilibrium conditions. This comprehensive review article discusses the various attributes of metallic glasses with an aim to understand the fundamentals of relationship process-structure-property existing in such unique class of material.

  15. Relationship between nano/micro structure and physical properties of TiO2-sodium caseinate composite films.

    Science.gov (United States)

    Montes-de-Oca-Ávalos, Juan Manuel; Altamura, Davide; Candal, Roberto Jorge; Scattarella, Francesco; Siliqi, Dritan; Giannini, Cinzia; Herrera, María Lidia

    2018-03-01

    Films obtained by casting, starting from conventional emulsions (CE), nanoemulsions (NE) or their gels, which led to different structures, with the aim of explore the relationship between structure and physical properties, were prepared. Sodium caseinate was used as the matrix, glycerol as plasticizer, glucono-delta-lactone as acidulant to form the gels, and TiO 2 nanoparticles as reinforcement to improve physical behavior. Structural characterization was performed by SAXS and WAXS (Small and Wide Angle X-ray Scattering, respectively), combined with confocal and scanning electron microscopy. The results demonstrate that the incorporation of the lipid phase does not notably modify the mechanical properties of the films compared to solution films. Films from NE were more stable against oil release than those from CE. Incorporation of TiO 2 improved mechanical properties as measured by dynamical mechanical analysis (DMA) and uniaxial tensile tests. TiO 2 macroscopic spatial distribution homogeneity and the nanostructure character of NE films were confirmed by mapping the q-dependent scattering intensity in scanning SAXS experiments. SAXS microscopies indicated a higher intrinsic homogeneity of NE films compared to CE films, independently of the TiO 2 load. NE-films containing structures with smaller and more homogeneously distributed building blocks showed greater potential for food applications than the films prepared from sodium caseinate solutions, which are the best known films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Local structure and structural signature underlying properties in metallic glasses and supercooled liquids

    Science.gov (United States)

    Ding, Jun

    Metallic glasses (MGs), discovered five decades ago as a newcomer in the family of glasses, are of current interest because of their unique structures and properties. There are also many fundamental materials science issues that remain unresolved for metallic glasses, as well as their predecessor above glass transition temperature, the supercooled liquids. In particular, it is a major challenge to characterize the local structure and unveil the structure-property relationship for these amorphous materials. This thesis presents a systematic study of the local structure of metallic glasses as well as supercooled liquids via classical and ab initio molecular dynamics simulations. Three typical MG models are chosen as representative candidate, Cu64 Zr36, Pd82Si18 and Mg65Cu 25Y10 systems, while the former is dominant with full icosahedra short-range order and the prism-type short-range order dominate for latter two. Furthermore, we move to unravel the underlying structural signature among several properties in metallic glasses. Firstly, the temperature dependence of specific heat and liquid fragility between Cu-Zr and Mg-Cu-Y (also Pd-Si) in supercooled liquids are quite distinct: gradual versus fast evolution of specific heat and viscosity/relaxation time with undercooling. Their local structural ordering are found to relate with the temperature dependence of specific heat and relaxation time. Then elastic heterogeneity has been studied to correlate with local structure in Cu-Zr MGs. Specifically, this part covers how the degree of elastic deformation correlates with the internal structure at the atomic level, how to quantitatively evaluate the local solidity/liquidity in MGs and how the network of interpenetrating connection of icosahedra determine the corresponding shear modulus. Finally, we have illustrated the structure signature of quasi-localized low-frequency vibrational normal modes, which resides the intriguing vibrational properties in MGs. Specifically, the

  17. Quantitative MRI in refractory temporal lobe epilepsy: relationship with surgical outcomes

    Science.gov (United States)

    Bonilha, Leonardo

    2015-01-01

    Medically intractable temporal lobe epilepsy (TLE) remains a serious health problem. Across treatment centers, up to 40% of patients with TLE will continue to experience persistent postoperative seizures at 2-year follow-up. It is unknown why such a large number of patients continue to experience seizures despite being suitable candidates for resective surgery. Preoperative quantitative MRI techniques may provide useful information on why some patients continue to experience disabling seizures, and may have the potential to develop prognostic markers of surgical outcome. In this article, we provide an overview of how quantitative MRI morphometric and diffusion tensor imaging (DTI) data have improved the understanding of brain structural alterations in patients with refractory TLE. We subsequently review the studies that have applied quantitative structural imaging techniques to identify the neuroanatomical factors that are most strongly related to a poor postoperative prognosis. In summary, quantitative imaging studies strongly suggest that TLE is a disorder affecting a network of neurobiological systems, characterized by multiple and inter-related limbic and extra-limbic network abnormalities. The relationship between brain alterations and postoperative outcome are less consistent, but there is emerging evidence suggesting that seizures are less likely to remit with surgery when presurgical abnormalities are observed in the connectivity supporting brain regions serving as network nodes located outside the resected temporal lobe. Future work, possibly harnessing the potential from multimodal imaging approaches, may further elucidate the etiology of persistent postoperative seizures in patients with refractory TLE. Furthermore, quantitative imaging techniques may be explored to provide individualized measures of postoperative seizure freedom outcome. PMID:25853080

  18. Materials science in microelectronics I the relationships between thin film processing and structure

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship.The first volume of Materials Science in Microelectronics focuses on the first relationship - that between processing and the structure of the thin-film. The state of the thin film's surface during the period that one monolayer exists - before being buried in the next layer - determines the ultimate structure of the thin film, and thus its properties. This

  19. Structure-function-property-design interplay in biopolymers: spider silk.

    Science.gov (United States)

    Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L

    2014-04-01

    Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Structure-function relationships of human meniscus.

    Science.gov (United States)

    Danso, Elvis K; Oinas, Joonas M T; Saarakkala, Simo; Mikkonen, Santtu; Töyräs, Juha; Korhonen, Rami K

    2017-03-01

    Biomechanical properties of human meniscus have been shown to be site-specific. However, it is not known which meniscus constituents at different depths and locations contribute to biomechanical properties obtained from indentation testing. Therefore, we investigated the composition and structure of human meniscus in a site- and depth-dependent manner and their relationships with tissue site-specific biomechanical properties. Elastic and poroelastic properties were analyzed from experimental stress-relaxation and sinusoidal indentation measurements with fibril reinforced poroelastic finite element modeling. Proteoglycan (PG) and collagen contents, as well as the collagen orientation angle, were determined as a function of tissue depth using microscopic and spectroscopic methods, and they were compared with biomechanical properties. For all the measurement sites (anterior, middle and posterior) of lateral and medial menisci (n=26), PG content and collagen orientation angle increased as a function of tissue depth while the collagen content had an initial sharp increase followed by a decrease across tissue depth. The highest values (pmeniscus. This location had also higher (pmeniscus, higher (pmeniscus) significantly higher (pmeniscus modulus and/or nonlinear permeability. This study suggests that nonlinear biomechanical properties of meniscus, caused by the collagen network and fluid, may be strongly influenced by tissue osmotic swelling from the deep meniscus caused by the increased PG content, leading to increased collagen fibril tension. These nonlinear biomechanical properties are suggested to be further amplified by higher collagen content at all tissue depths and superficial collagen fibril orientation. However, these structure-function relationships are suggested to be highly site-specific. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Quantitative structure-property relationships for chemical functional use and weight fractions in consumer articles

    Science.gov (United States)

    Chemical functional use -- the functional role a chemical plays in processes or products -- may be a useful heuristic for predicting human exposure potential in that it comprises information about the compound's likely physical properties and the product formulations or articles ...

  2. Absorbability, Mechanism and Structure-Property Relationship of Three Phenolic Acids from the Flowers of Trollius chinensis

    Directory of Open Access Journals (Sweden)

    Xiu-Wen Wu

    2014-11-01

    Full Text Available The absorption properties, mechanism of action, and structure-property relationship of three phenolic acids isolated from the flowers of Trollius chinensis Bunge, namely, proglobeflowery acid (PA, globeflowery acid (GA and trolloside (TS, were investigated using the human Caco-2 cell monolayer model. The results showed that these three phenolic acids were transported across the Caco-2 cell monolayer in a time and concentration dependent manner at the Papp level of 10−5 cm/s, and their extent of absorption correlated with their polarity and molecular weight. In conclusion, all three of these compounds were easily absorbed through passive diffusion, which implied their high bioavailability and significant contribution to the effectiveness of T. chinensis.

  3. Relationship between Plaque Echo, Thickness and Neovascularization Assessed by Quantitative and Semi-quantitative Contrast-Enhanced Ultrasonography in Different Stenosis Groups.

    Science.gov (United States)

    Song, Yan; Feng, Jun; Dang, Ying; Zhao, Chao; Zheng, Jie; Ruan, Litao

    2017-12-01

    The aim of this study was to determine the relationship between plaque echo, thickness and neovascularization in different stenosis groups using quantitative and semi-quantitative contrast-enhanced ultrasound (CEUS) in patients with carotid atherosclerosis plaque. A total of 224 plaques were divided into mild stenosis (Quantitative and semi-quantitative methods were used to assess plaque neovascularization and determine the relationship between plaque echo, thickness and neovascularization. Correlation analysis revealed no relationship of neovascularization with plaque echo in the groups using either quantitative or semi-quantitative methods. Furthermore, there was no correlation of neovascularization with plaque thickness using the semi-quantitative method. The ratio of areas under the curve (RAUC) was negatively correlated with plaque thickness (r = -0.317, p = 0.001) in the mild stenosis group. With the quartile method, plaque thickness of the mild stenosis group was divided into four groups, with significant differences between the 1.5-2.2 mm and ≥3.5 mm groups (p = 0.002), 2.3-2.8 mm and ≥3.5 mm groups (p quantitative and quantitative CEUS methods characterizing neovascularization of plaque are equivalent with respect to assessing relationships between neovascularization, echogenicity and thickness. However, the quantitative method could fail for plaque <3.5 mm because of motion artifacts. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  4. Quantitative Structure--Activity Relationship (QSAR) for the Oxidation of Trace Organic Contaminants by Sulfate Radical.

    Science.gov (United States)

    Xiao, Ruiyang; Ye, Tiantian; Wei, Zongsu; Luo, Shuang; Yang, Zhihui; Spinney, Richard

    2015-11-17

    The sulfate radical anion (SO4•–) based oxidation of trace organic contaminants (TrOCs) has recently received great attention due to its high reactivity and low selectivity. In this study, a meta-analysis was conducted to better understand the role of functional groups on the reactivity between SO4•– and TrOCs. The results indicate that compounds in which electron transfer and addition channels dominate tend to exhibit a faster second-order rate constants (kSO4•–) than that of H–atom abstraction, corroborating the SO4•– reactivity and mechanisms observed in the individual studies. Then, a quantitative structure activity relationship (QSAR) model was developed using a sequential approach with constitutional, geometrical, electrostatic, and quantum chemical descriptors. Two descriptors, ELUMO and EHOMO energy gap (ELUMO–EHOMO) and the ratio of oxygen atoms to carbon atoms (#O:C), were found to mechanistically and statistically affect kSO4•– to a great extent with the standardized QSAR model: ln kSO4•– = 26.8–3.97 × #O:C – 0.746 × (ELUMO–EHOMO). In addition, the correlation analysis indicates that there is no dominant reaction channel for SO4•– reactions with various structurally diverse compounds. Our QSAR model provides a robust predictive tool for estimating emerging micropollutants removal using SO4•– during wastewater treatment processes.

  5. The relationship between microstructure and magnetic properties in high-energy permanent magnets characterized by polytwinned structures

    Science.gov (United States)

    This report summarizes the results of a study of the relationship between microstructure and magnetic properties in a unique genre of ferromagnetic material characterized by a polysynthetically twinned structure which arises during solid state transformation. These results stem from the work over a period of approximately 27 months of a nominal 3 year grant period. The report also contains a proposal to extend the research project for an additional 3 years. The polytwinned structures produce an inhomogeneous magnetic medium in which the easy axis of magnetization varies quasi-periodically giving rise to special domain configurations which are expected to markedly influence the mechanism of magnetization reversal and hysteresis behavior of these materials in bulk or thin films. The extraordinary permanent magnet properties exhibited by the well-known Co-Pt alloys as well as the Fe-Pt and Fe-Pd systems near the equiatomic composition derive from the formation of a polytwinned microstructure.

  6. Noncoded amino acids in protein engineering: Structure-activity relationship studies of hirudin-thrombin interaction.

    Science.gov (United States)

    De Filippis, Vincenzo; Acquasaliente, Laura; Pontarollo, Giulia; Peterle, Daniele

    2018-01-01

    The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  7. Antiplasmodial Activity, Cytotoxicity and Structure-Activity Relationship Study of Cyclopeptide Alkaloids

    Directory of Open Access Journals (Sweden)

    Emmy Tuenter

    2017-02-01

    Full Text Available Cyclopeptide alkaloids are polyamidic, macrocyclic compounds, containing a 13-, 14-, or 15-membered ring. The ring system consists of a hydroxystyrylamine moiety, an amino acid, and a β-hydroxy amino acid; attached to the ring is a side chain, comprised of one or two more amino acid moieties. In vitro antiplasmodial activity was shown before for several compounds belonging to this class, and in this paper the antiplasmodial and cytotoxic activities of ten more cyclopeptide alkaloids are reported. Combining these results and the IC50 values that were reported by our group previously, a library consisting of 19 cyclopeptide alkaloids was created. A qualitative SAR (structure-activity relationship study indicated that a 13-membered macrocyclic ring is preferable over a 14-membered one. Furthermore, the presence of a β-hydroxy proline moiety could correlate with higher antiplasmodial activity, and methoxylation (or, to a lesser extent, hydroxylation of the styrylamine moiety could be important for displaying antiplasmodial activity. In addition, QSAR (quantitative structure-activity relationship models were developed, using PLS (partial least squares regression and MLR (multiple linear regression. On the one hand, these models allow for the indication of the most important descriptors (molecular properties responsible for the antiplasmodial activity. Additionally, predictions made for interesting structures did not contradict the expectations raised in the qualitative SAR study.

  8. Quantitative Structure ‒ Antiprotozoal Activity Relationships of Sesquiterpene Lactones

    Directory of Open Access Journals (Sweden)

    Reto Brun

    2009-06-01

    Full Text Available Prompted by results of our previous studies where we found high activity of some sesquiterpene lactones (STLs against Trypanosoma brucei rhodesiense (which causes East African sleeping sickness, we have now conducted a structure-(in-vitro-activity study on a set of 40 STLs against T. brucei rhodesiense, T. cruzi, Leishmania donovani and Plasmodium falciparum. Furthermore, cytotoxic activity against L6 rat skeletal myoblast cells was assessed. Some of the compounds possess high activity, especially against T. brucei (e.g. helenalin and some of its esters with IC50-values of 0.05-0.1 µM, which is about 10 times lower than their cytotoxic activity. It was found that all investigated antiprotozoal activities are significantly correlated with cytotoxicity and the major determinants for activity are a,b-unsaturated structural elements, also known to be essential for other biological activities of STLs. It was observed, however, that certain compounds are considerably more toxic against protozoa than against mammalian cells while others are more cytotoxic than active against the protozoa. A comparative QSAR analysis was therefore undertaken, in order to discern the antiparasitic activity of STLs against T. brucei and cytotoxicity. Both activities were found to depend to a large extent on the same structural elements and molecular properties. The observed variance in the biological data can be explained in terms of subtle variations in the relative influences of various molecular descriptors.

  9. A Quantitative Structure-Activity Relationships (QSAR Study of Piperine Based Derivatives with Leishmanicidal Activity

    Directory of Open Access Journals (Sweden)

    Edilson Beserra Alencar Filho

    2017-04-01

    Full Text Available Leishmaniasis is a parasitic disease which represents a serious public health problem in developing countries. It is considered a neglected tropical disease, for which there is little initiative in the search for therapeutic alternatives by pharmaceutical industry. Natural products remain a great source of inspiration for obtaining bioactive molecules. In 2010, Singh and co-workers published the synthesis and in vitro biological activity of piperoyl-aminoacid conjugates, as well as of piperine, against cellular cultures of Leishmania donovani. The piperine is an alkaloid isolated from Piper nigrum that has many activities described in the literature. In this work, we present a Quantitative Structure-Activity Study of piperine derivatives tested by Singh and co-workers, aiming to highlight important molecular features for leishmanicidal activity, obtaining a mathematical model to predict the activity of new analogs. Compounds were submitted to a geometry optimization computational procedure at semiempirical level of quantum theory. Molecular descriptors for the set of compounds were calculated by E-Dragon online plataform, followed by a variable selection procedure using Ordered Predictors Selection algorithm. Validation parameters obtained showed that a good QSAR model, based on multiple linear regression, was obtained (R2 = 0.85; Q2 = 0.69, and the following conclusions regarding the structure-activity relationship were elucidated: Compounds with electronegative atoms on different substituent groups of analogs, absence of unsaturation on lateral chain, presence of ester instead of carboxyl, and large volumes (due the presence of additional aromatic rings trends to increase the activity against promastigote forms of leishmania. DOI: http://dx.doi.org/10.17807/orbital.v9i1.893

  10. Structure-retention and mobile phase-retention relationships for reversed-phase high-performance liquid chromatography of several hydroxythioxanthone derivatives in binary acetonitrile-water mixtures

    International Nuclear Information System (INIS)

    Amiri, Ali Asghar; Hemmateenejad, Bahram; Safavi, Afsaneh; Sharghi, Hashem; Beni, Ali Reza Salimi; Shamsipur, Mojtaba

    2007-01-01

    The reversed-phase high-performance liquid chromatographic (RP-HPLC) behavior of some newly synthesized hydroxythioxanthone derivatives using binary acetonitrile-water mixtures as mobile phase has been examined. First, the variation in the retention time of each molecule as a function of mobile phase properties was studied by Kamlet-Taft solvatochromic equations. Then, the influences of molecular structure of the hydroxythioxanthone derivatives on their retention time in various mobile phase mixtures were investigated by quantitative structure-property relationship (QSPR) analysis. Finally, a unified model containing both the molecular structure parameters and mobile phase properties was developed to describe the chromatographic behavior of the systems studied. Among the solvent properties, polarity/polarizability parameter (π * ) and hydrogen-bond basicity (β), and among the solute properties, the most positive local charge (MPC), the sum of positive charges on hydrogen atoms contributing in hydrogen bonding (SPCH) and lipophilicity index (log P) were identified as controlling factors in the RP-HPLC behavior of hydroxythioxanthone derivatives in actonitrile-water binary solvents

  11. Quantitative X-ray determination of CFRP micro structures

    International Nuclear Information System (INIS)

    Hentschel, Manfred P.; Mueller, Bernd R.; Lange, Axel; Wald, Oliver

    2008-01-01

    Beyond imaging the mass distribution of materials by X-ray absorption techniques recent synchrotron and laboratory X-ray refraction techniques provide interface contrast imaging of micro structures. This is of specific relevance to carbon fibre composites (CFRP) which constitute advanced aerospace components. Apart from merely finding isolated flaws like cracks or pores within the natural high interface density only the quantitative measurement of the differences after defined mechanical treatment provides a reliable understanding of the related macroscopic properties. The contribution of the fibre matrix interface of CFRP laminates to the mechanical properties is investigated by relating the mechanical damage to the additional fibre debonding after impact and fatigue. Composites of industrially sized carbon fibres for aerospace applications and of unsized fibres are compared. (orig.)

  12. Perspective on Structural Evolution and Relations with Thermophysical Properties of Metallic Liquids.

    Science.gov (United States)

    Wang, Xiao-Dong; Jiang, Jian-Zhong

    2017-11-01

    The relationship between the structural evolution and properties of metallic liquids is a long-standing hot issue in condensed-matter physics and materials science. Here, recent progress is reviewed in several fundamental aspects of metallic liquids, including the methods to study their atomic structures, liquid-liquid transition, physical properties, fragility, and their correlations with local structures, together with potential applications of liquid metals at room temperature. Involved with more experimentally and theoretically advanced techniques, these studies provide more in-depth understanding of the structure-property relationship of metallic liquids and promote the design of new metallic materials with superior properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Science.gov (United States)

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  14. Thermodynamical properties and thermoelastic coupling of complex macroscopic structure

    International Nuclear Information System (INIS)

    Fabbri, M.; Sacripanti, A.

    1996-11-01

    Gross qualitative/quantitative analysis about thermodynamical properties and thermoelastic coupling (or elastocaloric effect) of complex macroscopic structure (running shoes) is performed by infrared camera. The experimental results showed the achievability of a n industrial research project

  15. Quantitative structure-activity relationships for predicting potential ecological hazard of organic chemicals for use in regulatory risk assessments.

    Science.gov (United States)

    Comber, Mike H I; Walker, John D; Watts, Chris; Hermens, Joop

    2003-08-01

    The use of quantitative structure-activity relationships (QSARs) for deriving the predicted no-effect concentration of discrete organic chemicals for the purposes of conducting a regulatory risk assessment in Europe and the United States is described. In the United States, under the Toxic Substances Control Act (TSCA), the TSCA Interagency Testing Committee and the U.S. Environmental Protection Agency (U.S. EPA) use SARs to estimate the hazards of existing and new chemicals. Within the Existing Substances Regulation in Europe, QSARs may be used for data evaluation, test strategy indications, and the identification and filling of data gaps. To illustrate where and when QSARs may be useful and when their use is more problematic, an example, methyl tertiary-butyl ether (MTBE), is given and the predicted and experimental data are compared. Improvements needed for new QSARs and tools for developing and using QSARs are discussed.

  16. Quantitative Structure-Activity Relationship Modeling Coupled with Molecular Docking Analysis in Screening of Angiotensin I-Converting Enzyme Inhibitory Peptides from Qula Casein Hydrolysates Obtained by Two-Enzyme Combination Hydrolysis.

    Science.gov (United States)

    Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou

    2018-03-28

    In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (casein presents an excellent source to produce ACE inhibitory peptides.

  17. Study on the structure-properties relationship of natural rubber/SiO2 composites modified by a novel multi-functional rubber agent

    Directory of Open Access Journals (Sweden)

    S. Y. Yang

    2014-06-01

    Full Text Available Vulcanization property and structure-properties relationship of natural rubber (NR/silica (SiO2 composites modified by a novel multi-functional rubber agent, N-phenyl- N'-(γ-triethoxysilane-propyl thiourea (STU, are investigated in detail. Results from the infrared spectroscopy (IR and X-ray photoelectron spectroscopy (XPS show that STU can graft to the surface of SiO2 under heating, resulting in a fine-dispersed structure in the rubber matrix without the connectivity of SiO2 particles as revealed by transmission electron microscopy (TEM. This modification effect reduces the block vulcanization effect of SiO2 for NR/SiO2/STU compounds under vulcanization process evidently. The 400% modulus and tensile strength of NR/SiO2/STU composites are much higher than that of NR/SiO2/TU composites, although the crystal index at the stretching ratio of 4 and crosslinking densities of NR/SiO2 composites are almost the same at the same dosage of SiO2. Consequently, a structure-property relationship of NR/SiO2/STU composites is proposed that the silane chain of STU can entangle with NR molecular chains to form an interfacial region, which is in accordance with the experimental observations quite well.

  18. Structural changes in latosols of the cerrado region: I - relationships between soil physical properties and least limiting water range

    Directory of Open Access Journals (Sweden)

    Eduardo da Costa Severiano

    2011-06-01

    Full Text Available The agricultural potential of Latosols of the Brazilian Cerrado region is high, but when intensively cultivated under inappropriate management systems, the porosity can be seriously reduced, leading to rapid soil degradation. Consequently, accelerated erosion and sedimentation of springs and creeks have been observed. Therefore, the objective of this study was to evaluate structural changes of Latosols in Rio Verde, Goiás, based on the Least Limiting Water Range (LLWR, and relationships between LLWR and other physical properties. Soil samples were collected from the B horizons of five oxidic Latosols representing the textural variability of the Latosols of the Cerrado biome. LLWR and other soil physical properties were determined at various soil compaction degrees induced by uniaxial compression. Soil compaction caused effects varying from enhanced plant growth due to higher water retention, to severe restriction of edaphic functions. Also, inverse relationships were observed between clay content and bulk density values (Bd under different structural conditions. Bd values corresponding to critical soil macroporosity (BdcMAC were more restrictive to a sustainable use of the studied Latosols than the critical Bd corresponding to LLWR (BdcLLWR. The high tolerable compression potential of these oxidic Latosols was related to the high aeration porosity associated to the granular structure.

  19. Uncovering the structure-function relationship in spider silk

    Science.gov (United States)

    Yarger, Jeffery L.; Cherry, Brian R.; van der Vaart, Arjan

    2018-03-01

    All spiders produce protein-based biopolymer fibres that we call silk. The most studied of these silks is spider dragline silk, which is very tough and relatively abundant compared with other types of spider silks. Considerable research has been devoted to understanding the relationship between the molecular structure and mechanical properties of spider dragline silks. In this Review, we overview experimental and computational studies that have provided a wealth of detail at the molecular level on the highly conserved repetitive core and terminal regions of spider dragline silk. We also discuss the role of the nanocrystalline β-sheets and amorphous regions in determining the properties of spider silk fibres, endowing them with strength and elasticity. Additionally, we outline imaging techniques and modelling studies that elucidate the importance of the hierarchical structure of silk fibres at the molecular level. These insights into structure-function relationships can guide the reverse engineering of spider silk to enable the production of superior synthetic fibres.

  20. Structure-property relationships of multiferroic materials: A nano perspective

    Science.gov (United States)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  1. Structural Characteristics and Physical Properties of Tectonically Deformed Coals

    OpenAIRE

    Yiwen Ju; Zhifeng Yan; Xiaoshi Li; Quanlin Hou; Wenjing Zhang; Lizhi Fang; Liye Yu; Mingming Wei

    2012-01-01

    Different mechanisms of deformation could make different influence on inner structure and physical properties of tectonically deformed coal (TDC) reservoirs. This paper discusses the relationship between macromolecular structure and physical properties of the Huaibei-Huainan coal mine areas in southern North China. The macromolecular structure and pore characteristics are systematically investigated by using techniques such as X-ray diffraction (XRD), high-resolution transmission electron mic...

  2. The correlation between composition, structure and properties of high-level waste solidification products

    International Nuclear Information System (INIS)

    Neumann, L.; Vojtech, O.; Santarova, M.; Stejskal, I.; Gulinskij, V.

    1977-01-01

    The final product of a high-level liquid waste solidification process must meet a number of quantitative criteria. The necessary data can be obtained by direct measurement of certain parameters of the product (leachability of important radionuclides from the basic matrix, total solubility of the final product, thermal conductivity, mechanical properties, the temperature dependence of viscosity, etc.). Some insight can also be obtained on the basis of a profound analysis of micro- and macrostructure of the solid product. Detailed knowledge of the structure makes it easier to evaluate the final product. In this paper an effort is made to find a relationship between composition and structure of the system and the properties of the product obtained under the specific conditions of the process. The results are demonstrated using a phosphate matrix in which fission products and corrosion products are included in a wide range of concentrations. For analysis of the structure properties, X-ray diffraction, microscopic and electron probe microanalysis (back-scattered electrons and characteristic X-radiation detection) have been used. Using standard methods, the hydrolytical resistance of the product and the selective leachability of caesium, strontium and rare-earth ions have been measured. The results obtained so far have confirmed the usefulness of structure analysis as a parallel method for product evaluation in the development of the process and probably also for large-scale application. (author)

  3. A quantitative theory of solid tumor growth, metabolic rate and vascularization.

    Directory of Open Access Journals (Sweden)

    Alexander B Herman

    Full Text Available The relationships between cellular, structural and dynamical properties of tumors have traditionally been studied separately. Here, we construct a quantitative, predictive theory of solid tumor growth, metabolic rate, vascularization and necrosis that integrates the relationships between these properties. To accomplish this, we develop a comprehensive theory that describes the interface and integration of the tumor vascular network and resource supply with the cardiovascular system of the host. Our theory enables a quantitative understanding of how cells, tissues, and vascular networks act together across multiple scales by building on recent theoretical advances in modeling both healthy vasculature and the detailed processes of angiogenesis and tumor growth. The theory explicitly relates tumor vascularization and growth to metabolic rate, and yields extensive predictions for tumor properties, including growth rates, metabolic rates, degree of necrosis, blood flow rates and vessel sizes. Besides these quantitative predictions, we explain how growth rates depend on capillary density and metabolic rate, and why similar tumors grow slower and occur less frequently in larger animals, shedding light on Peto's paradox. Various implications for potential therapeutic strategies and further research are discussed.

  4. Probing structure-property relationships in perpendicularly magnetized Fe/Cu(001) using MXLD and XPD

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, T.R.; Waddill, G.D. [Univ. of Missouri, Rolla, MO (United States); Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Magnetic X-ray Linear Dichroism (MXLD) in Photoelectron Spectroscopy and X-Ray Photoelectron Diffraction (XPD) of the Fe 3p core level have been used to probe the magnetic structure-property relationships of perpendicularly magnetized Fe/Cu(001), in an element-specific fashion. A strong MEXLD effect was observed in the high resolution photoelectron spectroscopy of the Fe 3p at {open_quotes}normal{close_quotes} emission and was used to follow the loss of perpendicular ferromagnetic ordering as the temperature was raised toward room temperature. In parallel with this, {open_quotes}Forward Focussing{close_quotes} in XPD was used as a direct measure of geometric structure in the overlayer. These results and the implications of their correlation will be discussed. Additionally, an investigation of the effect of Mn doping of the Fe/Cu(001) will be described. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  5. Strength and related properties of concrete: A quantitative approach

    Energy Technology Data Exchange (ETDEWEB)

    Popovics, S. [Drexel Univ., Philadelphia, PA (United States). Dept. of Civil Engineering

    1998-12-31

    The science and technology of concrete have been based almost exclusively on empirical knowledge. The description of concrete properties and behavior was therefore by necessity mostly of qualitative nature. The author, a recognized expert in the field, has attempted to present a very special state-of-the-art report in such a way that it can point in the direction of rationalizing the theory. The overall goal can be stated as follows: Given the properties of the various components of concrete, the mix proportions, etc., can one compute important properties, such as strength, of the end product? The quantitative approach mentioned in the subtitle is meant to assist in achieving this objective. It is so ambitious an undertaking that it could not succeed. In fact, judging from the preface, it can be assumed that the author himself did not expect to succeed, but rather be content with setting the stage for other researchers to take off from. The book fills an important void in the specialized concrete literature. The lack of rational relationships in this empirical science makes it very difficult to teach to students and to present it in an interesting manner. Yet, it is not written with the undergraduate student in mind. The enormous collection of data from the literature makes it a treasure trove for researchers and, to a lesser extent, for practicing engineers. For simple relationships such as those between cube strength and cylinder strength, this is the book to look for. The 75-page bibliography is impressive. The intentional limitation of the book`s scope to concrete limits its applicability, especially since it is now being recognized that properties of concrete other than strength may be equally if not more important than strength.

  6. Structure and properties of cell membranes. Volume 3: Methodology and properties of membranes

    International Nuclear Information System (INIS)

    Benga, G.

    1985-01-01

    This book covers the topics: Quantum chemical approach to study the mechanisms of proton translocation across membranes through protein molecules; monomolecular films as biomembrane models; planar lipid bilayers in relation to biomembranes; relation of liposomes to cell membranes; reconstitution of membrane transport systems; structure-function relationships in cell membranes as revealed by X-ray techniques; structure-function relationships in cell membranes as revealed by spin labeling ESR; structure and dynamics of cell membranes as revealed by NMR techniques; the effect of dietary lipids on the composition and properties of biological membranes and index

  7. The Relationship between Quantitative and Qualitative Measures of Writing Skills.

    Science.gov (United States)

    Howerton, Mary Lou P.; And Others

    The relationships of quantitative measures of writing skills to overall writing quality as measured by the E.T.S. Composition Evaluation Scale (CES) were examined. Quantitative measures included indices of language productivity, vocabulary diversity, spelling, and syntactic maturity. Power of specific indices to account for variation in overall…

  8. Probing the Unique Role of Gallium in Amorphous Oxide Semiconductors through Structure-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Moffitt, Stephanie L.; Zhu, Qimin; Ma, Qing; Falduto, Allison F.; Buchholz, D. Bruce; Chang, Robert P.H.; Mason, Thomas O.; Medvedeva, Julia E.; Marks, Tobin J.; Bedzyk, Michael J. (NWU); (MUST)

    2017-09-01

    This study explores the unique role of Ga in amorphous (a-) In[BOND]Ga[BOND]O oxide semiconductors through combined theory and experiment. It reveals substitutional effects that have not previously been attributed to Ga, and that are investigated by examining how Ga influences structure–property relationships in a series of pulsed laser deposited a-In[BOND]Ga[BOND]O thin films. Element-specific structural studies (X-ray absorption and anomalous scattering) show good agreement with the results of ab initio molecular dynamics simulations. This structural knowledge is used to understand the results of air-annealing and Hall effect electrical measurements. The crystallization temperature of a-IO is shown to increase by as much as 325 °C on substituting Ga for In. This increased thermal stability is understood on the basis of the large changes in local structure that Ga undergoes, as compared to In, during crystallization. Hall measurements reveal an initial sharp drop in both carrier concentration and mobility with increasing Ga incorporation, which moderates at >20 at% Ga content. This decline in both the carrier concentration and mobility with increasing Ga is attributed to dilution of the charge-carrying In[BOND]O matrix and to increased structural disorder. The latter effect saturates at high at% Ga.

  9. Quantitative assessment of Aluminium cast Alloys` structural parameters to optimize ITS properties

    Directory of Open Access Journals (Sweden)

    L. Kuchariková

    2017-01-01

    Full Text Available The present work deals with evaluation of eutectic Si (its shape, size, and distribution, dendrite cell size and dendrite arm spacing in aluminium cast alloys which were cast into different moulds (sand and metallic. Structural parameters were evaluated using NIS-Elements image analyser software. This software is imaging analysis software for the evaluation, capture, archiving and automated measurement of structural parameters. The control of structural parameters by NIS Elements shows that optimum mechanical properties of aluminium cast alloys strongly depend on the distribution, morphology, size of eute ctic Si and matrix parameters.

  10. RaptorX-Property: a web server for protein structure property prediction.

    Science.gov (United States)

    Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo

    2016-07-08

    RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Quantitative structure–reactivity study on sulfonation of amines, alcohols and phenols

    Directory of Open Access Journals (Sweden)

    Abolghasem Beheshti

    2017-05-01

    Full Text Available Quantitative structure–reactivity relationship (QSRR can be considered as a variant of quantitative structure property relationship (QSPR studies, where the chemical reactivity of reactants in a specified chemical reaction is related to chemical structure. As follows, the sulfonation reaction yield of 24 amines, alcohols and phenols with sulfonyl chloride was studied by QSRR. Quantum chemical calculations (b3lyp/6-31+g (d were carried out to obtain the optimized geometry. The suitable set of molecular descriptors was calculated to represent the molecular structures of compounds, such as constitutional, topological, geometrical, electrostatic and quantum-chemical descriptors. The genetic algorithm (GA was applied to select the variables that resulted in the best-fitted models. After the variable selection, multiple linear regression (MLR was utilized to construct linear QSRR models. The maximum relative error in prediction (5.26 showed that the predictive ability of the model was satisfactory and it can be used for designing similar reactants with efficient sulfonation reaction.

  12. Structure-Composition-Property Relationships in Polymeric Amorphous Calcium Phosphate-Based Dental Composites

    Directory of Open Access Journals (Sweden)

    Drago Skrtic

    2009-11-01

    Full Text Available Our studies of amorphous calcium phosphate (ACP-based materials over the last decade have yielded bioactive polymeric composites capable of protecting teeth from demineralization or even regenerating lost tooth mineral. The anti-cariogenic/remineralizing potential of these ACP composites originates from their propensity, when exposed to the oral environment, to release in a sustained manner sufficient levels of mineral-forming calcium and phosphate ions to promote formation of stable apatitic tooth mineral. However, the less than optimal ACP filler/resin matrix cohesion, excessive polymerization shrinkage and water sorption of these experimental materials can adversely affect their physicochemical and mechanical properties, and, ultimately, limit their lifespan. This study demonstrates the effects of chemical structure and composition of the methacrylate monomers used to form the matrix phase of composites on degree of vinyl conversion (DVC and water sorption of both copolymers and composites and the release of mineral ions from the composites. Modification of ACP surface via introducing cations and/or polymers ab initio during filler synthesis failed to yield mechanically improved composites. However, moderate improvement in composite’s mechanical stability without compromising its remineralization potential was achieved by silanization and/or milling of ACP filler. Using ethoxylated bisphenol A dimethacrylate or urethane dimethacrylate as base monomers and adding moderate amounts of hydrophilic 2-hydroxyethyl methacrylate or its isomer ethyl-α-hydroxymethacrylate appears to be a promising route to maximize the remineralizing ability of the filler while maintaining high DVC. Exploration of the structure/composition/property relationships of ACP fillers and polymer matrices is complex but essential for achieving a better understanding of the fundamental mechanisms that govern dissolution/re-precipitation of bioactive ACP fillers, and

  13. Quantitative Structure-Use Relationship (QSUR) Model Descriptors

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains ToxPrint finger prints for all chemicals in FUse that had QSAR-ready SMILES strings as well as select physicochemical properties from the...

  14. Exploration of polyamide structure-property relationships by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Barrère, Caroline; Rejaibi, Majed; Curat, Aurélien; Hubert-Roux, Marie; Lavanant, Hélène; Afonso, Carlos; Kebir, Nasreddine; Desilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne

    2014-08-15

    Polyamides (PA) are among the most used classes of polymers because of their attractive properties. Depending on the nature and proportion of the co-monomers used for their synthesis, they can exhibit a very large range of melting temperatures (Tm ). This study aims at the correlation of data from mass spectrometry (MS) with differential scanning calorimetry (DSC) and X-ray diffraction analyses to relate molecular structure to physical properties such as melting temperature, enthalpy change and crystallinity rate. Six different PA copolymers with molecular weights around 3500 g mol(-1) were synthesized with varying proportions of different co-monomers (amino-acid AB/di-amine AA/di-acid BB). Their melting temperature, enthalpy change and crystallinity rate were measured by DSC and X-ray diffraction. Their structural characterization was carried out by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Because of the poor solubility of PA, a solvent-free sample preparation strategy was used with 2,5-dihydroxybenzoic acid (2,5-DHB) as the matrix and sodium iodide as the cationizing agent. The different proportions of the repeating unit types led to the formation of PA with melting temperatures ranging from 115°C to 185°C. The structural characterization of these samples by MALDI-TOF-MS revealed a collection of different ion distributions with different sequences of repeating units (AA, BB; AB/AA, BB and AB) in different proportions according to the mixture of monomers used in the synthesis. The relative intensities of these ion distributions were related to sample complexity and structure. They were correlated to DSC and X-ray results, to explain the observed physical properties. The structural information obtained by MALDI-TOF-MS provided a better understanding of the variation of the PA melting temperature and established a structure-properties relationship. This work will allow future PA designs to be monitored. Copyright

  15. Structure-property relationship in dielectric mixtures: application of the spectral density theory

    International Nuclear Information System (INIS)

    Tuncer, Enis

    2005-01-01

    This paper presents numerical simulations performed on dielectric properties of two-dimensional binary composites. The influence of structural differences and intrinsic electrical properties of constituents on the composite's overall electrical properties is investigated. The structural differences are resolved by fitting the dielectric data with an empirical formula and by the spectral density representation approach. At low concentrations of inclusions (concentrations lower than the percolation threshold), the spectral density functions are delta-sequences, which corresponds to the predictions of the general Maxwell-Garnett (MG) mixture formula. At high concentrations of inclusions (close to the percolation threshold) systems exhibit non-Debye-type dielectric dispersions, and the spectral density functions differ from each other and that predicted by the MG expression. The analysis of the dielectric dispersions with an empirical formula also brings out the structural differences between the considered geometries, however, the information is not qualitative. The empirical formula can only be used to compare structures. The spectral representation method on the other hand is a concrete way of characterizing the structures of the dielectric mixtures. Therefore, as in other spectroscopic techniques, a look-up table might be useful to classify/characterize structures of composite materials. This can be achieved by generating dielectric data for known structures by using ab initio calculations, as presented and emphasized in this study. The numerical technique presented here is not based on any a priori assumption methods

  16. Relationship between electronic structure and radioprotective activity of some indazoles

    International Nuclear Information System (INIS)

    Sokolov, Yu.A.

    2000-01-01

    The quantum-chemical study of electronic structure of 29 indasoles with complete optimization of geometry and search of quantitative link between the established characteristics and radioprotective activity (RPA) was carried out through the MNDO method with application of multiple linear and nonlinear regression analysis and the basic component method. The equations of correlation relationship between the RPA and electronic characteristics are presented. 10 indasole structures, the forecasted RPA values whereof (survival rate, %) equal 50% and above, are selected. The statistic significance of the obtained correlation equations and their regression coefficients make it possible to conclude, that the established relationships are not accidental and are prospective for forecasting RPA of other close compounds of the indasole series [ru

  17. Quantitative clinical evaluation of esthetic properties of incisors

    NARCIS (Netherlands)

    Ardu, S.; Feilzer, A.J.; Devigus, A.; Krejci, I.

    2008-01-01

    Objective: To match perfectly the optical properties of natural teeth, a scientific approach is needed by using digital technology that excludes bias to quantitatively characterize the optical properties of populations’ teeth. The aim of this article is to present a method for a detailed clinical

  18. Prediction of Solvent Physical Properties using the Hierarchical Clustering Method

    Science.gov (United States)

    Recently a QSAR (Quantitative Structure Activity Relationship) method, the hierarchical clustering method, was developed to estimate acute toxicity values for large, diverse datasets. This methodology has now been applied to the estimate solvent physical properties including sur...

  19. Combining Theoretical Perspectives on the Organizational Structure-Performance Relationship

    Directory of Open Access Journals (Sweden)

    Starling David Hunter

    2015-08-01

    Full Text Available Much of the literature linking organization structure to performance falls into two broad research streams. One stream concerns formal structure – the hierarchy of authority or reporting relationships as well as the degree of standardization, formalization, specialization, etc. The impact of formal structure and other elements of organization design on performance is typically contingent on factors such as strategic orientation, task characteristics, and environmental conditions. The other research stream focuses on informal structure – a network of interpersonal and intra-organizational relationships. Properties of informal structure are typically shown to have a more direct (less contingent impact on organizational performance. Despite these pronounced differences in the conceptualization of organization structure, considerable overlap and complementarity exist between the two research streams. In this article, I compare and contrast a pair of exemplars from each stream – the information processing perspective and the social network perspective – with respect to their conceptualizations of organization structure and its relationship to performance. Several recommendations for future research that combines the two approaches are offered.

  20. Quantitative structure activity relationship and risk analysis of some pesticides in the goat milk.

    Science.gov (United States)

    Muhammad, Faqir; Awais, Mian Muhammad; Akhtar, Masood; Anwar, Muhammad Irfan

    2013-01-04

    The detection and quantification of different pesticides in the goat milk samples collected from different localities of Faisalabad, Pakistan was performed by HPLC using solid phase microextraction. The analysis showed that about 50% milk samples were contaminated with pesticides. The mean±SEM levels (ppm) of cyhalothrin, endosulfan, chlorpyrifos and cypermethrin were 0.34±0.007, 0.063±0.002, 0.034±0.002 and 0.092±0.002, respectively; whereas, methyl parathion was not detected in any of the analyzed samples. Quantitative structure activity relationship (QSAR) models were suggested to predict the residues of unknown pesticides in the goat milk using their known physicochemical characteristics including molecular weight (MW), melting point (MP), and log octanol to water partition coefficient (Ko/w) in relation to the characteristics such as pH, % fat, specific gravity and refractive index of goat milk. The analysis revealed good correlation coefficient (R2 = 0.985) for goat QSAR model. The coefficients for Ko/w and refractive index for the studied pesticides were higher in goat milk. This suggests that these are better determinants for pesticide residue prediction in the milk of these animals. Based upon the determined pesticide residues and their provisional tolerable daily intakes, risk analysis was also conducted which showed that daily intake levels of pesticide residues including cyhalothrin, chlorpyrifos and cypermethrin in present study are 2.68, 5.19 and 2.71 times higher, respectively in the goat milk. This intake of pesticide contaminated milk might pose health hazards to humans in this locality.

  1. Quantitative Structure Activity Relationship and Risk Analysis of Some Pesticides in the Goat milk

    Directory of Open Access Journals (Sweden)

    Faqir Muhammad

    2013-01-01

    Full Text Available The detection and quantification of different pesticides in the goat milk samples collected from different localities of Faisalabad, Pakistan was performed by HPLC using solid phase microextraction. The analysis showed that about 50% milk samples were contaminated with pesticides. The mean+/-SEM levels (ppm of cyhalothrin, endosulfan, chlorpyrifos and cypermethrin were 0.34+/-0.007, 0.063+/-0.002, 0.034+/-0.002 and 0.092+/-0.002, respectively; whereas, methyl parathion was not detected in any of the analyzed samples. Quantitative structure activity relationship (QSAR models were suggested to predict the residues of unknown pesticides in the goat milk using their known physicochemical characteristics including molecular weight (MW, melting point (MP, and log octanol to water partition coefficient (Ko/w in relation to the characteristics such as pH, % fat, specific gravity and refractive index of goat milk. The analysis revealed good correlation coefficient (R2 = 0.985 for goat QSAR model. The coefficients for Ko/w and refractive index for the studied pesticides were higher in goat milk. This suggests that these are better determinants for pesticide residue prediction in the milk of these animals. Based upon the determined pesticide residues and their provisional tolerable daily intakes, risk analysis was also conducted which showed that daily intake levels of pesticide residues including cyhalothrin, chlorpyrifos and cypermethrin in present study are 2.68, 5.19 and 2.71 times higher, respectively in the goat milk. This intake of pesticide contaminated milk might pose health hazards to humans in this locality.

  2. Quantitative structure-activity relationships of the antimalarial agent artemisinin and some of its derivatives - a DFT approach.

    Science.gov (United States)

    Rajkhowa, Sanchaita; Hussain, Iftikar; Hazarika, Kalyan K; Sarmah, Pubalee; Deka, Ramesh Chandra

    2013-09-01

    Artemisinin form the most important class of antimalarial agents currently available, and is a unique sesquiterpene peroxide occurring as a constituent of Artemisia annua. Artemisinin is effectively used in the treatment of drug-resistant Plasmodium falciparum and because of its rapid clearance of cerebral malaria, many clinically useful semisynthetic drugs for severe and complicated malaria have been developed. However, one of the major disadvantages of using artemisinins is their poor solubility either in oil or water and therefore, in order to overcome this difficulty many derivatives of artemisinin were prepared. A comparative study on the chemical reactivity of artemisinin and some of its derivatives is performed using density functional theory (DFT) calculations. DFT based global and local reactivity descriptors, such as hardness, chemical potential, electrophilicity index, Fukui function, and local philicity calculated at the optimized geometries are used to investigate the usefulness of these descriptors for understanding the reactive nature and reactive sites of the molecules. Multiple regression analysis is applied to build up a quantitative structure-activity relationship (QSAR) model based on the DFT based descriptors against the chloroquine-resistant, mefloquine-sensitive Plasmodium falciparum W-2 clone.

  3. Comparative pharmacodynamic analysis of imidazoline compounds using rat model of ocular mydriasis with a test of quantitative structure-activity relationships.

    Science.gov (United States)

    Raczak-Gutknecht, Joanna; Nasal, Antoni; Frąckowiak, Teresa; Kornicka, Anita; Sączewski, Franciszek; Wawrzyniak, Renata; Kubik, Łukasz; Kaliszan, Roman

    2017-09-10

    Imidazol(in)e derivatives, having the chemical structure similar to clonidine, exert diverse pharmacological activities connected with their interactions with alpha2-adrenergic receptors, e.g. hypotension, bradycardia, sedation as well as antinociceptive, anxiolytic, antiarrhythmic, muscle relaxant and mydriatic effects. The mechanism of pupillary dilation observed after systemic administration of imidazol(in)es to rats, mice and cats depends on the stimulation of postsynaptic alpha2-adrenoceptors within the brain. It was proved that the central nervous system (CNS)-localized I1-imidazoline receptors are not engaged in those effects. It appeared interesting to analyze the CNS-mediated pharmacodynamics of imidazole(in)e agents in terms of their chromatographic and calculation chemistry-derived parameters. In the present study a systematic determination and comparative pharmacometric analysis of mydriatic effects in rats were performed on a series of 20 imidazol(in)e agents, composed of the well-known drugs and of the substances used in experimental pharmacology. The eye pupil dilatory activities of the compounds were assessed in anesthetized Wistar rats according to the established Koss method. Among twenty imidazol(in)e derivatives studied, 18 produced diverse dose-dependent mydriatic effects. In the quantitative structure-activity relationships (QSAR) analysis, the pharmacological data (half maximum mydriatic effect - ED 50 in μmol/kg) were considered along with the structural parameters of the agents from molecular modeling. The theoretically calculated lipophilicity parameters, CLOGP, of imidazol(in)es, as well as their lipophilicity parameters from HPLC, logk w , were also considered. The attempts to derive statistically significant QSAR equations for a full series of the agents under study were unsuccessful. However, for a subgroup of eight apparently structurally related imidazol(in)es a significant relationship between log(1/ED 50 ) and logk w values was

  4. The Structure and Flexural Properties of Typha Leaves

    Directory of Open Access Journals (Sweden)

    Jingjing Liu

    2017-01-01

    Full Text Available The Typha leaf has a structure of lightweight cantilever beam, exhibiting excellent mechanical properties with low density. Especially, the leaf blade evolved high strength and low density with high porosity. In this paper, the structure of Typha leaf was characterized by microcomputed tomography (Micro-CT and scanning electron microscopy (SEM, and the relationship with flexural properties was analyzed. The three-point bending test was performed on leaves to examine flexural properties, which indicated that the flexural properties vary from the base to the apex in gradient. The cross-sectional geometry shape of the leaf blade presented a strong influence on the optimized flexural stiffness. The load carrying capacity of the leaf depended on the development level of the epidermal tissue, the vascular bundle, the mechanical tissue, and the geometric properties. The investigation can be the basis for lightweight structure design and the application in the bionic engineering field.

  5. The Relationship between Property Rights and Economic Growth: an Analysis of OECD and EU Countries

    Directory of Open Access Journals (Sweden)

    Haydaroğlu Ceyhun

    2015-12-01

    Full Text Available In recent years, institutions and institutional structure have become some of the most popular concepts analyzed by economics theory. New growth theories have especially focused on the effects of institutions and institutional structure on a macro level. Property rights are one of the most important elements of this institutional structure. The relationship between property rights and economic growth have drawn the attention of many researchers and policymakers in recent years. The aim of this study, covering the period 2007–2014, is to examine the relationship between property rights and economic growth with the help of PARDL in OECD and EU countries. According to the result of a bounds test, there is cointegration between the variables. The long- and short-term relationships between series were determined and the results taken from the analysis show that there is a positive effect on economic growth in those countries.

  6. [Adsorption of Cu on Core-shell Structured Magnetic Particles: Relationship Between Adsorption Performance and Surface Properties].

    Science.gov (United States)

    Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng

    2015-12-01

    In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties.

  7. Quantitative structure activity relationship model for predicting the depletion percentage of skin allergic chemical substances of glutathione

    International Nuclear Information System (INIS)

    Si Hongzong; Wang Tao; Zhang Kejun; Duan Yunbo; Yuan Shuping; Fu Aiping; Hu Zhide

    2007-01-01

    A quantitative model was developed to predict the depletion percentage of glutathione (DPG) compounds by gene expression programming (GEP). Each kind of compound was represented by several calculated structural descriptors involving constitutional, topological, geometrical, electrostatic and quantum-chemical features of compounds. The GEP method produced a nonlinear and five-descriptor quantitative model with a mean error and a correlation coefficient of 10.52 and 0.94 for the training set, 22.80 and 0.85 for the test set, respectively. It is shown that the GEP predicted results are in good agreement with experimental ones, better than those of the heuristic method

  8. Uniaxial Extensional Behavior of A--B--A Thermoplastic Elastomers: Structure-Properties Relationship and Modeling

    Science.gov (United States)

    Martinetti, Luca

    relation between the observed power-law exponent and molecular structure was established. The measured low-frequency response, originating from the incipient glass transition of the A domains, was exploited and extrapolated to lower frequencies via a sequential application of the fractional Maxwell model and the fractional Zener model. With only a few, physically meaningful material parameters a realistic description of the A--B--A self-similar relaxation was obtained over a frequency range much broader than the experimental window and not accessible via time-temperature superposition. The relationship between large-strain response and network structure of A--B--A triblocks was investigated, by examining (1) the effect of linear relaxation mechanisms on the tensile behavior, (2) the sources of elastic and viscoelastic nonlinearities, and (3) the strain rate dependence of the ultimate properties. For the first time in the literature, the complex high-dimensional rheological signature of chewing gum was analyzed, especially in response to nonlinear and unsteady deformations in both shear and extension. A unique rheological fingerprint was obtained that is sufficient to provide a new robust definition of chewing gum that is independent of specific molecular composition. (Abstract shortened by ProQuest.).

  9. Rational Formulation of Alternative Fuels using QSPR Methods: Application to Jet Fuels Développement d’un outil d’aide à la formulation des carburants alternatifs utilisant des méthodes QSPR (Quantitative Structure Property Relationship: application aux carburéacteurs

    Directory of Open Access Journals (Sweden)

    Saldana D.A.

    2013-06-01

    Full Text Available Alternative fuels are a promising solution for road transport but also for aircraft. In the aviation field, a huge amount of work has been done in the past years with the approval to use up to 50 % by volume of SPK (Synthetic Paraffinic Kerosene in blends with conventional fossil Jet A-1. SPK are Fischer-Tropsch (FT fuels but also Hydroprocessed Esters and Fatty Acids (HEFA. However, these alternative fuels can have different chemical properties depending on the process used for their production. These properties include normal to iso paraffin ratio, carbon chain length and level of branching. R&D studies of alternative fuels are based on the evaluation of products coming from identified production processes. However, it appears that a better way of studying them could be firstly to determine the best chemical composition regarding aviation problems and secondly to find the best process and finishing process in order to obtain such a product. The objective of this work is to design a tool that aims to guide the future formulation of alternative fuels for aviation through the prediction of targeted physical properties. Thus, it is proposed to apply a methodology that identifies relationships between the structure and properties of a molecule (QSPR for Quantitative Structure Property Relationship, with the aim of establishing predictive models. These models will be built for hydrocarbons (normal and iso paraffins, naphthenes, aromatics, etc. and oxygenated compounds (esters and alcohols. For aviation, oxygenated compounds are not considered as a drop-in fuel. It could be seen as a disruptive solution in a long term view. There are concerns with oxygenates in aviation that are covered in this paper such as the flash point but others such as the energetic content, the water affinity that are not taken into account in this paper. The properties currently studied are flash point, cetane number, density and viscosity. The data sets will contain data

  10. Prediction of mechanical properties of trabecular bone using quantitative MRI

    International Nuclear Information System (INIS)

    Lammentausta, E; Hakulinen, M A; Jurvelin, J S; Nieminen, M T

    2006-01-01

    Techniques for quantitative magnetic resonance imaging (MRI) have been developed for non-invasive estimation of the mineral density and structure of trabecular bone. The R* 2 relaxation rate (i.e. 1/T* 2 ) is sensitive to bone mineral density (BMD) via susceptibility differences between trabeculae and bone marrow, and by binarizing MRI images, structural variables, such as apparent bone volume fraction, can be assessed. In the present study, trabecular bone samples of human patellae were investigated in vitro at 1.5 T to determine the ability of MRI-derived variables (R* 2 and bone volume fraction) to predict the mechanical properties (Young's modulus, yield stress and ultimate strength). Further, the MRI variables were correlated with reference measurements of volumetric BMD and bone area fraction as determined with a clinical pQCT system. The MRI variables correlated significantly (p 2 and MRI-derived bone volume fraction further improved the prediction of yield stress and ultimate strength. Although pQCT showed a trend towards better prediction of the mechanical properties, current results demonstrate the feasibility of combined MR imaging of marrow susceptibility and bone volume fraction in predicting the mechanical strength of trabecular bone and bone mineral density

  11. Improving the precision of the structure-function relationship by considering phylogenetic context.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available Understanding the relationship between protein structure and function is one of the foremost challenges in post-genomic biology. Higher conservation of structure could, in principle, allow researchers to extend current limitations of annotation. However, despite significant research in the area, a precise and quantitative relationship between biochemical function and protein structure has been elusive. Attempts to draw an unambiguous link have often been complicated by pleiotropy, variable transcriptional control, and adaptations to genomic context, all of which adversely affect simple definitions of function. In this paper, I report that integrating genomic information can be used to clarify the link between protein structure and function. First, I present a novel measure of functional proximity between protein structures (F-score. Then, using F-score and other entirely automatic methods measuring structure and phylogenetic similarity, I present a three-dimensional landscape describing their inter-relationship. The result is a "well-shaped" landscape that demonstrates the added value of considering genomic context in inferring function from structural homology. A generalization of methodology presented in this paper can be used to improve the precision of annotation of genes in current and newly sequenced genomes.

  12. Structure and properties of interfaces in ceramics

    International Nuclear Information System (INIS)

    Bonnell, D.; Ruehle, M.; Chowdhry, U.

    1995-01-01

    The motivation for the symposium was the observation that interfaces in crystallographically and compositionally complex systems often dictate the performance and reliability of devices that utilize functional ceramics. The current level of understanding of interface-property relations in silicon-based devices required over 30 years of intensive research. Similar issues influence the relationship between atomic bonding at interfaces and properties in functional ceramic systems. The current understanding of these complex interfaces does not allow correlation between atomic structure and interface properties, in spite of their importance to a number of emerging technologies (wireless communications, radar-based positioning systems, sensors, etc.). The objective of this symposium was to focus attention on these fundamental issues by featuring recent theoretical and experimental work from various disciplines that impact the understanding of interface chemistry, structure, and properties. The emphasis was on relating properties of surfaces and interfaces to structure through an understanding of atomic level phenomena. Interfaces of interest include metal/ceramic, ceramic/ceramic, ceramic/vapor, etc., in electronic, magnetic, optical, ferroelectric, piezoelectric, and dielectric applications. Sixty one papers have been processed separately for inclusion on the data base

  13. Structure-properties relationships in melt reprocessed PLA/hydrotalcites nanocomposites

    Directory of Open Access Journals (Sweden)

    R. Scaffaro

    2017-07-01

    Full Text Available In this work the effect of multiple reprocessing was studied on molecular structure, morphology and properties of poly(lactic acid/hydrotalcites (PLA/HT nanocomposites compared to neat PLA. In addition, the influence of two different kinds of HT – organically modified (OM-HT and unmodified (U-HT – was evaluated. Thermo-mechanical degradation was induced by means of five subsequent extrusion cycles. The performance of the recycled materials was investigated by mechanical and rheological tests, differential scanning calorimetry (DSC, intrinsic viscosity measurements and SEM observation. The results indicated that the best morphology was achieved in the systems incorporating OM-HT. On increasing the extrusion reprocessing cycles, the properties showed behavior due to two opposite effects: i chain scission due to thermo-mechanical degradation and ii filler dispersion effect resulting from multiple processing. In particular, at low reprocessing cycles, both tensile and rheological properties seem to be mainly affected by HT dispersion, especially when OM-HT was added. After five reprocessing cycles, on the contrary, chain scission, i.e. thermo-mechanical degradation, dominated. As regards the effect of the presence of organic modifier in HT, the results indicated that this variable apparently did not affect the macroscopic performance of the nanocomposites, especially at high reprocessing cycles.

  14. QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP ANALYSIS (QSAR OF VINCADIFFORMINE ANALOGUES AS THE ANTIPLASMODIAL COMPOUNDS OF THE CHLOROQUINOSENSIBLE STRAIN

    Directory of Open Access Journals (Sweden)

    Iqmal Tahir

    2010-06-01

    Full Text Available Quantitative Structure-Activity Relationship (QSAR analysis of vincadifformine analogs as an antimalarial drug has been conducted using atomic net charges (q, moment dipole (, LUMO (Lowest Unoccupied Molecular Orbital and HOMO (Highest Occupied Molecular Orbital energies, molecular mass (m as well as surface area (A as the predictors to their activity. Data of predictors are obtained from computational chemistry method using semi-empirical molecular orbital AM1 calculation. Antimalarial activities were taken as the activity of the drugs against chloroquine-sensitive Plasmodium falciparum (Nigerian Cell strain and were presented as the value of ln(1/IC50 where IC50 is an effective concentration inhibiting 50% of the parasite growth. The best QSAR model has been determined by multiple linier regression analysis giving QSAR equation: Log (1/IC50 = 9.602.qC1 -17.012.qC2 +6.084.qC3 -19.758.qC5 -6.517.qC6 +2.746.qC7 -6.795.qN +6.59.qC8 -0.190. -0.974.ELUMO +0.515.EHOMO -0.274. +0.029.A -1.673 (n = 16; r = 0.995; SD = 0.099; F = 2.682   Keywords: QSAR analysis, antimalaria, vincadifformine.

  15. Assessment of the electronic structure and properties of trichothecene toxins using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Appell, Michael, E-mail: michael.appell@ars.usda.gov [Bacterial Foodborne Pathogens and Mycology Research USDA, ARS, National Center for Agricultural Utilization Research 1815 N. University St., Peoria, IL 61604 (United States); Bosma, Wayne B., E-mail: bosma@bumail.bradley.edu [Mund-Lagowski Department of Chemistry and Biochemistry Bradley University 1501 W. Bradley Ave., Peoria, IL 61625 (United States)

    2015-05-15

    Highlights: • Quantum-based properties of type A and B trichothecenes are related to toxicity. • Deoxynivalenol and nivalenol exhibit complex hydrogen bonding schemes. • QSAR models explain trichothecene toxicity and immunochemical detection. • False-positive detection is associated with spatial autocorrelation indices. - Abstract: A comprehensive quantum chemical study was carried out on 35 type A and B trichothecenes and biosynthetic precursors, including selected derivatives of deoxynivalenol and T-2 toxin. Quantum chemical properties, Natural Bond Orbital (NBO) analysis, and molecular parameters were calculated on structures geometry optimized at the B3LYP/6-311+G** level. Type B trichothecenes possessed significantly larger electrophilicity index compared to the type A trichothecenes studied. Certain hydroxyl groups of deoxynivalenol, nivalenol, and T-2 toxin exhibited considerable rotation during molecular dynamics simulations (5 ps) at the B3LYP/6-31G** level in implicit aqueous solvent. Quantitative structure activity relationship (QSAR) models were developed to evaluate toxicity and detection using genetic algorithm, principal component, and multilinear analyses. The models suggest electronegativity and several 2-dimensional topological descriptors contain important information related to trichothecene cytotoxicity, phytotoxicity, immunochemical detection, and cross-reactivity.

  16. Assessment of the electronic structure and properties of trichothecene toxins using density functional theory

    International Nuclear Information System (INIS)

    Appell, Michael; Bosma, Wayne B.

    2015-01-01

    Highlights: • Quantum-based properties of type A and B trichothecenes are related to toxicity. • Deoxynivalenol and nivalenol exhibit complex hydrogen bonding schemes. • QSAR models explain trichothecene toxicity and immunochemical detection. • False-positive detection is associated with spatial autocorrelation indices. - Abstract: A comprehensive quantum chemical study was carried out on 35 type A and B trichothecenes and biosynthetic precursors, including selected derivatives of deoxynivalenol and T-2 toxin. Quantum chemical properties, Natural Bond Orbital (NBO) analysis, and molecular parameters were calculated on structures geometry optimized at the B3LYP/6-311+G** level. Type B trichothecenes possessed significantly larger electrophilicity index compared to the type A trichothecenes studied. Certain hydroxyl groups of deoxynivalenol, nivalenol, and T-2 toxin exhibited considerable rotation during molecular dynamics simulations (5 ps) at the B3LYP/6-31G** level in implicit aqueous solvent. Quantitative structure activity relationship (QSAR) models were developed to evaluate toxicity and detection using genetic algorithm, principal component, and multilinear analyses. The models suggest electronegativity and several 2-dimensional topological descriptors contain important information related to trichothecene cytotoxicity, phytotoxicity, immunochemical detection, and cross-reactivity

  17. A review of the structure-property relationships in lead-free piezoelectric (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–(x)BaTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    McQuade, Ryan R.; Dolgos, Michelle R., E-mail: Michelle.Dolgos@oregonstate.edu

    2016-10-15

    Piezoelectric materials are increasingly being investigated for energy harvesting applications where (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–(x)BaTiO{sub 3} (NBT-BT) is an important lead-free piezoelectric material with potential to be used as an actuator in energy harvesting devices. Much effort has been put into modifying NBT-BT to tune the properties for specific applications, but there is currently no consensus regarding the structure-property relationships in this material, making targeted, rational design a major challenge. In this review, we will summarize the current body of knowledge of NBT-BT and discuss contradicting studies, unresolved problems, and future directions in the field. - Graphical abstract: This review of (1−x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–(x)BaTiO{sub 3} (NBT-BT) summarizes the large body of literature regarding the structure-property relationships of this complex material. We highlight structural studies of the average and local structures of both unpoled and poled samples of NBT-BT at its morphotropic phase boundary and discuss them in context of the observed piezoelectric properties. - Highlights: • Local and average structure of NBT-BT at morphotropic phase boundary is reviewed. • Average structure of poled and unpoled samples of NBT-BT is discussed. • Structure-property relationships in NBT-BT and future directions are summarized.

  18. Quantitative criticism of literary relationships.

    Science.gov (United States)

    Dexter, Joseph P; Katz, Theodore; Tripuraneni, Nilesh; Dasgupta, Tathagata; Kannan, Ajay; Brofos, James A; Bonilla Lopez, Jorge A; Schroeder, Lea A; Casarez, Adriana; Rabinovich, Maxim; Haimson Lushkov, Ayelet; Chaudhuri, Pramit

    2017-04-18

    Authors often convey meaning by referring to or imitating prior works of literature, a process that creates complex networks of literary relationships ("intertextuality") and contributes to cultural evolution. In this paper, we use techniques from stylometry and machine learning to address subjective literary critical questions about Latin literature, a corpus marked by an extraordinary concentration of intertextuality. Our work, which we term "quantitative criticism," focuses on case studies involving two influential Roman authors, the playwright Seneca and the historian Livy. We find that four plays related to but distinct from Seneca's main writings are differentiated from the rest of the corpus by subtle but important stylistic features. We offer literary interpretations of the significance of these anomalies, providing quantitative data in support of hypotheses about the use of unusual formal features and the interplay between sound and meaning. The second part of the paper describes a machine-learning approach to the identification and analysis of citational material that Livy loosely appropriated from earlier sources. We extend our approach to map the stylistic topography of Latin prose, identifying the writings of Caesar and his near-contemporary Livy as an inflection point in the development of Latin prose style. In total, our results reflect the integration of computational and humanistic methods to investigate a diverse range of literary questions.

  19. Developing descriptors to predict mechanical properties of nanotubes.

    Science.gov (United States)

    Borders, Tammie L; Fonseca, Alexandre F; Zhang, Hengji; Cho, Kyeongjae; Rusinko, Andrew

    2013-04-22

    Descriptors and quantitative structure property relationships (QSPR) were investigated for mechanical property prediction of carbon nanotubes (CNTs). 78 molecular dynamics (MD) simulations were carried out, and 20 descriptors were calculated to build quantitative structure property relationships (QSPRs) for Young's modulus and Poisson's ratio in two separate analyses: vacancy only and vacancy plus methyl functionalization. In the first analysis, C(N2)/C(T) (number of non-sp2 hybridized carbons per the total carbons) and chiral angle were identified as critical descriptors for both Young's modulus and Poisson's ratio. Further analysis and literature findings indicate the effect of chiral angle is negligible at larger CNT radii for both properties. Raman spectroscopy can be used to measure C(N2)/C(T), providing a direct link between experimental and computational results. Poisson's ratio approaches two different limiting values as CNT radii increases: 0.23-0.25 for chiral and armchair CNTs and 0.10 for zigzag CNTs (surface defects <3%). In the second analysis, the critical descriptors were C(N2)/C(T), chiral angle, and M(N)/C(T) (number of methyl groups per total carbons). These results imply new types of defects can be represented as a new descriptor in QSPR models. Finally, results are qualified and quantified against experimental data.

  20. Effect of Weave Structure on Thermo-Physiological Properties of Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Ahmad Sheraz

    2015-03-01

    Full Text Available This paper aims to investigate the relationship between fabric weave structure and its comfort properties. The two basic weave structures and four derivatives for each selected weave structure were studied. Comfort properties, porosity, air permeability and thermal resistance of all the fabric samples were determined. In our research the 1/1 plain weave structure showed the highest thermal resistance making it suitable for cold climatic conditions. The 2/2 matt weave depicted the lowest thermal resistance which makes it appropriate for hot climatic conditions.

  1. Local structure in LaMnO3 and CaMnO3 perovskites: A quantitative structural refinement of Mn K-edge XANES data

    International Nuclear Information System (INIS)

    Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D.D.

    2005-01-01

    Hole-doped perovskites such as La 1-x Ca x MnO 3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K-edge XANES of LaMnO 3 and CaMnO 3 compounds; they are the end compounds of the doped manganite series La x Ca 1-x MnO 3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K-edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds

  2. Relationship between the structural stability with the types and land uses in southeastern Spain

    International Nuclear Information System (INIS)

    Marin Sanleandro, P.; Sanchez Navarro, A.; Delgado Iniesta, M. J.; Fernandez-Delgado Juarez, M.

    2009-01-01

    Structural stability is one of the most important physical properties and is proposed as an indicator of quality. The aim of this study is to see the possible relationship between this property with soil types and uses of them. In this paper we have selected the Mazarron area based on their environmental characteristics and has taken forty-one topsoil samples, after analysis and study of the relationship between its structural stability with soil types and uses of same, we find a closer relationship in the case of uses that type, so that the natural soil as the percentage of stable aggregates close to 75%, while in soils anthropized this value reaches 44 %. (Author) 6 refs

  3. Kinetic Control of Aqueous Hydrolysis: Modulating Structure/Property Relationships in Inorganic Crystals

    Science.gov (United States)

    Neilson, James R.

    2011-12-01

    A grand challenge in materials science and chemistry revolves around the preparation of materials with desired properties by controlling structure on multiple length scales. Biology approaches this challenge by evolving tactics to transform soluble precursors into materials and composites with macro-scale and atomic precision. Studies of biomineralization in siliceous sponges led to the discovery of slow, catalytic hydrolysis of molecular precursors in the biogenesis of silica skeletal elements with well defined micro- and nano-scale architectures. However, the role of aqueous hydrolysis in the limit of kinetic control is not well understood; this allows us to form a central hypothesis: that the kinetics of hydrolysis modulate the structures of materials and their properties. As a model system, the diffusion of a simple hydrolytic catalyst (such as ammonia) across an air-water interface into a metal salt solution reproduces some aspects of the chemistry found in biomineralization, namely kinetic and vectorial control. Variation of the catalyst concentration modulates the hydrolysis rate, and thus alters the resulting structure of the inorganic crystals. Using aqueous solutions of cobalt(II) chloride, each product (cobalt hydroxide chloride) forms with a unique composition, despite being prepared from identical mother liquors. Synchrotron X-ray total scattering methods are needed to locate the atomic positions in the material, which are not aptly described by a traditional crystallographic unit cell due to structural disorder. Detailed definition of the structure confirms that the hydrolysis conditions systematically modulate the arrangement of atoms in the lattice. This tightly coupled control of crystal formation and knowledge of local and average structures of these materials provides insight into the unusual magnetic properties of these cobalt hydroxides. The compounds studied show significant and open magnetization loops with little variation with composition

  4. Process-Structure-Property Relationship in Magnesium-Based Biodegradable Alloy for Biomedical Applications

    Science.gov (United States)

    Trivedi, Pramanshu

    Magnesium alloys are considered to be the next generation of biomaterials because of their ability to degrade in the physiological environment. We elucidate here the impact of multiaxial forging of Mg-2Zn-2Gd alloy on grain refinement to sub-micron regime and relate the structure to mechanical properties and biological functionality. As-cast and annealed samples were multiaxial forged (MAF) for a total number of two passes with a true strain of 2/pass. Considering that the microstructure governs the biological response of materials, we studied the constituents of the microstructure in conjunction with the mechanical behavior. The antimicrobial behavior in a Mg-2Zn-2Gd alloy with different grain size in the range of 44 microm to 710 nm was studied by seeding. Surface energy and contact angle measurements using goniometer and wettability were assessed with water, SBF, n-Hexane, and DMEM. The structure-property relationship in Mg-2Zn-2Gd alloy to maintaining mechanical integrity during degradation was studied by seeding Escherichia coli ( E. coli). Furthermore, we studied the effect of degradation behavior in the presence and absence of cells. This was followed by the study of bioactivity in terms of phases present on the surface and degradation products in simulated body fluid (SBF). Magnesium coated with apatite using a biomimetic approach were placed in a 24-well culture plate with alpha-MEM media and the degradation behavior was studied in the absence and presence of cells (seeding density: 10,000 cells/cm2). The change in pH was monitored at regular intervals. Cell attachment was studied by seeding the cells for 4h and cell viability was studied by seeding the cells for up to 1, 3, and 7 days. The study underscores that the fine-grained alloys exhibited superior mechanical properties, antimicrobial resistance, and cell attachment. The degradation rate was also least for fine-grained alloy. The higher surface energy of ultrafine-grained Mg-2Zn-2Gd alloy led to the

  5. Chemical Structure and Properties: A Modified Atoms-First, One-Semester Introductory Chemistry Course

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jakubowski, Henry V.; McKenna, Anna G.; McIntee, Edward J.; Jones, T. Nicholas; Fazal, M. A.; Peterson, Alicia A.

    2015-01-01

    A one-semester, introductory chemistry course is described that develops a primarily qualitative understanding of structure-property relationships. Starting from an atoms-first approach, the course examines the properties and three-dimensional structure of metallic and ionic solids before expanding into a thorough investigation of molecules. In…

  6. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces

    International Nuclear Information System (INIS)

    Katz, J. Lawrence; Misra, Anil; Spencer, Paulette; Wang, Yong; Bumrerraj, Sauwanan; Nomura, Tsutomu; Eppell, Steven J.; Tabib-Azar, Massood

    2007-01-01

    This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered. These separate sets of data will be combined mathematically to advance the effects of scale on the modeling of these tissues and the tissue/biomaterial interfaces as hierarchical material/structural composites. Interfacial structure and properties to be considered in greatest detail will be that of the dentin/adhesive (d/a) interface, which presents a clear example of examining all three material properties, (chemical, elastic and electrical). In this case, finite element modeling (FEA) was based on the actual measured values of the structure and elastic properties of the materials comprising the d/a interface; this combination provides insight into factors and mechanisms that contribute to premature failure of dental composite fillings. At present, there are more elastic property data obtained by microstructural measurements, especially high frequency ultrasonic wave propagation (UWP) and scanning acoustic microscopy (SAM) techniques. However, atomic force microscopy (AFM) and nanoindentation (NI) of cortical and trabecular bone and the dentin-enamel junction (DEJ) among others have become available allowing correlation of the nanostructural level measurements with those made on the microstructural level

  7. Environmental properties of long chain alcohols. Part 1: Physicochemical, environmental fate and acute aquatic toxicity properties

    DEFF Research Database (Denmark)

    Fisk, Peter; Sanderson, Hans; Wildey, Ross

    2009-01-01

    )SARs). This allows predictions of data relating to human and environmental safety profiles and patterns. These alcohols have been shown to be rapidly degradable under standard conditions up to C18. Furthermore, evidence suggests that longer chain lengths are also rapidly biodegradable. While log Kow values suggest......This paper summarises the physicochemical, biodegradation and acute aquatic ecotoxicity properties of long chain aliphatic alcohols. Properties of pure compounds are shown to follow somewhat predictable trends, which are amenable to estimation by quantitative structure-activity relationships ((Q...

  8. Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions

    Science.gov (United States)

    Hales, Stephen J.; Hafley, Robert A.

    2001-01-01

    The objective of this investigation was to establish the relationship between mechanical property anisotropy, microstructure and crystallographic texture in integrally 'T'-stiffened extruded panels fabricated from the Al-Li alloys 2195, 2098 and 2096. In-plane properties were measured as a function of orientation at two locations in the panels, namely mid-way between (Skin), and directly beneath (Base), the integral 'T' stiffeners. The 2195 extrusion exhibited the best combination of strength and toughness, but was the most anisotropic. The 2098 extrusion exhibited lower strength and comparable toughness, but was more isotropic than 2195. The 2096 extrusion exhibited the lowest strength and poor toughness, but was the most isotropic. All three alloys exhibited highly elongated grain structures and similar location-dependent variations in grain morphology. The textural characteristics comprised a beta + fiber texture, similar to rolled product, in the Skin regions and alpha + fiber texture, comparable to axisymmetric extruded product, in the Base regions. In an attempt to quantitatively correlate texture with yield strength anisotropy, the original 'full constraint' Taylor model and a variant of the 'relaxed constraint' model, explored by Wert et al., were applied to the data. A comparison of the results revealed that the Wert model was consistently more accurate than the Taylor model.

  9. Understanding nanocellulose chirality and structure–properties relationship at the single fibril level

    Science.gov (United States)

    Usov, Ivan; Nyström, Gustav; Adamcik, Jozef; Handschin, Stephan; Schütz, Christina; Fall, Andreas; Bergström, Lennart; Mezzenga, Raffaele

    2015-01-01

    Nanocellulose fibrils are ubiquitous in nature and nanotechnologies but their mesoscopic structural assembly is not yet fully understood. Here we study the structural features of rod-like cellulose nanoparticles on a single particle level, by applying statistical polymer physics concepts on electron and atomic force microscopy images, and we assess their physical properties via quantitative nanomechanical mapping. We show evidence of right-handed chirality, observed on both bundles and on single fibrils. Statistical analysis of contours from microscopy images shows a non-Gaussian kink angle distribution. This is inconsistent with a structure consisting of alternating amorphous and crystalline domains along the contour and supports process-induced kink formation. The intrinsic mechanical properties of nanocellulose are extracted from nanoindentation and persistence length method for transversal and longitudinal directions, respectively. The structural analysis is pushed to the level of single cellulose polymer chains, and their smallest associated unit with a proposed 2 × 2 chain-packing arrangement. PMID:26108282

  10. Specialists meeting on properties of primary circuit structural materials including environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials.

  11. Specialists meeting on properties of primary circuit structural materials including environmental effects

    International Nuclear Information System (INIS)

    1977-01-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials

  12. Balancing Performance and Sustainability in Next-Generation PMR Technologies for OMC Structures (Briefing Charts)

    Science.gov (United States)

    2016-05-26

    Quantitative Structure-Activity Relationship (QSAR) principle –predict properties based on chemical structure oEPA’s EPI Suite model package – physical...17Distribution A. Approved for Public Release; Distribution Unlimited PA# 16223 Results – p-Cymene Diamines Economics ● Turpentine produced at ~350 kton

  13. Nonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci.

    Science.gov (United States)

    Yap, John Stephen; Fan, Jianqing; Wu, Rongling

    2009-12-01

    Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.

  14. The effect of leverage and/or influential on structure-activity relationships.

    Science.gov (United States)

    Bolboacă, Sorana D; Jäntschi, Lorentz

    2013-05-01

    In the spirit of reporting valid and reliable Quantitative Structure-Activity Relationship (QSAR) models, the aim of our research was to assess how the leverage (analysis with Hat matrix, h(i)) and the influential (analysis with Cook's distance, D(i)) of QSAR models may reflect the models reliability and their characteristics. The datasets included in this research were collected from previously published papers. Seven datasets which accomplished the imposed inclusion criteria were analyzed. Three models were obtained for each dataset (full-model, h(i)-model and D(i)-model) and several statistical validation criteria were applied to the models. In 5 out of 7 sets the correlation coefficient increased when compounds with either h(i) or D(i) higher than the threshold were removed. Withdrawn compounds varied from 2 to 4 for h(i)-models and from 1 to 13 for D(i)-models. Validation statistics showed that D(i)-models possess systematically better agreement than both full-models and h(i)-models. Removal of influential compounds from training set significantly improves the model and is recommended to be conducted in the process of quantitative structure-activity relationships developing. Cook's distance approach should be combined with hat matrix analysis in order to identify the compounds candidates for removal.

  15. A compilation of structural property data for computer impact calculation (5/5)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1988-10-01

    The paper describes structural property data for computer impact calculations of nuclear fuel shipping casks. Four kinds of material data, mild steel, stainless steel, lead and wood are compiled. These materials are main structural elements of shipping casks. Structural data such as, the coefficient of thermal expansion, the modulus of longitudinal elasticity, the modulus of transverse elasticity, the Poisson's ratio and stress and strain relationships, have been tabulated against temperature or strain rate. This volume 5 involve structural property data of wood. (author)

  16. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    Science.gov (United States)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology

  17. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer

    International Nuclear Information System (INIS)

    Huber, J.G.

    1996-01-01

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an α helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S γ -C β -H β )Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven instrumental in affording new

  18. A Comprehensive Reanalysis of the Distal Iliotibial Band: Quantitative Anatomy, Radiographic Markers, and Biomechanical Properties.

    Science.gov (United States)

    Godin, Jonathan A; Chahla, Jorge; Moatshe, Gilbert; Kruckeberg, Bradley M; Muckenhirn, Kyle J; Vap, Alexander R; Geeslin, Andrew G; LaPrade, Robert F

    2017-09-01

    The qualitative anatomy of the distal iliotibial band (ITB) has previously been described. However, a comprehensive characterization of the quantitative anatomic, radiographic, and biomechanical properties of the Kaplan fibers of the deep distal ITB has not yet been established. It is paramount to delineate these characteristics to fully understand the distal ITB's contribution to rotational knee stability. Purpose/Hypothesis: There were 2 distinct purposes for this study: (1) to perform a quantitative anatomic and radiographic evaluation of the distal ITB's attachment sites and their relationships to pertinent osseous and soft tissue landmarks, and (2) to quantify the biomechanical properties of the deep (Kaplan) fibers of the distal ITB. It was hypothesized that the distal ITB has definable parameters concerning its anatomic attachments and consistent relationships to surgically pertinent landmarks with correlating plain radiographic findings. In addition, it was hypothesized that the biomechanical properties of the Kaplan fibers would support their role as important restraints against internal rotation. Descriptive laboratory study. Ten nonpaired, fresh-frozen human cadaveric knees (mean age, 61.1 years; range, 54-65 years) were dissected for anatomic and radiographic purposes. A coordinate measuring device quantified the attachment areas of the distal ITB to the distal femur, patella, and proximal tibia and their relationships to pertinent bony landmarks. A radiographic analysis was performed by inserting pins into the attachment sites of relevant anatomic structures to assess their location relative to pertinent bony landmarks with fluoroscopic guidance. A further biomechanical assessment of 10 cadaveric knees quantified the load to failure and stiffness of the Kaplan fibers' insertion on the distal femur after a preconditioning protocol. Two separate deep (Kaplan) fiber bundles were identified with attachments to 2 newly identified femoral bony prominences

  19. Rationalizing the photophysical properties of BODIPY laser dyes via aromaticity and electron-donor-based structural perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Paul G.; Liu, Xiaogang; Zhao, Teng; Cole, Jacqueline M.

    2015-05-01

    The absorption and fluorescence properties of six boron dipyrromethene (BODIPY) laser dyes with simple non-aromatic substituents are rationalized by relating them to observable structural perturbations within the molecules of the dyes. An empirical relationship involving the structure and the optical properties is derived using a combination of single-crystal X-ray diffraction data, quantum chemical calculations and electronic constants: i.e. the tendency of the pyrrole bond lengths towards aromaticity and the UV-vis absorption and fluorescence wavelengths correlating with the electron-donor properties of the substituents. The effect of molecular conformation on the solid-state optical properties of the dyes is also discussed. The findings in this study also demonstrate the usefulness and limitations of using crystal structure data to develop structure-property relationships in this class of optical materials, contributing to the growing effort to design optoelectronic materials with tunable properties via molecular engineering.

  20. A compilation of structural property data for computer impact calculation (1/5)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Nagata, Norio.

    1988-10-01

    The paper describes structural property data for computer impact calculations of nuclear fuel shipping casks. Four kinds of material data, mild steel, stainless steel, lead and wood are compiled. These materials are main structural elements of shipping casks. Structural data such as, the coefficient of thermal expansion, the modulus of longitudinal elasticity, the modulus of transverse elasticity, the Poisson's ratio and stress and strain relationships, have been tabulated against temperature or strain rate. This volume 1 involve structural property data and data processing computer program. (author)

  1. A compilation of structural property data for computer impact calculation (3/5)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1988-10-01

    The paper describes structural property data for computer impact calculations of nuclear fuel shipping casks. Four kinds of material data, mild steel, stainless steel, lead and wood are compiled. These materials are main structural elements of shipping casks. Structural data such as, the coefficient of thermal expansion, the modulus of longitudinal elasticity, the modulus of transverse elasticity, the Poisson's ratio and stress and strain relationships, have been tabulated against temperature or strain rate. This volume 3 involve structural property data of stainless steel. (author)

  2. A compilation of structural property data for computer impact calculation (2/5)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1988-10-01

    The paper describes structural property data for computer impact calculations of nuclear fuel shipping casks. Four kinds of material data, mild steel, stainless steel, lead and wood are compiled. These materials are main structural elements of shipping casks. Structural data such as, the coefficient of thermal expansion, the modulus of longitudinal elasticity, the modulus of transverse elasticity, the Poisson's ratio and stress and strain relationships, have been tabulated against temperature or strain rate. This volume 2 involve structural property data of mild steel. (author)

  3. Quantitative structure-activity relationship analysis to elucidate the clearance mechanisms of Tc-99m labeled quinolone antibiotics

    International Nuclear Information System (INIS)

    Salahinejad, M.; Mirshojaei, S.F.

    2016-01-01

    This study aims to establish molecular modeling methods for predicting the liver and kidney uptakes of Tc-99m labeled quinolone antibiotics. Some three-dimensional quantitative-activity relationships (3D-QSAR) models were developed using comparative molecular field analysis and grid-independent descriptors procedures. As a first report on 3D-QSAR modeling, the predicted liver and kidney uptakes for quinolone antibiotics were in good agreement with the experimental values. The obtained results confirm the importance of hydrophobic interactions, size and steric hindrance of antibiotic molecules in their liver uptakes, while the electrostatic interactions and hydrogen bonding ability have impressive effects on their kidney uptakes. (author)

  4. Quantitative Structure–Property Relationship (QSPR Models for a Local Quantum Descriptor: Investigation of the 4- and 3-Substituted-Cinnamic Acid Esterification

    Directory of Open Access Journals (Sweden)

    Cláudio E. Rodrigues-Santos

    2015-09-01

    Full Text Available In this work, the theoretical description of the 4- and 3-substituted-cinnamic acid esterification with different electron donating and electron withdrawing groups was performed at the B3LYP and M06-2X levels, as a two-step process: the O-protonation and the nucleophile attack by ethanol. In parallel, an experimental work devoted to the synthesis and characterization of the substituted-cinnamate esters has also been performed. In order to quantify the substituents effects, quantitative structure–property relationship (QSPR models based on the atomic charges, Fukui functions and the Frontier Effective-for-Reaction Molecular Orbitals (FERMO energies were investigated. In fact, the Fukui functions, ƒ+C and ƒ−O, indicated poor correlations for each individual step, and in contrast with the general literature, the O-protonation step is affected both by the FERMO energies and the O-charges of the carbonyl group. Since the process was shown to not be totally described by either charge- or frontier-orbitals, it is proposed to be frontier-charge-miscere controlled. Moreover, the observed trend for the experimental reaction yields suggests that the electron withdrawing groups favor the reaction and the same was observed for Step 2, which can thus be pointed out as the determining step.

  5. Text mining in students' course evaluations: Relationships between open-ended comments and quantitative scores

    DEFF Research Database (Denmark)

    Sliusarenko, Tamara; Clemmensen, Line Katrine Harder; Ersbøll, Bjarne Kjær

    2013-01-01

    Extensive research has been done on student evaluations of teachers and courses based on quantitative data from evaluation questionnaires, but little research has examined students' written responses to open-ended questions and their relationships with quantitative scores. This paper analyzes suc...

  6. Processing/structure/property Relationships of Barium Strontium Titanate Thin Films for Dynamic Random Access Memory Application.

    Science.gov (United States)

    Peng, Cheng-Jien

    The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could

  7. Selective extraction of americium(III) over europium(III) ions with pyridylpyrazole ligands. Structure-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dongping; Liu, Ying; Li, Shimeng; Ding, Songdong; Jin, Yongdong; Wang, Zhipeng; Hu, Xiaoyang; Zhang, Lirong [Department of chemistry, Sichuan University, Chengdu (China)

    2017-01-18

    To clarify the structure-property relationships of pyridylpyrazole ligands and provide guidance for the design of new and more efficient ligands for the selective extraction of actinides over lanthanides, a series of alkyl-substituted pyridylpyrazole ligands with different branched chains at different positions of the pyrazole ring were synthesized. Extraction experiments showed that the pyridylpyrazole ligands exhibited good selective extraction abilities for Am{sup III} ions, and the steric effects of the branched chain had a significant impact on the distribution ratios of Am{sup III} and Eu{sup III} ions as well as the separation factor. Moreover, both slope analyses and UV/Vis spectrometry titrations indicated the formation of a 1:1 complex of 2-(1-octyl-1H-pyrazol-3-yl)pyridine (C8-PypzH) with Eu{sup III} ions. The stability constant (log K) for this complex obtained from the UV/Vis titration was 4.45 ± 0.04. Single crystals of the complexes of 3-(2-pyridyl)pyrazole (PypzH) with Eu(NO{sub 3}){sub 3} and Sm(NO{sub 3}){sub 3} were obtained; PypzH acts as a bidentate ligand in the crystal structures, and the N atom with a bound H atom did not participate in the coordination. In general, this study revealed some interesting findings on the effects of the alkyl-chain structure and the special complexation between pyridylpyrazole ligands and Ln{sup III} ions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Computational models for structure-hydrophobicity relationships of 4-carboxyl-2,6-dinitrophenyl azo hydroxynaphthalenes.

    Science.gov (United States)

    Idowu, Olakunle S; Adegoke, Olajire A; Idowu, Abiola; Olaniyi, Ajibola A

    2007-01-01

    Some phenyl azo hydroxynaphthalene dyes (e.g., sunset yellow) are certified as approved colorants for food, cosmetics, and drug formulations. The hydrophobicity of 4 newly synthesized azo dyes of the phenyl azo hydroxynaphthalene class was investigated, as a training set, with the goal of developing models for quantitative structure-property relationships (QSPR). Retention behavior of the molecules reversed-phase thin-layer chromatography (RPTLC) was investigated using liquid paraffin-coated silica gel as the stationary phase. Mobile phases consisted of aqueous mixtures of methanol, acetone, and dimethylformamide (DMF). Basic hydrophobicity parameter (Rmw), specific hydrophobic surface area (S), and isocratic chromatographic hydrophobicity index (phio) were computed from the chromatographic data. The hydrophobicity index (Rm) decreased linearly with increasing concentration of organic modifiers. Extrapolated Rmw values obtained by using DMF and acetone differ significantly from the value obtained by using methanol as organic modifier [P dyes and may also play useful roles in computer-assisted molecular discovery of nontoxic azo dyes.

  9. Ensemble averaged structure–function relationship for nanocrystals: effective superparamagnetic Fe clusters with catalytically active Pt skin [Ensemble averaged structure-function relationship for composite nanocrystals: magnetic bcc Fe clusters with catalytically active fcc Pt skin

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, Valeri [Central Michigan University, Mt. Pleasant, MI (United States); Prasai, Binay [Central Michigan University, Mt. Pleasant, MI (United States); Shastri, Sarvjit [Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division; Park, Hyun-Uk [Sungkyunkwan University, Suwon (Korea). Department of Chemistry; Kwon, Young-Uk [Sungkyunkwan University, Suwon (Korea). Department of Chemistry; Skumryev, Vassil [Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain); Universitat Autònoma de Barcelona (Spain). Department of Physics

    2017-09-12

    Practical applications require the production and usage of metallic nanocrystals (NCs) in large ensembles. Besides, due to their cluster-bulk solid duality, metallic NCs exhibit a large degree of structural diversity. This poses the question as to what atomic-scale basis is to be used when the structure–function relationship for metallic NCs is to be quantified precisely. In this paper, we address the question by studying bi-functional Fe core-Pt skin type NCs optimized for practical applications. In particular, the cluster-like Fe core and skin-like Pt surface of the NCs exhibit superparamagnetic properties and a superb catalytic activity for the oxygen reduction reaction, respectively. We determine the atomic-scale structure of the NCs by non-traditional resonant high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Using the experimental structure data we explain the observed magnetic and catalytic behavior of the NCs in a quantitative manner. Lastly, we demonstrate that NC ensemble-averaged 3D positions of atoms obtained by advanced X-ray scattering techniques are a very proper basis for not only establishing but also quantifying the structure–function relationship for the increasingly complex metallic NCs explored for practical applications.

  10. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol.

    Science.gov (United States)

    Ahmed, Hamzah; Shimpi, Manishkumar R; Velaga, Sitaram P

    2017-01-01

    Objectives were to study mechanical properties of various solid forms of paracetamol and relate to their crystal structures. Paracetamol form I (PRA), its cocrystals with oxalic acid (PRA-OXA) and 4,4-bipyridine (PRA-BPY) and hydrochloride salt (PRA-HCL) were selected. Cocrystals and salt were scaled-up using rational crystallization methods. The resulting materials were subjected to different solid-state characterizations. The powders were sieved and 90-360 µm sieve fraction was considered. These powders were examined by scanning electron microscopy (SEM) and densities were determined. Tablets were made at applied pressures of 35-180 MPa under controlled conditions and the tablet height, diameter and hardness were measured. Tensile strength and porosity of the tablets were estimated using well known models. Crystal structures of these systems were visualized and slip planes were identified. Cocrystal and salt of PRA were physically pure. Sieved powders had comparable morphologies and particle size. The apparent and theoretical densities of powders were similar, but no clear trends were observed. The tensile strengths of these compacts were increased with increasing pressure whereas tabletability decreased in the order oxalic acid > PRA-HCL ≈ PRA-OXA > BPY > PRA-BPY. Tablet tensile strength decreases exponentially with increasing porosity with the exception of PRY-BPY and BPY. Slip plane prediction based on attachment energies may not be independently considered. However, it was possible to explain the improved mechanical properties of powders based on the crystal structure. Cocrystallization and salt formation have introduced structural features that are responsible for improved tableting properties of PRA.

  11. An orientation sensitive approach in biomolecule interaction quantitative structure-activity relationship modeling and its application in ion-exchange chromatography.

    Science.gov (United States)

    Kittelmann, Jörg; Lang, Katharina M H; Ottens, Marcel; Hubbuch, Jürgen

    2017-01-27

    Quantitative structure-activity relationship (QSAR) modeling for prediction of biomolecule parameters has become an established technique in chromatographic purification process design. Unfortunately available descriptor sets fail to describe the orientation of biomolecules and the effects of ionic strength in the mobile phase on the interaction with the stationary phase. The literature describes several special descriptors used for chromatographic retention modeling, all of these do not describe the screening of electrostatic potential by the mobile phase in use. In this work we introduce two new approaches of descriptor calculations, namely surface patches and plane projection, which capture an oriented binding to charged surfaces and steric hindrance of the interaction with chromatographic ligands with regard to electrostatic potential screening by mobile phase ions. We present the use of the developed descriptor sets for predictive modeling of Langmuir isotherms for proteins at different pH values between pH 5 and 10 and varying ionic strength in the range of 10-100mM. The resulting model has a high correlation of calculated descriptors and experimental results, with a coefficient of determination of 0.82 and a predictive coefficient of determination of 0.92 for unknown molecular structures and conditions. The agreement of calculated molecular interaction orientations with both, experimental results as well as molecular dynamic simulations from literature is shown. The developed descriptors provide the means for improved QSAR models of chromatographic processes, as they reflect the complex interactions of biomolecules with chromatographic phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The Effect of Bedding Structure on Mechanical Property of Coal

    Directory of Open Access Journals (Sweden)

    Zetian Zhang

    2014-01-01

    Full Text Available The mechanical property of coal, influencing mining activity considerably, is significantly determined by the natural fracture distributed within coal mass. In order to study the effecting mechanism of bedding structure on mechanical property of coal, a series of uniaxial compression tests and mesoscopic tests have been conducted. The experimental results show that the distribution characteristic of calcite particles, which significantly influences the growth of cracks and the macroscopic mechanical properties of coal, is obviously affected by the bedding structure. Specifically, the uniaxial compression strength of coal sample is mainly controlled by bedding structure, and the average peak stress of specimens with axes perpendicular to the bedding planes is 20.00 MPa, which is 2.88 times the average amount of parallel ones. The test results also show a close relationship between the bedding structure and the whole deformation process under uniaxial loading.

  13. Trichothecenes: structure-toxic activity relationships.

    Science.gov (United States)

    Wu, Qinghua; Dohnal, Vlastimil; Kuca, Kamil; Yuan, Zonghui

    2013-07-01

    Trichothecenes comprise a large family of structurally related toxins mainly produced by fungi belonging to the genus Fusarium. Among trichothecenes, type A and type B are of the most concern due to their broad and highly toxic nature. In order to address structure-activity relationships (SAR) of trichothecenes, relationships between structural features and biological effects of trichothecene mycotoxins in mammalian systems are summarized in this paper. The double bond between C-9-C-10 and the 12,13-epoxide ring are essential structural features for trichothecene toxicity. Removal of these groups results in a complete loss of toxicity. A hydroxyl group at C-3 enhances trichothecene toxicity, while this activity decreases gradually when C-3 is substituted with either hydrogen or an acetoxy group. The presence of a hydroxyl group at C-4 promotes slightly lower toxicity than an acetoxy group at the same position. The toxicity for type B trichothecenes decreases if the substituent at C-4 is changed from acetoxy to hydroxyl or hydrogen at C-4 position. The presence of hydroxyl and hydrogen groups on C-15 decreases the trichothecene toxicity in comparison with an acetoxy group attached to this carbon. Trichothecenes toxicity increases when a macrocyclic ring exists between the C-4 and C-15. At C-8 position, an oxygenated substitution at C-8 is essential for trichothecene toxicity, indicating a decrease in the toxicity if substituent change from isovaleryloxy through hydrogen to the hydroxyl group. The presence of a second epoxy ring at C-7-C-8 reduces the toxicity, whereas epoxidation at C-9-C-10 of some macrocyclic trichothecenes increases the activity. Conjugated trichothecenes could release their toxic precursors after hydrolysis in animals, and present an additional potential risk. The SAR study of trichothecenes should provide some crucial information for a better understanding of trichothecene chemical and biological properties in food contamination.

  14. Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy.

    Science.gov (United States)

    Cartagena, Alexander; Hernando-Pérez, Mercedes; Carrascosa, José L; de Pablo, Pedro J; Raman, Arvind

    2013-06-07

    Understanding the relationships between viral material properties (stiffness, strength, charge density, adhesion, hydration, viscosity, etc.), structure (protein sub-units, genome, surface receptors, appendages), and functions (self-assembly, stability, disassembly, infection) is of significant importance in physical virology and nanomedicine. Conventional Atomic Force Microscopy (AFM) methods have measured a single physical property such as the stiffness of the entire virus from nano-indentation at a few points which severely limits the study of structure-property-function relationships. We present an in vitro dynamic AFM technique operating in the intermittent contact regime which synthesizes anharmonic Lorentz-force excited AFM cantilevers to map quantitatively at nanometer resolution the local electro-mechanical force gradient, adhesion, and hydration layer viscosity within individual φ29 virions. Furthermore, the changes in material properties over the entire φ29 virion provoked by the local disruption of its shell are studied, providing evidence of bacteriophage depressurization. The technique significantly generalizes recent multi-harmonic theory (A. Raman, et al., Nat. Nanotechnol., 2011, 6, 809-814) and enables high-resolution in vitro quantitative mapping of multiple material properties within weakly bonded viruses and nanoparticles with complex structure that otherwise cannot be observed using standard AFM techniques.

  15. Structure-topology-property correlations of sodium phosphosilicate glasses.

    Science.gov (United States)

    Hermansen, Christian; Guo, Xiaoju; Youngman, Randall E; Mauro, John C; Smedskjaer, Morten M; Yue, Yuanzheng

    2015-08-14

    In this work, we investigate the correlations among structure, topology, and properties in a series of sodium phosphosilicate glasses with [SiO2]/[SiO2 + P2O5] ranging from 0 to 1. The network structure is characterized by (29)Si and (31)P magic-angle spinning nuclear magnetic resonance and Raman spectroscopy. The results show the formation of six-fold coordinated silicon species in phosphorous-rich glasses. Based on the structural data, we propose a formation mechanism of the six-fold coordinated silicon, which is used to develop a quantitative structural model for predicting the speciation of the network forming units as a function of chemical composition. The structural model is then used to establish a temperature-dependent constraint description of phosphosilicate glass topology that enables prediction of glass transition temperature, liquid fragility, and indentation hardness. The topological constraint model provides insight into structural origin of the mixed network former effect in phosphosilicate glasses.

  16. Structural Fluctuations and Thermophysical Properties of Molten II-VI Compounds

    Science.gov (United States)

    Su, Ching-Hua; Zhu, Shen; Li, Chao; Scripa, R.; Lehoczky, Sandra L.; Kim, Y. W.; Baird, J. K.; Lin, B.; Ban, Heng; Benmore, Chris

    2003-01-01

    The objectives of the project are to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs as well as to study the fundamental heterophase fluctuation phenomena in these melts by: 1) conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts (such as viscosity, electrical conductivity, thermal diffusivity and density) as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. It has long been recognized that liquid Te presents a unique case having properties between those of metals and semiconductors. The electrical conductivity for Te melt increases rapidly at melting point, indicating a semiconductor-metal transition. Te melts comprise two features, which are usually considered to be incompatible with each other: covalently bound atoms and metallic-like behavior. Why do Te liquids show metallic behavior? is one of the long-standing issues in liquid metal physics. Since thermophysical properties are very sensitive to the structural variations of a melt, we have conducted extensive thermophysical measurements on Te melt.

  17. Quantitative relationships for the prediction of the vapor pressure of some hydrocarbons from the van der Waals molecular surface

    Directory of Open Access Journals (Sweden)

    Olariu Tudor

    2015-01-01

    Full Text Available A quantitative structure - property relationship (QSPR modeling of vapor pressure at 298.15 K, expressed as log (VP / Pa was performed for a series of 84 hydrocarbons (63 alkanes and 21 cycloalkanes using the van der Waals (vdW surface area, SW/Å2, calculated by the Monte Carlo method, as the molecular descriptor. The QSPR model developed from the subset of 63 alkanes (C1-C16, deemed as the training set, was successfully used for the prediction of the log (VP / Pa values of the 21 cycloalkanes, which was the external prediction (test subset. A QSPR model was also developed for a series composed of all 84 hydrocarbons. Both QSPR models were statistically tested for their ability to fit the data and for prediction. The results showed that the vdW molecular surface used as molecular descriptor (MD explains the variance of the majority of the log (VP / Pa values in this series of 84 hydrocarbons. This MD describes very well the intermolecular forces that hold neutral molecules together. The clear physical meaning of the molecular surface values, SW/Å2, could explain the success of the QSPR models obtained with a single structural molecular descriptor.

  18. Structural properties of the self-conjugate SU(3) tensor operators

    International Nuclear Information System (INIS)

    Lohe, M.A.; Biedenharn, L.C.; Louck, J.D.

    1977-01-01

    Denominator functions for the set of self-conjugate SU(3) tensor operators are explicitly obtained and shown to be uniquely related to SU(3) -invariant structural properties. This relationship becomes manifest through the appearance of zeroes of the denominator functions which thereby express the fundamental null space properties of SU(3) tensor operators. It is demonstrated that there exist characteristic denominator functions whose zeroes, in position and multiplicity, possess the interesting, and unexpected, property of forming SU(3) weight space patterns

  19. Biochemical interpretation of quantitative structure-activity relationships (QSAR) for biodegradation of N-heterocycles: a complementary approach to predict biodegradability.

    Science.gov (United States)

    Philipp, Bodo; Hoff, Malte; Germa, Florence; Schink, Bernhard; Beimborn, Dieter; Mersch-Sundermann, Volker

    2007-02-15

    Prediction of the biodegradability of organic compounds is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. We combined quantitative structure-activity relationships (QSAR) with the systematic collection of biochemical knowledge to establish rules for the prediction of aerobic biodegradation of N-heterocycles. Validated biodegradation data of 194 N-heterocyclic compounds were analyzed using the MULTICASE-method which delivered two QSAR models based on 17 activating (OSAR 1) and on 16 inactivating molecular fragments (GSAR 2), which were statistically significantly linked to efficient or poor biodegradability, respectively. The percentages of correct classifications were over 99% for both models, and cross-validation resulted in 67.9% (GSAR 1) and 70.4% (OSAR 2) correct predictions. Biochemical interpretation of the activating and inactivating characteristics of the molecular fragments delivered plausible mechanistic interpretations and enabled us to establish the following biodegradation rules: (1) Target sites for amidohydrolases and for cytochrome P450 monooxygenases enhance biodegradation of nonaromatic N-heterocycles. (2) Target sites for molybdenum hydroxylases enhance biodegradation of aromatic N-heterocycles. (3) Target sites for hydratation by an urocanase-like mechanism enhance biodegradation of imidazoles. Our complementary approach represents a feasible strategy for generating concrete rules for the prediction of biodegradability of organic compounds.

  20. Inhibition of 2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) Formation by Alkoxy Radical Scavenging of Flavonoids and Their Quantitative Structure-Activity Relationship in a Model System.

    Science.gov (United States)

    Yu, Chundi; Shao, Zeping; Liu, Bing; Zhang, Yan; Wang, Shuo

    2016-08-01

    The inhibitory effect of 10 flavonoids on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in a creatinine-phenylalanine model system was investigated through electronic spin resonance and a quantitative structure-activity relationship. Alkoxy radicals were observed during the heating process, providing evidence for a radical pathway in the formation of PhIP. The alkoxy radical scavenging capability of the flavonoids was proportional to their inhibition of PhIP formation (IC50 ). We deduced that flavonoid inhibition of PhIP generation occurs via scavenging of alkoxy radicals during the heating process. Multiple linear regression and partial least squares models were used to elucidate the relationship between PhIP inhibition activity and structure characteristics of the flavonoids. The lipo-hydro partition coefficient and molecular fractional polar surface area of the flavonoids were found to be predictive of the inhibition effect. © 2016 Institute of Food Technologists®

  1. PDMS Network Structure-Property Relationships: Influence of Molecular Architecture on Mechanical and Wetting Properties

    Science.gov (United States)

    Melillo, Matthew Joseph

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine-antifouling coatings to medical devices and absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into and leach out of PDMS networks is of critical importance for the design and use in another application - microfluidic devices. The growing use of PDMS in microfluidic devices raises the concern that some researchers may use this material without fully understanding all of its advantages, drawbacks, and intricacies. The primary goal of this Ph.D. dissertation is to elucidate PDMS network molecular structure to macroscopic property relationships and to demonstrate how molecular architecture can alter dynamic mechanical and wetting characteristics. We prepare PDMS materials by using vinyl/ tetrakis(dimethylsiloxy)silane (TDSS) and silanol/ tetraethylorthosilicate (TEOS) combinations of PDMS end-groups and crosslinkers as two model systems. Under constant curing conditions, we systematically study the effects of polymer molecular weight, loading of crosslinker, and end-group chemical functionality on the extent of gelation and the dynamic mechanical and water wetting properties of end-linked PDMS networks. The extent of the gelation reaction is determined using the Soxhlet extraction to quantify the amount of material that did and did not participate in the crosslinking reactions, termed the gel and sol fractions, respectively. We use the Miller-Macosko model in conjunction with the gel fraction and precise chemical composition (i.e., stoichiometric ratio and molecular weight) to determine the fractions of elastic and pendant material, the molecular weight between chemical crosslinks, and the average effective functionality of the crosslinker molecule. Based on dynamic mechanical testing, we find that the maximum storage moduli are achieved at optimal stoichiometric conditions in the vinyl

  2. Electromechanical actuation of buckypaper actuator: Material properties and performance relationships

    International Nuclear Information System (INIS)

    Cottinet, P.-J.; Souders, C.; Tsai, S.-Y.; Liang, R.; Wang, B.; Zhang, C.

    2012-01-01

    Carbon nanotubes can be assembled into macroscopic thin film materials called buckypapers. To incorporate buckypaper actuators into engineering systems, it is of high importance to understand their material property-actuation performance relationships in order to model and predict the behavior of these actuators. The electromechanical actuation of macroscopic buckypaper structures and their actuators, including single and multi-walled carbon nanotube buckypapers and aligned single-walled nanotube buckypapers, were analyzed and compared. From the experimental evidence, this Letter discusses the effects of the fundamental material properties, including Young modulus and electrical double layer properties, on actuation performance of the resultant actuators. -- Highlights: ► In this study we identified the figure of merit of the electromechanical conversion. ► Different type of buckypaper was realized and characterized for actuation properties. ► The results demonstrated the potential of Buckypapers/Nafion for actuation

  3. Environmental properties of long-chain alcohols. Structure-activity Relationship for Chronic Aquatic Toxicity

    DEFF Research Database (Denmark)

    Schaefers, Christoph; Sanderson, Hans; Boshof, Udo

    2009-01-01

    Daphnia magna reproduction tests were performed with C10, C12, C14 and C15 alcohols to establish a structure-activity relationship of chronic effects of long-chain alcohols. The data generation involved substantial methodological efforts due to the exceptionally rapid biodegradability of the test...

  4. Misconceived Relationships between Logical Positivism and Quantitative Research: An Analysis in the Framework of Ian Hacking.

    Science.gov (United States)

    Yu, Chong Ho

    Although quantitative research methodology is widely applied by psychological researchers, there is a common misconception that quantitative research is based on logical positivism. This paper examines the relationship between quantitative research and eight major notions of logical positivism: (1) verification; (2) pro-observation; (3)…

  5. Structure functions and final-state properties in deeply inelastic electron-proton scattering

    International Nuclear Information System (INIS)

    Kharraziha, H.

    1997-01-01

    In this thesis, we give a description of the detailed structure of the proton and a description of the final-state properties in electron-proton scattering. Qualitative results, in a purely gluonic scenario with the leading log approximation, and quantitative results, where quarks are included and some sub-leading corrections have been made, are presented. The quantitative results are in fair agreement with available experimental data and a Monte Carlo event generator for electron-proton scattering is presented. Further, a computer program for calculating QCD colour factors is presented

  6. Electron irradiation effects on partially fluorinated polymer films: Structure-property relationships

    CERN Document Server

    Nasef, M M

    2003-01-01

    The effects of electron beam irradiation on two partially fluorinated polymer films i.e. poly(vinylidene fluoride) (PVDF) and poly(ethylene-tetrafluoroethylene) copolymer (ETFE) are studied at doses ranging from 100 to 1200 kGy in air at room temperature. Chemical structure, thermal and mechanical properties of irradiated films are investigated. FTIR show that both PVDF and ETFE films undergo similar changes in their chemical structures including the formation of carbonyl groups and double bonding. The changes in melting and crystallisation temperatures (T sub m and T sub c) in both irradiated films are functions of irradiation dose and reflect the disorder in the chemical structure caused by the competition between crosslinking and chain scission. The heat of melting (DELTA H sub m) and the degree of crystallinity (X sub c) of PVDF films show no significant changes with the dose increase, whereas those of ETFE films are reduced rapidly after the first 100 kGy. The tensile strength of PVDF films is improved b...

  7. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    Science.gov (United States)

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Molecular design chemical structure generation from the properties of pure organic compounds

    CERN Document Server

    Horvath, AL

    1992-01-01

    This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling

  9. Intrinsic hierarchical structural imperfections in a natural ceramic of bivalve shell with distinctly graded properties.

    Science.gov (United States)

    Jiao, Da; Liu, Zengqian; Zhang, Zhenjun; Zhang, Zhefeng

    2015-07-22

    Despite the extensive investigation on the structure of natural biological materials, insufficient attention has been paid to the structural imperfections by which the mechanical properties of synthetic materials are dominated. In this study, the structure of bivalve Saxidomus purpuratus shell has been systematically characterized quantitatively on multiple length scales from millimeter to sub-nanometer. It is revealed that hierarchical imperfections are intrinsically involved in the crossed-lamellar structure of the shell despite its periodically packed platelets. In particular, various favorable characters which are always pursued in synthetic materials, e.g. nanotwins and low-angle misorientations, have been incorporated herein. The possible contributions of these imperfections to mechanical properties are further discussed. It is suggested that the imperfections may serve as structural adaptations, rather than detrimental defects in the real sense, to help improve the mechanical properties of natural biological materials. This study may aid in understanding the optimizing strategies of structure and properties designed by nature, and accordingly, provide inspiration for the design of synthetic materials.

  10. 22 CFR 226.37 - Property trust relationship.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Property trust relationship. 226.37 Section 226.37 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS Post-award Requirements Property Standards § 226.37 Property trust...

  11. Relationships between structural fat properties with sensory, physical and textural attributes of yeast-leavened laminated salty baked product.

    Science.gov (United States)

    de la Horra, Ana E; Barrera, Gabriela N; Steffolani, Eugenia M; Ribotta, Pablo D; León, Alberto E

    2017-08-01

    The aim of this study was to establish relationships between structural fat properties and sensory, physical and textural attributes of yeast-leavened laminated salty products. Refined bovine fat (MG1) and shortening (MG2), with a solid fat content (SFC) higher than 20% at temperature range of 15-35 °C were more viscous and less sensitive to temperature changes. The micrographs of dough|fat|dough sections corresponding to samples with MG1 and MG2 revealed a lower penetration of the fat sheet in the dough section due to the more entangled fat structures that did not allow a great flow throughout the dough layer. Consequently, the structure of laminated dough pieces made the systems highly resistant to deformation. The laminated dough pieces elaborated with these fats showed the highest increments in their height and maintained symmetry. Products with fat with least SFC and higher destructuration rate produced smoother laminated structures due to the presence of pores. While products with MG1 and MG2 showed tortuous images and complex structures, associated to layers and extended pores. MG1 and MG2 products were preferred (flavor and appearance) over those with MG3. The highest ranking samples in the acceptability analysis were symmetric, presented very flaky crusts and had a high level of lamination.

  12. Quantitative Analysis of Ductile Iron Microstructure – A Comparison of Selected Methods for Assessment

    Directory of Open Access Journals (Sweden)

    Mrzygłód B.

    2013-09-01

    Full Text Available Stereological description of dispersed microstructure is not an easy task and remains the subject of continuous research. In its practical aspect, a correct stereological description of this type of structure is essential for the analysis of processes of coagulation and spheroidisation, or for studies of relationships between structure and properties. One of the most frequently used methods for an estimation of the density Nv and size distribution of particles is the Scheil - Schwartz - Saltykov method. In this article, the authors present selected methods for quantitative assessment of ductile iron microstructure, i.e. the Scheil - Schwartz - Saltykov method, which allows a quantitative description of three-dimensional sets of solids using measurements and counts performed on two-dimensional cross-sections of these sets (microsections and quantitative description of three-dimensional sets of solids by X-ray computed microtomography, which is an interesting alternative for structural studies compared to traditional methods of microstructure imaging since, as a result, the analysis provides a three-dimensional imaging of microstructures examined.

  13. Transport properties of electrons in fractal magnetic-barrier structures

    Science.gov (United States)

    Sun, Lifeng; Fang, Chao; Guo, Yong

    2010-09-01

    Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.

  14. Nano-structured thin films : a Lorentz transmission electron microscopy and electron holography study

    NARCIS (Netherlands)

    Hosson, J.Th.M. de; Raedt, H.A. De; Zhong, ZY; Saka, H; Kim, TH; Holm, EA; Han, YF; Xie, XS

    2005-01-01

    This paper aims at applying advanced transmission electron microscopy (TEM) to functional materials, such as ultra-soft magnetic films for high-frequency inductors, to reveal the structure-property relationship. The ultimate goal is to delineate a more quantitative way to obtain information of the

  15. Quantitative Structure-Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p-Xylene Mixtures: Application to Binary and Ternary Mixtures as Extractive Agents

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young-Mook; Oh, Kyunghwan; You, Hwan; No, Kyoung Tai [Bioinformatics and Molecular Design Research Center, Seoul (Korea, Republic of); Jeon, Yukwon; Shul, Yong-Gun; Hwang, Sung Bo; Shin, Hyun Kil; Kim, Min Sung; Kim, Namseok; Son, Hyoungjun [Yonsei University, Seoul (Korea, Republic of); Chu, Young Hwan [Sangji University, Wonju (Korea, Republic of); Cho, Kwang-Hwi [Soongsil University, Seoul (Korea, Republic of)

    2016-04-15

    Ethylbenzene (EB) and p-xylene (PX) are important chemicals for the production of industrial materials; accordingly, their efficient separation is desired, even though the difference in their boiling points is very small. This paper describes the efforts toward the identification of high-performance extractive agents for EB and PX separation by distillation. Most high-performance extractive agents contain halogen atoms, which present health hazards and are corrosive to distillation plates. To avoid this disadvantage of extractive agents, we developed a quantitative structure-relative volatility relationship (QSRVR) model for designing safe extractive agents. We have previously developed and reported QSRVR models for single extractive agents. In this study, we introduce extended QSRVR models for binary and ternary extractive agents. The QSRVR models accurately predict the relative volatilities of binary and ternary extractive agents. The service to predict the relative volatility for binary and ternary extractive agents is freely available from the Internet at http://qsrvr.o pengsi.org/.

  16. Quantitative Structure-Relative Volatility Relationship Model for Extractive Distillation of Ethylbenzene/p-Xylene Mixtures: Application to Binary and Ternary Mixtures as Extractive Agents

    International Nuclear Information System (INIS)

    Kang, Young-Mook; Oh, Kyunghwan; You, Hwan; No, Kyoung Tai; Jeon, Yukwon; Shul, Yong-Gun; Hwang, Sung Bo; Shin, Hyun Kil; Kim, Min Sung; Kim, Namseok; Son, Hyoungjun; Chu, Young Hwan; Cho, Kwang-Hwi

    2016-01-01

    Ethylbenzene (EB) and p-xylene (PX) are important chemicals for the production of industrial materials; accordingly, their efficient separation is desired, even though the difference in their boiling points is very small. This paper describes the efforts toward the identification of high-performance extractive agents for EB and PX separation by distillation. Most high-performance extractive agents contain halogen atoms, which present health hazards and are corrosive to distillation plates. To avoid this disadvantage of extractive agents, we developed a quantitative structure-relative volatility relationship (QSRVR) model for designing safe extractive agents. We have previously developed and reported QSRVR models for single extractive agents. In this study, we introduce extended QSRVR models for binary and ternary extractive agents. The QSRVR models accurately predict the relative volatilities of binary and ternary extractive agents. The service to predict the relative volatility for binary and ternary extractive agents is freely available from the Internet at http://qsrvr.o pengsi.org/.

  17. Structure-Property Relationships in Aluminum-Copper alloys using Transmission X-Ray Microscopy (TXM) and Micromechanical Testing

    Science.gov (United States)

    Kaira, Chandrashekara Shashank

    Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy's solid solution and offer resistance to deformation. Although they have been extensively investigated in the last century, the traditional approaches employed in the past haven't rendered an authoritative microstructural understanding in such materials. The effect of the precipitates' inherent complex morphology and their three-dimensional (3D) spatial distribution on evolution and deformation behavior have often been precluded. In this study, for the first time, synchrotron-based hard X-ray nano-tomography has been implemented in Al-Cu alloys to measure growth kinetics of different nanoscale phases in 3D and reveal mechanistic insights behind some of the observed novel phase transformation reactions occurring at high temperatures. The experimental results were reconciled with coarsening models from the LSW theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. By using a unique correlative approach, a non-destructive means of estimating precipitation-strengthening in such alloys has been introduced. Limitations of using existing mechanical strengthening models in such alloys have been discussed and a means to quantify individual contributions from different strengthening mechanisms has been established. The current rapid pace of technological progress necessitates the demand for more resilient and high-performance alloys. To achieve this, a thorough understanding of the relationships between material properties and its structure is indispensable. To establish this correlation and achieve desired properties from structural alloys, microstructural response to mechanical stimuli needs to be understood in three-dimensions (3D). To

  18. The structure of new germanates, gallates, borates and silicates with laser, piezo, ferroelectric and ion conducting properties

    International Nuclear Information System (INIS)

    Belokonev, E.L.

    1994-01-01

    The results of structure investigation of more than 50 new crystalline germanates, gallates, borogermanates, borates, and silicates with laser, piezo, ferroelectric, and ion-conducting properties are described. The structure - properties relationship is examined. 71 refs.; 24 figs.; 10 tabs

  19. Molecular descriptor subset selection in theoretical peptide quantitative structure-retention relationship model development using nature-inspired optimization algorithms.

    Science.gov (United States)

    Žuvela, Petar; Liu, J Jay; Macur, Katarzyna; Bączek, Tomasz

    2015-10-06

    In this work, performance of five nature-inspired optimization algorithms, genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC), firefly algorithm (FA), and flower pollination algorithm (FPA), was compared in molecular descriptor selection for development of quantitative structure-retention relationship (QSRR) models for 83 peptides that originate from eight model proteins. The matrix with 423 descriptors was used as input, and QSRR models based on selected descriptors were built using partial least squares (PLS), whereas root mean square error of prediction (RMSEP) was used as a fitness function for their selection. Three performance criteria, prediction accuracy, computational cost, and the number of selected descriptors, were used to evaluate the developed QSRR models. The results show that all five variable selection methods outperform interval PLS (iPLS), sparse PLS (sPLS), and the full PLS model, whereas GA is superior because of its lowest computational cost and higher accuracy (RMSEP of 5.534%) with a smaller number of variables (nine descriptors). The GA-QSRR model was validated initially through Y-randomization. In addition, it was successfully validated with an external testing set out of 102 peptides originating from Bacillus subtilis proteomes (RMSEP of 22.030%). Its applicability domain was defined, from which it was evident that the developed GA-QSRR exhibited strong robustness. All the sources of the model's error were identified, thus allowing for further application of the developed methodology in proteomics.

  20. Effect of low-intensity electromagnetic radiation on structurization properties of bacterial lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Grigory E. Brill

    2014-09-01

    Full Text Available Purpose — to investigate the effects of low-intensity electromagnetic radiation on the process of dehydration selforganization of bacterial lipopolysaccharide (LPS. Material and Methods — The method of wedge dehydration has been used to study the structure formation of bacterial LPS. Image-phases analysis included their qualitative characteristics, as well as the calculation of quantitative indicators, followed by statistical analysis. Results — Low-intensity ultra high frequency (UHF radiation (1 GHz, 0.1 μW/cm2, 10 min has led to the changes in the suspension system of the LPS-saline reflected in the kinetics of structure formation. Conclusion — 1 GHz corresponds to the natural frequency of oscillation of water clusters and, presumably, the effect of UHF on structure of LPS mediates through the changes in water-salt environment. Under these conditions, properties of water molecules of hydration and possibly the properties of hydrophobic and hydrophilic regions in the molecule of LPS, which can affect the ability of toxin molecules to form aggregates change. Therefore the LPS structure modification may result in the change of its toxic properties.

  1. Ageing sintered silver: Relationship between tensile behavior, mechanical properties and the nanoporous structure evolution

    Energy Technology Data Exchange (ETDEWEB)

    Gadaud, Pascal; Caccuri, Vincenzo; Bertheau, Denis [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France); Carr, James [HMXIF, Materials Science Centre, The University of Manchester, M13 9PL (United Kingdom); Milhet, Xavier, E-mail: xavier.milhet@ensma.fr [Institut Pprime, Dept. Phys. Mech. Mat., UPR CNRS 3346, ENSMA, Université de Poitiers, 1 av. Clément Ader, Téléport 2, 86961 Futuroscope – Chasseneuil (France)

    2016-07-04

    Silver pastes sintering is a potential candidate for die bonding in power electronic modules. The joints, obtained by sintering, exhibit a significant pore fraction thus reducing the density of the material compared to bulk silver. This was shown to alter drastically the mechanical properties (Young's modulus, yield strength and ultimate tensile stress) at room temperature. While careful analysis of the microstructure has been reported for the as-sintered material, little is known about its quantitative evolution (pores and grains) during thermal ageing. To address this issue, sintered bulk specimens and sintered joints were aged either under isothermal conditions (125 °C up to 1500 h) or under thermal cycling (between −40 °C/+125 °C with 30 min dwell time at each temperature for 2400 cycles). Under these conditions, it is shown that the density of the material does not change but the sub-micron porosity evolves towards a broader size distribution, consistent with Oswald ripening. It is also shown that only the step at 125 °C during the non-isothermal ageing is responsible for the microstructure evolution: isothermal ageing at high temperature can be regarded as a useful tool to perform accelerated ageing tests. Tensile properties are investigated as both a function of ageing time and a function of density. It is shown that the elastic properties do not evolve with the ageing time unlike the plastic properties. This is discussed as a function of the material microstructure evolution.

  2. Toxicity of ionic liquids: Database and prediction via quantitative structure–activity relationship method

    International Nuclear Information System (INIS)

    Zhao, Yongsheng; Zhao, Jihong; Huang, Ying; Zhou, Qing; Zhang, Xiangping; Zhang, Suojiang

    2014-01-01

    Highlights: • A comprehensive database on toxicity of ionic liquids (ILs) was established. • Relationship between structure and toxicity of IL has been analyzed qualitatively. • Two new QSAR models were developed for predicting toxicity of ILs to IPC-81. • Accuracy of proposed nonlinear SVM model is much higher than the linear MLR model. • The established models can be explored in designing novel green agents. - Abstract: A comprehensive database on toxicity of ionic liquids (ILs) is established. The database includes over 4000 pieces of data. Based on the database, the relationship between IL's structure and its toxicity has been analyzed qualitatively. Furthermore, Quantitative Structure–Activity relationships (QSAR) model is conducted to predict the toxicities (EC 50 values) of various ILs toward the Leukemia rat cell line IPC-81. Four parameters selected by the heuristic method (HM) are used to perform the studies of multiple linear regression (MLR) and support vector machine (SVM). The squared correlation coefficient (R 2 ) and the root mean square error (RMSE) of training sets by two QSAR models are 0.918 and 0.959, 0.258 and 0.179, respectively. The prediction R 2 and RMSE of QSAR test sets by MLR model are 0.892 and 0.329, by SVM model are 0.958 and 0.234, respectively. The nonlinear model developed by SVM algorithm is much outperformed MLR, which indicates that SVM model is more reliable in the prediction of toxicity of ILs. This study shows that increasing the relative number of O atoms of molecules leads to decrease in the toxicity of ILs

  3. Universal fragment descriptors for predicting properties of inorganic crystals

    Science.gov (United States)

    Isayev, Olexandr; Oses, Corey; Toher, Cormac; Gossett, Eric; Curtarolo, Stefano; Tropsha, Alexander

    2017-06-01

    Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities. The prediction's accuracy compares well with the quality of the training data for virtually any stoichiometric inorganic crystalline material, reciprocating the available thermomechanical experimental data. The universality of the approach is attributed to the construction of the descriptors: Property-Labelled Materials Fragments. The representations require only minimal structural input allowing straightforward implementations of simple heuristic design rules.

  4. Electron beam crosslinked PVC : structure property relationships

    International Nuclear Information System (INIS)

    Gupta, Neeraj K.; Sabharwal, Sunil

    2001-01-01

    PVC is used extensively for its insulating properties for the manufacture of wires and cables and for other applications. Its gradual degradation, oxidation and even dehydro chlorination restricts use for long lasting period in installations such as high temperature zones, underground cables, communication systems, electro-nuclear facilities, etc. The technological properties and performance characteristics of PVC based insulation can be improved via crosslinking by high-energy electrons. PVC is however a polymer, which on irradiation predominantly undergoes degradation. To avoid degradation, it needs to be compounded with sensitizing agents or multifunctional monomers so that crosslinking is the predominant reaction. Radiation cross linkable formulations are complex mixtures of resin and various additives incorporated for achieving desired technological and performance characteristics, ease of processing and improving quality. The proper choice of additives and sensitizing agents enable low dose requirements for efficient crosslinking and improvements in various technological properties. The purposes of this work was to investigate the effect of using a binary sensitizer blend of a trifunctional monomer and a rubber in PVC, and develop suitable electron beam cross linkable formulations for wire insulation. This paper presents some aspects of the investigations and development of insulation demonstrated at industrial scale

  5. Structure-activity relationships between sterols and their thermal stability in oil matrix.

    Science.gov (United States)

    Hu, Yinzhou; Xu, Junli; Huang, Weisu; Zhao, Yajing; Li, Maiquan; Wang, Mengmeng; Zheng, Lufei; Lu, Baiyi

    2018-08-30

    Structure-activity relationships between 20 sterols and their thermal stabilities were studied in a model oil system. All sterol degradations were found to be consistent with a first-order kinetic model with determination of coefficient (R 2 ) higher than 0.9444. The number of double bonds in the sterol structure was negatively correlated with the thermal stability of sterol, whereas the length of the branch chain was positively correlated with the thermal stability of sterol. A quantitative structure-activity relationship (QSAR) model to predict thermal stability of sterol was developed by using partial least squares regression (PLSR) combined with genetic algorithm (GA). A regression model was built with R 2 of 0.806. Almost all sterol degradation constants can be predicted accurately with R 2 of cross-validation equals to 0.680. Four important variables were selected in optimal QSAR model and the selected variables were observed to be related with information indices, RDF descriptors, and 3D-MoRSE descriptors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Linear and non-linear quantitative structure-activity relationship models on indole substitution patterns as inhibitors of HIV-1 attachment.

    Science.gov (United States)

    Nirouei, Mahyar; Ghasemi, Ghasem; Abdolmaleki, Parviz; Tavakoli, Abdolreza; Shariati, Shahab

    2012-06-01

    The antiviral drugs that inhibit human immunodeficiency virus (HIV) entry to the target cells are already in different phases of clinical trials. They prevent viral entry and have a highly specific mechanism of action with a low toxicity profile. Few QSAR studies have been performed on this group of inhibitors. This study was performed to develop a quantitative structure-activity relationship (QSAR) model of the biological activity of indole glyoxamide derivatives as inhibitors of the interaction between HIV glycoprotein gp120 and host cell CD4 receptors. Forty different indole glyoxamide derivatives were selected as a sample set and geometrically optimized using Gaussian 98W. Different combinations of multiple linear regression (MLR), genetic algorithms (GA) and artificial neural networks (ANN) were then utilized to construct the QSAR models. These models were also utilized to select the most efficient subsets of descriptors in a cross-validation procedure for non-linear log (1/EC50) prediction. The results that were obtained using GA-ANN were compared with MLR-MLR and MLR-ANN models. A high predictive ability was observed for the MLR, MLR-ANN and GA-ANN models, with root mean sum square errors (RMSE) of 0.99, 0.91 and 0.67, respectively (N = 40). In summary, machine learning methods were highly effective in designing QSAR models when compared to statistical method.

  7. The structural properties of sustainable, continuous change

    DEFF Research Database (Denmark)

    Håkonsson, Dorthe Døjbak; Klaas, Johann Peter; Carroll, Timothy

    2013-01-01

    this relationship by exploring what structural properties enable continuous change in inertia-generating organizations and what their performance consequences are in dynamic environments. The article has three main findings: First, employing managers who anticipate change is not enough to generate continuous change......; it is also necessary to raise both the rate of responsiveness and desired performance. Second, continuous change increases average organizational performance and reduces its variation. Third, organizations’ capacity for continuous change is counterintuitively limited by the organizations’ capacity to build...

  8. Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    Science.gov (United States)

    Vary, A.; Klima, S. J.

    1985-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  9. Silver Matrix Composites - Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wieczorek J.

    2016-03-01

    Full Text Available Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting technology, followed by plastic work (the KOBO method. The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.

  10. QSPR study of the retention/release property of odorant molecules in pectin gels using statistical methods

    Directory of Open Access Journals (Sweden)

    Assia Belhassan

    2017-11-01

    Full Text Available The ACD/ChemSketch, MarvinSketch, and ChemOffice programmes were used to calculate several molecular descriptors of 51 odorant molecules (15 alcohols, 11 aldehydes, 9 ketones and 16 esters. The best descriptors were selected to establish the Quantitative Structure-Property Relationship (QSPR of the retention/release property of odorant molecules in pectin gels using Principal Components Analysis (PCA, Multiple Linear Regression (MLR, Multiple Non-linear Regression (MNLR and Artificial Neural Network (ANN methods We propose a quantitative model based on these analyses. PCA has been used to select descriptors that exhibit high correlation with the retention/release property. The MLR method yielded correlation coefficients of 0.960 and 0.958 for PG-0.4 (pectin concentration: 0.4% w/w and PG-0.8 (pectin concentration: 0.8% w/w media, respectively. Internal and external validations were used to determine the statistical quality of the QSPR of the two MLR models. The MNLR method, considering the relevant descriptors obtained from the MLR, yielded correlation coefficients of 0.978 and 0.975 for PG-0.4 and PG-0.8 media, respectively. The applicability domain of MLR models was investigated using simple and leverage approaches to detect outliers and outside compounds. The effects of different descriptors on the retention/release property are described, and these descriptors were used to study and design new compounds with higher and lower values of the property than the existing ones. Keywords: Odorant Molecules, Retention/Release, Pectin Gels, Quantitative Structure Property Relationship, Multiple Linear Regression, Artificial Neural Network

  11. Flavonoids as Vasorelaxant Agents: Synthesis, Biological Evaluation and Quantitative Structure Activities Relationship (QSAR Studies

    Directory of Open Access Journals (Sweden)

    Yongzhou Hu

    2011-09-01

    Full Text Available A series of 2-(2-diethylamino-ethoxychalcone and 6-prenyl(or its isomers-flavanones 10a,b and 11a–g were synthesized and evaluated for their vasorelaxant activities against rat aorta rings pretreated with 1 μM phenylephrine (PE. Several compounds showed potent vasorelaxant activities. Compound 10a (EC50 = 7.6 μM, Emax = 93.1%, the most potent one, would be a promising structural template for development of novel and more efficient vasodilators. Further, 2D-QSAR analysis of compounds 10a,b and 11c-e as well as thirty previously synthesized flavonoids 1-3 and 12-38 using Enhanced Replacement Method-Multiple Linear Regression (ERM-MLR was further performed based on an optimal set of molecular descriptors (H5m, SIC2, DISPe, Mor03u and L3m, leading to a reliable model with good predictive ability (Rtrain2 = 0.839, Qloo2 = 0.733 and Rtest2 = 0.804. The results provide good insights into the structure- activity relationships of the target compounds.

  12. Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles

    KAUST Repository

    Luxenhofer, Robert

    2011-07-01

    The family of poly(2-oxazoline)s (POx) is being increasingly investigated in the context of biomedical applications. We tested the relative cytotoxicity of POx and were able to confirm that these polymers are typically not cytotoxic even at high concentrations. Furthermore, we report structure-uptake relationships of a series of amphiphilic POx block copolymers that have different architectures, molar mass and chain termini. The rate of endocytosis can be fine-tuned over a broad range by changing the polymer structure. The cellular uptake increases with the hydrophobic character of the polymers and is observed even at nanomolar concentrations. Considering the structural versatility of this class of polymers, the relative ease of preparation and their stability underlines the potential of POx as a promising platform candidate for the preparation of next-generation polymer therapeutics.

  13. Electron irradiation effects on partially fluorinated polymer films: Structure-property relationships

    International Nuclear Information System (INIS)

    Nasef, Mohamed Mahmoud; Dahlan, Khairul Zaman M.

    2003-01-01

    The effects of electron beam irradiation on two partially fluorinated polymer films i.e. poly(vinylidene fluoride) (PVDF) and poly(ethylene-tetrafluoroethylene) copolymer (ETFE) are studied at doses ranging from 100 to 1200 kGy in air at room temperature. Chemical structure, thermal and mechanical properties of irradiated films are investigated. FTIR show that both PVDF and ETFE films undergo similar changes in their chemical structures including the formation of carbonyl groups and double bonding. The changes in melting and crystallisation temperatures (T m and T c ) in both irradiated films are functions of irradiation dose and reflect the disorder in the chemical structure caused by the competition between crosslinking and chain scission. The heat of melting (ΔH m ) and the degree of crystallinity (X c ) of PVDF films show no significant changes with the dose increase, whereas those of ETFE films are reduced rapidly after the first 100 kGy. The tensile strength of PVDF films is improved by irradiation compared to its rapid deterioration in ETFE films, which stemmed from the degradation prompted by the presence of radiation sensitive tetrafluoroethylene (TFE) comonomer units. The elongation at break of both films drops gradually with the dose increase indicating the formation of predominant crosslinked structures at high doses. However, the response of each polymer to crosslinking and main chain scission at various irradiation doses varies from PVDF to ETFE films

  14. Structure-property relationships of iron-hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method.

    Science.gov (United States)

    Nordin, Jamillah Amer; Prajitno, Djoko Hadi; Saidin, Syafiqah; Nur, Hadi; Hermawan, Hendra

    2015-06-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone-implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12h milling in the presence of HPO4(2-) ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Quantitative methods in psychology: inevitable and useless

    Directory of Open Access Journals (Sweden)

    Aaro Toomela

    2010-07-01

    Full Text Available Science begins with the question, what do I want to know? Science becomes science, however, only when this question is justified and the appropriate methodology is chosen for answering the research question. Research question should precede the other questions; methods should be chosen according to the research question and not vice versa. Modern quantitative psychology has accepted method as primary; research questions are adjusted to the methods. For understanding thinking in modern quantitative psychology, two epistemologies should be distinguished: structural-systemic that is based on Aristotelian thinking, and associative-quantitative that is based on Cartesian-Humean thinking. The first aims at understanding the structure that underlies the studied processes; the second looks for identification of cause-effect relationships between the events with no possible access to the understanding of the structures that underlie the processes. Quantitative methodology in particular as well as mathematical psychology in general, is useless for answering questions about structures and processes that underlie observed behaviors. Nevertheless, quantitative science is almost inevitable in a situation where the systemic-structural basis of behavior is not well understood; all sorts of applied decisions can be made on the basis of quantitative studies. In order to proceed, psychology should study structures; methodologically, constructive experiments should be added to observations and analytic experiments.

  16. Correlated structure-optical properties studies of plasmonic nanoparticles

    International Nuclear Information System (INIS)

    Ringe, Emilie; Duyne, Richard P Van; Marks, Laurence D

    2014-01-01

    Interest in nanotechnology is driven by unprecedented means to tailor the physical behaviour via structure and composition. Unlike bulk materials, minute changes in size and shape can affect the optical properties of nanoparticles. Characterization, understanding, and prediction of such structure-function relationships is crucial to the development of novel applications such as plasmonic sensors, devices, and drug delivery systems. Such knowledge has been recently vastly expanded through systematic, high throughput correlated measurements, where the localized surface plasmon resonance (LSPR) is probed optically and the particle shape investigated with electron microscopy. This paper will address some of the recent experimental advances in single particle studies that provide new insight not only on the effects of size, composition, and shape on plasmonic properties but also their interrelation. Plasmon resonance frequency and decay, substrate effects, size, shape, and composition will be explored for a variety of plasmonic systems

  17. Quantitative structure-property relationships for predicting sorption of pharmaceuticals to sewage sludge during waste water treatment processes.

    Science.gov (United States)

    Berthod, L; Whitley, D C; Roberts, G; Sharpe, A; Greenwood, R; Mills, G A

    2017-02-01

    Understanding the sorption of pharmaceuticals to sewage sludge during waste water treatment processes is important for understanding their environmental fate and in risk assessments. The degree of sorption is defined by the sludge/water partition coefficient (K d ). Experimental K d values (n=297) for active pharmaceutical ingredients (n=148) in primary and activated sludge were collected from literature. The compounds were classified by their charge at pH7.4 (44 uncharged, 60 positively and 28 negatively charged, and 16 zwitterions). Univariate models relating log K d to log K ow for each charge class showed weak correlations (maximum R 2 =0.51 for positively charged) with no overall correlation for the combined dataset (R 2 =0.04). Weaker correlations were found when relating log K d to log D ow . Three sets of molecular descriptors (Molecular Operating Environment, VolSurf and ParaSurf) encoding a range of physico-chemical properties were used to derive multivariate models using stepwise regression, partial least squares and Bayesian artificial neural networks (ANN). The best predictive performance was obtained with ANN, with R 2 =0.62-0.69 for these descriptors using the complete dataset. Use of more complex Vsurf and ParaSurf descriptors showed little improvement over Molecular Operating Environment descriptors. The most influential descriptors in the ANN models, identified by automatic relevance determination, highlighted the importance of hydrophobicity, charge and molecular shape effects in these sorbate-sorbent interactions. The heterogeneous nature of the different sewage sludges used to measure K d limited the predictability of sorption from physico-chemical properties of the pharmaceuticals alone. Standardization of test materials for the measurement of K d would improve comparability of data from different studies, in the long-term leading to better quality environmental risk assessments. Copyright © 2016 British Geological Survey, NERC. Published by

  18. Inhibition of 125I-labeled ristocetin binding to Micrococcus luteus cells by the peptides related to bacterial cell wall mucopeptide precursors: quantitative structure-activity relationships

    International Nuclear Information System (INIS)

    Kim, K.H.; Martin, Y.; Otis, E.; Mao, J.

    1989-01-01

    Quantitative structure-activity relationships (QSAR) of N-Ac amino acids, N-Ac dipeptides, and N-Ac tripeptides in inhibition of 125 I-labeled ristocetin binding to Micrococcus luteus cell wall have been developed to probe the details of the binding between ristocetin and N-acetylated peptides. The correlation equations indicate that (1) the binding is stronger for peptides in which the side chain of the C-terminal amino acid has a large molar refractivity (MR) value, (2) the binding is weaker for peptides with polar than for those with nonpolar C-terminal side chains, (3) the N-terminal amino acid in N-Ac dipeptides contributes 12 times that of the C-terminal amino acid to binding affinity, and (4) the interactions between ristocetin and the N-terminal amino acid of N-acetyl tripeptides appear to be much weaker than those with the first two amino acids

  19. Mechanical properties of amyloid-like fibrils defined by secondary structures

    Science.gov (United States)

    Bortolini, C.; Jones, N. C.; Hoffmann, S. V.; Wang, C.; Besenbacher, F.; Dong, M.

    2015-04-01

    Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils.Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology

  20. The Relationship between Mechanical Properties and Gradual Deterioration of Microstructures of Rock Mass Subject to Freeze-thaw Cycles

    Directory of Open Access Journals (Sweden)

    Haibo Jiang

    2018-01-01

    Full Text Available Under freeze-thaw cycles, the relationship between rock microstructure deterioration and its macroscopic mechanical characteristics has drawn extensive attention from engineers. With the objective to incorporate freeze-thaw cycle experiment into headrace tunnel engineering, in the present study two groups of andesite rock samples in different states are tested under the conditions of the lowest freezing temperature of –40 ℃ and the thawing temperature of 20 ℃. Damage detection was performed by magnetic resonance imaging for the interior microstructure of rock samples subject to different freeze-thaw cycles, and the relationship between the sample mechanical properties and gradual deterioration of rock microstructures was discussed. The results demonstrate evident influence of freeze-thaw cycle on the damage and deterioration of internal pore structure in andesite, and the rock uniaxial compressive strength and elasticity modulus exhibit a decreasing trend with the increase of freeze-thaw cycles. After 40 cycles, the strength of naturally saturated rock samples decreases by 39.4% (equivalent to 69.4 MPa and the elasticity modulus drops by 47.46% (equivalent to 3.27 GPa. For rock samples saturated by vacuum, 40 freeze-thaw cycles lead to a decrease of 36.86% (equivalent to 58.2 MPa in rock strength and a drop of 44.85% (equivalent to 2.83 GPa in elasticity modulus. Therefore, the test results quantitatively elucidate the substantial influence of freeze-thaw cycle on the damage and deterioration of internal structure in andesite.

  1. Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications

    Science.gov (United States)

    Mehlem, Jeremy John

    Since its invention Bis-GMA or one of its analogs has been the main component of the polymer portion of composites for dental restorations. The need for dilution of Bis-GMA and its analogs to optimize its properties has long been recognized. Bis-GMA is a highly viscous monomer. This high viscosity leads to early vitrification, which limits conversion during cure. This viscosity also limits filler loading. Vitrification at low conversions leads to heterogeneous systems composed of low and high cross-link density phases. The low cross-link density phases behave as defects in the system; therefore, if the amount of low cross-link density phases in the system can be reduced and a more uniform network structure can be achieved, then the mechanical properties of the resin can be improved. Since the increase in viscosity during cure causes vitrification, it is logical that a system with a low initial viscosity will delay the onset of vitrification. Reactive diluents such as triethylene glycol dimethacrylate (TEGDMA) are effective at lower levels. However, large amounts negatively affect matrix properties by increasing polymerization shrinkage and water sorption. Shrinkage has been cited as one of the main deficiencies in dental composites. The goal of this project is to improve upon standard viscosity modifying comonomers such as triethylene glycol dimethacrylate. The comonomers that were explored were phenyloxyethyl methacrylate, cyclohexyl methacrylate, and tert-butylcylcohexyl methacrylate. Multicomponent systems based on analogs of ethylene glycol dimethacrylates with different length ethyl glycol chains were also examined. The substitution of monomethacrylates for TEGDMA as a comonomer resulted in enhanced or negligible affects on the mechanical properties of Bis-MEPP based polymer systems while reducing polymerization shrinkage. 129Xenon NMR and TappingMode(TM) AFM were used to characterize the heterogeneity of dimethacrylates systems during their cure cycle as well

  2. Structure and properties of copper after large strain deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, Kinga; Molak, Rafal M.; Pakiela, Zbigniew

    2010-05-15

    Structure and properties of Cu in dependence on strain (from {epsilon}{proportional_to} 0.9 to {epsilon}{proportional_to} 15) during multi-axial compression processing at room temperature was investigated. The evolution of dislocation structure, misorientation distribution and crystallite size were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The mechanical properties of yield strength (YS), ultimate tensile strength (UTS) and uniform elongation was performed on MTS QTest/10 machine equipped with digital image correlation method (DIC). The structure-flow stress relationship of multi-axial compression processing material at strains {epsilon}{proportional_to} 3.5 and {epsilon}{proportional_to} 5.5 is discussed. It is found that processing does not produce any drastic changes in deformation structure and the microstructural refinement is slow. These results indicate that dynamic recrystallization plays an important role during multi-axial compression process in this range of deformation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. A quantitative risk-based model for reasoning over critical system properties

    Science.gov (United States)

    Feather, M. S.

    2002-01-01

    This position paper suggests the use of a quantitative risk-based model to help support reeasoning and decision making that spans many of the critical properties such as security, safety, survivability, fault tolerance, and real-time.

  4. Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces

    Science.gov (United States)

    McBriarty, Martin E.

    Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.

  5. Effects of Topography in Nano-Structured Thin Films : A Lorentz Transmission Electron Microscopy and Electron Holography Study

    NARCIS (Netherlands)

    Hosson, Jeff Th.M. De; Raedt, Hans A. De

    2003-01-01

    This paper aims at applying advanced transmission electron microscopy (TEM) to functional materials, such as ultra-soft magnetic films for high-frequency inductors, to reveal the structure-property relationship. The ultimate goal is to delineate a more quantitative way to obtain information of the

  6. Psychometric Properties of the Persian Version of the Relationship Assessment Scale among Couples

    Directory of Open Access Journals (Sweden)

    غلامرضا دهشیری

    2016-06-01

    Full Text Available This research administrated to evaluate the psychometric properties of the Persian version of Relationship Assessment scale. Therefore, 315 married individuals (199 women and 116 men from Tehran city were volunteered to respond to four scales: the Relationship Assessment, the Kansas Marital Satisfaction, the Oxford Happiness and the Life Satisfaction. Results from exploratory & confirmatory factor analysis showed that factor structure of Relationship Assessment scale was unidimensional. The internal consistency of the scale in the total sample was 0.88. Significant correlations between scores of the Relationship Assessment scale with the scores of the Kansas Marital Satisfaction Scale, the Life Satisfaction Scale and the Oxford Happiness Questionnaire demonstrated good convergent validity of the scale. Also, the results showed that there was no significant gender difference between the mean scores of relationship satisfaction. In conclusion, the Relationship Assessment scale is a valid and reliable tool to measure marital satisfaction in Iran.

  7. Molecular studies and plastic optical fiber device structures for nonlinear optical applications

    Science.gov (United States)

    Dirk, Carl W.; Nagarur, Aruna R.; Lu, Jin J.; Zhang, Lixia; Kalamegham, Priya; Fonseca, Joe; Gopalan, Saytha; Townsend, Scott; Gonzalez, Gabriel; Craig, Patrick; Rosales, Monica; Green, Leslie; Chan, Karen; Twieg, Robert J.; Ermer, Susan P.; Leung, Doris S.; Lovejoy, Steven M.; Lacroix, Suzanne; Godbout, Nicolas; Monette, Etienne

    1995-10-01

    Summarized are two project areas: First, the development of a quantitative structure property relationship for analyzing thermal decomposition differential scanning calorimetry data of electro-optic dyes is presented. The QSPR relationship suggest that thermal decomposition can be effectively correlated with structure by considering the kinds of atoms, their hybridization, and their nearest neighbor bonded atoms. Second, the simple preparation of clad plastic optical fibers (POF) is discussed with the intention of use for nonlinear optical applications. We discuss preparation techniques for single core and multiple core POF, and present some recent data on index profiles and the optimization of thermal stability in acrylate-based POF structures.

  8. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: Quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors

    International Nuclear Information System (INIS)

    D'Archivio, Angelo Antonio; Ruggieri, Fabrizio; Mazzeo, Pietro; Tettamanti, Enzo

    2007-01-01

    A quantitative structure-retention relationship (QSRR) analysis based on multilinear regression (MLR) and artificial neural networks (ANNs) is carried out to model the combined effect of solute structure and eluent composition on the retention behaviour of pesticides in isocratic reversed-phase high-performance liquid chromatography (RP-HPLC). The octanol-water partition coefficient and four quantum chemical descriptors (the total dipole moment, the mean polarizability, the anisotropy of the polarizability and a descriptor of hydrogen-bonding based on the atomic charges on acidic and basic chemical functionalities) are considered as solute descriptors. In order to identify suitable mobile phase descriptors, encoding composition-dependent properties of both methanol- and acetonitrile-containing mobile phases, the Kamlet-Taft solvatochromic parameters (polarity-dipolarity, hydrogen-bond acidity and hydrogen-bond basicity, π * , α and β, respectively) and the 14 N hyperfine-splitting constant (a N ) of a spin-probe dissolved in the eluent are examined. A satisfactory description of mobile phase properties influencing the solute retention is provided by a N and β or alternatively π * and β. The two seven-parameter models resulting from combination of a N and β, or π * and β, with the solute descriptors were tested on a set of 26 pesticides representative of 10 different chemical classes in a wide range of mobile phase composition (30-60% (v/v) water-methanol and 30-70% (v/v) water-acetonitrile). Within the explored experimental range, the acidity of the eluent, as quantified by α, is almost constant, and this parameter is in fact irrelevant. The results reveal that a N and π * , that can be considered as interchangeable mobile phase descriptors, are the most influent variables in the respective models. The predictive ability of the proposed models, as tested on an external data set, is quite good (Q 2 close to 0.94) when a MLR approach is used, but the

  9. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: Quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors

    Energy Technology Data Exchange (ETDEWEB)

    D' Archivio, Angelo Antonio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)]. E-mail: darchivi@univaq.it; Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Mazzeo, Pietro [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Tettamanti, Enzo [Dipartimento di Scienze Biomediche Comparate, Universita di Teramo, P.zzale A. Moro 45, 64100 Teramo (Italy)

    2007-06-19

    A quantitative structure-retention relationship (QSRR) analysis based on multilinear regression (MLR) and artificial neural networks (ANNs) is carried out to model the combined effect of solute structure and eluent composition on the retention behaviour of pesticides in isocratic reversed-phase high-performance liquid chromatography (RP-HPLC). The octanol-water partition coefficient and four quantum chemical descriptors (the total dipole moment, the mean polarizability, the anisotropy of the polarizability and a descriptor of hydrogen-bonding based on the atomic charges on acidic and basic chemical functionalities) are considered as solute descriptors. In order to identify suitable mobile phase descriptors, encoding composition-dependent properties of both methanol- and acetonitrile-containing mobile phases, the Kamlet-Taft solvatochromic parameters (polarity-dipolarity, hydrogen-bond acidity and hydrogen-bond basicity, {pi} {sup *}, {alpha} and {beta}, respectively) and the {sup 14}N hyperfine-splitting constant (a {sub N}) of a spin-probe dissolved in the eluent are examined. A satisfactory description of mobile phase properties influencing the solute retention is provided by a {sub N} and {beta} or alternatively {pi} {sup *} and {beta}. The two seven-parameter models resulting from combination of a {sub N} and {beta}, or {pi} {sup *} and {beta}, with the solute descriptors were tested on a set of 26 pesticides representative of 10 different chemical classes in a wide range of mobile phase composition (30-60% (v/v) water-methanol and 30-70% (v/v) water-acetonitrile). Within the explored experimental range, the acidity of the eluent, as quantified by {alpha}, is almost constant, and this parameter is in fact irrelevant. The results reveal that a {sub N} and {pi} {sup *}, that can be considered as interchangeable mobile phase descriptors, are the most influent variables in the respective models. The predictive ability of the proposed models, as tested on an

  10. The relationship between passive stiffness and evoked twitch properties: the influence of muscle CSA normalization

    International Nuclear Information System (INIS)

    Ryan, E D; Thompson, B J; Sobolewski, E J; Herda, T J; Costa, P B; Walter, A A; Cramer, J T

    2011-01-01

    Passive stiffness measurements are often used as a clinical tool to examine a muscle's passive lengthening characteristics. The purpose of this study was to examine the relationship between passive stiffness and evoked twitch properties prior to and following normalization of passive stiffness to muscle cross-sectional area (CSA). Ten healthy volunteers (mean ± SD age = 23 ± 3 year) performed passive range of motion, evoked twitch, and muscle CSA assessments of the plantar flexor muscles. Passive stiffness was determined from the slope of the final 5° of the angle–torque curve. Peak twitch torque (PTT) and rate of torque development (RTD) were determined via transcutaneous electrical stimulation, and muscle CSA was assessed using a peripheral quantitative computed tomography scanner. Pearson product moment correlation coefficients (r) were used to assess the relationships between passive stiffness and PTT and RTD and normalized passive stiffness (passive stiffness . muscle CSA −1 ) and PTT and RTD. Significant positive relationships were observed between passive stiffness and PTT (P = 0.003, r = 0.828) and RTD (P = 0.003, r = 0.825). There were no significant relationships between normalized passive stiffness and PTT (P = 0.290, r = 0.372) or RTD (P = 0.353, r = 0.329) demonstrating that stiffness did not account for a significant portion of the variance in twitch properties. Passive stiffness was largely influenced by the amount of muscle tissue in this study. Future studies that examine muscle stiffness and its relationship with performance measures, among different populations, and following various interventions may consider normalizing stiffness measurements to muscle CSA

  11. Numerical calculations of effective elastic properties of two cellular structures

    International Nuclear Information System (INIS)

    Tuncer, Enis

    2005-01-01

    Young's moduli of regular two-dimensional truss-like and eye-shaped structures are simulated using the finite element method. The structures are idealizations of soft polymeric materials used in ferro-electret applications. In the simulations, the length scales of the smallest representative units are varied, which changes the dimensions of the cell walls in the structures. A power-law expression with a quadratic as the exponent term is proposed for the effective Young's moduli of the systems as a function of the solid volume fraction. The data are divided into three regions with respect to the volume fraction: low, intermediate and high. The parameters of the proposed power-law expression in each region are later represented as a function of the structural parameters, the unit-cell dimensions. The expression presented can be used to predict a structure/property relationship in materials with similar cellular structures. The contribution of the cell-wall thickness to the elastic properties becomes significant at concentrations >0.15. The cell-wall thickness is the most significant factor in predicting the effective Young's modulus of regular cellular structures at high volume fractions of solid. At lower concentrations of solid, the eye-shaped structure yields a lower Young's modulus than a truss-like structure with similar anisotropy. Comparison of the numerical results with those of experimental data for poly(propylene) show good agreement regarding the influence of cell-wall thickness on elastic properties of thin cellular films

  12. Exploiting mAb structure characteristics for a directed QbD implementation in early process development.

    Science.gov (United States)

    Karlberg, Micael; von Stosch, Moritz; Glassey, Jarka

    2018-03-07

    In today's biopharmaceutical industries, the lead time to develop and produce a new monoclonal antibody takes years before it can be launched commercially. The reasons lie in the complexity of the monoclonal antibodies and the need for high product quality to ensure clinical safety which has a significant impact on the process development time. Frameworks such as quality by design are becoming widely used by the pharmaceutical industries as they introduce a systematic approach for building quality into the product. However, full implementation of quality by design has still not been achieved due to attrition mainly from limited risk assessment of product properties as well as the large number of process factors affecting product quality that needs to be investigated during the process development. This has introduced a need for better methods and tools that can be used for early risk assessment and predictions of critical product properties and process factors to enhance process development and reduce costs. In this review, we investigate how the quantitative structure-activity relationships framework can be applied to an existing process development framework such as quality by design in order to increase product understanding based on the protein structure of monoclonal antibodies. Compared to quality by design, where the effect of process parameters on the drug product are explored, quantitative structure-activity relationships gives a reversed perspective which investigates how the protein structure can affect the performance in different unit operations. This provides valuable information that can be used during the early process development of new drug products where limited process understanding is available. Thus, quantitative structure-activity relationships methodology is explored and explained in detail and we investigate the means of directly linking the structural properties of monoclonal antibodies to process data. The resulting information as a

  13. Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.

    Science.gov (United States)

    Meroni, Alice; Lazzaro, Federico; Muzi-Falconi, Marco; Podestà, Alessandro

    2018-01-01

    We describe a method to extract quantitative information on DNA structural and configurational properties from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol can be also used to characterize other statistical parameters from AFM topographies.

  14. Structure property relationship of biological nano composites studies by combination of in-situ synchrotron scattering and mechanical tests

    International Nuclear Information System (INIS)

    Martinschitz, K.

    2005-06-01

    Biological materials represent hierarchical nano fibre composites with complicated morphology and architecture varying on the nm level. The mechanical response of those materials is influenced by many parameters like chemical composition and crystal structure of constituents, preferred orientation, internal morphology with specific sizes of features etc. In-situ wide-angle x-ray scattering (WAXS) combined with mechanical tests provide a unique means to evaluate structural changes in biological materials at specific stages of tensile experiments. In this way it is possible to identify distinct architectural/compositional elements responsible for specific mechanical characteristics of the biological materials. In this thesis, structure-property relationship is analyzed using in-situ WAXS in the tissues of Picea abies, coir fibre, bacterial cellulose and cellulose II based composites. The experiments were performed at the beamline ID01 of European synchrotron radiation facility in Grenoble, France. The tissues were strained in a tensile stage, while the structural changes were monitored using WAXS. Complex straining procedures were applied including cyclic straining. One of the main goals was to understand the stiffness recovery and strain hardening effects in the tissues. The results demonstrate that, in all cellulosics, the orientation of the cellulose crystallites is only the function of the external strain while the stiffness depends on the specific stage of the tensile experiment. Whenever the strain is increased, the tissues exhibit stiffness equal or larger than the initial one. The recovery of the mechanical function is attributed to the molecular mechanistic effects operating between the crystalline domains of the cellulose. (author)

  15. Structure-Property Relationships in Polymer Derived Amorphous/Nano-Crystalline Silicon Carbide for Nuclear Applications

    International Nuclear Information System (INIS)

    Zunjarrao, Suraj C.; Singh, Abhishek K.; Singh, Raman P.

    2006-01-01

    difficulties in interpreting 'true' properties from bulk measurements. Hence, hardness and modulus measurements are carried out using instrumented nano-indentation to establish property--structure relationship for SiC derived from the polymer precursor. It is seen that the presence of nanocrystalline domains in amorphous SiC significantly influences the modulus and hardness. (authors)

  16. The structure-property relationships of powder processed Fe-Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Prichard, Paul D. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  17. Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Gwonchan Yoon

    Full Text Available Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain. Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture.

  18. Study of transport properties of bodies with a perovskite structure: application to the MgSiO3 perovskite

    International Nuclear Information System (INIS)

    Kapusta, Benedicte

    1990-01-01

    After some recalls on transport in ionic solids (Nernst-Einstein relationship, variation of ionic conductivity, hybrid conduction, fast ionic conduction), this research thesis presents the physical properties of perovskites and more particularly the structure and stability of the MgSiO 3 perovskite: structure and elastic properties, electric conductivity and transport properties in compounds with a perovskite structure. Then, the author reports the experimental study of the KZnF 3 perovskite (a structural analogous of MgSiO 3 ): measurements of electric conductivity under pressure, measurements under atmospheric pressure, result discussion. The next part addresses the numerical simulation of MgSiO 3 : simulation techniques (generalities on molecular dynamics, model description), investigation of structural, elastic and thermodynamic properties, diffusion properties in quadratic phase [fr

  19. Structural and topological aspects of borophosphate glasses and their relation to physical properties

    DEFF Research Database (Denmark)

    Hermansen, Christian; Youngman, R.E.; Wang, J.

    2015-01-01

    We establish a topological model of alkali borophosphate and calcium borophosphate glasses that describes both the effect of the network formers and network modifiers on physical properties. We show that the glass transition temperature (Tg), Vickers hardness (HV), liquid fragility (m) and isobaric....... The origin of the effect of the type of network modifying oxide on Tg, HV, m and ΔCp of calcium borophosphate glasses is revealed in terms of the modifying ion sub-network. The same topological principles quantitatively explain the significant differences in physical properties between the alkali...... and the calcium borophosphate glasses. This work has implications for quantifying structure-property relations in complex glass forming systems containing several types of network forming and modifying oxides....

  20. Quantitative Properties of the Macro Supply and Demand Structure for Care Facilities for Elderly in Japan.

    Science.gov (United States)

    Nishino, Tatsuya

    2017-12-01

    As the Asian country with the most aged population, Japan, has been modifying its social welfare system. In 2000, the Japanese social care vision turned towards meeting the elderly's care needs in their own homes with proper formal care services. This study aims to understand the quantitative properties of the macro supply and demand structure for facilities for the elderly who require support or long-term care throughout Japan and present them as index values. Additionally, this study compares the targets for establishing long-term care facilities set by Japan's Ministry of Health, Labor and Welfare for 2025. In 2014, approximately 90% of all the people who were certified as requiring support and long-term care and those receiving preventive long-term care or long-term care services, were 75 years or older. The target increases in the number of established facilities by 2025 (for the 75-years-or-older population) were calculated to be 3.3% for nursing homes; 2.71% for long-term-care health facilities; 1.7% for group living facilities; and, 1.84% for community-based multi-care facilities. It was revealed that the establishment targets for 2025 also increase over current projections with the expected increase of the absolute number of users of group living facilities and community-based multi-care facilities. On the other hand, the establishment target for nursing homes remains almost the same as the current projection, whereas that for long-term-care health facilities decreases. These changes of facility ratios reveal that the Japanese social care system is shifting to realize 'Ageing in Place'. When considering households' tendencies, the target ratios for established facilities are expected to be applied to the other countries in Asia.

  1. Quantitative Properties of the Macro Supply and Demand Structure for Care Facilities for Elderly in Japan

    Science.gov (United States)

    Nishino, Tatsuya

    2017-01-01

    As the Asian country with the most aged population, Japan, has been modifying its social welfare system. In 2000, the Japanese social care vision turned towards meeting the elderly’s care needs in their own homes with proper formal care services. This study aims to understand the quantitative properties of the macro supply and demand structure for facilities for the elderly who require support or long-term care throughout Japan and present them as index values. Additionally, this study compares the targets for establishing long-term care facilities set by Japan’s Ministry of Health, Labor and Welfare for 2025. In 2014, approximately 90% of all the people who were certified as requiring support and long-term care and those receiving preventive long-term care or long-term care services, were 75 years or older. The target increases in the number of established facilities by 2025 (for the 75-years-or-older population) were calculated to be 3.3% for nursing homes; 2.71% for long-term-care health facilities; 1.7% for group living facilities; and, 1.84% for community-based multi-care facilities. It was revealed that the establishment targets for 2025 also increase over current projections with the expected increase of the absolute number of users of group living facilities and community-based multi-care facilities. On the other hand, the establishment target for nursing homes remains almost the same as the current projection, whereas that for long-term-care health facilities decreases. These changes of facility ratios reveal that the Japanese social care system is shifting to realize ‘Ageing in Place’. When considering households’ tendencies, the target ratios for established facilities are expected to be applied to the other countries in Asia. PMID:29194405

  2. Towards enamel biomimetics: Structure, mechanical properties and biomineralization of dental enamel

    Science.gov (United States)

    Fong, Hanson Kwok

    Dental enamel is the most mineralized tissue in the human body. This bioceramic, composed largely of hydroxyapatite (HAp), is also one of the most durable tissues despite a lifetime of masticatory loading and bacterial attack. The biosynthesis of enamel, which occurs in physiological conditions is a complex orchestration of protein assembly and mineral formation. The resulting product is the hardest tissue in the vertebrate body with the longest and most organized arrangement of hydroxyapatite crystals known to biomineralizing systems. Detail understanding of the structure of enamel in relationship to its mechanical function and the biomineralization process will provide a framework for enamel regeneration as well as potential lessons in the design of engineering materials. The objective of this study, therefore, is twofold: (1) establish the structure-function relationship of enamel as well as the dentine-enamel junction (DEJ) and (2) determine the effect of proteins on the enamel biomineralization process. A hierarchy in the enamel structure was established by means of various microscopy techniques (e.g. SEM, TEM, AFM). Mechanical properties (hardness and elastic modulus) associated with the microstructural features were also determined by nanoindentation. Furthermore, the DEJ was found to have a width in the range of micrometers to 10s of micrometers with continuous change in structure and mechanical properties. Indentation tests and contact fatigue tests using a spherical indenter have revealed that the structural features in the enamel and the DEJ played important roles in containing crack propagation emanating from the enamel tissue. To further understand the effect of this protein on the biominerailzation process, we have studied genetically engineered animals that express altered amelogenin which lack the known self-assembly properties. This in vivo study has revealed that, without the proper self-assembly of the amelogenin protein as demonstrated by the

  3. Effect of conditioners upon the thermodynamics and kinetics of methane hydrate formation. A preliminary structure-properties relationship study

    Energy Technology Data Exchange (ETDEWEB)

    Di Profio, Pietro; Arca, Simone; Germani, Raimondo; Savelli, Gianfranco

    2005-07-01

    The synthesis and stability of gas hydrates was found to be heavily affected by the presence of small quantities of additives, or conditioners, particularly surfactants. In a recent work, we showed that the enhancement of hydrate formation, both from previously described and newly synthesized surfactants, is probably due to surfactant monomers, rather than micelles, and that the features of hydrate induction time should not be used as a measure of critical micelle concentration. In the present paper, we discuss the results of a structure-properties relationship study in which a preliminary attempt to relate the structural features of several amphiphilic additives to some kinetic and thermodynamic parameters of methane hydrate formation - e.g., induction times, rate of formation, occupancy, etc. - is conducted. According to the present study, it is found that, for a particular conditioner, a reduction of induction time does not correlate to an increase of the formation rate and occupancy, and vice versa. This may be related to the nature of chemical moieties forming a particular amphiphile (e.g., the hydrophobic tail, head group, counterion, etc.). The understanding of the mechanisms by which those moieties play their differential role may be the key tool to the design and synthesis of tailored conditioners. (Author)

  4. QSPR Study of the Retention/release Property of Odorant Molecules in Water Using Statistical Methods

    Directory of Open Access Journals (Sweden)

    Assia Belhassan

    2017-10-01

    Full Text Available An integrated approach physicochemistry and structures property relationships has been carried out to study the odorant molecules retention/release phenomenon in the water. This study aimed to identify the molecular properties (molecular descriptors that govern this phenomenon assuming that modifying the structure leads automatically to a change in the retention/release property of odorant molecules. ACD/ChemSketch, MarvinSketch, and ChemOffice programs were used to calculate several molecular descriptors of 51 odorant molecules (15 alcohols, 11 aldehydes, 9 ketones and 16 esters. A total of 37 molecules (2/3 of the data set were placed in the training set to build the QSPR models, whereas the remaining, 14 molecules (1/3 of the data set constitute the test set. The best descriptors were selected to establish the quantitative structure property relationship (QSPR of the retention/release property of odorant molecules in water using multiple linear regression (MLR, multiple non-linear regression (MNLR and an artificial neural network (ANN methods. We propose a quantitative model according to these analyses. The models were used to predict the retention/release property of the test set compounds, and agreement between the experimental and predicted values was verified. The descriptors showed by QSPR study are used for study and designing of new compounds. The statistical results indicate that the predicted values are in good agreement with the experimental results. To validate the predictive power of the resulting models, external validation multiple correlation coefficient was calculated and has both in addition to a performant prediction power, a favorable estimation of stability. DOI: http://dx.doi.org/10.17807/orbital.v9i4.978 

  5. Quantitative identification and analysis of sub-seismic extensional structure system: technique schemes and processes

    International Nuclear Information System (INIS)

    Chenghua, Ou; Chen, Wei; Ma, Zhonggao

    2015-01-01

    Quantitative characterization of complex sub-seismic extensional structure system that essentially controls petroleum exploitation is difficult to implement in seismic profile interpretation. This research, based on a case study in block M of Myanmar, established a set of quantitative treatment schemes and technique processes for the identification of sub-seismic low-displacement (SSLD) extensional faults or fractures upon structural deformation restoration and geometric inversion. Firstly, the master-subsidiary inheritance relations and configuration of the seismic-scale extensional fault systems are determined by analyzing the structural pattern. Besides, three-dimensional (3D) pattern and characteristics of the seismic-scale extensional structure have been illustrated by a 3D structure model built upon seismic sections. Moreover, according to the dilatancy obtained from structural restoration on the basis of inclined shear method, as well as the fracture-flow index, potential SSLD extensional faults or fractures have been quantitatively identified. Application of the technique processes to the sub-seismic low-displacement extensional structures in block M in Myanmar is instructive to quantitatively interpret those SSLD extensional structure systems in practice. (paper)

  6. Structural Fluctuation and Thermophysical Properties of Molten II-VI Compounds

    Science.gov (United States)

    2003-01-01

    The objectives of the project is to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs and to study the fundamental heterophase fluctuations phenomena in these melts by: 1) Conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts such as viscosity, electrical conductivity, thermal diffusivity and density as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) Performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. An apparatus based on the transient torque induced by a rotating magnetic field has been developed to determine the viscosity and electrical conductivity of semiconducting liquids. Viscosity measurements on molten tellurium showed similar relaxation behavior as the measured diffusivity. Neutron scattering experiments were performed on the HgTe and HgZnTe melts and the results on pair distribution showed better resolution than previous reported.

  7. Relationship among visual field, blood flow, and neural structure measurements in glaucoma.

    Science.gov (United States)

    Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David

    2012-05-17

    To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.

  8. Structural properties of silver nanoparticle agglomerates based on transmission electron microscopy: relationship to particle mobility analysis

    International Nuclear Information System (INIS)

    Shin, Weon Gyu; Wang Jing; Mertler, Michael; Sachweh, Bernd; Fissan, Heinz; Pui, David Y. H.

    2009-01-01

    In this work, the structural properties of silver nanoparticle agglomerates generated using condensation and evaporation method in an electric tube furnace followed by a coagulation process are analyzed using Transmission Electron Microscopy (TEM). Agglomerates with mobility diameters of 80, 120, and 150 nm are sampled using the electrostatic method and then imaged by TEM. The primary particle diameter of silver agglomerates was 13.8 nm with a standard deviation of 2.5 nm. We obtained the relationship between the projected area equivalent diameter (d pa ) and the mobility diameter (d m ), i.e., d pa = 0.92 ± 0.03 d m for particles from 80 to 150 nm. We obtained fractal dimensions of silver agglomerates using three different methods: (1) D f = 1.84 ± 0.03, 1.75 ± 0.06, and 1.74 ± 0.03 for d m = 80, 120, and 150 nm, respectively from projected TEM images using a box counting algorithm; (2) fractal dimension (D fL ) = 1.47 based on maximum projected length from projected TEM images using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633; and (3) mass fractal-like dimension (D fm ) = 1.71 theoretically derived from the mobility analysis proposed by Lall and Friedlander (2006) J Aerosol Sci 37:260-271. We also compared the number of primary particles in agglomerate and found that the number of primary particles obtained from the projected surface area using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633 is larger than that from using the relationship, d pa = 0.92 ± 0.03 d m or from using the mobility analysis.

  9. Relationship of magnetic field strength and brightness of fine-structure elements in the solar temperature minimum region

    Science.gov (United States)

    Cook, J. W.; Ewing, J. A.

    1990-01-01

    A quantitative relationship was determined between magnetic field strength (or magnetic flux) from photospheric magnetograph observations and the brightness temperature of solar fine-structure elements observed at 1600 A, where the predominant flux source is continuum emission from the solar temperature minimum region. A Kitt Peak magnetogram and spectroheliograph observations at 1600 A taken during a sounding rocket flight of the High Resolution Telescope and Spectrograph from December 11, 1987 were used. The statistical distributions of brightness temperature in the quiet sun at 1600 A, and absolute value of magnetic field strength in the same area were determined from these observations. Using a technique which obtains the best-fit relationship of a given functional form between these two histogram distributions, a quantitative relationship was determined between absolute value of magnetic field strength B and brightness temperature which is essentially linear from 10 to 150 G. An interpretation is suggested, in which a basal heating occurs generally, while brighter elements are produced in magnetic regions with temperature enhancements proportional to B.

  10. Structure-property relationships of new bismuth and lead oxide based perovskite ternary solid solutions

    Science.gov (United States)

    Dwivedi, Akansha

    Two new bismuth and lead oxide based perovskite ternary solid solutions, namely xBi(Zn1/2Ti1/2)O3-yPbZrO3-zPbTiO3 [xBZT-yPZ-zPT] and xBi(Mg1/2Ti1/2)O3-yBi(Zn 1/2Ti1/2)O3-zPbTiO3 [xBMT-yBZT-zPT] have been developed and their structural and electrical properties have been determined. Various characterization techniques such as X-ray diffraction, calorimetery, electron microscopy, dielectric and piezoelectric measurements have been performed to determine the details of the phase diagram, crystal structure, and domain structure. The selection of these materials is based on the hypothesis that the presence of BZT-PT (Case I ferroelectric (FE)) will increase the transition temperature of MPB systems BMT-PT (Case II FE), and PZ-PT (Case III FE), and subsequently a MPB will be observed in the ternary phase diagrams. The Case I, II, and III classification has been outlined by Stringer et al., is on the basis of the transition temperatures (TC) behavior with composition in the Bi and Pb oxide based binary systems. Several pseudobinary lines have been investigated across the xBZT-yPZ-zPT ternary phase diagram which exhibit varied TC behavior with composition, showing both Case I- and Case III-like TC trends in different regions. A MPB between rhombohedral to tetragonal phases has been located on a pseudobinary line 0.1BZT-0.9[xPT-(1-x)PZ]. Compositions near MPB exhibit mainly soft PZT-like properties with the TC around 60°C lower than the unmodified PZT near its MPB. Electrical properties are reported for the MPB composition, TC = 325°C, Pr = 35 microC/cm2, d33 = 300 pC/N and kP =0.45. Rhombohedral compositions show diffuse phase transition with small frequency dispersion, similar to relaxors. Two transition peaks in the permittivity as well as in the latent heat has been observed in some compositions near the BZT-PT binary. This leads to the speculation for the existence of miscibility gap in the solid solutions in these regions. Transmission electron microscopy (TEM

  11. Quantitative study on the statistical properties of fibre architecture of genuine and numerical composite microstructures

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl

    2013-01-01

    A quantitative study is carried out regarding the statistical properties of the fibre architecture found in composite laminates and that generated numerically using Statistical Representative Volume Elements (SRVE’s). The aim is to determine the reliability and consistency of SRVE’s for represent......A quantitative study is carried out regarding the statistical properties of the fibre architecture found in composite laminates and that generated numerically using Statistical Representative Volume Elements (SRVE’s). The aim is to determine the reliability and consistency of SRVE...

  12. Correlation between RUST assessments of fracture healing to structural and biomechanical properties.

    Science.gov (United States)

    Cooke, Margaret E; Hussein, Amira I; Lybrand, Kyle E; Wulff, Alexander; Simmons, Erin; Choi, Jeffrey H; Litrenta, Jody; Ricci, William M; Nascone, Jason W; O'Toole, Robert V; Morgan, Elise F; Gerstenfeld, Louis C; Tornetta, Paul

    2018-03-01

    Radiographic Union Score for Tibia (RUST) and modified RUST (mRUST) are radiographic tools for quantitatively evaluating fracture healing using a cortical scoring system. This tool has high intra-class correlation coefficients (ICCs); however, little evidence has evaluated the scores against the physical properties of bone healing. Closed, stabilized fractures were made in the femora of C3H/HeJ male mice (8-12 week-old) of two dietary groups: A control and a phosphate restricted diet group. Micro-computed tomography (µCT) and torsion testing were carried out at post-operative days (POD) 14, 21, 35, and 42 (n = 10-16) per group time-point. Anteroposterior and lateral radiographic views were constructed from the µCT scans and scored by five raters. The raters also indicated if the fracture were healed. ICCs were 0.71 (mRUST) and 0.63 (RUST). Both RUST scores were positively correlated with callus bone mineral density (BMD) (r = 0.85 and 0.80, p RUST scores positively correlated with callus strength (r = 0.35 and 0.26, p RUST ≥10 and had excellent relationship to structural and biomechanical metrics. Effect of delayed healing due to phosphate dietary restrictions was found at later time points with all mechanical properties (p RUST scores (p > 0.318). Clinical relevance of this study is both RUST scores showed high correlation to physical properties of healing and generally distinguished healed vs. non-healed fractures. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:945-953, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Structural phase transition and elastic properties of mercury chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)

    2012-08-15

    Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.

  14. Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hajilar, Shahin, E-mail: shajilar@iastate.edu [Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011-1066 (United States); Shafei, Behrouz, E-mail: shafei@iastate.edu [Department of Civil, Construction and Environmental Engineering, Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-1066 (United States)

    2016-12-15

    The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanical properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates. - Graphical abstract: Fracture mechanism of portlandite under uniaxial strain in the z-direction. - Highlights: • The structural, thermal, and mechanical properties of portlandite are investigated. • The coefficients of thermal expansion are determined. • The stress-strain relationships are studied in three orthogonal directions. • The effects of temperature and strain rate on mechanical properties are examined. • The plastic energy required for fracture in the crystalline structure is reported.

  15. Structure-terahertz property relationship in yttrium aluminum garnet ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Steere, D.W.; Clark, B.M.; Sundaram, S.K. [Alfred University, Terahertz and Millimeter Waves Laboratory (T-Lab), Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred, NY (United States); Gaume, R. [Townes Laser Institute and the NanoScience Technology Center, CREOL, The College of Optics and Photonics, Orlando, FL (United States)

    2017-08-15

    Terahertz (THz) transmission measurements on chemically variant yttrium aluminum garnet (YAG) ceramics are described. Chemical compositions and processing parameters were varied to determine the effect of stoichiometry, density, and pore volume distribution on the optical and dielectric properties in the THz frequency regime. Density has the largest effect on properties out of the parameters that were investigated. In addition, a linear correlation between cubic root of real permittivity at 1 THz and average density of these samples is observed. Our results show promise for design and fabrication of advanced optical materials and devices with desired THz properties via controlling density and porosity of the materials. (orig.)

  16. Association of structural global brain network properties with intelligence in normal aging.

    Directory of Open Access Journals (Sweden)

    Florian U Fischer

    Full Text Available Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  17. Association of Structural Global Brain Network Properties with Intelligence in Normal Aging

    Science.gov (United States)

    Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994

  18. Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

    Science.gov (United States)

    Yang, Nancy; Yee, J.; Zheng, B.; Gaiser, K.; Reynolds, T.; Clemon, L.; Lu, W. Y.; Schoenung, J. M.; Lavernia, E. J.

    2017-04-01

    We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.

  19. Structure and properties of metals

    CERN Document Server

    Kurzydlowski, K J

    1999-01-01

    Metals are one of the most widely used types of engineering materials. Some of their properties, e.g. elastic constants, can be directly related to the nature of the metallic bonds between the atoms. On the other hand, macro- and $9 microstructural features of metals, such as point defects, dislocations, grain boundaries, and second phase particles, control their yield, flow, and fracture stress. Images of microstructural elements can be obtained by modern $9 imaging techniques. Modern computer aided methods can be further used to obtain a quantitative description of these microstructures. These methods take advantage of the progress made in recent years in the field of image processing, $9 mathematical morphology and quantitative stereology. Quantitative description of the microstructures are used for modeling processes taking place under the action of applied load at a given temperature and test (service) environment. $9 These model considerations can be illustrated on the example of an austenitic stainless...

  20. Property-porosity relationships for polymer-impregnated superconducting ceramic composite

    International Nuclear Information System (INIS)

    Salib, S.; Vipulanandan, C.

    1990-01-01

    A thermoplastic polymer, poly(methyl methacrylate) (PMMA), was used to improve the flexural properties of the high-temperature superconducting ceramic (YBa 2 Cu 3 O 7-δ ). Ceramic specimens with different porosities were prepared by dry compacting 12.5-mm-diameter disk specimens at various uniaxial pressures. Density-pressure relationships have been developed for before- and after-sintering conditions. The PMMA polymer was impregnated into the porous ceramic at room temperature. The mechanical properties were evaluated by concentrically loading simply supported disk specimens. The load-displacement responses were analyzed using the finite-element method. Impregnation of PMMA polymer at room temperature increased the flexural strength and modulus of the superconducting ceramic without affecting its electrical properties. The flexural properties depended on the porosity of the ceramics, and, hence, linear and nonlinear property-porosity relationships have been used to characterize the behavior of superconducting ceramic with an without the polymer

  1. Quantitative structure-activity relationships of salicylamide neuroleptic agents.

    Science.gov (United States)

    Gupta, S P; Saha, R N; Singh, P

    1990-05-01

    The in vitro antidopamine activity of substituted N-[(1-alkyl-2-pyrrolidinyl)methyl]-6-methoxysalicylamides was found to be well correlated with the hydrophobic and electronic nature of substituents at the 3-position, and with the steric nature of groups replacing the hydrogen atom of the salicyl hydroxy group. In contrast, only the hydrophobic and steric characteristics were found to be important in the in vivo activity of these neuroleptics. This difference suggests that different mechanisms are probably involved in their in vitro and in vivo actions, and that the relevant receptors are slightly different in structure. The in vitro results suggest that electron donation by the 3-substituent strengthens the formation of a hydrogen bond between the carbonyl group of the amide moiety and a hydrogen of the receptor.

  2. The relationship between structural and functional connectivity: graph theoretical analysis of an EEG neural mass model

    NARCIS (Netherlands)

    Ponten, S.C.; Daffertshofer, A.; Hillebrand, A.; Stam, C.J.

    2010-01-01

    We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity

  3. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction.

    Science.gov (United States)

    Pradeep, Prachi; Povinelli, Richard J; Merrill, Stephen J; Bozdag, Serdar; Sem, Daniel S

    2015-04-01

    The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Structure-function relationship of tear film lipid layer: A contemporary perspective.

    Science.gov (United States)

    Georgiev, Georgi As; Eftimov, Petar; Yokoi, Norihiko

    2017-10-01

    Tear film lipid layer (TFLL) stabilizes the air/tear surface of the human eye. Meibomian gland dysfunction (MGD) resulting in quantitative and qualitative modifications of TFLL major (>93%) component, the oily secretion of meibomian lipids (MGS), is the world leading cause of dry eye syndrome (DES) with up to 86% of all DES patients showing signs of MGD. Caused by intrinsic factors (aging, ocular and general diseases) and by extrinsic everyday influences like contact lens wear and extended periods in front of a computer screen, DES (resulting in TF instability, visual disturbances and chronic ocular discomfort) is the major ophthalmic public health disease of the present time affecting the quality of life of 10-30% of the human population worldwide. Therefore there is a pressing need to summarize the present knowledge, contradictions and open questions to be resolved in the field of TFLL composition/structure/functions relationship. The following major aspects are covered by the review: (i) Do we have a reliable mimic for TFLL: MGS vs contact lens lipid extracts (CLLE) vs lipid extracts from whole tears. Does TFLL truly consist of lipids only or it is important to keep in mind the TF proteins as well?; (ii) Structural properties of TFLL and of its mimics in health and disease in vitro and in vivo. How the TFLL uniformity and thickness ensures the functionality of the lipid layer (barrier to evaporation, surface properties, TF stability etc.); (iii) What are the main functions of the TFLL? In this aspect an effort is done to emphasize that there is no single main function of TFLL but instead it simultaneously fulfills plethora of functions: suppresses the evaporation (alone or probably in cooperation with other TF constituents) of the aqueous tears; stabilizes (due to its surface properties) the air/tear surface at eye opening and during the interblink interval; and even acts as a first line of defense against bacterial invasion due to its detergency action on the

  5. Flow network QSAR for the prediction of physicochemical properties by mapping an electrical resistance network onto a chemical reaction poset.

    Science.gov (United States)

    Ivanciuc, Ovidiu; Ivanciuc, Teodora; Klein, Douglas J

    2013-06-01

    Usual quantitative structure-activity relationship (QSAR) models are computed from unstructured input data, by using a vector of molecular descriptors for each chemical in the dataset. Another alternative is to consider the structural relationships between the chemical structures, such as molecular similarity, presence of certain substructures, or chemical transformations between compounds. We defined a class of network-QSAR models based on molecular networks induced by a sequence of substitution reactions on a chemical structure that generates a partially ordered set (or poset) oriented graph that may be used to predict various molecular properties with quantitative superstructure-activity relationships (QSSAR). The network-QSAR interpolation models defined on poset graphs, namely average poset, cluster expansion, and spline poset, were tested with success for the prediction of several physicochemical properties for diverse chemicals. We introduce the flow network QSAR, a new poset regression model in which the dataset of chemicals, represented as a reaction poset, is transformed into an oriented network of electrical resistances in which the current flow results in a potential at each node. The molecular property considered in the QSSAR model is represented as the electrical potential, and the value of this potential at a particular node is determined by the electrical resistances assigned to each edge and by a system of batteries. Each node with a known value for the molecular property is attached to a battery that sets the potential on that node to the value of the respective molecular property, and no external battery is attached to nodes from the prediction set, representing chemicals for which the values of the molecular property are not known or are intended to be predicted. The flow network QSAR algorithm determines the values of the molecular property for the prediction set of molecules by applying Ohm's law and Kirchhoff's current law to the poset

  6. Porous Materials - Structure and Properties

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1997-01-01

    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete...

  7. Psychometric Properties of the Quantitative Myasthenia Gravis Score and the Myasthenia Gravis Composite Scale.

    Science.gov (United States)

    Barnett, Carolina; Merkies, Ingemar S J; Katzberg, Hans; Bril, Vera

    2015-09-02

    The Quantitative Myasthenia Gravis Score and the Myasthenia Gravis Composite are two commonly used outcome measures in Myasthenia Gravis. So far, their measurement properties have not been compared, so we aimed to study their psychometric properties using the Rasch model. 251 patients with stable myasthenia gravis were assessed with both scales, and 211 patients returned for a second assessment. We studied fit to the Rasch model at the first visit, and compared item fit, thresholds, differential item functioning, local dependence, person separation index, and tests for unidimensionality. We also assessed test-retest reliability and estimated the Minimal Detectable Change. Neither scale fit the Rasch model (X2p Myasthenia Gravis Composite had lower discrimination properties than the Quantitative Myasthenia Gravis Scale (Person Separation Index: 0.14 and 0.7). There was local dependence in both scales, as well as differential item functioning for ocular and generalized disease. Disordered thresholds were found in 6(60%) items of the Myasthenia Gravis Composite and in 4(31%) of the Quantitative Myasthenia Gravis Score. Both tools had adequate test-retest reliability (ICCs >0.8). The minimally detectable change was 4.9 points for the Myasthenia Gravis Composite and 4.3 points for the Quantitative Myasthenia Gravis Score. Neither scale fulfilled Rasch model expectations. The Quantitative Myasthenia Gravis Score has higher discrimination than the Myasthenia Gravis Composite. Both tools have items with disordered thresholds, differential item functioning and local dependency. There was evidence of multidimensionality in the QMGS. The minimal detectable change values are higher than previous studies on the minimal significant change. These findings might inform future modifications of these tools.

  8. Spectroscopic Tools for Quantitative Studies of DNA Structure and Dynamics

    DEFF Research Database (Denmark)

    Preus, Søren

    The main objective of this thesis is to develop quantitative fluorescence-based, spectroscopic tools for probing the 3D structure and dynamics of DNA and RNA. The thesis is founded on six peer-reviewed papers covering mainly the development, characterization and use of fluorescent nucleobase...... analogues. In addition, four software packages is presented for the simulation and quantitative analysis of time-resolved and steady-state UV-Vis absorption and fluorescence experiments....

  9. Quantitative Analysis of Micro-Structure in Meat Emulsions from Grating-Based Multimodal X-Ray Tomography

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Nielsen, Mikkel Schou; Miklos, Rikke

    2013-01-01

    Using novel X-ray techniques, based on grating-interferometry, new imaging modalities can be obtained simultaneously with absorption computed tomography (CT). These modalities, called phase contrast and dark field imaging, measure the electron density and the diffusion length of the sample....... Enhanced contrast capabilities of this X-ray technique makes studies on materials with similar attenuation properties possible. In this paper the focus is set on processing grating-based X-ray tomograms of meat emulsions to quantitatively measure micro-structural changes due to heat treatment. The emulsion...... samples were imaged both in a raw and cooked state. Additionally, different fat types were used in the emulsions in order to compare micro-structural differences when either pork fat or sunflower oil was used. From the reconstructed tomograms the different ingredients in the emulsions were segmented using...

  10. The NBS: Processing/Microstructure/Property Relationships in 2024 Aluminum Alloy Plates

    Science.gov (United States)

    Ives, L. K.; Swartzendruber, W. J.; Boettinger, W. J.; Rosen, M.; Ridder, S. D.

    1983-01-01

    As received plates of 2024 aluminum alloy were examined. Topics covered include: solidification segregation studies; microsegregation and macrosegregation in laboratory and commercially cast ingots; C-curves and nondestructive evaluation; time-temperature precipitation diagrams and the relationships between mechanical properties and NDE measurements; transmission electron microscopy studies; the relationship between microstructure and properties; ultrasonic characterization; eddy-current conductivity characterization; the study of aging process by means of dynamic eddy current measurements; and Heat flow-property predictions, property degradations due to improve quench from the solution heat treatment temperature.

  11. Table of periodic properties of fullerenes based on structural parameters.

    Science.gov (United States)

    Torrens, Francisco

    2004-01-01

    The periodic table (PT) of the elements suggests that hydrogen could be the origin of everything else. The construction principle is an evolutionary process that is formally similar to those of Darwin and Oparin. The Kekulé structure count and permanence of the adjacency matrix of fullerenes are related to structural parameters involving the presence of contiguous pentagons p, q and r. Let p be the number of edges common to two pentagons, q the number of vertices common to three pentagons, and r the number of pairs of nonadjacent pentagon edges shared between two other pentagons. Principal component analysis (PCA) of the structural parameters and cluster analysis (CA) of the fullerenes permit classifying them and agree. A PT of the fullerenes is built based on the structural parameters, PCA and CA. The periodic law does not have the rank of the laws of physics. (1) The properties of the fullerenes are not repeated; only, and perhaps, their chemical character. (2) The order relationships are repeated, although with exceptions. The proposed statement is the following: The relationships that any fullerene p has with its neighbor p + 1 are approximately repeated for each period.

  12. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    Science.gov (United States)

    Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.

  13. Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: effect of compression and anisotropy of dry GDL

    International Nuclear Information System (INIS)

    Holzer, L.; Pecho, O.; Schumacher, J.; Marmet, Ph.; Stenzel, O.; Büchi, F.N.; Lamibrac, A.; Münch, B.

    2017-01-01

    Highlights: • Methods are developed to predict transport properties of dry GDL in PE Fuel Cells. • Diffusivity and Permeability are reliably predicted based on 3D characteristics. • Predictions based on 3D microstructure match well with numerical simulations. • Anisotropy is due to in- and through-plane variation of tortuosity and hydraulic rad. • The methods can be used to predict relative permeability and diffusivity in wet GDL. - Abstract: New quantitative relationships are established between effective properties (gas diffusivity, permeability and electrical conductivity) for a dry GDL (25 BA) from SGL Carbon with the corresponding microstructure characteristics from 3D analysis. These microstructure characteristics include phase volume fractions, geodesic tortuosity, constrictivity and hydraulic radius. The latter two parameters include information from two different size distribution curves for bulges (continuous PSD) and for bottlenecks (MIP-PSD). X-ray tomographic microscopy is performed for GDL at different compression levels and the micro-macro-relationships are then established for the in-plane and through-plane directions. The predicted properties based on these relationships are compared with numerical transport simulations, which give very similar results and which can be summarized as follows: Gas diffusivity is higher in the in-plane than in the through-plane direction. Its variation with compression is mainly related to changes of porosity and geodesic tortuosity. Permeability is dominated by variations in hydraulic radius. Through-plane permeability is slightly higher than in-plane. Anisotropy of electrical conductivity is controlled by tortuosity, which is higher for the through-plane direction. A table with new quantitative relationships is provided, which are considered to be more accurate and precise than older descriptions (e.g. Carman-Kozeny, Bruggeman), because they are based on detailed topological information from 3D analysis

  14. Quantitative x-ray structure determination of superlattices and interfaces

    International Nuclear Information System (INIS)

    Schuller, I.K.; Fullerton, E.E.

    1990-01-01

    This paper presents a general procedure for quantitative structural refinement of superlattice structures. To analyze a wide range of superlattices, the authors have derived a general kinematical diffraction formula that includes random, continuous and discrete fluctuations from the average structure. By implementing a non-linear fitting algorithm to fit the entire x-ray diffraction profile, refined parameters that describe the average superlattice structure, and deviations from this average are obtained. The structural refinement procedure is applied to a crystalline/crystalline Mo/Ni superlattices and crystalline/amorphous Pb/Ge superlattices. Roughness introduced artificially during growth in Mo/Ni superlattices is shown to be accurately reproduced by the refinement

  15. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    Science.gov (United States)

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  16. Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    List, F.A., E-mail: listfaiii@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN (United States); Dehoff, R.R.; Lowe, L.E. [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN (United States); Sames, W.J. [Texas A and M University, College Station, TX (United States)

    2014-10-06

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology.

  17. Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing

    International Nuclear Information System (INIS)

    List, F.A.; Dehoff, R.R.; Lowe, L.E.; Sames, W.J.

    2014-01-01

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology

  18. Comparison of 3D quantitative structure-activity relationship methods: Analysis of the in vitro antimalarial activity of 154 artemisinin analogues by hypothetical active-site lattice and comparative molecular field analysis

    Science.gov (United States)

    Woolfrey, John R.; Avery, Mitchell A.; Doweyko, Arthur M.

    1998-03-01

    Two three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and hypothetical active site lattice (HASL), were compared with respect to the analysis of a training set of 154 artemisinin analogues. Five models were created, including a complete HASL and two trimmed versions, as well as two CoMFA models (leave-one-out standard CoMFA and the guided-region selection protocol). Similar r2 and q2 values were obtained by each method, although some striking differences existed between CoMFA contour maps and the HASL output. Each of the four predictive models exhibited a similar ability to predict the activity of a test set of 23 artemisinin analogues, although some differences were noted as to which compounds were described well by either model.

  19. MnO2 ultrathin films deposited by means of magnetron sputtering: Relationships between process conditions, structural properties and performance in transparent supercapacitors

    Science.gov (United States)

    Borysiewicz, Michał A.; Wzorek, Marek; Myśliwiec, Marcin; Kaczmarski, Jakub; Ekielski, Marek

    2016-12-01

    This study focuses on the relationships between the process parameters during magnetron sputter deposition of MnO2 and the resulting film properties. Three MnO2 phases were identified - γ, β and λ and the dependence of MnO2 phase presence on the oxygen content in the sputtering atmosphere was found. Selected MnO2 phases were subsequently applied as ultrathin coatings on top of nanostructured ZnO electrodes for transparent supercapacitors with LiCl-based gel electrolyte. The films containing λ-MnO2 exhibited both the highest optical transparency of 62% at 550 nm as well as the highest specific capacitance in the supercapacitor structure, equal to 73.1 μF/cm2. Initially lower, the capacitance was elevated by charge-discharge conditioning.

  20. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-11-01

    Full Text Available Composite polymer electrolytes (CPEs can significantly improve the performance in electrochemical devices such as lithium-ion batteries. This review summarizes property/performance relationships in the case where nanoparticles are introduced to polymer electrolytes. It is the aim of this review to provide a knowledge network that elucidates the role of nano-additives in the CPEs. Central to the discussion is the impact on the CPE performance of properties such as crystalline/amorphous structure, dielectric behavior, and interactions within the CPE. The amorphous domains of semi-crystalline polymer facilitate the ion transport, while an enhanced mobility of polymer chains contributes to high ionic conductivity. Dielectric properties reflect the relaxation behavior of polymer chains as an important factor in ion conduction. Further, the dielectric constant (ε determines the capability of the polymer to dissolve salt. The atom/ion/nanoparticle interactions within CPEs suggest ways to enhance the CPE conductivity by generating more free lithium ions. Certain properties can be improved simultaneously by nanoparticle addition in order to optimize the overall performance of the electrolyte. The effects of nano-additives on thermal and mechanical properties of CPEs are also presented in order to evaluate the electrolyte competence for lithium-ion battery applications.

  1. Structure-activity relationships for novel drug precursor N-substituted-6-acylbenzothiazolon derivatives: A theoretical approach

    Science.gov (United States)

    Sıdır, Yadigar Gülseven; Sıdır, İsa

    2013-08-01

    In this study, the twelve new modeled N-substituted-6-acylbenzothiazolon derivatives having analgesic analog structure have been investigated by quantum chemical methods using a lot of electronic parameters and structure-activity properties; such as molecular polarizability (α), dipole moment (μ), EHOMO, ELUMO, q-, qH+, molecular volume (Vm), ionization potential (IP), electron affinity (EA), electronegativity (χ), molecular hardness (η), molecular softness (S), electrophilic index (ω), heat of formation (HOF), molar refractivity (MR), octanol-water partition coefficient (log P), thermochemical properties (entropy (S), capacity of heat (Cv)); as to investigate activity relationships with molecular structure. The correlations of log P with Vm, MR, ω, EA, EHOMO - ELUMO (ΔE), HOF in aqueous phase, χ, μ, S, η parameters, respectively are obtained, while the linear relation of log P with IP, Cv, HOF in gas phase are not observed. The log P parameter is obtained to be depending on different properties of compounds due to their complexity.

  2. Relationship between Static Stiffness and Modal Stiffness of Structures

    Directory of Open Access Journals (Sweden)

    Tianjian Ji Tianjian Ji

    2010-02-01

    Full Text Available This paper derives the relationship between the static stiffness and modal stiffness of a structure. The static stiffness and modal stiffness are two important concepts in both structural statics and dynamics. Although both stiffnesses indicate the capacity of the structure to resist deformation, they are obtained using different methods. The former is calculated by solving the equations of equilibrium and the latter can be obtained by solving an eigenvalue problem. A mathematical relationship between the two stiffnesses was derived based on the definitions of two stiffnesses. This relationship was applicable to a linear system and the derivation of relationships does not reveal any other limitations. Verification of the relationship was given by using several examples. The relationship between the two stiffnesses demonstrated that the modal stiffness of the fundamental mode was always larger than the static stiffness of a structure if the critical point and the maximum mode value are at the same node, i.e. for simply supported beam and seven storeys building are 1.5% and 15% respectively. The relationship could be applied into real structures, where the greater the number of modes being considered, the smaller the difference between the modal stiffness and the static stiffness of a structure.

  3. Bismuth Silver Oxysulfide for Photoconversion Applications: Structural and Optoelectronic Properties

    KAUST Repository

    Baqais, Amal Ali Abdulallh; Curutchet, Antton; Ziani, Ahmed; Ait Ahsaine, Hassan; Sautet, Philippe; Takanabe, Kazuhiro; Le Bahers, Tangui

    2017-01-01

    Single-phase bismuth silver oxysulfide, BiAgOS, was prepared by a hydrothermal method. Its structural, morphological and optoelectronic properties were investigated and compared with bismuth copper oxysulfide (BiCuOS). Rietveld refinement of the powder X-ray diffraction (XRD) measurements revealed that the BiAgOS and BiCuOS crystals have the same structure as ZrSiCuAs: the tetragonal space group P4/nmm. X-ray photoelectron spectroscopy (XPS) analyses confirmed that the BiAgOS has a high purity, in contrast with BiCuOS, which tends to have Cu vacancies. The Ag has a monovalent oxidation state, whereas Cu is present in the oxidation states of +1 and +2 in the BiCuOS system. Combined with experimental measurements, density functional theory calculations employing the range-separated hybrid HSE06 exchange-correlation functional with spin-orbit coupling quantitatively elucidated photophysical properties such as ab-sorption coefficients, effective masses and dielectric constants. BiCuOS and BiAgOS were found to have indirect bandgaps of 1.1 and 1.5 eV, respectively. Both possess high dielectric constants and low electron and hole effective masses. Therefore, these materials are expected to have high exciton dissociation capabilities and excellent carrier diffusion properties. This study reveals that BiAgOS is a promising candidate for photoconversion applications.

  4. Bismuth Silver Oxysulfide for Photoconversion Applications: Structural and Optoelectronic Properties

    KAUST Repository

    Baqais, Amal Ali Abdulallh

    2017-09-18

    Single-phase bismuth silver oxysulfide, BiAgOS, was prepared by a hydrothermal method. Its structural, morphological and optoelectronic properties were investigated and compared with bismuth copper oxysulfide (BiCuOS). Rietveld refinement of the powder X-ray diffraction (XRD) measurements revealed that the BiAgOS and BiCuOS crystals have the same structure as ZrSiCuAs: the tetragonal space group P4/nmm. X-ray photoelectron spectroscopy (XPS) analyses confirmed that the BiAgOS has a high purity, in contrast with BiCuOS, which tends to have Cu vacancies. The Ag has a monovalent oxidation state, whereas Cu is present in the oxidation states of +1 and +2 in the BiCuOS system. Combined with experimental measurements, density functional theory calculations employing the range-separated hybrid HSE06 exchange-correlation functional with spin-orbit coupling quantitatively elucidated photophysical properties such as ab-sorption coefficients, effective masses and dielectric constants. BiCuOS and BiAgOS were found to have indirect bandgaps of 1.1 and 1.5 eV, respectively. Both possess high dielectric constants and low electron and hole effective masses. Therefore, these materials are expected to have high exciton dissociation capabilities and excellent carrier diffusion properties. This study reveals that BiAgOS is a promising candidate for photoconversion applications.

  5. Quantitative evaluation about property of thin-film formation

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huawei [Department of Mechanical Sciences and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo (Japan) and School of Mechanical Engineering, Tianjin University (China)]. E-mail: chen_hua_wei@yahoo.com; Hagiwara, Ichiro [Department of Mechanical Sciences and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo (Japan); Huang Tian [Department of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); School of Mechanical Engineering, Tianjin University (China); Zhang Dawei [School of Mechanical Engineering, Tianjin University (China)

    2006-03-15

    Chemical vapor deposition (CVD) is gradually emphasized as one promising method for nanomaterial formation. Such growth mechanism has been mainly investigated on basis of experiment. Due to large cost of the equipment of experiment and low level of current measurement, the comprehension about authentic effect of formation condition on properties of nanomaterial is limited in qualitative manner. Three quantitative items: flatness of primary deposition, adhesion between cluster and substrate, and degree of epitaxial growth were proposed to evaluate the property of thin film. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000, 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Within one velocity range, not only the speed of epitaxial growth and adhesion between thin film and substrate were enhanced, but also the degree of epitaxy increased and the shape of thin film became more flat with velocity increasing. Moreover, the epitaxial growth became well as the temperature of substrate was raised within a certain range, and the degree of epitaxy of small cluster was larger than larger cluster. The results indicated that the property of thin film could be controlled if the effect of situations of process was made clear.

  6. Quantitative evaluation about property of thin-film formation

    International Nuclear Information System (INIS)

    Chen Huawei; Hagiwara, Ichiro; Huang Tian; Zhang Dawei

    2006-01-01

    Chemical vapor deposition (CVD) is gradually emphasized as one promising method for nanomaterial formation. Such growth mechanism has been mainly investigated on basis of experiment. Due to large cost of the equipment of experiment and low level of current measurement, the comprehension about authentic effect of formation condition on properties of nanomaterial is limited in qualitative manner. Three quantitative items: flatness of primary deposition, adhesion between cluster and substrate, and degree of epitaxial growth were proposed to evaluate the property of thin film. In this simulation, three different cluster sizes of 203, 653, 1563 atoms with different velocities (0, 10, 100, 1000, 3000 m/s) were deposited on a Cu(0 0 1) substrate whose temperatures were set between 300 and 1000 K. Within one velocity range, not only the speed of epitaxial growth and adhesion between thin film and substrate were enhanced, but also the degree of epitaxy increased and the shape of thin film became more flat with velocity increasing. Moreover, the epitaxial growth became well as the temperature of substrate was raised within a certain range, and the degree of epitaxy of small cluster was larger than larger cluster. The results indicated that the property of thin film could be controlled if the effect of situations of process was made clear

  7. Property taxes and economic development. An approach to the relationship between property taxes and the investment of Antioquia's municipalities

    Directory of Open Access Journals (Sweden)

    Santiago Tobón Zapata

    2013-06-01

    Full Text Available This paper discusses the relationship between the levels of investment in health and education made by the municipalities and the collection of property taxes. A data panel methodology was used with a sample of 97 municipalities in the department of Antioquia (Colombia for the period 2000 - 2008. According to the results, it is possible to conclude that there is no relationship between the levels of autonomous investment in education and the collection of property taxes. On the other hand, in relation to health investments, a negative relationship was found between property tax collection and autonomous investment in health. Finally, in addition to the initial scope proposed, a positive relationship was shown between the collection of property taxes and investments in the development of roads and infrastructure.

  8. Structure and property correlations in FeS

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, S.J. [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Department of Physics , University of Notre Dame , Notre Dame , IN 46556 (United States); Kidder, M.K. [Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Parker, D.S. [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Cruz, C. dela [Quantum Condensed Matter Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); McGuire, M.A.; Chance, W.M.; Li, Li [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Debeer-Schmitt, L. [Chemical and Engineering Materials Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Ermentrout, J. [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Littrell, K.C. [Chemical and Engineering Materials Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Eskildsen, M.R. [Department of Physics , University of Notre Dame , Notre Dame , IN 46556 (United States); Sefat, A.S. [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States)

    2017-03-15

    temperature, while t-Fe{sub 0.93}S shows coexistence of antiferromagnetism at T{sub N} = 116 and filamentary superconductivity below T{sub c} = 4 K. Low temperature neutron diffraction data reveals antiferromagnetic commensurate ordering with wave vector k{sub m} = (0.25,0.25,0) and 0.46(2) µ{sub B}/Fe. Additionally, neutron scattering measurements were used to find the particle size and iron vacancy arrangement of t-FeS and h-FeS. The structure of iron sulfide has a delicate relationship with the superconducting transition; while our sample with a = 3.6772(7) Å is a filamentary superconductor coexisting with an antiferromagnetic phase, previously reported samples with a > 3.68 Å are bulk superconductors with no magnetism, and those with a ≈ 3.674 Å show magnetic properties.

  9. Structure, processing, and properties of potatoes

    Science.gov (United States)

    Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; McCuen, Richard H.; Regan, Thomas M.

    1992-06-01

    The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.

  10. Structure, processing, and properties of potatoes

    Science.gov (United States)

    Lloyd, Isabel K.; Kolos, Kimberly R.; Menegaux, Edmond C.; Luo, Huy; Mccuen, Richard H.; Regan, Thomas M.

    1992-01-01

    The objective of this experiment and lesson intended for high school students in an engineering or materials science course or college freshmen is to demonstrate the relation between processing, structure, and thermodynamic and physical properties. The specific objectives are to show the effect of structure and structural changes on thermodynamic properties (specific heat) and physical properties (compressive strength); to illustrate the first law of thermodynamics; to compare boiling a potato in water with cooking it in a microwave in terms of the rate of structural change and the energy consumed to 'process' the potato; and to demonstrate compression testing.

  11. GTPase activity, structure, and mechanical properties of filaments assembled from bacterial cytoskeleton protein MreB.

    Science.gov (United States)

    Esue, Osigwe; Wirtz, Denis; Tseng, Yiider

    2006-02-01

    MreB, a major component of the recently discovered bacterial cytoskeleton, displays a structure homologous to its eukaryotic counterpart actin. Here, we study the assembly and mechanical properties of Thermotoga maritima MreB in the presence of different nucleotides in vitro. We found that GTP, not ADP or GDP, can mediate MreB assembly into filamentous structures as effectively as ATP. Upon MreB assembly, both GTP and ATP release the gamma phosphate at similar rates. Therefore, MreB is an equally effective ATPase and GTPase. Electron microscopy and quantitative rheology suggest that the morphologies and micromechanical properties of filamentous ATP-MreB and GTP-MreB are similar. In contrast, mammalian actin assembly is favored in the presence of ATP over GTP. These results indicate that, despite high structural homology of their monomers, T. maritima MreB and actin filaments display different assembly, morphology, micromechanics, and nucleotide-binding specificity. Furthermore, the biophysical properties of T. maritima MreB filaments, including high rigidity and propensity to form bundles, suggest a mechanism by which MreB helical structure may be involved in imposing a cylindrical architecture on rod-shaped bacterial cells.

  12. Preparing Tomorrow's Administrators: A Quantitative Correlation Study of the Relationship between Emotional Intelligence and Effective Leadership Practices

    Science.gov (United States)

    May-Vollmar, Kelly

    2017-01-01

    Purpose: The purpose of this quantitative correlation study was to identify whether there is a relationship between emotional intelligence and effective leadership practices, specifically with school administrators in Southern California K-12 public schools. Methods: This study was conducted using a quantitative descriptive design, correlation…

  13. Revealing strong bias in common measures of galaxy properties using new inclination-independent structures

    Science.gov (United States)

    Devour, Brian M.; Bell, Eric F.

    2017-06-01

    Accurate measurement of galaxy structures is a prerequisite for quantitative investigation of galaxy properties or evolution. Yet, the impact of galaxy inclination and dust on commonly used metrics of galaxy structure is poorly quantified. We use infrared data sets to select inclination-independent samples of disc and flattened elliptical galaxies. These samples show strong variation in Sérsic index, concentration and half-light radii with inclination. We develop novel inclination-independent galaxy structures by collapsing the light distribution in the near-infrared on to the major axis, yielding inclination-independent 'linear' measures of size and concentration. With these new metrics we select a sample of Milky Way analogue galaxies with similar stellar masses, star formation rates, sizes and concentrations. Optical luminosities, light distributions and spectral properties are all found to vary strongly with inclination: When inclining to edge-on, r-band luminosities dim by >1 magnitude, sizes decrease by a factor of 2, 'dust-corrected' estimates of star formation rate drop threefold, metallicities decrease by 0.1 dex and edge-on galaxies are half as likely to be classified as star forming. These systematic effects should be accounted for in analyses of galaxy properties.

  14. QSPR models based on molecular mechanics and quantum chemical calculations. 2. Thermodynamic properties of alkanes, alcohols, polyols, and ethers

    DEFF Research Database (Denmark)

    Dyekjær, Jane Dannow; Jonsdottir, Svava Osk

    2003-01-01

    Quantitative Structure-Property Relationship (QSPR) models for prediction of various thermodynamic properties of simple organic compounds have been developed. A number of new descriptors are proposed and used alongside with descriptors available within the Codessa program. An important feature...... for alkanes, alcohols, diols, ethers, and oxyalcohols, including cyclic alkanes and alcohols. Several good models, having good predictability, have been developed. To enhance the applicability of the QSPR models, simpler expressions for each descriptor have also been developed. This allows for the prediction...

  15. QSPR models based on molecular mechanics and quantum chemical calculations. 1. Construction of Boltzmann averaged descriptors for alkanes, alcohols, diols, ethers and cyclic compounds

    DEFF Research Database (Denmark)

    Dyekjær, Jane Dannow; Rasmussen, Kjeld; Jonsdottir, Svava Osk

    2002-01-01

    Values for nine descriptors for QSPR (quantitative structure-property relationships) modeling of physical properties of 96 alkanes, alcohols, ethers, diols, triols and cyclic alkanes and alcohols in conjunction with the program Codessa are presented. The descriptors are Boltzmann-averaged by sele......Values for nine descriptors for QSPR (quantitative structure-property relationships) modeling of physical properties of 96 alkanes, alcohols, ethers, diols, triols and cyclic alkanes and alcohols in conjunction with the program Codessa are presented. The descriptors are Boltzmann...

  16. Further properties of causal relationship: causal structure stability, new criteria for isocausality and counterexamples

    International Nuclear Information System (INIS)

    Garcia-Parrado, Alfonso; Sanchez, Miguel

    2005-01-01

    Recently (Garcia-Parrado and Senovilla 2003 Class. Quantum Grav. 20 625-64) the concept of causal mapping between spacetimes, essentially equivalent in this context to the chronological map defined in abstract chronological spaces, and the related notion of causal structure, have been introduced as new tools to study causality in Lorentzian geometry. In the present paper, these tools are further developed in several directions such as (i) causal mappings-and, thus, abstract chronological ones-do not preserve two levels of the standard hierarchy of causality conditions (however, they preserve the remaining levels as shown in the above reference), (ii) even though global hyperbolicity is a stable property (in the set of all time-oriented Lorentzian metrics on a fixed manifold), the causal structure of a globally hyperbolic spacetime can be unstable against perturbations; in fact, we show that the causal structures of Minkowski and Einstein static spacetimes remain stable, whereas that of de Sitter becomes unstable, (iii) general criteria allow us to discriminate different causal structures in some general spacetimes (e.g. globally hyperbolic, stationary standard); in particular, there are infinitely many different globally hyperbolic causal structures (and thus, different conformal ones) on R 2 (iv) plane waves with the same number of positive eigenvalues in the frequency matrix share the same causal structure and, thus, they have equal causal extensions and causal boundaries

  17. S09 Symposium KK, Structure-Property Relationships in Biomineralized and Biomimetic Composites

    Energy Technology Data Exchange (ETDEWEB)

    David Kisailus; Lara Estroff; Himadri S. Gupta; William J. Landis; Pablo D. Zavattieri

    2010-06-07

    The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. This symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.

  18. Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches.

    Science.gov (United States)

    Kireeva, Natalia; Pervov, Vladislav S

    2017-08-09

    The organic electrolytes of most current commercial rechargeable Li-ion batteries (LiBs) are flammable, toxic, and have limited electrochemical energy windows. All-solid-state battery technology promises improved safety, cycling performance, electrochemical stability, and possibility of device miniaturization and enables a number of breakthrough technologies towards the development of new high power and energy density microbatteries for electronics with low processing cost, solid oxide fuel cells, electrochromic devices, etc. Currently, rational materials design is attracting significant attention, which has resulted in a strong demand for methodologies that can accelerate the design of materials with tailored properties; cheminformatics can be considered as an efficient tool in this respect. This study was focused on several aspects: (i) identification of the parameters responsible for high Li-ion conductivity in garnet structured oxides; (ii) development of quantitative models to elucidate composition-structure-Li ionic conductivity relationships, taking into account the experimental details of sample preparation; (iii) circumscription of the materials space of solid garnet-type electrolytes, which is attractive for virtual screening. Several candidate compounds have been recommended for synthesis as potential solid state electrolyte materials.

  19. Investigation of Antileishmanial Activities of Acridines Derivatives against Promastigotes and Amastigotes Form of Parasites Using Quantitative Structure Activity Relationship Analysis

    Directory of Open Access Journals (Sweden)

    Samir Chtita

    2016-01-01

    Full Text Available In a search of newer and potent antileishmanial (against promastigotes and amastigotes form of parasites drug, a series of 60 variously substituted acridines derivatives were subjected to a quantitative structure activity relationship (QSAR analysis for studying, interpreting, and predicting activities and designing new compounds by using multiple linear regression and artificial neural network (ANN methods. The used descriptors were computed with Gaussian 03, ACD/ChemSketch, Marvin Sketch, and ChemOffice programs. The QSAR models developed were validated according to the principles set up by the Organisation for Economic Co-operation and Development (OECD. The principal component analysis (PCA has been used to select descriptors that show a high correlation with activities. The univariate partitioning (UP method was used to divide the dataset into training and test sets. The multiple linear regression (MLR method showed a correlation coefficient of 0.850 and 0.814 for antileishmanial activities against promastigotes and amastigotes forms of parasites, respectively. Internal and external validations were used to determine the statistical quality of QSAR of the two MLR models. The artificial neural network (ANN method, considering the relevant descriptors obtained from the MLR, showed a correlation coefficient of 0.933 and 0.918 with 7-3-1 and 6-3-1 ANN models architecture for antileishmanial activities against promastigotes and amastigotes forms of parasites, respectively. The applicability domain of MLR models was investigated using simple and leverage approaches to detect outliers and outsides compounds. The effects of different descriptors in the activities were described and used to study and design new compounds with higher activities compared to the existing ones.

  20. Sr2CeO4: Electronic and structural properties

    International Nuclear Information System (INIS)

    Rocha, Leonardo A.; Schiavon, Marco A.; Nascimento, Clebio S.; Guimarães, Luciana; Góes, Márcio S.; Pires, Ana M.; Paiva-Santos, Carlos O.

    2014-01-01

    Highlights: • Sr 2 CeO 4 it was obtained from the heat treatment of Ce 3+ -doped strontium oxalate. • Rietveld analysis made it possible to obtain information about crystalline structure. • Experimental band gap value was compared with theoretical obtained by Sparkle/PM7. • The materials obtained shows intense photoluminescence and scintillator properties. - Abstract: This work presents on the preparation and photoluminescent properties of Sr 2 CeO 4 obtained from the heat treatment of Ce(III)-doped strontium oxalate (10, 25 and 33 mol%). The oxalate precursors were heat treated at 1100 °C for 12 h. The structure of this photoluminescent material was evaluated by the Rietveld method. The route used in this work to prepare the materials showed to be viable when compared to other synthesis reported in the literature. The Sr 2 CeO 4 material showed a broad and intense band emission with a maximum around 485 nm. The quantitative phase analysis showed that the Sr 2 CeO 4 photoluminescent phase is the majority one compared to the impurity phases of SrCeO 3 and SrCO 3 . From all results it was possible to verify a complete elimination of the CeO 2 phase for the sample obtained from the heat treatment of oxalate precursor containing 33 mol% of cerium(III). The material showed excellent properties for possible candidate as scintillator materials, and in the improvement of efficiency of solar cells when excited in the UV–vis region. The CIE chromaticity diagram it is also reported in this work

  1. Structural properties of liposomes from digital holographic microscopy

    Science.gov (United States)

    Di Maio, Isabelle L.; Carl, Daniel; Langehanenberg, Patrik; Valenzuela, Stella M.; Battle, Andrew R.; Al Khazaaly, Sabah; Killingsworth, Murray; Kemper, Bjorn; von Bally, Gert; Martin, Donald K.

    2006-01-01

    We have constructed liposomes from L alpha Phosphatidylcholine (PC) lipids, which are biomimetic lipids similar to those present in the membranes of mammalian cells. We propose an advance in the use of liposomes, such as for drug delivery, to incorporate into the liposomal membranes transport proteins that have been extracted from the lipid membranes of mammalian cells. In this paper, we describe the usage of a novel optical microscope to characterize the nanomechanical properties of these liposomes. We have applied the technique of digital holographic microscopy, using an instrument recently developed at the University of Münster, Germany. This system enabled us to measure quantitatively the structural changes in liposomes. We have investigated the deformations of these biomimetic lipids comprising these liposomes by applying osmotic stresses, in order to gain insight into the membrane environment prior to incorporation of cloned membrane transport proteins. This control of the nanomechanical properties is important in the stresses transmitted to mechanosensitive ion channels that we have incorporated into the liposomal membranes. These liposomes provide transporting vesicles that respond to mechanical stresses, such as those that occur during implantation.

  2. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.

    Science.gov (United States)

    Park, Soo Hyun; Talebi, Mohammad; Amos, Ruth I J; Tyteca, Eva; Haddad, Paul R; Szucs, Roman; Pohl, Christopher A; Dolan, John W

    2017-11-10

    Quantitative Structure-Retention Relationships (QSRR) are used to predict retention times of compounds based only on their chemical structures encoded by molecular descriptors. The main concern in QSRR modelling is to build models with high predictive power, allowing reliable retention prediction for the unknown compounds across the chromatographic space. With the aim of enhancing the prediction power of the models, in this work, our previously proposed QSRR modelling approach called "federation of local models" is extended in ion chromatography to predict retention times of unknown ions, where a local model for each target ion (unknown) is created using only structurally similar ions from the dataset. A Tanimoto similarity (TS) score was utilised as a measure of structural similarity and training sets were developed by including ions that were similar to the target ion, as defined by a threshold value. The prediction of retention parameters (a- and b-values) in the linear solvent strength (LSS) model in ion chromatography, log k=a - blog[eluent], allows the prediction of retention times under all eluent concentrations. The QSRR models for a- and b-values were developed by a genetic algorithm-partial least squares method using the retention data of inorganic and small organic anions and larger organic cations (molecular mass up to 507) on four Thermo Fisher Scientific columns (AS20, AS19, AS11HC and CS17). The corresponding predicted retention times were calculated by fitting the predicted a- and b-values of the models into the LSS model equation. The predicted retention times were also plotted against the experimental values to evaluate the goodness of fit and the predictive power of the models. The application of a TS threshold of 0.6 was found to successfully produce predictive and reliable QSRR models (Q ext(F2) 2 >0.8 and Mean Absolute Error<0.1), and hence accurate retention time predictions with an average Mean Absolute Error of 0.2min. Crown Copyright

  3. A Quantitative Index of Forest Structural Sustainability

    Directory of Open Access Journals (Sweden)

    Jonathan A. Cale

    2014-07-01

    Full Text Available Forest health is a complex concept including many ecosystem functions, interactions and values. We develop a quantitative system applicable to many forest types to assess tree mortality with respect to stable forest structure and composition. We quantify impacts of observed tree mortality on structure by comparison to baseline mortality, and then develop a system that distinguishes between structurally stable and unstable forests. An empirical multivariate index of structural sustainability and a threshold value (70.6 derived from 22 nontropical tree species’ datasets differentiated structurally sustainable from unsustainable diameter distributions. Twelve of 22 species populations were sustainable with a mean score of 33.2 (median = 27.6. Ten species populations were unsustainable with a mean score of 142.6 (median = 130.1. Among them, Fagus grandifolia, Pinus lambertiana, P. ponderosa, and Nothofagus solandri were attributable to known disturbances; whereas the unsustainability of Abies balsamea, Acer rubrum, Calocedrus decurrens, Picea engelmannii, P. rubens, and Prunus serotina populations were not. This approach provides the ecological framework for rational management decisions using routine inventory data to objectively: determine scope and direction of change in structure and composition, assess excessive or insufficient mortality, compare disturbance impacts in time and space, and prioritize management needs and allocation of scarce resources.

  4. Ecomorphology of morpho-functional relationships in the family of Sparidae: a quantitative statistic approach.

    Science.gov (United States)

    Antonucci, Francesca; Costa, Corrado; Aguzzi, Jacopo; Cataudella, Stefano

    2009-07-01

    In many fish species, morphological similarity can be considered as a proxy for similarities in habitat use. The Sparidae family includes species that are recognized for common morphological features such as structure and positioning of the fins and specialized dentition. The aim of this study was to quantitatively describe the relationship of body shape morphology with habitat use, trophic level, and systematics in the majority of known Sparidae species (N = 92). This ecomorphological comparison was performed with a geometric morphometric approach considering as variables the Trophic Index (TROPH), the habitat (i.e., classified as demersal, benthopelagic and reef associated) and the phylogenetic relationship of species at the subfamily level. The analysis by the TROPH variable showed a positive relation with shape because the morphological features of all the species are strongly correlated with their trophic behavior (e.g., herbivore species have a smaller mouth gap that make them able to feed upon sessile resources). The morphological analysis according to the Habitat variable was used to classify species according to a feeding-habitat niche in terms of portion of the water column and seabed space where species mostly perform their behavioral activities. We described three kinds of morphological designs in relation to a benthopelagic, demersal and reef-associated habit. The six subfamily groups were morphologically well distinguishable and the cladogram relative to Mahalanobis' morphological distances was compared with those proposed by other authors. We also quantified the phylogenetic relationship among the different subfamilies based on the analysis of shape in relation to trophic ecology, confirming the observations of the authors. (c) 2009 Wiley-Liss, Inc.

  5. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, Jamillah Amer [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Prajitno, Djoko Hadi [Nuclear Technology Center for Materials and Radiometry, National Nuclear Energy, Bandung 40132 (Indonesia); Saidin, Syafiqah [Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Nur, Hadi, E-mail: hadi@kimia.fs.utm.my [Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Department of Physics, Institut Sains dan Teknologi Nasional, Jl. Moh. Kahfi II, Jagakarsa, Jakarta Selatan 12640 (Indonesia); Hermawan, Hendra, E-mail: hendra.hermawan@gmn.ulaval.ca [Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University, Québec City G1V 0A6 (Canada)

    2015-06-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone–implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12 h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12 h milling in the presence of HPO{sub 4}{sup 2−} ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12 h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis - Highlights: • Improvement of mechanical properties of HAp bioceramics by mechanosynthesis method • Structure–property relationship of iron–hydroxyapatite ceramic matrix nanocomposite • Milling time influenced the properties of iron–hydroxyapatite ceramic matrix nanocomposite.

  6. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method

    International Nuclear Information System (INIS)

    Nordin, Jamillah Amer; Prajitno, Djoko Hadi; Saidin, Syafiqah; Nur, Hadi; Hermawan, Hendra

    2015-01-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone–implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12 h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12 h milling in the presence of HPO 4 2− ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12 h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis - Highlights: • Improvement of mechanical properties of HAp bioceramics by mechanosynthesis method • Structure–property relationship of iron–hydroxyapatite ceramic matrix nanocomposite • Milling time influenced the properties of iron–hydroxyapatite ceramic matrix nanocomposite

  7. Towards cheminformatics-based estimation of drug therapeutic index: Predicting the protective index of anticonvulsants using a new quantitative structure-index relationship approach.

    Science.gov (United States)

    Chen, Shangying; Zhang, Peng; Liu, Xin; Qin, Chu; Tao, Lin; Zhang, Cheng; Yang, Sheng Yong; Chen, Yu Zong; Chui, Wai Keung

    2016-06-01

    The overall efficacy and safety profile of a new drug is partially evaluated by the therapeutic index in clinical studies and by the protective index (PI) in preclinical studies. In-silico predictive methods may facilitate the assessment of these indicators. Although QSAR and QSTR models can be used for predicting PI, their predictive capability has not been evaluated. To test this capability, we developed QSAR and QSTR models for predicting the activity and toxicity of anticonvulsants at accuracy levels above the literature-reported threshold (LT) of good QSAR models as tested by both the internal 5-fold cross validation and external validation method. These models showed significantly compromised PI predictive capability due to the cumulative errors of the QSAR and QSTR models. Therefore, in this investigation a new quantitative structure-index relationship (QSIR) model was devised and it showed improved PI predictive capability that superseded the LT of good QSAR models. The QSAR, QSTR and QSIR models were developed using support vector regression (SVR) method with the parameters optimized by using the greedy search method. The molecular descriptors relevant to the prediction of anticonvulsant activities, toxicities and PIs were analyzed by a recursive feature elimination method. The selected molecular descriptors are primarily associated with the drug-like, pharmacological and toxicological features and those used in the published anticonvulsant QSAR and QSTR models. This study suggested that QSIR is useful for estimating the therapeutic index of drug candidates. Copyright © 2016. Published by Elsevier Inc.

  8. Support vector regression-guided unravelling: antioxidant capacity and quantitative structure-activity relationship predict reduction and promotion effects of flavonoids on acrylamide formation

    Science.gov (United States)

    Huang, Mengmeng; Wei, Yan; Wang, Jun; Zhang, Yu

    2016-09-01

    We used the support vector regression (SVR) approach to predict and unravel reduction/promotion effect of characteristic flavonoids on the acrylamide formation under a low-moisture Maillard reaction system. Results demonstrated the reduction/promotion effects by flavonoids at addition levels of 1-10000 μmol/L. The maximal inhibition rates (51.7%, 68.8% and 26.1%) and promote rates (57.7%, 178.8% and 27.5%) caused by flavones, flavonols and isoflavones were observed at addition levels of 100 μmol/L and 10000 μmol/L, respectively. The reduction/promotion effects were closely related to the change of trolox equivalent antioxidant capacity (ΔTEAC) and well predicted by triple ΔTEAC measurements via SVR models (R: 0.633-0.900). Flavonols exhibit stronger effects on the acrylamide formation than flavones and isoflavones as well as their O-glycosides derivatives, which may be attributed to the number and position of phenolic and 3-enolic hydroxyls. The reduction/promotion effects were well predicted by using optimized quantitative structure-activity relationship (QSAR) descriptors and SVR models (R: 0.926-0.994). Compared to artificial neural network and multi-linear regression models, SVR models exhibited better fitting performance for both TEAC-dependent and QSAR descriptor-dependent predicting work. These observations demonstrated that the SVR models are competent for predicting our understanding on the future use of natural antioxidants for decreasing the acrylamide formation.

  9. Atomic force microscopy study of the structure function relationships of the biofilm-forming bacterium Streptococcus mutans

    Science.gov (United States)

    Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.

    2006-02-01

    Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.

  10. DFT calculations on spectroscopic and structural properties of a NLO chromophore

    Science.gov (United States)

    Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf

    2016-03-01

    The molecular geometry optimization, vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole as potential nonlinear optical (NLO) material were calculated using density functional theory (DFT) HSEh1PBE method with 6-311G(d,p) basis set. The best of our knowledge, this study have not been reported to date. Additionally, a detailed vibrational study was performed on the basis of potential energy distribution (PED) using VEDA program. It is noteworthy that NMR chemical shifts are quite useful for understanding the relationship between the molecular structure and electronic properties of molecules. The computed IR and NMR spectra were used to determine the types of the experimental bands observed. Predicted values of structural and spectroscopic parameters of the chromophore were compared with each other so as to display the effects of the different substituents on the spectroscopic and structural properties. Obtained data showed that there is an agreement between the predicted and experimental data.

  11. FOOD PROCESSING TECHNOLOGY AS A MEDIATOR OF FUNCTIONALITY. STRUCTURE-PROPERTY-PROCESS RELATIONSHIPS

    Directory of Open Access Journals (Sweden)

    Ester Betoret

    2015-02-01

    Full Text Available During the last years, the food industry has been facing technical and economic changes both in society and in the food processing practices, paying high attention to food products that meet the consumers´ demands. In this direction, the study areas in food process and products have evolved mainly from safety to other topics such as quality, environment or health. The improvement of the food products is now directed towards ensuring nutritional and specific functional benefits. Regarding the processes evolution, they are directed to ensure the quality and safety of environmentally friendly food products produced optimizing the use of resources, minimally affecting or even enhancing their nutritional and beneficial characteristics. The product structure both in its raw form and after processing plays an important role maintaining, enhancing and delivering the bioactive compounds in the appropriate target within the organism. The aim of this review is to make an overview on some synergistic technologies that can constitute a technological process to develop functional foods, enhancing the technological and/or nutritional functionality of the food products in which they are applied. More concretely, the effect of homogenization, vacuum impregnation and drying operations on bioactive compounds have been reviewed, focusing on the structure changes produced and its relationship on the product functionality, as well as on the parameters and the strategies used to quantify and increase the achieved functionality.

  12. γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications.

    Science.gov (United States)

    Castellano, Immacolata; Merlino, Antonello

    2012-10-01

    γ-Glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are involved in glutathione metabolism and play critical roles in antioxidant defense, detoxification, and inflammation processes. Moreover, γ-GTs have been recently found to be involved in many physiological disorders, such as Parkinson's disease and diabetes. In this review, the main biochemical and structural properties of γ-GTs isolated from different sources, as well as their conformational stability and mechanism of catalysis, are described and examined with the aim of contributing to the discussion on their structure-function relationships. Possible applications of γ-glutamyltranspeptidases in different fields of biotechnology and medicine are also discussed.

  13. On the relationship between residue structural environment and sequence conservation in proteins.

    Science.gov (United States)

    Liu, Jen-Wei; Lin, Jau-Ji; Cheng, Chih-Wen; Lin, Yu-Feng; Hwang, Jenn-Kang; Huang, Tsun-Tsao

    2017-09-01

    Residues that are crucial to protein function or structure are usually evolutionarily conserved. To identify the important residues in protein, sequence conservation is estimated, and current methods rely upon the unbiased collection of homologous sequences. Surprisingly, our previous studies have shown that the sequence conservation is closely correlated with the weighted contact number (WCN), a measure of packing density for residue's structural environment, calculated only based on the C α positions of a protein structure. Moreover, studies have shown that sequence conservation is correlated with environment-related structural properties calculated based on different protein substructures, such as a protein's all atoms, backbone atoms, side-chain atoms, or side-chain centroid. To know whether the C α atomic positions are adequate to show the relationship between residue environment and sequence conservation or not, here we compared C α atoms with other substructures in their contributions to the sequence conservation. Our results show that C α positions are substantially equivalent to the other substructures in calculations of various measures of residue environment. As a result, the overlapping contributions between C α atoms and the other substructures are high, yielding similar structure-conservation relationship. Take the WCN as an example, the average overlapping contribution to sequence conservation is 87% between C α and all-atom substructures. These results indicate that only C α atoms of a protein structure could reflect sequence conservation at the residue level. © 2017 Wiley Periodicals, Inc.

  14. Cellulose nanomaterials review: structure, properties and nanocomposites

    Science.gov (United States)

    Robert J. Moon; Ashlie Martini; John Nairn; John Simonsen; Jeff Youngblood

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The...

  15. Supramolecular structure of jackfruit seed starch and its relationship with digestibility and physicochemical properties.

    Science.gov (United States)

    Chen, Jin; Liang, Yi; Li, Xiaoxi; Chen, Ling; Xie, Fengwei

    2016-10-05

    The influence of supramolecular structure on the physicochemical properties and digestibility of jackfruit seed starch (JSS) were investigated. Compared with maize and cassava starches (MS and CS), JSS had smaller granules and higher amylose content (JSS: 24.90%; CS: 16.68%; and MS: 22.42%), which contributed to higher gelatinization temperature (To: 81.11°C) and setback viscosity (548.9mPas). From scanning electron microscopy, the digestion of JSS was observed mainly at the granule surface. Due to its higher crystallinity (JSS: 30.6%; CS: 30.3%; and MS: 27.4%) and more ordered semi-crystalline lamellae, JSS had a high RS content (74.26%) and melting enthalpy (19.61J/g). In other words, the supramolecular structure of JSS extensively determined its digestibility and resistance to heat and mechanical shear treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The relationship between international trade and non-nutritional health outcomes: A systematic review of quantitative studies.

    Science.gov (United States)

    Burns, Darren K; Jones, Andrew P; Suhrcke, Marc

    2016-03-01

    Markets throughout the world have been reducing barriers to international trade and investment in recent years. The resulting increases in levels of international trade and investment have subsequently generated research interest into the potential population health impact. We present a systematic review of quantitative studies investigating the relationship between international trade, foreign direct investment and non-nutritional health outcomes. Articles were systematically collected from the SCOPUS, PubMed, EconLit and Web of Science databases. Due to the heterogeneous nature of the evidence considered, the 16 included articles were subdivided into individual level data analyses, selected country analyses and international panel analyses. Articles were then quality assessed using a tool developed as part of the project. Nine of the studies were assessed to be high quality, six as medium quality, and one as low quality. The evidence from the quantitative literature suggests that overall, there appears to be a beneficial association between international trade and population health. There was also evidence of the importance of foreign direct investment, yet a lack of research considering the direction of causality. Taken together, quantitative research into the relationship between trade and non-nutritional health indicates trade to be beneficial, yet this body of research is still in its infancy. Future quantitative studies based on this foundation will provide a stronger basis on which to inform relevant national and international institutions about the health consequences of trade policies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Processing-structure-properties relationships in PLA nanocomposite films

    Science.gov (United States)

    Di Maio, L.; Scarfato, P.; Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Incarnato, L.

    2014-05-01

    This work deals on the possibility to improve performances of PLA-based nanocomposite films, for packaging applications, through conveniently tuning materials and processing conditions in melt compounding technology. In particular, two types of polylactic acid and different types of filler selected from montmorillonites and bentonites families were used to prepare the hybrid systems by using a twin-screw extruder. The effect of biaxial drawing on morphology and properties of the nanocomposites, produced by film blowing, was investigated.

  18. Linear and Branched PEIs (Polyethylenimines and Their Property Space

    Directory of Open Access Journals (Sweden)

    Claudiu N. Lungu

    2016-04-01

    Full Text Available A chemical property space defines the adaptability of a molecule to changing conditions and its interaction with other molecular systems determining a pharmacological response. Within a congeneric molecular series (compounds with the same derivatization algorithm and thus the same brute formula the chemical properties vary in a monotonic manner, i.e., congeneric compounds share the same chemical property space. The chemical property space is a key component in molecular design, where some building blocks are functionalized, i.e., derivatized, and eventually self-assembled in more complex systems, such as enzyme-ligand systems, of which (physico-chemical properties/bioactivity may be predicted by QSPR/QSAR (quantitative structure-property/activity relationship studies. The system structure is determined by the binding type (temporal/permanent; electrostatic/covalent and is reflected in its local electronic (and/or magnetic properties. Such nano-systems play the role of molecular devices, important in nano-medicine. In the present article, the behavior of polyethylenimine (PEI macromolecules (linear LPEI and branched BPEI, respectively with respect to the glucose oxidase enzyme GOx is described in terms of their (interacting energy, geometry and topology, in an attempt to find the best shape and size of PEIs to be useful for a chosen (nanochemistry purpose.

  19. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    Science.gov (United States)

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  20. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Rao, D. Srinivasa; Valleti, Krishna; Joshi, S. V.; Janardhan, G. Ranga

    2011-01-01

    The physical and mechanical properties of yttria stabilized zirconia (YSZ) coatings deposited by the electron beam physical vapor deposition technique have been investigated by varying the key process variables such as vapor incidence angle and sample rotation speed. The tetragonal zirconia coatings formed under varying process conditions employed were found to have widely different surface and cross-sectional morphologies. The porosity, phase composition, planar orientation, hardness, adhesion, and surface residual stresses in the coated specimens were comprehensively evaluated to develop a correlation with the process variables. Under transverse scratch test conditions, the YSZ coatings exhibited two different crack formation modes, depending on the magnitude of residual stress. The influence of processing conditions on the coating deposition rate, column orientation angle, and adhesion strength has been established. Key relationships between porosity, hardness, and adhesion are also presented.

  1. Low-Dimensional Material: Structure-Property Relationship and Applications in Energy and Environmental Engineering

    Science.gov (United States)

    Xiao, Hang

    properties of P2S3 structure can be tuned by stacking into multilayer P2S3 structures, forming P2S3 nanoribbons or rolling into P2S3 nanotubes, expanding its potential applications for the emerging field of 2D electronics. Then we showed that the hydrolysis reaction is strongly affected by relative humidity. The hydrolysis of CO32- with n = 1-8 water molecules was investigated by ab initio method. For n = 1-5 water molecules, all the reactants follow a stepwise pathway to the transition state. For n = 6-8 water molecules, all the reactants undergo a direct proton transfer to the transition state with overall lower activation free energy. The activation free energy of the reaction is dramatically reduced from 10.4 to 2.4 kcal/mol as the number of water molecules increases from 1 to 6. Meanwhile, the degree of the hydrolysis of CO32- is significantly increased compared to the bulk water solution scenario. The incomplete hydration shells facilitate the hydrolysis of CO3 2- with few water molecules to be not only thermodynamically favorable but also kinetically favorable. We showed that the chemical kinetics is not likely to constrain the speed of CO2 air capture driven by the humidity-swing. (Abstract shortened by ProQuest.).

  2. Quantitative structure activity relationships (QSAR) for binary mixtures at non-equitoxic ratios based on toxic ratios-effects curves.

    Science.gov (United States)

    Tian, Dayong; Lin, Zhifen; Yin, Daqiang

    2013-01-01

    The present study proposed a QSAR model to predict joint effects at non-equitoxic ratios for binary mixtures containing reactive toxicants, cyanogenic compounds and aldehydes. Toxicity of single and binary mixtures was measured by quantifying the decrease in light emission from the Photobacterium phosphoreum for 15 min. The joint effects of binary mixtures (TU sum) can thus be obtained. The results showed that the relationships between toxic ratios of the individual chemicals and their joint effects can be described by normal distribution function. Based on normal distribution equations, the joint effects of binary mixtures at non-equitoxic ratios ( [Formula: see text]) can be predicted quantitatively using the joint effects at equitoxic ratios ( [Formula: see text]). Combined with a QSAR model of [Formula: see text]in our previous work, a novel QSAR model can be proposed to predict the joint effects of mixtures at non-equitoxic ratios ( [Formula: see text]). The proposed model has been validated using additional mixtures other than the one used for the development of the model. Predicted and observed results were similar (p>0.05). This study provides an approach to the prediction of joint effects for binary mixtures at non-equitoxic ratios.

  3. Quantitative vs. qualitative approaches to the electronic structure of solids

    International Nuclear Information System (INIS)

    Oliva, J.M.; Llunell, Miquel; Alemany, Pere; Canadell, Enric

    2003-01-01

    The usefulness of qualitative and quantitative theoretical approaches in solid state chemistry is discussed by considering three different types of problems: (a) the distribution of boron and carbon atoms in MB 2 C 2 (M=Ca, La, etc.) phases, (b) the band structure and Fermi surface of low-dimensional transition metal oxides and bronzes, and (c) the correlation between the crystal and electronic structure of the ternary nitride Ca 2 AuN

  4. Structurally-constrained relationships between cognitive states in the human brain.

    Directory of Open Access Journals (Sweden)

    Ann M Hermundstad

    2014-05-01

    Full Text Available The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.

  5. Estimation of thermophysical properties in the system Li-Pb

    International Nuclear Information System (INIS)

    Jauch, U.; Schulz, B.

    1986-01-01

    Based on the phase diagram and the knowledge of thermophysical properties data of alloys and intermetallic compounds in the Li-Pb system, quantitative relationships between several properties and between the properties in solid and liquid state are used: to interpret the results on thermophysical properties in the quasibinary system LiPb-Pb and to estimate unknown properties in the concentration range 100 > Li (at.%) > 50. (orig.)

  6. Structure-Property Relationships of Solid State Additive Manufactured Aluminum Alloy 2219 and Inconel 625

    Science.gov (United States)

    Rivera Almeyda, Oscar G.

    In this investigation, the processing-structure-property relations are correlated for solid state additively manufactured (SSAM) Inconel 625 (IN 625) and a SSAM aluminum alloy 2219 (AA2219). This is the first research of these materials processed by a new SSAM method called additive friction stir (AFS). The AFS process results in a refined grain structure by extruding solid rod through a rotating tool generating heat and severe plastic deformation. In the case of the AFS IN625, the IN625 alloy is known for exhibiting oxidation resistance and temperature mechanical stability, including strength and ductility. This study is the first to investigate the beneficial grain refinement and densification produced by AFS in IN625 that results in advantageous mechanical properties (YS, UTS, epsilonf) at both quasi-static and high strain rate. Electron Backscatter Diffraction (EBSD) observed dynamic recrystallization and grain refinement during the layer deposition in the AFS specimens, where the results identified fine equiaxed grain structures formed by dynamic recrystallization (DRX) with even finer grain structures forming at the layer interfaces. The EBSD quantified grains as fine as 0.27 microns in these interface regions while the average grain size was approximately 1 micron. Additionally, this is the first study to report on the strain rate dependence of AFS IN625 through quasi-static (QS) (0.001/s) and high strain rate (HR) (1500/s) tensile experiments using a servo hydraulic frame and a direct tension-Kolsky bar, respectively, which captured both yield and ultimate tensile strengths increasing as strain rate increased. Fractography performed on specimens showed a ductile fracture surface on both QS, and HR. Alternatively, the other AFS material system investigated in this study, AA2219, is mostly used for aerospace applications, specifically for rocket fuel tanks. EBSD was performed in the cross-section of the AA2219, also exhibiting DRX with equiaxed microstructure

  7. Structure-property relationships of mullite-SiC-Al{sub 2}O{sub 3}–ZrO{sub 2} composites developed during carbothermal reduction of aluminosilicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Seifollahzadeh, P., E-mail: Pseifollahzadeh.mat@stu.yazd.ac.ir; Kalantar, M.; Ghasemi, S.S.

    2015-10-25

    Evolution of SiC and ZrO{sub 2} in the matrix of Al{sub 2}O{sub 3} or mullite have been reported to enhance a higher toughness, good thermal shock resistance (lowering thermal expansion and improving thermal conductivity) and improved creep resistance of composite materials. In this study, the structure-property relationships of mullite-Al{sub 2}O{sub 3} matrix composites have been investigated in conjunction with the evolution of reinforcing phases such as SiC–ZrO{sub 2} by an economical heat treatment process called carbothermal reduction of inorganic minerals (Kaolinite, Andalusite, Zircon). The influence of starting materials in relation with the variation in molar ratio of C/SiO{sub 2} on the phase composition, microstructures, physical and mechanical properties have been studied. Light microscopy has been supplemented with scanning electron microscopy, XRD analysis, differential thermal and thermal gravity analysis to follow the structure-property relationships. The experimental results show that with increasing of C/SiO{sub 2} ratio in starting materials, very fine SiC whiskers have been formed in the microstructures. Moreover, the densification and strength are considerable higher for ZrO{sub 2} + SiC containing composites in comparison to that of only SiC added ones. Furthermore, it has been found that the appropriate ratio of C/SiO{sub 2} with the associated firing temperature to develop a higher densification and SiC crystallization have been related to the 3.5, 1550 °C for kaolinite, 3.5, 1450 °C for zircon and 5.5, 1600 °C for andalusite containing composite samples, respectively. - Highlights: • In-situ formation of SiC whiskers in matrix of alumina + mullite composites. • Advantage of availability, abundance and economical for starting materials. • Lack of environmental problems in comparable of utilization of whiskers directly. • A mixture of coke and alumina as a protective layer instead of inert atmosphere. • Fabrication of advanced

  8. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues.

    Directory of Open Access Journals (Sweden)

    Josiah Johnston

    2008-07-01

    Full Text Available Aging is associated with functional and structural declines in many body systems, even in the absence of underlying disease. In particular, skeletal muscles experience severe declines during aging, a phenomenon termed sarcopenia. Despite the high incidence and severity of sarcopenia, little is known about contributing factors and development. Many studies focus on functional aspects of aging-related tissue decline, while structural details remain understudied. Traditional approaches for quantifying structural changes have assessed individual markers at discrete intervals. Such approaches are inadequate for the complex changes associated with aging. An alternative is to consider changes in overall morphology rather than in specific markers. We have used this approach to quantitatively track tissue architecture during adulthood and aging in the C. elegans pharynx, the neuromuscular feeding organ. Using pattern recognition to analyze aged-grouped pharynx images, we identified discrete step-wise transitions between distinct morphologies. The morphology state transitions were maintained in mutants with pharynx neurotransmission defects, although the pace of the transitions was altered. Longitudinal measurements of pharynx function identified a predictive relationship between mid-life pharynx morphology and function at later ages. These studies demonstrate for the first time that adult tissues undergo distinct structural transitions reflecting postdevelopmental events. The processes that underlie these architectural changes may contribute to increased disease risk during aging, and may be targets for factors that alter the aging rate. This work further demonstrates that pattern analysis of an image series offers a novel and generally accessible approach for quantifying morphological changes and identifying structural biomarkers.

  9. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues.

    Science.gov (United States)

    Johnston, Josiah; Iser, Wendy B; Chow, David K; Goldberg, Ilya G; Wolkow, Catherine A

    2008-07-30

    Aging is associated with functional and structural declines in many body systems, even in the absence of underlying disease. In particular, skeletal muscles experience severe declines during aging, a phenomenon termed sarcopenia. Despite the high incidence and severity of sarcopenia, little is known about contributing factors and development. Many studies focus on functional aspects of aging-related tissue decline, while structural details remain understudied. Traditional approaches for quantifying structural changes have assessed individual markers at discrete intervals. Such approaches are inadequate for the complex changes associated with aging. An alternative is to consider changes in overall morphology rather than in specific markers. We have used this approach to quantitatively track tissue architecture during adulthood and aging in the C. elegans pharynx, the neuromuscular feeding organ. Using pattern recognition to analyze aged-grouped pharynx images, we identified discrete step-wise transitions between distinct morphologies. The morphology state transitions were maintained in mutants with pharynx neurotransmission defects, although the pace of the transitions was altered. Longitudinal measurements of pharynx function identified a predictive relationship between mid-life pharynx morphology and function at later ages. These studies demonstrate for the first time that adult tissues undergo distinct structural transitions reflecting postdevelopmental events. The processes that underlie these architectural changes may contribute to increased disease risk during aging, and may be targets for factors that alter the aging rate. This work further demonstrates that pattern analysis of an image series offers a novel and generally accessible approach for quantifying morphological changes and identifying structural biomarkers.

  10. Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts

    Science.gov (United States)

    Pretzer, Lori A.

    Transition metal nanomaterials are used to catalyze many chemical reactions, including those key to environmental, medicinal, and petrochemical fields. Improving their catalytic properties and lifetime would have significant economic and environmental rewards. Potentially expedient options to make such advancements are to alter the shape, size, or composition of transition metal nanocatalysts. This work investigates the relationships between structure and catalytic properties of synthesized Au, Pd-on-Au, and Au-enzyme model transition metal nanocatalysts. Au and Pd-on-Au nanomaterials were studied due to their wide-spread application and structure-dependent electronic and geometric properties. The goal of this thesis is to contribute design procedures and synthesis methods that enable the preparation of more efficient transition metal nanocatalysts. The influence of the size and composition of Pd-on-Au nanoparticles (NPs) was systematically investigated and each was found to affect the catalyst's surface structure and catalytic properties. The catalytic hydrodechlorination of trichloroethene and reduction of 4-nitrophenol by Pd-on-Au nanoparticles were investigated as these reactions are useful for environmental and pharmaceutical synthesis applications, respectively. Structural characterization revealed that the dispersion and oxidation state of surface Pd atoms are controlled by the Au particle size and concentration of Pd. These structural changes are correlated with observed Pd-on-Au NP activities for both probe reactions, providing new insight into the structure-activity relationships of bimetallic nanocatalysts. Using the structure-dependent electronic properties of Au NPs, a new type of light-triggered biocatalyst was prepared and used to remotely control a model biochemical reaction. This biocatalyst consists of a model thermophilic glucokinase enzyme covalently attached to the surface of Au nanorods. The rod-like shape of the Au nanoparticles made the

  11. Structure and Structure-activity Relationship of Functional Organic Molecules

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Research theme The group is made up of junior scientists from the State Key Laboratory of Elemento-organic Chemistry, Nankai University.The scientists focus their studis on the structure and structure-activity relationship of functional organic molecules not only because it has been the basis of their research, but also because the functional study of organic compounds is now a major scientific issue for organic chemists around the world.

  12. The influence of R and S configurations of a series of amphetamine derivatives on quantitative structure-activity relationship models

    Energy Technology Data Exchange (ETDEWEB)

    Fresqui, Maira A.C., E-mail: maira@iqsc.usp.br [Institute of Chemistry of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-carlense, 400, POB 780, 13560-970 Sao Carlos, SP (Brazil); Ferreira, Marcia M.C., E-mail: marcia@iqm.unicamp.br [Institute of Chemistry, University of Campinas - UNICAMP, POB 6154, 13083-970 Campinas, SP (Brazil); Trsic, Milan, E-mail: cra612@gmail.com [Institute of Chemistry of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-carlense, 400, POB 780, 13560-970 Sao Carlos, SP (Brazil)

    2013-01-08

    Highlights: Black-Right-Pointing-Pointer The QSAR model is not dependent of ligand conformation. Black-Right-Pointing-Pointer Amphetamines were analyzed by quantum chemical, steric and hydrophobic descriptors. Black-Right-Pointing-Pointer CHELPG atomic charges on the benzene ring are one of the most important descriptors. Black-Right-Pointing-Pointer The PLS models built were extensively validated. Black-Right-Pointing-Pointer Manual docking supports the QSAR results by pi-pi stacking interactions. - Abstract: Chiral molecules need special attention in drug design. In this sense, the R and S configurations of a series of thirty-four amphetamines were evaluated by quantitative structure-activity relationship (QSAR). This class of compounds has antidepressant, anti-Parkinson and anti-Alzheimer effects against the enzyme monoamine oxidase A (MAO A). A set of thirty-eight descriptors, including electronic, steric and hydrophobic ones, were calculated. Variable selection was performed through the correlation coefficients followed by the ordered predictor selection (OPS) algorithm. Six descriptors (CHELPG atomic charges C3, C4 and C5, electrophilicity, molecular surface area and log P) were selected for both configurations and a satisfactory model was obtained by PLS regression with three latent variables with R{sup 2} = 0.73 and Q{sup 2} = 0.60, with external predictability Q{sup 2} = 0.68, and R{sup 2} = 0.76 and Q{sup 2} = 0.67 with external predictability Q{sup 2} = 0.50, for R and S configurations, respectively. To confirm the robustness of each model, leave-N-out cross validation (LNO) was carried out and the y-randomization test was used to check if these models present chance correlation. Moreover, both automated or a manual molecular docking indicate that the reaction of ligands with the enzyme occurs via pi-pi stacking interaction with Tyr407, inclined face-to-face interaction with Tyr444, while aromatic hydrogen-hydrogen interactions with Tyr197 are preferable

  13. The relationship between energy consumption structure, economic structure and energy intensity in China

    International Nuclear Information System (INIS)

    Feng Taiwen; Sun Linyan; Zhang Ying

    2009-01-01

    This paper investigates the long-run equilibrium relationships, temporal dynamic relationships and causal relationships between energy consumption structure, economic structure and energy intensity in China. Time series variables over the periods from 1980 to 2006 are employed in empirical tests. Cointegration tests suggest that these three variables tend to move together in the long-run. In addition, Granger causality tests indicate that there is a unidirectional causality running from energy intensity to economic structure but not vice versa. Impulse response analysis provides reasonable evidences that one shock of the three variables will cause the periods of destabilized that followed. However, the impact of the energy consumption structure shock on energy intensity and the impact of the economic structure shock on energy consumption structure seem to be rather marginal. The findings have significant implications from the point of view of energy conservation and economic development. In order to decrease energy intensity, Chinese government must continue to reduce the proportion of coal in energy consumption, increase the utilization efficiency of coal and promote the upgrade of economic structure. Furthermore, a full analysis of factors that may relate to energy intensity (e.g. energy consumption structure, economic structure) should be conducted before making energy policies.

  14. Assessment of the relationships between morphometric characteristics of relief with quantitative and qualitative characteristics of forests using ASTER and SRTM digital terrain models

    Directory of Open Access Journals (Sweden)

    D. M. Chernikhovsky

    2017-06-01

    Full Text Available In the article are shown results of assessment of relationships between quantitative and qualitative characteristics of forests and morphometric characteristics of relief on an example model plot in Nanayskoe forest district of Khabarovsk Territory. The relevance of the investigation is connected with need for improvement of the system of forest evaluation operations in the Russian Federation, including with use of the landscape approach. The tasks of the investigation were assessment of relationships between characteristics of relief and characteristics of forest vegetation cover on different levels of forest management; evaluation of morphometric characteristics of relief are important for structure and productivity of forests; comparison of the results obtained through the use of digital terrain models ASTER and SRTM. Geoinformatic projects were formed for a model plot on the basis of digital terrain models and data of forest mensuration and State (National Forest Inventory. On the basis of the developed method with use geoinformatic technologies were estimated morphometric characteristics of relief (average height, standard deviation of height, entropy, exposition and gradient of slopes, indexes of ruggedness and roughness, quantitative and qualitative characteristics of forests. The multifactor regression analysis, where characteristics of forests (as dependent variables and morphometric characteristics of relief (as independent variables were used, have been done. As a result of research, the set of morphometric characteristics of relief able to influence to variability of quantitative and qualitative characteristics of forests was identified. The set of linear regression equations able to explain 30–50 % of variability of dependent variables was obtained. The regression equations, obtained on base of digital terrain models ASTER and SRTM, comparable to each other in strength of relations (coefficients of determination, but includes the

  15. A Quantitative Study of the Relationship between Leadership Practice and Strategic Intentions to Use Cloud Computing

    Science.gov (United States)

    Castillo, Alan F.

    2014-01-01

    The purpose of this quantitative correlational cross-sectional research study was to examine a theoretical model consisting of leadership practice, attitudes of business process outsourcing, and strategic intentions of leaders to use cloud computing and to examine the relationships between each of the variables respectively. This study…

  16. Using nonlinearity and spatiotemporal property modulation to control effective structural properties: dynamic rods

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Blekhman, Iliya I.

    2007-01-01

    What are the effective properties of a generally nonlinear material or structure, whose local properties are modulated in both space and time? It has been suggested to use spatiotemporal modulation of structural properties to create materials and structures with adjustable effective properties......, and to call these dynamic materials or spatiotemporal composites. Also, according to theoretical predictions, structural nonlinearity enhances the possibilities of achieving specific effective properties. For example, with an elastic rod having cubical elastic nonlinearities, it seems possible to control......, and exemplified. Then simple approximate analytical expressions are derived for the effective wave speed and natural frequencies for one-dimensional wave propagation in a nonlinear elastic rod, where the spatiotemporal modulation is imposed as a high-frequency standing wave, supposed to be given. Finally the more...

  17. External validation of structure-biodegradation relationship (SBR) models for predicting the biodegradability of xenobiotics.

    Science.gov (United States)

    Devillers, J; Pandard, P; Richard, B

    2013-01-01

    Biodegradation is an important mechanism for eliminating xenobiotics by biotransforming them into simple organic and inorganic products. Faced with the ever growing number of chemicals available on the market, structure-biodegradation relationship (SBR) and quantitative structure-biodegradation relationship (QSBR) models are increasingly used as surrogates of the biodegradation tests. Such models have great potential for a quick and cheap estimation of the biodegradation potential of chemicals. The Estimation Programs Interface (EPI) Suite™ includes different models for predicting the potential aerobic biodegradability of organic substances. They are based on different endpoints, methodologies and/or statistical approaches. Among them, Biowin 5 and 6 appeared the most robust, being derived from the largest biodegradation database with results obtained only from the Ministry of International Trade and Industry (MITI) test. The aim of this study was to assess the predictive performances of these two models from a set of 356 chemicals extracted from notification dossiers including compatible biodegradation data. Another set of molecules with no more than four carbon atoms and substituted by various heteroatoms and/or functional groups was also embodied in the validation exercise. Comparisons were made with the predictions obtained with START (Structural Alerts for Reactivity in Toxtree). Biowin 5 and Biowin 6 gave satisfactorily prediction results except for the prediction of readily degradable chemicals. A consensus model built with Biowin 1 allowed the diminution of this tendency.

  18. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    Energy Technology Data Exchange (ETDEWEB)

    Kuperman, R.G. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  19. Structure and Properties of Compressed Borate Glasses

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauer, U.; Behrens, H.

    While the influence of thermal history on the structure and properties of glasses has been thoroughly studied in the past century, the influence of pressure history has received considerably less attention. In this study, we investigate the pressure-induced changes in structure and properties in ......, hardness and crack formation from nanoindentation experiments, and overshoot in isobaric heat capacity from DSC experiments at ambient pressure. The influence of the initial boron speciation on the degree of changes in structure and properties will also be discussed....

  20. Cadmium phytotoxicity: Quantitative sensitivity relationships between classical endpoints and antioxidative enzyme biomarkers

    International Nuclear Information System (INIS)

    Rosa Correa, Albertina Xavier da; Roerig, Leonardo Rubi; Verdinelli, Miguel A.; Cotelle, Sylvie; Ferard, Jean-Francois; Radetski, Claudemir Marcos

    2006-01-01

    In this work, cadmium phytotoxicity and quantitative sensitivity relationships between different hierarchical endpoints in plants cultivated in a contaminated soil were studied. Thus, germination rate, biomass growth and antioxidative enzyme activity (i.e. superoxide dismutase, peroxidase, catalase and glutathione reductase) in three terrestrial plants (Avena sativa L., Brassica campestris L. cv. Chinensis, Lactuca sativa L. cv. hanson) were analyzed. Plant growth tests were carried out according to an International Standard Organization method and the results were analyzed by ANOVA followed by Williams' test. The concentration of Cd 2+ that had the smallest observed significant negative effect (LOEC) on plant biomass was 6.25, 12.5 and 50 mg Cd/kg dry soil for lettuce, oat and Chinese cabbage, respectively. Activity of all enzymes studied increased significantly compared to enzyme activity in plant controls. For lettuce, LOEC values (mg Cd/kg dry soil) for enzymic activity ranged from 0.05 (glutathione reductase) to 0.39 (catalase). For oat, LOEC values (mg Cd/kg dry soil) ranged from 0.19 (for superoxide dismutase and glutathione reductase) to 0.39 (for catalase and peroxidase). For Chinese cabbage, LOEC values (mg Cd/kg dry soil) ranged from 0.19 (peroxidase, catalase and glutathione reductase) to 0.39 (superoxide dismutase). Classical (i.e. germination and biomass) and biochemical (i.e. enzyme activity) endpoints were compared to establish a sensitivity ranking, which was: enzyme activity > biomass > germination rate. For cadmium-soil contamination, the determination of quantitative sensitivity relationships (QSR) between classical and antioxidative enzyme biomarkers showed that the most sensitive plant species have, generally, the lowest QSR values

  1. A structural basis for sustained bacterial adhesion: biomechanical properties of CFA/I pili.

    Science.gov (United States)

    Andersson, Magnus; Björnham, Oscar; Svantesson, Mats; Badahdah, Arwa; Uhlin, Bernt Eric; Bullitt, Esther

    2012-02-03

    Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease worldwide. Adhesion pili (or fimbriae), such as the CFA/I (colonization factor antigen I) organelles that enable ETEC to attach efficiently to the host intestinal tract epithelium, are critical virulence factors for initiation of infection. We characterized the intrinsic biomechanical properties and kinetics of individual CFA/I pili at the single-organelle level, demonstrating that weak external forces (7.5 pN) are sufficient to unwind the intact helical filament of this prototypical ETEC pilus and that it quickly regains its original structure when the force is removed. While the general relationship between exertion of force and an increase in the filament length for CFA/I pili associated with diarrheal disease is analogous to that of P pili and type 1 pili, associated with urinary tract and other infections, the biomechanical properties of these different pili differ in key quantitative details. Unique features of CFA/I pili, including the significantly lower force required for unwinding, the higher extension speed at which the pili enter a dynamic range of unwinding, and the appearance of sudden force drops during unwinding, can be attributed to morphological features of CFA/I pili including weak layer-to-layer interactions between subunits on adjacent turns of the helix and the approximately horizontal orientation of pilin subunits with respect to the filament axis. Our results indicate that ETEC CFA/I pili are flexible organelles optimized to withstand harsh motion without breaking, resulting in continued attachment to the intestinal epithelium by the pathogenic bacteria that express these pili. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Hybrid carrageenans: isolation, chemical structure, and gel properties.

    Science.gov (United States)

    Hilliou, Loic

    2014-01-01

    Hybrid carrageenan is a special class of carrageenan with niche application in food industry. This polysaccharide is extracted from specific species of seaweeds belonging to the Gigartinales order. This chapter focuses on hybrid carrageenan showing the ability to form gels in water, which is known in the food industry as weak kappa or kappa-2 carrageenan. After introducing the general chemical structure defining hybrid carrageenan, the isolation of the polysaccharide will be discussed focusing on the interplay between seaweed species, extraction parameters, and the hybrid carrageenan chemistry. Then, the rheological experiments used to determine the small and large deformation behavior of gels will be detailed before reviewing the relationships between gel properties and hybrid carrageenan chemistry. © 2014 Elsevier Inc. All rights reserved.

  3. Structure-to-property relationships in addition cured polymers. II - Resin Tg and composite initial mechanical properties of norbornenyl cured polyimide resins

    Science.gov (United States)

    Alston, William B.

    1986-01-01

    PRM (polymerization of monomeric reactants) methodology was used to prepare thirty different polyimide oligomeric resins. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on glass transition temperature (Tg) of the cured/postcured resins. An almost linear correlation of Tg versus molecular distance between the crosslinks was observed. An attempt was made to correlate Tg with initial mechanical properties (flexural strength and interlaminar shear strength) of unidirectional graphite fiber composites prepared with these resins. However, the scatter in mechanical strength data prevented obtaining as clear a correlation as was observed for the structural modification/crosslink distance versus Tg. Instead, only a range of composite mechanical properties was obtained at the test temperatures studied (room temperature, 288 and 316 C). Perhaps more importantly, what did become apparent during the attempted correlation study was: (1) that PMR methodology could be used to prepare composites from resins that contain a wide variety of monomer modifications, and (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins selected were melt processable.

  4. Structure–property relationships of electroluminescent polythiophenes

    Indian Academy of Sciences (India)

    A series of conjugated polythiophenes containing nitrogen-containing heterocycles as side chain, with differing substituent nature and linkage have been studied using quantum-chemical calculations. The optical properties of synthesized polymers were compared with that of model compounds with intricate structural ...

  5. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hao [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States)]. E-mail: hao.jiang@wpafb.af.mil; Hong Lianggou [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States); Venkatasubramanian, N. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Grant, John T. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Eyink, Kurt [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Wiacek, Kevin [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Fries-Carr, Sandra [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Enlow, Jesse [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Bunning, Timothy J. [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States)

    2007-02-26

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant ({epsilon} {sub r}) and dielectric loss (tan {delta}) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F {sub b}) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F{sub b} of 610 V/{mu}m, an {epsilon} {sub r} of 3.07, and a tan {delta} of 7.0 x 10{sup -3} at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss.

  6. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    International Nuclear Information System (INIS)

    Jiang Hao; Hong Lianggou; Venkatasubramanian, N.; Grant, John T.; Eyink, Kurt; Wiacek, Kevin; Fries-Carr, Sandra; Enlow, Jesse; Bunning, Timothy J.

    2007-01-01

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant (ε r ) and dielectric loss (tan δ) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F b ) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F b of 610 V/μm, an ε r of 3.07, and a tan δ of 7.0 x 10 -3 at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss

  7. The relationship of whole human vertebral body creep to geometric, microstructural, and material properties.

    Science.gov (United States)

    Oravec, Daniel; Kim, Woong; Flynn, Michael J; Yeni, Yener N

    2018-05-17

    Creep, the time dependent deformation of a structure under load, is an important viscoelastic property of bone and may play a role in the development of permanent deformity of the vertebrae in vivo leading to clinically observable spinal fractures. To date, creep properties and their relationship to geometric, microstructural, and material properties have not been described in isolated human vertebral bodies. In this study, a range of image-based measures of vertebral bone geometry, bone mass, microarchitecture and mineralization were examined in multiple regression models in an effort to understand their contribution to creep behavior. Several variables, such as measures of mineralization heterogeneity, average bone density, and connectivity density persistently appeared as significant effects in multiple regression models (adjusted r 2 : 0.17-0.56). Although further work is needed to identify additional tissue properties to fully describe the portion of variability not explained by these models, these data are expected to help understand mechanisms underlying creep and improve prediction of vertebral deformities that eventually progress to a clinically observable fracture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Power Conversion Efficiency of Arylamine Organic Dyes for Dye-Sensitized Solar Cells (DSSCs Explicit to Cobalt Electrolyte: Understanding the Structural Attributes Using a Direct QSPR Approach

    Directory of Open Access Journals (Sweden)

    Supratik Kar

    2016-12-01

    Full Text Available Post silicon solar cell era involves light-absorbing dyes for dye-sensitized solar systems (DSSCs. Therefore, there is great interest in the design of competent organic dyes for DSSCs with high power conversion efficiency (PCE to bypass some of the disadvantages of silicon-based solar cell technologies, such as high cost, heavy weight, limited silicon resources, and production methods that lead to high environmental pollution. The DSSC has the unique feature of a distance-dependent electron transfer step. This depends on the relative position of the sensitized organic dye in the metal oxide composite system. In the present work, we developed quantitative structure-property relationship (QSPR models to set up the quantitative relationship between the overall PCE and quantum chemical molecular descriptors. They were calculated from density functional theory (DFT and time-dependent DFT (TD-DFT methods as well as from DRAGON software. This allows for understanding the basic electron transfer mechanism along with the structural attributes of arylamine-organic dye sensitizers for the DSSCs explicit to cobalt electrolyte. The identified properties and structural fragments are particularly valuable for guiding time-saving synthetic efforts for development of efficient arylamine organic dyes with improved power conversion efficiency.

  9. Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): Structure and properties

    KAUST Repository

    Kelarakis, Antonios

    2010-01-01

    Structure-properties relationships in poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, clay nanocomposites are reported for the first time. Addition of organically modified clays to PVDF-HFP promotes an α to β transformation of the polymer crystals. The degree of transformation depends on the nature of the clay surface modifier and scales with the strength of the interactions between the clay and the polymer. The nanocomposites exhibit significant increases in elongation to failure compared to the neat copolymer. In addition, their dielectric permittivity is higher over a wide temperature range. Their mechanical and dielectric properties scale similar to the amount of the β phase present in the nanocomposites. © 2009 Elsevier Ltd. All rights reserved.

  10. Chemical structure and properties of low-molecular furin inhibitors

    Directory of Open Access Journals (Sweden)

    T. V. Osadchuk

    2016-12-01

    Full Text Available The review is devoted to the analysis of the relationship between a chemical structure and properties of low-molecular weight inhibitors of furin, the most studied proprotein convertase, which is involved in the development of some pathologies, such as oncologic diseases, viral and bacterial infections, etc. The latest data concerning the influence of peptides, pseudo-peptides, aromatic and heterocyclic compounds, some natural ones such as flavonoids, coumarins, and others on enzyme inactivation are considered. The power of furin inhibition is shown to rise with the increasing number of positively charged groups in the structure of these compounds. Peptidomimetics (Ki = 5-8 pM are shown to be the most effective furin inhibitors. The synthesized substances, however, have not been used in practical application yet. Nowadays it is very important to find more selective inhibitors, improve their stability, bioavailability and safety for the human organism.

  11. Process-structure-property relationships of micron thick gadolinium oxide films deposited by reactive electron beam-physical vapor deposition (EB-PVD)

    Science.gov (United States)

    Grave, Daniel A.

    Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while

  12. Illuminating the origins of spectral properties of green fluorescent proteins via proteochemometric and molecular modeling.

    Science.gov (United States)

    Nantasenamat, Chanin; Simeon, Saw; Owasirikul, Wiwat; Songtawee, Napat; Lapins, Maris; Prachayasittikul, Virapong; Wikberg, Jarl E S

    2014-10-15

    Green fluorescent protein (GFP) has immense utility in biomedical imaging owing to its autofluorescent nature. In efforts to broaden the spectral diversity of GFP, there have been several reports of engineered mutants via rational design and random mutagenesis. Understanding the origins of spectral properties of GFP could be achieved by means of investigating its structure-activity relationship. The first quantitative structure-property relationship study for modeling the spectral properties, particularly the excitation and emission maximas, of GFP was previously proposed by us some years ago in which quantum chemical descriptors were used for model development. However, such simplified model does not consider possible effects that neighboring amino acids have on the conjugated π-system of GFP chromophore. This study describes the development of a unified proteochemometric model in which the GFP chromophore and amino acids in its vicinity are both considered in the same model. The predictive performance of the model was verified by internal and external validation as well as Y-scrambling. Our strategy provides a general solution for elucidating the contribution that specific ligand and protein descriptors have on the investigated spectral property, which may be useful in engineering novel GFP variants with desired characteristics. Copyright © 2014 Wiley Periodicals, Inc.

  13. Quantitative NDE of Composite Structures at NASA

    Science.gov (United States)

    Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.

    2015-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.

  14. Well log and seismic data analysis for complex pore-structure carbonate reservoir using 3D rock physics templates

    Science.gov (United States)

    Li, Hongbing; Zhang, Jiajia

    2018-04-01

    The pore structure in heterogeneous carbonate rock is usually very complex. This complex pore system makes the relationship between the velocity and porosity of the rock highly scattered, so that for the classical two-dimensional rock physics template (2D RPT) it is not enough to accurately describe the quantitative relationship between the rock elastic parameters of this kind of reservoir and its porosity and water saturation. Therefore it is possible to attribute the effect of pore type to that of the porosity or water saturation, and leads to great deviations when applying such a 2D RPT to predict the porosity and water saturation in seismic reservoir prediction and hydrocarbon detection. This paper first presents a method to establish a new three-dimensional rock physics template (3D RPT) by integrating the Gassmann equations and the porous rock physics model, and use it to characterize the quantitative relation between rock elastic properties and the reservoir parameters including the pore aspect ratio, porosity and water saturation, and to predict these parameters from the known elastic properties. The test results on the real logging and seismic inversion data show that the 3D RPT can accurately describe the variations of elastic properties with the porosity, water saturation and pore-structure parameters, and effectively improve the accuracy of reservoir parameters prediction.

  15. Relationships between properties of Hanford area soils and the availability of 134Cs and 85Sr for uptake by cheatgrass and tumbleweed

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Routson, R.C.; Paine, D.; G.

    1978-10-01

    The relationships between plant root absorption mechanisms and basic soil parameters which effect the concentration of Sr and Cs, and analog ions in soil solution are reviewed. Based on these relationships, studies were undertaken to determine the relative availability of Cs and Sr for uptake by plants grown on Hanford area soils, and the feasibility of developing a predictive relationship between readily measurable soil parameters and plant availability of Cs and Sr. Concentration ratios were determined for cheatgrass and tumbleweed grown on Hanford area soils representing a range in properties (Burbank, Ritzville, Lickskillet, Rupert and Warden). Concentration ratios ranged from 0.0078 to 0.066 and 3.5 to 16 for 134 Cs and 85 Sr, respectively. Soils were analyzed for physical properties, mineralogy, extractable cations and extractable 134 Cs and 85 Sr. Simple correlation analyses showed Cs and Sr uptake in cheatgrass and Sr uptake by tumbleweed to be related to cation exchange capacity, and extractable Sr, Ba and Mg. However, in the case of Cs, this correlation may be coincidental since these divalent cations are not chemical analogs of Cs. Uptake of Cs by tumbleweed showed weak correlations with extractable and exchangeable K. Factor analysis and principle components analysis did not assist in further quantitation of the relationships between plant uptake and soil parameters

  16. Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit.

    Science.gov (United States)

    Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran

    2016-01-08

    One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ∼3  nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.

  17. Three-dimensional quantitative structure-activity relationship (3D QSAR) and pharmacophore elucidation of tetrahydropyran derivatives as serotonin and norepinephrine transporter inhibitors

    Science.gov (United States)

    Kharkar, Prashant S.; Reith, Maarten E. A.; Dutta, Aloke K.

    2008-01-01

    Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of -OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.

  18. Structures and properties of spatially distorted porphyrins

    International Nuclear Information System (INIS)

    Golubchikov, Oleg A; Kuvshinova, Elizaveta M; Pukhovskaya, Svetlana G

    2005-01-01

    The published data on the structures and properties of porphyrins with distorted aromatic macrocycles are generalised and analysed. Data on the crystal structures, spectra and kinetics of formation and dissociation of their coordination derivatives are summarised. It is demonstrated that the distortion of the planar structure of the tetrapyrrole core is one of the most efficient means of controlling spectral, physicochemical and coordination properties of these compounds.

  19. Interfacial assembly structures and nanotribological properties of saccharic acids.

    Science.gov (United States)

    Shi, Hongyu; Liu, Yuhong; Zeng, Qingdao; Yang, Yanlian; Wang, Chen; Lu, Xinchun

    2017-01-04

    Saccharides have been recognized as potential bio-lubricants because of their good hydration ability. However, the interfacial structures of saccharides and their derivatives are rarely studied and the molecular details of interaction mechanisms have not been well understood. In this paper, the supramolecular assembly structures of saccharic acids (including galactaric acid and lactobionic acid), mediated by hydrogen bonds O-HN and O-HO, were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing pyridine modulators and were explicitly revealed by using scanning tunneling microscopy (STM). Furthermore, friction forces were measured in the saccharic acid/pyridine co-assembled system by atomic force microscopy (AFM), revealing a larger value than a pristine saccharic acid system, which could be attributed to the stronger tip-assembled molecule interactions that lead to the higher potential energy barrier needed to overcome. The effort on saccharide-related supramolecular self-assembly and nanotribological behavior could provide a novel and promising pathway to explore the interaction mechanisms underlying friction and reveal the structure-property relationship at the molecular level.

  20. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation

    International Nuclear Information System (INIS)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-01-01

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance

  1. Determination of Basic Structure-Property Relations for Processing and Modeling in Advanced Nuclear Fuel: Microstructure Evolution and Mechanical Properties

    International Nuclear Information System (INIS)

    Wheeler, Kirk; Parra, Manuel; Peralta, Pedro

    2009-01-01

    The project objective is to study structure-property relations in solid solutions of nitrides and oxides with surrogate elements to simulate the behavior of fuels of inert matrix fuels of interest to the Advanced Fuel Cycle Initiative (AFCI), with emphasis in zirconium-based materials. Work with actual fuels will be carried out in parallel in collaboration with Los Alamos National Laboratory (LANL). Three key aspects will be explored: microstructure characterization through measurement of global texture evolution and local crystallographic variations using Electron Backscattering Diffraction (EBSD); determination of mechanical properties, including fracture toughness, quasi-static compression strength, and hardness, as functions of load and temperature, and, finally, development of structure-property relations to describe mechanical behavior of the fuels based on experimental data. Materials tested will be characterized to identify the mechanisms of deformation and fracture and their relationship to microstructure and its evolution. New aspects of this research are the inclusion of crystallographic information into the evaluation of fuel performance and the incorporation of statistical variations of microstructural variables into simplified models of mechanical behavior of fuels that account explicitly for these variations. The work is expected to provide insight into processing conditions leading to better fuel performance and structural reliability during manufacturing and service, as well as providing a simplified testing model for future fuel production

  2. Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bedford, Nicholas M.; Ramezani-Dakhel, Hadi; Slocik, Joseph M.; Briggs, Beverly D.; Ren, Yang; Frenkel, Anatoly I.; Petkov, Valeri; Heinz, Hendrik; Naik, Rajesh R.; Knecht, Mark R.

    2015-05-01

    Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date. As such, the application of peptide-enabled nanocatalysts remains limited to trial and error approaches. In this paper, a hybrid experimental and computational approach is introduced to systematically elucidate biomolecule-dependent structure/function relationships for peptide-capped Pd nanocatalysts. Synchrotron X-ray techniques were used to uncover substantial particle surface structural disorder, which was dependent upon the amino acid sequence of the peptide capping ligand. Nanocatalyst configurations were then determined directly from experimental data using reverse Monte Carlo methods and further refined using molecular dynamics simulation, obtaining thermodynamically stable peptide-Pd nanoparticle configurations. Sequence-dependent catalytic property differences for C-C coupling and olefin hydrogenation were then eluddated by identification of the catalytic active sites at the atomic level and quantitative prediction of relative reaction rates. This hybrid methodology provides a clear route to determine peptide-dependent structure/function relationships, enabling the generation of guidelines for catalyst design through rational tailoring of peptide sequences

  3. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships.

    Science.gov (United States)

    Gronau, Greta; Krishnaji, Sreevidhya T; Kinahan, Michelle E; Giesa, Tristan; Wong, Joyce Y; Kaplan, David L; Buehler, Markus J

    2012-11-01

    Tailored biomaterials with tunable functional properties are desirable for many applications ranging from drug delivery to regenerative medicine. To improve the predictability of biopolymer materials functionality, multiple design parameters need to be considered, along with appropriate models. In this article we review the state of the art of synthesis and processing related to the design of biopolymers, with an emphasis on the integration of bottom-up computational modeling in the design process. We consider three prominent examples of well-studied biopolymer materials - elastin, silk, and collagen - and assess their hierarchical structure, intriguing functional properties and categorize existing approaches to study these materials. We find that an integrated design approach in which both experiments and computational modeling are used has rarely been applied for these materials due to difficulties in relating insights gained on different length- and time-scales. In this context, multiscale engineering offers a powerful means to accelerate the biomaterials design process for the development of tailored materials that suit the needs posed by the various applications. The combined use of experimental and computational tools has a very broad applicability not only in the field of biopolymers, but can be exploited to tailor the properties of other polymers and composite materials in general. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Structural and quantitative aspects of radical formation after heavy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Dusemund, B; Hoffmann, A K; Weiland, B; Huettermann, J [Klinikum Homburg (Germany). Fachrichtung Biophysik

    1997-09-01

    In this report the authors present a summary of their recent attempts aiming at clarifying some basic structural and quantitative aspects of free radical formation in DNA constituents and in DNA as well as of product analysis from nucleotide model compounds. (orig./MG)

  5. Tribological properties of nanostripe surface structures-a design concept for improving tribological properties

    International Nuclear Information System (INIS)

    Miyake, K; Nakano, M; Korenaga, A; Mano, H; Ando, Y

    2010-01-01

    The tribological properties of nanostripe surface structures were investigated using a pin-on-plate tribometer in order to propose a design concept for improving the tribological properties. The authors used four kinds of nanostripe structures consisting of different combinations of materials (Fe-Au, C-SiC, Al-Al 2 O 3 and Al-Pt) fabricated by a process they had previously proposed. The frictional properties of the nanostripe structures depended on the materials that constituted the nanostripes. When the sliding direction in friction tests was parallel to the microgrooves, nanostripe structures remained on all surfaces even after friction tests. Based on the friction test results, the authors considered a design concept for nanostripe structures in tribological applications.

  6. Exploring functional relationships between post-fire soil water repellency, soil structure and physico-chemical properties

    Science.gov (United States)

    Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea

    2016-04-01

    Soil water repellency (WR) and aggregate stability (AS) are two soil properties that are typically modified after burning and impose significant influence on subsequent hydrological and geomorphological dynamics. The response of AS and soil WR to fire depends upon how fire has influenced other key soil properties (e.g. soil OM, mineralogy). Meanwhile, routine thinning of trees and woody vegetation may alter soil properties (e.g. structure and porosity, wettability) by use of heavy machinery and species selection. The study area is situated along a north-facing slope of Mount Carmel national park (Israel). The selected sites are presented as a continuum of management intensity and fire histories. To date, the natural baseline of soil WR has yet to be thoroughly assessed and must be investigated alongside associated soil aggregating parameters in order to understand its overall impact. This study examines (i) the natural baseline of soil WR and physical properties compared to those of disturbed sites in the immediate (controlled burn) and long-term (10-years), and (ii) the interactions of soil properties with different control factors (management, surface cover, seasonal-temporal, burn temperature, soil organic carbon (OC) and mineralogy) in Mediterranean calcareous soils. Analysis of surface soil samples before and after destruction of WR by heating (200-600°C) was implemented using a combination of traditional methods and infrared (IR) spectroscopy. Management and surface cover type conditioned the wettability, soil structure and porosity of soils in the field, although this largely did not affect the heat-induced changes observed in the lab. A positive correlation was observed along an increasing temperature gradient, with relative maxima of MWD and BD reached by most soils at the threshold of 400-500°C. Preliminary analyses of soil OC (MIR) and mineralogical composition (VIS-NIR) support existing research regarding: (i) the importance of soil OC quality and

  7. Sensitivity of quantitative UTE MRI to the biomechanical property of the temporomandibular joint disc

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Won C.; Biswas, Reni; Statum, Sheronda [University of California-San Diego, Department of Radiology, San Diego, CA (United States); Sah, Robert L. [University of California-San Diego, Department of Bioengineering, La Jolla, CA (United States); Chung, Christine B. [University of California-San Diego, Department of Radiology, San Diego, CA (United States); VA San Diego Healthcare System, Department of Radiology, San Diego, CA (United States)

    2014-09-15

    To quantify MR properties of discs from cadaveric human temporomandibular joints (TMJ) using quantitative conventional and ultrashort time-to-echo magnetic resonance imaging (UTE MRI) techniques and to corroborate regional variation in the MR properties with that of biomechanical indentation stiffness. This study was exempt from the institutional review board approval. Cadaveric (four donors, two females, 74 ± 10.7 years) TMJs were sliced (n = 14 slices total) sagittally and imaged using quantitative techniques of conventional spin echo T2 (SE T2), UTE T2*, and UTE T1rho. The discs were then subjected to biomechanical indentation testing, which is performed by compressing the tissue with the blunt end of a small solid cylinder. Regional variations in MR and indentation stiffness were correlated. TMJ of a healthy volunteer was also imaged to show in vivo feasibility. Using the ME SE T2 and the UTE T1rho techniques, a significant (each p < 0.0001) inverse relation between MR and indentation stiffness properties was observed for the data in the lower range of stiffness. However, the strength of correlation was significantly higher (p < 0.05) for UTE T1rho (R{sup 2} = 0.42) than SE T2 (R{sup 2} = 0.19) or UTE T2* (R{sup 2} = 0.02, p = 0.1) techniques. The UTE T1rho technique, applicable in vivo, facilitated quantitative evaluation of TMJ discs and showed a high sensitivity to biomechanical softening of the TMJ discs. With additional work, the technique may become a useful surrogate measure for loss of biomechanical integrity of TMJ discs reflecting degeneration. (orig.)

  8. Cadmium phytotoxicity: Quantitative sensitivity relationships between classical endpoints and antioxidative enzyme biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Rosa Correa, Albertina Xavier da [Centro de Ciencias Tecnologicas da Terra e do Mar, Universidade do Vale do Itajai, Rua Uruguai, 458, 88302-202 Itajai SC (Brazil); Roerig, Leonardo Rubi [Centro de Ciencias Tecnologicas da Terra e do Mar, Universidade do Vale do Itajai, Rua Uruguai, 458, 88302-202 Itajai SC (Brazil); Verdinelli, Miguel A. [Centro de Ciencias Tecnologicas da Terra e do Mar, Universidade do Vale do Itajai, Rua Uruguai, 458, 88302-202 Itajai SC (Brazil); Cotelle, Sylvie [Centre des Sciences de l' Environnement, Universite de Metz, 57000 Metz (France); Ferard, Jean-Francois [Centre des Sciences de l' Environnement, Universite de Metz, 57000 Metz (France); Radetski, Claudemir Marcos [Centro de Ciencias Tecnologicas da Terra e do Mar, Universidade do Vale do Itajai, Rua Uruguai, 458, 88302-202 Itajai SC (Brazil)]. E-mail: radetski@univali.br

    2006-03-15

    In this work, cadmium phytotoxicity and quantitative sensitivity relationships between different hierarchical endpoints in plants cultivated in a contaminated soil were studied. Thus, germination rate, biomass growth and antioxidative enzyme activity (i.e. superoxide dismutase, peroxidase, catalase and glutathione reductase) in three terrestrial plants (Avena sativa L., Brassica campestris L. cv. Chinensis, Lactuca sativa L. cv. hanson) were analyzed. Plant growth tests were carried out according to an International Standard Organization method and the results were analyzed by ANOVA followed by Williams' test. The concentration of Cd{sup 2+} that had the smallest observed significant negative effect (LOEC) on plant biomass was 6.25, 12.5 and 50 mg Cd/kg dry soil for lettuce, oat and Chinese cabbage, respectively. Activity of all enzymes studied increased significantly compared to enzyme activity in plant controls. For lettuce, LOEC values (mg Cd/kg dry soil) for enzymic activity ranged from 0.05 (glutathione reductase) to 0.39 (catalase). For oat, LOEC values (mg Cd/kg dry soil) ranged from 0.19 (for superoxide dismutase and glutathione reductase) to 0.39 (for catalase and peroxidase). For Chinese cabbage, LOEC values (mg Cd/kg dry soil) ranged from 0.19 (peroxidase, catalase and glutathione reductase) to 0.39 (superoxide dismutase). Classical (i.e. germination and biomass) and biochemical (i.e. enzyme activity) endpoints were compared to establish a sensitivity ranking, which was: enzyme activity > biomass > germination rate. For cadmium-soil contamination, the determination of quantitative sensitivity relationships (QSR) between classical and antioxidative enzyme biomarkers showed that the most sensitive plant species have, generally, the lowest QSR values.

  9. An Experimental Study for Quantitative Estimation of Rebar Corrosion in Concrete Using Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Md Istiaque Hasan

    2016-01-01

    Full Text Available Corrosion of steel rebar in reinforced concrete is one the most important durability issues in the service life of a structure. In this paper, an investigation is conducted to find out the relationship between the amount of reinforced concrete corrosion and GPR maximum positive amplitude. Accelerated corrosion was simulated in the lab by impressing direct current into steel rebar that was submerged in a 5% salt water solution. The amount of corrosion was varied in the rebars with different levels of mass loss ranging from 0% to 45%. The corroded rebars were then placed into three different oil emulsion tanks having different dielectric properties similar to concrete. The maximum amplitudes from the corroded bars were recorded. A linear relationship between the maximum positive amplitudes and the amount of corrosion in terms of percentage loss of area was observed. It was proposed that the relationship between the GPR maximum amplitude and the amount of corrosion can be used as a basis of a NDE technique of quantitative estimation of corrosion.

  10. Quantitative Characterization of Nanostructured Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Frank (Bud) Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to real-world materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  11. The relationship between structural and optical properties of Se-Ge-As glasses

    Science.gov (United States)

    Ghayebloo, M.; Rezvani, M.; Tavoosi, M.

    2018-05-01

    In this study, the structural and optical characterization of bulk Se-Ge-As glasses has been investigated. In this regards, six different Se60Ge40-xAsx (0 ≤ x ≤ 25) glasses were prepared by conventional melt quenching technique in quartz ampoule. The produced samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, differential thermal analysis (DTA), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. According to achieved results, fully amorphous phase can easily form in different Se-Ge-As systems. The thermal and optical characteristic of Se60Ge40-xAsx glasses shows anomalous behavior at 5 mol% of As for the glass transition temperature, transmittance, absorption edge, optical energy gap and Urbach energy. The highest glass transition temperature, transmittance, optical energy gap and Urbach energy properties were achieved in Se60Ge35As5 glass as a result of the highest connectivity of cations and anions in glass network.

  12. Toxicity Assessment of Atrazine and Related Triazine Compounds in the Microtox Assay, and Computational Modeling for Their Structure-Activity Relationship

    Directory of Open Access Journals (Sweden)

    Jerzy Leszczynski

    2000-10-01

    Full Text Available The triazines are a group of chemically similar herbicides including atrazine, cyanazine, and propazine, primarily used to control broadleaf weeds. About 64 to 80 million lbs of atrazine alone are used each year in the United States, making it one of the two most widely used pesticides in the country. All triazines are somewhat persistent in water and mobile in soil. They are among the most frequently detected pesticides in groundwater. They are considered as possible human carcinogens (Group C based on an increase in mammary gland tumors in female laboratory animals. In this research, we performed the Microtox Assay to investigate the acute toxicity of a significant number of triazines including atrazine, atraton, ametryne, bladex, prometryne, and propazine, and some of their degradation products including atrazine desethyl, atrazine deisopropyl, and didealkyled triazine. Tests were carried out as described by Azur Environmental [1]. The procedure measured the relative acute toxicity of triazines, producing data for the calculation of triazine concentrations effecting 50% reduction in bioluminescence (EC50s. Quantitative structure-activity relationships (QSAR were examined based on the molecular properties obtained from quantum mechanical predictions performed for each compound. Toxicity tests yielded EC50 values of 39.87, 273.20, 226.80, 36.96, 81.86, 82.68, 12.74, 11.80, and 78.50 mg/L for atrazine, propazine, prometryne, atraton, atrazine desethyl, atrazine deisopropyl, didealkylated triazine, ametryne, and bladex, respectively; indicating that ametryne was the most toxic chemical while propazine was the least toxic. QSAR evaluation resulted in a coefficient of determination (r2 of 0.86, indicating a good value of toxicity prediction based on the chemical structures/properties of tested triazines.

  13. Tannin structural elucidation and quantitative ³¹P NMR analysis. 1. Model compounds.

    Science.gov (United States)

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    Tannins and flavonoids are secondary metabolites of plants that display a wide array of biological activities. This peculiarity is related to the inhibition of extracellular enzymes that occurs through the complexation of peptides by tannins. Not only the nature of these interactions, but more fundamentally also the structure of these heterogeneous polyphenolic molecules are not completely clear. This first paper describes the development of a new analytical method for the structural characterization of tannins on the basis of tannin model compounds employing an in situ labeling of all labile H groups (aliphatic OH, phenolic OH, and carboxylic acids) with a phosphorus reagent. The ³¹P NMR analysis of ³¹P-labeled samples allowed the unprecedented quantitative and qualitative structural characterization of hydrolyzable tannins, proanthocyanidins, and catechin tannin model compounds, forming the foundations for the quantitative structural elucidation of a variety of actual tannin samples described in part 2 of this series.

  14. Morphological image processing for quantitative shape analysis of biomedical structures: effective contrast enhancement

    International Nuclear Information System (INIS)

    Kimori, Yoshitaka

    2013-01-01

    A contrast enhancement approach utilizing a new type of mathematical morphology called rotational morphological processing is introduced. The method is quantitatively evaluated and then applied to some medical images. Image processing methods significantly contribute to visualization of images captured by biomedical modalities (such as mammography, X-ray computed tomography, magnetic resonance imaging, and light and electron microscopy). Quantitative interpretation of the deluge of complicated biomedical images, however, poses many research challenges, one of which is to enhance structural features that are scarcely perceptible to the human eye. This study introduces a contrast enhancement approach based on a new type of mathematical morphology called rotational morphological processing. The proposed method is applied to medical images for the enhancement of structural features. The effectiveness of the method is evaluated quantitatively by the contrast improvement ratio (CIR). The CIR of the proposed method is 12.1, versus 4.7 and 0.1 for two conventional contrast enhancement methods, clearly indicating the high contrasting capability of the method

  15. A framework for analysing relationships between chemical composition and crystal structure in metal oxides

    International Nuclear Information System (INIS)

    Thomas, N.W.

    1991-01-01

    A computer program has been written to characterize the coordination polyhedra of metal cations in terms of their volumes and polyhedral elements, i.e. corners, edges and faces. The sharing of these corners, edges and faces between polyhedra is also quantitatively monitored. In order to develop the methodology, attention is focused on ternary oxides containing the Al 3+ ion, whose structures were retrieved from the Inorganic Crystal Structure Database (ICSD). This also permits an objective assessment of the applicability of Pauling's rules. The influence of ionic valence on the structures of these compounds is examined, by calculating electrostatic bond strengths. Although Pauling's second rule is not supported in detail, the calculation of oxygen-ion valence reveals a basic structural requirement, that the average calculated oxygen-ion valence in any ionic oxide structure is equal to 2. The analysis is further developed to define a general method for the prediction of novel chemical compositions likely to adopt a given desired structure. The polyhedral volumes of this structure are calculated, and use is made of standard ionic radii for cations in sixfold coordination. The electroneutrality principle is invoked to take valence considerations into account. This method can be used to guide the development of new compositions of ceramic materials with certain desirable physical properties. (orig.)

  16. Sensitivity of quantitative UTE MRI to the biomechanical property of the temporomandibular joint disc

    International Nuclear Information System (INIS)

    Bae, Won C.; Biswas, Reni; Statum, Sheronda; Sah, Robert L.; Chung, Christine B.

    2014-01-01

    To quantify MR properties of discs from cadaveric human temporomandibular joints (TMJ) using quantitative conventional and ultrashort time-to-echo magnetic resonance imaging (UTE MRI) techniques and to corroborate regional variation in the MR properties with that of biomechanical indentation stiffness. This study was exempt from the institutional review board approval. Cadaveric (four donors, two females, 74 ± 10.7 years) TMJs were sliced (n = 14 slices total) sagittally and imaged using quantitative techniques of conventional spin echo T2 (SE T2), UTE T2*, and UTE T1rho. The discs were then subjected to biomechanical indentation testing, which is performed by compressing the tissue with the blunt end of a small solid cylinder. Regional variations in MR and indentation stiffness were correlated. TMJ of a healthy volunteer was also imaged to show in vivo feasibility. Using the ME SE T2 and the UTE T1rho techniques, a significant (each p 2 = 0.42) than SE T2 (R 2 = 0.19) or UTE T2* (R 2 = 0.02, p = 0.1) techniques. The UTE T1rho technique, applicable in vivo, facilitated quantitative evaluation of TMJ discs and showed a high sensitivity to biomechanical softening of the TMJ discs. With additional work, the technique may become a useful surrogate measure for loss of biomechanical integrity of TMJ discs reflecting degeneration. (orig.)

  17. Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures

    Directory of Open Access Journals (Sweden)

    Amir Musa Abazari

    2015-11-01

    Full Text Available Experiments on micro- and nano-mechanical systems (M/NEMS have shown that their behavior under bending loads departs in many cases from the classical predictions using Euler-Bernoulli theory and Hooke’s law. This anomalous response has usually been seen as a dependence of the material properties on the size of the structure, in particular thickness. A theoretical model that allows for quantitative understanding and prediction of this size effect is important for the design of M/NEMS. In this paper, we summarize and analyze the five theories that can be found in the literature: Grain Boundary Theory (GBT, Surface Stress Theory (SST, Residual Stress Theory (RST, Couple Stress Theory (CST and Surface Elasticity Theory (SET. By comparing these theories with experimental data we propose a simplified model combination of CST and SET that properly fits all considered cases, therefore delivering a simple (two parameters model that can be used to predict the mechanical properties at the nanoscale.

  18. Localized Quantitative Characterization of Chemical Functionalization Effects on Adhesion Properties of SWNT

    Directory of Open Access Journals (Sweden)

    Hao Lu

    2011-01-01

    Full Text Available Chemical modification of single-walled carbon nanotubes (SWNT has been found to be an excellent method to promote SWNT dispersion, and possibly to improve interaction with matrices via covalent bonding. It is thus a quite promising technique to enhance the mechanical properties of SWNT-reinforced nanocomposites. However, the underlying mechanism of SWNT chemical functionalization effects on interfacial strength is not quantitatively understood, limiting their usefulness in the design of nanocomposites. In this work, an atomic force microscopy (AFM- based adhesive force mapping technique combined with a statistical analysis method were developed and implemented to study adhesive interactions of small SWNT bundles functionalized by amino, epoxide, and hydroperoxide groups as compared to SDS-treated SWNT in controlled environment. Finally, the importance of such localized quantitative measurements in SWNT-reinforced nanocomposites design and fabrication was also discussed.

  19. Applications of genetic algorithms on the structure-activity relationship analysis of some cinnamamides.

    Science.gov (United States)

    Hou, T J; Wang, J M; Liao, N; Xu, X J

    1999-01-01

    Quantitative structure-activity relationships (QSARs) for 35 cinnamamides were studied. By using a genetic algorithm (GA), a group of multiple regression models with high fitness scores was generated. From the statistical analyses of the descriptors used in the evolution procedure, the principal features affecting the anticonvulsant activity were found. The significant descriptors include the partition coefficient, the molar refraction, the Hammet sigma constant of the substituents on the benzene ring, and the formation energy of the molecules. It could be found that the steric complementarity and the hydrophobic interaction between the inhibitors and the receptor were very important to the biological activity, while the contribution of the electronic effect was not so obvious. Moreover, by construction of the spline models for these four principal descriptors, the effective range for each descriptor was identified.

  20. Thermomechanical properties of polymer nanocomposites: Exploring a unified relationship with planar polymer films

    Science.gov (United States)

    Bansal, Amitabh

    The thermal and mechanical response of polymers, which provide limitations to their practical use, are greatly improved by the addition of a small fraction of an inorganic nanofiller. However, the resulting changes in polymer properties are poorly understood, primarily due to the non-uniform spatial distribution of nanoparticles. This research explores the properties of polystyrene filed with silica nanoparticles and illustrates for the first time that the thermodynamic properties of "polymer nanocomposites" are quantitatively equivalent to the well-understood case of planar polymer films with a uniform thickness. These ideas are quantified by drawing a direct analogy between thin film thickness and an appropriate average ligament thickness measured using electron microscopy. The change in polymer glass transition temperatures with decreasing ligament thickness were found to be quantitatively equivalent to the corresponding thin film data. In combination with viscoelastic properties of the nanocomposites that are in quantitative agreement with data from thin films, these conclusions provide a facile means of understanding and predicting the thermomechanical properties and, potentially, the engineering properties of practically relevant polymer nanocomposites. Grafting of high molecular weight polystyrene onto the silica nanoparticles greatly improves the dispersion quality of nanofillers and also provides a means to tailor the thermo-mechanical properties in nanocomposites. It is concluded that the grafted polystyrene is akin to polymer brushes on flat surfaces. The mobility and stiffness of these grafted chains are expected to be low as compared to the free polymer. In this context a mechanism for the increase in glass transition is proposed: (1) the stiff grafted chains will tend to decrease mobility and thus increase glass transition, (2) the extent of interdigitation of the grafted polystyrene into the matrix will determine the extent to which the nanocomposite

  1. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.

    Science.gov (United States)

    Hattotuwagama, Channa K; Doytchinova, Irini A; Flower, Darren R

    2007-01-01

    Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method

  2. Structure and stoichiometry

    International Nuclear Information System (INIS)

    Gai, P.L.

    1992-01-01

    Structural and stoichiometric variations and their role in superconducting properties of bulk cuprate ceramics are elucidated. Atomic structure and chemistry of defect microstructures, including vacancy and interstitial defects, weak-link problems, structural modulations and coherent intergrowths leading to new structures are studies and quantitatively interpreted. They are shown to play a critical role in controlling hole concentration, critical currents and flux pinning. These phenomena underpin the solid state chemistry which determines the physical properties of the nonstoichiometric oxide superconductors. In this paper technological implications, synthesis of related novel materials and recent developments are discussed

  3. Rational design, synthesis, biologic evaluation, and structure-activity relationship studies of novel 1-indanone alpha(1)-adrenoceptor antagonists.

    Science.gov (United States)

    Li, Minyong; Xia, Lin

    2007-11-01

    In the present report, a novel series of 1-indanone alpha(1)-adrenoceptor antagonists were designed and synthesized based on 3D-pharmacophore model. Their in vitro alpha(1)-adrenoceptor antagonistic assay showed that three compounds (2a, 2m, and 2o) had similar or improved alpha(1)-adrenoceptor antagonistic activities relative to the positive control prazosin. Based on these results, a three-dimensional quantitative structure-activity relationship study was performed using a Self-Organizing Molecular Field Analysis method to provide insight for the future development of alpha(1)-adrenoceptor antagonists.

  4. Typological Structure of German Phraseology Outside Germany. Quantitative Parameters

    Directory of Open Access Journals (Sweden)

    О. Ya. Ostapovych

    2016-12-01

    Full Text Available The article deals with the modern theoretical concept in study of the variation of German phraseology abroad Germany. It is based on the synthesis of the theory of equal-righted pluricentrism with the new achievements of the cognitive linguistics. As a result the national state linguistic variant is considered as different from the regional, normatively non-codified and dialectal variation, a kind of cluster variant idiomatic thesaurus. The hypothesis of the structural isomorphy of the variant phraseology compared to the common German one has been empirically verified and vice versa - the hypothesis of the quantitative predominance in the Austrian phraseology of the structural model Adj+Sub under the Slavic linguistic influence has also been falsified.

  5. The influence of hydrostatic pressure on the electronic structure and optical properties of tin dioxide: A first-principle study

    International Nuclear Information System (INIS)

    Cai Lugang; Liu Famin; Zhang Dian; Zhong Wenwu

    2013-01-01

    The evolutions of electronic structure and optical properties of SnO 2 under hydrostatic pressure are studied theoretically using first-principle calculations. The calculation results show that the energy band gap of SnO 2 expands with increasing pressure, and the relationship between them can be fitted well by a second order polynomial expression. The complex dielectric functions are calculated and it is found that its imaginary part moves to higher photon energy levels with increasing pressure; meanwhile the static dielectric function constant decreases correspondingly. The dependences of other optical properties, such as the reflectivity spectra and loss function, on the hydrostatic pressure are also calculated and obtained, and the relationships between the optical properties and hydrostatic pressure are discussed and analyzed.

  6. The role of SANRAD facility in quantitative and morphological investigation

    International Nuclear Information System (INIS)

    Nshimirimana, Robert; Beer, Frikkie de; Radebe, Mabuti

    2011-01-01

    The SANRAD (South African Neutron Radiography) facility hosts a neutron/X-ray tomography system, which is extensively being utilized in non-destructive examination experiments where it is necessary to determine the properties (e.g. size, porosity, permeability and morphology) of samples. Those properties have a great importance in a variety of fields such as nuclear shielding, paleontology, geosciences, anatomy and reverse engineering studies. Quantitative and morphological investigations require a tomography system capable of producing tomograms with a high spatial resolution and free of artefacts where specialized imaging software is applied in the investigations. The SANRAD facility is used by the scientific and engineering communities in their qualitative, quantitative and morphological investigations. The capability of the SANRAD facility to investigate qualitatively and quantitatively the internal structure of several objects non-destructively is demonstrated with special emphasis on the precision and accuracy of the system.

  7. Chemical composition of the essential oils of Citrus sinensis cv. valencia and a quantitative structure-retention relationship study for the prediction of retention indices by multiple linear regression

    Directory of Open Access Journals (Sweden)

    Larijani Kambiz

    2011-01-01

    Full Text Available The chemical composition of the volatile fraction obtained by head-space solid phase microextraction (HS-SPME, single drop microextraction (SDME and the essential oil obtained by cold-press from the peels of C. sinensis cv. valencia were analyzed employing gas chromatography-flame ionization detector (GC-FID and gas chromatography-mass spectrometry (GC-MS. The main components were limonene (61.34 %, 68.27 %, 90.50 %, myrcene (17.55 %, 12.35 %, 2.50 %, sabinene (6.50 %, 7.62 %, 0.5 % and α-pinene (0 %, 6.65 %, 1.4 % respectively obtained by HS-SPME, SDME and cold-press. Then a quantitative structure-retention relationship (QSRR study for the prediction of retention indices (RI of the compounds was developed by application of structural descriptors and the multiple linear regression (MLR method. Principal components analysis was used to select the training set. A simple model with low standard errors and high correlation coefficients was obtained. The results illustrated that linear techniques such as MLR combined with a successful variable selection procedure are capable of generating an efficient QSRR model for prediction of the retention indices of different compounds. This model, with high statistical significance (R2 train = 0.983, R2 test = 0.970, Q2 LOO = 0.962, Q2 LGO = 0.936, REP(% = 3.00, could be used adequately for the prediction and description of the retention indices of the volatile compounds.

  8. Liquid chromatography coupled to quadrupole-time of flight tandem mass spectrometry based quantitative structure-retention relationships of amino acid analogues derivatized via n-propyl chloroformate mediated reaction.

    Science.gov (United States)

    Kritikos, Nikolaos; Tsantili-Kakoulidou, Anna; Loukas, Yannis L; Dotsikas, Yannis

    2015-07-17

    In the current study, quantitative structure-retention relationships (QSRR) were constructed based on data obtained by a LC-(ESI)-QTOF-MS/MS method for the determination of amino acid analogues, following their derivatization via chloroformate esters. Molecules were derivatized via n-propyl chloroformate/n-propanol mediated reaction. Derivatives were acquired through a liquid-liquid extraction procedure. Chromatographic separation is based on gradient elution using methanol/water mixtures from a 70/30% composition to an 85/15% final one, maintaining a constant rate of change. The group of examined molecules was diverse, including mainly α-amino acids, yet also β- and γ-amino acids, γ-amino acid analogues, decarboxylated and phosphorylated analogues and dipeptides. Projection to latent structures (PLS) method was selected for the formation of QSRRs, resulting in a total of three PLS models with high cross-validated coefficients of determination Q(2)Y. For this reason, molecular structures were previously described through the use of descriptors. Through stratified random sampling procedures, 57 compounds were split to a training set and a test set. Model creation was based on multiple criteria including principal component significance and eigenvalue, variable importance, form of residuals, etc. Validation was based on statistical metrics Rpred(2),QextF2(2),QextF3(2) for the test set and Roy's metrics rm(Av)(2) and rm(δ)(2), assessing both predictive stability and internal validity. Based on aforementioned models, simplified equivalent were then created using a multi-linear regression (MLR) method. MLR models were also validated with the same metrics. The suggested models are considered useful for the estimation of retention times of amino acid analogues for a series of applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting

    Science.gov (United States)

    Zhang, David Z.; Zhang, Peng; Zhao, Miao; Jafar, Salman

    2018-01-01

    Developments in selective laser melting (SLM) have enabled the fabrication of periodic cellular lattice structures characterized by suitable properties matching the bone tissue well and by fluid permeability from interconnected structures. These multifunctional performances are significantly affected by cell topology and constitutive properties of applied materials. In this respect, a diamond unit cell was designed in particular volume fractions corresponding to the host bone tissue and optimized with a smooth surface at nodes leading to fewer stress concentrations. There were 33 porous titanium samples with different volume fractions, from 1.28 to 18.6%, manufactured using SLM. All of them were performed under compressive load to determine the deformation and failure mechanisms, accompanied by an in-situ approach using digital image correlation (DIC) to reveal stress–strain evolution. The results showed that lattice structures manufactured by SLM exhibited comparable properties to those of trabecular bone, avoiding the effects of stress-shielding and increasing longevity of implants. The curvature of optimized surface can play a role in regulating the relationship between density and mechanical properties. Owing to the release of stress concentration from optimized surface, the failure mechanism of porous titanium has been changed from the pattern of bottom-up collapse by layer (or cell row) to that of the diagonal (45°) shear band, resulting in the significant enhancement of the structural strength. PMID:29510492

  10. Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting.

    Science.gov (United States)

    Liu, Fei; Zhang, David Z; Zhang, Peng; Zhao, Miao; Jafar, Salman

    2018-03-03

    Developments in selective laser melting (SLM) have enabled the fabrication of periodic cellular lattice structures characterized by suitable properties matching the bone tissue well and by fluid permeability from interconnected structures. These multifunctional performances are significantly affected by cell topology and constitutive properties of applied materials. In this respect, a diamond unit cell was designed in particular volume fractions corresponding to the host bone tissue and optimized with a smooth surface at nodes leading to fewer stress concentrations. There were 33 porous titanium samples with different volume fractions, from 1.28 to 18.6%, manufactured using SLM. All of them were performed under compressive load to determine the deformation and failure mechanisms, accompanied by an in-situ approach using digital image correlation (DIC) to reveal stress-strain evolution. The results showed that lattice structures manufactured by SLM exhibited comparable properties to those of trabecular bone, avoiding the effects of stress-shielding and increasing longevity of implants. The curvature of optimized surface can play a role in regulating the relationship between density and mechanical properties. Owing to the release of stress concentration from optimized surface, the failure mechanism of porous titanium has been changed from the pattern of bottom-up collapse by layer (or cell row) to that of the diagonal (45°) shear band, resulting in the significant enhancement of the structural strength.

  11. When Do Students Recognize Relationships between Molecular Structure and Properties? A Longitudinal Comparison of the Impact of Traditional and Transformed Curricula

    Science.gov (United States)

    Underwood, Sonia M.; Reyes-Gastelum, David; Cooper, Melanie M.

    2016-01-01

    The ability to use a chemical structure to predict and explain phenomenon is essential to a robust understanding of chemistry; however, previous research has shown that students find it difficult to make the connection between structure and properties. In this study we examine how student recognition of the connections between structure and…

  12. Structure and thermodynamic properties of molten rubidium chloride

    International Nuclear Information System (INIS)

    Ballone, P.; Pastore, G.; Tosi, M.P.; Trieste Univ.

    1984-02-01

    Self-consistent calculations of partial pair distribution functions and thermodynamic properties are presented for molten RbCl in a non-polarizable-ion model and compared with computer simulation data. The theory, which is quantitatively very successful, hinges on an empirical evaluation of bridge diagrams including both excluded-volume effects and long-range Coulomb effects. (author)

  13. Quantitative analysis of dynamic adhesion properties in human hepatocellular carcinoma cells with fullerenol.

    Science.gov (United States)

    Liu, Yang; Wang, Zuobin; Wang, Xinyue; Huang, Yanhong

    2015-12-01

    In this study, the effect of fullerenol (C60(OH)24) on the cellular dynamic biomechanical behaviors of living human hepatocellular carcinoma (SMCC-7721) cancer cells were investigated by atomic force microscope (AFM) nanoindentation. As an important biomarker of cellular information, the cell adhesion is essential to maintain proper functioning as well as links with the pathogenesis and canceration. Nonetheless, it is challenging to properly evaluate the complex adhesion properties as all the biomechanical parameters interfere with each other. To investigate the dynamic adhesion changes, especially in the case of the fullerenol treatment, the detachment force and work, adhesion events, and membrane tether properties were measured and analyzed systematically with the proposed quantitative method. The statistical analyses suggest that, under the same operating parameters of AFM, the dependence of adhesion energy on the tip-cell contact area is weakened after the fullerenol treatment and the probability of adhesion decreases significantly from 30.6% to 4.2%. In addition, the disruption of the cytoskeleton resulted in a 34% decrease of the average membrane tether force and a 21% increase of the average tether length. Benefiting from the quantitative method, this work contributes to revealing the effects of fullerenol on the cellular biomechanical properties of the living SMCC-7721 cells in a precise and rigorous way and additionally is further instructive to interpret the interaction mechanism of other potential nanomedicines with living cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The relationship between lung function impairment and quantitative computed tomography in chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Mets, O.M.; Murphy, K.; Zanen, P.; Lammers, J.W.; Gietema, H.A.; Jong, P.A. de; Ginneken, B. van; Prokop, M.

    2012-01-01

    To determine the relationship between lung function impairment and quantitative computed tomography (CT) measurements of air trapping and emphysema in a population of current and former heavy smokers with and without airflow limitation. In 248 subjects (50 normal smokers; 50 mild obstruction; 50 moderate obstruction; 50 severe obstruction; 48 very severe obstruction) CT emphysema and CT air trapping were quantified on paired inspiratory and end-expiratory CT examinations using several available quantification methods. CT measurements were related to lung function (FEV 1 , FEV 1 /FVC, RV/TLC, Kco) by univariate and multivariate linear regression analysis. Quantitative CT measurements of emphysema and air trapping were strongly correlated to airflow limitation (univariate r-squared up to 0.72, p < 0.001). In multivariate analysis, the combination of CT emphysema and CT air trapping explained 68-83% of the variability in airflow limitation in subjects covering the total range of airflow limitation (p < 0.001). The combination of quantitative CT air trapping and emphysema measurements is strongly associated with lung function impairment in current and former heavy smokers with a wide range of airflow limitation. (orig.)

  15. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  16. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure.

    Science.gov (United States)

    Zhang, Chang; Nie, Shuang; Liang, Jie; Zeng, Guangming; Wu, Haipeng; Hua, Shanshan; Liu, Jiayu; Yuan, Yujie; Xiao, Haibing; Deng, Linjing; Xiang, Hongyu

    2016-07-01

    Heavy metals (HMs) contamination is a serious environmental issue in wetland soil. Understanding the micro ecological characteristic of HMs polluted wetland soil has become a public concern. The goal of this study was to identify the effects of HMs and soil physicochemical properties on soil microorganisms and prioritize some parameters that contributed significantly to soil microbial biomass (SMB) and bacterial community structure. Bacterial community structure was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Relationships between soil environment and microorganisms were analyzed by correlation analysis and redundancy analysis (RDA). The result indicated relationship between SMB and HMs was weaker than SMB and physicochemical properties. The RDA showed all eight parameters explained 74.9% of the variation in the bacterial DGGE profiles. 43.4% (contain the variation shared by Cr, Cd, Pb and Cu) of the variation for bacteria was explained by the four kinds of HMs, demonstrating HMs contamination had a significant influence on the changes of bacterial community structure. Cr solely explained 19.4% (pstructure, and Cd explained 17.5% (pstructure changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Multiphase composite coatings: structure and properties

    International Nuclear Information System (INIS)

    Yurov, V M; Guchenko, S A; Platonova, E S; Syzdykova, A Sh; Lysenko, E N

    2015-01-01

    The paper discusses the results of the research into the formation of ion-plasma multiphase coatings. The types of the formed structures are found to be not so diverse, as those formed, for example, in alloy crystallization. The structures observed are basically of globular type and, more rarely, of unclosed dissipative and cellular structures. It is shown that the properties of the coating formed in deposition are largely determined by its surface energy or surface tension. Since the magnitude of the surface tension (surface energy) in most cases is an additive quantity, each of the elements of the coating composition contributes to the total surface energy. In case of simultaneous sputtering of multiphase cathodes, high entropy coatings with an ordered cellular structure and improved mechanical properties are formed. (paper)

  18. Understanding the Molecular Determinant of Reversible Human Monoamine Oxidase B Inhibitors Containing 2H-Chromen-2-One Core: Structure-Based and Ligand-Based Derived Three-Dimensional Quantitative Structure-Activity Relationships Predictive Models.

    Science.gov (United States)

    Mladenović, Milan; Patsilinakos, Alexandros; Pirolli, Adele; Sabatino, Manuela; Ragno, Rino

    2017-04-24

    Monoamine oxidase B (MAO B) catalyzes the oxidative deamination of aryalkylamines neurotransmitters with concomitant reduction of oxygen to hydrogen peroxide. Consequently, the enzyme's malfunction can induce oxidative damage to mitochondrial DNA and mediates development of Parkinson's disease. Thus, MAO B emerges as a promising target for developing pharmaceuticals potentially useful to treat this vicious neurodegenerative condition. Aiming to contribute to the development of drugs with the reversible mechanism of MAO B inhibition only, herein, an extended in silico-in vitro procedure for the selection of novel MAO B inhibitors is demonstrated, including the following: (1) definition of optimized and validated structure-based three-dimensional (3-D) quantitative structure-activity relationships (QSAR) models derived from available cocrystallized inhibitor-MAO B complexes; (2) elaboration of SAR features for either irreversible or reversible MAO B inhibitors to characterize and improve coumarin-based inhibitor activity (Protein Data Bank ID: 2V61 ) as the most potent reversible lead compound; (3) definition of structure-based (SB) and ligand-based (LB) alignment rule assessments by which virtually any untested potential MAO B inhibitor might be evaluated; (4) predictive ability validation of the best 3-D QSAR model through SB/LB modeling of four coumarin-based external test sets (267 compounds); (5) design and SB/LB alignment of novel coumarin-based scaffolds experimentally validated through synthesis and biological evaluation in vitro. Due to the wide range of molecular diversity within the 3-D QSAR training set and derived features, the selected N probe-derived 3-D QSAR model proves to be a valuable tool for virtual screening (VS) of novel MAO B inhibitors and a platform for design, synthesis and evaluation of novel active structures. Accordingly, six highly active and selective MAO B inhibitors (picomolar to low nanomolar range of activity) were disclosed as a

  19. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer; RMN de proteines (4Fe-4S): proprietes structurales et transfert electronique intramoleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J G

    1996-10-17

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an {alpha} helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S{sub {gamma}}-C{sub {beta}}-H{sub {beta}})Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven

  20. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    Science.gov (United States)

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  1. Electronic, elastic, thermodynamic properties and structure disorder of γ-AlON solid solution from ab initio calculations

    International Nuclear Information System (INIS)

    Wang, Yuezhong; Lu, Tiecheng; Zhang, Rongshi; Jiang, Shengli; Qi, Jianqi; Wang, Ying; Chen, Qingyun; Miao, Naihua; He, Duanwei

    2013-01-01

    Highlights: ► We reassess the chemical bonding character of γ-AlON which shows strong ionicity. ► γ-AlON single-crystals exhibit highly elastic anisotropy. ► The thermodynamic properties are investigated in a wider temperature/pressure range. ► γ-AlON is an O/N partially disordered structure. - Abstract: Spinel aluminium oxynitride (γ-AlON), as a kind of transparent ceramic material expectable, is studied using the ab initio density functional method, in terms of electronic, elastic, thermodynamic properties and structure disorder. The results show that γ-AlON exhibits strong ionicity, as quantitatively expressed by (Al O 2.43+ ) 15 (Al T 2.41+ ) 8 (O 1.64- ) 27 (N 2.27- ) 5 from our reassessment of the ionic character. We summarize and speculate that the considered oxynitride single-crystals exhibit highly elastic anisotropy. The interpretation of the thermodynamic properties of γ-AlON according to quasi-harmonic Debye model confirm the available experiments and are extended to a wider temperature/pressure range. This material holds high elastic strength under extreme environments, where dB/dT absolute value is less than 0.03 GPa/K, independent of the pressure. Finally, we study the O/N structure disorder character of γ-AlON solid solution by investigating nine possible crystal structures. It is found that γ-AlON should be partially disordered, and in fact, the O/N ordering has a significant effect on the properties.

  2. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    Science.gov (United States)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  3. Quantitative computed tomography derived structural geometric accuracy using custom built anthropometric phantom of the proximal femur

    International Nuclear Information System (INIS)

    Khoo, B.C.C.; Price, R.; Hicks, N.

    2011-01-01

    Full text: Material and structural properties influence bone strength. Structural strength may be determined through imaging methods, though currently there is no commercially available phantom to assess structural geometrical (SG) accuracy. This paper describes the design of an anthropometric SG phantom of the proximal femur and the performance testing on quantitative computed tomography (QCT) derived SG outcomes. Aims of study were to determine accuracy of QCT-derived SG outcomes and its effects from kYp. The phantom consists of three basic components; femoral head, a modular and interchangeable neck insert and shaft. The interchangeable neck modules were designed with different cortical thickness and shape. QCT scans were performed with Mindways QA (Mindways Software Inc., USA) phantom, then with anthropometric phantom in water bath together with Mindways calibration phantom. All QCT scans were done on Philips 64 MDCT (Philips Healthcare, USA). Three neck modules were selected and scanned. Each neck module was repeated scanned five times at 120 mAs, 0.67 mm slice thickness and 0.33 mm increment and at 80, 120 and 140 kYps. SG parameters analysed included bone mineral density(aBMD) and outer-diameter (OD).

  4. Quantitation of small intestinal permeability during normal human drug absorption

    OpenAIRE

    Levitt, David G

    2013-01-01

    Background Understanding the quantitative relationship between a drug?s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorpti...

  5. Structural Properties of Ferroelectric Perovskites

    National Research Council Canada - National Science Library

    Vanderbilt, David

    1998-01-01

    Under this research grant, we carried out realistic first-principles computer calculations of the ground-state and finite-temperature structural and dielectric properties of cubic perovskite materials...

  6. Quantitative relationship between nanotube length and anodizing current during constant current anodization

    International Nuclear Information System (INIS)

    Zhang, Yulian; Cheng, Weijie; Du, Fei; Zhang, Shaoyu; Ma, Weihua; Li, Dongdong; Song, Ye; Zhu, Xufei

    2015-01-01

    Highlights: • Ti anodization was performed by constant current rather than constant voltage. • The nanotube length was controlled by ionic current rather than dissolution current. • Electronic current can be estimated by the nanotube length and the anodizing current. • Dissolution reaction hardly contributes electric current across the barrier layer. - Abstract: The growth kinetics of anodic TiO 2 nanotubes (ATNTs) still remains unclear. ATNTs are generally fabricated under potentiostatic conditions rather than galvanostatic ones. The quantitative relationship between nanotube length and anodizing current (J total ) is difficult to determine, because the variable J total includes ionic current (J ion ) (also called oxide growth current J grow =J ion ) and electronic current (J e ), which cannot be separated from each other. One successful approach to achieve this objective is to use constant current anodization rather than constant voltage anodization, that is, through quantitative comparison between the nanotube length and the known J total during constant current anodization, we can estimate the relative magnitudes of J grow and J e . The nanotubes with lengths of 1.24, 2.23, 3.51 and 4.70 μm, were formed under constant currents (J total ) of 15, 20, 25 and 30 mA, respectively. The relationship between nanotube length (y) and anodizing current (x =J total =J grow +J e ) can be expressed by a fitting equation: y=0.23(x-10.13), from which J grow (J grow = x -10.13) and J e (∼10.13 mA) could be inferred under the present conditions. Meanwhile, the same conclusion could also be deduced from the oxide volume data. These results indicate that the nanotube growth is attributed to the oxide growth current rather than the dissolution current.

  7. The Relationship between Shyness and Internet Addiction: A Quantitative Study on Middle and Post Secondary School Students

    Science.gov (United States)

    Hollingsworth, W. Craig

    2005-01-01

    This small scale quantitative study looks into the relationship between shyness and internet addiction in middle school students. This study has been conducted on the belief that shyness is a possible predictor of Internet Addiction. To prove this hypothesis a questionnaire was created and distributed to 53 middle school students and 159 post…

  8. Dynamic properties of vision-II : theoretical relationships between flicker and flash thresholds

    NARCIS (Netherlands)

    Roufs, J.A.J.

    1972-01-01

    On the basis of some general system properties theoretical relationships have been established between parameters which characterise the sensitivity and inertia of the visual system in flicker and flash experiments. The results are in good agreement with the experimental relationships found in Part

  9. Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling

    KAUST Repository

    Burkhardt, Stephen E.

    2013-01-22

    The full realization of a renewable energy strategy hinges upon electrical energy storage (EES). EES devices play a key role in storing energy from renewable sources (which are inherently intermittent), to efficient transmission (e.g., grid load-leveling), and finally into the electrification of transportation. Organic materials represent a promising class of electrode active materials for Li-ion and post-Li-ion batteries. Organics consist of low-cost, lightweight, widely available materials, and their properties can be rationally tuned using the well-established principles of organic chemistry. Within the class of organic EES materials, carboxylates distinguish themselves for Li-ion anode materials based on their observed thermal stability, rate capability, and high cyclability. Further, many of the carboxylates studied to date can be synthesized from renewable or waste feedstocks. This report begins with a preliminary molecular density-functional theory (DFT) study, in which the calculated molecular properties of a set of 12 known Li-ion electrode materials based on carboxylate and carbonyl redox couples are compared to literature data. Based on the agreement between theoretical and experimental data, an expanded study was undertaken to identify promising materials and establish design principles for anodes based on Li-carboxylate salts. Predictive computational studies represent an important step forward for the identification of organic anode materials. © 2012 American Chemical Society.

  10. Structure determination, electronic and optical properties of rubidium holmium polyphosphate RbHo(PO3)4

    Science.gov (United States)

    Zhu, Jing; Chen, Hui; Wang, Yude; Guan, Hongtao; Xiao, Xuechun

    2012-12-01

    Structural, optical, and electronic properties of a new alkali metal-rare earth polyphosphate, RbHo(PO3)4, have been investigated by means of single-crystal X-ray diffraction, power X-ray diffraction, elemental analysis, and spectral measurement. RbHo(PO3)4 crystallizes in the monoclinic with space group P21/n and Z = 4. It is described as a three-dimensional (3D) architecture built up of PO4 double spiral chains and HoO8 polyhedra by corner-sharing. The 11-coordinated rubidium atoms are located in infinite tunnels. Additionally, in order to gain further insight into the relationship between property and structure of RbHo(PO3)4, theoretical calculation based on the density functional theory (DFT) was performed using the total-energy code CASTEP.

  11. Investigations on the Mechanical Properties of Conducting Polymer Coating-Substrate Structures and Their Influencing Factors

    Directory of Open Access Journals (Sweden)

    Xin Hua

    2009-12-01

    Full Text Available This review covers recent advances and work on the microstructure features, mechanical properties and cracking processes of conducting polymer film/coatingsubstrate structures under different testing conditions. An attempt is made to characterize and quantify the relationships between mechanical properties and microstructure features. In addition, the film cracking mechanism on the micro scale and some influencing factors that play a significant role in the service of the film-substrate structure are presented. These investigations cover the conducting polymer film/coating nucleation process, microstructure-fracture characterization, translation of brittle-ductile fractures, and cracking processes near the largest inherent macromolecule defects under thermal-mechanical loadings, and were carried out using in situ scanning electron microscopy (SEM observations, as a novel method for evaluation of interface strength and critical failure stress.

  12. Structural and dynamical properties of Yukawa balls

    International Nuclear Information System (INIS)

    Block, D; Kroll, M; Arp, O; Piel, A; Kaeding, S; Ivanov, Y; Melzer, A; Henning, C; Baumgartner, H; Ludwig, P; Bonitz, M

    2007-01-01

    To study the structural and dynamical properties of finite 3D dust clouds (Yukawa balls) new diagnostic tools have been developed. This contribution describes the progress towards 3D diagnostics for measuring the particle positions. It is shown that these diagnostics are capable of investigating the structural and dynamical properties of Yukawa balls and gaining insight into their basic construction principles

  13. Predicting structural properties of fluids by thermodynamic extrapolation

    Science.gov (United States)

    Mahynski, Nathan A.; Jiao, Sally; Hatch, Harold W.; Blanco, Marco A.; Shen, Vincent K.

    2018-05-01

    We describe a methodology for extrapolating the structural properties of multicomponent fluids from one thermodynamic state to another. These properties generally include features of a system that may be computed from an individual configuration such as radial distribution functions, cluster size distributions, or a polymer's radius of gyration. This approach is based on the principle of using fluctuations in a system's extensive thermodynamic variables, such as energy, to construct an appropriate Taylor series expansion for these structural properties in terms of intensive conjugate variables, such as temperature. Thus, one may extrapolate these properties from one state to another when the series is truncated to some finite order. We demonstrate this extrapolation for simple and coarse-grained fluids in both the canonical and grand canonical ensembles, in terms of both temperatures and the chemical potentials of different components. The results show that this method is able to reasonably approximate structural properties of such fluids over a broad range of conditions. Consequently, this methodology may be employed to increase the computational efficiency of molecular simulations used to measure the structural properties of certain fluid systems, especially those used in high-throughput or data-driven investigations.

  14. Data base on structural materials aging properties

    International Nuclear Information System (INIS)

    Oland, C.B.

    1992-01-01

    The US Nuclear Regulatory Commission has initiated a Structural Aging Program at the Oak Ridge National Laboratory to identify potential structural safety issues related to continued service of nuclear power plants and to establish criteria for evaluating and resolving these issues. One of the tasks in this program focuses on the establishment of a Structural Materials Information Center where long-term and environment-dependent properties of concretes and other structural materials are being collected and assembled into a data base. These properties will be used to evaluate the current condition of critical structural components in nuclear power plants and to estimate the future performance of these materials during the continued service period

  15. Syntheses and absorption-structure relationships of some new ...

    Indian Academy of Sciences (India)

    New biheterocyclic compound was synthesized as starting material to prepare new photosensitizers mono-, tri-, substituted tri-, azadimethine and mixed cyanine dyes. Absorption-structure relationship of the synthesized cyanine dyes were determined by studying their electronic spectral behaviour in ethanol. The structure of ...

  16. Structural and dynamical properties of water confined between two hydrophilic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Di Napoli, Solange, E-mail: dinapoli@tandar.cnea.gov.a [Depto. de Fisica - CAC, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Gamba, Zulema, E-mail: gamba@tandar.cnea.gov.a [Depto. de Fisica - CAC, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, (1650) San Martin, Buenos Aires (Argentina)

    2009-10-01

    The properties of water in the vicinity of surfaces and under confinement have been extensively studied because of the relevance of a quantitative understanding of many processes that not only take place in biological systems, like cells, membranes and microemulsions, but also in many others such as confined water in rocks, ionic channels and interestellar matter. In this work we perform molecular dynamic calculations of the nanoscopic structure of TIP5P model water confined between two hydrophilic surfaces. We calculate the diffusion coefficients and the atomic density profile of water molecules and polar ions in the system as a function of the number of water molecules per amphiphilic (n{sub W}). We also study the dependence of the water layer thickness and the profiles of water dipole orientation with this parameter.

  17. Structural and dynamical properties of water confined between two hydrophilic surfaces

    International Nuclear Information System (INIS)

    Di Napoli, Solange; Gamba, Zulema

    2009-01-01

    The properties of water in the vicinity of surfaces and under confinement have been extensively studied because of the relevance of a quantitative understanding of many processes that not only take place in biological systems, like cells, membranes and microemulsions, but also in many others such as confined water in rocks, ionic channels and interestellar matter. In this work we perform molecular dynamic calculations of the nanoscopic structure of TIP5P model water confined between two hydrophilic surfaces. We calculate the diffusion coefficients and the atomic density profile of water molecules and polar ions in the system as a function of the number of water molecules per amphiphilic (n W ). We also study the dependence of the water layer thickness and the profiles of water dipole orientation with this parameter.

  18. Slope failure at Bukit Antarabangsa, Ampang, Selangor and its relationship to physical soil properties

    International Nuclear Information System (INIS)

    Muhammad Barzani Gasim; Sahibin Abd Rahim; Mohd Ekhwan Toriman; Diyana Ishnin

    2011-01-01

    Slope failure which occurred on 6 December 2008 at Bukit Antarabangsa, Ampang Selangor has caused mortalities and loss of properties whereas more than 20 houses were flattened. Prior to slope failure, it was heavily down poured for a few hours that increased the soil saturation and plasticity properties. A total of 10 soil samples were randomly taken from stable and unstable slopes to determine physical soil properties, infiltration rate and their relationship to rainfall pattern. Soils were analyzed in terms of their physical properties; five years (2005-2009) of daily rainfalls were analyzed to determine their relationship to infiltration rate at each sampling station. Infiltration rate is determined by using infiltrometer double ring. Analysis of physical soils properties shows that soil texture was dominated by sandy soil with relatively high percentage of sand. Values of clay dispersion coefficient were relatively stable to very stable from 0.013 % to 11.85 % and organic content from 1.38 % to 2.74 %. Range of porosity was from 50.12 % to 62.31 %, while the average levels of hydraulic conductivity was from level 2 to 5 or relatively slow to fast. Percentage of soil aggregate stability was from 5.12 % to 48.42 % and this value indicates that relative strength of soil mechanical pressure is inversely proportional to the percentage of water content. Soil plasticity value was high to very high but characterized by inactive colloids. Distribution of monthly rainfall was from 38 mm to 427 mm. The infiltration rate during sampling time was from 3.0 cm/ hr to 7.0 cm/ hr; but it was expected from 10.94 cm/ hr to 915.05 cm/ hr during slope failures. Overall, it was interpreted that physical soil properties was closely interrelated with slope stability, structure of sandy soil will enhanced soil porosity stage and enhance the infiltration process during heavy rainfall, and finally triggering of slope failure. (author)

  19. Mechanical properties of structural maritime pine sawn timber from Galicia (Pinus pinaster Ait. ssp. atlantica)

    Energy Technology Data Exchange (ETDEWEB)

    Carballo, J.; Hermoso, E.; Fernandez-Golfin, J. I.

    2009-07-01

    The use of maritime pine sawn timber in structural applications requires knowledge of its mechanical properties. Standards have changed, however, since the last research on this timber was performed. In the present study, 491 beams of maritime pine from Gaelic, of structural-use size but different cross-section, were tested according to these modified standards. Each beam was visually graded according to standard UNE 56.544 and subjected to a four point bending test. The strength classes assigned by the visual grades awarded suggest this material to have greater structural capacity than that currently assumed. The relationships between the modulus of elasticity, strength and density were also examined. (Author) 25 refs.

  20. The influence of chemical composition on the properties and structure Al-Si-Cu(Mg alloys

    Directory of Open Access Journals (Sweden)

    M. Kaczorowski

    2007-04-01

    Full Text Available The mechanical properties of different chemical composition AlSiCuMg type cast alloys after precipitation hardening are presented. The aim of the study was to find out how much the changes in chemistry of aluminum cast alloys permissible by EN-PN standards may influence the mechanical properties of these alloys. Eight AlSi5Cu3(Mg type cast alloys of different content alloying elements were selected for the study. The specimens cut form test castings were subjected to precipitation hardening heat treatment. The age hardened specimens were evaluated using tensile test, hardness measurements and impact test. Moreover, the structure investigation were carried out using either conventional light Metallography and scanning (SEM and transmission (TEM electron microscopy. The two last methods were used for fractography observations and precipitation process observations respectively. It was concluded that the changes in chemical composition which can reach even 2,5wt.% cause essential differences of the structure and mechanical properties of the alloys. As followed from quantitative evaluation and as could be predicted theoretically, copper and silicon mostly influenced the mechanical properties of AlSi5Cu3(Mg type cast alloys. Moreover it was showed that the total concentration of alloying elements accelerated and intensifies the process of decomposition of supersaturated solid solution. The increase of Cu and Mg concentration increased the density of precipitates. It increases of strength properties of the alloys which are accompanied with decreasing in ductility.