WorldWideScience

Sample records for quantitative platform based

  1. Method and platform standardization in MRM-based quantitative plasma proteomics.

    Science.gov (United States)

    Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Jackson, Angela M; Domanski, Dominik; Burkhart, Julia; Sickmann, Albert; Borchers, Christoph H

    2013-12-16

    There exists a growing demand in the proteomics community to standardize experimental methods and liquid chromatography-mass spectrometry (LC/MS) platforms in order to enable the acquisition of more precise and accurate quantitative data. This necessity is heightened by the evolving trend of verifying and validating candidate disease biomarkers in complex biofluids, such as blood plasma, through targeted multiple reaction monitoring (MRM)-based approaches with stable isotope-labeled standards (SIS). Considering the lack of performance standards for quantitative plasma proteomics, we previously developed two reference kits to evaluate the MRM with SIS peptide approach using undepleted and non-enriched human plasma. The first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). Here, these kits have been refined for practical use and then evaluated through intra- and inter-laboratory testing on 6 common LC/MS platforms. For an identical panel of 22 plasma proteins, similar concentrations were determined, regardless of the kit, instrument platform, and laboratory of analysis. These results demonstrate the value of the kit and reinforce the utility of standardized methods and protocols. The proteomics community needs standardized experimental protocols and quality control methods in order to improve the reproducibility of MS-based quantitative data. This need is heightened by the evolving trend for MRM-based validation of proposed disease biomarkers in complex biofluids such as blood plasma. We have developed two kits to assist in the inter- and intra-laboratory quality control of MRM experiments: the first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). In this paper, we report the use of these kits in intra- and inter-laboratory testing on 6 common LC/MS platforms. This

  2. Quantitative data analysis methods for bead-based DNA hybridization assays using generic flow cytometry platforms.

    Science.gov (United States)

    Corrie, S R; Lawrie, G A; Battersby, B J; Ford, K; Rühmann, A; Koehler, K; Sabath, D E; Trau, M

    2008-05-01

    Bead-based assays are in demand for rapid genomic and proteomic assays for both research and clinical purposes. Standard quantitative procedures addressing raw data quality and analysis are required to ensure the data are consistent and reproducible across laboratories independent of flow platform. Quantitative procedures have been introduced spanning raw histogram analysis through to absolute target quantitation. These included models developed to estimate the absolute number of sample molecules bound per bead (Langmuir isotherm), relative quantitative comparisons (two-sided t-tests), and statistical analyses investigating the quality of raw fluorescence data. The absolute target quantitation method revealed a concentration range (below probe saturation) of Cy5-labeled synthetic cytokeratin 19 (K19) RNA of c.a. 1 x 10(4) to 500 x 10(4) molecules/bead, with a binding constant of c.a. 1.6 nM. Raw hybridization frequency histograms were observed to be highly reproducible across 10 triplex assay replicates and only three assay replicates were required to distinguish overlapping peaks representing small sequence mismatches. This study provides a quantitative scheme for determining the absolute target concentration in nucleic acid hybridization reactions and the equilibrium binding constants for individual probe/target pairs. It is envisaged that such studies will form the basis of standard analytical procedures for bead-based cytometry assays to ensure reproducibility in inter- and intra-platform comparisons of data between laboratories. (c) 2008 International Society for Advancement of Cytometry.

  3. DVD technology-based molecular diagnosis platform: quantitative pregnancy test on a disc.

    Science.gov (United States)

    Li, Xiaochun; Weng, Samuel; Ge, Bixia; Yao, Zhihui; Yu, Hua-Zhong

    2014-05-21

    A diagnosis platform based entirely on DVD technology was developed for on-site quantitation of molecular analytes of interest, e.g., human chorionic gonadotropin (hCG) in urine samples ("quantitative pregnancy test on a disc"). An hCG-specific monoclonal antibody-binding assay prepared on a regular DVD-R was labeled with nanogold-streptavidin conjugates for signal enhancement with a customized silver-staining protocol. An unmodified, conventional computer optical drive was used for assay reading, and free disc-quality analysis software for data processing. The performance (sensitivity and selectivity) of this DVD assay is comparable to that of well-established colorimetric methods (determination of optical darkness ratios) and standard enzyme-linked immunosorbent assays (ELISA). As validated by examining its linear correlation with the ELISA results on the same set of samples, the DVD assay promises to be a low-cost, multiplex, point-of-care (POC) diagnostic tool for physicians and even for individuals at home, producing prompt results.

  4. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays.

    Science.gov (United States)

    Wang, Yuzhen; Zhu, Guixian; Qi, Wenjin; Li, Ying; Song, Yujun

    2016-11-15

    Platinum nanoparticles incorporated volumetric bar-chart chip (PtNPs-V-Chip) is able to be used for point-of-care tests by providing quantitative and visualized readout without any assistance from instruments, data processing, or graphic plotting. To improve the sensitivity of PtNPs-V-Chip, hybridization chain reaction was employed in this quantitation platform for highly sensitive assays that can detect as low as 16 pM Ebola Virus DNA, 0.01ng/mL carcinoembryonic antigen (CEA), and the 10 HER2-expressing cancer cells. Based on this amplified strategy, a 100-fold decrease of detection limit was achieved for DNA by improving the number of platinum nanoparticle catalyst for the captured analyte. This quantitation platform can also distinguish single base mismatch of DNA hybridization and observe the concentration threshold of CEA. The new strategy lays the foundation for this quantitation platform to be applied in forensic analysis, biothreat detection, clinical diagnostics and drug screening.

  5. Two low-cost digital camera-based platforms for quantitative creatinine analysis in urine.

    Science.gov (United States)

    Debus, Bruno; Kirsanov, Dmitry; Yaroshenko, Irina; Sidorova, Alla; Piven, Alena; Legin, Andrey

    2015-10-01

    In clinical analysis creatinine is a routine biomarker for the assessment of renal and muscular dysfunctions. Although several techniques have been proposed for a fast and accurate quantification of creatinine in human serum or urine, most of them require expensive or complex apparatus, advanced sample preparation or skilled operators. To circumvent these issues, we propose two home-made platforms based on a CD Spectroscope (CDS) and Computer Screen Photo-assisted Technique (CSPT) for the rapid assessment of creatinine level in human urine. Both systems display a linear range (r(2) = 0.9967 and 0.9972, respectively) from 160 μmol L(-1) to 1.6 mmol L(-1) for standard creatinine solutions (n = 15) with respective detection limits of 89 μmol L(-1) and 111 μmol L(-1). Good repeatability was observed for intra-day (1.7-2.9%) and inter-day (3.6-6.5%) measurements evaluated on three consecutive days. The performance of CDS and CSPT was also validated in real human urine samples (n = 26) using capillary electrophoresis data as reference. Corresponding Partial Least-Squares (PLS) regression models provided for mean relative errors below 10% in creatinine quantification.

  6. A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays

    Science.gov (United States)

    Vergauwe, Nicolas; Witters, Daan; Ceyssens, Frederik; Vermeir, Steven; Verbruggen, Bert; Puers, Robert; Lammertyn, Jeroen

    2011-05-01

    Electrowetting-on-dielectric (EWOD) lab-on-a-chip systems have already proven their potential within a broad range of bio-assays. Nevertheless, research on the analytical performance of those systems is limited, yet crucial for a further breakthrough in the diagnostic field. Therefore, this paper presents the intrinsic possibilities of an EWOD lab-on-a-chip as a versatile platform for homogeneous and heterogeneous bio-assays with high analytical performance. Both droplet dispensing and splitting cause variations in droplet size, thereby directly influencing the assay's performance. The extent to which they influence the performance is assessed by a theoretical sensitivity analysis, which allows the definition of a basic framework for the reduction of droplet size variability. Taking advantage of the optimized droplet manipulations, both homogeneous and heterogeneous bio-assays are implemented in the EWOD lab-on-a-chip to demonstrate the analytical capabilities and versatility of the device. A fully on-chip enzymatic assay is realized with high analytical performance. It demonstrates the promising capabilities of an EWOD lab-on-a-chip in food-related and medical applications, such as nutritional and blood analyses. Further, a magnetic bio-assay for IgE detection using superparamagnetic nanoparticles is presented whereby the nanoparticles are used as solid carriers during the bio-assay. Crucial elements are the precise manipulation of the superparamagnetic nanoparticles with respect to dispensing and separation. Although the principle of using nano-carriers is demonstrated for protein detection, it can be easily extended to a broader range of bio-related applications like DNA sensing. In heterogeneous bio-assays the chip surface is actively involved during the execution of the bio-assay. Through immobilization of specific biological compounds like DNA, proteins and cells a reactive chip surface is realized, which enhances the bio-assay performance. To demonstrate

  7. Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of Malaria-Causing Plasmodium Parasites Based on Enzyme Activity Measurement

    DEFF Research Database (Denmark)

    Juul, Sissel; Nielsen, Christine Juul Fælled; Labouriau, Rodrigo

    2012-01-01

    detectable at the single-molecule level. Combined with a droplet microfluidics lab-on-a-chip platform, this design allowed for sensitive, specific, and quantitative detection of all human-malaria-causing Plasmodium species in single drops of unprocessed blood with a detection limit of less than one parasite...... detection of even a few parasites is becoming increasingly important for the continued combat against the disease. We believe that the presented droplet microfluidics platform, which has a high potential for adaptation to point-of-care setups suitable for low-resource settings, may contribute significantly...

  8. MSQuant, an Open Source Platform for Mass Spectrometry-Based Quantitative Proteomics

    DEFF Research Database (Denmark)

    Mortensen, Peter; Gouw, Joost W; Olsen, Jesper V

    2010-01-01

    Mass spectrometry-based proteomics critically depends on algorithms for data interpretation. A current bottleneck in the rapid advance of proteomics technology is the closed nature and slow development cycle of vendor-supplied software solutions. We have created an open source software environment...... on precursor ion intensities, including element labels (e.g., (15)N), residue labels (e.g., SILAC and ICAT), termini labels (e.g., (18)O), functional group labels (e.g., mTRAQ), and label-free ion intensity approaches. MSQuant is available, including an installer and supporting scripts, at http://msquant.sourceforge.net ....

  9. Platform-based production development

    DEFF Research Database (Denmark)

    Bossen, Jacob; Brunoe, Thomas Ditlev; Nielsen, Kjeld

    2015-01-01

    Platforms as a means for applying modular thinking in product development is relatively well studied, but platforms in the production system has until now not been given much attention. With the emerging concept of platform-based co-development the importance of production platforms is though...... indisputable. This paper presents state-of-the-art literature on platform research related to production platforms and investigates gaps in the literature. The paper concludes on findings by proposing future research directions....

  10. Paper based electronics platform

    KAUST Repository

    Nassar, Joanna Mohammad

    2017-07-20

    A flexible and non-functionalized low cost paper-based electronic system platform fabricated from common paper, such as paper based sensors, and methods of producing paper based sensors, and methods of sensing using the paper based sensors are provided. A method of producing a paper based sensor can include the steps of: a) providing a conventional paper product to serve as a substrate for the sensor or as an active material for the sensor or both, the paper product not further treated or functionalized; and b) applying a sensing element to the paper substrate, the sensing element selected from the group consisting of a conductive material, the conductive material providing contacts and interconnects, sensitive material film that exhibits sensitivity to pH levels, a compressible and/or porous material disposed between a pair of opposed conductive elements, or a combination of two of more said sensing elements. The method of sensing can further include measuring, using the sensing element, a change in resistance, a change in voltage, a change in current, a change in capacitance, or a combination of any two or more thereof.

  11. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells.

    Directory of Open Access Journals (Sweden)

    Jane Courtney

    Full Text Available We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.

  12. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells.

    Science.gov (United States)

    Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W; Gautier, Virginie W

    2015-01-01

    We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.

  13. Flexible experimental FPGA based platform

    DEFF Research Database (Denmark)

    Andersen, Karsten Holm; Nymand, Morten

    2016-01-01

    This paper presents an experimental flexible Field Programmable Gate Array (FPGA) based platform for testing and verifying digital controlled dc-dc converters. The platform supports different types of control strategies, dc-dc converter topologies and switching frequencies. The controller platform...... interface supporting configuration and reading of setup parameters, controller status and the acquisition memory in a simple way. The FPGA based platform, provides an easy way within education or research to use different digital control strategies and different converter topologies controlled by an FPGA...

  14. Centrifuge-Based Fluidic Platforms

    Science.gov (United States)

    Zoval, Jim; Jia, Guangyao; Kido, Horacio; Kim, Jitae; Kim, Nahui; Madou, Marc

    In this chapter centrifuge-based microfluidic platforms are reviewed and compared with other popular microfluidic propulsion methods. The underlying physical principles of centrifugal pumping in microfluidic systems are presented and the various centrifuge fluidic functions such as valving, decanting, calibration, mixing, metering, heating, sample splitting, and separation are introduced. Those fluidic functions have been combined with analytical measurements techniques such as optical imaging, absorbance and fluorescence spectroscopy and mass spectrometry to make the centrifugal platform a powerful solution for medical and clinical diagnostics and high-throughput screening (HTS) in drug discovery. Applications of a compact disc (CD)-based centrifuge platform analyzed in this review include: two-point calibration of an optode-based ion sensor, an automated immunoassay platform, multiple parallel screening assays and cellular-based assays. The use of modified commercial CD drives for high-resolution optical imaging is discussed as well. From a broader perspective, we compare the technical barriers involved in applying microfluidics for sensing and diagnostic as opposed to applying such techniques to HTS. The latter poses less challenges and explains why HTS products based on a CD fluidic platform are already commercially available, while we might have to wait longer to see commercial CD-based diagnostics.

  15. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform

    Energy Technology Data Exchange (ETDEWEB)

    Pinkhasova, Polina; Chen, Hui; Du, Henry, E-mail: hdu@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States); Kanka, Jiri [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberska 57, 182 31 Prague (Czech Republic); Mergo, Pawel [Department of Optical Fibres Technology, Maria Curie-Sklodovska University, PI. M. Currie-Sklodowskiej 5, 20-031 Lublin (Poland)

    2015-02-16

    Core-shell nanotags that are active in surface-enhanced Raman scattering (SERS) and entrapped with thiocyanate (SCN) label molecules were immobilized in the air channels of suspended-core photonic crystal fiber (PCF) to impart quantitative capacity to SERS-based PCF optofluidic sensing platform. The Raman intensity of Rhodamine 6G increases with concentration, whereas the intensity of SCN remains constant when measured using this platform. The signal from the SCN label can be used as an internal reference to establish calibration for quantitative measurements of analytes of unknown concentrations. The long optical path-length PCF optofluidic platform integrated with SERS-active core-shell nanotags holds significant promise for sensitive quantitative chem/bio measurements with the added benefit of small sampling volume. The dependence of SERS intensity on the nanotag coverage density and PCF length was interpreted based on numerical-analytical simulations.

  16. 基于联合分析和定量指数的柔性产品平台多目标规划方法%Multiobjective planning for flexible product platform based on conjoint analysis and quantitative indices

    Institute of Scientific and Technical Information of China (English)

    李中凯; 朱真才; 程志红; 魏喆

    2011-01-01

    针对单一模块化或参数化平台设计中客户需求响应能力不足的问题,提出基于联合分析和定量指数的柔性产品平台多目标规划方法。分析了柔性平台调节特征和优化趋势,建立了柔性产品平台的设计过程模型;引入联合分析获得产品属性重要度和属性水平对客户满意度的效用值,采用质量功能配置获得产品属性和内部组件的关联矩阵;进而提出定量的平台通用性指数和多样化指数,构建柔性平台调节设计的两目标优化模型,并使用多目标进化算法进行求解。总体上实现了柔性平台调节方案的定量分析建模和多目标优化设计。通过液压支架平台调节方案规划实例,证明了所提出方法的有效性。%Aiming at the low responding capability for customer requirements in single modular or parametric platform design,a multiobjective planning method for flexible product platform based on conjoint analysis and quantitative indices was proposed.By analyzing on platform's leveraging characteristics and optimization trends,a design process model for flexible product platform was constructed.Through introduction of conjoint analysis,the importance degree of product attributes and utilities of attribute levels for customer satisfaction were achieved.Quality function deployment was applied to acquire the association matrix between product attributes and internal components.The quantitative platform generality index and product diversity index were proposed to construct a two-objective optimization model for flexible platform,which was solved by multi-objective evolutionary algorithms.The quantitative analysis modeling and multiobjective optimization for the flexible platform design were realized.Effectiveness of the proposed method was illustrated by the leveraging planning for large-scale hydraulic support platform.

  17. Simultaneous Quantitative Detection of Helicobacter Pylori Based on a Rapid and Sensitive Testing Platform using Quantum Dots-Labeled Immunochromatiographic Test Strips.

    Science.gov (United States)

    Zheng, Yu; Wang, Kan; Zhang, Jingjing; Qin, Weijian; Yan, Xinyu; Shen, Guangxia; Gao, Guo; Pan, Fei; Cui, Daxiang

    2016-12-01

    Quantum dots-labeled urea-enzyme antibody-based rapid immunochromatographic test strips have been developed as quantitative fluorescence point-of-care tests (POCTs) to detect helicobacter pylori. Presented in this study is a new test strip reader designed to run on tablet personal computers (PCs), which is portable for outdoor detection even without an alternating current (AC) power supply. A Wi-Fi module was integrated into the reader to improve its portability. Patient information was loaded by a barcode scanner, and an application designed to run on tablet PCs was developed to handle the acquired images. A vision algorithm called Kmeans was used for picture processing. Different concentrations of various human blood samples were tested to evaluate the stability and accuracy of the fabricated device. Results demonstrate that the reader can provide an easy, rapid, simultaneous, quantitative detection for helicobacter pylori. The proposed test strip reader has a lighter weight than existing detection readers, and it can run for long durations without an AC power supply, thus verifying that it possesses advantages for outdoor detection. Given its fast detection speed and high accuracy, the proposed reader combined with quantum dots-labeled test strips is suitable for POCTs and owns great potential in applications such as screening patients with infection of helicobacter pylori, etc. in near future.

  18. Simultaneous Quantitative Detection of Helicobacter Pylori Based on a Rapid and Sensitive Testing Platform using Quantum Dots-Labeled Immunochromatiographic Test Strips

    Science.gov (United States)

    Zheng, Yu; Wang, Kan; Zhang, Jingjing; Qin, Weijian; Yan, Xinyu; Shen, Guangxia; Gao, Guo; Pan, Fei; Cui, Daxiang

    2016-02-01

    Quantum dots-labeled urea-enzyme antibody-based rapid immunochromatographic test strips have been developed as quantitative fluorescence point-of-care tests (POCTs) to detect helicobacter pylori. Presented in this study is a new test strip reader designed to run on tablet personal computers (PCs), which is portable for outdoor detection even without an alternating current (AC) power supply. A Wi-Fi module was integrated into the reader to improve its portability. Patient information was loaded by a barcode scanner, and an application designed to run on tablet PCs was developed to handle the acquired images. A vision algorithm called Kmeans was used for picture processing. Different concentrations of various human blood samples were tested to evaluate the stability and accuracy of the fabricated device. Results demonstrate that the reader can provide an easy, rapid, simultaneous, quantitative detection for helicobacter pylori. The proposed test strip reader has a lighter weight than existing detection readers, and it can run for long durations without an AC power supply, thus verifying that it possesses advantages for outdoor detection. Given its fast detection speed and high accuracy, the proposed reader combined with quantum dots-labeled test strips is suitable for POCTs and owns great potential in applications such as screening patients with infection of helicobacter pylori, etc. in near future.

  19. Universal platform for quantitative analysis of DNA transposition

    Directory of Open Access Journals (Sweden)

    Pajunen Maria I

    2010-11-01

    Full Text Available Abstract Background Completed genome projects have revealed an astonishing diversity of transposable genetic elements, implying the existence of novel element families yet to be discovered from diverse life forms. Concurrently, several better understood transposon systems have been exploited as efficient tools in molecular biology and genomics applications. Characterization of new mobile elements and improvement of the existing transposition technology platforms warrant easy-to-use assays for the quantitative analysis of DNA transposition. Results Here we developed a universal in vivo platform for the analysis of transposition frequency with class II mobile elements, i.e., DNA transposons. For each particular transposon system, cloning of the transposon ends and the cognate transposase gene, in three consecutive steps, generates a multifunctional plasmid, which drives inducible expression of the transposase gene and includes a mobilisable lacZ-containing reporter transposon. The assay scores transposition events as blue microcolonies, papillae, growing within otherwise whitish Escherichia coli colonies on indicator plates. We developed the assay using phage Mu transposition as a test model and validated the platform using various MuA transposase mutants. For further validation and to illustrate universality, we introduced IS903 transposition system components into the assay. The developed assay is adjustable to a desired level of initial transposition via the control of a plasmid-borne E. coli arabinose promoter. In practice, the transposition frequency is modulated by varying the concentration of arabinose or glucose in the growth medium. We show that variable levels of transpositional activity can be analysed, thus enabling straightforward screens for hyper- or hypoactive transposase mutants, regardless of the original wild-type activity level. Conclusions The established universal papillation assay platform should be widely applicable to a

  20. Quantitative Comparison of the Responses of Three Floating Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J.; Matha, D.

    2010-03-01

    This report presents a comprehensive dynamic-response analysis of three offshore floating wind turbine concepts. Models were composed of one 5-MW turbine supported on land and three 5-MW turbines located offshore on a tension leg platform, a spar buoy, and a barge. A loads and stability analysis adhering to the procedures of international design standards was performed for each model using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The concepts are compared based on the calculated ultimate loads, fatigue loads, and instabilities. The results of this analysis will help resolve the fundamental design trade-offs between the floating-system concepts.

  1. Design for game based learning platforms

    DEFF Research Database (Denmark)

    Sørensen, Birgitte Holm; Meyer, Bente

    2010-01-01

    Council for Strategic Research, in which an online game-based platform for English as a foreign language in primary school is studied. The paper presents a model for designing for game based learning platforms. This design is based on cultural and ethnographic based research on children's leisure time use......This paper focuses on the challenges related to the design of game based learning platforms for formal learning contexts that are inspired by the pupil's leisure time related use of web 2.0. The paper is based on the project Serious Games on a Global Market Place (2007-2011) founded by the Danish...

  2. Quantitative RT-PCR based platform for rapid quantification of the transcripts of highly homologous multigene families and their members during grain development.

    Science.gov (United States)

    Kaczmarczyk, Agnieszka; Bowra, Steve; Elek, Zoltan; Vincze, Eva

    2012-10-09

    Cereal storage proteins represent one of the most important sources of protein for food and feed and they are coded by multigene families. The expression of the storage protein genes exhibits a temporal fluctuation but also a response to environmental stimuli. Analysis of temporal gene expression combined with genetic variation in large multigene families with high homology among the alleles is very challenging. We designed a rapid qRT-PCR system with the aim of characterising the variation in the expression of hordein genes families. All the known D-, C-, B-, and γ-hordein sequences coding full length open reading frames were collected from commonly available databases. Phylogenetic analysis was performed and the members of the different hordein families were classified into subfamilies. Primer sets were designed to discriminate the gene expression level of whole families, subfamilies or individual members. The specificity of the primer sets was validated before successfully applying them to a cDNA population derived from developing grains of field grown Hordeum vulgare cv. Barke. The results quantify the number of moles of transcript contributed to a particular gene family and its subgroups. More over the results indicate the genotypic specific gene expression. Quantitative RT-PCR with SYBR Green labelling can be a useful technique to follow gene expression levels of large gene families with highly homologues members. We showed variation in the temporal expression of genes coding for barley storage proteins. The results imply that our rapid qRT-PCR system was sensitive enough to identify the presence of alleles and their expression profiles. It can be used to check the temporal fluctuations in hordein expressions or to find differences in their response to environmental stimuli. The method could be extended for cultivar recognition as some of the sequences from the database originated from cv. Golden Promise were not expressed in the studied barley cultivar

  3. An Integrative Platform for Three-dimensional Quantitative Analysis of Spatially Heterogeneous Metastasis Landscapes

    Science.gov (United States)

    Guldner, Ian H.; Yang, Lin; Cowdrick, Kyle R.; Wang, Qingfei; Alvarez Barrios, Wendy V.; Zellmer, Victoria R.; Zhang, Yizhe; Host, Misha; Liu, Fang; Chen, Danny Z.; Zhang, Siyuan

    2016-04-01

    Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ.

  4. CORBA Based Information Integration Platform for CIMS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new information integration platform for computer integrated manufacturing system(CIMS) is presented, which is based on agent and CORBA. CORBA enhances the system integration be-cause it is an industry-standard for interoperable, distributed objects across heterogeneous hardware andsoftware platform. Agent technology is used to improve intelligence of integration system. In order to im-plement the information integration platform, we use network integration server to integrate network, de-sign a generic database agent to integrate database, adopt multi-agent based architecture to integrate appli-cation, and utilize wrapper as CORBA object to integrate legacy code.

  5. Cloud Based Applications and Platforms (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  6. Design for game based learning platforms

    DEFF Research Database (Denmark)

    Sørensen, Birgitte Holm; Meyer, Bente

    2010-01-01

    This paper focuses on the challenges related to the design of game based learning platforms for formal learning contexts that are inspired by the pupil's leisure time related use of web 2.0. The paper is based on the project Serious Games on a Global Market Place (2007-2011) founded by the Danish...... Council for Strategic Research, in which an online game-based platform for English as a foreign language in primary school is studied. The paper presents a model for designing for game based learning platforms. This design is based on cultural and ethnographic based research on children's leisure time use...... of web 2.0 and integrates theories of learning, didactics, games, play, communication, multimodality and different pedagogical approaches. In relation to the introduced model the teacher role is discussed....

  7. Handheld Microneedle-Based Electrolyte Sensing Platform.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Philip R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rivas, Rhiana [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Johnson, David [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Edwards, Thayne L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Koskelo, Markku [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Shawa, Luay [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Brener, Igal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chavez, Victor H. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Polsky, Ronen [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Sandia National Laboratories will provide technical assistance, within time and budget, to Requester on testing and analyzing a microneedle-based electrolyte sensing platform. Hollow microneedles will be fabricated at Sandia and integrated with a fluidic chip using plastic laminate prototyping technology available at Sandia. In connection with commercial ion selective electrodes the sensing platform will be tested for detection of electrolytes (sodium and/or potassium) within physiological relevant concent ration ranges.

  8. An Open-Source Based ITS Platform

    DEFF Research Database (Denmark)

    Andersen, Ove; Krogh, Benjamin Bjerre; Torp, Kristian

    2013-01-01

    In this paper, a complete platform used to compute travel times from GPS data is described. Two approaches to computing travel time are proposed one based on points and one based on trips. Overall both approaches give reasonable results compared to existing manual estimated travel times. However......, the trip-based approach requires more GPS data and of a higher quality than the point-based approach. The platform has been completely implemented using open-source software. The main conclusion is that large quantity of GPS data can be managed, with a limited budget and that GPS data is a good source...

  9. Embedded Based Miniaturized Universal Electrochemical Sensing Platform

    Directory of Open Access Journals (Sweden)

    Jiamin Chen

    2016-01-01

    Full Text Available We created an embedded sensing platform based on STM32 embedded system, with integrated carbon-electrode ionic sensor by using a self-made plug. Given ration of concentration-unknown nitrate liquid samples, this platform is able to measure the nitrate concentration in neutral environment. Response signals which were transmitted by the sensor can be displayed via a serial port to the computer screen or via Bluetooth to the smartphone. Processed by a fitting function, signals are transformed into related concentration. Through repeating the experiment many times, the accuracy and repeatability turned out to be excellent. The results can be automatically stored on smartphone via Bluetooth. We created this embedded sensing platform for field water quality measurement. This platform also can be applied for other micro sensors’ signal acquisition and data processing.

  10. Inter-laboratory evaluation of instrument platforms and experimental workflows for quantitative accuracy and reproducibility assessment

    NARCIS (Netherlands)

    Percy, Andrew J.; Tamura-Wells, Jessica; Albar, Juan Pablo; Aloria, Kerman; Amirkhani, Ardeshir; Araujo, Gabriel D T; Arizmendi, Jesus M.; Blanco, Francisco J.; Canals, Francesc; Cho, Jin Young; Colomé-Calls, Núria; Corrales, Fernando J.; Domont, Gilberto; Espadas, Guadalupe; Fernandez-Puente, Patricia; Gil, Concha; Haynes, Paul A.; Hernáez, Maria Luisa; Kim, Jin Young; Kopylov, Arthur; Marcilla, Miguel; McKay, Mathew J.; Mirzaei, Mehdi; Molloy, Mark P.; Ohlund, Leanne B.; Paik, Young Ki; Paradela, Alberto; Raftery, Mark; Sabidó, Eduard; Sleno, Lekha; Wilffert, Daniel; Wolters, Justina C.; Yoo, Jong Shin; Zgoda, Victor; Parker, Carol E.; Borchers, Christoph H.

    2015-01-01

    The reproducibility of plasma protein quantitation between laboratories and between instrument types was examined in a large-scale international study involving 16 laboratories and 19 LC-MS/MS platforms, using two kits designed to evaluate instrument performance and one kit designed to evaluate the

  11. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform.

    Science.gov (United States)

    Tachibana, Hiroaki; Saito, Masato; Shibuya, Shogo; Tsuji, Koji; Miyagawa, Nobuyuki; Yamanaka, Keiichiro; Tamiya, Eiichi

    2015-12-15

    Polymerase chain reaction (PCR)-based genetic testing has become a routine part of clinical diagnoses and food testing. In these fields, rapid, easy-to-use, and cost-efficient PCR chips are expected to be appeared for providing such testing on-site. In this study, a new autonomous disposable plastic microfluidic PCR chip was created, and was utilized for quantitative detection of pathogenic microorganisms. To control the capillary flow of the following solution in the PCR microchannel, a driving microchannel was newly designed behind the PCR microchannel. This allowed the effective PCR by simply dropping the PCR solution onto the inlet without any external pumps. In order to achieve disposability, injection-molded cyclo-olefin polymer (COP) of a cost-competitive plastic was used for the PCR chip. We discovered that coating the microchannel walls with non-ionic surfactant produced a suitable hydrophilic surface for driving the capillary flow through the 1250-mm long microchannel. As a result, quantitative real-time PCR with the lowest initial concentration of human, Escherichia coli (E. coli), and pathogenic E. coli O157 genomic DNA of 4, 0.0019, 0.031 pg/μl, respectively, was successfully achieved in less than 18 min. Our results indicate that the platform presented in this study provided a rapid, easy-to-use, and low-cost real-time PCR system that could be potentially used for on-site gene testing.

  12. Platform Based Design for Automotive Sensor Conditioning

    CERN Document Server

    Fanucci, L; Iozzi, F; Marino, C; Rocchi, A

    2011-01-01

    In this paper a general architecture suitable to interface several kinds of sensors for automotive applications is presented. A platform based design approach is pursued to improve system performance while minimizing time-to-market.. The platform is composed by an analog front-end and a digital section. The latter is based on a microcontroller core (8051 IP by Oregano) plus a set of dedicated hardware dedicated to the complex signal processing required for sensor conditioning. The microcontroller handles also the communication with external devices (as a PC) for data output and fast prototyping. A case study is presented concerning the conditioning of a Gyro yaw rate sensor for automotive applications. Measured performance results outperform current state-of-the-art commercial devices.

  13. Product Information Platform Based on STEP

    Institute of Scientific and Technical Information of China (English)

    WANG Taiyong; ZHANG Zhiwei

    2009-01-01

    The intemational standard ISO 10303.called STEP.has been used to deal with problems in the ex change of product models and the associated data between difierent computer-aided systems.A platform based on STEP for managing product information is presented.This platform includes three components:a product geometry information model,a product feature model and a product visualization model.An information extracting pattern,in which information is extracted from low level elements to high level ones,is adopted in establishing the product geometry information model.Relative elements lists are created based on the extracted product information.With the traversing of these lists,feature extraction methods are proposed,which take advantage of boundary information in product model and avoid the determination of concavity and convexity of curves.Information correlating to features iS stored in a structure named as feature block and the product visualization model iS founded from it.The feature block is used in the platform for information communication and synchronous update among the three components.

  14. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    Science.gov (United States)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  15. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    Science.gov (United States)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-01-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  16. The design and characterization of a testing platform for quantitative evaluation of tread performance on multiple biological substrates.

    Science.gov (United States)

    Sliker, Levin J; Rentschler, Mark E

    2012-09-01

    In this study, an experimental platform is developed to quantitatively measure the performance of robotic wheel treads in a dynamic environment. The platform imposes a dynamic driving condition for a single robot wheel, where the wheel is rotated on a translating substrate, thereby inducing slip. The normal force of the wheel can be adjusted mechanically, while the rotational velocity of the wheel and the translational velocity of the substrate can be controlled using an open-loop control system. Wheel slip and translational speed can be varied autonomously while wheel traction force is measured using a load cell. The testing platform is characterized by testing one micropatterned polydimethylsiloxane (PDMS) tread on three substrates (dry synthetic tissue, hydrated synthetic tissue, and excised porcine small bowel tissue), at three normal forces (0.10, 0.20, and 0.30 N), 13 slip ratios (-0.30 to 0.30 in increments of 0.05), and three translational speeds (2, 3, and 6 mm/s). Additionally, two wheels (micropatterned and smooth PDMS) are tested on beef liver at the same three normal forces and translational speeds for a tread comparison. An analysis of variance revealed that the platform can detect statistically significant differences between means when observing normal forces, translational speeds, slip ratios, treads, and substrates. The variance due to within (platform error, P = 1) and between trials (human error, P = 0.152) is minimal when compared to the normal force (P = 0.036), translational speed ( P = 0.059), slip ratio (P = 0), tread (P = 0.004), and substrate variances ( P = 0). In conclusion, this precision testing platform can be used to determine wheel tread performance differences on the three substrates and for each of the studied parameters. Future use of the platform could lead to an optimized micropattern-based mobility system, under given operating conditions, for implementation on a robotic capsule endoscope.

  17. GProX, a User-Friendly Platform for Bioinformatics Analysis and Visualization of Quantitative Proteomics Data

    DEFF Research Database (Denmark)

    Rigbolt, Kristoffer T G; Vanselow, Jens T; Blagoev, Blagoy

    2011-01-01

    -friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface...... which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options...... such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical...

  18. Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection.

    Science.gov (United States)

    Lee, Hiang Kwee; Lee, Yih Hong; Phang, In Yee; Wei, Jiaqi; Miao, Yue-E; Liu, Tianxi; Ling, Xing Yi

    2014-05-12

    Inspired by aphids, liquid marbles have been studied extensively and have found application as isolated microreactors, as micropumps, and in sensing. However, current liquid-marble-based sensing methodologies are limited to qualitative colorimetry-based detection. Herein we describe the fabrication of a plasmonic liquid marble as a substrate-less analytical platform which, when coupled with ultrasensitive SERS, enables simultaneous multiplex quantification and the identification of ultratrace analytes across separate phases. Our plasmonic liquid marble demonstrates excellent mechanical stability and is suitable for the quantitative examination of ultratrace analytes, with detection limits as low as 0.3 fmol, which corresponds to an analytical enhancement factor of 5×10(8). The results of our simultaneous detection scheme based on plasmonic liquid marbles and an aqueous-solid-organic interface quantitatively tally with those found for the individual detection of methylene blue and coumarin.

  19. An improved UPLC-MS/MS platform for quantitative analysis of glycerophosphoinositol in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Laura Grauso

    Full Text Available The glycerophosphoinositols constitute a class of biologically active lipid-derived mediators whose intracellular levels are modulated during physiological and pathological cell processes. Comprehensive assessment of the role of these compounds expands beyond the cellular biology of lipids and includes rapid and unambiguous measurement in cells and tissues. Here we describe a sensitive and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS method for quantitative analysis of the most abundant among these phosphoinositide derivatives in mammalian cells, the glycerophosphoinositol (GroPIns. The method has been developed in mouse Raw 264.7 macrophages with limits of quantitation at 3 ng/ml. Validation on the same cell line showed excellent response in terms of linear dynamic range (from 3 to 3,000 ng/ml, intra-day and inter-day precision (coefficient of variation ≤ 7.10% and accuracy (between 98.1 and 109.0% in the range 10-320 ng/ml. As proof of concept, a simplified analytical platform based on this method and external calibration was also tested on four stimulated and unstimulated cell lines, including Raw 264.7 macrophages, Jurkat T-cells, A375MM melanoma cells and rat basophilic leukemia RBL-2H3 cells. The results indicate a wide variation in GroPIns levels among different cell lines and stimulation conditions, although the measurements were always in line with the literature. No significant matrix effects were observed thus indicating that the here proposed method can be of general use for similar determinations in cells of different origin.

  20. A Perspective on Implementing a Quantitative Systems Pharmacology Platform for Drug Discovery and the Advancement of Personalized Medicine

    Science.gov (United States)

    Stern, Andrew M.; Schurdak, Mark E.; Bahar, Ivet; Berg, Jeremy M.; Taylor, D. Lansing

    2016-01-01

    Drug candidates exhibiting well-defined pharmacokinetic and pharmacodynamic profiles that are otherwise safe often fail to demonstrate proof-of-concept in phase II and III trials. Innovation in drug discovery and development has been identified as a critical need for improving the efficiency of drug discovery, especially through collaborations between academia, government agencies, and industry. To address the innovation challenge, we describe a comprehensive, unbiased, integrated, and iterative quantitative systems pharmacology (QSP)–driven drug discovery and development strategy and platform that we have implemented at the University of Pittsburgh Drug Discovery Institute. Intrinsic to QSP is its integrated use of multiscale experimental and computational methods to identify mechanisms of disease progression and to test predicted therapeutic strategies likely to achieve clinical validation for appropriate subpopulations of patients. The QSP platform can address biological heterogeneity and anticipate the evolution of resistance mechanisms, which are major challenges for drug development. The implementation of this platform is dedicated to gaining an understanding of mechanism(s) of disease progression to enable the identification of novel therapeutic strategies as well as repurposing drugs. The QSP platform will help promote the paradigm shift from reactive population-based medicine to proactive personalized medicine by focusing on the patient as the starting and the end point. PMID:26962875

  1. GEMBus based services composition platform for cloud PaaS

    NARCIS (Netherlands)

    Demchenko, Y.; Ngo, C.; Martínez-Julia, P.; Torroglosa, E.; Grammatikou, M.; Jofre, J.; Gheorghiu, S.; Garcia-Espin, J.A.; Perez-Morales, A.D.; de Laat, C.

    2012-01-01

    Cloud Platform as a Service (PaaS) provides an environment for creating and deploying applications using one of popular development platforms. This paper presents a practical solution for building a service composition platform based on the GEMBus (GEANT Multi-domain Bus) that extends the industry a

  2. Microcantilever-based platforms as biosensing tools.

    Science.gov (United States)

    Alvarez, Mar; Lechuga, Laura M

    2010-05-01

    The fast and progressive growth of the biotechnology and pharmaceutical fields forces the development of new and powerful sensing techniques for process optimization and detection of biomolecules at very low concentrations. During the last years, the simplest MEMS structures, i.e. microcantilevers, have become an emerging and promising technology for biosensing applications, due to their small size, fast response, high sensitivity and their compatible integration into "lab-on-a-chip" devices. This article provides an overview of some of the most interesting bio-detections carried out during the last 2-3 years with the microcantilever-based platforms, which highlight the continuous expansion of this kind of sensor in the medical diagnosis field, reaching limits of detection at the single molecule level.

  3. Graphene-based platforms for cancer therapeutics.

    Science.gov (United States)

    Patel, Sunny C; Lee, Stephen; Lalwani, Gaurav; Suhrland, Cassandra; Chowdhury, Sayan Mullick; Sitharaman, Balaji

    2016-01-01

    Graphene is a multifunctional carbon nanomaterial and could be utilized to develop platform technologies for cancer therapies. Its surface can be covalently and noncovalently functionalized with anticancer drugs and functional groups that target cancer cells and tissue to improve treatment efficacies. Furthermore, its physicochemical properties can be harnessed to facilitate stimulus responsive therapeutics and drug delivery. This review article summarizes the recent literature specifically focused on development of graphene technologies to treat cancer. We will focus on advances at the interface of graphene based drug/gene delivery, photothermal/photodynamic therapy and combinations of these techniques. We also discuss the current understanding in cytocompatibility and biocompatibility issues related to graphene formulations and their implications pertinent to clinical cancer management.

  4. Quantitative proteomic profiling of breast cancers using a multiplexed microfluidic platform for immunohistochemistry and immunocytochemistry.

    Science.gov (United States)

    Kim, Minseok S; Kwon, Seyong; Kim, Taemin; Lee, Eun Sook; Park, Je-Kyun

    2011-02-01

    This paper describes a multiplexed microfluidic immunohistochemistry (IHC)/immunocytochemistry (ICC) platform for quantitative proteomic profiling in breast cancer samples. Proteomic profiling via ICC was examined for four breast cancer cell lines (AU-565, HCC70, MCF-7, and SK-BR-3). The microfluidic device enabled 20 ICC assays on a biological specimen at the same time and a 16-fold decrease in time consumption, and could be used to quantitatively compare the expression level of each biomarker. The immunohistochemical staining from the microfluidic system showed an accurate localization of protein and comparable quality to that of the conventional IHC method. Although AU-565 and SK-BR-3 cell lines were classified by luminal subtype and adenocarcinomas and were derived from the same patient, weak p63 expression was seen only in SK-BR-3. The HCC70 cell line showed a triple-negative (estrogen receptor-negative/progesterone receptor-negative/human epidermal growth factor receptor 2-negative) phenotype and showed only cytokeratin 5 expression, a representative basal/myoepithelial cell marker. To demonstrate the applicability of the system to clinical samples for proteomic profiling, we were also able to apply this platform to human breast cancer tissue. This result indicates that the microfluidic IHC/ICC platform is useful for accurate histopathological diagnoses using numerous specific biomarkers simultaneously, facilitating the individualization of cancer therapy.

  5. GProX, a user-friendly platform for bioinformatics analysis and visualization of quantitative proteomics data.

    Science.gov (United States)

    Rigbolt, Kristoffer T G; Vanselow, Jens T; Blagoev, Blagoy

    2011-08-01

    Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.

  6. Elementary Writing Assessment Platforms: A Quantitative Examination of Online versus Offline Writing Performance of Fifth-Grade Students

    Science.gov (United States)

    Heath, Vickie L.

    2013-01-01

    This quantitative study explored if significant differences exist between how fifth-grade students produce a written response to a narrative prompt using online versus offline writing platforms. The cultural and social trend of instructional and assessment writing paradigms in education is shifting to online writing platforms (National Assessment…

  7. Elementary Writing Assessment Platforms: A Quantitative Examination of Online versus Offline Writing Performance of Fifth-Grade Students

    Science.gov (United States)

    Heath, Vickie L.

    2013-01-01

    This quantitative study explored if significant differences exist between how fifth-grade students produce a written response to a narrative prompt using online versus offline writing platforms. The cultural and social trend of instructional and assessment writing paradigms in education is shifting to online writing platforms (National Assessment…

  8. Omnivision-based autonomous mobile robotic platform

    Science.gov (United States)

    Cao, Zuoliang; Hu, Jun; Cao, Jin; Hall, Ernest L.

    2001-10-01

    As a laboratory demonstration platform, TUT-I mobile robot provides various experimentation modules to demonstrate the robotics technologies that are involved in remote control, computer programming, teach-and-playback operations. Typically, the teach-and-playback operation has been proved to be an effective solution especially in structured environments. The path generated in the teach mode and path correction in real-time using path error detecting in the playback mode are demonstrated. The vision-based image database is generated as the given path representation in the teaching procedure. The algorithm of an online image positioning is performed for path following. Advanced sensory capability is employed to provide environment perception. A unique omni directional vision (omni-vision) system is used for localization and navigation. The omni directional vision involves an extremely wide-angle lens, which has the feature that a dynamic omni-vision image is processed in real time to respond the widest view during the movement. The beacon guidance is realized by observing locations of points derived from over-head features such as predefined light arrays in a building. The navigation approach is based upon the omni-vision characteristics. A group of ultrasonic sensors is employed for obstacle avoidance.

  9. Inter-laboratory evaluation of instrument platforms and experimental workflows for quantitative accuracy and reproducibility assessment

    Directory of Open Access Journals (Sweden)

    Andrew J. Percy

    2015-09-01

    Full Text Available The reproducibility of plasma protein quantitation between laboratories and between instrument types was examined in a large-scale international study involving 16 laboratories and 19 LC–MS/MS platforms, using two kits designed to evaluate instrument performance and one kit designed to evaluate the entire bottom-up workflow. There was little effect of instrument type on the quality of the results, demonstrating the robustness of LC/MRM-MS with isotopically labeled standards. Technician skill was a factor, as errors in sample preparation and sub-optimal LC–MS performance were evident. This highlights the importance of proper training and routine quality control before quantitation is done on patient samples.

  10. Systematic evaluation of three microRNA profiling platforms: microarray, beads array, and quantitative real-time PCR array.

    Science.gov (United States)

    Wang, Bin; Howel, Paul; Bruheim, Skjalg; Ju, Jingfang; Owen, Laurie B; Fodstad, Oystein; Xi, Yaguang

    2011-02-11

    A number of gene-profiling methodologies have been applied to microRNA research. The diversity of the platforms and analytical methods makes the comparison and integration of cross-platform microRNA profiling data challenging. In this study, we systematically analyze three representative microRNA profiling platforms: Locked Nucleic Acid (LNA) microarray, beads array, and TaqMan quantitative real-time PCR Low Density Array (TLDA). The microRNA profiles of 40 human osteosarcoma xenograft samples were generated by LNA array, beads array, and TLDA. Results show that each of the three platforms perform similarly regarding intra-platform reproducibility or reproducibility of data within one platform while LNA array and TLDA had the best inter-platform reproducibility or reproducibility of data across platforms. The endogenous controls/probes contained in each platform have been observed for their stability under different treatments/environments; those included in TLDA have the best performance with minimal coefficients of variation. Importantly, we identify that the proper selection of normalization methods is critical for improving the inter-platform reproducibility, which is evidenced by the application of two non-linear normalization methods (loess and quantile) that substantially elevated the sensitivity and specificity of the statistical data assessment. Each platform is relatively stable in terms of its own microRNA profiling intra-reproducibility; however, the inter-platform reproducibility among different platforms is low. More microRNA specific normalization methods are in demand for cross-platform microRNA microarray data integration and comparison, which will improve the reproducibility and consistency between platforms.

  11. NDSI products system based on Hadoop platform

    Science.gov (United States)

    Zhou, Yan; Jiang, He; Yang, Xiaoxia; Geng, Erhui

    2015-12-01

    Snow is solid state of water resources on earth, and plays an important role in human life. Satellite remote sensing is significant in snow extraction with the advantages of cyclical, macro, comprehensiveness, objectivity, timeliness. With the continuous development of remote sensing technology, remote sensing data access to the trend of multiple platforms, multiple sensors and multiple perspectives. At the same time, in view of the remote sensing data of compute-intensive applications demand increase gradually. However, current the producing system of remote sensing products is in a serial mode, and this kind of production system is used for professional remote sensing researchers mostly, and production systems achieving automatic or semi-automatic production are relatively less. Facing massive remote sensing data, the traditional serial mode producing system with its low efficiency has been difficult to meet the requirements of mass data timely and efficient processing. In order to effectively improve the production efficiency of NDSI products, meet the demand of large-scale remote sensing data processed timely and efficiently, this paper build NDSI products production system based on Hadoop platform, and the system mainly includes the remote sensing image management module, NDSI production module, and system service module. Main research contents and results including: (1)The remote sensing image management module: includes image import and image metadata management two parts. Import mass basis IRS images and NDSI product images (the system performing the production task output) into HDFS file system; At the same time, read the corresponding orbit ranks number, maximum/minimum longitude and latitude, product date, HDFS storage path, Hadoop task ID (NDSI products), and other metadata information, and then create thumbnails, and unique ID number for each record distribution, import it into base/product image metadata database. (2)NDSI production module: includes

  12. Routing problems based on hils system platform

    Directory of Open Access Journals (Sweden)

    Andrzej Adamski

    2015-03-01

    Full Text Available Background: The logistic systems are very complex socio-technical systems. In this paper the proposal of application of the hierarchical multi-layers system platform HILS approach for the solution of the complex vehicle routing problems is presented. The interactive system functional structure was proposed which by intelligent dedicated inter-layers interactions enables the professional solutions of these practical problems. To illustrate these capabilities the complex example of the real-time VRP-SPD-TW routing problem was presented in which upper layers offers the context-related real-time updating network specifications that stimulates the adequate routing parameters and specifications updating for problem solution in optimization layer. At the bottom dispatching control layer the DISCON (Dispatching CONtrol method from public transport was adopted to logistics applications in which the actual routing is treated as obligatory reference schedule to be stabilized. The intelligence aspects are related among others to HILS based decomposition, context-related trade-offs between routing modifications and corrective dispatching control capabilities e.g. priority or route guidance actions. Methods: Decomposition of the vehicle routing problem for the HILS layers tasks creating the ILS system hierarchical structure. Dedicated solution method for the VRP-SPD-TW routing problem. The recognition of the control preferences structure by AHP-Entropy methods. DISCON and PIACON multi-criteria interacting control methods. Results: Original formulation and solution of the vehicle routing problem by system-wide approach with essential practical advantages: consistency, lack of redundancy, essential reduction of dimension, dedicated formulation, multi-criteria approach, exploration of the integration and intelligence features supported by the intelligent PIACON-DISCON methods control activities Conclusions: The presented proposal creates the professional

  13. Multisensory platform based on NEC protocol

    Directory of Open Access Journals (Sweden)

    Novaković Đorđe

    2017-01-01

    Full Text Available Multisensory signal acquisition represents one of the main concepts necessary to perform measurements in various industrial and consumer-oriented applications. This paper presents a development platform which provides a data acquisition from multiple sensors. The main module of the platform is the UNIDS-3 development board with PIC18F8520 microcontroller. Data acquisition from the sensors is performed on user demand by remote control. NEC protocol is implemented and IR receiver TSOP31238 is used. The measurement data are sent to a computer, which performs digital data processing, data visualization and data storage. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR32019

  14. Rhabdovirus-Based Vaccine Platforms against Henipaviruses

    Science.gov (United States)

    Kurup, Drishya; Wirblich, Christoph; Feldmann, Heinz; Marzi, Andrea

    2014-01-01

    ABSTRACT The emerging zoonotic pathogens Hendra virus (HeV) and Nipah virus (NiV) are in the genus Henipavirus in the family Paramyxoviridae. HeV and NiV infections can be highly fatal to humans and livestock. The goal of this study was to develop candidate vaccines against henipaviruses utilizing two well-established rhabdoviral vaccine vector platforms, recombinant rabies virus (RABV) and recombinant vesicular stomatitis virus (VSV), expressing either the codon-optimized or the wild-type (wt) HeV glycoprotein (G) gene. The RABV vector expressing the codon-optimized HeV G showed a 2- to 3-fold increase in incorporation compared to the RABV vector expressing wt HeV G. There was no significant difference in HeV G incorporation in the VSV vectors expressing either wt or codon-optimized HeV G. Mice inoculated intranasally with any of these live recombinant viruses showed no signs of disease, including weight loss, indicating that HeV G expression and incorporation did not increase the neurotropism of the vaccine vectors. To test the immunogenicity of the vaccine candidates, we immunized mice intramuscularly with either one dose of the live vaccines or 3 doses of 10 μg chemically inactivated viral particles. Increased codon-optimized HeV G incorporation into RABV virions resulted in higher antibody titers against HeV G compared to inactivated RABV virions expressing wt HeV G. The live VSV vectors induced more HeV G-specific antibodies as well as higher levels of HeV neutralizing antibodies than the RABV vectors. In the case of killed particles, HeV neutralizing serum titers were very similar between the two platforms. These results indicated that killed RABV with codon-optimized HeV G should be the vector of choice as a dual vaccine in areas where rabies is endemic. IMPORTANCE Scientists have been tracking two new viruses carried by the Pteropid fruit bats: Hendra virus (HeV) and Nipah virus (NiV). Both viruses can be fatal to humans and also pose a serious risk to

  15. Platform for Postprocessing Waveform-Based NDE

    Science.gov (United States)

    Roth, Don

    2008-01-01

    Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image

  16. A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits

    National Research Council Canada - National Science Library

    Raman, Harsh; Raman, Rosy; Kilian, Andrzej; Detering, Frank; Long, Yan; Edwards, David; Parkin, Isobel A P; Sharpe, Andrew G; Nelson, Matthew N; Larkan, Nick; Zou, Jun; Meng, Jinling; Aslam, M Naveed; Batley, Jacqueline; Cowling, Wallace A; Lydiate, Derek

    2013-01-01

    Dense consensus genetic maps based on high-throughput genotyping platforms are valuable for making genetic gains in Brassica napus through quantitative trait locus identification, efficient predictive...

  17. A microfluidic AFM cantilever based dispensing and aspiration platform

    NARCIS (Netherlands)

    Van Oorschot, R.; Perez Garza, H.H.; Derks, R.J.S.; Staufer, U.; Ghatkesar, M.K.

    2015-01-01

    We present the development of a microfluidic AFM (atomic force microscope) cantilever-based platform to enable the local dispensing and aspiration of liquid with volumes in the pico-to-femtoliter range. The platform consists of a basic AFM measurement system, microfluidic AFM chip, fluidic interface

  18. An SOA-based Noise Mapping Platform for Urban Traffics

    Directory of Open Access Journals (Sweden)

    Wensheng Xu

    2013-05-01

    Full Text Available Traffic noise is a major environmental problem in many urban areas and frequently causes complaints from urban residents. An accurate traffic noise map of urban areas can facilitate noise monitoring, traffic strategic planning, street planning, residential area planning and noise prevention or reduction. An SOA based platform for urban traffic strategic noise mapping is proposed in this paper. Service Oriented Computing Environment (SORCER is adopted to build the highly flexible distributed platform for noise monitoring and noise mapping. The platform architecture and the hierarchical services structure based on SOA are presented. The major services in the platform, including the task scheduler service, prediction service and noise propagation calculation service are analyzed in details. To demonstrate the function and mechanism of the platform, a real traffic noise mapping project for a Beijing area is presented.

  19. A web-based platform for mobile learning management system ...

    African Journals Online (AJOL)

    A web-based platform for mobile learning management system. ... Journal of Computer Science and Its Application ... the mobile devices, the mobile applications used to access the internet and also context discovery and content delivery.

  20. Market implementation of the MVA platform for pre-pandemic and pandemic influenza vaccines: A quantitative key opinion leader analysis

    NARCIS (Netherlands)

    B. Ramezanpour (Bahar); E.S. Pronker (Esther); J.H.C.M. Kreijtz (Joost); A.D.M.E. Osterhaus (Albert); H.J.H.M. Claassen (Eric)

    2015-01-01

    textabstractA quantitative method is presented to rank strengths, weaknesses, opportunities, and threats (SWOT) of modified vaccinia virus Ankara (MVA) as a platform for pre-pandemic and pandemic influenza vaccines. Analytic hierarchy process (AHP) was applied to achieve pairwise comparisons among S

  1. Market implementation of the MVA platform for pre-pandemic and pandemic influenza vaccines: A quantitative key opinion leader analysis

    NARCIS (Netherlands)

    B. Ramezanpour (Bahar); E.S. Pronker (Esther); J.H.C.M. Kreijtz (Joost); A.D.M.E. Osterhaus (Albert); H.J.H.M. Claassen (Eric)

    2015-01-01

    textabstractA quantitative method is presented to rank strengths, weaknesses, opportunities, and threats (SWOT) of modified vaccinia virus Ankara (MVA) as a platform for pre-pandemic and pandemic influenza vaccines. Analytic hierarchy process (AHP) was applied to achieve pairwise comparisons among

  2. Protein-Based Nanomedicine Platforms for Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ma Ham, Aihui; Tang, Zhiwen; Wu, Hong; Wang, Jun; Lin, Yuehe

    2009-08-03

    Drug delivery systems have been developed for many years, however some limitations still hurdle the pace of going to clinical phase, for example, poor biodistribution, drug molecule cytotoxicity, tissue damage, quick clearance from the circulation system, solubility and stability of drug molecules. To overcome the limitations of drug delivery, biomaterials have to be developed and applied to drug delivery to protect the drug molecules and to enhance the drug’s efficacy. Protein-based nanomedicine platforms for drug delivery are platforms comprised of naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug delivery systems including the ferritin/apoferritin protein cage, plant derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms including the various protein cages, microspheres, nanoparticles, hydrogels, films, minirods and minipellets. There are over 30 therapeutic compounds that have been investigated with protein-based drug delivery platforms for the potential treatment of various cancers, infectious diseases, chronic diseases, autoimmune diseases. In protein-based drug delivery platforms, protein cage is the most newly developed biomaterials for drug delivery and therapeutic applications. Their uniform sizes, multifunctions, and biodegradability push them to the frontier for drug delivery. In this review, the recent strategic development of drug delivery has been discussed with a special emphasis upon the polymer based, especially protein-based nanomedicine platforms for drug delivery. The advantages and disadvantages are also

  3. CORBA-based platform for distributed multimedia applications

    Science.gov (United States)

    Blum, Christian; Molva, Refik

    1997-01-01

    As distributed multimedia applications are starting to be offered as services in enterprise and residential cable networks, there is a growing interest in platforms that provide a standard framework for the development and deployment of these applications. Key issues in platform design are service diversity, service portability and interoperability of user terminal equipment. We propose a platform architecture for the provision of multimedia communication services which logically separates application processing from media processing. Applications are installed in application pools from where they control a set of communicating multimedia terminals. Application-specific intelligence is downloaded into the terminals in the from of Tcl/Tk or Java scripts that generate graphical user interfaces, control media processing components, and communicate with the application in the pool. The platform architecture is based on CORBA and is defined as an extensible set of IDL interfaces for control and stream interfaces for multimedia communication. The platform architecture is based on CORBA and is defined as an extensible set of IDL interfaces for control and stream interfaces for multimedia communication. The platform supports applications development with high-level programming interfaces.

  4. An Automated High Throughput Proteolysis and Desalting Platform for Quantitative Proteomic Analysis

    Directory of Open Access Journals (Sweden)

    Albert-Baskar Arul

    2013-06-01

    Full Text Available Proteomics for biomarker validation needs high throughput instrumentation to analyze huge set of clinical samples for quantitative and reproducible analysis at a minimum time without manual experimental errors. Sample preparation, a vital step in proteomics plays a major role in identification and quantification of proteins from biological samples. Tryptic digestion a major check point in sample preparation for mass spectrometry based proteomics needs to be more accurate with rapid processing time. The present study focuses on establishing a high throughput automated online system for proteolytic digestion and desalting of proteins from biological samples quantitatively and qualitatively in a reproducible manner. The present study compares online protein digestion and desalting of BSA with conventional off-line (in-solution method and validated for real time sample for reproducibility. Proteins were identified using SEQUEST data base search engine and the data were quantified using IDEALQ software. The present study shows that the online system capable of handling high throughput samples in 96 well formats carries out protein digestion and peptide desalting efficiently in a reproducible and quantitative manner. Label free quantification showed clear increase of peptide quantities with increase in concentration with much linearity compared to off line method. Hence we would like to suggest that inclusion of this online system in proteomic pipeline will be effective in quantification of proteins in comparative proteomics were the quantification is really very crucial.

  5. Knowledge-Based Platform for Collaborative Innovation Development of Products

    Institute of Scientific and Technical Information of China (English)

    李莉敏; 唐文献; 方明伦; 杨延麟

    2005-01-01

    The platform of distributed design and resource sharing is important for medium-sized and small companies in developing products to improve competitiveness. As a background of creative product design, a knowledge model based on product collaborative innovation development of products (CIDP) is proposed. Characteristics of CIDP are analyzed, and the framework and key technologies of the CIDP-plafform based knowledge studied. Through integration of existing system and interface designs, a development platform has been built to support the PCID within knowledge-based engineering (KBE). An example is presented, indicating that the prototype system is maneuverable and practical.

  6. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  7. Simultaneous and quantitative monitoring of co-cultured Pseudomonas aeruginosa and Staphylococcus aureus with antibiotics on a diffusometric platform

    Science.gov (United States)

    Chung, Chih-Yao; Wang, Jhih-Cheng; Chuang, Han-Sheng

    2017-04-01

    Successful treatments against bacterial infections depend on antimicrobial susceptibility testing (AST). However, conventional AST requires more than 24 h to obtain an outcome, thereby contributing to high patient mortality. An antibiotic therapy based on experiences is therefore necessary for saving lives and escalating the emergence of multidrug-resistant pathogens. Accordingly, a fast and effective drug screen is necessary for the appropriate administration of antibiotics. The mixed pathogenic nature of infectious diseases emphasizes the need to develop an assay system for polymicrobial infections. On this basis, we present a novel technique for simultaneous and quantitative monitoring of co-cultured microorganisms by coupling optical diffusometry with bead-based immunoassays. This simple integration simultaneously achieves a rapid AST analysis for two pathogens. Triple color particles were simultaneously recorded and subsequently analyzed by functionalizing different fluorescent color particles with dissimilar pathogen-specific antibodies. Results suggested that the effect of the antibiotic, gentamicin, on co-cultured Pseudomonas aeruginosa and Staphylococcus aureus was effectively distinguished by the proposed technique. This study revealed a multiplexed and time-saving (within 2 h) platform with a small sample volume (~0.5 μL) and a low initial bacterial count (50 CFU per droplet, ~105 CFU/mL) for continuously monitoring the growth of co-cultured microorganisms. This technique provides insights into timely therapies against polymicrobial diseases in the near future.

  8. Market implementation of the MVA platform for pre-pandemic and pandemic influenza vaccines: A quantitative key opinion leader analysis

    Science.gov (United States)

    Ramezanpour, Bahar; Pronker, Esther S.; Kreijtz, Joost H.C.M.; Osterhaus, Albert D.M.E.; Claassen, E.

    2015-01-01

    A quantitative method is presented to rank strengths, weaknesses, opportunities, and threats (SWOT) of modified vaccinia virus Ankara (MVA) as a platform for pre-pandemic and pandemic influenza vaccines. Analytic hierarchy process (AHP) was applied to achieve pairwise comparisons among SWOT factors in order to prioritize them. Key opinion leaders (KOLs) in the influenza vaccine field were interviewed to collect a unique dataset to evaluate the market potential of this platform. The purpose of this study, to evaluate commercial potential of the MVA platform for the development of novel generation pandemic influenza vaccines, is accomplished by using a SWOT and AHP combined analytic method. Application of the SWOT–AHP model indicates that its strengths are considered more important by KOLs than its weaknesses, opportunities, and threats. Particularly, the inherent immunogenicity capability of MVA without the requirement of an adjuvant is the most important factor to increase commercial attractiveness of this platform. Concerns regarding vector vaccines and anti-vector immunity are considered its most important weakness, which might lower public health value of this platform. Furthermore, evaluation of the results of this study emphasizes equally important role that threats and opportunities of this platform play. This study further highlights unmet needs in the influenza vaccine market, which could be addressed by the implementation of the MVA platform. Broad use of MVA in clinical trials shows great promise for this vector as vaccine platform for pre-pandemic and pandemic influenza and threats by other respiratory viruses. Moreover, from the results of the clinical trials seem that MVA is particularly attractive for development of vaccines against pathogens for which no, or only insufficiently effective vaccines, are available. PMID:26048779

  9. Market implementation of the MVA platform for pre-pandemic and pandemic influenza vaccines: A quantitative key opinion leader analysis.

    Science.gov (United States)

    Ramezanpour, Bahar; Pronker, Esther S; Kreijtz, Joost H C M; Osterhaus, Albert D M E; Claassen, E

    2015-08-20

    A quantitative method is presented to rank strengths, weaknesses, opportunities, and threats (SWOT) of modified vaccinia virus Ankara (MVA) as a platform for pre-pandemic and pandemic influenza vaccines. Analytic hierarchy process (AHP) was applied to achieve pairwise comparisons among SWOT factors in order to prioritize them. Key opinion leaders (KOLs) in the influenza vaccine field were interviewed to collect a unique dataset to evaluate the market potential of this platform. The purpose of this study, to evaluate commercial potential of the MVA platform for the development of novel generation pandemic influenza vaccines, is accomplished by using a SWOT and AHP combined analytic method. Application of the SWOT-AHP model indicates that its strengths are considered more important by KOLs than its weaknesses, opportunities, and threats. Particularly, the inherent immunogenicity capability of MVA without the requirement of an adjuvant is the most important factor to increase commercial attractiveness of this platform. Concerns regarding vector vaccines and anti-vector immunity are considered its most important weakness, which might lower public health value of this platform. Furthermore, evaluation of the results of this study emphasizes equally important role that threats and opportunities of this platform play. This study further highlights unmet needs in the influenza vaccine market, which could be addressed by the implementation of the MVA platform. Broad use of MVA in clinical trials shows great promise for this vector as vaccine platform for pre-pandemic and pandemic influenza and threats by other respiratory viruses. Moreover, from the results of the clinical trials seem that MVA is particularly attractive for development of vaccines against pathogens for which no, or only insufficiently effective vaccines, are available.

  10. Ultrafast optical signal processing on silicon-based platforms

    Science.gov (United States)

    Tan, Dawn T. H.

    2016-03-01

    The development of silicon - based photonic components and systems has advanced tremendously over the last decade, largely for applications in optical interconnects. The role of silicon - based platforms for both linear and nonlinear optics remains highly pertinent because of their ability to be integrated with CMOS - based electronics. In this paper, we present recent research progress pertaining to ultrafast optical signal processing on silicon - based platforms. Advances in on - chip multiplexing strategies with the potential for meeting 200GHz dense wavelength division multiplexing standards across the C - and L - bands will be discussed. In addition, the development of a silicon - based nonlinear optics platform with high nonlinear figures of merit will be presented. Nonlinear optical devices fabricated from the developed platform possess nonlinear parameters 500 times larger than that in silicon nitride waveguides, while possessing negligible nonlinear losses at 1.55μm. Ultra - broadband, low power nonlinear wavelength generation using these devices, as well as their potential for realizing advanced light sources for optical interconnect - based applications will be presented.

  11. Flexible and Disposable Sensing Platforms Based on Newspaper.

    Science.gov (United States)

    Yang, MinHo; Jeong, Soon Woo; Chang, Sung Jin; Kim, Kyung Hoon; Jang, Minjeong; Kim, Chi Hyun; Bae, Nam Ho; Sim, Gap Seop; Kang, Taejoon; Lee, Seok Jae; Choi, Bong Gill; Lee, Kyoung G

    2016-12-28

    The flexible sensing platform is a key component for the development of smart portable devices targeting healthcare, environmental monitoring, point-of-care diagnostics, and personal electronics. Herein, we demonstrate a simple, scalable, and cost-effective strategy for fabrication of a sensing electrode based on a waste newspaper with conformal coating of parylene C (P-paper). Thin polymeric layers over cellulose fibers allow the P-paper to possess improved mechanical and chemical stability, which results in high-performance flexible sensing platforms for the detection of pathogenic E. coli O157:H7 based on DNA hybridization. Moreover, P-paper electrodes have the potential to serve as disposable, flexible sensing platforms for point-of-care testing biosensors.

  12. Communicating climate change adaptation information using web-based platforms

    Science.gov (United States)

    Karali, Eleni; Mattern, Kati

    2017-07-01

    To facilitate progress in climate change adaptation policy and practice, it is important not only to ensure the production of accurate, comprehensive and relevant information, but also the easy, timely and affordable access to it. This can contribute to better-informed decisions and improve the design and implementation of adaptation policies and other relevant initiatives. Web-based platforms can play an important role in communicating and distributing data, information and knowledge that become constantly available, reaching out to a large group of potential users. Indeed in the last decade there has been an extensive increase in the number of platforms developed for this purpose in many fields including climate change adaptation. This short paper concentrates on the web-based adaptation platforms developed in Europe. It provides an overview of the recently emerged landscape, examines the basic characteristics of a set of platforms that operate at national, transnational and European level, and discusses some of the key challenges related to their development, maintenance and overall management. Findings presented in this short paper are discussed in greater detailed in the Technical Report of the European Environment Agency Overview of climate change adaptation platforms in Europe.

  13. Feasibility of a simple microsieve-based immunoassay platform

    NARCIS (Netherlands)

    Zweitzig, D.R.; Tibbe, Arjan G.J.; Nguyen, A.T.; van Rijn, C.J.M.; Kopnitsky, M.J.; Cichonski, K.; Terstappen, Leonardus Wendelinus Mathias Marie

    2016-01-01

    The intrinsic properties of silicon microsieves, such as an optically flat surface, high overall porosity, and low flow resistance have led to an increasing number of biotechnology applications. In this report, the feasibility of creating a microsieve-based immunoassay platform was explored. Microsi

  14. Feasibility of a simple microsieve-based immunoassay platform

    NARCIS (Netherlands)

    Zweitzig, Daniel R.; Tibbe, Arjan G.; Nguyen, Ai T.; Rijn, van Cees J.M.; Kopnitsky, Mark J.; Cichonski, Kathleen; Terstappen, Leon W.M.M.

    2016-01-01

    The intrinsic properties of silicon microsieves, such as an optically flat surface, high overall porosity, and low flow resistance have led to an increasing number of biotechnology applications. In this report, the feasibility of creating a microsieve-based immunoassay platform was explored. Micr

  15. Foil-based optical technology platform for optochemical sensors

    NARCIS (Netherlands)

    Kalathimekkad, S.; Missinne, J.; Arias Espinoza, J.D.; Hoe, B. van; Bosman, E.; Smits, E.; Mandamparambil, R.; Steenberge, G. van; Vanfleteren, J.

    2012-01-01

    This paper describes the development of a low-cost technology platform for fluorescence-based optochemical sensors. These sensors were constructed by incorporating fluorescent sensing elements in the core of multimode waveguides or lightguides, and have applications in medical, biochemical and envir

  16. Low Cost ZigBee Protocol Based Laboratory Platforms

    Directory of Open Access Journals (Sweden)

    Alvaro Romero-Acero

    2013-11-01

    Full Text Available This paper presents a low cost wireless communication platform, based on the ZigBee protocol. It is designed with the purpose to strengthen the use of information technology in the classroom. Guides laboratory practices are focused on developing undergraduate engineering students to the area of telecommunications. The platform structure is composed of: Labs custom designed, web tools embedded wireless communication system for data acquisition in real time, and the Human Machine Interface (HMI, which records analog data and digital. 

  17. Food Security Information Platform Model Based on Internet of Things

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-06-01

    Full Text Available According to the tracking and tracing requirements of food supply chain management and quality and safety, this study built food security information platform using the Internet of things technology, with reference to the EPC standard, the use of RFID technology, adopting the model of SOA, based on SCOR core processes, researches the food security information platform which can set up the whole process from the source to the consumption of the traceability information, provides food information, strengthens the food identity verification, prevents food identification and information of error identification to the consumer and government food safety regulators, provides good practices for food safety traceability.

  18. An FPGA-based open platform for ultrasound biomicroscopy.

    Science.gov (United States)

    Qiu, Weibao; Yu, Yanyan; Tsang, Fu; Sun, Lei

    2012-07-01

    Ultrasound biomicroscopy (UBM) has been extensively applied to preclinical studies in small animal models. Individual animal study is unique and requires different utilization of the UBM system to accommodate different transducer characteristics, data acquisition strategies, signal processing, and image reconstruction methods. There is a demand for a flexible and open UBM platform to allow users to customize the system for various studies and have full access to experimental data. This paper presents the development of an open UBM platform (center frequency 20 to 80 MHz) for various preclinical studies. The platform design was based on a field-programmable gate array (FPGA) embedded in a printed circuit board to achieve B-mode imaging and directional pulsed-wave Doppler. Instead of hardware circuitry, most functions of the platform, such as filtering, envelope detection, and scan conversion, were achieved by FPGA programs; thus, the system architecture could be easily modified for specific applications. In addition, a novel digital quadrature demodulation algorithm was implemented for fast and accurate Doppler profiling. Finally, test results showed that the platform could offer a minimum detectable signal of 25 μV, allowing a 51 dB dynamic range at 47 dB gain, and real-time imaging at more than 500 frames/s. Phantom and in vivo imaging experiments were conducted and the results demonstrated good system performance.

  19. Enhancing student motivation using LectureTools: A cloud-based teaching and learning platform

    Directory of Open Access Journals (Sweden)

    P. H. Patrio Chiu

    2015-06-01

    Full Text Available A cloud-based teaching and learning platform, LectureTools, was piloted at City University of Hong Kong in the 2012-13 academic year. LectureTools is an online platform that provides a suite of cloud-based teaching and learning applications. It combines the functions of interactive presentation, real-time student response system, student inquiry and online note-taking synchronised with the presentation slides, into one cloud-based platform. A comprehensive study investigated the effectiveness of the platform for enhancing student motivation among graduate (n=158 and undergraduate (n=96 students. Both groups of students reported enhanced motivation when using LectureTools. The scores on all six learning motivation scales of the Motivated Strategies for Learning Questionnaire, a psychometric instrument based on the cognitive view of motivation, increased when students engaged with the tool in class. Those who used the tool scored significantly higher on intrinsic goal orientation than those who did not use the tool. The students’ quantitative feedback showed that they found the tool useful and that it improved their motivation. Qualitative feedback from the instructors indicated that the tool was useful for engaging passive students. They reported that the most useful function was the interactive online questions with real-time results, while the in-class student inquiry function was difficult to use in practice.

  20. A software radio platform based on ARM and FPGA

    Directory of Open Access Journals (Sweden)

    Yang Xin.

    2016-01-01

    Full Text Available The rapid rise in computational performance offered by computer systems has greatly increased the number of practical software radio applications. A scheme presented in this paper is a software radio platform based on ARM and FPGA. FPGA works as the coprocessor together with the ARM, which serves as the core processor. ARM is used for digital signal processing and real-time data transmission, and FPGA is used for synchronous timing control and serial-parallel conversion. A SPI driver for real-time data transmission between ARM and FPGA under ARM-Linux system is provided. By adopting modular design, the software radio platform is capable of implementing wireless communication functions and satisfies the requirements of real-time signal processing platform for high security and broad applicability.

  1. Multimodal Microchannel and Nanowell-Based Microfluidic Platforms for Bioimaging

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Tao; Smallwood, Chuck R.; Zhu, Ying; Bredeweg, Erin L.; Baker, Scott E.; Evans, James E.; Kelly, Ryan T.

    2017-03-30

    Modern live-cell imaging approaches permit real-time visualization of biological processes. However, limitations for unicellular organism trapping, culturing and long-term imaging can preclude complete understanding of how such microorganisms respond to perturbations in their local environment or linking single-cell variability to whole population dynamics. We have developed microfluidic platforms to overcome prior technical bottlenecks to allow both chemostat and compartmentalized cellular growth conditions using the same device. Additionally, a nanowell-based platform enables a high throughput approach to scale up compartmentalized imaging optimized within the microfluidic device. These channel and nanowell platforms are complementary, and both provide fine control over the local environment as well as the ability to add/replace media components at any experimental time point.

  2. Implementation of Pulse Radar Waveform Based on Software Radio Platform

    OpenAIRE

    Wang Dong; Dong Jian; Xiao Shunping

    2015-01-01

    Based on the frequency and phase modulated signal, the authors design some commonly-used pulse radar baseband waveform, such as linear frequency modulated waveform, nonlinear frequency modulated waveform, Costas waveform, Barker coding waveform and multi-phase coded waveform, and the authors compare their performance, such as the peak side lobe ratio, the Rayleigh resolution in time and distance resolution. Then, based on the software radio platform NI PXIe-5644R, the authors design the timin...

  3. Development of a hydrophilic interaction liquid chromatography coupled with matrix-assisted laser desorption/ionization-mass spectrometric imaging platform for N-glycan relative quantitation using stable-isotope labeled hydrazide reagents.

    Science.gov (United States)

    Chen, Zhengwei; Zhong, Xuefei; Tie, Cai; Chen, Bingming; Zhang, Xinxiang; Li, Lingjun

    2017-07-01

    In this work, the capability of newly developed hydrophilic interaction liquid chromatography (HILIC) coupled with matrix-assisted laser desorption/ionization-mass spectrometric imaging (MALDI-MSI) platform for quantitative analysis of N-glycans has been demonstrated. As a proof-of-principle experiment, heavy and light stable-isotope labeled hydrazide reagents labeled maltodextrin ladder were used to demonstrate the feasibility of the HILIC-MALDI-MSI platform for reliable quantitative analysis of N-glycans. MALDI-MSI analysis by an Orbitrap mass spectrometer enabled high-resolution and high-sensitivity detection of N-glycans eluted from HILIC column, allowing the re-construction of LC chromatograms as well as accurate mass measurements for structural inference. MALDI-MSI analysis of the collected LC traces showed that the chromatographic resolution was preserved. The N-glycans released from human serum was used to demonstrate the utility of this novel platform in quantitative analysis of N-glycans from a complex sample. Benefiting from the minimized ion suppression provided by HILIC separation, comparison between MALDI-MS and the newly developed platform HILIC-MALDI-MSI revealed that HILIC-MALDI-MSI provided higher N-glycan coverage as well as better quantitation accuracy in the quantitative analysis of N-glycans released from human serum. Graphical abstract Reconstructed chromatograms based on HILIC-MALDI-MSI results of heavy and light labeled maltodextrin enabling quantitative glycan analysis.

  4. Smartphone based visual and quantitative assays on upconversional paper sensor.

    Science.gov (United States)

    Mei, Qingsong; Jing, Huarong; Li, You; Yisibashaer, Wuerzha; Chen, Jian; Nan Li, Bing; Zhang, Yong

    2016-01-15

    The integration of smartphone with paper sensors recently has been gain increasing attentions because of the achievement of quantitative and rapid analysis. However, smartphone based upconversional paper sensors have been restricted by the lack of effective methods to acquire luminescence signals on test paper. Herein, by the virtue of 3D printing technology, we exploited an auxiliary reusable device, which orderly assembled a 980nm mini-laser, optical filter and mini-cavity together, for digitally imaging the luminescence variations on test paper and quantitative analyzing pesticide thiram by smartphone. In detail, copper ions decorated NaYF4:Yb/Tm upconversion nanoparticles were fixed onto filter paper to form test paper, and the blue luminescence on it would be quenched after additions of thiram through luminescence resonance energy transfer mechanism. These variations could be monitored by the smartphone camera, and then the blue channel intensities of obtained colored images were calculated to quantify amounts of thiram through a self-written Android program installed on the smartphone, offering a reliable and accurate detection limit of 0.1μM for the system. This work provides an initial demonstration of integrating upconversion nanosensors with smartphone digital imaging for point-of-care analysis on a paper-based platform.

  5. A Security Kernel Architecture Based Trusted Computing Platform

    Institute of Scientific and Technical Information of China (English)

    CHEN You-lei; SHEN Chang-xiang

    2005-01-01

    A security kernel architecture built on trusted computing platform in the light of thinking about trusted computing is presented. According to this architecture, a new security module TCB (Trusted Computing Base) is added to the operation system kernel and two operation interface modes are provided for the sake of self-protection. The security kernel is divided into two parts and trusted mechanism is separated from security functionality. The TCB module implements the trusted mechanism such as measurement and attestation,while the other components of security kernel provide security functionality based on these mechanisms. This architecture takes full advantage of functions provided by trusted platform and clearly defines the security perimeter of TCB so as to assure self-security from architectural vision. We also present function description of TCB and discuss the strengths and limitations comparing with other related researches.

  6. Effect of platform, reference material, and quantification model on enumeration of Enterococcus by quantitative PCR methods

    Science.gov (United States)

    Quantitative polymerase chain reaction (qPCR) is increasingly being used for the quantitative detection of fecal indicator bacteria in beach water. QPCR allows for same-day health warnings, and its application is being considered as an optionn for recreational water quality testi...

  7. OJADEAC: An Ontology Based Access Control Model for JADE Platform

    Directory of Open Access Journals (Sweden)

    Ban Sharief Mustafa

    2014-06-01

    Full Text Available Java Agent Development Framework (JADE is a software framework to make easy the development of Multi-Agent applications in compliance with the Foundation for Intelligent Physical Agents (FIPA specifications. JADE propose new infrastructure solutions to support the development of useful and convenient distributed applications. Security is one of the most important issues in implementing and deploying such applications. JADE-S security add-ons are one of the most popular security solutions in JADE platform. It provides several security services including authentication, authorization, signature and encryption services. Authorization service will give authorities to perform an action based on a set of permission objects attached to every authenticated user. This service has several drawbacks when implemented in a scalable distributed context aware applications. In this paper, an ontology-based access control model called (OJADEAC is proposed to be applied in JADE platform by combining Semantic Web technologies with context-aware policy mechanism to overcome the shortcoming of this service. The access control model is represented by a semantic ontology, and a set of two level semantic rules representing platform and application specific policy rules. OJADEAC model is distributed, intelligent, dynamic, context-aware and use reasoning engine to infer access decisions based on ontology knowledge.

  8. Quantitative Label-Free Cell Proliferation Tracking with a Versatile Electrochemical Impedance Detection Platform

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Carminati, M; Heiskanen, Arto

    2012-01-01

    optimal detection strategies. Electrochemical Impedance Spectroscopy (EIS) has been used to monitor and compare adhesion of different cell lines. HeLa cells and 3T3 fibroblasts have been cultured for 12 hours on interdigitated electrode arrays integrated into a tailor-made cell culture platform. Both...

  9. Storage Management Strategy of Flash-Based Platform

    Institute of Scientific and Technical Information of China (English)

    WANG Taiyong; ZHAO Li; HU Shiguang; WANG Tao

    2009-01-01

    Storage management strategy can be expressed by a file system. Commercial file system for embedded application is generally complicated and resource wasted. In this paper, a specified file system adapted to embedded system with flash-based memory is developed. To guarantee the average usage of flash storage sectors, the strategy of wear leveling and adaptive damage management is introduced, in which a dynamic storage space management mode and the strategy of first in first out (FIFO) are adopted. Moreover, the strategy of redundancy design and fast-calculation and tracing is also adopted to extend the life of kernel sector, which can guarantee the reliable ser-vice of system booting. The practical application in an embedded CNC (computerized numerical control) platform proves that the file system has effective performance. Furthermore, the flash file system can be transplanted to dif-ferent embedded platforms by changing a few bottom hardware parameters with universality.

  10. Internet-based Teleoperation Platform For Mobile Robot

    Institute of Scientific and Technical Information of China (English)

    YE Xiu-fen; LIU Peter; Xiao-ping; LI Guo-bin

    2002-01-01

    An Internet-based teleoperation platform for Mobile Robot is introduced in this paper. The hardware of the system mainly consists of a mobile robot. Its software employs client-server architecture for robot control and feedback information display. Different communication protocols are adopted according to the characteristics of message exchanged between the robot server and the client. The user interface is designed for the purpose of interaction. The great benefit of this client-server architecture is that the client software is insulated from the lowest level details of the mobile robot. Thus, it is very easy to implement and test new advanced teleoperation control algorithms, interface designs and applications on this platform without large programming work.

  11. Active vibration isolation platform on base of magnetorheological elastomers

    Science.gov (United States)

    Mikhailov, Valery P.; Bazinenkov, Alexey M.

    2017-06-01

    The article describes the active vibration isolation platform on base of magnetorheological (MR) elastomers. An active damper based on the MR elastomers can be used as an actuator of micro- or nanopositioning for a vibroinsulated object. The MR elastomers give such advantages for active control of vibration as large range of displacements (up to 1 mm), more efficient absorption of the vibration energy, possibility of active control of amplitude-frequency characteristics and positioning with millisecond response speed and nanometer running accuracy. The article presents the results of experimental studies of the most important active damper parameters. Those are starting current, transient time for stepping, transmission coefficient of the vibration displacement amplitude.

  12. Alchemy: A web 2.0 real-time quality assurance platform for human immunodeficiency Virus, hepatitis C Virus, and BK Virus quantitation assays

    Directory of Open Access Journals (Sweden)

    Emmanuel Agosto-Arroyo

    2017-01-01

    Full Text Available Background: The molecular diagnostics laboratory faces the challenge of improving test turnaround time (TAT. Low and consistent TATs are of great clinical and regulatory importance, especially for molecular virology tests. Laboratory information systems (LISs contain all the data elements necessary to do accurate quality assurance (QA reporting of TAT and other measures, but these reports are in most cases still performed manually: a time-consuming and error-prone task. The aim of this study was to develop a web-based real-time QA platform that would automate QA reporting in the molecular diagnostics laboratory at our institution, and minimize the time expended in preparing these reports. Methods: Using a standard Linux, Nginx, MariaDB, PHP stack virtual machine running atop a Dell Precision 5810, we designed and built a web-based QA platform, code-named Alchemy. Data files pulled periodically from the LIS in comma-separated value format were used to autogenerate QA reports for the human immunodeficiency virus (HIV quantitation, hepatitis C virus (HCV quantitation, and BK virus (BKV quantitation. Alchemy allowed the user to select a specific timeframe to be analyzed and calculated key QA statistics in real-time, including the average TAT in days, tests falling outside the expected TAT ranges, and test result ranges. Results: Before implementing Alchemy, reporting QA for the HIV, HCV, and BKV quantitation assays took 45–60 min of personnel time per test every month. With Alchemy, that time has decreased to 15 min total per month. Alchemy allowed the user to select specific periods of time and analyzed the TAT data in-depth without the need of extensive manual calculations. Conclusions: Alchemy has significantly decreased the time and the human error associated with QA report generation in our molecular diagnostics laboratory. Other tests will be added to this web-based platform in future updates. This effort shows the utility of informatician

  13. Simulation Platform: a cloud-based online simulation environment.

    Science.gov (United States)

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-09-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software.

  14. RFID-based Electronic Identity Security Cloud Platform in Cyberspace

    Directory of Open Access Journals (Sweden)

    Bing Chen

    2012-07-01

    Full Text Available With the moving development of networks, especially Internet of Things, electronic identity administration in cyberspace is becoming more and more important. And personal identity management in cyberspace associated with individuals in reality has been one significant and urgent task for the further development of information construction in China. So this paper presents a RFID-based electronic identity security cloud platform in cyberspace to implement an efficient security management of cyber personal identity, and designs and realizes a strong and pervasive security cloud service platform, and discusses key technology including security authentication mechanism for the electronic identity card, super high frequency RFID with eID cards, multilevel privacy protection mechanism, security cloud service, security isolation and single-oriented transmission, and boundary security gateway protection, and it can well apply to personal identity management with virtual roles of citizens in cyberspace such as E-Government and E-Business, and the electronic identity security platform has been primary implemented and achieved good effects in actual applications.

  15. Neural Network-Based Active Control for Offshore Platforms

    Institute of Scientific and Technical Information of China (English)

    周亚军; 赵德有

    2003-01-01

    A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.

  16. Probe-based Real-time PCR Approaches for Quantitative Measurement of microRNAs

    Science.gov (United States)

    Wong, Wilson; Farr, Ryan; Joglekar, Mugdha; Januszewski, Andrzej; Hardikar, Anandwardhan

    2015-01-01

    Probe-based quantitative PCR (qPCR) is a favoured method for measuring transcript abundance, since it is one of the most sensitive detection methods that provides an accurate and reproducible analysis. Probe-based chemistry offers the least background fluorescence as compared to other (dye-based) chemistries. Presently, there are several platforms available that use probe-based chemistry to quantitate transcript abundance. qPCR in a 96 well plate is the most routinely used method, however only a maximum of 96 samples or miRNAs can be tested in a single run. This is time-consuming and tedious if a large number of samples/miRNAs are to be analyzed. High-throughput probe-based platforms such as microfluidics (e.g. TaqMan Array Card) and nanofluidics arrays (e.g. OpenArray) offer ease to reproducibly and efficiently detect the abundance of multiple microRNAs in a large number of samples in a short time. Here, we demonstrate the experimental setup and protocol for miRNA quantitation from serum or plasma-EDTA samples, using probe-based chemistry and three different platforms (96 well plate, microfluidics and nanofluidics arrays) offering increasing levels of throughput. PMID:25938938

  17. Grid-based platform for training in Earth Observation

    Science.gov (United States)

    Petcu, Dana; Zaharie, Daniela; Panica, Silviu; Frincu, Marc; Neagul, Marian; Gorgan, Dorian; Stefanut, Teodor

    2010-05-01

    GiSHEO platform [1] providing on-demand services for training and high education in Earth Observation is developed, in the frame of an ESA funded project through its PECS programme, to respond to the needs of powerful education resources in remote sensing field. It intends to be a Grid-based platform of which potential for experimentation and extensibility are the key benefits compared with a desktop software solution. Near-real time applications requiring simultaneous multiple short-time-response data-intensive tasks, as in the case of a short time training event, are the ones that are proved to be ideal for this platform. The platform is based on Globus Toolkit 4 facilities for security and process management, and on the clusters of four academic institutions involved in the project. The authorization uses a VOMS service. The main public services are the followings: the EO processing services (represented through special WSRF-type services); the workflow service exposing a particular workflow engine; the data indexing and discovery service for accessing the data management mechanisms; the processing services, a collection allowing easy access to the processing platform. The WSRF-type services for basic satellite image processing are reusing free image processing tools, OpenCV and GDAL. New algorithms and workflows were develop to tackle with challenging problems like detecting the underground remains of old fortifications, walls or houses. More details can be found in [2]. Composed services can be specified through workflows and are easy to be deployed. The workflow engine, OSyRIS (Orchestration System using a Rule based Inference Solution), is based on DROOLS, and a new rule-based workflow language, SILK (SImple Language for worKflow), has been built. Workflow creation in SILK can be done with or without a visual designing tools. The basics of SILK are the tasks and relations (rules) between them. It is similar with the SCUFL language, but not relying on XML in

  18. Measurement Uncertainty Analysis of the Strain Gauge Based Stabilographic Platform

    Directory of Open Access Journals (Sweden)

    Walendziuk Wojciech

    2014-08-01

    Full Text Available The present article describes constructing a stabilographic platform which records a standing patient’s deflection from their point of balance. The constructed device is composed of a toughen glass slab propped with 4 force sensors. Power transducers are connected to the measurement system based on a 24-bit ADC transducer which acquires slight body movements of a patient. The data is then transferred to the computer in real time and data analysis is conducted. The article explains the principle of operation as well as the algorithm of measurement uncertainty for the COP (Centre of Pressure surface (x, y.

  19. Study on Building Lifecycle Information Management Platform Based on BIM

    Directory of Open Access Journals (Sweden)

    Wang-Jian Ping

    2014-01-01

    Full Text Available Building Information Modeling (BIM and building lifecycle management (BLM, proposed for the realization of building lifecycle information exchange and sharing, play a crucial role in the research and development fields of construction information integration and interoperability. This study, from an information technology point of view, based on BLM and BIM technology and Industry Foundation Classes (IFC standard, proposes the concept, frame and realization method of Building Lifecycle Management Platform (BLMP. This BLMP presents a practical and effective way to realize information creating, exchange, sharing and integration management of all participants of the construction project.

  20. A UKF-based orientation estimator for the Atlas platform

    Science.gov (United States)

    Linseman, Jesse

    The Atlas platform being developed at Carleton University is fully dexterous and unconstrained in the rotational sense. Currently, there are sensors capable of measuring the orientation of the Atlas sphere, however each sensor has certain limitations. Having concomitant orientation measurements from two sensors sets up an opportunity to improve the overall accuracy of the orientation estimate. A method for fusing two measurements can take advantage of this in order to improve the orientation estimate. An algorithm is necessary in order to properly fuse measurements from two sensors, and the algorithm needs to be able to handle rotations characteristic of the Atlas platform. This dissertation presents a novel algorithm for improving estimation of the orientation of the Atlas platform using an adapted unscented Kalman filter (UKF). Two sensors are used due to their complimentary characteristics. The first is the inertial orientation sensor (IOS), which is a common low cost inertial measurement unit (IMU) used for high frequency attitude sensing, that will typically perform poorly over time due to high drift. A second absolute sensor, the Atlas visual orienting sensor (VOS), is a digital camera that operates with a lower frequency, and is used to correct for the inertial sensor's drift. The VOS measures the absolute orientation of the platform, processes the images, and obtains an estimated orientation quaternion, but at a slower frequency of approximately 20 Hz, compared to the IOS which operates at 76 Hz. This thesis outlines the development of a quaternion based indirect UKF for sensor fusion with sensor error estimation and out of sequence measurement (OOSM) handling. The sensor fusion filter obtains an improved estimate given measurements from these two sensors. Due to the unbounded orientation workspace of the platform, representational singularities associated with Euler angles are overcome by utilizing quaternions. IOS stabilized measurements act as direct

  1. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  2. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  3. Wearable Ring-Based Sensing Platform for Detecting Chemical Threats.

    Science.gov (United States)

    Sempionatto, Juliane R; Mishra, Rupesh K; Martín, Aida; Tang, Guangda; Nakagawa, Tatsuo; Lu, Xiaolong; Campbell, Alan S; Lyu, Kay Mengjia; Wang, Joseph

    2017-10-11

    This work describes a wireless wearable ring-based multiplexed chemical sensor platform for rapid electrochemical monitoring of explosive and nerve-agent threats in vapor and liquid phases. The ring-based sensor system consists of two parts: a set of printed electrochemical sensors and a miniaturized electronic interface, based on a battery-powered stamp-size potentiostat, for signal processing and wireless transmission of data. A wide range of electrochemical capabilities have thus been fully integrated into a 3D printed compact ring structure, toward performing fast square-wave voltammetry and chronoamperometric analyses, along with interchangeable screen-printed sensing electrodes for the rapid detection of different chemical threats. High analytical performance is demonstrated despite the remarkable miniaturization and integration of the ring system. The attractive capabilities of the wearable sensor ring system have been demonstrated for sensitive and rapid voltammetric and amperometric monitoring of nitroaromatic and peroxide explosives, respectively, along with amperometric biosensing of organophosphate (OP) nerve agents. Such ability of the miniaturized wearable sensor ring platform to simultaneously detect multiple chemical threats in both liquid and vapor phases and alert the wearer of such hazards offers considerable promise for meeting the demands of diverse defense and security scenarios.

  4. Response-based analysis for Tension Leg Platform

    Science.gov (United States)

    Chen, Yongjun; Zhang, Dagang

    2017-01-01

    The typical industry practice for Tension Leg Platform (TLP) design focuses on a conventional short-term design recipe, which assumes that an N-year design environment leads to an N-year response. In the response-based design method, the TLP is designed to withstand N-year responses rather than respond to N-year environmental conditions. In this paper, we present an overview and a general procedure for the response-based design method and use a case study to compare the critical TLP responses between the two methods. The results of our comparison show that the conventional short-term design method often contains an element of conservatism and that the response-based design method can reduce the design conditions and thereby achieve cost savings.

  5. Response-based analysis for Tension Leg Platform

    Science.gov (United States)

    Chen, Yongjun; Zhang, Dagang

    2017-03-01

    The typical industry practice for Tension Leg Platform (TLP) design focuses on a conventional short-term design recipe, which assumes that an N-year design environment leads to an N-year response. In the response-based design method, the TLP is designed to withstand N-year responses rather than respond to N-year environmental conditions. In this paper, we present an overview and a general procedure for the response-based design method and use a case study to compare the critical TLP responses between the two methods. The results of our comparison show that the conventional short-term design method often contains an element of conservatism and that the response-based design method can reduce the design conditions and thereby achieve cost savings.

  6. GEMBus as a service oriented platform for cloud-based composable services

    NARCIS (Netherlands)

    Grammatikou, M.; Marinos, C.; Demchenko, Y.; Lopez, D.R.; Dombek, K.; Jofre, J.

    2011-01-01

    Cloud computing has become a common technology for provisioning infrastructure services on-demand. Modern Cloud platforms can provide cloud-based applications, software, deployment platforms, or general infrastructure services that may include both computational and storage resources. However existi

  7. Application of Goldmag immune probe in timely detection of syphilis based on GIS platform.

    Science.gov (United States)

    Tang, Zhong; Liang, Zhisheng; Nong, Yi; Wu, Xiaochun; Luo, Hui; Gao, Kun

    2017-05-01

    The purpose of this study was to apply goldmag immunoprobes into establishment of nanoparticles-based colorimetric assay as well as construction of immunochromatography quantitative and qualitative system by exploring point-of-care testing of syphilis with goldmag particles carrier-based immunoprobe and analysis of spatial data of Geographic Information System (GIS) platform. Goat anti-rabbit immunoglobulin G (IgG) was coupled on the surface of modified nanoparticles, taking N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide as the connector. Then the nanoparticles were used for colorimetric detection of goat-anti-rabbit IgG in liquid phase system. Based on the analysis of spatial data in GIS platform, we found the probe constructed based on MUA-Fe304/Au nanoparticles responded more sensitive to detection objects compared with the probe designed based on PAA-Fe3O4/Au nanoparticles, and its reaction rate constant was two times that of PAA-Fe3O4/Au nanoparticles based goldmag immunoprobe. Goldmag particles not only can be coupled with biomolecules such as antibody/antigen and glycoprotein but also possess superparamagnetism.

  8. Microfluidic-Based Multi-Organ Platforms for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Ahmad Rezaei Kolahchi

    2016-09-01

    Full Text Available Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.

  9. Extreme sensitivity biosensing platform based on hyperbolic metamaterials

    Science.gov (United States)

    Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; ElKabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; De Luca, Antonio; Strangi, Giuseppe

    2016-01-01

    Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin–biotin. PMID:27019384

  10. Extreme sensitivity biosensing platform based on hyperbolic metamaterials

    Science.gov (United States)

    Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; Elkabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; de Luca, Antonio; Strangi, Giuseppe

    2016-06-01

    Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin-biotin.

  11. A versatile electrophoresis-based self-test platform.

    Science.gov (United States)

    Staal, Steven; Ungerer, Mathijn; Floris, Arjan; Ten Brinke, Hans-Willem; Helmhout, Roy; Tellegen, Marian; Janssen, Kjeld; Karstens, Erik; van Arragon, Charlotte; Lenk, Stefan; Staijen, Erik; Bartholomew, Jody; Krabbe, Hans; Movig, Kris; Dubský, Pavel; van den Berg, Albert; Eijkel, Jan

    2015-03-01

    This paper reports on recent research creating a family of electrophoresis-based point of care devices for the determination of a wide range of ionic analytes in various sample matrices. These devices are based on a first version for the point-of-care measurement of Li(+), reported in 2010 by Floris et al. (Lab Chip 2010, 10, 1799-1806). With respect to this device, significant improvements in accuracy, precision, detection limit, and reliability have been obtained especially by the use of multiple injections of one sample on a single chip and integrated data analysis. Internal and external validation by clinical laboratories for the determination of analytes in real patients by a self-test is reported. For Li(+) in blood better precision than the standard clinical determination for Li(+) was achieved. For Na(+) in human urine the method was found to be within the clinical acceptability limits. In a veterinary application, Ca(2+) and Mg(2+) were determined in bovine blood by means of the same chip, but using a different platform. Finally, promising preliminary results are reported with the Medimate platform for the determination of creatinine in whole blood and quantification of both cations and anions through replicate measurements on the same sample with the same chip.

  12. Implementation of Wireless Communications Systems on FPGA-Based Platforms

    Directory of Open Access Journals (Sweden)

    Voros NS

    2007-01-01

    Full Text Available Wireless communications are a very popular application domain. The efficient implementation of their components (access points and mobile terminals/network interface cards in terms of hardware cost and design time is of great importance. This paper describes the design and implementation of the HIPERLAN/2 WLAN system on a platform including general purpose microprocessors and FPGAs. Detailed implementation results (performance, code size, and FPGA resources utilization are presented. The main goal of the design case presented is to provide insight into the design aspects of a complex system based on FPGAs. The results prove that an implementation based on microprocessors and FPGAs is adequate for the access point part of the system where the expected volumes are rather small. At the same time, such an implementation serves as a prototyping of an integrated implementation (System-on-Chip, which is necessary for the mobile terminals of a HIPERLAN/2 system. Finally, firmware upgrades were developed allowing the implementation of an outdoor wireless communication system on the same platform.

  13. Implementation of Wireless Communications Systems on FPGA-Based Platforms

    Directory of Open Access Journals (Sweden)

    N. S. Voros

    2007-02-01

    Full Text Available Wireless communications are a very popular application domain. The efficient implementation of their components (access points and mobile terminals/network interface cards in terms of hardware cost and design time is of great importance. This paper describes the design and implementation of the HIPERLAN/2 WLAN system on a platform including general purpose microprocessors and FPGAs. Detailed implementation results (performance, code size, and FPGA resources utilization are presented. The main goal of the design case presented is to provide insight into the design aspects of a complex system based on FPGAs. The results prove that an implementation based on microprocessors and FPGAs is adequate for the access point part of the system where the expected volumes are rather small. At the same time, such an implementation serves as a prototyping of an integrated implementation (System-on-Chip, which is necessary for the mobile terminals of a HIPERLAN/2 system. Finally, firmware upgrades were developed allowing the implementation of an outdoor wireless communication system on the same platform.

  14. Software-defined Radio Based Measurement Platform for Wireless Networks.

    Science.gov (United States)

    Chao, I-Chun; Lee, Kang B; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan

    2015-10-01

    End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc.) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks.

  15. ENTERPRISE INTEGRATION PLATFORM BASED ON SERVICE- ORIENTED ARCHITECTURE

    Institute of Scientific and Technical Information of China (English)

    MENG Xiaojun; ZHANG Xu; NING Ruxin; SONG Yu

    2008-01-01

    To achieve information integration, process integration and application integration of enterprise, an enterprise integration platform (EIP) based on service-oriented architecture (SOA) is built. The enterprise integration model depending on encapsulating the business processes as well as the enterprise applications by the neutral and standard web services is presented. The problem how to discover the existed enterprise resources and share them was resolved depending on the mechanism of publishing and discovering the services. The EIP is integrated closely with product lifecycle management (PLM) system so that the process integration as well as orchestration of the business process services is implemented by encapsulating the workflow engine of PLM system. Not only process integration and application integration, but also information integration based on the bill of material (BOM) conversion driven by process are achieved. Finally, an interpretive, qualitative case study on EIP is conducted for this research.

  16. LBS Mobile Learning System Based on Android Platform

    Directory of Open Access Journals (Sweden)

    Zhang Ya-Li

    2017-01-01

    Full Text Available In the era of mobile internet, PC-end internet services can no long satisfy people’s demands, needs for App and services on mobile phones are more urgent than ever. With increasing social competition, the concept of lifelong learning becomes more and more popular and accepted, making full use of spare time to learn at any time and any place meets updating knowledge desires of modern people, Location Based System (LBS mobile learning system based on Android platform was created under such background. In this Paper, characteristics of mobile location technology and intelligent terminal were introduced and analyzed, mobile learning system which will fulfill personalized needs of mobile learners was designed and developed on basis of location information, mobile learning can be greatly promoted and new research ideas can be expanded for mobile learning.

  17. The Research of Platform-Based Product Configuration Model

    Science.gov (United States)

    Yan, Huiqiang; Guan, Qunsheng; Li, Qinghai; Lu, Fei; Wang, Xiujuan

    Product configuration system, being a knowledge intensive system, plays an important role in order to realize Mass Customization. The Platform-based generic product configuration tool(PB-GPCT) being developed by Institute of Design for Innovation, Hebei University of Technology. PB-GPCT is a structure-based and domain independent configuration tool. For the realization of PB-GPCT, UML is chosen to construct the configuration model and OCL(Object Constraint Language) to express constraints. In order to manage the constraints of product easily, the approach of checking consistency of configuration model is presented. The theory of constraints hierarchies is introduced into the system of PB-GPCT in order to express customer requirements of different levels.

  18. Vertically Aligned Carbon Nanofiber based Biosensor Platform for Glucose Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamun, Khandaker A.; Tulip, Fahmida S.; MacArthur, Kimberly; McFarlane, Nicole; Islam, Syed K.; Hensley, Dale

    2014-03-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  19. Evaluating the Economic Impact of Smart Care Platforms: Qualitative and Quantitative Results of a Case Study.

    Science.gov (United States)

    Vannieuwenborg, Frederic; Van der Auwermeulen, Thomas; Van Ooteghem, Jan; Jacobs, An; Verbrugge, Sofie; Colle, Didier

    2016-10-31

    In response to the increasing pressure of the societal challenge because of a graying society, a gulf of new Information and Communication Technology (ICT) supported care services (eCare) can now be noticed. Their common goal is to increase the quality of care while decreasing its costs. Smart Care Platforms (SCPs), installed in the homes of care-dependent people, foster the interoperability of these services and offer a set of eCare services that are complementary on one platform. These eCare services could not only result in more quality care for care receivers, but they also offer opportunities to care providers to optimize their processes. The objective of the study was to identify and describe the expected added values and impacts of integrating SCPs in current home care delivery processes for all actors. In addition, the potential economic impact of SCP deployment is quantified from the perspective of home care organizations. Semistructured and informal interviews and focus groups and cocreation workshops with service providers, managers of home care organizations, and formal and informal care providers led to the identification of added values of SCP integration. In a second step, process breakdown analyses of home care provisioning allowed defining the operational impact for home care organization. Impacts on 2 different process steps of providing home care were quantified. After modeling the investment, an economic evaluation compared the business as usual (BAU) scenario versus the integrated SCP scenario. The added value of SCP integration for all actors involved in home care was identified. Most impacts were qualitative such as increase in peace of mind, better quality of care, strengthened involvement in care provisioning, and more transparent care communication. For home care organizations, integrating SCPs could lead to a decrease of 38% of the current annual expenses for two administrative process steps namely, care rescheduling and the billing for

  20. Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms.

    Science.gov (United States)

    Dou, Maowei; Sanjay, Sharma Timilsina; Benhabib, Merwan; Xu, Feng; Li, XiuJun

    2015-12-01

    Low-cost assays have broad applications ranging from human health diagnostics and food safety inspection to environmental analysis. Hence, low-cost assays are especially attractive for rural areas and developing countries, where financial resources are limited. Recently, paper-based microfluidic devices have emerged as a low-cost platform which greatly accelerates the point of care (POC) analysis in low-resource settings. This paper reviews recent advances of low-cost bioanalysis on paper-based microfluidic platforms, including fully paper-based and paper hybrid microfluidic platforms. In this review paper, we first summarized the fabrication techniques of fully paper-based microfluidic platforms, followed with their applications in human health diagnostics and food safety analysis. Then we highlighted paper hybrid microfluidic platforms and their applications, because hybrid platforms could draw benefits from multiple device substrates. Finally, we discussed the current limitations and perspective trends of paper-based microfluidic platforms for low-cost assays.

  1. [Continuum, the continuing education platform based on a competency matrix].

    Science.gov (United States)

    Ochoa Sangrador, C; Villaizán Pérez, C; González de Dios, J; Hijano Bandera, F; Málaga Guerrero, S

    2016-04-01

    Competency-Based Education is a learning method that has changed the traditional teaching-based focus to a learning-based one. Students are the centre of the process, in which they must learn to learn, solve problems, and adapt to changes in their environment. The goal is to provide learning based on knowledge, skills (know-how), attitude and behaviour. These sets of knowledge are called competencies. It is essential to have a reference of the required competencies in order to identify the need for them. Their acquisition is approached through teaching modules, in which one or more skills can be acquired. This teaching strategy has been adopted by Continuum, the distance learning platform of the Spanish Paediatric Association, which has developed a competency matrix based on the Global Paediatric Education Consortium training program. In this article, a review will be presented on the basics of Competency-Based Education and how it is applied in Continuum. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  2. LXI instrument development platform based on an open embedded operating system

    Institute of Scientific and Technical Information of China (English)

    Yu Wilson

    2007-01-01

    This paper introduces the architecture and components of LXI instrument development platform based on an open embedded operating system, which is a modular and configurable platform. The platform is a total solution to develop LXI instrument modules and systems. On the other hand, it also supports other types of instrument development. This is a generic and efficient platform. At the end, this paper addresses the technical tends,challenges, and recommends solutions.

  3. Internet Based General Computer Simulation Platform for Distributed Multi-Robotic System

    Institute of Scientific and Technical Information of China (English)

    迟艳玲; 张斌; 王硕; 谭民

    2002-01-01

    A general computer simulation platform is designed for the purpose of catrrying out experiments on the Distributed Multi-Robotic System. The simulation platform is based on Internet and possesses generality, validity, real-time display and function of supporting algorithm developing. In addition, the platform is equipped wit recording and replay module, and simulation experiment can be reviewed at anytime.By now; a few algorithms have been developed on the Simulation Platform designed.

  4. A self-calibrating led-based solar test platform

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Sylvester-Hvid, Kristian O.; Jørgensen, Mikkel

    2011-01-01

    , it is possible to perform all the commonly employed measurements on the solar cell at very high speed without moving the sample. In particular, the LED-based illumination system provides an alternative to light-biased incident photon-to-current efficiency measurement to be performed which we demonstrate. Both......A compact platform for testing solar cells is presented. The light source comprises a multi-wavelength high-power LED (light emitting diode) array allowing the homogenous illumination of small laboratory solar cell devices (substrate size 50 × 25 mm) within the 390–940 nm wavelength range...... wavelengths intensities up to 10 suns is possible, and for a few wavelengths up to 30 suns can be reached. The setup is equipped with reference diodes and an optical fibre coupling enabling calibration, monitoring and control of the light impinging on the sample. Through a computer controlled interface...

  5. Versatile electrophoresis-based self-test platform.

    Science.gov (United States)

    Guijt, Rosanne M

    2015-03-01

    Lab on a Chip technology offers the possibility to extract chemical information from a complex sample in a simple, automated way without the need for a laboratory setting. In the health care sector, this chemical information could be used as a diagnostic tool for example to inform dosing. In this issue, the research underpinning a family of electrophoresis-based point-of-care devices for self-testing of ionic analytes in various sample matrices is described [Electrophoresis 2015, 36, 712-721.]. Hardware, software, and methodological chances made to improve the overall analytical performance in terms of accuracy, precision, detection limit, and reliability are discussed. In addition to the main focus of lithium monitoring, new applications including the use of the platform for veterinary purposes, sodium, and for creatinine measurements are included.

  6. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    Science.gov (United States)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential

  7. Proximity-Based Asynchronous Messaging Platform for Location-Based Internet of Things Service

    Directory of Open Access Journals (Sweden)

    Hyeong gon Jo

    2016-07-01

    Full Text Available The Internet of Things (IoT opens up tremendous opportunities to provide location-based applications. However, despite the services around a user being physically adjacent, common IoT platforms use a centralized structure, like a cloud-computing architecture, which transfers large amounts of data to a central server. This raises problems, such as traffic concentration, long service latency, and high communication cost. In this paper, we propose a physical distance-based asynchronous messaging platform that specializes in processing personalized data and location-based messages. The proposed system disperses traffic using a location-based message-delivery protocol, and has high stability.

  8. GOLIAH: A Gaming Platform for Home-Based Intervention in Autism – Principles and Design

    Science.gov (United States)

    Bono, Valentina; Narzisi, Antonio; Jouen, Anne-Lise; Tilmont, Elodie; Hommel, Stephane; Jamal, Wasifa; Xavier, Jean; Billeci, Lucia; Maharatna, Koushik; Wald, Mike; Chetouani, Mohamed; Cohen, David; Muratori, Filippo

    2016-01-01

    Children with Autism need intensive intervention and this is challenging in terms of manpower, costs, and time. Advances in Information Communication Technology and computer gaming may help in this respect by creating a nomadically deployable closed-loop intervention system involving the child and active participation of parents and therapists. An automated serious gaming platform enabling intensive intervention in nomadic settings has been developed by mapping two pivotal skills in autism spectrum disorder: Imitation and Joint Attention (JA). Eleven games – seven Imitations and four JA – were derived from the Early Start Denver Model. The games involved application of visual and audio stimuli with multiple difficulty levels and a wide variety of tasks and actions pertaining to the Imitation and JA. The platform runs on mobile devices and allows the therapist to (1) characterize the child’s initial difficulties/strengths, ensuring tailored and adapted intervention by choosing appropriate games and (2) investigate and track the temporal evolution of the child’s progress through a set of automatically extracted quantitative performance metrics. The platform allows the therapist to change the game or its difficulty levels during the intervention depending on the child’s progress. Performance of the platform was assessed in a 3-month open trial with 10 children with autism (Trial ID: NCT02560415, Clinicaltrials.gov). The children and the parents participated in 80% of the sessions both at home (77.5%) and at the hospital (90%). All children went through all the games but, given the diversity of the games and the heterogeneity of children profiles and abilities, for a given game the number of sessions dedicated to the game varied and could be tailored through automatic scoring. Parents (N = 10) highlighted enhancement in the child’s concentration, flexibility, and self-esteem in 78, 89, and 44% of the cases, respectively, and 56% observed an enhanced

  9. GOLIAH: A gaming platform for home based intervention in Autism - Principles and Design

    Directory of Open Access Journals (Sweden)

    Valentina eBono

    2016-04-01

    Full Text Available Meeting the required intensive intervention hour for treating children with autism is challenging in terms of trained manpower needed and costs. Advances in Information Communication Technology and computer gaming may help in this respect by creating a nomadically deployable closed loop intervention system involving the child and active participation of parents and therapists.An automated serious gaming platform enabling intensive intervention in nomadic settings has been developed by mapping two pivotal skills in autism spectrum disorder: Imitation and Joint Attention (JA. Eleven games – seven Imitation and four JA – were derived from the Early Start Denver Model. The games involved application of visual and audio stimuli with multiple difficulty levels and a wide variety of tasks and actions pertaining to the Imitation and JA. The platform runs on mobile devices and allows the therapist to (1 characterize the child’s initial difficulties/strengths, ensuring tailored and adapted intervention by choosing appropriate games and (2 investigate and track the temporal evolution of the child’s progress through a set of automatically extracted quantitative performance metrics. The platform allows the therapist to change the game or its difficulty levels during the intervention depending on the child’s progress. Performance of the platform was assessed in a 3-month open trial with 10 children with autism. The children and the parents participated in 80% of the sessions both at home (77.5% and at hospital (90%. All children went through all games but, given the diversity of the games and the heterogeneity of children profiles and abilities, for a given game the number of sessions dedicated to the game varied and could be tailored through automatic scoring. Parents (N = 10 highlighted enhancement in the child’s concentration, flexibility and self-esteem in 78%, 89% and 44% of the cases respectively and 56% observed an enhanced parents

  10. Template-based education toolkit for mobile platforms

    Science.gov (United States)

    Golagani, Santosh Chandana; Esfahanian, Moosa; Akopian, David

    2012-02-01

    Nowadays mobile phones are the most widely used portable devices which evolve very fast adding new features and improving user experiences. The latest generation of hand-held devices called smartphones is equipped with superior memory, cameras and rich multimedia features, empowering people to use their mobile phones not only as a communication tool but also for entertainment purposes. With many young students showing interest in learning mobile application development one should introduce novel learning methods which may adapt to fast technology changes and introduce students to application development. Mobile phones become a common device, and engineering community incorporates phones in various solutions. Overcoming the limitations of conventional undergraduate electrical engineering (EE) education this paper explores the concept of template-based based education in mobile phone programming. The concept is based on developing small exercise templates which students can manipulate and revise for quick hands-on introduction to the application development and integration. Android platform is used as a popular open source environment for application development. The exercises relate to image processing topics typically studied by many students. The goal is to enable conventional course enhancements by incorporating in them short hands-on learning modules.

  11. Platform for Post-Processing Waveform-Based NDE

    Science.gov (United States)

    Roth, Don J.

    2010-01-01

    Signal- and image-processing methods are commonly needed to extract information from the waves, improve resolution of, and highlight defects in an image. Since some similarity exists for all waveform-based nondestructive evaluation (NDE) methods, it would seem that a common software platform containing multiple signal- and image-processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. NDE Wave & Image Processor Version 2.0 software provides a single, integrated signal- and image-processing and analysis environment for total NDE data processing and analysis. It brings some of the most useful algorithms developed for NDE over the past 20 years into a commercial-grade product. The software can import signal/spectroscopic data, image data, and image series data. This software offers the user hundreds of basic and advanced signal- and image-processing capabilities including esoteric 1D and 2D wavelet-based de-noising, de-trending, and filtering. Batch processing is included for signal- and image-processing capability so that an optimized sequence of processing operations can be applied to entire folders of signals, spectra, and images. Additionally, an extensive interactive model-based curve-fitting facility has been included to allow fitting of spectroscopy data such as from Raman spectroscopy. An extensive joint-time frequency module is included for analysis of non-stationary or transient data such as that from acoustic emission, vibration, or earthquake data.

  12. Liquid crystals based sensing platform-technological aspects.

    Science.gov (United States)

    Hussain, Zakir; Qazi, Farah; Ahmed, Muhammad Imran; Usman, Adil; Riaz, Asim; Abbasi, Amna Didar

    2016-11-15

    In bulk phase, liquid crystalline molecules are organized due to non-covalent interactions and due to delicate nature of the present forces; this organization can easily be disrupted by any small external stimuli. This delicate nature of force balance in liquid crystals organization forms the basis of Liquid-crystals based sensing scheme which has been exploited by many researchers for the optical visualization and sensing of many biological interactions as well as detection of number of analytes. In this review, we present not only an overview of the state of the art in liquid crystals based sensing scheme but also highlight its limitations. The approaches described below revolve around possibilities and limitations of key components of such sensing platform including bottom substrates, alignments layers, nature and type of liquid crystals, sensing compartments, various interfaces etc. This review also highlights potential materials to not only improve performance of the sensing scheme but also to bridge the gap between science and technology of liquid crystals based sensing scheme.

  13. 3D tissue engineered micro-tumors for optical-based therapeutic screening platform

    Science.gov (United States)

    Spano, Joseph L.; Schmitt, Trevor J.; Bailey, Ryan C.; Hannon, Timothy S.; Elmajdob, Mohamed; Mason, Eric M.; Ye, Guochang; Das, Soumen; Seal, Sudipta; Fenn, Michael B.

    2016-03-01

    Melanoma is an underserved area of cancer research, with little focus on studying the effects of tumor extracellular matrix (ECM) properties on melanoma tumor progression, metastasis, and treatment efficacy. We've developed a Raman spectral mapping-based in-vitro screening platform that allows for nondestructive in-situ, multi-time point assessment of a novel potential nanotherapeutic adjuvant, nanoceria (cerium oxide nanoparticles), for treating melanoma. We've focused primarily on understanding melanoma tumor ECM composition and how it influences cell morphology and ICC markers. Furthermore, we aim to correlate this with studies on nanotherapeutic efficacy to coincide with the goal of predicting and preventing metastasis based on ECM composition. We've compiled a Raman spectral database for substrates containing varying compositions of fibronectin, elastin, laminin, and collagens type I and IV. Furthermore, we've developed a machine learning-based semi-quantitative analysis platform utilizing dimensionality reduction with subsequent pixel classification and semi-quantitation of ECM composition using Direct Classical Least Squares for classification and estimation of the reorganization of these components by taking 2D maps using Raman spectroscopy. Gaining an understanding of how tissue properties influence ECM organization has laid the foundation for future work utilizing Raman spectroscopy to assess therapeutic efficacy and matrix reorganization imparted by nanoceria. Specifically, this will allow us to better understand the role of HIF1a in matrix reorganization of the tumor microenvironment. By studying the relationship between substrate modulus and nanoceria's ability to inhibit an ECM that is conducive to tumor formation, we endeavor to show that nanoceria may prevent or even revert tumor conducive microenvironments.

  14. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust

  15. Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform.

    Science.gov (United States)

    Sucar, Luis Enrique; Orihuela-Espina, Felipe; Velazquez, Roger Luis; Reinkensmeyer, David J; Leder, Ronald; Hernández-Franco, Jorge

    2014-05-01

    Virtual reality platforms capable of assisting rehabilitation must provide support for rehabilitation principles: promote repetition, task oriented training, appropriate feedback, and a motivating environment. As such, development of these platforms is a complex process which has not yet reached maturity. This paper presents our efforts to contribute to this field, presenting Gesture Therapy, a virtual reality-based platform for rehabilitation of the upper limb. We describe the system architecture and main features of the platform and provide preliminary evidence of the feasibility of the platform in its current status.

  16. Prototype development of a web-based participative decision support platform in risk management

    Science.gov (United States)

    Aye, Zar Chi; Olyazadeh, Roya; Jaboyedoff, Michel; Derron, Marc-Henri

    2014-05-01

    This paper discusses the proposed background architecture and prototype development of an internet-based decision support system (DSS) in the field of natural hazards and risk management using open-source geospatial software and web technologies. It is based on a three-tier, client-server architecture with the support of boundless (opengeo) framework and its client side SDK application environment using customized gxp components and data utility classes. The main purpose of the system is to integrate the workflow of risk management systematically with the diverse involvement of stakeholders from different organizations dealing with natural hazards and risk for evaluation of management measures through the active online participation approach. It aims to develop an adaptive user friendly, web-based environment that allows the users to set up risk management strategies based on actual context and data by integrating web-GIS and DSS functionality associated with process flow and other visualization tools. Web-GIS interface has been integrated within the DSS to deliver maps and provide certain geo-processing capabilities on the web, which can be easily accessible and shared by different organizations located in case study sites of the project. This platform could be envisaged not only as a common web-based platform for the centralized sharing of data such as hazard maps, elements at risk maps and additional information but also to ensure an integrated platform of risk management where the users could upload data, analyze risk and identify possible alternative scenarios for risk reduction especially for floods and landslides, either quantitatively or qualitatively depending on the risk information provided by the stakeholders in case study regions. The level of involvement, access to and interaction with the provided functionality of the system varies depending on the roles and responsibilities of the stakeholders, for example, only the experts (planners, geological

  17. Automated microfluidic screening assay platform based on DropLab.

    Science.gov (United States)

    Du, Wen-Bin; Sun, Meng; Gu, Shu-Qing; Zhu, Ying; Fang, Qun

    2010-12-01

    This paper describes DropLab, an automated microfluidic platform for programming droplet-based reactions and screening in the nanoliter range. DropLab can meter liquids with picoliter-scale precision, mix multiple components sequentially to assemble composite droplets, and perform screening reactions and assays in linear or two-dimensional droplet array with extremely low sample and reagent consumptions. A novel droplet generation approach based on the droplet assembling strategy was developed to produce multicomponent droplets in the nanoliter to picoliter range with high controllability on the size and composition of each droplet. The DropLab system was built using a short capillary with a tapered tip, a syringe pump with picoliter precision, and an automated liquid presenting system. The tapered capillary was used for precise liquid metering and mixing, droplet assembling, and droplet array storage. Two different liquid presenting systems were developed based on the slotted-vial array design and multiwell plate design to automatically present various samples, reagents, and oil to the capillary. Using the tapered-tip capillary and the picoliter-scale precision syringe pump, the minimum unit of the droplet volume in the present system reached ~20 pL. Without the need of complex microchannel networks, various droplets with different size (20 pL-25 nL), composition, and sequence were automatically assembled, aiming to multiple screening targets by simply adjusting the types, volumes, and mixing ratios of aspirated liquids on demand. The utility of DropLab was demonstrated in enzyme inhibition assays, protein crystallization screening, and identification of trace reducible carbohydrates.

  18. Clostridium ljungdahlii represents a microbial production platform based on syngas.

    Science.gov (United States)

    Köpke, Michael; Held, Claudia; Hujer, Sandra; Liesegang, Heiko; Wiezer, Arnim; Wollherr, Antje; Ehrenreich, Armin; Liebl, Wolfgang; Gottschalk, Gerhard; Dürre, Peter

    2010-07-20

    Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO(2)/H(2) and synthesis gas (CO/H(2)). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO(2), thus combining industrial needs with sustained reduction of CO and CO(2) in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures.

  19. Moldless PEGDA-Based Optoelectrofluidic Platform for Microparticle Selection

    Directory of Open Access Journals (Sweden)

    Shih-Mo Yang

    2011-01-01

    Full Text Available This paper reports on an optoelectrofluidic platform which consists of the organic photoconductive material, titanium oxide phthalocyanine (TiOPc, and the photocrosslinkable polymer, poly (ethylene glycol diacrylate (PEGDA. TiOPc simplifies the fabrication process of the optoelectronic chip due to requiring only a single spin-coating step. PEGDA is applied to embed the moldless PEGDA-based microchannel between the top ITO glass and the bottom TiOPc substrate. A real-time control interface via a touch panel screen is utilized to select the target 15 μm polystyrene particles. When the microparticles flow to an illuminating light bar, which is oblique to the microfluidic flow path, the lateral driving force diverts the microparticles. Two light patterns, the switching oblique light bar and the optoelectronic ladder phenomenon, are designed to demonstrate the features. This work integrating the new material design, TiOPc and PEGDA, and the ability of mobile microparticle manipulation demonstrates the potential of optoelectronic approach.

  20. Automatic aeroponic irrigation system based on Arduino’s platform

    Science.gov (United States)

    Montoya, A. P.; Obando, F. A.; Morales, J. G.; Vargas, G.

    2017-06-01

    The recirculating hydroponic culture techniques, as aeroponics, has several advantages over traditional agriculture, aimed to improve the efficiently and environmental impact of agriculture. These techniques require continuous monitoring and automation for proper operation. In this work was developed an automatic monitored aeroponic-irrigation system based on the Arduino’s free software platform. Analog and digital sensors for measuring the temperature, flow and level of a nutrient solution in a real greenhouse were implemented. In addition, the pH and electric conductivity of nutritive solutions are monitored using the Arduino’s differential configuration. The sensor network, the acquisition and automation system are managed by two Arduinos modules in master-slave configuration, which communicate one each other wireless by Wi-Fi. Further, data are stored in micro SD memories and the information is loaded on a web page in real time. The developed device brings important agronomic information when is tested with an arugula culture (Eruca sativa Mill). The system also could be employ as an early warning system to prevent irrigation malfunctions.

  1. Mass Spectrometry Based Lipidomics: An Overview of Technological Platforms

    Directory of Open Access Journals (Sweden)

    Harald C. Köfeler

    2012-01-01

    Full Text Available One decade after the genomic and the proteomic life science revolution, new ‘omics’ fields are emerging. The metabolome encompasses the entity of small molecules—Most often end products of a catalytic process regulated by genes and proteins—with the lipidome being its fat soluble subdivision. Within recent years, lipids are more and more regarded not only as energy storage compounds but also as interactive players in various cellular regulation cycles and thus attain rising interest in the bio-medical community. The field of lipidomics is, on one hand, fuelled by analytical technology advances, particularly mass spectrometry and chromatography, but on the other hand new biological questions also drive analytical technology developments. Compared to fairly standardized genomic or proteomic high-throughput protocols, the high degree of molecular heterogeneity adds a special analytical challenge to lipidomic analysis. In this review, we will take a closer look at various mass spectrometric platforms for lipidomic analysis. We will focus on the advantages and limitations of various experimental setups like ‘shotgun lipidomics’, liquid chromatography—Mass spectrometry (LC-MS and matrix assisted laser desorption ionization-time of flight (MALDI-TOF based approaches. We will also examine available software packages for data analysis, which nowadays is in fact the rate limiting step for most ‘omics’ workflows.

  2. A signal strength priority based position estimation for mobile platforms

    Science.gov (United States)

    Kalgikar, Bhargav; Akopian, David; Chen, Philip

    2010-01-01

    Global Positioning System (GPS) products help to navigate while driving, hiking, boating, and flying. GPS uses a combination of orbiting satellites to determine position coordinates. This works great in most outdoor areas, but the satellite signals are not strong enough to penetrate inside most indoor environments. As a result, a new strain of indoor positioning technologies that make use of 802.11 wireless LANs (WLAN) is beginning to appear on the market. In WLAN positioning the system either monitors propagation delays between wireless access points and wireless device users to apply trilateration techniques or it maintains the database of location-specific signal fingerprints which is used to identify the most likely match of incoming signal data with those preliminary surveyed and saved in the database. In this paper we investigate the issue of deploying WLAN positioning software on mobile platforms with typically limited computational resources. We suggest a novel received signal strength rank order based location estimation system to reduce computational loads with a robust performance. The proposed system performance is compared to conventional approaches.

  3. Development of a new hydrogen peroxide–based vaccine platform.

    Science.gov (United States)

    Amanna, Ian J; Raué, Hans-Peter; Slifka, Mark K

    2012-06-01

    Safe and effective vaccines are crucial for maintaining public health and reducing the global burden of infectious disease. Here we introduce a new vaccine platform that uses hydrogen peroxide (H(2)O(2)) to inactivate viruses for vaccine production. H(2)O(2) rapidly inactivates both RNA and DNA viruses with minimal damage to antigenic structure or immunogenicity and is a highly effective method when compared with conventional vaccine inactivation approaches such as formaldehyde or β-propiolactone. Mice immunized with H(2)O(2)-inactivated lymphocytic choriomeningitis virus (LCMV) generated cytolytic, multifunctional virus-specific CD8(+) T cells that conferred protection against chronic LCMV infection. Likewise, mice vaccinated with H(2)O(2)-inactivated vaccinia virus or H(2)O(2)-inactivated West Nile virus showed high virus-specific neutralizing antibody titers and were fully protected against lethal challenge. Together, these studies demonstrate that H(2)O(2)-based vaccines are highly immunogenic, provide protection against a range of viral pathogens in mice and represent a promising new approach to future vaccine development.

  4. CFGP: a web-based, comparative fungal genomics platform.

    Science.gov (United States)

    Park, Jongsun; Park, Bongsoo; Jung, Kyongyong; Jang, Suwang; Yu, Kwangyul; Choi, Jaeyoung; Kong, Sunghyung; Park, Jaejin; Kim, Seryun; Kim, Hyojeong; Kim, Soonok; Kim, Jihyun F; Blair, Jaime E; Lee, Kwangwon; Kang, Seogchan; Lee, Yong-Hwan

    2008-01-01

    Since the completion of the Saccharomyces cerevisiae genome sequencing project in 1996, the genomes of over 80 fungal species have been sequenced or are currently being sequenced. Resulting data provide opportunities for studying and comparing fungal biology and evolution at the genome level. To support such studies, the Comparative Fungal Genomics Platform (CFGP; http://cfgp.snu.ac.kr), a web-based multifunctional informatics workbench, was developed. The CFGP comprises three layers, including the basal layer, middleware and the user interface. The data warehouse in the basal layer contains standardized genome sequences of 65 fungal species. The middleware processes queries via six analysis tools, including BLAST, ClustalW, InterProScan, SignalP 3.0, PSORT II and a newly developed tool named BLASTMatrix. The BLASTMatrix permits the identification and visualization of genes homologous to a query across multiple species. The Data-driven User Interface (DUI) of the CFGP was built on a new concept of pre-collecting data and post-executing analysis instead of the 'fill-in-the-form-and-press-SUBMIT' user interfaces utilized by most bioinformatics sites. A tool termed Favorite, which supports the management of encapsulated sequence data and provides a personalized data repository to users, is another novel feature in the DUI.

  5. Humidifying system design of PEMFC test platform based on the mixture of dry and wet air

    Directory of Open Access Journals (Sweden)

    Tiancai Ma

    2015-01-01

    Full Text Available Based on the present humidifying system of PEMFC test platform, a novel design based on dry and wet air mixture is proposed. Key parameters are calculated, and test platform is built. Three experiments are implemented to test the performance of proposed design. Results show that the new design can meet the requirements, and realize the quick response and accurate control.

  6. Towards a web-based archaeological excavation platform for smartphones: review and potentials.

    Science.gov (United States)

    Styliaras, Georgios

    2015-01-01

    The paper conducts a review questioning the usability of a web-based platform supporting archaeological excavations and related fields, which will execute on smartphones. Based on the thorough review and comparison of related work, the basic features of such a platform are outlined. The platform should support documenting content on an underlying XML database through a content management system, producing and exchanging notes, map interaction, use of a shared whiteboard, collaboration among archaeologists etc. The architecture of the platform is presented along with two case studies supporting usual practices on an archaeological field, some primary evaluation results and future work.

  7. Pattern recognition of monocyte chemoattractant protein-1 (MCP-1) in whole blood samples using new platforms based on nanostructured materials

    Science.gov (United States)

    Stefan-van Staden, Raluca-Ioana; Gugoasa, Livia Alexandra; Biris, Alexandru Radu

    2015-09-01

    Four stochastic microsensors based on nanostructured materials (graphene, maltodextrin (MD), and diamond) integrated in miniaturized platforms were proposed. Monocyte chemoattractant protein-1 (MCP-1) is a pro-inflammatory cytokine whose main function is to regulate cell trafficking. It is correlated with the incidence of cardiovascular diseases and obesity, and was used as the model analyte in this study. The screening of whole blood samples for MCP-1 can be done for concentrations ranging from 10-12 to 10-8 g mL-1. The method was used for both qualitative and quantitative assessments of MCP-1 in whole blood samples. The lowest quantification limits for the assay of MCP-1 (1 pg mL-1) were reached when the microsensors based on protoporphyrin IX/Graphene-Au-3 and on MD/Graphene were employed in the platform design.

  8. Software development for ACR-approved phantom-based nuclear medicine tomographic image quality control with cross-platform compatibility

    Science.gov (United States)

    Oh, Jungsu S.; Choi, Jae Min; Nam, Ki Pyo; Chae, Sun Young; Ryu, Jin-Sook; Moon, Dae Hyuk; Kim, Jae Seung

    2015-07-01

    Quality control and quality assurance (QC/QA) have been two of the most important issues in modern nuclear medicine (NM) imaging for both clinical practices and academic research. Whereas quantitative QC analysis software is common to modern positron emission tomography (PET) scanners, the QC of gamma cameras and/or single-photon-emission computed tomography (SPECT) scanners has not been sufficiently addressed. Although a thorough standard operating process (SOP) for mechanical and software maintenance may help the QC/QA of a gamma camera and SPECT-computed tomography (CT), no previous study has addressed a unified platform or process to decipher or analyze SPECT phantom images acquired from various scanners thus far. In addition, a few approaches have established cross-platform software to enable the technologists and physicists to assess the variety of SPECT scanners from different manufacturers. To resolve these issues, we have developed Interactive Data Language (IDL)-based in-house software for crossplatform (in terms of not only operating systems (OS) but also manufacturers) analyses of the QC data on an ACR SPECT phantom, which is essential for assessing and assuring the tomographical image quality of SPECT. We applied our devised software to our routine quarterly QC of ACR SPECT phantom images acquired from a number of platforms (OS/manufacturers). Based on our experience, we suggest that our devised software can offer a unified platform that allows images acquired from various types of scanners to be analyzed with great precision and accuracy.

  9. Platform based design of EAP transducers in Danfoss PolyPower A/S

    Science.gov (United States)

    Sarban, Rahimullah; Gudlaugsson, Tómas V.

    2013-04-01

    Electroactive Polymer (EAP) has gained increasing focus, in research communities, in last two decades. Research within the field of EAP has, so far, been mainly focused on material improvements, characterization, modeling and developing demonstrators. As the EAP technology matures, the need for a new area of research namely product development emerges. Product development can be based on an isolated design and production for a single product or platform design where a product family is developed. In platform design the families of products exploits commonality of platform modules while satisfying a variety of different market segments. Platform based approach has the primary benefit of being cost efficient and short lead time to market when new products emerges. Products development based on EAP technology is challenging both technologically as well as from production and processing point of view. Both the technological and processing challenges need to be addressed before a successful implementation of EAP technology into products. Based on this need Danfoss PolyPower A/S has, in 2011, launched a EAP platform project in collaboration with three Danish universities and three commercial organizations. The aim of the project is to develop platform based designs and product family for the EAP components to be used in variety of applications. This paper presents the structure of the platform project as a whole and specifically the platform based designs of EAP transducers. The underlying technologies, essential for EAP transducers, are also presented. Conceptual design and solution for the concepts are presented as well.

  10. A QFD-based optimization method for a scalable product platform

    Science.gov (United States)

    Luo, Xinggang; Tang, Jiafu; Kwong, C. K.

    2010-02-01

    In order to incorporate the customer into the early phase of the product development cycle and to better satisfy customers' requirements, this article adopts quality function deployment (QFD) for optimal design of a scalable product platform. A five-step QFD-based method is proposed to determine the optimal values for platform engineering characteristics (ECs) and non-platform ECs of the products within a product family. First of all, the houses of quality (HoQs) for all product variants are developed and a QFD-based optimization approach is used to determine the optimal ECs for each product variant. Sensitivity analysis is performed for each EC with respect to overall customer satisfaction (OCS). Based on the obtained sensitivity indices of ECs, a mathematical model is established to simultaneously optimize the values of the platform and the non-platform ECs. Finally, by comparing and analysing the optimal solutions with different number of platform ECs, the ECs with which the worst OCS loss can be avoided are selected as platform ECs. An illustrative example is used to demonstrate the feasibility of this method. A comparison between the proposed method and a two-step approach is conducted on the example. The comparison shows that, as a kind of single-stage approach, the proposed method yields better average degree of customer satisfaction due to the simultaneous optimization of platform and non-platform ECs.

  11. A statistical framework for protein quantitation in bottom-up MS-based proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Karpievitch, Yuliya; Stanley, Jeffrey R.; Taverner, Thomas; Huang, Jianhua; Adkins, Joshua N.; Ansong, Charles; Heffron, Fred; Metz, Thomas O.; Qian, Weijun; Yoon, Hyunjin; Smith, Richard D.; Dabney, Alan R.

    2009-08-15

    ABSTRACT Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and confidence measures. Challenges include the presence of low-quality or incorrectly identified peptides and widespread, informative, missing data. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model for protein abundance in terms of peptide peak intensities, applicable to both label-based and label-free quantitation experiments. The model allows for both random and censoring missingness mechanisms and provides naturally for protein-level estimates and confidence measures. The model is also used to derive automated filtering and imputation routines. Three LC-MS datasets are used to illustrate the methods. Availability: The software has been made available in the open-source proteomics platform DAnTE (Polpitiya et al. (2008)) (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu

  12. Thiolene and SIFEL-based Microfluidic Platforms for Liquid-Liquid Extraction.

    Science.gov (United States)

    Goyal, Sachit; Desai, Amit V; Lewis, Robert W; Ranganathan, David R; Li, Hairong; Zeng, Dexing; Reichert, David E; Kenis, Paul J A

    2014-01-01

    Microfluidic platforms provide several advantages for liquid-liquid extraction (LLE) processes over conventional methods, for example with respect to lower consumption of solvents and enhanced extraction efficiencies due to the inherent shorter diffusional distances. Here, we report the development of polymer-based parallel-flow microfluidic platforms for LLE. To date, parallel-flow microfluidic platforms have predominantly been made out of silicon or glass due to their compatibility with most organic solvents used for LLE. Fabrication of silicon and glass-based LLE platforms typically requires extensive use of photolithography, plasma or laser-based etching, high temperature (anodic) bonding, and/or wet etching with KOH or HF solutions. In contrast, polymeric microfluidic platforms can be fabricated using less involved processes, typically photolithography in combination with replica molding, hot embossing, and/or bonding at much lower temperatures. Here we report the fabrication and testing of microfluidic LLE platforms comprised of thiolene or a perfluoropolyether-based material, SIFEL, where the choice of materials was mainly guided by the need for solvent compatibility and fabrication amenability. Suitable designs for polymer-based LLE platforms that maximize extraction efficiencies within the constraints of the fabrication methods and feasible operational conditions were obtained using analytical modeling. To optimize the performance of the polymer-based LLE platforms, we systematically studied the effect of surface functionalization and of microstructures on the stability of the liquid-liquid interface and on the ability to separate the phases. As demonstrative examples, we report (i) a thiolene-based platform to determine the lipophilicity of caffeine, and (ii) a SIFEL-based platform to extract radioactive copper from an acidic aqueous solution.

  13. Adaptive Backstepping Controller Design for Leveling Control of an Underwater Platform Based on Joint Space

    Directory of Open Access Journals (Sweden)

    Zhi-Lin Zeng

    2014-01-01

    Full Text Available This paper focuses on high precision leveling control of an underwater heavy load platform, which is viewed as an underwater parallel robot on the basis of its work pattern. The kinematic of platform with deformation is analyzed and the dynamics model of joint space is established. An adaptive backstepping controller according to Lyapunov's function is proposed for leveling control of platform based on joint space. Furthermore, the “lowest point fixed angle error” leveling scheme called “chase” is chosen for leveling control of platform. The digital simulation and practical experiment of single joint space actuator are carried out, and the results show high precision servo control of joint space. On the basis of this, the platform leveling control simulation relies on the hardware-in-loop system. The results indicate that the proposed controller can effectively restrain the influence from system parameter uncertainties and external disturbance to realize high precision leveling control of the underwater platform.

  14. Design and Promotion Strategy of Marketing Platform of Aquatic Auction based on Internet

    Science.gov (United States)

    Peng, Jianliang

    For the online trade and promotion of aquatic products and related materials through the network between supply and demand, the design content and effective promotional strategies of aquatic auctions online marketing platform is proposed in this paper. Design elements involve the location of customer service, the basic function of the platform including the purchase of general orders, online auctions, information dissemination, and recommendation of fine products, human services, and payment preferences. Based on network and mobile e-commerce transaction support, the auction platform makes the transaction of aquatic products well in advance. The results are important practical value for the design and application of online marketing platform of aquatic auction.

  15. Classification of cassava genotypes based on qualitative and quantitative data.

    Science.gov (United States)

    Oliveira, E J; Oliveira Filho, O S; Santos, V S

    2015-02-02

    We evaluated the genetic variation of cassava accessions based on qualitative (binomial and multicategorical) and quantitative traits (continuous). We characterized 95 accessions obtained from the Cassava Germplasm Bank of Embrapa Mandioca e Fruticultura; we evaluated these accessions for 13 continuous, 10 binary, and 25 multicategorical traits. First, we analyzed the accessions based only on quantitative traits; next, we conducted joint analysis (qualitative and quantitative traits) based on the Ward-MLM method, which performs clustering in two stages. According to the pseudo-F, pseudo-t2, and maximum likelihood criteria, we identified five and four groups based on quantitative trait and joint analysis, respectively. The smaller number of groups identified based on joint analysis may be related to the nature of the data. On the other hand, quantitative data are more subject to environmental effects in the phenotype expression; this results in the absence of genetic differences, thereby contributing to greater differentiation among accessions. For most of the accessions, the maximum probability of classification was >0.90, independent of the trait analyzed, indicating a good fit of the clustering method. Differences in clustering according to the type of data implied that analysis of quantitative and qualitative traits in cassava germplasm might explore different genomic regions. On the other hand, when joint analysis was used, the means and ranges of genetic distances were high, indicating that the Ward-MLM method is very useful for clustering genotypes when there are several phenotypic traits, such as in the case of genetic resources and breeding programs.

  16. Cloud Platform Based on Mobile Internet Service Opportunistic Drive and Application Aware Data Mining

    Directory of Open Access Journals (Sweden)

    Ge Zhou

    2015-01-01

    Full Text Available Because the static cloud platform cannot satisfy the diversity of mobile Internet service and inefficient data mining problems, we presented a reliable and efficient data mining cloud platform construction scheme based on the mobile Internet service opportunistic driving and application perception. In this scheme, first of all data selection mechanism was established based on mobile Internet service opportunistic drive. Secondly, through the cloud platform different cloud and channel aware, nonlinear mapping from the service to a data set of proposed perceptual model is applied. Finally, on the basis of the driving characteristics and extraction of perceptual features, the cloud platform would be constructed through the service opportunities of mobile Internet applications, which could provide robust and efficient data mining services. The experimental results show that the proposed mechanism, compared to the cloud platform based on distributed data mining, has obvious advantages in system running time, memory usage, and data clustering required time, as well as average clustering quality.

  17. Transaction-based building controls framework, Volume 2: Platform descriptive model and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Akyol, Bora A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Haack, Jereme N. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Carpenter, Brandon J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lutes, Robert G. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hernandez, George [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-07-31

    Transaction-based Building Controls (TBC) offer a control systems platform that provides an agent execution environment that meets the growing requirements for security, resource utilization, and reliability. This report outlines the requirements for a platform to meet these needs and describes an illustrative/exemplary implementation.

  18. Development of Simulink-Based SiC MOSFET Modeling Platform for Series Connected Devices

    DEFF Research Database (Denmark)

    Tsolaridis, Georgios; Ilves, Kalle; Reigosa, Paula Diaz

    2016-01-01

    A new MATLAB/Simulink-based modeling platform has been developed for SiC MOSFET power modules. The modeling platform describes the electrical behavior f a single 1.2 kV/ 350 A SiC MOSFET power module, as well as the series connection of two of them. A fast parameter initialization is followed...

  19. Biomedical Platforms Based on Composite Nanomaterials and Cellular Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, Stefano [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Bergamaschi, A [Department of Environmental, Occupational and Social Medicine, University of Rome Tor Vergata, Via Montpellier 1, I-00133 Rome (Italy); Bottini, M [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy); Magrini, A [Department of Environmental, Occupational and Social Medicine, University of Rome Tor Vergata, Via Montpellier 1, I-00133 Rome (Italy); Mustelin, T [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States)

    2007-03-15

    Carbon nanotubes possess unique chemical, physical, optical, and magnetic properties, which make them suitable for many uses in industrial products and in the field of nanotechnology, including nanomedicine. We describe fluorescent nanocomposites for use in biosensors or nanoelectronics. Then we describe recent results on the issue of cytotoxicity of carbon nanotubes obtained in our labs. Silica nanoparticles have been widely used for biosensing and catalytic applications due to their large surface area-to-volume ratio, straightforward manufacture, and the compatibility of silica chemistry with covalent coupling of biomolecules. Carbon nanotubes-composite materials, such as those based on Carbon nanotubes bound to nanoparticles, are suitable, in order to tailor Carbon nanotubes properties for specific applications. We present a tunable synthesis of Multi Wall Carbon nanotubes-Silica nanoparticles. The control of the nanotube morphology and the bead size, coupled with the versatility of silica chemistry, makes these structures an excellent platform for the development of biosensors (optical, magnetic and catalytic applications). We describe the construction and characterization of supramolecular nanostructures consisting of ruthenium-complex luminophores, directly grafted onto short oxidized single-walled carbon nanotubes or physically entrapped in silica nanobeads, which had been covalently linked to short oxidized single-walled carbon nanotubes or hydrophobically adsorbed onto full-length multi-walled carbon nanotubes. These structures have been evaluated as potential electron-acceptor complexes for use in the fabrication of photovoltaic devices, and for their properties as fluorescent nanocomposites for use in biosensors or nanoelectronics. Finally, we compare the toxicity of pristine and oxidized Multi Walled Carbon nanotubes on human T cells - which would be among the first exposed cell types upon intravenous administration of Carbon nanotubes in therapeutic

  20. Cloud-Based Software Platform for Smart Meter Data Management

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts

    of the so-called big data possible. This can improve energy management, e.g., help utility companies to forecast energy loads and improve services, and help households to manage energy usage and save money. As this regard, the proposed paper focuses on building an innovative software platform for smart......Today smart meters are increasingly used in the worldwide. Smart meters are the advanced meters capable of measuring customer energy consumption at a fine-grained time in- terval, e.g., every 15 minutes. The data are very sizeable, and might be from different sources, along with the other social...... their knowledge; scalable data analytics platform for data mining over big data sets for energy demand forecasting and consumption discovering; data as the service for other applications using smart meter data; and a portal for visualizing data analytics results. The design will incorporate hybrid clouds...

  1. Ontology-Based Platform for Conceptual Guided Dataset Analysis

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel

    2016-05-31

    Nowadays organizations should handle a huge amount of both internal and external data from structured, semi-structured, and unstructured sources. This constitutes a major challenge (and also an opportunity) to current Business Intelligence solutions. The complexity and effort required to analyse such plethora of data implies considerable execution times. Besides, the large number of data analysis methods and techniques impede domain experts (laymen from an IT-assisted analytics perspective) to fully exploit their potential, while technology experts lack the business background to get the proper questions. In this work, we present a semantically-boosted platform for assisting layman users in (i) extracting a relevant subdataset from all the data, and (ii) selecting the data analysis technique(s) best suited for scrutinising that subdataset. The outcome is getting better answers in significantly less time. The platform has been evaluated in the music domain with promising results.

  2. Formal Behavior Modeling: Business Processes Based on Cloud Platform

    Directory of Open Access Journals (Sweden)

    Bo Huang

    2013-06-01

    Full Text Available From a macro level, cloud computing is gathering all the distributed resources originally, and then provided them as a service to the users. Current research focuses the cloud architecture and local small-scale grid computing mainly. The researchers are ignoring to provide a channel to help users to understand the business processes of the entire platform. This article focuses the communication and business links and abstracts them into business processes behaviors. At the same time, this article provides a modeling method to help these behaviors being visual depiction at the initial design of the cloud computing. We combine the SOA architecture and cloud computing together. At last the transferring and the dynamic processing of the service\\data of the business processes can be shown to the stakeholders to verify whether the cloud platform was meeting their requirements which are regarded as simulation of cloud services.

  3. Computational Chemistry Data Management Platform Based on the Semantic Web.

    Science.gov (United States)

    Wang, Bing; Dobosh, Paul A; Chalk, Stuart; Sopek, Mirek; Ostlund, Neil S

    2017-01-12

    This paper presents a formal data publishing platform for computational chemistry using semantic web technologies. This platform encapsulates computational chemistry data from a variety of packages in an Extensible Markup Language (XML) file called CSX (Common Standard for eXchange). On the basis of a Gainesville Core (GC) ontology for computational chemistry, a CSX XML file is converted into the JavaScript Object Notation for Linked Data (JSON-LD) format using an XML Stylesheet Language Transformation (XSLT) file. Ultimately the JSON-LD file is converted to subject-predicate-object triples in a Turtle (TTL) file and published on the web portal. By leveraging semantic web technologies, we are able to place computational chemistry data onto web portals as a component of a Giant Global Graph (GGG) such that computer agents, as well as individual chemists, can access the data.

  4. Safety assessment of platform loadout procedures based on unascertained measures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Safety assessment of offshore platforms is an urgent task. Such assessments are now focusing on the structure,maintenance, and retirement of a platform. Some methods employed have many shortcomings. For example, they cannot make the reliability adequately explicable. Therefore, a mathematical tool, the unascertained measure, was introduced. First, the basic knowledge of the unascertained sets was introduced briefly. Second, the unascertained measure was defined and credible identification was set up. The method has been introduced into the fields for safety assessment of a jacket loadout procedure.Engineering practices showed that it can complete the safety assessment systematically and scientifically without any assumption. The work should have significance in theory and practice for offshore engineering.

  5. Design of a Physiology-Sensitive VR-Based Social Communication Platform for Children With Autism.

    Science.gov (United States)

    Kuriakose, Selvia; Lahiri, Uttama

    2017-08-01

    Individuals with autism are often characterized by impairments in communication, reciprocal social interaction and explicit expression of their affective states. In conventional techniques, a therapist adjusts the intervention paradigm by monitoring the affective state e.g., anxiety of these individuals for effective floor-time-therapy. Conventional techniques, though powerful, are observation-based and face resource limitations. Technology-assisted systems can provide a quantitative, individualized rehabilitation platform. Presently-available systems are designed primarily to chain learning via aspects of one's performance alone restricting individualization. Specifically, these systems are not sensitive to one's anxiety. Our presented work seeks to bridge this gap by developing a novel VR-based interactive system with Anxiety-Sensitive adaptive technology. Specifically, such a system is capable of objectively identifying and quantifying one's anxiety level from real-time biomarkers, along with performance metrics. In turn it can adaptively respond in an individualized manner to foster improved social communication skills. In our present research, we have used Virtual Reality (VR) to design a proof-of-concept application that exposes participants to social tasks of varying challenges. Results of a preliminary usability study indicate the potential of our VR-based Anxiety-Sensitive system to foster improved task performance, thereby serving as a potent complementary tool in the hands of therapist.

  6. Legal Aspects of a Location-Based Mobile Advertising Platform

    DEFF Research Database (Denmark)

    Cleff, Evelyne Beatrix; Gidofalvi, Gyozo

    2008-01-01

    stream. In this article the possibilities of using a location-aware mobile messenger for the purpose of mobile advertising will be introduced. However, mobile advertising may become an extremely intrusive practice if the user's privacy is not taken in account. The objective of this article is therefore...... to introduce a platform which is in compliance with the provisions imposed by EU law with regard to personal data protection....

  7. Processing and image compression based on the platform Arduino

    Science.gov (United States)

    Lazar, Jan; Kostolanyova, Katerina; Bradac, Vladimir

    2017-07-01

    This paper focuses on the use of a minicomputer built on platform Arduino for the purposes of image compression and decompression. Arduino is used as a control element, which integrates needed proposed algorithms. This solution is unique as there is no commonly available solution with low computational performance for demanding graphical operations with the possibility of subsequent extending, because using Arduino, as an open source, enables further extensions and adjustments.

  8. Aneka: A Software Platform for .NET-based Cloud Computing

    OpenAIRE

    Vecchiola, Christian; Chu, Xingchen; Buyya, Rajkumar

    2009-01-01

    Aneka is a platform for deploying Clouds developing applications on top of it. It provides a runtime environment and a set of APIs that allow developers to build .NET applications that leverage their computation on either public or private clouds. One of the key features of Aneka is the ability of supporting multiple programming models that are ways of expressing the execution logic of applications by using specific abstractions. This is accomplished by creating a customizable and extensible ...

  9. Magnetic Particle-Based Hybrid Platforms for Bioanalytical Sensors

    Directory of Open Access Journals (Sweden)

    Silvana Andreescu

    2009-04-01

    Full Text Available Biomagnetic nano and microparticles platforms have attracted considerable interest in the field of biological sensors due to their interesting physico-chemical properties, high specific surface area, good mechanical stability and opportunities for generating magneto-switchable devices. This review discusses recent advances in the development and characterization of active biomagnetic nanoassemblies, their interaction with biological molecules and their use in bioanalytical sensors.

  10. Robot soccer simulation competition platform based on multi-agent

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the robot soccer software simulation platform to be firstly used at FIRA Robot World Cup China 2001, introduces the system's purpose and design plan; discusses the system core-server configuration and working principle; describes the operating method and how to develop competition strategy, and refers to the teams to take part in FIRA Robot World Cup China 2001 and investigators who are interested in the distribu ted multi-agent system.

  11. Legal Aspects of a Location-Based Mobile Advertising Platform

    DEFF Research Database (Denmark)

    Cleff, Evelyne Beatrix; Gidofalvi, Gyozo

    2008-01-01

    stream. In this article the possibilities of using a location-aware mobile messenger for the purpose of mobile advertising will be introduced. However, mobile advertising may become an extremely intrusive practice if the user's privacy is not taken in account. The objective of this article is therefore...... to introduce a platform which is in compliance with the provisions imposed by EU law with regard to personal data protection....

  12. Based on the cocos2d cross-platform development

    Institute of Scientific and Technical Information of China (English)

    申志兵

    2016-01-01

    the intelligent mobile Phone operating system is various, but apple's IOS, Google's Android and Microsof 's Windows Phone operating system almost all of the mobile Phone market, so developing a cross-platform recruit games has the very high commercial value.Cocos2d - x is a cross-platform, open source2 d mobile game framework, using the Cocos2d - x development projects can in IOS, Android, Windows Phone support, such as c + + platform to create and run. This paper mainly introduces recruit class game development stages of preparation, including feasibility analysis, system requirements analysis, system outline design, detailed design and coding and testing of the system as well as content.Whether it is worth in feasibility analysis, mainly on the system development in all aspects of the analysis;In system demand analysis, the major demand analysis and the function of the system system function structure diagram, use case diagram, system flow chart to comprehend;In system design, mainly on the system of the game execution module, main module, a monster module, props module in detail, such as design and draw the class diagram, sequence diagram and state diagram;This game is a dungeon stage mode class, to rotate around the protagonist to destroy the monster, obtains the key to unlock the next level, in the pursuit of complete game speed at the same time to finish the game within the prescribed steps.

  13. An integrated sample pretreatment platform for quantitative N-glycoproteome analysis with combination of on-line glycopeptide enrichment, deglycosylation and dimethyl labeling

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Yejing; Qu, Yanyan; Jiang, Hao; Wu, Qi [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Lihua, E-mail: lihuazhang@dicp.ac.cn [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Yuan, Huiming [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhou, Yuan [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Xiaodan; Zhang, Yukui [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2014-06-23

    Highlights: • An integrated platform for quantitative N-glycoproteome analysis was established. • On-line enrichment, deglycosylation and labeling could be achieved within 160 min. • A N{sub 2}-assisted interface was applied to improve the compatibility of the platform. • The platform exhibited improved quantification accuracy, precision and throughput. - Abstract: Relative quantification of N-glycoproteomes shows great promise for the discovery of candidate biomarkers and therapeutic targets. The traditional protocol for quantitative analysis of glycoproteomes is usually off-line performed, and suffers from long sample preparation time, and the risk of sample loss or contamination due to manual manipulation. In this study, a novel integrated sample preparation platform for quantitative N-glycoproteome analysis was established, with combination of online N-glycopeptide capture by a HILIC column, sample buffer exchange by a N{sub 2}-assisted HILIC–RPLC interface, deglycosylation by a hydrophilic PNGase F immobilized enzymatic reactor (hIMER) and solid dimethyl labeling on a C18 precolumn. To evaluate the performance of such a platform, two equal aliquots of immunoglobulin G (IgG) digests were sequentially pretreated, followed by MALDI-TOF MS analysis. The signal intensity ratio of heavy/light (H/L) labeled deglycosylated peptides with the equal aliquots was 1.00 (RSD = 6.2%, n = 3), much better than those obtained by the offline protocol, with H/L ratio as 0.76 (RSD = 11.6%, n = 3). Additionally, the total on-line sample preparation time was greatly shortened to 160 min, much faster than that of offline approach (24 h). Furthermore, such an integrated pretreatment platform was successfully applied to analyze the two kinds of hepatocarcinoma ascites syngeneic cell lines with high (Hca-F) and low (Hca-P) lymph node metastasis rates. For H/L labeled Hca-P lysates with the equal aliquots, 99.6% of log 2 ratios (H/L) of quantified glycopeptides ranged from −1

  14. A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors.

    Science.gov (United States)

    Paterson, Andrew S; Raja, Balakrishnan; Mandadi, Vinay; Townsend, Blane; Lee, Miles; Buell, Alex; Vu, Binh; Brgoch, Jakoah; Willson, Richard C

    2017-03-14

    Through their computational power and connectivity, smartphones are poised to rapidly expand telemedicine and transform healthcare by enabling better personal health monitoring and rapid diagnostics. Recently, a variety of platforms have been developed to enable smartphone-based point-of-care testing using imaging-based readout with the smartphone camera as the detector. Fluorescent reporters have been shown to improve the sensitivity of assays over colorimetric labels, but fluorescence readout necessitates incorporating optical hardware into the detection system, adding to the cost and complexity of the device. Here we present a simple, low-cost smartphone-based detection platform for highly sensitive luminescence imaging readout of point-of-care tests run with persistent luminescent phosphors as reporters. The extremely bright and long-lived emission of persistent phosphors allows sensitive analyte detection with a smartphone by a facile time-gated imaging strategy. Phosphors are first briefly excited with the phone's camera flash, followed by switching off the flash, and subsequent imaging of phosphor luminescence with the camera. Using this approach, we demonstrate detection of human chorionic gonadotropin using a lateral flow assay and the smartphone platform with strontium aluminate nanoparticles as reporters, giving a detection limit of ≈45 pg mL(-1) (1.2 pM) in buffer. Time-gated imaging on a smartphone can be readily adapted for sensitive and potentially quantitative testing using other point-of-care formats, and is workable with a variety of persistent luminescent materials.

  15. Single Particle and PET-based Platform for Identifying Optimal Plasmonic Nano-Heaters for Photothermal Cancer Therapy

    Science.gov (United States)

    Jørgensen, Jesper Tranekjær; Norregaard, Kamilla; Tian, Pengfei; Bendix, Poul Martin; Kjaer, Andreas; Oddershede, Lene B.

    2016-08-01

    Plasmonic nanoparticle-based photothermal cancer therapy is a promising new tool to inflict localized and irreversible damage to tumor tissue by hyperthermia, without harming surrounding healthy tissue. We developed a single particle and positron emission tomography (PET)-based platform to quantitatively correlate the heat generation of plasmonic nanoparticles with their potential as cancer killing agents. In vitro, the heat generation and absorption cross-section of single irradiated nanoparticles were quantified using a temperature sensitive lipid-based assay and compared to their theoretically predicted photo-absorption. In vivo, the heat generation of irradiated nanoparticles was evaluated in human tumor xenografts in mice using 2-deoxy-2-[F-18]fluoro-D-glucose (18F-FDG) PET imaging. To validate the use of this platform, we quantified the photothermal efficiency of near infrared resonant silica-gold nanoshells (AuNSs) and benchmarked this against the heating of colloidal spherical, solid gold nanoparticles (AuNPs). As expected, both in vitro and in vivo the heat generation of the resonant AuNSs performed superior compared to the non-resonant AuNPs. Furthermore, the results showed that PET imaging could be reliably used to monitor early treatment response of photothermal treatment. This multidisciplinary approach provides a much needed platform to benchmark the emerging plethora of novel plasmonic nanoparticles for their potential for photothermal cancer therapy.

  16. Free web-based modelling platform for managed aquifer recharge (MAR) applications

    Science.gov (United States)

    Stefan, Catalin; Junghanns, Ralf; Glaß, Jana; Sallwey, Jana; Fatkhutdinov, Aybulat; Fichtner, Thomas; Barquero, Felix; Moreno, Miguel; Bonilla, José; Kwoyiga, Lydia

    2017-04-01

    Managed aquifer recharge represents a valuable instrument for sustainable water resources management. The concept implies purposeful infiltration of surface water into underground for later recovery or environmental benefits. Over decades, MAR schemes were successfully installed worldwide for a variety of reasons: to maximize the natural storage capacity of aquifers, physical aquifer management, water quality management, and ecological benefits. The INOWAS-DSS platform provides a collection of free web-based tools for planning, management and optimization of main components of MAR schemes. The tools are grouped into 13 specific applications that cover most relevant challenges encountered at MAR sites, both from quantitative and qualitative perspectives. The applications include among others the optimization of MAR site location, the assessment of saltwater intrusion, the restoration of groundwater levels in overexploited aquifers, the maximization of natural storage capacity of aquifers, the improvement of water quality, the design and operational optimization of MAR schemes, clogging development and risk assessment. The platform contains a collection of about 35 web-based tools of various degrees of complexity, which are either included in application specific workflows or used as standalone modelling instruments. Among them are simple tools derived from data mining and empirical equations, analytical groundwater related equations, as well as complex numerical flow and transport models (MODFLOW, MT3DMS and SEAWAT). Up to now, the simulation core of the INOWAS-DSS, which is based on the finite differences groundwater flow model MODFLOW, is implemented and runs on the web. A scenario analyser helps to easily set up and evaluate new management options as well as future development such as land use and climate change and compare them to previous scenarios. Additionally simple tools such as analytical equations to assess saltwater intrusion are already running online

  17. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.

    Science.gov (United States)

    Pandiyan, Vimal Prabhu; John, Renu

    2016-01-20

    We propose a versatile 3D phase-imaging microscope platform for real-time imaging of optomicrofluidic devices based on the principle of digital holographic microscopy (DHM). Lab-on-chip microfluidic devices fabricated on transparent polydimethylsiloxane (PDMS) and glass substrates have attained wide popularity in biological sensing applications. However, monitoring, visualization, and characterization of microfluidic devices, microfluidic flows, and the biochemical kinetics happening in these devices is difficult due to the lack of proper techniques for real-time imaging and analysis. The traditional bright-field microscopic techniques fail in imaging applications, as the microfluidic channels and the fluids carrying biological samples are transparent and not visible in bright light. Phase-based microscopy techniques that can image the phase of the microfluidic channel and changes in refractive indices due to the fluids and biological samples present in the channel are ideal for imaging the fluid flow dynamics in a microfluidic channel at high resolutions. This paper demonstrates three-dimensional imaging of a microfluidic device with nanometric depth precisions and high SNR. We demonstrate imaging of microelectrodes of nanometric thickness patterned on glass substrate and the microfluidic channel. Three-dimensional imaging of a transparent PDMS optomicrofluidic channel, fluid flow, and live yeast cell flow in this channel has been demonstrated using DHM. We also quantify the average velocity of fluid flow through the channel. In comparison to any conventional bright-field microscope, the 3D depth information in the images illustrated in this work carry much information about the biological system under observation. The results demonstrated in this paper prove the high potential of DHM in imaging optofluidic devices; detection of pathogens, cells, and bioanalytes on lab-on-chip devices; and in studying microfluidic dynamics in real time based on phase changes.

  18. The Coverage Analysis for Moon-based Platform at Three- Polar Regions on Earth

    Science.gov (United States)

    YE, Hanlin; GUO, Huadong; LIU, Guang

    2016-11-01

    More and more attention has been paid to taking the Earth as a whole for researching. Though space-borne and airborne platform have acquired various data from the Earth, the existing Earth observation system lack the ability of long-term continuous observation at a global scale. We propose a new platform, Moon-based platform, which is used for observing Earth from the Moon and discuss the coverage performance for observing Three-polar regions. Three-polar regions is characterized by its large scale and need long-term observation. Moon-based platform is the ideal platform. The coverage performance of the Moon-based platform depends on Moon orbit parameters, the attitude of the Moon and the attitude of the Earth. The position of the Moon are calculated from Jet Propulsion Laboratory ephemerides. The attitude of the Moon calculated from the libration Euler angles and the attitude of the Earth derived from the Earth orientation parameters. After introducing the coordinate system transformation, a preliminary coverage geometry are conducted. With the help of coverage geometry model, the simulation about Three- polar regions is presented. The result shows that the Moon-based platform has the advantages of large observing areas, long observation time windows and rich observing angles combination.

  19. Adaptive Soa Stack-Based Business Process Monitoring Platform

    Directory of Open Access Journals (Sweden)

    Przemysław Dadel

    2014-01-01

    Full Text Available Executable business processes that formally describe company activities are well placed in the SOA environment as they allow for declarative organization of high-level system logic.However, for both technical and non-technical users, to fully benet from that element of abstractionappropriate business process monitoring systems are required and existing solutions remain unsatisfactory.The paper discusses the problem of business process monitoring in the context of the service orientation paradigm in order to propose an architectural solution and provide implementation of a system for business process monitoring that alleviates the shortcomings of the existing solutions.Various platforms are investigated to obtain a broader view of the monitoring problem and to gather functional and non-functional requirements. These requirements constitute input forthe further analysis and the system design. The monitoring software is then implemented and evaluated according to the specied criteria.An extensible business process monitoring system was designed and built on top of OSGiMM - a dynamic, event-driven, congurable communications layer that provides real-time monitoring capabilities for various types of resources. The system was tested against the stated functional requirements and its implementation provides a starting point for the further work.It is concluded that providing a uniform business process monitoring solution that satises a wide range of users and business process platform vendors is a dicult endeavor. It is furthermore reasoned that only an extensible, open-source, monitoring platform built on top of a scalablecommunication core has a chance to address all the stated and future requirements.

  20. Natural product proteomining, a quantitative proteomics platform, allows rapid discovery of biosynthetic gene clusters for different classes of natural products.

    Science.gov (United States)

    Gubbens, Jacob; Zhu, Hua; Girard, Geneviève; Song, Lijiang; Florea, Bogdan I; Aston, Philip; Ichinose, Koji; Filippov, Dmitri V; Choi, Young H; Overkleeft, Herman S; Challis, Gregory L; van Wezel, Gilles P

    2014-06-19

    Information on gene clusters for natural product biosynthesis is accumulating rapidly because of the current boom of available genome sequencing data. However, linking a natural product to a specific gene cluster remains challenging. Here, we present a widely applicable strategy for the identification of gene clusters for specific natural products, which we name natural product proteomining. The method is based on using fluctuating growth conditions that ensure differential biosynthesis of the bioactivity of interest. Subsequent combination of metabolomics and quantitative proteomics establishes correlations between abundance of natural products and concomitant changes in the protein pool, which allows identification of the relevant biosynthetic gene cluster. We used this approach to elucidate gene clusters for different natural products in Bacillus and Streptomyces, including a novel juglomycin-type antibiotic. Natural product proteomining does not require prior knowledge of the gene cluster or secondary metabolite and therefore represents a general strategy for identification of all types of gene clusters.

  1. A cloud computing based platform for sleep behavior and chronic diseases collaborative research.

    Science.gov (United States)

    Kuo, Mu-Hsing; Borycki, Elizabeth; Kushniruk, Andre; Huang, Yueh-Min; Hung, Shu-Hui

    2014-01-01

    The objective of this study is to propose a Cloud Computing based platform for sleep behavior and chronic disease collaborative research. The platform consists of two main components: (1) a sensing bed sheet with textile sensors to automatically record patient's sleep behaviors and vital signs, and (2) a service-oriented cloud computing architecture (SOCCA) that provides a data repository and allows for sharing and analysis of collected data. Also, we describe our systematic approach to implementing the SOCCA. We believe that the new cloud-based platform can provide nurse and other health professional researchers located in differing geographic locations with a cost effective, flexible, secure and privacy-preserved research environment.

  2. Study and Realization of Intelligent Online Drawing Platform Based on Internet

    Institute of Scientific and Technical Information of China (English)

    LIAi-jun; XUMao-feng; WANGHong-xin; ZHAOSu-yuan

    2004-01-01

    Internet has gradually demonstrated more and more superiority in modern education system. The intelligent online drawing platform based on net will provide learners with a studying environment without limitation in time and space. Based on the theory of graphics, this paper developed an intelligent online drawing platform (IODP) with Java through analyzing the teaching character of descriptive geometry. IODP developed not only has a flexible drawing environment with the function of mutual drawing, but also is able to judge the drawing made by students and give feedback at the same time. This platform gives an effective way for Internet education on engineering graphics.

  3. A CORBA-Based Integration Platform of Product Development Process Management for Concurrent Engineering

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Product development process management plays an important role in concurrent engineering (CE). The integration platform is a useful tool for effectively supporting the software development and inte gration. Based on the analysis of practical requirements for product development process management for CE, a CORBA-based integration platform of product development process management (IP-PDPM) is de signed and developed. The design principles for IP-PDPM are described. The system architecture and func tions of the platform are given, the key technologies for the implementation of IP-PDPM are presented, the application integration mechanism and its implementation techniques are also detailed.

  4. Error model identification of inertial navigation platform based on errors-in-variables model

    Institute of Scientific and Technical Information of China (English)

    Liu Ming; Liu Yu; Su Baoku

    2009-01-01

    Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method are proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.

  5. A Compositive Information Collection Platform System Based on Web Service

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aim is to solve the problem that how to share dispersive and heterogeneous data inside business information system or some other information source. On the basis of Web service, this paper adopts the notion of Data As Service to build service-oriented data integration architecture. According to this architecture, we develop data collection system which effectively integrates data from heterogeneous information source and present a uniform data view to end users by implementing sharing data from heterogeneous systems and information source .At last, this paper gives an example of a compositive information collection platform system.

  6. Biosensor platform based on carbon nanotubes covalently modified with aptamers

    Science.gov (United States)

    Komarov, I. A.; Rubtsova, E. I.; Golovin, A. V.; Bobrinetskiy, I. I.

    2016-12-01

    We developed a new platform for biosensing applications. Aptamers as sensitive agents have a great potential and gives us possibility to have highest possible selectivity among other sensing agents like enzymes or antibodies. We covalently bound aptamers to the functional groups of c-CNTs and then put this system on the surface of polymer substrate. Thus we got high sensitive flexible transparent biological sensors. We also suggest that by varying aptamer type we can make set of biosensors for disease detection which can be integrated into self-healthcare systems and gadgets.

  7. A 45 nm Low Cost, Radiation Hardened, Platform Based Structured ASIC Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed 45 nm radiation hardened platform based structured ASIC architecture offers the performance and density expected of a custom ASIC with the low...

  8. OneWeb: web content adaptation platform based on W3C Mobile Web Initiative guidelines

    National Research Council Canada - National Science Library

    Francisco O Martínez P; Gustavo A Uribe G; Fabián L Mosquera P

    2011-01-01

    .... This article presents the main features and functional modules of OneWeb, an MWI-based Web content adaptation platform developed by Mobile Devices Applications Development Interest Group's (W@PColombia...

  9. Technological and Organizational Changes. Developing a management platform based on participatory institutions and practices

    DEFF Research Database (Denmark)

    Clausen, Christian

    2004-01-01

    Management Programmes aimed at organisational and technological change often run into problems when it comes to implementing change. The purpose of the papeer is to discuss the possibilities for establishing a cooperation based platform for change....

  10. Exploring probabilistic tools for the development of a platform for Quantitative Risk Assessment (QRA) of hydro-meteorological hazards in Europe

    Science.gov (United States)

    Zumpano, V.; Hussin, H. Y.; Breinl, K.

    2012-04-01

    Mass-movements and floods are hydro-meteorological hazards that can have catastrophic effects on communities living in mountainous areas prone to these disastrous events. Environmental, climate and socio-economic changes are expected to affect the tempo-spatial patterns of hydro-meteorological hazards and associated risks in Europe. These changes and their effects on the occurrence of future hazards need to be analyzed and modeled using probabilistic hazard and risk assessment methods in order to assist stakeholders in disaster management strategies and policy making. Quantitative Risk Assessment (QRA) using probabilistic methods can further calculate damage and losses to multi-hazards and determine the uncertainties related to all the probabilistic components of the hazard and the vulnerability of the elements at risk. Therefore, in order to develop an effective platform that can quantitatively calculate the risk of mass-movements and floods in several European test sites, an extensive inventory and analysis has been carried out of the available tools and software related to the probabilistic risk assessment of single and multi-hazards. The tools have been reviewed based on whether they are open source and freely available, their required input data, the availability and type of hazard and vulnerability modules, transparency of methods used, their validation and calibration techniques, the inclusion of uncertainties and their state of the art. The analysis also specially focused on the applicability of the tools to European study areas. The findings showed that assumptions and simplifications are made when assessing and quantifying the hazards. The interaction between multiple hazards, like cascading effects are not assessed in most tools and some consider the hazard and vulnerability as qualitative components, rather than quantitative ones. This analysis of hazard and risk assessment tools and software will give future developers and experts a better overview of

  11. Study on the E-commerce platform based on the agent

    Science.gov (United States)

    Fu, Ruixue; Qin, Lishuan; Gao, Yinmin

    2011-10-01

    To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.

  12. Software-Based Wireless Power Transfer Platform for Various Power Control Experiments

    OpenAIRE

    Sun-Han Hwang; Chung G. Kang; Yong-Ho Son; Byung-Jun Jang

    2015-01-01

    In this paper, we present the design and evaluation of a software-based wireless power transfer platform that enables the development of a prototype involving various open- and closed-loop power control functions. Our platform is based on a loosely coupled planar wireless power transfer circuit that uses a class-E power amplifier. In conjunction with this circuit, we implement flexible control functions using a National Instruments Data Acquisition (NI DAQ) board and algorithms in the MATLAB/...

  13. A CMake-Based Cross Platform Build System for Tcl/Tk

    Science.gov (United States)

    2011-11-01

    A CMake-Based Cross Platform Build System for Tcl / Tk by Clifford Yapp ARL-RP-347 November 2011 A reprint from...Proceedings of the 18th Annual Tcl / Tk Conference, Manassas, VA, 26 October 2011. Approved for public release...Proving Ground, MD 21005-5068 ARL-RP-347 November 2011 A CMake-Based Cross Platform Build System for Tcl / Tk Clifford Yapp Quantum

  14. New 3-D microarray platform based on macroporous polymer monoliths.

    Science.gov (United States)

    Rober, M; Walter, J; Vlakh, E; Stahl, F; Kasper, C; Tennikova, T

    2009-06-30

    Polymer macroporous monoliths are widely used as efficient sorbents in different, mostly dynamic, interphase processes. In this paper, monolithic materials strongly bound to the inert glass surface are suggested as operative matrices at the development of three-dimensional (3-D) microarrays. For this purpose, several rigid macroporous copolymers differed by reactivity and hydrophobic-hydrophilic properties were synthesized and tested: (1) glycidyl methacrylate-co-ethylene dimethacrylate (poly(GMA-co-EDMA)), (2) glycidyl methacrylate-co-glycerol dimethacrylate (poly(GMA-co-GDMA)), (3) N-hydroxyphthalimide ester of acrylic acid-co-glycidyl methacrylate-co-ethylene dimethacrylate (poly(HPIEAA-co-GMA-co-EDMA)), (4) 2-cyanoethyl methacrylate-co-ethylene dimethacrylate (poly(CEMA-co-EDMA)), and (5) 2-cyanoethyl methacrylate-co-2-hydroxyethyl methacrylate-co-ethylene dimethacrylate (poly(CEMA-co-HEMA-co-EDMA)). The constructed devices were used as platforms for protein microarrays construction and model mouse IgG-goat anti-mouse IgG affinity pair was used to demonstrate the potential of developed test-systems, as well as to optimize microanalytical conditions. The offered microarray platforms were applied to detect the bone tissue marker osteopontin directly in cell culture medium.

  15. Mobile platform of altitude measurement based on a smartphone

    Science.gov (United States)

    Roszkowski, Paweł; Kowalczyk, Marcin

    2016-09-01

    The article presents a low cost, fully - functional meter of altitude and pressure changes in a form of mobile application controlled by Android OS (operating system). The measurements are possible due to pressure sensor inserted in majority of latest modern mobile phones, which are known as smartphones. Using their computing capabilities and other equipment components like GPS receiver in connection with data from the sensor enabled authors to create a sophisticated handheld measuring platform with many unique features. One of them is a drawing altitude maps mode in which user can create maps of altitude changes just by moving around examined area. Another one is a convenient mode for altitude measurement. It is also extended with analysis tools which provide a possibility to compare measured values by displaying the data in a form of plots. The platform consists of external backup server, where the user can secure all gathered data. Moreover, the results of measurement's accuracy examination process which was executed after building the solution were shown. At the end, the realized meter of altitude was compared to other popular altimeters, which are available on the market currently.

  16. [Reconstituting evaluation methods based on both qualitative and quantitative paradigms].

    Science.gov (United States)

    Miyata, Hiroaki; Okubo, Suguru; Yoshie, Satoru; Kai, Ichiro

    2011-01-01

    Debate about the relationship between quantitative and qualitative paradigms is often muddled and confusing and the clutter of terms and arguments has resulted in the concepts becoming obscure and unrecognizable. In this study we conducted content analysis regarding evaluation methods of qualitative healthcare research. We extracted descriptions on four types of evaluation paradigm (validity/credibility, reliability/credibility, objectivity/confirmability, and generalizability/transferability), and classified them into subcategories. In quantitative research, there has been many evaluation methods based on qualitative paradigms, and vice versa. Thus, it might not be useful to consider evaluation methods of qualitative paradigm are isolated from those of quantitative methods. Choosing practical evaluation methods based on the situation and prior conditions of each study is an important approach for researchers.

  17. Platform based design of EAP transducers in Danfoss PolyPower A/S

    DEFF Research Database (Denmark)

    Sarban, Rahimullah; Guðlaugsson, Tómas Vignir

    2013-01-01

    for a new area of research namely product development emerges. Product development can be based on an isolated design and production for a single product or platform design where a product family is developed. In platform design the families of products exploits commonality of platform modules while......Electroactive Polymer (EAP) has gained increasing focus, in research communities, in last two decades. Research within the field of EAP has, so far, been mainly focused on material improvements, characterization, modeling and developing demonstrators. As the EAP technology matures, the need...... satisfying a variety of different market segments. Platform based approach has the primary benefit of being cost efficient and short lead time to market when new products emerges. Products development based on EAP technology is challenging both technologically as well as from production and processing point...

  18. Aneka: A Software Platform for .NET-based Cloud Computing

    CERN Document Server

    Vecchiola, Christian; Buyya, Rajkumar

    2009-01-01

    Aneka is a platform for deploying Clouds developing applications on top of it. It provides a runtime environment and a set of APIs that allow developers to build .NET applications that leverage their computation on either public or private clouds. One of the key features of Aneka is the ability of supporting multiple programming models that are ways of expressing the execution logic of applications by using specific abstractions. This is accomplished by creating a customizable and extensible service oriented runtime environment represented by a collection of software containers connected together. By leveraging on these architecture advanced services including resource reservation, persistence, storage management, security, and performance monitoring have been implemented. On top of this infrastructure different programming models can be plugged to provide support for different scenarios as demonstrated by the engineering, life science, and industry applications.

  19. Parallel Web Mining System Based on Cloud Platform

    Institute of Scientific and Technical Information of China (English)

    Shengmei Luo; Qing He; Lixia Liu; Xiang Ao; Ning Li; Fuzhen Zhuang

    2012-01-01

    Traditional machine-learning algorithms are struggling to handle the exceedingly large amount of data being generated by the internet. In real-world applications, there is an urgent need for machine-learning algorithms to be able to handle large-scale, high-dimensional text data. Cloud computing involves the delivery of computing and storage as a service to a heterogeneous community of recipients, Recently, it has aroused much interest in industry and academia. Most previous works on cloud platforms only focus on the parallel algorithms for structured data. In this paper, we focus on the parallel implementation of web-mining algorithms and develop a parallel web-mining system that includes parallel web crawler; parallel text extract, transform and load (ETL) and modeling; and parallel text mining and application subsystems. The complete system enables variable real-world web-mining applications for mass data.

  20. Embedded-Based Graphics Processing Unit Cluster Platform for Multiple Sequence Alignments

    Directory of Open Access Journals (Sweden)

    Jyh-Da Wei

    2017-08-01

    Full Text Available High-end graphics processing units (GPUs, such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases an embedded board, called Jetson Tegra K1 (TK1, which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture cores (belong to Kepler GPUs. Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability, and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform was constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster platform will be constructed with multiple TK1s (MTK platform. Complex system installation and setup are necessary procedures at first. Then, 2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk, respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments.

  1. A web-based online collaboration platform for formulating engineering design projects

    Science.gov (United States)

    Varikuti, Sainath

    Effective communication and collaboration among students, faculty and industrial sponsors play a vital role while formulating and solving engineering design projects. With the advent in the web technology, online platforms and systems have been proposed to facilitate interactions and collaboration among different stakeholders in the context of senior design projects. However, there are noticeable gaps in the literature with respect to understanding the effects of online collaboration platforms for formulating engineering design projects. Most of the existing literature is focused on exploring the utility of online platforms on activities after the problem is defined and teams are formed. Also, there is a lack of mechanisms and tools to guide the project formation phase in senior design projects, which makes it challenging for students and faculty to collaboratively develop and refine project ideas and to establish appropriate teams. In this thesis a web-based online collaboration platform is designed and implemented to share, discuss and obtain feedback on project ideas and to facilitate collaboration among students and faculty prior to the start of the semester. The goal of this thesis is to understand the impact of an online collaboration platform for formulating engineering design projects, and how a web-based online collaboration platform affects the amount of interactions among stakeholders during the early phases of design process. A survey measuring the amount of interactions among students and faculty is administered. Initial findings show a marked improvement in the students' ability to share project ideas and form teams with other students and faculty. Students found the online platform simple to use. The suggestions for improving the tool generally included features that were not necessarily design specific, indicating that the underlying concept of this collaborative platform provides a strong basis and can be extended for future online platforms

  2. Techniques and evaluation from a cross-platform imaging comparison of quantitative ultrasound parameters in an in vivo rodent fibroadenoma model.

    Science.gov (United States)

    Wirtzfeld, Lauren A; Nam, Kibo; Labyed, Yassin; Ghoshal, Goutam; Haak, Alexander; Sen-Gupta, Ellora; He, Zhi; Hirtz, Nathaniel R; Miller, Rita J; Sarwate, Sandhya; Simpson, Douglas G; Zagzebski, James A; Bigelow, Timothy A; Oelze, Michael; Hall, Timothy J; O'Brien, William D

    2013-07-01

    This contribution demonstrates that quantitative ultrasound (QUS) capabilities are platform independent, using an in vivo model. Frequency-dependent attenuation estimates, backscatter coefficient, and effective scatterer diameter estimates are shown to be comparable across four different ultrasound imaging systems with varied processing techniques. The backscatter coefficient (BSC) is a fundamental material property from which several QUS parameters are estimated; therefore, consistent BSC estimates among different systems must be demonstrated. This study is an intercomparison of BSC estimates acquired by three research groups (UIUC, UW, ISU) from four in vivo spontaneous rat mammary fibroadenomas using three clinical array systems and a single-element laboratory scanner system. Because of their highly variable backscatter properties, fibroadenomas provided an extreme test case for BSC analysis, and the comparison is across systems for each tumor, not across the highly heterogeneous tumors. RF echo data spanning the 1 to 12 MHz frequency range were acquired in three dimensions from all animals using each system. Each research group processed their RF data independently, and the resulting attenuation, BSC, and effective scatterer diameter (ESD) estimates were compared. The attenuation estimates across all systems showed the same trends and consistently fit the power-law dependence on frequency. BSCs varied among the multiple slices of data acquired by each transducer, with variations between transducers being of a similar magnitude as those from slice to slice. Variation between BSC estimates was assessed via functional signal-to-noise ratios derived from backscatter data. These functional signal-to-noise ratios indicated that BSC versus frequency variations between systems ranged from negligible compared with the noise level to roughly twice the noise level. The corresponding functional analysis of variance (fANOVA) indicated statistically significant differences

  3. Kinematics of an in-parallel actuated manipulator based on the Stewart platform mechanism

    Science.gov (United States)

    Williams, Robert L., II

    1992-01-01

    This paper presents kinematic equations and solutions for an in-parallel actuated robotic mechanism based on Stewart's platform. These equations are required for inverse position and resolved rate (inverse velocity) platform control. NASA LaRC has a Vehicle Emulator System (VES) platform designed by MIT which is based on Stewart's platform. The inverse position solution is straight-forward and computationally inexpensive. Given the desired position and orientation of the moving platform with respect to the base, the lengths of the prismatic leg actuators are calculated. The forward position solution is more complicated and theoretically has 16 solutions. The position and orientation of the moving platform with respect to the base is calculated given the leg actuator lengths. Two methods are pursued in this paper to solve this problem. The resolved rate (inverse velocity) solution is derived. Given the desired Cartesian velocity of the end-effector, the required leg actuator rates are calculated. The Newton-Raphson Jacobian matrix resulting from the second forward position kinematics solution is a modified inverse Jacobian matrix. Examples and simulations are given for the VES.

  4. The data platform of national special environment and disaster field observation stations based on grid environment

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Data Platform of Resource and Environment-whose data mainly come from field observation stations,spatial observations,and internet service institutions-is the base of data analysis and model simulation in geoscience research in China.Among this integrated data platform,the tasks of the data platform of field observation stations are principally data collection,management,assimilation,and share service.Taking into consideration the distributing characteristics of the data sources and the service objects,the authors formulated the framework of the field observation stations’ data platform based on the grid technology and designed its operating processes.The authors have further defined and analyzed the key functions and implementing techniques for each module.In a Linux operating system,validation tests for the data platform’s function on data replication,data synchronization,and unified data service have been conducted under an environment that of the simulating field stations.

  5. Remote Control of an Autonomous Robotic Platform Based on Eye Tracking

    Directory of Open Access Journals (Sweden)

    PASARICA, A.

    2016-11-01

    Full Text Available Eye-tracking devices are currently used for improving communication and psychosocial status among patients with neuro-motor disabilities. This paper presents the experimental implementation of a control system for a robotic platform using eye tracking technology. The main system is based on an eye tracking subsystem that uses the circular Hough transform algorithm. A central processing unit performs the data transmission between the user and the robotic platform. Experimental tests were conducted to determine the device's performances and usability for patients with neuro-motor disabilities. Moreover, the test results were used to determine the control system learning curve. We created a data base containing information on the robotic platform processing time and precision of movement for improving the platform's performances.

  6. The Platform Design of Space-based Optical Observations of Space Debris

    Science.gov (United States)

    Bing-er, Chen; Jian-ning, Xiong

    2017-01-01

    The basic method to design a platform for the space-based optical observations of space debris is introduced. The observation schemes of GEO (geosynchronous equatorial orbit) and LEO (low Earth orbit) debris are given respectively, including the orbital parameters of platforms and the pointing of telescopes, etc. The debris studied here are all taken from the foreign catalog. According to the real orbits of space debris, the observational results of different schemes are simulated. By studying the single platform, the optimal observing altitude for the GEO debris and the optimal telescope's deflection angles at different altitudes for the LEO debris are given. According to these, the multi-platform observation networks are designed. By analyzing the advantages and disadvantages of different schemes, it can provide a reference for the application of space-based optical observations of space debris

  7. Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe.

    Science.gov (United States)

    Zhou, Miao; Yang, Minghui; Zhou, Feimeng

    2014-05-15

    Paper based colorimetric biosensing platform utilizing cross-linked siloxane 3-aminopropyltriethoxysilane (APTMS) as probe was developed for the detection of a broad range of targets including H2O2, glucose and protein biomarker. APTMS was extensively used for the modification of filter papers to develop paper based analytical devices. We discovered when APTMS was cross-linked with glutaraldehyde (GA), the resulting complex (APTMS-GA) displays brick-red color, and a visual color change was observed when the complex reacted with H2O2. By integrating the APTMS-GA complex with filter paper, the modified paper enables quantitative detection of H2O2 through the monitoring of the color intensity change of the paper via software Image J. Then, with the immobilization of glucose oxidase (GOx) onto the modified paper, glucose can be detected through the detection of enzymatically generated H2O2. For protein biomarker prostate specific antigen (PSA) assay, we immobilized capture, not captured anti-PSA antibody (Ab1) onto the paper surface and using GOx modified gold nanorod (GNR) as detection anti-PSA antibody (Ab2) label. The detection of PSA was also achieved via the liberated H2O2 when the GOx label reacted with glucose. The results demonstrated the possibility of this paper based sensor for the detection of different analytes with wide linear range. The low cost and simplicity of this paper based sensor could be developed for "point-of-care" analysis and find wide application in different areas.

  8. Monoclonal Antibodies Production Platforms: An Opportunity Study of a Non-Protein-A Chromatographic Platform Based on Process Economics.

    Science.gov (United States)

    Grilo, António L; Mateus, Marília; Aires-Barros, Maria R; Azevedo, Ana M

    2017-09-13

    Monoclonal antibodies currently dominate the biopharmaceutical market with growing sales having reached 80 billion USD in 2016. As most top-selling mAbs are approaching the end of their patent life, biopharmaceutical companies compete fiercely in the biosimilars market. These two factors present a strong motivation for alternative process strategies and process optimization. In this work a novel purification strategy for monoclonal antibodies comprising phenylboronic acid multimodal chromatography for capture followed by polishing by ion-exchange monolithic chromatography and packed bed hydrophobic interaction chromatography is presented and compared to the traditional protein-A-based process. Although the capital investment is similar for both processes, the operation cost is 20% lower for the novel strategy. This study shows that the new process is worthwhile investing in and could present a viable alternative to the platform process used by most industrial players. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue.

    Science.gov (United States)

    Yuan, Min; Breitkopf, Susanne B; Yang, Xuemei; Asara, John M

    2012-04-12

    The revival of interest in cancer cell metabolism in recent years has prompted the need for quantitative analytical platforms for studying metabolites from in vivo sources. We implemented a quantitative polar metabolomics profiling platform using selected reaction monitoring with a 5500 QTRAP hybrid triple quadrupole mass spectrometer that covers all major metabolic pathways. The platform uses hydrophilic interaction liquid chromatography with positive/negative ion switching to analyze 258 metabolites (289 Q1/Q3 transitions) from a single 15-min liquid chromatography-mass spectrometry acquisition with a 3-ms dwell time and a 1.55-s duty cycle time. Previous platforms use more than one experiment to profile this number of metabolites from different ionization modes. The platform is compatible with polar metabolites from any biological source, including fresh tissues, cancer cells, bodily fluids and formalin-fixed paraffin-embedded tumor tissue. Relative quantification can be achieved without using internal standards, and integrated peak areas based on total ion current can be used for statistical analyses and pathway analyses across biological sample conditions. The procedure takes ∼12 h from metabolite extraction to peak integration for a data set containing 15 total samples (∼6 h for a single sample).

  10. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    Science.gov (United States)

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  11. Operational flash flood forecasting platform based on grid technology

    Science.gov (United States)

    Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.

    2009-04-01

    effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.

  12. Study on Information Exchange Platform for Port Logistics Based on Web Services

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chanjun; YANG Mingzhong; GUO Shunsheng

    2006-01-01

    Information exchange platform (IEP) for port logistics is used to realize data transmission among different systems and districts by Internet. This paper presents the web services technology used in transferring information for port logistics. The system architecture based on J2EE and B/S mode frame has been constructed to subscribe the distributed information. To ensure platform independent, extensible markup language (XML) integration technology was also used in the system design.

  13. Comcutejs: A Web Browser Based Platform For Large-Scale Computations

    Directory of Open Access Journals (Sweden)

    Roman Debski

    2013-01-01

    Full Text Available The paper presents a new, cost effective, volunteer computing based platform.It utilizes volunteers’ web browsers as computational nodes. The computationaltasks are delegated to the browsers and executed in the background (indepen-dently of any user interface scripts making use of the HTML5 web workerstechnology. The capabilities of the platform have been proved by experimentsperformed in a wide range of numbers of computational nodes (1–400.

  14. Car-Finding System With Couchdb-Based Sensor Management Platform

    Directory of Open Access Journals (Sweden)

    Łukasz Nocuń

    2013-01-01

    Full Text Available Growing performance of low-cost mobile devices makes it possible to perform advancedprocessing on mobile sensors. This creates a need of building management system for groupsof sensors actively analyzing signals from hardware devices. In this paper an architectureof a CouchDB-Based Sensor Management Platform is presented and its application for theproblem of finding stolen cars is shown. Detailed performance tests of the platform and itsapplication are provided.

  15. Generation of Accelerated Stability Experiment Profile of Inertial Platform Based on Finite Element

    Institute of Scientific and Technical Information of China (English)

    CHEN Yunxia; HUANG Xiaokai; KANG Rui

    2012-01-01

    The residual stress generated in the manufacturing process of inertial platform causes the drift of inertial platform parameters in long-term storage condition.However,the existing temperature cycling experiment could not meet the increased repeatability technical requirements of inertial platform parameters.In order to solve this problem,in this paper,firstly the Unigraphics (UG) software and the interface compatibility of ANSYS software are used to establish the inertial platform finite element model.Secondly,the residual stress is loaded into finite element model by ANSYS function editor in the form of surface loads to analyze the efficiency.And then,the generation based on ANSYS simulation inertial platform to accelerate the stability of experiment profile is achieved by the application of the analysis method of orthogonal experimental design and ANSYS thermal-structural coupling.The optimum accelerated stability experiment profile is determined finally,which realizes the rapid,effective release of inertial platform residual stress.The research methodology and conclusion of this paper have great theoretical and practical significance to the production technology of inertial platform.

  16. Paper-based cell culture platform and its emerging biomedical applications

    Directory of Open Access Journals (Sweden)

    Kelvin Ng

    2017-01-01

    Full Text Available Paper has recently attracted increasing attention as a substrate for various biomedical applications. By modifying its physical and chemical properties, paper can be used as an alternative to conventional cell culture substrates. Because it can be stacked into a three-dimensional (3D structure, which can better mimic the in vivo cell microenvironment. Paper has shown great potential as a 3D cell culture platform for developing normal and diseased models. This platform gives precise control over extracellular matrix (ECM composition as well as cell distribution and precise analysis of the interactions between cells. Paper-based platforms have been applied for pathophysiological studies and therapeutic intervention studies. In this paper, we first discuss the modifications of the physical and chemical properties of paper to develop various 2D and 3D cell culture platforms. We then review the applications of paper-based cell culture platforms for the construction of in vitro disease models, drug screening, and cell cryopreservation applications. Because of its advantages such as biocompatibility, eco-friendliness, cost efficiency, and ease of large-scale production, we believe that paper-based cell culture platforms would play an important role in the fields of biomedicine.

  17. Oxide-based platform for reconfigurable superconducting nanoelectronics

    Science.gov (United States)

    Veazey, Joshua P.; Cheng, Guanglei; Irvin, Patrick; Cen, Cheng; Bogorin, Daniela F.; Bi, Feng; Huang, Mengchen; Bark, Chung-Wung; Ryu, Sangwoo; Cho, Kwang-Hwan; Eom, Chang-Beom; Levy, Jeremy

    2013-09-01

    We report quasi-1D superconductivity at the interface of LaAlO3 and SrTiO3. The material system and nanostructure fabrication method supply a new platform for superconducting nanoelectronics. Nanostructures having line widths w ˜ 10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3, placing them in the quasi-1D regime. Broad superconducting transitions versus temperature and finite resistances in the superconducting state well below Tc ≈ 200 mK are observed, suggesting the presence of fluctuation- and heating-induced resistance. The superconducting resistances and V-I characteristics are tunable through the use of a back gate. Four-terminal resistances in the superconducting state show an unusual dependence on the current path, varying by as much as an order of magnitude. This new technology, i.e., the ability to ‘write’ gate-tunable superconducting nanostructures on an insulating LaAlO3/SrTiO3 ‘canvas’, opens possibilities for the development of new families of reconfigurable superconducting nanoelectronics.

  18. A team spectral inspection platform based on ASERA

    Science.gov (United States)

    Yuan, Hailong; Zhang, Yanxia; Wu, Yue; Lei, Yajuan; Dong, Yiqiao; Bai, Zongrui; Li, Guangwei; Zhang, Haotong; Zhao, Yongheng

    2017-06-01

    Currently large sky area spectral surveys like SDSS, 2dF, and LAMOST, using the new generation of telescopes and observatories, have provided massive spectral data sets for astronomical research. Most of the data can be automatically handled with pipelines, but visually inspection by human eyes is still necessary in several situations, like low SNR spectra, QSO recognition and peculiar spectra mining. Using ASERA, A Spectrum Eye Recognition Assistant, we can set up a team spectral inspection platform. On a preselected spectral data set, members of a team can individually view spectra one by one, find the best match template and estimate the redshift. Results from different members will be gathered and merged to raise the team work efficiency. ASERA mainly targets the spectra of SDSS and LAMOST fits data formats. Other formats can be supported with some conversion. Spectral templates from SDSS and LAMOST pipelines are embedded and users can easily add their own templates. Convenient cross identification interfaces with SDSS, SIMBAD, VIZIER, NED and DSS are also provided. An application example targeting finding strong emission line spectra from LAMOST DR2 is presented.

  19. Methodology for development of risk indicators for offshore platforms

    Energy Technology Data Exchange (ETDEWEB)

    Oeien, K.; Sklet, S. [SINTEF Industrial Management Safety and Reliability (Norway)

    1999-09-01

    This paper presents a generic methodology for development of risk indicators for petroleum installations and a specific set of risk indicators established for one offshore platform. The risk indicators should be used to control the risk during operation of platforms. The methodology is purely risk-based and the basis for development of risk indicators is the platform specific quantitative risk analysis (QRA). In order to identify high risk contributing factors, platform personnel are asked to assess whether and how much the risk influencing factors will change. A brief comparison of probabilistic safety assessment (PSA) for nuclear power plants and quantitative risk analysis (QRA) for petroleum platforms is also given. (au)

  20. Quantitative multiplex detection of biomarkers on a waveguide-based biosensor using quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hongzhi [Los Alamos National Laboratory; Mukundan, Harshini [Los Alamos National Laboratory; Martinez, Jennifer S [Los Alamos National Laboratory; Swanson, Basil I [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, Kevin [Los Alamos National Laboratory

    2009-01-01

    The quantitative, simultaneous detection of multiple biomarkers with high sensitivity and specificity is critical for biomedical diagnostics, drug discovery and biomarker characterization [Wilson 2006, Tok 2006, Straub 2005, Joos 2002, Jani 2000]. Detection systems relying on optical signal transduction are, in general, advantageous because they are fast, portable, inexpensive, sensitive, and have the potential for multiplex detection of analytes of interest. However, conventional immunoassays for the detection of biomarkers, such as the Enzyme Linked Immunosorbant Assays (ELISAs) are semi-quantitative, time consuming and insensitive. ELISA assays are also limited by high non-specific binding, especially when used with complex biological samples such as serum and urine (REF). Organic fluorophores that are commonly used in such applications lack photostability and possess a narrow Stoke's shift that makes simultaneous detection of multiple fluorophores with a single excitation source difficult, thereby restricting their use in multiplex assays. The above limitations with traditional assay platforms have resulted in the increased use of nanotechnology-based tools and techniques in the fields of medical imaging [ref], targeted drug delivery [Caruthers 2007, Liu 2007], and sensing [ref]. One such area of increasing interest is the use of semiconductor quantum dots (QDs) for biomedical research and diagnostics [Gao and Cui 2004, Voura 2004, Michalet 2005, Chan 2002, Jaiswal 2004, Gao 2005, Medintz 2005, So 2006 2006, Wu 2003]. Compared to organic dyes, QDs provide several advantages for use in immunoassay platforms, including broad absorption bands with high extinction coefficients, narrow and symmetric emission bands with high quantum yields, high photostablility, and a large Stokes shift [Michalet 2005, Gu 2002]. These features prompted the use of QDs as probes in biodetection [Michalet 2005, Medintz 2005]. For example, Jaiswal et al. reported long term multiple

  1. Activities Based on Wiki Platform for Engineering Higher Education: Students' Point of View

    Directory of Open Access Journals (Sweden)

    Gláucia Nolasco de Almeida Mello

    2017-08-01

    Full Text Available The fast evolution of Information and Communication Technology (ICT introduced a new generation of learners that have been adopted mobile devices and Web 2.0 technologies to get information and communicate. The Web 2.0-based tools, such as blogs, wikis, Facebook, Instagram, etc, offer huge possibilities for collaboration. In this way, the main purpose of this research was plan an activity on wiki platform for Reinforced Concrete discipline in Civil Engineering course and answer the questions: (1 How should collaboration be effectively measured on wiki platform? (2 What is the students' point of view about using wiki platform for a collaboration activity? Wikispaces Classroom platform was chosen for the project because it is a free social writing platform, suitable for collaborative learning. Furthermore it works on modern browsers, tablets, and smart phone. A total of 167 students of Civil Engineering course were monitored on Wikispaces® platform. All students’ actions were analyzed and classified as low, medium or high level of collaboration. At the end of the project 111 students answered a questionnaire and 10 students participated of an informal interview where they expressed their opinion about the platform, the activities and the relationship with online peers. A descriptive statistical analysis of the data collected from the platform and the questionnaires answered by the students was performed. The results indicated that wiki platform is an important way to develop innovative activities and tasks for the purpose of to improve skills of engineering students such as: writing communication, organization, collaboration and critical thinking.

  2. Applang - A DSL for specification of mobile applications for android platform based on textX

    Science.gov (United States)

    Kosanović, Milan; Dejanović, Igor; Milosavljević, Gordana

    2016-06-01

    Mobile platforms become a ubiquitous part of our daily lives thus making more pressure to software developers to develop more applications faster and with the support for different mobile operating systems. To foster the faster development of mobile services and applications and to support various mobile operating systems a new software development approaches must be undertaken. Domain-Specific Languages (DSL) are a viable approach that promise to solve a problem of target platform diversity as well as to facilitate rapid application development and shorter time-to-market. This paper presents Applang, a DSL for the specification of mobile applications for the Android platform, based on textX meta-language. The application is described using Applang DSL and the source code for a target platform is automatically generated by the provided code generator. The same application defined using single Applang source can be transformed to various targets with little or no manual modifications.

  3. Third-party Reverse logistics platform and method Based on Bilateral Resource Integration

    Directory of Open Access Journals (Sweden)

    Zheng Hong Zhen

    2016-01-01

    Full Text Available Dispersion of reverse logistics resources makes it difficult to create relationships between demanders and providers, thereby the personalized demand for the construction of enterprise reverse logistics cannot be satisfied and the service quality cannot be guaranteed. Aiming at these problems, this paper presents a platform and method of enterprise reverse logistics based on bilateral resource integration (RLBRI. The method creates a third-party reverse logistics platform to accumulate a mass of reverse logistics demanders and providers together. And the platform integrates bilateral resources and acts as an intermediary to establish relationships between two sides. Through the platform, a complete and high-quality business chain for enterprise reverse logistics will be built efficiently. Finally put forward an effective strategy of non-defective reverse logistics depends on the integrity checking service provided by third-party logistics. By using this strategy it can short the distance of non-defective reverse transportation. Computational tests validate the strategy.

  4. Tuning fractional PID controllers for a Steward platform based on frequency domain and artificial intelligence methods

    Science.gov (United States)

    Copot, Cosmin; Zhong, Yu; Ionescu, Clara; Keyser, Robin

    2013-06-01

    In this paper, two methods to tune a fractional-order PI λ D μ controller for a mechatronic system are presented. The first method is based on a genetic algorithm to obtain the parameter values for the fractionalorder PI λ D μ controller by global optimization. The second method used to design the fractional-order PI λ D μ controller relies on an auto-tuning approach by meeting some specifications in the frequency domain. The real-time experiments are conducted using a Steward platform which consists of a table tilted by six servo-motors with a ball on the top of the table. The considered system is a 6 degrees of freedom (d.o.f.) motion platform. The feedback on the position of the ball is obtained from images acquired by a visual sensor mounted above the platform. The fractional-order controllers were implemented and the performances of the steward platform are analyzed.

  5. Bio-based production of C2-C6 platform chemicals.

    Science.gov (United States)

    Jang, Yu-Sin; Kim, Byoungjin; Shin, Jae Ho; Choi, Yong Jun; Choi, Sol; Song, Chan Woo; Lee, Joungmin; Park, Hye Gwon; Lee, Sang Yup

    2012-10-01

    Platform chemicals composed of 2-6 carbons derived from fossil resources are used as important precursors for making a variety of chemicals and materials, including solvents, fuels, polymers, pharmaceuticals, perfumes, and foods. Due to concerns regarding our environment and the limited nature of fossil resources, however, increasing interest has focused on the development of sustainable technologies for producing these platform chemicals from renewable resources. The techniques and strategies for developing microbial strains for chemicals production have advanced rapidly, and it is becoming feasible to develop microbes for producing additional types of chemicals, including non-natural molecules. In this study, we review the current status of the bio-based production of major C2-C6 platform chemicals, focusing on the microbial production of platform chemicals that have been used for the production of chemical intermediates, building block compounds, and polymers. Copyright © 2012 Wiley Periodicals, Inc.

  6. Development of a PCI Based Data Acquisition Platform for High Intensity Accelerator Experiments

    CERN Document Server

    Higuchi, T; Ikeno, M; Igarashi, Y; Inoue, E; Itoh, R; Kodama, H; Murakami, T; Nakao, M; Nakayoshi, K; Saitoh, M; Shimazaki, S; Suzuki, S Y; Tanaka, M; Tauchi, K; Yamauchi, M; Yasu, Y; Varner, G; Nagasaka, Y; Katayama, T; Watanabe, K; Ishizuka, M; Onozawa, S; Li, C J

    2003-01-01

    Data logging at an upgraded KEKB accelerator or the J-PARC facility, currently under commission, requires a high density data acquisition platform with integrated data reduction CPUs. To follow market trends, we have developed a DAQ platform based on the PCI bus, a choice which permits a fast DAQ and a long expected lifetime of the system. The platform is a 9U-VME motherboard consisting of four slots for signal digitization modules, readout FIFOs for data buffering, and three PMC slots, on one of which resides a data reduction CPU. We have performed long term and thermal stability tests. The readout speed on the platform has been measured up to 125 MB/s in DMA mode.

  7. Industrial Robotics Platform for Simulation Design, Planning and Optimization based on Off-line CAD Programming

    Directory of Open Access Journals (Sweden)

    Baizid Khelifa

    2016-01-01

    Full Text Available This paper presents IRoSim: Industrial Robotics Simulation Design Planning and Optimization platform which we developed based on SolidWorks API. The main objective is to integrate features from mechanical and robotics CAD software into the same platform in order to facilitate the development process through a friendly interaction interface. The platform provides important steps to develop a given robotized task such as: defining a given task, CAD learning of the end-effectors’ trajectory, checking the manipulator’s reach-ability to perform a task, simulating the motion and preventing the trajectory from possible collisions. To assess the usability of the proposed platform, a car’s doors painting task using a 6 Degree Of Freedom industrial manipulator has been developed.

  8. Prototype of a Web-based Participative Decision Support Platform in Natural Hazards and Risk Management

    Directory of Open Access Journals (Sweden)

    Zar Chi Aye

    2015-07-01

    Full Text Available This paper presents the current state and development of a prototype web-GIS (Geographic Information System decision support platform intended for application in natural hazards and risk management, mainly for floods and landslides. This web platform uses open-source geospatial software and technologies, particularly the Boundless (formerly OpenGeo framework and its client side software development kit (SDK. The main purpose of the platform is to assist the experts and stakeholders in the decision-making process for evaluation and selection of different risk management strategies through an interactive participation approach, integrating web-GIS interface with decision support tool based on a compromise programming approach. The access rights and functionality of the platform are varied depending on the roles and responsibilities of stakeholders in managing the risk. The application of the prototype platform is demonstrated based on an example case study site: Malborghetto Valbruna municipality of North-Eastern Italy where flash floods and landslides are frequent with major events having occurred in 2003. The preliminary feedback collected from the stakeholders in the region is discussed to understand the perspectives of stakeholders on the proposed prototype platform.

  9. Chromogenic platform based on recombinant Drosophila melanogaster acetylcholinesterase for visible unidirectional assay of organophosphate and carbamate insecticide residues

    Energy Technology Data Exchange (ETDEWEB)

    Han Zheng [Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1018 Jinqi Road, Shanghai 201403 (China); Chi Chensen [School of Life Science and Biotechnology, Bor Luh Food Safety Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Bai Bing; Liu Gang; Rao Qinxiong [Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1018 Jinqi Road, Shanghai 201403 (China); Peng Shaojie [Institute of Shanghai Food and Drug Supervision, 615 Liuzhou Road, Shanghai 200233 (China); Liu Hong [Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan West Road, Shanghai 200336 (China); Zhao Zhihui [Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1018 Jinqi Road, Shanghai 201403 (China); Zhang Dabing [School of Life Science and Biotechnology, Bor Luh Food Safety Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Wu Aibo, E-mail: wuaibo@saas.sh.cn [Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1018 Jinqi Road, Shanghai 201403 (China)

    2012-03-30

    Highlight: Black-Right-Pointing-Pointer A visible chromogenic platform for rapid analysis of OP and CM insecticide residues was developed. Black-Right-Pointing-Pointer The assay has the capabilities of both qualitative measurement and quantitative analysis. Black-Right-Pointing-Pointer The sensitivity, capabilities of resisting interferences and storage stability were desirable. Black-Right-Pointing-Pointer Matrix effects were acceptable and detection performance was satisfactory in real application. - Abstract: In this study we propose a chromogenic platform for rapid analysis of organophosphate (OP) and carbamate (CM) insecticide residues, based on recombinant Drosophila melanogaster acetylcholinesterase (R-DmAChE) as enzyme and indoxyl acetate as substrate. The visible chromogenic strip had the advantages identical to those of commonly used lateral flow assays (LFAs) with utmost simplicity in sample loading and result observation. After optimization, depending on the color intensity (CI) values, the well-established assay has the capabilities of both qualitative measurement via naked eyes and quantitative analysis by colorimetric reader with the desirable IC{sub 50} values against the tested six insecticides (0.06 {mu}g mL{sup -1} of carbofuran, 0.28 {mu}g mL{sup -1} of methomyl, 0.03 {mu}g mL{sup -1} of dichlorvos, 31.6 {mu}g mL{sup -1} of methamidophos, 2.0 {mu}g mL{sup -1} of monocrotophos, 6.3 {mu}g mL{sup -1} of omethoate). Acceptable matrix effects and satisfactory detection performance were confirmed by in-parallel LC-MS/MS analysis in different vegetable varieties at various spiked levels of 10{sup -3} to 10{sup 1} {mu}g g{sup -1}. Overall, the testified suitability and applicability of this novel platform meet the requirements for practical use in food safety management and environmental monitoring, especially in the developing world.

  10. Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms.

    Science.gov (United States)

    Date, Amol; Pasini, Patrizia; Daunert, Sylvia

    2010-09-01

    Bacterial whole-cell biosensing systems provide important information about the bioavailable amount of target analytes. They are characterized by high sensitivity and specificity/selectivity along with rapid response times and amenability to miniaturization as well as high-throughput analysis. Accordingly, they have been employed in various environmental and clinical applications. The use of spore-based sensing systems offers the unique advantage of long-term preservation of the sensing cells by taking advantage of the environmental resistance and ruggedness of bacterial spores. In this work, we have incorporated spore-based whole-cell sensing systems into centrifugal compact disk (CD) microfluidic platforms in order to develop a portable sensing system, which should enable the use of these hardy sensors for fast on-field analysis of compounds of interest. For that, we have employed two spore-based sensing systems for the detection of arsenite and zinc, respectively, and evaluated their analytical performance in the miniaturized microfluidic format. Furthermore, we have tested environmental and clinical samples on the CD microfluidic platforms using the spore-based sensors. Germination of spores and quantitative response to the analyte could be obtained in 2.5-3 h, depending on the sensing system, with detection limits of 1 x 10(-7) M for arsenite and 1 x 10(-6) M for zinc in both serum and fresh water samples. Incorporation of spore-based whole-cell biosensing systems on microfluidic platforms enabled the rapid and sensitive detection of the analytes and is expected to facilitate the on-site use of such sensing systems.

  11. Infrared small target's detection and identification with moving platform based on motion features

    Science.gov (United States)

    Jia, Yan; Zou, Xu; Zhong, Sheng; Lu, Hongqiang

    2015-10-01

    The infrared small target's detection and tracking are important parts of the automatic target recognition. When the camera platform equipped with an infrared camera moves, the small target's position change in the imaging plane is affected by the composite motion of the small target and the camera platform. Traditional detection and tracking algorithms may lose the small target and make the follow-up detection and tracking fail because of not considering the camera platform's movement. Moreover, when there exist small targets with different motion features in the camera's view, some detection and tracking algorithms can't recognize different targets based on their motion features because there are no trajectories in a unified coordinate system, which may lead to the true small targets undetected or detected incorrectly . To solve those problems, we present a method under the condition of moving camera platform. Firstly, get the camera platform's motion information from the inertial measurement values, and then decouple to remove the motion of the camera platform itself by means of coordinate transformation. Next, estimate the trajectories of the small targets with different motion features based on their position changes in the same imaging plane coordinate system. Finally, recognize different small targets preliminarily based on their different trajectories. Experimental results show that this method can improve the small target's detection probability. Furthermore, when the camera platform fails to track the small target, it's possible to predict the position of the small target in the next frame based on the fitted motion equation and realize sustained and stable tracking.

  12. Quantitative Analysis of Polarimetric Model-Based Decomposition Methods

    Directory of Open Access Journals (Sweden)

    Qinghua Xie

    2016-11-01

    Full Text Available In this paper, we analyze the robustness of the parameter inversion provided by general polarimetric model-based decomposition methods from the perspective of a quantitative application. The general model and algorithm we have studied is the method proposed recently by Chen et al., which makes use of the complete polarimetric information and outperforms traditional decomposition methods in terms of feature extraction from land covers. Nevertheless, a quantitative analysis on the retrieved parameters from that approach suggests that further investigations are required in order to fully confirm the links between a physically-based model (i.e., approaches derived from the Freeman–Durden concept and its outputs as intermediate products before any biophysical parameter retrieval is addressed. To this aim, we propose some modifications on the optimization algorithm employed for model inversion, including redefined boundary conditions, transformation of variables, and a different strategy for values initialization. A number of Monte Carlo simulation tests for typical scenarios are carried out and show that the parameter estimation accuracy of the proposed method is significantly increased with respect to the original implementation. Fully polarimetric airborne datasets at L-band acquired by German Aerospace Center’s (DLR’s experimental synthetic aperture radar (E-SAR system were also used for testing purposes. The results show different qualitative descriptions of the same cover from six different model-based methods. According to the Bragg coefficient ratio (i.e., β , they are prone to provide wrong numerical inversion results, which could prevent any subsequent quantitative characterization of specific areas in the scene. Besides the particular improvements proposed over an existing polarimetric inversion method, this paper is aimed at pointing out the necessity of checking quantitatively the accuracy of model-based PolSAR techniques for a

  13. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition.

    Science.gov (United States)

    Vidova, Veronika; Spacil, Zdenek

    2017-04-29

    Mass spectrometry (MS) based proteomics have achieved a near-complete proteome coverage in humans and in several other organisms, producing a wealth of information stored in databases and bioinformatics resources. Recent implementation of selected/multiple reaction monitoring (SRM/MRM) technology in targeted proteomics introduced the possibility of quantitatively follow-up specific protein targets in a hypothesis-driven experiment. In contrast to immunoaffinity-based workflows typically used in biological and clinical research for protein quantification, SRM/MRM is characterized by high selectivity, large capacity for multiplexing (approx. 200 proteins per analysis) and rapid, cost-effective transition from assay development to deployment. The concept of SRM/MRM utilizes triple quadrupole (QqQ) mass analyzer to provide inherent reproducibility, unparalleled sensitivity and selectivity to efficiently differentiate isoforms, post-translational modifications and mutated forms of proteins. SRM-like targeted acquisitions such as parallel reaction monitoring (PRM) are pioneered on high resolution/accurate mass (HR/AM) platforms based on the quadrupole-orbitrap (Q-orbitrap) mass spectrometer. The expansion of HR/AM also caused development in data independent acquisition (DIA). This review presents a step-by-step tutorial on development of SRM/MRM protein assay intended for researchers without prior experience in proteomics. We discus practical aspects of SRM-based quantitative proteomics workflow, summarize milestones in basic biological and medical research as well as recent trends and emerging techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Statistical Framework for Protein Quantitation in Bottom-Up MS-Based Proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Karpievitch, Yuliya; Stanley, Jeffrey R.; Taverner, Thomas; Huang, Jianhua; Adkins, Joshua N.; Ansong, Charles; Heffron, Fred; Metz, Thomas O.; Qian, Weijun; Yoon, Hyunjin; Smith, Richard D.; Dabney, Alan R.

    2009-08-15

    Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and associated confidence measures. Challenges include the presence of low quality or incorrectly identified peptides and informative missingness. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model that carefully accounts for informative missingness in peak intensities and allows unbiased, model-based, protein-level estimation and inference. The model is applicable to both label-based and label-free quantitation experiments. We also provide automated, model-based, algorithms for filtering of proteins and peptides as well as imputation of missing values. Two LC/MS datasets are used to illustrate the methods. In simulation studies, our methods are shown to achieve substantially more discoveries than standard alternatives. Availability: The software has been made available in the opensource proteomics platform DAnTE (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online.

  15. Multi-Objective Fuzzy Optimum Design Based on Reliability for Offshore Jacket Platforms

    Institute of Scientific and Technical Information of China (English)

    康海贵; 刘未; 翟钢军; 徐发淙; 封盛

    2001-01-01

    In consideration of the fuzzy constraint boundary and through analysis of structural reliability, a model of structural fuzzy optimum design is established based on reliability for offshore jacket platforms. According to the characteristics of offshore jacket platforms, the tolerance coefficient of the constraint boundary is determined with the fuzzy optimization method. The optimum level cut set λ *, which is the intersection of the fuzzy constraint set and fuzzy objective set, is determined with the bound search method, and then the fuzzy optimum solution to the fuzzy optimization problem is obtained. The central offshore platform SZ36-1 is designed with the fuzzy optimum model based on reliability; the results are compared with those from deterministic optimum design and fuzzy optimum design. The tendency of design variables in the above three methods and its reasons are analyzed. The results of an example show that the fuzzy optimum design based on reliability is stable and reliable.

  16. The Turkish Version of Web-Based Learning Platform Evaluation Scale: Reliability and Validity Study

    Science.gov (United States)

    Dag, Funda

    2016-01-01

    The purpose of this study is to determine the language equivalence and the validity and reliability of the Turkish version of the "Web-Based Learning Platform Evaluation Scale" ("Web Tabanli Ögrenme Ortami Degerlendirme Ölçegi" [WTÖODÖ]) used in the selection and evaluation of web-based learning environments. Within this scope,…

  17. Telescope Array Control System Based on Wireless Touch Screen Platform

    Science.gov (United States)

    Fu, X. N.; Huang, L.; Wei, J. Y.

    2016-07-01

    GWAC (Ground-based Wide Angle Cameras) are the ground-based observational instruments of the Sino-French cooperation SVOM (Space Variable Objects Monitor) astronomical satellite, and Mini-GWAC is a pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system, which is based on wireless serial interface module to communicate. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test. The system uses the touch-control PC which is based on the Windows CE system as the upper-computer, the wireless transceiver module and PLC (Programmable Logic Controller) as the core. It has the advantages of low cost, reliable data transmission, and simple operation. So far, the control system has been applied to Mini-GWAC successfully.

  18. Software-Based Wireless Power Transfer Platform for Various Power Control Experiments

    Directory of Open Access Journals (Sweden)

    Sun-Han Hwang

    2015-07-01

    Full Text Available In this paper, we present the design and evaluation of a software-based wireless power transfer platform that enables the development of a prototype involving various open- and closed-loop power control functions. Our platform is based on a loosely coupled planar wireless power transfer circuit that uses a class-E power amplifier. In conjunction with this circuit, we implement flexible control functions using a National Instruments Data Acquisition (NI DAQ board and algorithms in the MATLAB/Simulink. To verify the effectiveness of our platform, we conduct two types of power-control experiments: a no-load or metal detection using open-loop power control, and an output voltage regulation for different receiver positions using closed-loop power control. The use of the MATLAB/Simulink software as a part of the planar wireless power transfer platform for power control experiments is shown to serve as a useful and inexpensive alternative to conventional hardware-based platforms.

  19. Chitosan-Based Multifunctional Platforms for Local Delivery of Therapeutics.

    Science.gov (United States)

    Hong, Seong-Chul; Yoo, Seung-Yup; Kim, Hyeongmin; Lee, Jaehwi

    2017-03-01

    Chitosan has been widely used as a key biomaterial for the development of drug delivery systems intended to be administered via oral and parenteral routes. In particular, chitosan-based microparticles are the most frequently employed delivery system, along with specialized systems such as hydrogels, nanoparticles and thin films. Based on the progress made in chitosan-based drug delivery systems, the usefulness of chitosan has further expanded to anti-cancer chemoembolization, tissue engineering, and stem cell research. For instance, chitosan has been used to develop embolic materials designed to efficiently occlude the blood vessels by which the oxygen and nutrients are supplied. Indeed, it has been reported to be a promising embolic material. For better anti-cancer effect, embolic materials that can locally release anti-cancer drugs were proposed. In addition, a complex of radioactive materials and chitosan to be locally injected into the liver has been investigated as an efficient therapeutic tool for hepatocellular carcinoma. In line with this, a number of attempts have been explored to use chitosan-based carriers for the delivery of various agents, especially to the site of interest. Thus, in this work, studies where chitosan-based drug delivery systems have successfully been used for local delivery will be presented along with future perspectives.

  20. Chitosan-Based Multifunctional Platforms for Local Delivery of Therapeutics

    Directory of Open Access Journals (Sweden)

    Seong-Chul Hong

    2017-03-01

    Full Text Available Chitosan has been widely used as a key biomaterial for the development of drug delivery systems intended to be administered via oral and parenteral routes. In particular, chitosan-based microparticles are the most frequently employed delivery system, along with specialized systems such as hydrogels, nanoparticles and thin films. Based on the progress made in chitosan-based drug delivery systems, the usefulness of chitosan has further expanded to anti-cancer chemoembolization, tissue engineering, and stem cell research. For instance, chitosan has been used to develop embolic materials designed to efficiently occlude the blood vessels by which the oxygen and nutrients are supplied. Indeed, it has been reported to be a promising embolic material. For better anti-cancer effect, embolic materials that can locally release anti-cancer drugs were proposed. In addition, a complex of radioactive materials and chitosan to be locally injected into the liver has been investigated as an efficient therapeutic tool for hepatocellular carcinoma. In line with this, a number of attempts have been explored to use chitosan-based carriers for the delivery of various agents, especially to the site of interest. Thus, in this work, studies where chitosan-based drug delivery systems have successfully been used for local delivery will be presented along with future perspectives.

  1. DESIGN OF 6-AXIS FORCE/TORQUE SENSOR BASED ON STEWART PLATFORM RELATED TO ISOTROPY

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A model of the solution space for all the sensor mechanisms based on the Stewart platform is established, which is a novel and useful tool for investigation of the optimal sensor design. A kind of performance evaluation atlases are plotted within the model of the solution space, which clearly show relationships between the condition number of Jacobjan matrix and parameters of all the sensor mechanisms. By using the performance atlases, an optimal design for the sensor mechanism can be achieved. Because the elastic joints are proposed for replacing the spherical joints, the Stewart-platform-based sensor can be designed as small as possible.

  2. OPTIMAL DESIGN OF A 6-AXIS FORCE TRANSDUCER BASED ON STEWART PLATFORM RELATED TO SENSITIVITY ISOTROPY

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The design method of a 6-axis force robot's transducer based on the Stewart platform is detailed.For this purpose, the sensitivity isotropy evaluation criteria of the transducer are defined, and by the aid of computer, the relationships between the criteria and the parameters of all the transducers based on the Stewart platform are investigated within the geometric model of the solution space, which can provide the theoretical background for the optimal construction design of the 6-axis force transducer related to the sensitivity isotropy.

  3. An Android-based Remote Desktop for IOS Platforms

    Directory of Open Access Journals (Sweden)

    Siew-Chin Chong

    2013-09-01

    Full Text Available Thanks to globalization, mobile devices have become an inseparable entity of our daily life. We often expect our smart devices (mobile phone, tablet, portable media player to possess the functionalities of a personal computer. As the technology is getting cheaper, owning multiple mobile devices, each for a specific purpose, is becoming the current trend. For instance, an Android smartphone to fulfill a user’s communication needs on-the-go, an iPad could serve the user’s reading hobby, and lastly, a laptop for productivity activities. As such, to switch among different devices could be the emerging problem of the current generation. With our proposed Android based remote control app, a user does not only able to control his Windows based office laptop, but he could access to his IOS based devices too. Besides click event and text input, this application also supports panning and zooming gesture inputs.

  4. Single-Shot Smartphone-Based Quantitative Phase Imaging Using a Distorted Grating.

    Science.gov (United States)

    Yang, Zhenyu; Zhan, Qiwen

    2016-01-01

    Blood testing has been used as an essential tool to diagnose diseases for decades. Recently, there has been a rapid developing trend in using Quantitative Phase Imaging (QPI) methods for blood cell screening. Compared to traditional blood testing techniques, QPI has the advantage of avoiding dyeing or staining the specimen, which may cause damage to the cells. However, most existing systems are bulky and costly, requiring experienced personnel to operate. This work demonstrates the integration of one QPI method onto a smartphone platform and the application of imaging red blood cells. The adopted QPI method is based on solving the Intensity Transport Equation (ITE) from two de-focused pupil images taken in one shot by the smartphone camera. The device demonstrates a system resolution of about 1 μm, and is ready to be used for 3D morphological study of red blood cells.

  5. Analysis of quantitative pore features based on mathematical morphology

    Institute of Scientific and Technical Information of China (English)

    QI Heng-nian; CHEN Feng-nong; WANG Hang-jun

    2008-01-01

    Wood identification is a basic technique of wood science and industry. Pore features are among the most important identification features for hardwoods. We have used a method based on an analysis of quantitative pore feature, which differs from traditional qualitative methods. We applies mathematical morphology methods such as dilation and erosion, open and close transformation of wood cross-sections, image repairing, noise filtering and edge detection to segment the pores from their background. Then the mean square errors (MSE) of pores were computed to describe the distribution of pores. Our experiment shows that it is easy to classift the pore features into three basic types, just as in traditional qualitative methods, but with the use of MSE of pores. This quantitative method improves wood identification considerably.

  6. Assessing the performance capabilities of LRE-based assays for absolute quantitative real-time PCR.

    Directory of Open Access Journals (Sweden)

    Robert G Rutledge

    Full Text Available BACKGROUND: Linear regression of efficiency or LRE introduced a new paradigm for conducting absolute quantification, which does not require standard curves, can generate absolute accuracies of +/-25% and has single molecule sensitivity. Derived from adapting the classic Boltzmann sigmoidal function to PCR, target quantity is calculated directly from the fluorescence readings within the central region of an amplification profile, generating 4-8 determinations from each amplification reaction. FINDINGS: Based on generating a linear representation of PCR amplification, the highly visual nature of LRE analysis is illustrated by varying reaction volume and amplification efficiency, which also demonstrates how LRE can be used to model PCR. Examining the dynamic range of LRE further demonstrates that quantitative accuracy can be maintained down to a single target molecule, and that target quantification below ten molecules conforms to that predicted by Poisson distribution. Essential to the universality of optical calibration, the fluorescence intensity generated by SYBR Green I (FU/bp is shown to be independent of GC content and amplicon size, further verifying that absolute scale can be established using a single quantitative standard. Two high-performance lambda amplicons are also introduced that in addition to producing highly precise optical calibrations, can be used as benchmarks for performance testing. The utility of limiting dilution assay for conducting platform-independent absolute quantification is also discussed, along with the utility of defining assay performance in terms of absolute accuracy. CONCLUSIONS: Founded on the ability to exploit lambda gDNA as a universal quantitative standard, LRE provides the ability to conduct absolute quantification using few resources beyond those needed for sample preparation and amplification. Combined with the quantitative and quality control capabilities of LRE, this kinetic-based approach has the

  7. Gigabit network-based three-dimensional trial service on media delivery platform

    Science.gov (United States)

    Kim, Nac-Woo; Son, Seung-Chul; Lee, Byung-Tak

    2011-09-01

    Recently, as effective demand for high-quality, large-capacity content such as three-dimensional (3D), multiangle, and gigabit-web has increased, a network infrastructure capable of satisfying future broadcast and communication service requirements is required. In this paper, we introduce a convergence service based on a gigabit network and then propose a technique for delivering gigabit 3D content. Here, the term 3D content delivery technique refers to an overlay-multicast-based distributed service platform that is comprised of a media relay agent and a management server. The service platform is designed to back up both live video and file-based video streaming. Using this platform, we can provide 3D remote education and 3D multiangle services via 3D-based video streaming between a service provider and service consumers dispersed at different locations. To evaluate our 3D content delivery technique, we run a series of trials of gigabit network-based 3D trial services to service subscribers. Then, we conduct a survey to measure user satisfaction with the 3D delivery service and simulated network and service quality. From experimental results, we confirm that this type of distributed service platform can be used as the delivery framework for applications such as realistic 3D-based seminars or 3D video conferences.

  8. Audio-based detection and evaluation of eating behavior using the smartwatch platform.

    Science.gov (United States)

    Kalantarian, Haik; Sarrafzadeh, Majid

    2015-10-01

    In recent years, smartwatches have emerged as a viable platform for a variety of medical and health-related applications. In addition to the benefits of a stable hardware platform, these devices have a significant advantage over other wrist-worn devices, in that user acceptance of watches is higher than other custom hardware solutions. In this paper, we describe signal-processing techniques for identification of chews and swallows using a smartwatch device׳s built-in microphone. Moreover, we conduct a survey to evaluate the potential of the smartwatch as a platform for monitoring nutrition. The focus of this paper is to analyze the overall applicability of a smartwatch-based system for food-intake monitoring. Evaluation results confirm the efficacy of our technique; classification was performed between apple and potato chip bites, water swallows, talking, and ambient noise, with an F-measure of 94.5% based on 250 collected samples.

  9. An FPGA-Based MIMO and Space-Time Processing Platform

    Directory of Open Access Journals (Sweden)

    Kuo SH

    2006-01-01

    Full Text Available Faced with the need to develop a research unit capable of up to twelve 20 MHz bandwidth channels of real-time, space-time, and MIMO processing, the authors developed the STAR (space-time array research platform. Analysis indicated that the possible degree of processing complexity required in the platform was beyond that available from contemporary digital signal processors, and thus a novel approach was required toward the provision of baseband signal processing. This paper follows the analysis and the consequential development of a flexible FPGA-based processing system. It describes the STAR platform and its use through several novel implementations performed with it. Various pitfalls associated with the implementation of MIMO algorithms in real time are highlighted, and finally, the development requirements for this FPGA-based solution are given to aid comparison with traditional DSP development.

  10. Base resolution methylome profiling: considerations in platform selection, data preprocessing and analysis.

    Science.gov (United States)

    Sun, Zhifu; Cunningham, Julie; Slager, Susan; Kocher, Jean-Pierre

    2015-08-01

    Bisulfite treatment-based methylation microarray (mainly Illumina 450K Infinium array) and next-generation sequencing (reduced representation bisulfite sequencing, Agilent SureSelect Human Methyl-Seq, NimbleGen SeqCap Epi CpGiant or whole-genome bisulfite sequencing) are commonly used for base resolution DNA methylome research. Although multiple tools and methods have been developed and used for the data preprocessing and analysis, confusions remains for these platforms including how and whether the 450k array should be normalized; which platform should be used to better fit researchers' needs; and which statistical models would be more appropriate for differential methylation analysis. This review presents the commonly used platforms and compares the pros and cons of each in methylome profiling. We then discuss approaches to study design, data normalization, bias correction and model selection for differentially methylated individual CpGs and regions.

  11. From olive drupes to olive oil. An HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites.

    Science.gov (United States)

    Kanakis, Periklis; Termentzi, Aikaterini; Michel, Thomas; Gikas, Evagelos; Halabalaki, Maria; Skaltsounis, Alexios-Leandros

    2013-11-01

    The aim of the current study was the qualitative exploration and quantitative monitoring of key olive secondary metabolites in different production steps (drupes, paste, first and final oil) throughout a virgin olive oil production line. The Greek variety Koroneiki was selected as one of the most representative olives, which is rich in biological active compounds. For the first time, an HPLC-Orbitrap platform was employed for both qualitative and quantitative purposes. Fifty-two components belonging to phenyl alcohols, secoiridoids, flavonoids, triterpenes, and lactones were identified based on HRMS and HRMS/MS data. Nine biologically and chemically significant metabolites were quantitatively determined throughout the four production steps. Drupes and paste were found to be rich in several components, which are not present in the final oil. The current study discloses the chemical nature of different olive materials in a successive and integrated way and reveals new sources of high added value constituents of olives.

  12. Design of Objects Tracking System Based on ARM Embedded Platform

    Institute of Scientific and Technical Information of China (English)

    XU Mei; SONG Yong-duan; LV Shao-dong; LIU Zhi-long; HUANG Cong-ying

    2014-01-01

    In recent years, according to the need of intelligent video surveillance system increasing rapidly in metropolitan cities ,a design based on S3C2440 microprocessor and embedded Linux operating system is adopted for real-time video target tracking. However, it is very challenging as embedded systems usually afford limited processing power and limited resources. Therefore, to address this problem, a real-time tracking algorithm using multi-features based on compressive sensing is proposed and implemented. The algorithm uses multiple matrix as the projection matrix of the compressive sensing and the compressed date as the multiple features to extract useful information needed by tracking process. Functions and libraries in OpenCV which were developed by Intel Corporation are utilized for building the tracking algorithms. It is tested with variant video sequences and the results show that the algorithm achieves stable tracking for the target moved of the light changed.

  13. Photonic crystal waveguides based on an antiresonant reflecting platform

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Frandsen, Lars Hagedorn; Fage-Pedersen, Jacob

    2005-01-01

    We apply the antiresonant reflecting layers arrangement to silicon-on-insulator based photonic crystal waveguides. Several layered structures with different combinations of materials (Si-SiO2, Si3N4-SiO2) and layer topology have been analysed. Numerical modelling using 3D Finite-Difference Time......-Domain method reveals promising low-loss results with potential for competing with membrane-like photonic crystal waveguides....

  14. Adaptive Predictive Inverse Control of Offshore Jacket Platform Based on Rough Neural Network

    Institute of Scientific and Technical Information of China (English)

    CUI Hong-yu; ZHAO De-you; ZHOU Ping

    2009-01-01

    The offshore jacket platform is a complex and time-varying nonlinear system,which can be excited of harmful vibration by external loads.It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model.In this paper,an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform,and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method.Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory,RNN is utilized to identify the predictive inverse model of the offshore jacket platform system.Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads,and to deal with the delay problem caused by signal transmission in the control process.The numerical results show that the constructed novel RNN has advantages such as clear structure,fast training speed and strong error-tolerance ability,and the proposed method based on RNN can effectively control the harmfid vibration of the offshore jacket platform.

  15. Hybrid Integrated Silicon Microfluidic Platform for Fluorescence Based Biodetection

    Directory of Open Access Journals (Sweden)

    André Darveau

    2007-09-01

    Full Text Available The desideratum to develop a fully integrated Lab-on-a-chip device capable ofrapid specimen detection for high throughput in-situ biomedical diagnoses and Point-of-Care testing applications has called for the integration of some of the novel technologiessuch as the microfluidics, microphotonics, immunoproteomics and Micro ElectroMechanical Systems (MEMS. In the present work, a silicon based microfluidic device hasbeen developed for carrying out fluorescence based immunoassay. By hybrid attachment ofthe microfluidic device with a Spectrometer-on-chip, the feasibility of synthesizing anintegrated Lab-on-a-chip type device for fluorescence based biosensing has beendemonstrated. Biodetection using the microfluidic device has been carried out usingantigen sheep IgG and Alexafluor-647 tagged antibody particles and the experimentalresults prove that silicon is a compatible material for the present application given thevarious advantages it offers such as cost-effectiveness, ease of bulk microfabrication,superior surface affinity to biomolecules, ease of disposability of the device etc., and is thussuitable for fabricating Lab-on-a-chip type devices.

  16. Design challenges in nanoparticle-based platforms: Implications for targeted drug delivery systems

    Science.gov (United States)

    Mullen, Douglas Gurnett

    Characterization and control of heterogeneous distributions of nanoparticle-ligand components are major design challenges for nanoparticle-based platforms. This dissertation begins with an examination of poly(amidoamine) (PAMAM) dendrimer-based targeted delivery platform. A folic acid targeted modular platform was developed to target human epithelial cancer cells. Although active targeting was observed in vitro, active targeting was not found in vivo using a mouse tumor model. A major flaw of this platform design was that it did not provide for characterization or control of the component distribution. Motivated by the problems experienced with the modular design, the actual composition of nanoparticle-ligand distributions were examined using a model dendrimer-ligand system. High Pressure Liquid Chromatography (HPLC) resolved the distribution of components in samples with mean ligand/dendrimer ratios ranging from 0.4 to 13. A peak fitting analysis enabled the quantification of the component distribution. Quantified distributions were found to be significantly more heterogeneous than commonly expected and standard analytical parameters, namely the mean ligand/nanoparticle ratio, failed to adequately represent the component heterogeneity. The distribution of components was also found to be sensitive to particle modifications that preceded the ligand conjugation. With the knowledge gained from this detailed distribution analysis, a new platform design was developed to provide a system with dramatically improved control over the number of components and with improved batch reproducibility. Using semi-preparative HPLC, individual dendrimer-ligand components were isolated. The isolated dendrimer with precise numbers of ligands were characterized by NMR and analytical HPLC. In total, nine different dendrimer-ligand components were obtained with degrees of purity ≥80%. This system has the potential to serve as a platform to which a precise number of functional molecules

  17. RNA interference-based therapeutics: molecular platforms for infectious diseases.

    Science.gov (United States)

    Dyawanapelly, Sathish; Ghodke, Sharwari Bhagwat; Vishwanathan, Ramya; Dandekar, Prajakta; Jain, Ratnesh

    2014-09-01

    The potential uses and therapeutic benefits of RNA interference (RNAi) are enormous. Recent insights into RNAi technologies have highlighted their role in analyzing the functions and regulation of gene expression in eukaryotes and further utilizing this information for identification and amelioration of many diseases. These studies have also established the role of RNAi mediated post-transcriptional gene silencing (PTGS) mechanism in mammals by several endogenous, gene regulation systems including small interfering RNAs (siRNA), micro RNA (miRNA) and small hairpin RNAs (shRNA). Moreover, these RNAi-based therapeutics have demonstrated the capability to silence therapeutically relevant genes in various in vivo models of cancer, infections autoimmune diseases and other genetic disorders. Over the past few decades, infectious diseases have been one of the leading causes of death around the world. Ubiquitously, intracellular obligate or facultative microorganisms cause serious or fatal infections and associated diseases in humans. Currently available literature suggests that infections caused by intracellular pathogens present an intriguing area, wherein RNAi technology may be effectively employed to neutralize the harmful effects of various intracellular pathogens. In this manuscript, we have emphasized on the challenges and opportunities involved in the therapy of such intracellular infections, especially employing RNAi-based interventions. We have focused our discussion on the current state-of-the-art RNAi-based therapies, which have been explored for various intracellular infections mediated by bacteria, fungi, viruses and protozoa. Nanocarrier mediated delivery of siRNA and shRNA molecules have also been found to overcome the various delivery challenges of these biotherapeutics; these have also been briefly summarized here. Furthermore, the outcomes and progresses that have been made in pre-clinical models and clinical trials have also been presented to review the

  18. Research on Distributed Software Testing Platform Based on Cloud Resource

    Directory of Open Access Journals (Sweden)

    Shi Hengliang, Zhao Changwei

    2013-05-01

    Full Text Available In order to solvethe low efficiency problem oflarge-scale distributed software testing , CBDSTP(Cloud-Based Distributed Software Testing Platformisput forward.Thisplatform can provide continousintegration and automation of testingforlarge software systems,which can make fulluse of resources onthe cloud clients, achieving testing result sin the real environment and reasonable allocatingtestingjobs,to resolve the Web application software configuration test, compatibility test and distributed test problems,toreduce costs, improve efficiency.Through makingMySQL testing onthisprototype system,theverificationis made forplatform architectureandjoballocation effectiveness.

  19. ITER fast plant system controller prototype based on ATCA platform

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, B., E-mail: bruno@ipfn.ist.utl.pt [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Sousa, J.; Carvalho, B.B.; Batista, A.; Neto, A.; Santos, B.; Duarte, A.; Valcarcel, D.; Alves, D.; Correia, M.; Rodrigues, A.P.; Carvalho, P.F. [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Ruiz, M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (Spain); Vega, J.; Castro, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Av. Complutense, Madrid (Spain); Lopez, J.M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (Spain); Utzel, N.; Makijarvi, P. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France)

    2012-12-15

    The ITER fast plan system controllers (FPSC) are based on embedded technologies. The FPSCs [1] will be devoted to data acquisition tasks (sampling rates >1 kSPS) and control purposes in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers and interface to actuators, sensors and high performance networks. This contribution presents an FPSC prototype, specialized for data acquisition, based on the ATCA (Advanced Telecommunications Computing Architecture) standard. This prototyping activity contributes to the ITER Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. For the prototype, IPFN has developed a new family of ATCA modules targeting ITER requirements. This family of modules comprises an AMC (Advanced Mezzanine Card) carrier/data hub/timing hub, compliant with the upcoming ATCA extensions for Physics, and a multi-channel galvanically isolated PnP digitizer, designed for serviceability. The design and test of a peer-to-peer communications layer for the implementation of a reflective memory over PCI Express and the design and test of an IEEE-1588 transport layer over an high performance serial link were also performed. In this contribution, a complete description of the solution is presented as well as the integration of the controller into the standard CODAC environment. The most relevant test results will be addressed, focusing in the benefits and limitations of the applied technologies.

  20. Scanning Micromirror Platform Based on MEMS Technology for Medical Application

    Directory of Open Access Journals (Sweden)

    Eakkachai Pengwang

    2016-02-01

    Full Text Available This topical review discusses recent development and trends on scanning micromirrors for biomedical applications. This also includes a biomedical micro robot for precise manipulations in a limited volume. The characteristics of medical scanning micromirror are explained in general with the fundamental of microelectromechanical systems (MEMS for fabrication processes. Along with the explanations of mechanism and design, the principle of actuation are provided for general readers. In this review, several testing methodology and examples are described based on many types of actuators, such as, electrothermal actuators, electrostatic actuators, electromagnetic actuators, pneumatic actuators, and shape memory alloy. Moreover, this review provides description of the key fabrication processes and common materials in order to be a basic guideline for selecting micro-actuators. With recent developments on scanning micromirrors, performances of biomedical application are enhanced for higher resolution, high accuracy, and high dexterity. With further developments on integrations and control schemes, MEMS-based scanning micromirrors would be able to achieve a better performance for medical applications due to small size, ease in microfabrication, mass production, high scanning speed, low power consumption, mechanical stable, and integration compatibility.

  1. Cell-based microfluidic platform for mimicking human olfactory system.

    Science.gov (United States)

    Lee, Seung Hwan; Oh, Eun Hae; Park, Tai Hyun

    2015-12-15

    Various attempts have been made to mimic the human olfactory system using human olfactory receptors (hORs). In particular, OR-expressed cell-based odorant detection systems mimic the smell sensing mechanism of humans, as they exploit endogenous cellular signaling pathways. However, the majority of such cell-based studies have been performed in the liquid phase to maintain cell viability, and liquid odorants were used as detection targets. Here, we present a microfluidic device for the detection of gaseous odorants which more closely mimics the human olfactory system. Cells expressing hOR were cultured on a porous membrane. The membrane was then flipped over and placed between two compartments. The upper compartment is the gaseous part where gaseous odorants are supplied, while the lower compartment is the aqueous part where viable cells are maintained in the liquid medium. Using this simple microfluidic device, we were able to detect gaseous odorant molecules by a fluorescence signal. The fluorescence signal was generated by calcium influx resulting from the interaction between odorant molecules and the hOR. The system allowed detection of gaseous odorant molecules in real-time, and the findings showed that the fluorescence responses increased dose-dependently in the range of 0-2 ppm odorant. In addition, the system can discriminate among gaseous odorant molecules. This microfluidic system closely mimics the human olfactory system in the sense that the submerged cells detect gaseous odorants.

  2. DISQOVER the Landcover - R based tools for quantitative vegetation reconstruction

    Science.gov (United States)

    Theuerkauf, Martin; Couwenberg, John; Kuparinen, Anna; Liebscher, Volkmar

    2016-04-01

    Quantitative methods have gained increasing attention in the field of vegetation reconstruction over the past decade. The DISQOVER package implements key tools in the R programming environment for statistical computing. This implementation has three main goals: 1) Provide a user-friendly, transparent, and open implementation of the methods 2) Provide full flexibility in all parameters (including the underlying pollen dispersal model) 3) Provide a sandbox for testing the sensitivity of the methods. We illustrate the possibilities of the package with tests of the REVEALS model and of the extended downscaling approach (EDA). REVEALS (Sugita 2007) is designed to translate pollen data from large lakes into regional vegetation composition. We applied REVEALSinR on pollen data from Lake Tiefer See (NE-Germany) and validated the results with historic landcover data. The results clearly show that REVEALS is sensitive to the underlying pollen dispersal model; REVEALS performs best when applied with the state of the art Lagrangian stochastic dispersal model. REVEALS applications with the conventional Gauss model can produce realistic results, but only if unrealistic pollen productivity estimates are used. The EDA (Theuerkauf et al. 2014) employs pollen data from many sites across a landscape to explore whether species distributions in the past were related to know stable patterns in the landscape, e.g. the distribution of soil types. The approach had so far only been implemented in simple settings with few taxa. Tests with EDAinR show that it produces sharp results in complex settings with many taxa as well. The DISQOVER package is open source software, available from disqover.uni-greifswald.de. This website can be used as a platform to discuss and improve quantitative methods in vegetation reconstruction. To introduce the tool we plan a short course in autumn of this year. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution

  3. Advances in lipid-based platforms for RNAi therapeutics.

    Science.gov (United States)

    Falsini, Sara; Ciani, Laura; Ristori, Sandra; Fortunato, Angelo; Arcangeli, Annarosa

    2014-02-27

    Sequence-specific gene silencing, known as RNA interference (RNAi), is a natural process that can be exploited for knocking-down specific genes involved in the insurgence/development of pathological processes. In 2001 the discovery that small interfering RNA (siRNA) can induce gene silencing without immunoresponse turned RNAi into a promising technique for the control of post-transcriptional gene expression. Nowadays, the major challenge remains infusion in vivo. Therefore, vehicles providing protection and selective transport are to be developed for efficient systemic delivery. The most used vectors are lipid-based, offering a wide range of biocompatible formulations. Here their application in molecular medicine is discussed, especially with regard to recent clinical trials where conventional therapies have failed. The role played by extended physicochemical characterization for the success of RNAi therapeutics is also evidenced.

  4. Virus-based nanoparticles as platform technologies for modern vaccines.

    Science.gov (United States)

    Lee, Karin L; Twyman, Richard M; Fiering, Steven; Steinmetz, Nicole F

    2016-07-01

    Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic via multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. WIREs Nanomed Nanobiotechnol 2016, 8:554-578. doi: 10.1002/wnan.1383 For further resources related to this article, please visit the WIREs website.

  5. ITER Fast Plant System Controller prototype based on PXIe platform

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M., E-mail: mariano.ruiz@upm.es [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, CAEND CSIC-UPM Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 (Spain); Vega, J.; Castro, R. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Sanz, D.; Lopez, J.M.; Arcas, G. de; Barrera, E.; Nieto, J. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, CAEND CSIC-UPM Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 (Spain); Goncalves, B.; Sousa, J.; Carvalho, B. [Associacao EURATOM/IST, Lisbon (Portugal); Utzel, N.; Makijarvi, P. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Implementation of Fast Plant System Controller (FPSC) for ITER CODAC. Black-Right-Pointing-Pointer Efficient data acquisition and data movement using EPICS. Black-Right-Pointing-Pointer Performance of PCIe technologies in the implementation of FPSC. - Abstract: The ITER Fast Plant System Controller (FPSC) is based on embedded technologies. The FPSC will be devoted to both data acquisition tasks (sampling rates higher than 1 kHz) and control purposes (feedback loop actuators). Some of the essential requirements of these systems are: (a) data acquisition and data preprocessing; (b) interfacing with different networks and high speed links (Plant Operation Network, timing network based on IEEE1588, synchronous data transference and streaming/archiving networks); and (c) system setup and operation using EPICS (Experimental Physics and Industrial Control System) process variables. CIEMAT and UPM have implemented a prototype of FPSC using a PXIe (PCI eXtension for Instrumentation) form factor in a R and D project developed in two phases. The paper presents the main features of the two prototypes developed that have been named alpha and beta. The former was implemented using LabVIEW development tools as it was focused on modeling the FPSC software modules, using the graphical features of LabVIEW applications, and measuring the basic performance in the system. The alpha version prototype implements data acquisition with time-stamping, EPICS monitoring using waveform process variables (PVs), and archiving. The beta version prototype is a complete IOC implemented using EPICS with different software functional blocks. These functional blocks are integrated and managed using an ASYN driver solution and provide the basic functionalities required by ITER FPSC such as data acquisition, data archiving, data pre-processing (using both CPU and GPU) and streaming.

  6. Single Wall Carbon Nanotubes Based Cryogenic Temperature Sensor Platforms.

    Science.gov (United States)

    Monea, Bogdan Florian; Ionete, Eusebiu Ilarian; Spiridon, Stefan Ionut; Leca, Aurel; Stanciu, Anda; Petre, Emil; Vaseashta, Ashok

    2017-09-10

    We present an investigation consisting of single walled carbon nanotubes (SWCNTs) based cryogenic temperature sensors, capable of measuring temperatures in the range of 2-77 K. Carbon nanotubes (CNTs) due to their extremely small size, superior thermal and electrical properties have suggested that it is possible to create devices that will meet necessary requirements for miniaturization and better performance, by comparison to temperature sensors currently available on the market. Starting from SWCNTs, as starting material, a resistive structure was designed. Employing dropcast method, the carbon nanotubes were deposited over pairs of gold electrodes and in between the structure electrodes from a solution. The procedure was followed by an alignment process between the electrodes using a dielectrophoretic method. Two sensor structures were tested in cryogenic field down to 2 K, and the resistance was measured using a standard four-point method. The measurement results suggest that, at temperatures below 20 K, the temperature coefficient of resistance average for sensor 1 is 1.473%/K and for sensor 2 is 0.365%/K. From the experimental data, it can be concluded that the dependence of electrical resistance versus temperature can be approximated by an exponential equation and, correspondingly, a set of coefficients are calculated. It is further concluded that the proposed approach described here offers several advantages, which can be employed in the fabrication of a microsensors for cryogenic applications.

  7. An emerging platform for drug delivery: aerogel based systems.

    Science.gov (United States)

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation.

  8. Comparison of plant-based expression platforms for the heterologous production of geraniol

    NARCIS (Netherlands)

    Vasilev, N.; Schmitz, C.; Dong, L.; Ritala, A.; Imseng, N.; Hakkinen, S.T.; Krol, van der A.R.; Eibl, R.; Oksman-Caldentey, K.M.; Bouwmeester, H.J.; Fischer, R.; Schillberg, S.

    2014-01-01

    We compared the ability of different plant-based expression platforms to produce geraniol, a key metabolite in the monoterpenoid branch of the terpenoid indole alkaloid biosynthesis pathway. A geraniol synthase gene isolated from Valeriana officinalis (VoGES) was stably expressed in different

  9. Using P3P in a web services-based context-aware application platform

    NARCIS (Netherlands)

    Zuidweg, M.; Halasz, E.; Goncalves Filho, J.; Lukovszki, C.; Marosits, T.; van Sinderen, Marten J.

    This paper describes a proposal for a privacy control architecture to be applied in the WASP project. The WASP project aims to develop a context-aware service platform on top of 3G networks, using web services technology. The proposed privacy control architecture is based on the P3P privacy policy

  10. Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms

    Science.gov (United States)

    Longmuir, Kenneth J.

    2014-01-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…

  11. A Web-Based Visualization and Animation Platform for Digital Logic Design

    Science.gov (United States)

    Shoufan, Abdulhadi; Lu, Zheng; Huss, Sorin A.

    2015-01-01

    This paper presents a web-based education platform for the visualization and animation of the digital logic design process. This includes the design of combinatorial circuits using logic gates, multiplexers, decoders, and look-up-tables as well as the design of finite state machines. Various configurations of finite state machines can be selected…

  12. Sensing platform based on micro-ring resonator and on-chip reference sensors in SOI

    NARCIS (Netherlands)

    Chakkalakkal Abdulla, S.M.C.; Boer, B.M. de; Pozo Torres, J.M.; Berg, J.H. van den; Abutan, A.E.; Hagen, R.A.J.; Lo Cascio, D.M.R.; Harmsma, P.J.

    2014-01-01

    This article presents work on a Silicon-On-Insulator (SOI) compact sensing platform based on Micro Ring Resonators (MRRs). In order to enable correction for variations in environmental conditions (temperature, mechanical stress etc), a study has been performed on the performance of uncoated sensing

  13. A Set of Free Cross-Platform Authoring Programs for Flexible Web-Based CALL Exercises

    Science.gov (United States)

    O'Brien, Myles

    2012-01-01

    The Mango Suite is a set of three freely downloadable cross-platform authoring programs for flexible network-based CALL exercises. They are Adobe Air applications, so they can be used on Windows, Macintosh, or Linux computers, provided the freely-available Adobe Air has been installed on the computer. The exercises which the programs generate are…

  14. RFID-Based Multidisciplinary Educational Platform to Improve the Engineering and Technology Curriculums

    Science.gov (United States)

    Yelamarthi, Kumar

    2012-01-01

    Multidisciplinary projects involving electrical engineering (EE), mechanical engineering (ME), and computer engineering (CE) students are both exciting and difficult to conceptualize. Answering this challenge, this paper presents a multidisciplinary educational platform on radio frequency identification-based assistive devices. The combination of…

  15. RFID-Based Multidisciplinary Educational Platform to Improve the Engineering and Technology Curriculums

    Science.gov (United States)

    Yelamarthi, Kumar

    2012-01-01

    Multidisciplinary projects involving electrical engineering (EE), mechanical engineering (ME), and computer engineering (CE) students are both exciting and difficult to conceptualize. Answering this challenge, this paper presents a multidisciplinary educational platform on radio frequency identification-based assistive devices. The combination of…

  16. Using P3P in a web services-based context-aware application platform

    NARCIS (Netherlands)

    Zuidweg, M.; Goncalves Filho, J.; Sinderen, van M.J.; Halasz, E.; Lukovszki, C.; Marosits, T.

    2003-01-01

    This paper describes a proposal for a privacy control architecture to be applied in the WASP project. The WASP project aims to develop a context-aware service platform on top of 3G networks, using web services technology. The proposed privacy control architecture is based on the P3P privacy policy d

  17. Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms

    Science.gov (United States)

    Longmuir, Kenneth J.

    2014-01-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…

  18. Wersync: A WEB-BASED PLATFORM FOR DISTRIBUTED MEDIA SYNCHRONIZATION AND SOCIAL INTERACTION

    NARCIS (Netherlands)

    Belda, J.; Montagud Climent, M.A.; Boronat, F.; Martinez, M.; Pastor, J.

    2015-01-01

    This paper presents Wersync, which is an adaptive and accurate web-based platform that enables distributed media synchronization and social interaction across remote users. By using Wersync, users can create or join on-going sessions for concurrently consuming the same media content with other remot

  19. Crystallization of bovine insulin on a flow-free droplet-based platform

    Science.gov (United States)

    Chen, Fengjuan; Du, Guanru; Yin, Di; Yin, Ruixue; Zhang, Hongbo; Zhang, Wenjun; Yang, Shih-Mo

    2017-03-01

    Crystallization is an important process in the pharmaceutical manufacturing industry. In this work, we report a study to create the zinc-free crystals of bovine insulin on a flow-free droplet-based platform we previously developed. The benefit of this platform is its promise to create a single type of crystals under a simpler and more stable environment and with a high throughput. The experimental result shows that the bovine insulin forms a rhombic dodecahedra shape and the coefficient variation (CV) in the size of crystals is less than 5%. These results are very promising for the insulin production.

  20. OpenRS-Cloud:A remote sensing image processing platform based on cloud computing environment

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper explores the use of cloud computing for remote sensing image processing.The main contribution of our work is to develop a remote sensing image processing platform based on cloud computing technology(OpenRS-Cloud).This paper focuses on enabling methodical investigations into the development pattern,computational model,data management and service model exploring this novel distributed computing model.The experimental INSAR processing flow is implemented to verify the efficiency and feasibility of OpenRS-Cloud platform.The results show that cloud computing is well suited for computationally-intensive and data-intensive remote sensing services.

  1. The Design of Individual Knowledge Sharing Platform Based on Blog for Online Information Literacy Education

    Science.gov (United States)

    Qun, Zeng; Xiaocheng, Zhong

    Knowledge sharing means that an individual, team and organization share the knowledge with other members of the organization in the course of activities through the various ways. This paper analyzes the obstacle factors in knowledge sharing based on the technical point, and chooses the Blog technology to build a platform for improving knowledge sharing between individuals. The construction of the platform is an important foundation for information literacy education, and it also can be used to achieve online information literacy education. Finally, it gives a detailed analysis of its functions, advantages and disadvantages.

  2. Experiment Based Teaching of Solar Cell Operation and Characterization Using the SolarLab Platform

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2014-01-01

    Experiment based teaching methods are a great way to get students involved and interested in almost any topic. This paper presents such a hands-on approach for teaching solar cell operation principles along with characterization and modelling methods. This is achieved with the SolarLab platform...... interfaces for exploring different solar cell principles and topics. The exercises presented in the current paper have been adapted from the original exercises developed for the SolarLab platform and are currently included in the Photovoltaic Power Systems courses (MSc and PhD level) taught at the Department...

  3. An entity-based platform for the integration of social and scientific services

    DEFF Research Database (Denmark)

    Chenu-Abente, Ronald; Menendez Blanco, Maria; Giunchiglia, Fausto

    2012-01-01

    Over the last few years, several services and platforms for scientific production and dissemination have appeared (e.g. scholarly search engines, digital libraries, blogs, social networks, and conference management systems). Yet, these services are really fragmented and, in some cases, lack...... critical mass to become useful tools for the scientific community. Furthermore, most of them have failed to create a virtual environment where users' needs and activities are supported. In this paper, we present an entity-based platform aimed at integrating papers, persons, events and the services...

  4. Semiconductor defect metrology using laser-based quantitative phase imaging

    Science.gov (United States)

    Zhou, Renjie; Edwards, Chris; Popescu, Gabriel; Goddard, Lynford

    2015-03-01

    A highly sensitive laser-based quantitative phase imaging tool, using an epi-illumination diffraction phase microscope, has been developed for silicon wafer defect inspection. The first system used a 532 nm solid-state laser and detected 20 nm by 100 nm by 110 nm defects in a 22 nm node patterned silicon wafer. The second system, using a 405 nm diode laser, is more sensitive and has enabled detection of 15 nm by 90 nm by 35 nm defects in a 9 nm node densely patterned silicon wafer. In addition to imaging, wafer scanning and image-post processing are also crucial for defect detection.

  5. Thermal Test of an Improved Platform for Silicon Nanowire-Based Thermoelectric Micro-generators

    Science.gov (United States)

    Calaza, C.; Fonseca, L.; Salleras, M.; Donmez, I.; Tarancón, A.; Morata, A.; Santos, J. D.; Gadea, G.

    2016-03-01

    This work reports on an improved design intended to enhance the thermal isolation between the hot and cold parts of a silicon-based thermoelectric microgenerator. Micromachining techniques and silicon on insulator substrates are used to obtain a suspended silicon platform surrounded by a bulk silicon rim, in which arrays of bottom-up silicon nanowires are integrated later on to join both parts with a thermoelectric active material. In previous designs the platform was linked to the rim by means of bulk silicon bridges, used as mechanical support and holder for the electrical connections. Such supports severely reduce platform thermal isolation and penalise the functional area due to the need of longer supports. A new technological route is planned to obtain low thermal conductance supports, making use of a particular geometrical design and a wet bulk micromachining process to selectively remove silicon shaping a thin dielectric membrane. Thermal conductance measurements have been performed to analyse the influence of the different design parameters of the suspended platform (support type, bridge/membrane length, separation between platform and silicon rim,) on overall thermal isolation. A thermal conductance reduction from 1.82 mW/K to 1.03 mW/K, has been obtained on tested devices by changing the support type, even though its length has been halved.

  6. Apparatus, method and system to control accessibility of platform resources based on an integrity level

    Science.gov (United States)

    Jenkins, Chris; Pierson, Lyndon G.

    2016-10-25

    Techniques and mechanism to selectively provide resource access to a functional domain of a platform. In an embodiment, the platform includes both a report domain to monitor the functional domain and a policy domain to identify, based on such monitoring, a transition of the functional domain from a first integrity level to a second integrity level. In response to a change in integrity level, the policy domain may configure the enforcement domain to enforce against the functional domain one or more resource accessibility rules corresponding to the second integrity level. In another embodiment, the policy domain automatically initiates operations in aid of transitioning the platform from the second integrity level to a higher integrity level.

  7. A DVD-ROM based high-throughput cantilever sensing platform

    DEFF Research Database (Denmark)

    Bosco, Filippo

    and October 2011. The project was part of the Xsense research network, funded by the Strategic Danish Research Council, and supervised by Prof. Anja Boisen. The goal of the Xsense project is to design and fabricate a compact and cheap device for explosive sensing in air and liquid. Four different technologies...... (Cantilevers, Calorimetric, Colorimetric and Raman) were to be integrated into a single portable platform. My PhD project has been focusing on the cantilever technology part. Furthermore, I have been addressing the issue of designing and fabricating the overall sensing platform, which is going to integrate...... the four different sensors. The platform was developed specifically for cantilever sensor applications Preliminary tests on Raman-based device integration has been carried out. The inclusion of the other two sensing techniques is currently under development. This thesis reports on the demonstration...

  8. Open access to technology platforms for InP-based photonic integrated circuits

    Science.gov (United States)

    Ławniczuk, Katarzyna; Augustin, Luc M.; Grote, Norbert; Wale, Michael J.; Smit, Meint K.; Williams, Kevin A.

    2015-04-01

    Open access to generic technology platforms for photonic integrated circuit manufacturing enables low-cost development of application-specific photonic chips for novel or improved products. It brings photonic ICs within reach for many industrial users and research institutes, by moving toward a fabless business model. In the current status, InP-based open access manufacturing services are offered through multi-project wafer runs by Fraunhofer Heinrich Hertz Institut, SMART Photonics, and Oclaro. In this paper, we review state-of-the-art InP photonic integration technology platforms, present examples of complex InP photonic ICs developed in the generic technologies, and give a prospect for further development of these photonic integration platforms.

  9. PRINCIPLES OF MODERN UNIVERSITY "ACADEMIC CLOUD" FORMATION BASED ON OPEN SOFTWARE PLATFORM

    Directory of Open Access Journals (Sweden)

    Olena H. Hlazunova

    2014-09-01

    Full Text Available In the article approaches to the use of cloud technology in teaching of higher education students are analyzed. The essence of the concept of "academic cloud" and its structural elements are justified. The model of academic clouds of the modern university, which operates on the basis of open software platforms, are proposed. Examples of functional software and platforms, that provide the needs of students in e-learning resources, are given. The models of deployment Cloud-oriented environment in higher education: private cloud, infrastructure as a service and platform as a service, are analyzed. The comparison of the cost of deployment "academic cloud" based on its own infrastructure of the institution and lease infrastructure vendor are substantiated.

  10. A Model-Based Method to Design an Application Common Platform for Enterprise Information Systems

    Science.gov (United States)

    Ishihara, Akira; Furuta, Hirohisa; Yamaoka, Takayuki; Seo, Kazuo; Nishida, Shogo

    This paper presents a model-based method to design a software platform, called an application common platform for developments of enterprise information systems. This application common platform(ACP) wraps existing reusable software assets to hide their details from application developers and provide domain level application programming interfaces, so that reusability of software assets and productivity of application improve. In this paper, we present a software architecture which organizes applications, ACP, and software assets and illustrate a development process of ACP. Especially, we show design rules to derive ACP design models from application design models and software assets design models. We also define metrics of reusability and productivity and evaluate the proposed method through real developments of enterprise information systems. As a result, the proposed method reduced 20% of development cost compared to estimation cost.

  11. Apparatus, method and system to control accessibility of platform resources based on an integrity level

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Chris; Pierson, Lyndon G.

    2016-10-25

    Techniques and mechanism to selectively provide resource access to a functional domain of a platform. In an embodiment, the platform includes both a report domain to monitor the functional domain and a policy domain to identify, based on such monitoring, a transition of the functional domain from a first integrity level to a second integrity level. In response to a change in integrity level, the policy domain may configure the enforcement domain to enforce against the functional domain one or more resource accessibility rules corresponding to the second integrity level. In another embodiment, the policy domain automatically initiates operations in aid of transitioning the platform from the second integrity level to a higher integrity level.

  12. Crack detection in offshore platform structure based on structural intensity approach

    Science.gov (United States)

    Tian, Xiaojie; Liu, Guijie; Gao, Zhiming; Chen, Pengfei; Mu, Weilei

    2017-02-01

    Structural intensity approach is introduced to study the crack detection for offshore platform in the paper. The Line Spring Model (LSM) of surface crack is proposed based on plate crack structure, and thus the relationship between the additional angle, displacement and crack relative depth is achieved. Besides, the concept of appended structure-borne sound intensity is introduced. The expression of appended structural intensity for crack damage is derived. By observing the input energy, distribution, transmission and vibration performance of structure intensity, evidence is provided for detection of crack location. Vibration analysis is conducted on the whole platform under multi environment load. Using the structural intensity approach, the crack is detected on the key point easily. Moreover, the K-shape welded pipe point is detected using structural intensity approach, and the crack can be detected accurately. Therefore, development structural intensity approach would be extremely useful to spread out technologies that can be applied for offshore platform crack detection accurately.

  13. A MACHINE LEARNING APPROACH TO ANOMALY-BASED DETECTION ON ANDROID PLATFORMS

    Directory of Open Access Journals (Sweden)

    Joshua Abah

    2015-11-01

    Full Text Available The emergence of mobile platforms with increased storage and computing capabilities and the pervasive use of these platforms for sensitive applications such as online banking, e-commerce and the storage of sensitive information on these mobile devices have led to increasing danger associated with malware targeted at these devices. Detecting such malware presents inimitable challenges as signature-based detection techniques available today are becoming inefficient in detecting new and unknown malware. In this research, a machine learning approach for the detection of malware on Android platforms is presented. The detection system monitors and extracts features from the applications while in execution and uses them to perform in-device detection using a trained K-Nearest Neighbour classifier. Results shows high performance in the detection rate of the classifier with accuracy of 93.75%, low error rate of 6.25% and low false positive rate with ability of detecting real Android malware.

  14. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms

    Directory of Open Access Journals (Sweden)

    Piyush Dak

    2016-04-01

    Full Text Available Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with “open” digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.

  15. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms.

    Science.gov (United States)

    Dak, Piyush; Ebrahimi, Aida; Swaminathan, Vikhram; Duarte-Guevara, Carlos; Bashir, Rashid; Alam, Muhammad A

    2016-04-14

    Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with "open" digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.

  16. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †

    Science.gov (United States)

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  17. A remote real-time PACS-based platform for medical imaging telemedicine

    Science.gov (United States)

    Maani, Rouzbeh; Camorlinga, Sergio; Eskicioglu, Rasit

    2009-02-01

    This paper describes a remote real-time PACS-based telemedicine platform for clinical and diagnostic services delivered at different care settings where the physicians, specialists and scientists may attend. In fact, the platform aims to provide a PACS-based telemedicine framework for different medical image services such as segmentation, registration and specifically high-quality 3D visualization. The proposed approach offers services which are not only widely accessible and real-time, but are also secure and cost-effective. In addition, the proposed platform has the ability to bring in a realtime, ubiquitous, collaborative, interactive meeting environment supporting 3D visualization for consultations, which has not been well addressed with the current PACS-based applications. Using this ability, physicians and specialists can consult with each other at separate places and it is especially helpful for settings, where there is no specialist or the number of specialists is not enough to handle all the available cases. Furthermore, the proposed platform can be used as a rich resource for clinical research studies as well as for academic purposes.

  18. A 4D-Role Based Access Control Model for Multitenancy Cloud Platform

    Directory of Open Access Journals (Sweden)

    Jiangfeng Li

    2016-01-01

    Full Text Available Since more and more applications and services have been transferred from servers in the B/S architecture to cloud, user access control has become a significant part in a multitenancy cloud platform. Role based access control model makes users participate in an enterprise system as particular identities. However, in a multitenancy cloud environment, it has a high probability that the information of tenants has been leaked by using existing role based access control (RBAC model. Moreover, management problems may emerge in the multitenancy platform with the increment of the number of tenants. In this paper, a novel concept of 4D-role is presented. With a detailed definition on the concept of 4D-role, a 4D-role based multitenancy model is proposed for running various applications and services in the multitenancy cloud platform. A theoretical analysis indicates that the model has the characters of tenant isolation, role hierarchy, and administration independence. The three characters are also verified by experimental evaluation. Moreover, the evaluation results indicate that the model has a good performance in using cloud resources when large-scale users are operating in the cloud platform simultaneously.

  19. Development of a Chip/Chip/SRM platform using digital chip isoelectric focusing and LC-Chip mass spectrometry for enrichment and quantitation of low abundance protein biomarkers in human plasma.

    Science.gov (United States)

    Rafalko, Agnes; Dai, Shujia; Hancock, William S; Karger, Barry L; Hincapie, Marina

    2012-02-03

    Protein biomarkers are critical for diagnosis, prognosis, and treatment of disease. The transition from protein biomarker discovery to verification can be a rate limiting step in clinical development of new diagnostics. Liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS) is becoming an important tool for biomarker verification studies in highly complex biological samples. Analyte enrichment or sample fractionation is often necessary to reduce sample complexity and improve sensitivity of SRM for quantitation of clinically relevant biomarker candidates present at the low ng/mL range in blood. In this paper, we describe an alternative method for sample preparation for LC-SRM MS, which does not rely on availability of antibodies. This new platform is based on selective enrichment of proteotypic peptides from complex biological peptide mixtures via isoelectric focusing (IEF) on a digital ProteomeChip (dPC) for SRM quantitation using a triple quadrupole (QQQ) instrument with an LC-Chip (Chip/Chip/SRM). To demonstrate the value of this approach, the optimization of the Chip/Chip/SRM platform was performed using prostate specific antigen (PSA) added to female plasma as a model system. The combination of immunodepletion of albumin and IgG with peptide fractionation on the dPC, followed by SRM analysis, resulted in a limit of quantitation of PSA added to female plasma at the level of ∼1-2.5 ng/mL with a CV of ∼13%. The optimized platform was applied to measure levels of PSA in plasma of a small cohort of male patients with prostate cancer (PCa) and healthy matched controls with concentrations ranging from 1.5 to 25 ng/mL. A good correlation (r(2) = 0.9459) was observed between standard clinical ELISA tests and the SRM-based assay. Our data demonstrate that the combination of IEF on the dPC and SRM (Chip/Chip/SRM) can be successfully applied for verification of low abundance protein biomarkers in complex samples.

  20. Facile fabrication of an ultrasensitive sandwich-type electrochemical immunosensor for the quantitative detection of alpha fetoprotein using multifunctional mesoporous silica as platform and label for signal amplification.

    Science.gov (United States)

    Wang, Yulan; Li, Xiaojian; Cao, Wei; Li, Yueyun; Li, He; Du, Bin; Wei, Qin

    2014-11-01

    A novel and ultrasensitive sandwich-type electrochemical immunosensor was designed for the quantitative detection of alpha fetoprotein (AFP) using multifunctional mesoporous silica (MCM-41) as platform and label for signal amplification. MCM-41 has high specific surface area, high pore volume, large density of surface silanol groups (SiOH) and good biocompatibility. MCM-41 functionalized with 3-aminopropyltriethoxysilane (APTES), gold nanoparticles (Au NPs) and toluidine blue (TB) could enhance electrochemical signals. Moreover, primary antibodies (Ab1) and secondary antibodies (Ab2) could be effectively immobilized onto the multifunctional MCM-41 by the interaction between Au NPs and amino groups (-NH2) on antibodies. Using multifunctional MCM-41 as a platform and label could greatly simplify the fabrication process and result in a high sensitivity of the designed immunosensor. Under optimal conditions, the designed immunosensor exhibited a wide liner range from 10(-4) ng/mL to 10(3) ng/mL with a low detection limit of 0.05 pg/mL for AFP. The designed immunosensor showed acceptable selectivity, reproducibility and stability, which could provide potential applications in clinical monitoring of AFP.

  1. An integrated platform for directly widely-targeted quantitative analysis of feces part II: An application for steroids, eicosanoids, and porphyrins profiling.

    Science.gov (United States)

    Song, Yuelin; Song, Qingqing; Li, Jun; Zheng, Jiao; Li, Chun; Zhang, Yuan; Zhang, Lingling; Jiang, Yong; Tu, Pengfei

    2016-08-19

    Steroids, especially bile acids, along with eicosanoids and porphyrins in feces play pivotal roles for the clinical diagnosis of various diseases. However, their reliable measurement is extensively obstructed by poor stability, structural diversity, broad content ranges, and tedious sample preparation protocols that account for a majority of the measurement errors. In current study, in-depth component screening was initially carried out by flexibly integrating diverse modes, such as predefined multiple reaction monitoring, stepped multiple ion monitoring, neutral loss scan, and precursor ion scan on a hybrid triple quadrupole-linear ion trap mass spectrometer, which also provided MS(2) spectra via enhanced product ion experiments. Meanwhile, a hybrid ion trap-time of flight mass spectrometer served as a complementary tool by providing accurate mass spectral information. Afterwards, because authentic compounds were unavailable for most analytes, an online optimization strategy was then proposed to optimize parameters, including precursor-to-product ion transitions and spectrometric parameters, notably collision energy. Finally, direct analysis of all detected components in feces was carried out by employing a platform integrating online pressurized liquid extraction, turbulent flow chromatography, and LC-MS/MS, and applying those optimized parameters. Seventy-one compounds, including 52 steroids and 13 eicosanoids, together with 6 porphyrins, were found and annotated in a fecal pool, and then relatively quantified in various fecal matrices. The quantitative dataset was subjected for multivariate statistical analysis and significant differences were observed among the quantitative chemome profiles of the fecal matrices from different groups. The findings obtained in the two parts demonstrated that the analytical platform in combination with the work-flow is qualified for not only directly simultaneous measurement of diverse endogenous substances, but widely targeted

  2. A tutorial review for employing enzymes for the construction of G-quadruplex-based sensing platforms.

    Science.gov (United States)

    Ma, Dik-Lung; Wang, Wanhe; Mao, Zhifeng; Yang, Chao; Chen, Xiu-Ping; Lu, Jin-Jian; Han, Quan-Bin; Leung, Chung-Hang

    2016-03-24

    With rapid advances in the field of DNA chemistry, nucleic acids and DNA-modifying enzymes have recently emerged as versatile components for the construction of oligonucleotide-based sensors. Meanwhile, the G-quadruplex motif has been widely employed for the development of DNA-based assays due to its diverse structural variety. In this tutorial, we introduce the principles of G-quadruplex-based sensing and the use of DNA-modifying enzymes for sensor platform development. We also highlight recent studies of the application of DNA-modifying enzymes for the development of G-quadruplex-based luminescent detection platforms with a view towards how those enzymes play an important role in sensitivity enhancement.

  3. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  4. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  5. Analyzing Dynamic Task-Based Applications on Hybrid Platforms: An Agile Scripting Approach

    OpenAIRE

    Garcia Pinto, Vinicius; Stanisic, Luka; Legrand, Arnaud; Mello Schnorr, Lucas; Thibault, Samuel; Danjean, Vincent

    2016-01-01

    In this paper, we present visual analysis techniques to evaluate the performance of HPC task-based applications on hybrid architectures. Our approach is based on composing modern data analysis tools (pjdump, R, ggplot2, plotly), enabling an agile and flexible scripting framework with minor development cost. We validate our proposal by analyzing traces from the full-fledged implementation of the Cholesky decomposition available in the MORSE library running on a hybrid (CPU/GPU) platform. The a...

  6. Product Platform Performance

    DEFF Research Database (Denmark)

    Munk, Lone

    engaging in platform-based product development. Similarly platform assessment criteria lack empirical verification regarding relevance and sufficiency. The thesis focuses on • the process of identifying and estimating internal effects, • verification of performance of product platforms, (i...... to support this understanding. Finally a categorisation of different approaches to platform-based product development is introduced, based on the companies from the industrial study.......The aim of this research is to improve understanding of platform-based product development by studying platform performance in relation to internal effects in companies. Platform-based product development makes it possible to deliver product variety and at the same time reduce the needed resources...

  7. FPGA-based Hyperspectral Covariance Coprocessor for Size, Weight, and Power Constrained Platforms

    Science.gov (United States)

    Kusinsky, David Alan

    Hyperspectral imaging (HSI) is a method of remote sensing that collects many two-dimensional images of the same physical scene. Each image corresponds to a single wavelength band in the electromagnetic spectrum. The number of bands imaged by an HSI sensor can be several hundred, and therefore a large amount of data is produced. This data must be handled by the platform on which the HSI sensor resides, either through onboard processing, or relaying elsewhere. Hence, the platform plays an important role in defining the capabilities of the entire remote sensing system. Size, weight, and power (SWaP) are important factors in the design of any remote sensing platform. These remote sensing platforms, such as Unmanned Air Vehicles and microsatellites, are continually decreasing in size. This creates a need for remote sensing and image processing hardware that consumes less area, weight, and power, while delivering processing performance. The purpose of this research is to design and characterize an FPGA-based hardware coprocessor that parallelizes the calculation of covariance; a time-consuming step common in hyperspectral image processing. The goal is to deploy such a coprocessor on a remote sensing platform. The coprocessor is implemented using a Xilinx ML605 evaluation board. The hardware used includes the Xilinx Virtex-6 FPGA, DDR3 memory, and PCIe interface. An implementation to accelerate the covariance calculation was created, and the OpenCPI open source framework was adopted to enable DDR3 memory and PCIe capabilities and ease coprocessor testing. The coprocessor's performance is evaluated using several metrics: total power (Watts), processing energy (Joules), floating point operations per Watt (FLOPS/W), and floating point operations per Watt-kg (FLOPS/(W·kg)). The coprocessor is compared to a CPU-based processing platform and shown to have an overall SWaP advantage. Coprocessor FLOPS/W and FLOPS/(W·kg) performance is 2X and 2.75X that of the CPU-based platform

  8. Reliability-Based Full-Life Cycle Optimum Design of Offshore Jacket Platform

    Institute of Scientific and Technical Information of China (English)

    王立成; 宋玉普

    2004-01-01

    Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design model. In this model, the time-dependent reliability assessment method for structural members is established by combination of the decrease of sectional size and performance deterioration of material. The initial investment, maintenance cost and failure loss cost are assembled into the model. The total cost of the platform structure system in its full service period is chosen as the objective function, and the initial reliabilities of the layer elements partitioned in advance are taken as the design variables. Different models are obtained, depending on whether the system reliability constraint is considered or not. This optimum design model can result in the lowest full-life cost and the optimal initial layer reliability of an offshore jacket platform in the design of marine structures. The feasibility of this model is illustrated with an actual jacket platform in the Liaodong Gulf as an example.

  9. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform.

    Science.gov (United States)

    Acero, Raquel; Santolaria, Jorge; Brau, Agustin; Pueo, Marcos

    2016-11-18

    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform's mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument's working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.

  10. FluxExplorer: A general platform for modeling and analyses of metabolic networks based on stoichiometry

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Stoichiometry-based analyses of meta- bolic networks have aroused significant interest of systems biology researchers in recent years. It is necessary to develop a more convenient modeling platform on which users can reconstruct their network models using completely graphical operations, and explore them with powerful analyzing modules to get a better understanding of the properties of metabolic systems. Herein, an in silico platform, FluxExplorer, for metabolic modeling and analyses based on stoichiometry has been developed as a publicly available tool for systems biology research. This platform integrates various analytic approaches, in- cluding flux balance analysis, minimization of meta- bolic adjustment, extreme pathways analysis, shadow prices analysis, and singular value decom- position, providing a thorough characterization of the metabolic system. Using a graphic modeling process, metabolic networks can be reconstructed and modi- fied intuitively and conveniently. The inconsistencies of a model with respect to the FBA principles can be proved automatically. In addition, this platform sup- ports systems biology markup language (SBML). FluxExplorer has been applied to rebuild a metabolic network in mammalian mitochondria, producing meaningful results. Generally, it is a powerful and very convenient tool for metabolic network modeling and analysis.

  11. A microfabrication-based approach to quantitative isothermal titration calorimetry.

    Science.gov (United States)

    Wang, Bin; Jia, Yuan; Lin, Qiao

    2016-04-15

    Isothermal titration calorimetry (ITC) directly measures heat evolved in a chemical reaction to determine equilibrium binding properties of biomolecular systems. Conventional ITC instruments are expensive, use complicated design and construction, and require long analysis times. Microfabricated calorimetric devices are promising, although they have yet to allow accurate, quantitative ITC measurements of biochemical reactions. This paper presents a microfabrication-based approach to integrated, quantitative ITC characterization of biomolecular interactions. The approach integrates microfabricated differential calorimetric sensors with microfluidic titration. Biomolecules and reagents are introduced at each of a series of molar ratios, mixed, and allowed to react. The reaction thermal power is differentially measured, and used to determine the thermodynamic profile of the biomolecular interactions. Implemented in a microdevice featuring thermally isolated, well-defined reaction volumes with minimized fluid evaporation as well as highly sensitive thermoelectric sensing, the approach enables accurate and quantitative ITC measurements of protein-ligand interactions under different isothermal conditions. Using the approach, we demonstrate ITC characterization of the binding of 18-Crown-6 with barium chloride, and the binding of ribonuclease A with cytidine 2'-monophosphate within reaction volumes of approximately 0.7 µL and at concentrations down to 2mM. For each binding system, the ITC measurements were completed with considerably reduced analysis times and material consumption, and yielded a complete thermodynamic profile of the molecular interaction in agreement with published data. This demonstrates the potential usefulness of our approach for biomolecular characterization in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Using a digital marketing platform for the promotion of an internet based health encyclopedia in saudi arabia.

    Science.gov (United States)

    Al Ateeq, Asma; Al Moamary, Eman; Daghestani, Tahani; Al Muallem, Yahya; Al Dogether, Majed; Alsughayr, Abdulrahman; Altuwaijri, Majid; Househ, Mowafa

    2015-01-01

    The objective of this paper is to investigate the experiences of using a digital marketing platform to promote the use of an internet based health encyclopedia in Saudi Arabia. Key informant interviews, meeting documentation, and Google Analytics were the data collection sources used in the study. Findings show that using a digital marketing platform led to a significant increase in the number of visitors to the health encyclopedia. The results demonstrate that digital marketing platforms are effective tools to be used for promoting internet based health education interventions. Future work will examine long-term educational impacts and costs in using digital marketing platforms to promote online healthcare sites in Saudi Arabia.

  13. Building an open-source simulation platform of acoustic radiation force-based breast elastography.

    Science.gov (United States)

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-03-07

    Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. 'ground truth') in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity-one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In

  14. Building an open-source simulation platform of acoustic radiation force-based breast elastography

    Science.gov (United States)

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-03-01

    Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. ‘ground truth’) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity—one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast

  15. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    Directory of Open Access Journals (Sweden)

    Fábio M. Pereira

    2016-10-01

    Full Text Available This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii fluorescence-based bead counting.

  16. A new multifunctional platform based on high aspect ratio interdigitated NEMS structures

    Energy Technology Data Exchange (ETDEWEB)

    Ghatnekar-Nilsson, S; Karlsson, I; Kvennefors, A; Luo, G; Zela, V; Parker, T; Litwin, A [NEMS AB, Solvegatan 16, S-223 62 Lund (Sweden); Arlelid, M [Electrical and Information Technology, Lund University, PO Box 118, S-221 00 Lund (Sweden); Montelius, L [Solid State Physics/The Nanometer Structure Consortium, Lund University, PO Box 118, S-221 00 Lund (Sweden)], E-mail: andrej.litwin@nems.se

    2009-04-29

    A multifunctional NEMS platform based on a mass-producible, surface relief grating has been developed and fabricated directly in polymer materials. The pattern consists of high aspect ratio interdigitated nanometer-sized pairs of walls and can be produced in a low-complexity one-step patterning process with nanoimprint lithography. In this paper, we demonstrate the usefulness of the platform primarily by showing an application as a high-sensitivity mass sensor in air. The sensors, which are based on the high frequency resonant response of around 200 MHz, show a mass responsivity of the order of 0.1 Hz/zg per wall at room temperature and in ambient air. Their ability to selectively adsorb airborne target molecules, such as thiols, is also demonstrated. We also show that the same device can function as a varactor for electronic circuits based on its large tunable capacitive range.

  17. A new multifunctional platform based on high aspect ratio interdigitated NEMS structures.

    Science.gov (United States)

    Ghatnekar-Nilsson, S; Karlsson, I; Kvennefors, A; Luo, G; Zela, V; Arlelid, M; Parker, T; Montelius, L; Litwin, A

    2009-04-29

    A multifunctional NEMS platform based on a mass-producible, surface relief grating has been developed and fabricated directly in polymer materials. The pattern consists of high aspect ratio interdigitated nanometer-sized pairs of walls and can be produced in a low-complexity one-step patterning process with nanoimprint lithography. In this paper, we demonstrate the usefulness of the platform primarily by showing an application as a high-sensitivity mass sensor in air. The sensors, which are based on the high frequency resonant response of around 200 MHz, show a mass responsivity of the order of 0.1 Hz/zg per wall at room temperature and in ambient air. Their ability to selectively adsorb airborne target molecules, such as thiols, is also demonstrated. We also show that the same device can function as a varactor for electronic circuits based on its large tunable capacitive range.

  18. A middleware-based platform for the integration of bioinformatic services

    Directory of Open Access Journals (Sweden)

    Guzmán Llambías

    2015-08-01

    Full Text Available Performing Bioinformatic´s experiments involve an intensive access to distributed services and information resources through Internet. Although existing tools facilitate the implementation of workflow-oriented applications, they lack of capabilities to integrate services beyond low-scale applications, particularly integrating services with heterogeneous interaction patterns and in a larger scale. This is particularly required to enable a large-scale distributed processing of biological data generated by massive sequencing technologies. On the other hand, such integration mechanisms are provided by middleware products like Enterprise Service Buses (ESB, which enable to integrate distributed systems following a Service Oriented Architecture. This paper proposes an integration platform, based on enterprise middleware, to integrate Bioinformatics services. It presents a multi-level reference architecture and focuses on ESB-based mechanisms to provide asynchronous communications, event-based interactions and data transformation capabilities. The paper presents a formal specification of the platform using the Event-B model.

  19. Image based quantitative reader for Lateral flow immunofluorescence assay.

    Science.gov (United States)

    Chowdhury, Kaushik Basak; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2015-08-01

    Fluorescence Lateral flow immunoassays (LFIA) have wide range of applications in point-of-care testing (POCT). An integrated, motion-free, accurate, reliable reader that performs automated quantitative analysis of LFIA is essential for POCT diagnosis. We demonstrate an image based quantitative method to read the lateral flow immunofluorescence test strips. The developed reader uses line laser diode module to illuminate the LFIA test strip having fluorescent dye. Fluorescence light coming from the region of interest (ROI) of the LFIA test strip was filtered using an emission filter and imaged using a camera following which images were processed in computer. A dedicated control program was developed that automated the entire process including illumination of the test strip using laser diode, capturing the ROI of the test strip, processing and analyzing the images and displaying of results. Reproducibility of the reader has been evaluated using few reference cartridges and HbA1c (Glycated haemoglobin) test cartridges. The proposed system can be upgraded to a compact reader for widespread testing of LFIA test strips.

  20. IoTFLiP: IoT-based flipped learning platform for medical education

    Directory of Open Access Journals (Sweden)

    Maqbool Ali

    2017-08-01

    Full Text Available Case-Based Learning (CBL has become an effective pedagogy for student-centered learning in medical education, which is founded on persistent patient cases. Flippped learning and Internet of Things (IoTs concepts have gained significant attention in recent years. Using these concepts in conjunction with CBL can improve learning ability by providing real evolutionary medical cases. It also enables students to build confidence in their decision making, and efficiently enhances teamwork in the learing environment. We propose an IoT-based Flip Learning Platform, called IoTFLiP, where an IoT infrastructure is exploited to support flipped case-based learning in a cloud environment with state of the art security and privacy measures for personalized medical data. It also provides support for application delivery in private, public, and hybrid approaches. The proposed platform is an extension of our Interactive Case-Based Flipped Learning Tool (ICBFLT, which has been developed based on current CBL practices. ICBFLT formulates summaries of CBL cases through synergy between students' and medical expert knowledge. The low cost and reduced size of sensor device, support of IoTs, and recent flipped learning advancements can enhance medical students' academic and practical experiences. In order to demonstrate a working scenario for the proposed IoTFLiP platform, real-time data from IoTs gadgets is collected to generate a real-world case for a medical student using ICBFLT.

  1. PC based PLCs and ethernet based fieldbus: the new standard platform for future VLT instrument control

    Science.gov (United States)

    Kiekebusch, Mario J.; Lucuix, Christian; Erm, Toomas M.; Chiozzi, Gianluca; Zamparelli, Michele; Kern, Lothar; Brast, Roland; Pirani, Werther; Reiss, Roland; Popovic, Dan; Knudstrup, Jens; Duchateau, Michel; Sandrock, Stefan; Di Lieto, Nicola

    2014-07-01

    ESO is currently in the final phase of the standardization process for PC-based Programmable Logical Controllers (PLCs) as the new platform for the development of control systems for future VLT/VLTI instruments. The standard solution used until now consists of a Local Control Unit (LCU), a VME-based system having a CPU and commercial and proprietary boards. This system includes several layers of software and many thousands of lines of code developed and maintained in house. LCUs have been used for several years as the interface to control instrument functions but now are being replaced by commercial off-the-shelf (COTS) systems based on BECKHOFF Embedded PCs and the EtherCAT fieldbus. ESO is working on the completion of the software framework that enables a seamless integration into the VLT control system in order to be ready to support upcoming instruments like ESPRESSO and ERIS, that will be the first fully VLT compliant instruments using the new standard. The technology evaluation and standardization process has been a long and combined effort of various engineering disciplines like electronics, control and software, working together to define a solution that meets the requirements and minimizes the impact on the observatory operations and maintenance. This paper presents the challenges of the standardization process and the steps involved in such a change. It provides a technical overview of how industrial standards like EtherCAT, OPC-UA, PLCOpen MC and TwinCAT can be used to replace LCU features in various areas like software engineering and programming languages, motion control, time synchronization and astronomical tracking.

  2. A Graphene-Based Biosensing Platform Based on Regulated Release of an Aptameric DNA Biosensor.

    Science.gov (United States)

    Mao, Yu; Chen, Yongli; Li, Song; Lin, Shuo; Jiang, Yuyang

    2015-11-09

    A novel biosensing platform was developed by integrating an aptamer-based DNA biosensor with graphene oxide (GO) for rapid and facile detection of adenosine triphosphate (ATP, as a model target). The DNA biosensor, which is locked by GO, is designed to contain two sensing modules that include recognition site for ATP and self-replication track that yields the nicking domain for Nt.BbvCI. By taking advantage of the different binding affinity of single-stranded DNA, double-stranded DNA and aptamer-target complex toward GO, the DNA biosensor could be efficiently released from GO in the presence of target with the help of a complementary DNA strand (CPDNA) that partially hybridizes to the DNA biosensor. Then, the polymerization/nicking enzyme synergetic isothermal amplification could be triggered, leading to the synthesis of massive DNA amplicons, thus achieving an enhanced sensitivity with a wide linear dynamic response range of four orders of magnitude and good selectivity. This biosensing strategy expands the applications of GO-DNA nanobiointerfaces in biological sensing, showing great potential in fundamental research and biomedical diagnosis.

  3. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research.

    Science.gov (United States)

    Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C

    2014-01-01

    The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction.

  4. Silicon-on-insulator-based complementary metal oxide semiconductor integrated optoelectronic platform for biomedical applications

    Science.gov (United States)

    Mujeeb-U-Rahman, Muhammad; Scherer, Axel

    2016-12-01

    Microscale optical devices enabled by wireless power harvesting and telemetry facilitate manipulation and testing of localized biological environments (e.g., neural recording and stimulation, targeted delivery to cancer cells). Design of integrated microsystems utilizing optical power harvesting and telemetry will enable complex in vivo applications like actuating a single nerve, without the difficult requirement of extreme optical focusing or use of nanoparticles. Silicon-on-insulator (SOI)-based platforms provide a very powerful architecture for such miniaturized platforms as these can be used to fabricate both optoelectronic and microelectronic devices on the same substrate. Near-infrared biomedical optics can be effectively utilized for optical power harvesting to generate optimal results compared with other methods (e.g., RF and acoustic) at submillimeter size scales intended for such designs. We present design and integration techniques of optical power harvesting structures with complementary metal oxide semiconductor platforms using SOI technologies along with monolithically integrated electronics. Such platforms can become the basis of optoelectronic biomedical systems including implants and lab-on-chip systems.

  5. A wireless computational platform for distributed computing based traffic monitoring involving mixed Eulerian-Lagrangian sensing

    KAUST Repository

    Jiang, Jiming

    2013-06-01

    This paper presents a new wireless platform designed for an integrated traffic monitoring system based on combined Lagrangian (mobile) and Eulerian (fixed) sensing. The sensor platform is built around a 32-bit ARM Cortex M4 micro-controller and a 2.4GHz 802.15.4 ISM compliant radio module, and can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. The platform is specially designed and optimized to be integrated in a solar-powered wireless sensor network in which traffic flow maps are computed by the nodes directly using distributed computing. A MPPT circuitry is proposed to increase the power output of the attached solar panel. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debug. An ongoing implementation is briefly discussed, and compared with existing platforms used in wireless sensor networks. © 2013 IEEE.

  6. Forward Dynamics Analysis of the 6-PUS Mechanism Based on Platform-Legs Composite Simulation

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; CHEN Genliang; LIN Zhongqin

    2009-01-01

    The dynamics analysis plays an important role for the control, simulation and optimization of the parallel manipulators. Normally, the Stewart type manipulators have a platform and several legs. The inverse dynamics can be solved efficiently by taking the advantage of such structural characteristics. However, for the forward dynamics analysis, this structural decomposition still faces challenges from both modeling and computation. In this paper, an efficient approach is proposed for the forward dynamics of the 6-PUS manipulator based on the platform-legs composite simulation. By composite method, the dynamics modeling of the parallel manipulator is separated into the forward dynamics of the platform and the kineto-statics of the legs. The global simulation model can be constructed by connecting the predefined platform model and leg models according to the manipulator's topology. Thus, the global simulation can be decomposed into the independent calculations of purely algebraic equations and ordinary differential equations (ODEs), the computational cost can be reduced and the stability of the simulation can be improved. For the purpose of solving the manipulator's forward dynamics accurately, the algebraic-loop problem is discussed and a closed form algorithm is proposed. A numerical example of the 6-PUS manipulator is given to demonstrate the effectiveness of the proposed approach. The example results show that the modeling efficiency can be improved and the simulation stability can be ensured for decomposing the system equations into purely algebraic equations and ODEs.

  7. Tracking control strategy for the optoelectronic system on the flexible suspended platform based on backstepping method

    Science.gov (United States)

    Yu, Wei; Ma, Jiaguang; Xiao, Jing

    2012-10-01

    To improve the optoelectronic tracking ability and rope-hanged platform attitude stability, against the interact effect between rope-hanged platform and optoelectronic system during system tracking process, the optoelectronic system fixed on rope hanged platform simplified dynamic model, according to the system's Lagrange dynamic model, was established. Backstepping method was employed to design an integrated controller for both optoelectronic system azimuth direction steering and platform attitude stabilizing. To deal with model's uncertainty and disturbance, a sliding mode controller form based exponential reaching law was adopted to structure the integrated controller. Simulation experiments simulated an optoelectronic system with 600mm caliber telescope, whose inertia fluctuation is 6%. The maximal control moment is 15Nm. And the external disturbance and internal friction effected together. When the line of sight(LOS) azimuth angular input is a step signal with 1rad amplitude, the response's overshoot is 6%, and the response time is 6.2s, and the steady state error is less than 4×10-4rad. When the input is a sinusoidal signal of 0.2rad amplitude with 0.0318Hz frequency, the LOS azimuth angular error amplitude is 5. 6×10-4rad. It is concluded that the controller designed in this article has excellent ability and can ensure the system's stability.

  8. Design of a JAIN SLEE/ESB-based platform for routing medical data in the ICU.

    Science.gov (United States)

    Van Den Bossche, Bruno; Van Hoecke, Sofie; Danneels, Chris; Decruyenaere, Johan; Dhoedt, Bart; De Turck, Filip

    2008-09-01

    The importance of computer aided decision making is continuously increasing. In the ICU, medical decision support services gather and process medical data of patients and present results and suggestions to the medical staff. The medical decision support services can monitor for example blood pressure, creatinine levels or the usage of antibiotics. If certain levels are crossed, they raise alerts so that the medical staff can take appropriate actions if required. This significantly reduces the amount of data needing to be processed by the medical staff. To handle the large amount of data that is generated by the ICU on a daily basis, a platform for routing and processing this data is necessary. In this paper we propose a platform based on JAIN SLEE and an Enterprise Service Bus. The platform takes care of the routing of the data to the appropriate services and allows to easily deploy and manage services. In this paper, we present the design details and the evaluation results. Furthermore, it is shown that the platform is capable of routing and processing all the events generated by the ICU within strict time constraints.

  9. Intelligent optimal control of thermal vision-based Person-Following Robot Platform

    Directory of Open Access Journals (Sweden)

    Ćirić Ivan T.

    2014-01-01

    Full Text Available In this paper the supervisory control of the Person-Following Robot Platform is presented. The main part of the high level control loop of mobile robot platform is a real-time robust algorithm for human detection and tracking. The main goal was to enable mobile robot platform to recognize the person in indoor environment, and to localize it with accuracy high enough to allow adequate human-robot interaction. The developed computationally intelligent control algorithm enables robust and reliable human tracking by mobile robot platform. The core of the recognition methods proposed is genetic optimization of threshold segmentation and classification of detected regions of interests in every frame acquired by thermal vision camera. The support vector machine classifier determines whether the segmented object is human or not based on features extracted from the processed thermal image independently from current light conditions and in situations where no skin color is visible. Variation in temperature across same objects, air flow with different temperature gradients, person overlap while crossing each other and reflections, put challenges in thermal imaging and will have to be handled intelligently in order to obtain the efficient performance from motion tracking system. [Projekat Ministarstva nauke Republike Srbije, br. TR35005

  10. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de [Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Viergever, Max A. [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2013-11-15

    Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80

  11. Reliability-Based Earthquake Design of Jacket-Type Offshore Platforms Considering Pile-Soil-Structure Interaction

    Directory of Open Access Journals (Sweden)

    Behrouz Asgarian

    2009-01-01

    Full Text Available There are plenty of uncertainties in environmental condition of ocean and also in platform element capacities. Reliability-based method could consider these uncertainties. A reliability-based earthquake design method was used to determine the earthquake LRFD parameters for two conventional, steel, pile-supported (template-type offshore platforms located in the Persian Gulf. The pile-soil-structure interaction, the buckling and postbuckling behavior of the braces were considered. Two steel platforms were simulated accurately by the finite element program Opensees. Field data were assumed based on past studies. Sensitiveness of reliability-based method was studied. It was found that the geometry of jacket and different types of braces was important in the capacity and the behavior of offshore platforms. Finally the calculated LRFD elements resistance factors for these two platforms were compared with API recommended factors and it was observed that API recommended element resistance factors were more appropriate for SSL 3.

  12. Fabrication of newspaper-based potentiometric platforms for flexible and disposable ion sensors.

    Science.gov (United States)

    Yoon, Jo Hee; Kim, Kyung Hoon; Bae, Nam Ho; Sim, Gap Seop; Oh, Yong-Jun; Lee, Seok Jae; Lee, Tae Jae; Lee, Kyoung G; Choi, Bong Gill

    2017-12-15

    Paper-based materials have attracted a great deal of attention in sensor applications because they are readily available, biodegradable, inexpensive, and mechanically flexible. Although paper-based sensors have been developed, but important obstacles remian, which include the retention of chemical and mechanical stabilities when paper is wetted. Herein, we develop a simple and scalable process for fabrication of newspaper-based platforms by coating of parylene C and patterning of metal layers. As-prepared parylene C-coated newspaper (PC-paper) provides low-cost, disposable, and mechanically and chemically stable electrochemical platforms for the development of potentiometric ion sensors for the detection of electrolyte cations, such as, H(+) and K(+). The pH and K(+) sensors produced show near ideal Nernstian sensitivity, good repeatability, good ion selectivity, and low potential drift. These disposable, flexible ion sensors based on PC-paper platforms could provide new opportunities for the development of point-of-care testing sensors, for diagnostics, healthcare, and environment testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Microfluidic Platform for Enzyme-Linked and Magnetic Particle-Based Immunoassay

    Directory of Open Access Journals (Sweden)

    Dorota G. Pijanowska

    2013-06-01

    Full Text Available This article presents design and testing of a microfluidic platform for immunoassay. The method is based on sandwiched ELISA, whereby the primary antibody is immobilized on nitrocelluose and, subsequently, magnetic beads are used as a label to detect the analyte. The chip takes approximately 2 h and 15 min to complete the assay. A Hall Effect sensor using 0.35-μm BioMEMS TSMC technology (Taiwan Semiconductor Manufacturing Company Bio-Micro-Electro-Mechanical Systems was fabricated to sense the magnetic field from the beads. Furthermore, florescence detection and absorbance measurements from the chip demonstrate successful immunoassay on the chip. In addition, investigation also covers the Hall Effect simulations, mechanical modeling of the bead–protein complex, testing of the microfluidic platform with magnetic beads averaging 10 nm, and measurements with an inductor-based system.

  14. Unified Electronic Currency Based on the Fourth Party Platform Integrated Payment Service

    Science.gov (United States)

    Yong, Xu; Qiqi, Hu

    This paper presents a solution of unified e-currency based on the fourth party platform integrated payment service. The purpose of the paper is to solve the problem of distribution and resource-wasting caused by the lack of unified electronic currency, and to solve regulatory difficulties due to regulation size caused by a wide variety of e-currency. Methods: This article first analyzes the problems in the development of electronic money, and then proposes the concept of a unified electronic currency based on the fourth party platform integrated payment service. Besides, it proposes a unified mechanism and transaction procedures for unified e-currency, and analyzes the liquidation process, security and regulatory requirements, which are involved in using unified electronic currency.

  15. A Bluetooth-Based Device Management Platform for Smart Sensor Environment

    Science.gov (United States)

    Lim, Ivan Boon-Kiat; Yow, Kin Choong

    In this paper, we propose the use of Bluetooth as the device management platform for the various embedded sensors and actuators in an ambient intelligent environment. We demonstrate the ease of adding Bluetooth capability to common sensor circuits (e.g. motion sensor circuit based on a pyroelectric infrared (PIR) sensor). A central logic application is proposed which controls the operation of controller devices, based on values returned by sensors via Bluetooth. The operation of devices depends on rules that are learnt from user behavior using an Elman recurrent neural network. Overall, Bluetooth has shown its potential in being used as a device management platform in an ambient intelligent environment, which allows sensors and controllers to be deployed even in locations where power sources are not readily available, by using battery power.

  16. A methodology toward manufacturing grid-based virtual enterprise operation platform

    Science.gov (United States)

    Tan, Wenan; Xu, Yicheng; Xu, Wei; Xu, Lida; Zhao, Xianhua; Wang, Li; Fu, Liuliu

    2010-08-01

    Virtual enterprises (VEs) have become one of main types of organisations in the manufacturing sector through which the consortium companies organise their manufacturing activities. To be competitive, a VE relies on the complementary core competences among members through resource sharing and agile manufacturing capacity. Manufacturing grid (M-Grid) is a platform in which the production resources can be shared. In this article, an M-Grid-based VE operation platform (MGVEOP) is presented as it enables the sharing of production resources among geographically distributed enterprises. The performance management system of the MGVEOP is based on the balanced scorecard and has the capacity of self-learning. The study shows that a MGVEOP can make a semi-automated process possible for a VE, and the proposed MGVEOP is efficient and agile.

  17. A Reward-Based Behavioral Platform to Measure Neural Activity during Head-Fixed Behavior.

    Science.gov (United States)

    Micallef, Andrew H; Takahashi, Naoya; Larkum, Matthew E; Palmer, Lucy M

    2017-01-01

    Understanding the neural computations that contribute to behavior requires recording from neurons while an animal is behaving. This is not an easy task as most subcellular recording techniques require absolute head stability. The Go/No-Go sensory task is a powerful decision-driven task that enables an animal to report a binary decision during head-fixation. Here we discuss how to set up an Ardunio and Python based platform system to control a Go/No-Go sensory behavior paradigm. Using an Arduino micro-controller and Python-based custom written program, a reward can be delivered to the animal depending on the decision reported. We discuss the various components required to build the behavioral apparatus that can control and report such a sensory stimulus paradigm. This system enables the end user to control the behavioral testing in real-time and therefore it provides a strong custom-made platform for probing the neural basis of behavior.

  18. Quantitative recognition of flammable and toxic gases with artificial neural network using metal oxide gas sensors in embedded platform

    Directory of Open Access Journals (Sweden)

    B. Mondal

    2015-06-01

    Full Text Available Artificial Neural Network (ANN based pattern recognition technique is used for ensuring the reliable evaluation of responses from an array of Zinc Oxide (ZnO based sensors comprising of pure ZnO nano-rods and composites of ZnO–SnO2. All the sensors were fabricated in the lab. The paper first reports the development of an artificial neural network based model for successfully recognizing different concentration of hydrogen, methane and carbon mono-oxide. Feed forward back propagation neural network was used for the classification of the gases at critical concentrations. The optimized ANN algorithm is then embedded in the microcontroller based circuit and finally verified under lab conditions.

  19. An open-source automated continuous condition-based maintenance platform for commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Gowri, Krishnan; Hernandez, George

    2016-09-09

    This paper describes one such reference process that can be deployed to provide continuous automated conditioned-based maintenance management for buildings that have BIM, a building automation system (BAS) and a computerized maintenance management software (CMMS) systems. The process can be deployed using an open source transactional network platform, VOLTTRON™, designed for distributed sensing and controls and supports both energy efficiency and grid services.

  20. Web-based education in Spanish Universities. A Comparison of Open Source E-Learning Platforms.

    OpenAIRE

    José María Fuentes; Álvaro Ramírez-Gómez; Ana Isabel García; Francisco Ayuga

    2012-01-01

    Web-based education or 'e-learning‟ has become a critical component in higher education for the last decade, replacing other distance learning methods, such as traditional computer training or correspondence learning. The number of university students who take on-line courses is continuously increasing all over the world. In Spain, nearly a 90% of the universities have an institutional e-learning platform and over 60% of the traditional on-site courses use this technology as a suppl...

  1. Service Quality of Online Shopping Platforms: A Case-Based Empirical and Analytical Study

    OpenAIRE

    Tsan-Ming Choi; Pui-Sze Chow; Bowood Kwok; Shuk-Ching Liu; Bin Shen

    2013-01-01

    Customer service is crucially important for online shopping platforms (OSPs) such as eBay and Taobao. Based on the well-established service quality instruments and the scenario of the specific case on Taobao, this paper focuses on exploring the service quality of an OSP with an aim of revealing customer perceptions of the service quality associated with the provided functions and investigating their impacts on customer loyalty. By an empirical study, this paper finds that the “fulfillment and...

  2. A microcontroller platform for the rapid prototyping of functional electrical stimulation-based gait neuroprostheses.

    Science.gov (United States)

    Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava

    2015-05-01

    Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. A platform for population-based weight management: description of a health plan-based integrated systems approach.

    Science.gov (United States)

    Pronk, Nicolaas P; Boucher, Jackie L; Gehling, Eve; Boyle, Raymond G; Jeffery, Robert W

    2002-10-01

    To describe an integrated, operational platform from which mail- and telephone-based health promotion programs are implemented and to specifically relate this approach to weight management programming in a managed care setting. In-depth description of essential systems structures, including people, computer technology, and decision-support protocols. The roles of support staff, counselors, a librarian, and a manager in delivering a weight management program are described. Information availability using computer technology is a critical component in making this system effective and is presented according to its architectural layout and design. Protocols support counselors and administrative support staff in decision making, and a detailed flowchart presents the layout of this part of the system. This platform is described in the context of a weight management program, and we present baseline characteristics of 1801 participants, their behaviors, self-reported medical conditions, and initial pattern of enrollment in the various treatment options. Considering the prevalence and upward trend of overweight and obesity in the United States, a need exists for robust intervention platforms that can systematically support multiple types of programs. Weight management interventions implemented using this platform are scalable to the population level and are sustainable over time despite the limits of defined resources and budgets. The present article describes an innovative approach to reaching a large population with effective programs in an integrated, coordinated, and systematic manner. This comprehensive, robust platform represents an example of how obesity prevention and treatment research may be translated into the applied setting.

  4. Family-based bivariate association tests for quantitative traits.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available The availability of a large number of dense SNPs, high-throughput genotyping and computation methods promotes the application of family-based association tests. While most of the current family-based analyses focus only on individual traits, joint analyses of correlated traits can extract more information and potentially improve the statistical power. However, current TDT-based methods are low-powered. Here, we develop a method for tests of association for bivariate quantitative traits in families. In particular, we correct for population stratification by the use of an integration of principal component analysis and TDT. A score test statistic in the variance-components model is proposed. Extensive simulation studies indicate that the proposed method not only outperforms approaches limited to individual traits when pleiotropic effect is present, but also surpasses the power of two popular bivariate association tests termed FBAT-GEE and FBAT-PC, respectively, while correcting for population stratification. When applied to the GAW16 datasets, the proposed method successfully identifies at the genome-wide level the two SNPs that present pleiotropic effects to HDL and TG traits.

  5. Comparative immune responses of corals to stressors associated with offshore reef-based tourist platforms.

    Science.gov (United States)

    van de Water, Jeroen A J M; Lamb, Joleah B; van Oppen, Madeleine J H; Willis, Bette L; Bourne, David G

    2015-01-01

    Unravelling the contributions of local anthropogenic and seasonal environmental factors in suppressing the coral immune system is important for prioritizing management actions at reefs exposed to high levels of human activities. Here, we monitor health of the model coral Acropora millepora adjacent to a high-use and an unused reef-based tourist platform, plus a nearby control site without a platform, over 7 months spanning a typical austral summer. Comparisons of temporal patterns in a range of biochemical and genetic immune parameters (Toll-like receptor signalling pathway, lectin-complement system, prophenoloxidase-activating system and green fluorescent protein-like proteins) among healthy, injured and diseased corals revealed that corals exhibit a diverse array of immune responses to environmental and anthropogenic stressors. In healthy corals at the control site, expression of genes involved in the Toll-like receptor signalling pathway (MAPK p38, MEKK1, cFos and ATF4/5) and complement system (C3 and Bf) was modulated by seasonal environmental factors in summer months. Corals at reef platform sites experienced additional stressors over the summer, as evidenced by increased expression of various immune genes, including MAPK p38 and MEKK1. Despite increased expression of immune genes, signs of white syndromes were detected in 31% of study corals near tourist platforms in the warmest summer month. Evidence that colonies developing disease showed reduced expression of genes involved in the complement pathway prior to disease onset suggests that their immune systems may have been compromised. Responses to disease and physical damage primarily involved the melanization cascade and GFP-like proteins, and appeared to be sufficient for recovery when summer heat stress subsided. Overall, seasonal and anthropogenic factors may have interacted synergistically to overwhelm the immune systems of corals near reef platforms, leading to increased disease prevalence in summer at

  6. PCA-based groupwise image registration for quantitative MRI.

    Science.gov (United States)

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  7. A Web-based E-learning Platform for Physical Education

    Directory of Open Access Journals (Sweden)

    Chun-Hong Huang

    2011-05-01

    Full Text Available The major purpose of this paper is to develop a Web-based E-learning Platform for physical education. The Platform provides sports related courseware which includes physical motions, exercise rules and first-aid treatment. The courseware is represented using digital multimedia materials which include video, 2D animation and 3D virtual reality. Courseware within digital multimedia materials not only can increase the learning efficient but also inspires students’ strong interest in learning, especially in the area of Physical Education. The design concept of our project is based on ADDIE model with the five basic phases of analysis, design, development, implementation, and evaluation. Via the usage of this Web-based E-learning platform, user can learn the relative knowledge about sports at anytime and in everyplace. We hope to let players perform efficient self learning for sports skills, indirectly foster mutual help, cooperation, nice norms of law-abiding via the learning of exercise rules, and become skilled at accurate recreation knowledge and first-aid expertise. Moreover, coaches can use the system as a teaching facility to mitigate loading on teaching.

  8. A Big-Data-based platform of workers' behavior: Observations from the field.

    Science.gov (United States)

    Guo, S Y; Ding, L Y; Luo, H B; Jiang, X Y

    2016-08-01

    Behavior-Based Safety (BBS) has been used in construction to observe, analyze and modify workers' behavior. However, studies have identified that BBS has several limitations, which have hindered its effective implementation. To mitigate the negative impact of BBS, this paper uses a case study approach to develop a Big-Data-based platform to classify, collect and store data about workers' unsafe behavior that is derived from a metro construction project. In developing the platform, three processes were undertaken: (1) a behavioral risk knowledge base was established; (2) images reflecting workers' unsafe behavior were collected from intelligent video surveillance and mobile application; and (3) images with semantic information were stored via a Hadoop Distributed File System (HDFS). The platform was implemented during the construction of the metro-system and it is demonstrated that it can effectively analyze semantic information contained in images, automatically extract workers' unsafe behavior and quickly retrieve on HDFS as well. The research presented in this paper can enable construction organizations with the ability to visualize unsafe acts in real-time and further identify patterns of behavior that can jeopardize safety outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Imaging based agglutination measurement of magnetic micro-particles on a lab-on-a-disk platform

    DEFF Research Database (Denmark)

    Wantiya, P.; Burger, Robert; Alstrøm, Tommy Sonne;

    2014-01-01

    In this work we present a magnetic micro beads based agglutination assay on a centrifugal microfluidic platform. An imaging based method is used to quantify bead agglutination and measure the concentration of antibodies or C-reactive protein in solution.......In this work we present a magnetic micro beads based agglutination assay on a centrifugal microfluidic platform. An imaging based method is used to quantify bead agglutination and measure the concentration of antibodies or C-reactive protein in solution....

  10. ElectroTaxis-on-a-Chip (ETC): an integrated quantitative high-throughput screening platform for electrical field-directed cell migration.

    Science.gov (United States)

    Zhao, Siwei; Zhu, Kan; Zhang, Yan; Zhu, Zijie; Xu, Zhengping; Zhao, Min; Pan, Tingrui

    2014-11-21

    Both endogenous and externally applied electrical stimulation can affect a wide range of cellular functions, including growth, migration, differentiation and division. Among those effects, the electrical field (EF)-directed cell migration, also known as electrotaxis, has received broad attention because it holds great potential in facilitating clinical wound healing. Electrotaxis experiment is conventionally conducted in centimetre-sized flow chambers built in Petri dishes. Despite the recent efforts to adapt microfluidics for electrotaxis studies, the current electrotaxis experimental setup is still cumbersome due to the needs of an external power supply and EF controlling/monitoring systems. There is also a lack of parallel experimental systems for high-throughput electrotaxis studies. In this paper, we present a first independently operable microfluidic platform for high-throughput electrotaxis studies, integrating all functional components for cell migration under EF stimulation (except microscopy) on a compact footprint (the same as a credit card), referred to as ElectroTaxis-on-a-Chip (ETC). Inspired by the R-2R resistor ladder topology in digital signal processing, we develop a systematic approach to design an infinitely expandable microfluidic generator of EF gradients for high-throughput and quantitative studies of EF-directed cell migration. Furthermore, a vacuum-assisted assembly method is utilized to allow direct and reversible attachment of our device to existing cell culture media on biological surfaces, which separates the cell culture and device preparation/fabrication steps. We have demonstrated that our ETC platform is capable of screening human cornea epithelial cell migration under the stimulation of an EF gradient spanning over three orders of magnitude. The screening results lead to the identification of the EF-sensitive range of that cell type, which can provide valuable guidance to the clinical application of EF-facilitated wound healing.

  11. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    Directory of Open Access Journals (Sweden)

    Carl A. Batt

    2009-05-01

    Full Text Available The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform.

  12. Quantitative analysis of four protein biomarkers: An automated microfluidic cartridge-based method and its comparison to colorimetric ELISA.

    Science.gov (United States)

    Dysinger, Mark; Marusov, Greg; Fraser, Stephanie

    2017-09-13

    Biomarker quantitation with ligand binding assays has matured greatly in recent years. This maturation has been partly in response to demands for more data points from fewer samples or less available sample volume. Multiplexing offers opportunities to acquire data for multiple analytes from single sample assay iterations, but has its own unique challenges and limitations. ProteinSimple has developed Simple Plex™, an automated immunoassay platform consisting of microfluidic cartridge-based assays run on the Ella instrument. Ella subverts traditional multiplexing challenges by rapidly performing triplicate measurements of up to four different analytes simultaneously, each in their own respective assay vessels and all from a single sample. Here we describe a comparison of the Simple Plex platform versus colorimetric ELISA and their respective abilities to quantitate four common biomarkers (MCP-1/CCL2, VEGF-A, TNF-α, and IL-6) from twenty-eight healthy individual donor plasma samples. Each biomarker was tested on the two platforms on each of two days. Ella analysis required significantly reduced sample volume, manual steps, and total time. Overall, Ella was able to quantify results for all twenty-eight samples for each of the four biomarkers. In contrast, ELISA was able to measure quantifiable results within respective calibration curve ranges for MCP-1/CCL2 (96% of samples) and VEGFA (7% of samples). For TNF-α and IL-6, ELISA was not sensitive enough to quantify any samples in the assay ranges. This stark difference in quantitative results underscores Ella's ability to multiplex without compromising sensitivity, and has far reaching potential for biomarker panel measurement in support of diagnosis, prognosis, and monitoring of disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Building competitive advantage through platform-based product family thinking: Case powerpacks

    Directory of Open Access Journals (Sweden)

    Jukka Ohvanainen

    2012-06-01

    Full Text Available Purpose: The purpose of this paper is to discuss through the main aspects and principles of successful platform-based product family development and management. For example car industry and car manufacturers take advantage of platform-based product families while solving the conflict of balancing between wide product variety and operational efficiency. This is a common dilemma also in some other manufacturing companies operating on versatile markets; how to serve individual customer needs with minimum development, manufacturing and service efforts? Product families are in this paper seen as an answer. Thus, the aim of this paper is to promote the adoption of often complex and risky product family development especially in technology and manufacturing focused companies. To be able to minimize risks and maximize the advantages companies need to understand the dynamics of the product family thinking presented in this paper.Design/methodology/approach: After a literature survey the main aspects and principles of the product family thinking are illustrated through a case example from a company designing and manufacturing hydraulic piling equipment.Findings: The case study shows that as universal practices are missing the “best practice” in product family development is always dependent on the nature of the company and its products. It is also evident that gaining long-term competitive advantage through product family thinking will not happen without continuous learning and investments in both time and resources.Originality/value: This paper presents the main aspects and principles of the platform-based product family thinking in a systematic and hierarchical manner by connecting together platforming, architecture design, strategic aspects and management perspectives.

  14. A cross-platform solution for light field based 3D telemedicine.

    Science.gov (United States)

    Wang, Gengkun; Xiang, Wei; Pickering, Mark

    2016-03-01

    Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience.

  15. Synthesizing Quantitative Evidence for Evidence-based Nursing: Systematic Review

    Directory of Open Access Journals (Sweden)

    Eui Geum Oh, PhD, RN

    2016-06-01

    Full Text Available As evidence-based practice has become an important issue in healthcare settings, the educational needs for knowledge and skills for the generation and utilization of healthcare evidence are increasing. Systematic review (SR, a way of evidence generation, is a synthesis of primary scientific evidence, which summarizes the best evidence on a specific clinical question using a transparent, a priori protocol driven approach. SR methodology requires a critical appraisal of primary studies, data extraction in a reliable and repeatable way, and examination for validity of the results. SRs are considered hierarchically as the highest form of evidence as they are a systematic search, identification, and summarization of the available evidence to answer a focused clinical question with particular attention to the methodological quality of studies or the credibility of opinion and text. The purpose of this paper is to introduce an overview of the fundamental knowledge, principals and processes in SR. The focus of this paper is on SR especially for the synthesis of quantitative data from primary research studies that examines the effectiveness of healthcare interventions. To activate evidence-based nursing care in various healthcare settings, the best and available scientific evidence are essential components. This paper will include some examples to promote understandings.

  16. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Science.gov (United States)

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  17. Requirements of older adults for a daily use of an internet-based cognitive training platform.

    Science.gov (United States)

    Haesner, Marten; O'Sullivan, Julie L; Gövercin, Mehmet; Steinhagen-Thiessen, Elisabeth

    2015-03-01

    A decline of cognitive abilities is a part of normal human ageing. However, recent research has demonstrated that an enriched environment can have a beneficial impact on cognitive function in old age. Accordingly, mentally and socially active lifestyles are associated with less cognitive decline in old age. Specific interventions such as computerized cognitive training programs for older adults are also known to have a positive effect on the level of cognitive functioning. Therefore, online platforms combining cognitive training with web 2.0 features may yield multiple benefits for older users. However, to date only little research exists on technological acceptance and media use in this age-group especially for cognitively-impaired seniors. Therefore, in order to assess specific preferences and potential barriers of older adults regarding a web-based platform for cognitive training, we conducted qualitative interviews with 12 older adults. Half of the participants were diagnosed with mild cognitive impairment (MCI). Most importantly, our results show that cognitive exercises should incorporate themes and topics older adults are interested in. Additional communication features could serve as ideal methods for increasing user motivation. Furthermore, we derived eight critical requirements of older adults concerning daily use of a web-based cognitive training platform. Implications for future research and development are discussed.

  18. Surface enhanced Raman spectroscopy platform based on graphene with one-year stability

    Energy Technology Data Exchange (ETDEWEB)

    Tite, Teddy [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Barnier, Vincent [Ecole Nationale Supérieure des Mines, CNRS, Laboratoire Georges Friedel UMR 5307, 158 cours Fauriel, F-42023 Saint-Etienne (France); Donnet, Christophe, E-mail: Christophe.Donnet@univ-st-etienne.fr [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Loir, Anne–Sophie; Reynaud, Stéphanie; Michalon, Jean–Yves; Vocanson, Francis; Garrelie, Florence [Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 18 rue Professeur Benoit Lauras, F-42000 Saint-Etienne (France)

    2016-04-01

    We report the synthesis, characterization and use of a robust surface enhanced Raman spectroscopy platform with a stable detection for up to one year of Rhodamine R6G at a concentration of 10{sup −6} M. The detection of aminothiophenol and methyl parathion, as active molecules of commercial insecticides, is further demonstrated at concentrations down to 10{sup −5}–10{sup −6} M. This platform is based on large scale textured few-layer (fl) graphene obtained without any need of graphene transfer. The synthesis route is based on diamond-like carbon films grown by pulsed laser deposition, deposited onto silicon substrates covered by a Ni layer prior to diamond-like carbon deposition. The formation of fl-graphene film, confirmed by Raman spectroscopy and mapping, is obtained by thermal annealing inducing the diffusion of Ni atoms and the concomitant formation of nickel silicide compounds, as identified by Raman and Auger electron spectroscopies. The textured fl-graphene films were decorated with gold nanoparticles to optimize the efficiency of the SERS device to detect organic molecules at low concentrations. - Highlights: • Synthesis of graphene film from amorphous carbon by pulsed laser deposition with nickel catalyst • Large scale textured graphene with nanoscale roughness obtained through nickel silicide formation • Films used for surface enhanced Raman spectroscopy detection of organophosphate compounds • Stability of the SERS platforms over up to one year.

  19. Autonomic Semantic-Based Context-Aware Platform for Mobile Applications in Pervasive Environments

    Directory of Open Access Journals (Sweden)

    Adel Alti

    2016-09-01

    Full Text Available Currently, the field of smart-* (home, city, health, tourism, etc. is naturally heterogeneous and multimedia oriented. In such a domain, there is an increasing usage of heterogeneous mobile devices, as well as captors transmitting data (IoT. They are highly connected and can be used for many different services, such as to monitor, to analyze and to display information to users. In this context, data management and adaptation in real time are becoming a challenging task. More precisely, at one time, it is necessary to handle in a dynamic, intelligent and transparent framework various data provided by multiple devices with several modalities. This paper presents a Kali-Smart platform, which is an autonomic semantic-based context-aware platform. It is based on semantic web technologies and a middleware providing autonomy and reasoning facilities. Moreover, Kali-Smart is generic and, as a consequence, offers to users a flexible infrastructure where they can easily control various interaction modalities of their own situations. An experimental study has been made to evaluate the performance and feasibility of the proposed platform.

  20. Virtual Distances Methodology as Verification Technique for AACMMs with a Capacitive Sensor Based Indexed Metrology Platform

    Directory of Open Access Journals (Sweden)

    Raquel Acero

    2016-11-01

    Full Text Available This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs together with a capacitive sensor-based indexed metrology platform (IMP based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform’s mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument’s working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform.

  1. Modal Strain Energy Based Structural Damage Localization for Offshore Platform using Simulated and Measured Data

    Institute of Scientific and Technical Information of China (English)

    WANG Shuqing; LIU Fushun; ZHANG Min

    2014-01-01

    Modal strain energy based methods for damage detection have received much attention. However, most of published articles use numerical methods and some studies conduct modal tests with simple 1D or 2D structures to verify the damage detection algorithms. Only a few studies utilize modal testing data from 3D frame structures. Few studies conduct performance comparisons between two different modal strain energy based methods. The objective of this paper is to investigate and compare the effectiveness of a traditional modal strain energy method (Stubbs index) and a recently developed modal strain energy decomposition (MSED) method for damage localization, for such a purpose both simulated and measured data from an offshore platform model being used. Particularly, the mode shapes used in the damage localization are identified and synthesized from only two measurements of one damage scenario because of the limited number of sensors. The two methods were first briefly reviewed. Next, using a 3D offshore platform model, the damage detection algorithms were implemented with different levels of damage severities for both single damage and multiple damage cases. Finally, a physical model of an offshore steel platform was constructed for modal testing and for validat-ing the applicability. Results indicate that the MSED method outperforms the Stubbs index method for structural damage detection.

  2. Development of a Web-based visualization platform for climate research using Google Earth

    Science.gov (United States)

    Sun, Xiaojuan; Shen, Suhung; Leptoukh, Gregory G.; Wang, Panxing; Di, Liping; Lu, Mingyue

    2012-10-01

    Recently, it has become easier to access climate data from satellites, ground measurements, and models from various data centers. However, searching, accessing, and processing heterogeneous data from different sources are very time-consuming tasks. There is lack of a comprehensive visual platform to acquire distributed and heterogeneous scientific data and to render processed images from a single accessing point for climate studies. This paper documents the design and implementation of a Web-based visual, interoperable, and scalable platform that is able to access climatological fields from models, satellites, and ground stations from a number of data sources using Google Earth (GE) as a common graphical interface. The development is based on the TCP/IP protocol and various data sharing open sources, such as OPeNDAP, GDS, Web Processing Service (WPS), and Web Mapping Service (WMS). The visualization capability of integrating various measurements into GE extends dramatically the awareness and visibility of scientific results. Using embedded geographic information in the GE, the designed system improves our understanding of the relationships of different elements in a four-dimensional domain. The system enables easy and convenient synergistic research on a virtual platform for professionals and the general public, greatly advancing global data sharing and scientific research collaboration.

  3. Smart home-based health platform for behavioral monitoring and alteration of diabetes patients.

    Science.gov (United States)

    Helal, Abdelsalam; Cook, Diane J; Schmalz, Mark

    2009-01-01

    Researchers and medical practitioners have long sought the ability to continuously and automatically monitor patients beyond the confines of a doctor's office. We describe a smart home monitoring and analysis platform that facilitates the automatic gathering of rich databases of behavioral information in a manner that is transparent to the patient. Collected information will be automatically or manually analyzed and reported to the caregivers and may be interpreted for behavioral modification in the patient. Our health platform consists of five technology layers. The architecture is designed to be flexible, extensible, and transparent, to support plug-and-play operation of new devices and components, and to provide remote monitoring and programming opportunities. The smart home-based health platform technologies have been tested in two physical smart environments. Data that are collected in these implemented physical layers are processed and analyzed by our activity recognition and chewing classification algorithms. All of these components have yielded accurate analyses for subjects in the smart environment test beds. This work represents an important first step in the field of smart environment-based health monitoring and assistance. The architecture can be used to monitor the activity, diet, and exercise compliance of diabetes patients and evaluate the effects of alternative medicine and behavior regimens. We believe these technologies are essential for providing accessible, low-cost health assistance in an individual's own home and for providing the best possible quality of life for individuals with diabetes. © Diabetes Technology Society

  4. Development of a Web-Based Visualization Platform for Climate Research Using Google Earth

    Science.gov (United States)

    Sun, Xiaojuan; Shen, Suhung; Leptoukh, Gregory G.; Wang, Panxing; Di, Liping; Lu, Mingyue

    2011-01-01

    Recently, it has become easier to access climate data from satellites, ground measurements, and models from various data centers, However, searching. accessing, and prc(essing heterogeneous data from different sources are very tim -consuming tasks. There is lack of a comprehensive visual platform to acquire distributed and heterogeneous scientific data and to render processed images from a single accessing point for climate studies. This paper. documents the design and implementation of a Web-based visual, interoperable, and scalable platform that is able to access climatological fields from models, satellites, and ground stations from a number of data sources using Google Earth (GE) as a common graphical interface. The development is based on the TCP/IP protocol and various data sharing open sources, such as OPeNDAP, GDS, Web Processing Service (WPS), and Web Mapping Service (WMS). The visualization capability of integrating various measurements into cE extends dramatically the awareness and visibility of scientific results. Using embedded geographic information in the GE, the designed system improves our understanding of the relationships of different elements in a four dimensional domain. The system enables easy and convenient synergistic research on a virtual platform for professionals and the general public, gr$tly advancing global data sharing and scientific research collaboration.

  5. A methodology towards virtualisation-based high performance simulation platform supporting multidisciplinary design of complex products

    Science.gov (United States)

    Ren, Lei; Zhang, Lin; Tao, Fei; (Luke) Zhang, Xiaolong; Luo, Yongliang; Zhang, Yabin

    2012-08-01

    Multidisciplinary design of complex products leads to an increasing demand for high performance simulation (HPS) platforms. One great challenge is how to achieve high efficient utilisation of large-scale simulation resources in distributed and heterogeneous environments. This article reports a virtualisation-based methodology to realise a HPS platform. This research is driven by the issues concerning large-scale simulation resources deployment and complex simulation environment construction, efficient and transparent utilisation of fine-grained simulation resources and high reliable simulation with fault tolerance. A framework of virtualisation-based simulation platform (VSIM) is first proposed. Then the article investigates and discusses key approaches in VSIM, including simulation resources modelling, a method to automatically deploying simulation resources for dynamic construction of system environment, and a live migration mechanism in case of faults in run-time simulation. Furthermore, the proposed methodology is applied to a multidisciplinary design system for aircraft virtual prototyping and some experiments are conducted. The experimental results show that the proposed methodology can (1) significantly improve the utilisation of fine-grained simulation resources, (2) result in a great reduction in deployment time and an increased flexibility for simulation environment construction and (3)achieve fault tolerant simulation.

  6. Platform-level Distributed Warfare Model-based on Multi-Agent System Framework

    Directory of Open Access Journals (Sweden)

    Xiong Li

    2012-05-01

    Full Text Available The multi-agent paradigm has become a useful tool in solving military problems. However, one of key challenges in multi-agent model for distributed warfare could be how to describe the microcosmic  tactical warfare platforms actions. In this paper, a platform-level distributed warfare model based on multi-agent system framework is designed to tackle this challenge. The basic ideas include:  Establishing multi-agent model by mapping from tactical warfare system’s members, i.e., warfare platforms, to respective agents; performing task decomposition and task allocation by using task-tree decomposition method and improved contract net protocol model technique; and implementing simulation by presenting battlefield terrain environment analysis algorithm based on grid approach. The  simulation demonstration results show that our model provides a feasible and effective approach to supporting the abstraction and representation of microcosmic tactical actions for complex warfare system.Defence Science Journal, 2012, 62(1, pp.180-186, DOI:http://dx.doi.org/10.14429/dsj.62.964

  7. A SOA-Based Platform-Specific Framework for Context-Aware Mobile Applications

    Science.gov (United States)

    Daniele, Laura M.; Silva, Eduardo; Pires, Luís Ferreira; van Sinderen, Marten

    Context-aware mobile applications are intelligent applications that can monitor the user’s context and, in case of changes in this context, consequently adapt their behaviour in order to satisfy the user’s current needs or anticipate the user’s intentions. The design of such applications relies on dynamic middleware platforms that consist of a variety of components. These components are distributed in the environment and interoperate by making use of each other’s services. In the A-MUSE project, we defined a design methodology based on MDA principles that relies on a SOA reference architecture for context-aware mobile applications. This paper shows how abstract concepts in the design of such applications can be applied to realize concrete components that guarantee architectural interoperability. We also present a platform-specific framework that uses BPEL, UDDI registry and web services as target technologies to implement our reference architecture.

  8. A CLOUD-BASED PLATFORM SUPPORTING GEOSPATIAL COLLABORATION FOR GIS EDUCATION

    Directory of Open Access Journals (Sweden)

    X. Cheng

    2015-05-01

    Full Text Available GIS-related education needs support of geo-data and geospatial software. Although there are large amount of geographic information resources distributed on the web, the discovery, process and integration of these resources are still unsolved. Researchers and teachers always searched geo-data by common search engines but results were not satisfied. They also spent much money and energy on purchase and maintenance of various kinds of geospatial software. Aimed at these problems, a cloud-based geospatial collaboration platform called GeoSquare was designed and implemented. The platform serves as a geoportal encouraging geospatial data, information, and knowledge sharing through highly interactive and expressive graphic interfaces. Researchers and teachers can solve their problems effectively in this one-stop solution. Functions, specific design and implementation details are presented in this paper. Site of GeoSquare is: http://geosquare.tianditu.com/

  9. A Web-Based Earth-Systems Knowledge Portal and Collaboration Platform

    Science.gov (United States)

    D'Agnese, F. A.; Turner, A. K.

    2010-12-01

    In support of complex water-resource sustainability projects in the Great Basin region of the United States, Earth Knowledge, Inc. has developed several web-based data management and analysis platforms that have been used by its scientists, clients, and public to facilitate information exchanges, collaborations, and decision making. These platforms support accurate water-resource decision-making by combining second-generation internet (Web 2.0) technologies with traditional 2D GIS and web-based 2D and 3D mapping systems such as Google Maps, and Google Earth. Most data management and analysis systems use traditional software systems to address the data needs and usage behavior of the scientific community. In contrast, these platforms employ more accessible open-source and “off-the-shelf” consumer-oriented, hosted web-services. They exploit familiar software tools using industry standard protocols, formats, and APIs to discover, process, fuse, and visualize earth, engineering, and social science datasets. Thus, they respond to the information needs and web-interface expectations of both subject-matter experts and the public. Because the platforms continue to gather and store all the contributions of their broad-spectrum of users, each new assessment leverages the data, information, and expertise derived from previous investigations. In the last year, Earth Knowledge completed a conceptual system design and feasibility study for a platform, which has a Knowledge Portal providing access to users wishing to retrieve information or knowledge developed by the science enterprise and a Collaboration Environment Module, a framework that links the user-access functions to a Technical Core supporting technical and scientific analyses including Data Management, Analysis and Modeling, and Decision Management, and to essential system administrative functions within an Administrative Module. The over-riding technical challenge is the design and development of a single

  10. High Performance Power Spectrum Analysis Using a FPGA Based Reconfigurable Computing Platform

    CERN Document Server

    Abhyankar, Yogindra; Agarwal, Yogesh; Subrahmanya, C R; Prasad, Peeyush; 10.1109/RECONF.2006.307786

    2011-01-01

    Power-spectrum analysis is an important tool providing critical information about a signal. The range of applications includes communication-systems to DNA-sequencing. If there is interference present on a transmitted signal, it could be due to a natural cause or superimposed forcefully. In the latter case, its early detection and analysis becomes important. In such situations having a small observation window, a quick look at power-spectrum can reveal a great deal of information, including frequency and source of interference. In this paper, we present our design of a FPGA based reconfigurable platform for high performance power-spectrum analysis. This allows for the real-time data-acquisition and processing of samples of the incoming signal in a small time frame. The processing consists of computation of power, its average and peak, over a set of input values. This platform sustains simultaneous data streams on each of the four input channels.

  11. OneWeb: web content adaptation platform based on W3C Mobile Web Initiative guidelines

    Directory of Open Access Journals (Sweden)

    Francisco O. Martínez P.

    2011-01-01

    Full Text Available  Restrictions regardingnavigability and user-friendliness are the main challenges the Mobile Web faces to be accepted worldwide. W3C has recently developed the Mobile Web Initiative (MWI, a set of directives for the suitable design and presentation of mobile Web interfaces. This article presents the main features and functional modules of OneWeb, an MWI-based Web content adaptation platform developed by Mobile Devices Applications Development Interest Group’s  (W@PColombia research activities, forming part of the Universidad de Cauca’s Telematics Engineering Group.Some performance measurementresults and comparison with other Web content adaptation platforms are presented. Tests have shown suitable response times for Mobile Web environments; MWI guidelines were applied to over twenty Web pages selected for testing purposes.  

  12. Image based control of the “PINOCCHIO” experimental free flying platform

    Science.gov (United States)

    Sabatini, Marco; Palmerini, Giovanni B.; Monti, Riccardo; Gasbarri, Paolo

    2014-01-01

    A free floating platform is realized with a pneumatic suspension system which enables a two-dimensional test of complex space operations, such as rendezvous and docking. The platform is equipped with a IMU and actuated via cold gas thrusters. In addition, an on-board camera is used to acquire a target and its image is processed for evaluating the control actions needed to reach it. A technique for determining the relative position and velocity with respect to target using the same visual device is proposed and realized. The novel algorithms and relevant experimental results are presented. The tested accuracy of the relative navigation system is not very high, but the guidance algorithm, which is image based and has just a weak dependence on the position information, is robust enough to perform a successful maneuver. The error between the final acquired target image and the desired final target image is of the order of one pixel, notwithstanding all the testbed disturbances.

  13. SPARQLGraph: a web-based platform for graphically querying biological Semantic Web databases.

    Science.gov (United States)

    Schweiger, Dominik; Trajanoski, Zlatko; Pabinger, Stephan

    2014-08-15

    Semantic Web has established itself as a framework for using and sharing data across applications and database boundaries. Here, we present a web-based platform for querying biological Semantic Web databases in a graphical way. SPARQLGraph offers an intuitive drag & drop query builder, which converts the visual graph into a query and executes it on a public endpoint. The tool integrates several publicly available Semantic Web databases, including the databases of the just recently released EBI RDF platform. Furthermore, it provides several predefined template queries for answering biological questions. Users can easily create and save new query graphs, which can also be shared with other researchers. This new graphical way of creating queries for biological Semantic Web databases considerably facilitates usability as it removes the requirement of knowing specific query languages and database structures. The system is freely available at http://sparqlgraph.i-med.ac.at.

  14. Architecture Design and Experimental Platform Demonstration of Optical Network based on OpenFlow Protocol

    Science.gov (United States)

    Xing, Fangyuan; Wang, Honghuan; Yin, Hongxi; Li, Ming; Luo, Shenzi; Wu, Chenguang

    2016-02-01

    With the extensive application of cloud computing and data centres, as well as the constantly emerging services, the big data with the burst characteristic has brought huge challenges to optical networks. Consequently, the software defined optical network (SDON) that combines optical networks with software defined network (SDN), has attracted much attention. In this paper, an OpenFlow-enabled optical node employed in optical cross-connect (OXC) and reconfigurable optical add/drop multiplexer (ROADM), is proposed. An open source OpenFlow controller is extended on routing strategies. In addition, the experiment platform based on OpenFlow protocol for software defined optical network, is designed. The feasibility and availability of the OpenFlow-enabled optical nodes and the extended OpenFlow controller are validated by the connectivity test, protection switching and load balancing experiments in this test platform.

  15. Research on sudden environmental pollution public service platform construction based on WebGIS

    Science.gov (United States)

    Bi, T. P.; Gao, D. Y.; Zhong, X. Y.

    2016-08-01

    In order to actualize the social sharing and service of the emergency-response information for sudden pollution accidents, the public can share the risk source information service, dangerous goods control technology service and so on, The SQL Server and ArcSDE software are used to establish a spatial database to restore all kinds of information including risk sources, hazardous chemicals and handling methods in case of accidents. Combined with Chinese atmospheric environmental assessment standards, the SCREEN3 atmospheric dispersion model and one-dimensional liquid diffusion model are established to realize the query of related information and the display of the diffusion effect under B/S structure. Based on the WebGIS technology, C#.Net language is used to develop the sudden environmental pollution public service platform. As a result, the public service platform can make risk assessments and provide the best emergency processing services.

  16. Simple and rapid determination of ferulic acid levels in food and cosmetic samples using paper-based platforms.

    Science.gov (United States)

    Tee-ngam, Prinjaporn; Nunant, Namthip; Rattanarat, Poomrat; Siangproh, Weena; Chailapakul, Orawon

    2013-09-26

    Ferulic acid is an important phenolic antioxidant found in or added to diet supplements, beverages, and cosmetic creams. Two designs of paper-based platforms for the fast, simple and inexpensive evaluation of ferulic acid contents in food and pharmaceutical cosmetics were evaluated. The first, a paper-based electrochemical device, was developed for ferulic acid detection in uncomplicated matrix samples and was created by the photolithographic method. The second, a paper-based colorimetric device was preceded by thin layer chromatography (TLC) for the separation and detection of ferulic acid in complex samples using a silica plate stationary phase and an 85:15:1 (v/v/v) chloroform: methanol: formic acid mobile phase. After separation, ferulic acid containing section of the TLC plate was attached onto the patterned paper containing the colorimetric reagent and eluted with ethanol. The resulting color change was photographed and quantitatively converted to intensity. Under the optimal conditions, the limit of detection of ferulic acid was found to be 1 ppm and 7 ppm (S/N = 3) for first and second designs, respectively, with good agreement with the standard HPLC-UV detection method. Therefore, these methods can be used for the simple, rapid, inexpensive and sensitive quantification of ferulic acid in a variety of samples.

  17. The effect of maximum-allowable payload temperature on the mass of a multimegawatt space-based platform

    Energy Technology Data Exchange (ETDEWEB)

    Dobranich, D.

    1987-08-01

    Calculations were performed to determine the mass of a space-based platform as a function of the maximum-allowed operating temperature of the electrical equipment within the platform payload. Two computer programs were used in conjunction to perform these calculations. The first program was used to determine the mass of the platform reactor, shield, and power conversion system. The second program was used to determine the mass of the main and secondary radiators of the platform. The main radiator removes the waste heat associated with the power conversion system and the secondary radiator removes the waste heat associated with the platform payload. These calculations were performed for both Brayton and Rankine cycle platforms with two different types of payload cooling systems: a pumped-loop system (a heat exchanger with a liquid coolant) and a refrigerator system. The results indicate that increases in the maximum-allowed payload temperature offer significant platform mass savings for both the Brayton and Rankine cycle platforms with either the pumped-loop or refrigerator payload cooling systems. Therefore, with respect to platform mass, the development of high temperature electrical equipment would be advantageous. 3 refs., 24 figs., 7 tabs.

  18. Insight: An ontology-based integrated database and analysis platform for epilepsy self-management research.

    Science.gov (United States)

    Sahoo, Satya S; Ramesh, Priya; Welter, Elisabeth; Bukach, Ashley; Valdez, Joshua; Tatsuoka, Curtis; Bamps, Yvan; Stoll, Shelley; Jobst, Barbara C; Sajatovic, Martha

    2016-10-01

    We present Insight as an integrated database and analysis platform for epilepsy self-management research as part of the national Managing Epilepsy Well Network. Insight is the only available informatics platform for accessing and analyzing integrated data from multiple epilepsy self-management research studies with several new data management features and user-friendly functionalities. The features of Insight include, (1) use of Common Data Elements defined by members of the research community and an epilepsy domain ontology for data integration and querying, (2) visualization tools to support real time exploration of data distribution across research studies, and (3) an interactive visual query interface for provenance-enabled research cohort identification. The Insight platform contains data from five completed epilepsy self-management research studies covering various categories of data, including depression, quality of life, seizure frequency, and socioeconomic information. The data represents over 400 participants with 7552 data points. The Insight data exploration and cohort identification query interface has been developed using Ruby on Rails Web technology and open source Web Ontology Language Application Programming Interface to support ontology-based reasoning. We have developed an efficient ontology management module that automatically updates the ontology mappings each time a new version of the Epilepsy and Seizure Ontology is released. The Insight platform features a Role-based Access Control module to authenticate and effectively manage user access to different research studies. User access to Insight is managed by the Managing Epilepsy Well Network database steering committee consisting of representatives of all current collaborating centers of the Managing Epilepsy Well Network. New research studies are being continuously added to the Insight database and the size as well as the unique coverage of the dataset allows investigators to conduct

  19. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Nina Koliha

    2016-02-01

    Full Text Available The surface protein composition of extracellular vesicles (EVs is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions.

  20. Design and Implementation of Harmful Algal Bloom Diagnosis System Based on J2EE Platform

    Science.gov (United States)

    Guo, Chunfeng; Zheng, Haiyong; Ji, Guangrong; Lv, Liang

    According to the shortcomings which are time consuming and laborious of the traditional HAB (Harmful Algal Bloom) diagnosis by the experienced experts using microscope, all kinds of methods and technologies to identify HAB emerged such as microscopic images, molecular biology, characteristics of pigments analysis, fluorescence spectra, inherent optical properties, etc. This paper proposes the design and implementation of a web-based diagnosis system integrating the popular methods for HAB identification. This system is designed with J2EE platform based on MVC (Model-View-Controller) model as well as technologies such as JSP, Servlets, EJB and JDBC.

  1. Evaluation of secure capability-based access control in the M2M local cloud platform

    DEFF Research Database (Denmark)

    Anggorojati, Bayu; Prasad, Neeli R.; Prasad, Ramjee

    2016-01-01

    of multiple distributed M2M gateways, creating new challenges in the access control. Some existing access control systems lack in scalability and flexibility to manage access from users or entity that belong to different authorization domains, or fails to provide fine grained and flexible access right...... delegation. Recently, the capability based access control has been considered as method to manage access in the Internet of Things (IoT) or M2M domain. In this paper, the implementation and evaluation of a proposed secure capability based access control in the M2M local cloud platform is presented...

  2. Blu-Ray-based micromechanical characterization platform for biopolymer degradation assessment

    DEFF Research Database (Denmark)

    Casci Ceccacci, Andrea; Chen, Ching-Hsiu; Hwu, En-Te

    2017-01-01

    Degradable biopolymers are used as carrier materials in drug delivery devices. A complete understanding of their degradation behaviour is thus crucial in the design of new delivery systems. Here we combine a reliable method, based on spray coated micromechanical resonators and a disposable...... microfluidic chip, to characterize biopolymer degradation under the action of enzymes in controlled flow condition. The sensing platform is based on the mechanics and optics from a Blu-Ray player, which automatically localize individual sensors within the array, and sequentially measure and record...

  3. Research and design of wap service system based on MISC platform

    Institute of Scientific and Technical Information of China (English)

    YU Qun; SONG Mei-na; SONG Jun-de; ZHAN Xiao-su

    2006-01-01

    Wireless application protocol (WAP) have become the available method for subscribers to access mobile Internet through mobile terminal, regardless of the location and time. In this article, a logical architecture of WAP service system based on mobile information service centre (MISC) [1, 2] platform is discussed. The whole system is designed and developed on Java 2 enterprise edition [3] (J2EE) architecture and deployed on BEA WebLogic Server [3, 4]. Furthermore, a series of various WAP services based on this system have been implemented, which validates the practice value of this system.This optimal scheme presented in this article will reduce the development complexity, deployment risk, and so on.

  4. Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Klein-Marcuschamer, Daniel; Oleskowicz-Popiel, Piotr; Simmons, Blake A.

    2010-01-01

    We present a process model for a lignocellulosic ethanol biorefinery that is open to the biofuels academic community. Beyond providing a series of static results, the wiki-based platform provides a dynamic and transparent tool for analyzing, exploring, and communicating the impact of process...... advances and alternatives for biofuels production. The model is available for download (at http://econ.jbei.org) and will be updated based on feedback from the community of experts in biofuel-related fields. By making the assumptions and performance metrics of this model transparent, we anticipate...... this tool can provide a consensus on the energy-related, environmental, and economic performance of lignocellulosic ethanol....

  5. Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a Grid platform

    CERN Document Server

    Arteaga-Sierra, F R; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A

    2014-01-01

    We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.

  6. Evolvable Hardware Based Software-Hardware Co-Designing Platform ECDP

    Institute of Scientific and Technical Information of China (English)

    TU Hang; WU Tao-jun; LI Yuan-xiang

    2005-01-01

    Based on the theories of EA (Evolutionary Algorithm) and EHW (Evolvable Hardware), we devise an EHW-based software-hardware co-designing platform ECDP, on which we provided standards for hardware system encoding and evolving operation designing, as well as circuit emulating tools. The major features of this system are: two-layer-encoding of circuit structure, off-line evolving with software emulation and the evolving of genetic program designing. With this system, we implemented the auto-designing of some software-hardware systems, like the random number generator.

  7. Design and Implementation of Mobile Blended Learning Model Based on WeChat Public Platform

    Directory of Open Access Journals (Sweden)

    Han Yanyan

    2017-01-01

    Full Text Available Merging together the ideas of mobile learning, blended learning and flipped classroom, a Mobile Blended Learning Model (MBLM is constructed. Based on WeChat Public Platform (WPP, MBLM can optimize the instructional process and improve the learning efficiency. A Mobile Blended Learning System(MBLS is implemented by using MBLM, and it is constructed by both WPP and auxiliary learning system which based on Java Web. This system has reasonable designed function, easy operation, and beautiful interface, so it can effectively promote the popularization of MBLM.

  8. Slow erosion of a quantitative apple resistance to Venturia inaequalis based on an isolate-specific Quantitative Trait Locus.

    Science.gov (United States)

    Caffier, Valérie; Le Cam, Bruno; Al Rifaï, Mehdi; Bellanger, Marie-Noëlle; Comby, Morgane; Denancé, Caroline; Didelot, Frédérique; Expert, Pascale; Kerdraon, Tifenn; Lemarquand, Arnaud; Ravon, Elisa; Durel, Charles-Eric

    2016-10-01

    Quantitative plant resistance affects the aggressiveness of pathogens and is usually considered more durable than qualitative resistance. However, the efficiency of a quantitative resistance based on an isolate-specific Quantitative Trait Locus (QTL) is expected to decrease over time due to the selection of isolates with a high level of aggressiveness on resistant plants. To test this hypothesis, we surveyed scab incidence over an eight-year period in an orchard planted with susceptible and quantitatively resistant apple genotypes. We sampled 79 Venturia inaequalis isolates from this orchard at three dates and we tested their level of aggressiveness under controlled conditions. Isolates sampled on resistant genotypes triggered higher lesion density and exhibited a higher sporulation rate on apple carrying the resistance allele of the QTL T1 compared to isolates sampled on susceptible genotypes. Due to this ability to select aggressive isolates, we expected the QTL T1 to be non-durable. However, our results showed that the quantitative resistance based on the QTL T1 remained efficient in orchard over an eight-year period, with only a slow decrease in efficiency and no detectable increase of the aggressiveness of fungal isolates over time. We conclude that knowledge on the specificity of a QTL is not sufficient to evaluate its durability. Deciphering molecular mechanisms associated with resistance QTLs, genetic determinants of aggressiveness and putative trade-offs within pathogen populations is needed to help in understanding the erosion processes.

  9. A multiplexable, microfluidic platform for the rapid quantitation of a biomarker panel for early ovarian cancer detection at the point-of-care.

    Science.gov (United States)

    Shadfan, Basil H; Simmons, Archana R; Simmons, Glennon W; Ho, Andy; Wong, Jorge; Lu, Karen H; Bast, Robert C; McDevitt, John T

    2015-01-01

    Point-of-care (POC) diagnostic platforms have the potential to enable low-cost, large-scale screening. As no single biomarker is shed by all ovarian cancers, multiplexed biomarker panels promise improved sensitivity and specificity to address the unmet need for early detection of ovarian cancer. We have configured the programmable bio-nano-chip (p-BNC)-a multiplexable, microfluidic, modular platform-to quantify a novel multi-marker panel comprising CA125, HE4, MMP-7, and CA72-4. The p-BNC is a bead-based immunoanalyzer system with a credit-card-sized footprint that integrates automated sample metering, bubble and debris removal, reagent storage and waste disposal, permitting POC analysis. Multiplexed p-BNC immunoassays demonstrated high specificity, low cross-reactivity, low limits of detection suitable for early detection, and a short analysis time of 43 minutes. Day-to-day variability, a critical factor for longitudinally monitoring biomarkers, ranged between 5.4% and 10.5%, well below the biologic variation for all four markers. Biomarker concentrations for 31 late-stage sera correlated well (R(2) = 0.71 to 0.93 for various biomarkers) with values obtained on the Luminex platform. In a 31 patient cohort encompassing early- and late-stage ovarian cancers along with benign and healthy controls, the multiplexed p-BNC panel was able to distinguish cases from controls with 68.7% sensitivity at 80% specificity. Utility for longitudinal biomarker monitoring was demonstrated with prediagnostic plasma from 2 cases and 4 controls. Taken together, the p-BNC shows strong promise as a diagnostic tool for large-scale screening that takes advantage of faster results and lower costs while leveraging possible improvement in sensitivity and specificity from biomarker panels.

  10. Quality control for quantitative PCR based on amplification compatibility test.

    Science.gov (United States)

    Tichopad, Ales; Bar, Tzachi; Pecen, Ladislav; Kitchen, Robert R; Kubista, Mikael; Pfaffl, Michael W

    2010-04-01

    Quantitative qPCR is a routinely used method for the accurate quantification of nucleic acids. Yet it may generate erroneous results if the amplification process is obscured by inhibition or generation of aberrant side-products such as primer dimers. Several methods have been established to control for pre-processing performance that rely on the introduction of a co-amplified reference sequence, however there is currently no method to allow for reliable control of the amplification process without directly modifying the sample mix. Herein we present a statistical approach based on multivariate analysis of the amplification response data generated in real-time. The amplification trajectory in its most resolved and dynamic phase is fitted with a suitable model. Two parameters of this model, related to amplification efficiency, are then used for calculation of the Z-score statistics. Each studied sample is compared to a predefined reference set of reactions, typically calibration reactions. A probabilistic decision for each individual Z-score is then used to identify the majority of inhibited reactions in our experiments. We compare this approach to univariate methods using only the sample specific amplification efficiency as reporter of the compatibility. We demonstrate improved identification performance using the multivariate approach compared to the univariate approach. Finally we stress that the performance of the amplification compatibility test as a quality control procedure depends on the quality of the reference set.

  11. Radar-Derived Quantitative Precipitation Estimation Based on Precipitation Classification

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2016-01-01

    Full Text Available A method for improving radar-derived quantitative precipitation estimation is proposed. Tropical vertical profiles of reflectivity (VPRs are first determined from multiple VPRs. Upon identifying a tropical VPR, the event can be further classified as either tropical-stratiform or tropical-convective rainfall by a fuzzy logic (FL algorithm. Based on the precipitation-type fields, the reflectivity values are converted into rainfall rate using a Z-R relationship. In order to evaluate the performance of this rainfall classification scheme, three experiments were conducted using three months of data and two study cases. In Experiment I, the Weather Surveillance Radar-1988 Doppler (WSR-88D default Z-R relationship was applied. In Experiment II, the precipitation regime was separated into convective and stratiform rainfall using the FL algorithm, and corresponding Z-R relationships were used. In Experiment III, the precipitation regime was separated into convective, stratiform, and tropical rainfall, and the corresponding Z-R relationships were applied. The results show that the rainfall rates obtained from all three experiments match closely with the gauge observations, although Experiment II could solve the underestimation, when compared to Experiment I. Experiment III significantly reduced this underestimation and generated the most accurate radar estimates of rain rate among the three experiments.

  12. Reprint of: Simulation Platform: a cloud-based online simulation environment.

    Science.gov (United States)

    Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro

    2011-11-01

    For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software.

  13. Vibration control of platform structures with magnetorheological elastomer isolators based on an improved SAVS law

    Science.gov (United States)

    Xu, Zhao-Dong; Suo, Si; Lu, Yong

    2016-06-01

    This paper presents a study on the vibration control of platform structures with magnetorheological elastomer (MRE) isolators. Firstly, a novel MRE isolator design is put forward based on the mechanical properties of MREs, and subsequently a single-degree-of-freedom (SDOF) dynamic model and a multiple-degree-of-freedom (MDOF) dynamic model for platform systems incorporating such isolators are developed. In order to overcome the shortcomings of the conventional on-off control law, an improved semi-active variable stiffness (SAVS) control law is proposed. The proposed SAVS scheme makes full use of the continuously variable stiffness of MREs, and it takes into account the influence of the sampling interval such that the field-dependent restoring force is made to do negative work during the whole sampling interval as far as possible. The results of numerical simulations demonstrate that the improved SAVS control law can achieve better vibration-control effectiveness than the on-off control law. The comparative results are discussed through examining the mechanisms of these two control laws in light of the power spectral density and the energy input. For an MDOF platform a simplified approach is proposed to combine the local response signals with an equivalent SDOF representation to generate the control parameters for individual isolators, and the effectiveness of such a scheme is also verified through numerical simulation.

  14. FaceTOON: a unified platform for feature-based cartoon expression generation

    Science.gov (United States)

    Zaharia, Titus; Marre, Olivier; Prêteux, Françoise; Monjaux, Perrine

    2008-02-01

    This paper presents the FaceTOON system, a semi-automatic platform dedicated to the creation of verbal and emotional facial expressions, within the applicative framework of 2D cartoon production. The proposed FaceTOON platform makes it possible to rapidly create 3D facial animations with a minimum amount of user interaction. In contrast with existing commercial 3D modeling softwares, which usually require from the users advanced 3D graphics skills and competences, the FaceTOON system is based exclusively on 2D interaction mechanisms, the 3D modeling stage being completely transparent for the user. The system takes as input a neutral 3D face model, free of any facial feature, and a set of 2D drawings, representing the desired facial features. A 2D/3D virtual mapping procedure makes it possible to obtain a ready-for-animation model which can be directly manipulated and deformed for generating expressions. The platform includes a complete set of dedicated tools for 2D/3D interactive deformation, pose management, key-frame interpolation and MPEG-4 compliant animation and rendering. The proposed FaceTOON system is currently considered for industrial evaluation and commercialization by the Quadraxis company.

  15. A Kinect-Based Physiotherapy and Assessment Platform for Parkinson’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Ioannis Pachoulakis

    2016-01-01

    Full Text Available We report on a Kinect-based, augmented reality, real-time physiotherapy platform tailored to Parkinson’s disease (PD patients. The platform employs a Kinect sensor to extract real-time 3D skeletal data (joint information from a patient facing the sensor (at 30 frames per second. In addition, a small collection of exercises practiced in traditional physiotherapy for PD patients has been implemented in the Unity 3D game engine. Each exercise employs linear or circular movement patterns and poses very light-weight processing demands on real-time computations. During an exercise, trainer instruction demonstrates correct execution and Kinect-provided 3D joint data are fed to the game engine and compared to exercise-specific control routines to assess proper posture and body control in real time. When an exercise is complete, performance metrics appropriate for that exercise are computed and displayed on screen to enable the attending physiotherapist to fine-tune the exercise to the abilities/needs of an individual patient as well as to provide performance feedback to the patient. The platform can operate in a physiotherapist’s office and, following appropriate validation, in a home environment. Finally, exercises can be parameterized meaningfully, depending on the intended purpose (motor assessment versus plain exercise at home.

  16. Real-time visual tracking system modelling in MPSoC using platform based design

    Science.gov (United States)

    Jia, Zai Jian; Bautista, Tomás; Núñez, Antonio; Guerra, Cayetano; Hernández, Mario

    2009-02-01

    In this paper, we present the modelling of a real-time tracking system on a Multi-Processor System on Chip (MPSoC). Our final goal is to build a more complex computer vision system (CVS) by integrating several applications in a modular way, which performs different kind of data processing issues but sharing a common platform, and this way, a solution for a set of applications using the same architecture is offered and not just for one application. In our current work, a visual tracking system with real-time behaviour (25 frames/sec) is used like a reference application, and also, guidelines for our future CVS applications development. Our algorithm written in C++ is based on correlation technique and the threshold dynamic update approach. After an initial computational complexity analysis, a task-graph was generated from this tracking algorithm. Concurrently with this functionality correctness analysis, a generic model of multi-processor platform was developed. Finally, the tracking system performance mapped onto the proposed architecture and shared resource usage were analyzed to determine the real architecture capacity, and also to find out possible bottlenecks in order to propose new solutions which allow more applications to be mapped on the platform template in the future.

  17. A Kinect-Based Physiotherapy and Assessment Platform for Parkinson's Disease Patients.

    Science.gov (United States)

    Pachoulakis, Ioannis; Xilourgos, Nikolaos; Papadopoulos, Nikolaos; Analyti, Anastasia

    2016-01-01

    We report on a Kinect-based, augmented reality, real-time physiotherapy platform tailored to Parkinson's disease (PD) patients. The platform employs a Kinect sensor to extract real-time 3D skeletal data (joint information) from a patient facing the sensor (at 30 frames per second). In addition, a small collection of exercises practiced in traditional physiotherapy for PD patients has been implemented in the Unity 3D game engine. Each exercise employs linear or circular movement patterns and poses very light-weight processing demands on real-time computations. During an exercise, trainer instruction demonstrates correct execution and Kinect-provided 3D joint data are fed to the game engine and compared to exercise-specific control routines to assess proper posture and body control in real time. When an exercise is complete, performance metrics appropriate for that exercise are computed and displayed on screen to enable the attending physiotherapist to fine-tune the exercise to the abilities/needs of an individual patient as well as to provide performance feedback to the patient. The platform can operate in a physiotherapist's office and, following appropriate validation, in a home environment. Finally, exercises can be parameterized meaningfully, depending on the intended purpose (motor assessment versus plain exercise at home).

  18. Titanium Dioxide Nanoparticles (TiO₂) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection.

    Science.gov (United States)

    Sharma, Atul; Hayat, Akhtar; Mishra, Rupesh K; Catanante, Gaëlle; Bhand, Sunil; Marty, Jean Louis

    2015-09-22

    We demonstrate for the first time, the development of titanium dioxide nanoparticles (TiO₂) quenching based aptasensing platform for detection of target molecules. TiO₂ quench the fluorescence of FAM-labeled aptamer (fluorescein labeled aptamer) upon the non-covalent adsorption of fluorescent labeled aptamer on TiO₂ surface. When OTA interacts with the aptamer, it induced aptamer G-quadruplex complex formation, weakens the interaction between FAM-labeled aptamer and TiO₂, resulting in fluorescence recovery. As a proof of concept, an assay was employed for detection of Ochratoxin A (OTA). At optimized experimental condition, the obtained limit of detection (LOD) was 1.5 nM with a good linearity in the range 1.5 nM to 1.0 µM for OTA. The obtained results showed the high selectivity of assay towards OTA without interference to structurally similar analogue Ochratoxin B (OTB). The developed aptamer assay was evaluated for detection of OTA in beer sample and recoveries were recorded in the range from 94.30%-99.20%. Analytical figures of the merits of the developed aptasensing platform confirmed its applicability to real samples analysis. However, this is a generic aptasensing platform and can be extended for detection of other toxins or target analyte.

  19. Functional Paper-Based Platform for Rapid Capture and Detection of CeO2 Nanoparticles.

    Science.gov (United States)

    Othman, Ali; Andreescu, Daniel; Karunaratne, Dinusha P; Babu, S V; Andreescu, Silvana

    2017-04-12

    Development of systems for capture, sequestration, and tracking of nanoparticles (NPs) is becoming a significant focus in many aspects of nanotechnology and environmental research. These systems enable a broad range of applications for evaluating concentration, distribution, and effects of NPs for environmental, clinical, epidemiological, and occupational exposure studies. Herein, we describe the first example of a ligand-graft multifunctional platform for capture and detection of cerium oxide (CeO2 or ceria) NPs. The approach involves the use of redox-active ligands containing o-dihydroxy functionality, enabling multivalent binding, surface retention, and formation of charge transfer complexes between the grafted ligand and the NPs. Using this strategy, paper-based and microarray-printed platforms with NP-capture ability involving either catechol or ascorbic acid as ligands were successfully fabricated. Surface modification was determined by infrared spectroscopy, electron microscopy, X-ray spectroscopy, and thermogravimetric analysis. Functionality was demonstrated for the rapid assessment of NPs in chemical mechanical planarization (CMP) slurries and CMP wastewaters. This novel approach can enable further development of devices and separation technologies including platforms for retention and separation of NPs and measurement tools for detection of NPs in various environments.

  20. A Web-Based Modelling Platform for Interactive Exploration of Regional Responses to Global Change

    Science.gov (United States)

    Holman, I.

    2014-12-01

    Climate change adaptation is a complex human-environmental problem that is framed by the uncertainty in impacts and the adaptation choices available, but is also bounded by real-world constraints such as future resource availability and environmental and institutional capacities. Educating the next generation of informed decision-makers that will be able to make knowledgeable responses to global climate change impacts requires them to have access to information that is credible, accurate, easy to understand, and appropriate. However, available resources are too often produced by inaccessible models for scenario simulations chosen by researchers hindering exploration and enquiry. This paper describes the interactive exploratory web-based CLIMSAVE Integrated Assessment (IA) Platform (www.climsave.eu/iap) that aims to democratise climate change impacts, adaptation and vulnerability modelling. The regional version of the Platform contain linked simulation models (of the urban, agriculture, forestry, water and biodiversity sectors), probabilistic climate scenarios and socio-economic scenarios, that enable users to select their inputs (climate and socioeconomic), rapidly run the models using their input variable settings and view their chosen outputs. The interface of the CLIMSAVE IA Platform is designed to facilitate a two-way iterative process of dialogue and exploration of "what if's" to enable a wide range of users to improve their understanding surrounding impacts, adaptation responses and vulnerability of natural resources and ecosystem services under uncertain futures. This paper will describe the evolution of the Platform and demonstrate how using its holistic framework (multi sector / ecosystem service; cross-sectoral, climate and socio-economic change) will help to assist learning around the challenging concepts of responding to global change.

  1. CBRAIN: A web-based, distributed computing platform for collaborative neuroimaging research

    Directory of Open Access Journals (Sweden)

    Tarek eSherif

    2014-05-01

    Full Text Available The Canadian Brain Imaging Research Platform (CBRAIN is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN’s flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC centers in Canada, one in Korea, one in Germany and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson’s and Alzheimer’s diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction.

  2. Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2005-11-01

    Full Text Available Abstract Background The extensive use of DNA microarray technology in the characterization of the cell transcriptome is leading to an ever increasing amount of microarray data from cancer studies. Although similar questions for the same type of cancer are addressed in these different studies, a comparative analysis of their results is hampered by the use of heterogeneous microarray platforms and analysis methods. Results In contrast to a meta-analysis approach where results of different studies are combined on an interpretative level, we investigate here how to directly integrate raw microarray data from different studies for the purpose of supervised classification analysis. We use median rank scores and quantile discretization to derive numerically comparable measures of gene expression from different platforms. These transformed data are then used for training of classifiers based on support vector machines. We apply this approach to six publicly available cancer microarray gene expression data sets, which consist of three pairs of studies, each examining the same type of cancer, i.e. breast cancer, prostate cancer or acute myeloid leukemia. For each pair, one study was performed by means of cDNA microarrays and the other by means of oligonucleotide microarrays. In each pair, high classification accuracies (> 85% were achieved with training and testing on data instances randomly chosen from both data sets in a cross-validation analysis. To exemplify the potential of this cross-platform classification analysis, we use two leukemia microarray data sets to show that important genes with regard to the biology of leukemia are selected in an integrated analysis, which are missed in either single-set analysis. Conclusion Cross-platform classification of multiple cancer microarray data sets yields discriminative gene expression signatures that are found and validated on a large number of microarray samples, generated by different laboratories and

  3. 基于Hadoop平台的图像分类%Image Classification Based on Hadoop Platform

    Institute of Scientific and Technical Information of China (English)

    朱义明

    2011-01-01

    随着图像数据的增加,海量的图像分类过程成为了一个耗时的过程。Hadoop是一个开源的分布式处理系统基础架构,有着优秀的海量数据处理性能。首先对Hadoop系统和编程框架进行了介绍,然后将图像分类中的海量数据处理过程在Hadoop平台上实现。与运行环境DELL powerEdge R170比较显示:基于Hadoop平台的图像分类在小图特征提取处理上Hadoop平台优势不明显,但对于大图特征提取、向量运算和kNN运算,耗时大大缩短,数据处理能力的优势明显。%As the numbers of images rapidly increasing, image classification itself has become a time consumer process. Hadoop is an open-source distributed-processing platform and an expert at processing immense amounts of data. First, we introduced Hadoop platform and programming process; Second, we implemented immense amounts of data process upon the Hadoop platform. Compared with operational environment DELL power Edge R170, image classification based on Hadoop platform has less advantages in small image feature extraction but has less time-consuming and great advantage in big image feature extraction , vector operation and kNN operation.

  4. Quantitative interferometric microscopy cytometer based on regularized optical flow algorithm

    Science.gov (United States)

    Xue, Liang; Vargas, Javier; Wang, Shouyu; Li, Zhenhua; Liu, Fei

    2015-09-01

    Cell detections and analysis are important in various fields, such as medical observations and disease diagnoses. In order to analyze the cell parameters as well as observe the samples directly, in this paper, we present an improved quantitative interferometric microscopy cytometer, which can monitor the quantitative phase distributions of bio-samples and realize cellular parameter statistics. The proposed system is able to recover the phase imaging of biological samples in the expanded field of view via a regularized optical flow demodulation algorithm. This algorithm reconstructs the phase distribution with high accuracy with only two interferograms acquired at different time points simplifying the scanning system. Additionally, the method is totally automatic, and therefore it is convenient for establishing a quantitative phase cytometer. Moreover, the phase retrieval approach is robust against noise and background. Excitingly, red blood cells are readily investigated with the quantitative interferometric microscopy cytometer system.

  5. A platform for analysis of nanoscale liquids with an integrated sensor array based on 2-d material

    CERN Document Server

    Engel, M; Neumann, R F; Giro, R; Feger, C; Avouris, P; Steiner, M

    2016-01-01

    Analysis of nanoscale liquids, including wetting and flow phenomena, is a scientific challenge with far reaching implications for industrial technologies. We report the conception, development, and application of an integrated platform for the experimental characterization of liquids at the nanometer scale. The platform combines the sensing functionalities of an integrated, two-dimensional electronic device array with in situ application of highly sensitive optical micro-spectroscopy and atomic force microscopy. We demonstrate the performance capabilities of the platform with an embodiment based on an array of integrated, optically transparent graphene sensors. The application of electronic and optical sensing in the platform allows for differentiating between liquids electronically, for determining a liquid's molecular fingerprint, and for monitoring surface wetting dynamics in real time. In order to explore the platform's sensitivity limits, we record topographies and optical spectra of individual, spatiall...

  6. A novel multi-walled carbon nanotube-based antibody conjugate for quantitative and semi-quantitative lateral flow assays.

    Science.gov (United States)

    Sun, Wenjuan; Hu, Xiaolong; Liu, Jia; Zhang, Yurong; Lu, Jianzhong; Zeng, Libo

    2017-10-01

    In this study, the multi-walled carbon nanotubes (MWCNTs) were applied in lateral flow strips (LFS) for semi-quantitative and quantitative assays. Firstly, the solubility of MWCNTs was improved using various surfactants to enhance their biocompatibility for practical application. The dispersed MWCNTs were conjugated with the methamphetamine (MET) antibody in a non-covalent manner and then manufactured into the LFS for the quantitative detection of MET. The MWCNTs-based lateral flow assay (MWCNTs-LFA) exhibited an excellent linear relationship between the values of test line and MET when its concentration ranges from 62.5 to 1500 ng/mL. The sensitivity of the LFS was evaluated by conjugating MWCNTs with HCG antibody and the MWCNTs conjugated method is 10 times more sensitive than the one conjugated with classical colloidal gold nanoparticles. Taken together, our data demonstrate that MWCNTs-LFA is a more sensitive and reliable assay for semi-quantitative and quantitative detection which can be used in forensic analysis.

  7. Cross-Platform Android/iOS-Based Smart Switch Control Middleware in a Digital Home

    Directory of Open Access Journals (Sweden)

    Guo Jie

    2015-01-01

    Full Text Available With technological and economic development, people’s lives have been improved substantially, especially their home environments. One of the key aspects of these improvements is home intellectualization, whose core is the smart home control system. Furthermore, as smart phones have become increasingly popular, we can use them to control the home system through Wi-Fi, Bluetooth, and GSM. This means that control with phones is more convenient and fast and now becomes the primary terminal controller in the smart home. In this paper, we propose middleware for developing a cross-platform Android/iOS-based solution for smart switch control software, focus on the Wi-Fi based communication protocols between the cellphone and the smart switch, achieved a plugin-based smart switch function, defined and implemented the JavaScript interface, and then implemented the cross-platform Android/iOS-based smart switch control software; also the scenarios are illustrated. Finally, tests were performed after the completed realization of the smart switch control system.

  8. A monoclonal antibody-based VZV glycoprotein E quantitative assay and its application on antigen quantitation in VZV vaccine.

    Science.gov (United States)

    Liu, Jian; Zhu, Rui; Ye, Xiangzhong; Yang, Lianwei; Wang, Yongmei; Huang, Yanying; Wu, Jun; Wang, Wei; Ye, Jianghui; Li, Yimin; Zhao, Qinjian; Zhu, Hua; Cheng, Tong; Xia, Ningshao

    2015-06-01

    Varicella-zoster virus (VZV) is a highly infectious agent that causes varicella and herpes zoster (HZ), which may be associated with severe neuralgia. Vaccination is the most effective way to reduce the burden of the diseases. VZV glycoprotein E (gE) is the major and most immunogenic membrane protein that plays important roles in vaccine efficacy. A quantitative assay for gE content is desirable for the VZV vaccine process monitoring and product analysis. In this study, 70 monoclonal antibodies (mAbs) were obtained after immunizing mice with purified recombinant gE (rgE). The collection of mAbs was well-characterized, and a pair of high-affinity neutralization antibodies (capture mAb 4A2 and detection mAb 4H10) was selected to establish a specific and sensitive sandwich enzyme-linked immunosorbent assay (ELISA) to quantify the native and recombinant gE. The detection limit of this assay was found to be 1.95 ng/mL. Furthermore, a reasonably good correlation between the gE content (as measured by the mAb-based quantitative ELISA) and the virus titer (as measured by the "gold standard" plaque assay) was observed when both assays were performed for tracking the kinetics of virus growth during cell culture. A total of 16 batches of lyophilized VZV vaccine were tested using the newly developed quantitative ELISA and classical plaque assay, demonstrating reasonably good correlation between gE content and virus titer. Therefore, this mAb-based gE quantitative assay serves as a rapid, stable, and sensitive method for monitoring viral antigen content, one additional quantitative method for VZV vaccine process and product characterization. This quantitative ELISA may also serve as a complementary method for virus titering.

  9. Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications

    Directory of Open Access Journals (Sweden)

    François Patou

    2016-09-01

    Full Text Available The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods.

  10. Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications

    Science.gov (United States)

    Patou, François; AlZahra’a Alatraktchi, Fatima; Kjægaard, Claus; Dimaki, Maria; Madsen, Jan; Svendsen, Winnie E.

    2016-01-01

    The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods. PMID:27598208

  11. Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications.

    Science.gov (United States)

    Patou, François; AlZahra'a Alatraktchi, Fatima; Kjægaard, Claus; Dimaki, Maria; Madsen, Jan; Svendsen, Winnie E

    2016-09-03

    The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods.

  12. DNA nanostructure-based universal microarray platform for high-efficiency multiplex bioanalysis in biofluids.

    Science.gov (United States)

    Li, Zhenhua; Zhao, Bin; Wang, Dongfang; Wen, Yanli; Liu, Gang; Dong, Haoqing; Song, Shiping; Fan, Chunhai

    2014-10-22

    Microarrays of biomolecules have greatly promoted the development of the fields of genomics, proteomics, and clinical assays because of their remarkably parallel and high-throughput assay capability. Immobilization strategies for biomolecules on a solid support surface play a crucial role in the fabrication of high-performance biological microarrays. In this study, rationally designed DNA tetrahedra carrying three amino groups and one single-stranded DNA extension were synthesized by the self-assembly of four oligonucleotides, followed by high-performance liquid chromatography purification. We fabricated DNA tetrahedron-based microarrays by covalently coupling the DNA tetrahedron onto glass substrates. After their biorecognition capability was evaluated, DNA tetrahedron microarrays were utilized for the analysis of different types of bioactive molecules. The gap hybridization strategy, the sandwich configuration, and the engineering aptamer strategy were employed for the assay of miRNA biomarkers, protein cancer biomarkers, and small molecules, respectively. The arrays showed good capability to anchor capture biomolecules for improving biorecognition. Addressable and high-throughput analysis with improved sensitivity and specificity had been achieved. The limit of detection for let-7a miRNA, prostate specific antigen, and cocaine were 10 fM, 40 pg/mL, and 100 nM, respectively. More importantly, we demonstrated that the microarray platform worked well with clinical serum samples and showed good relativity with conventional chemical luminescent immunoassay. We have developed a novel approach for the fabrication of DNA tetrahedron-based microarrays and a universal DNA tetrahedron-based microarray platform for the detection of different types of bioactive molecules. The microarray platform shows great potential for clinical diagnosis.

  13. A bottom-up method for module-based product platform development through mapping, clustering and matching analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Meng; LI Guo-xi; CAO Jian-ping; GONG Jing-zhong; WU Bao-zhong

    2016-01-01

    Designing product platform could be an effective and efficient solution for manufacturing firms. Product platforms enable firms to provide increased product variety for the marketplace with as little variety between products as possible. Developed consumer products and modules within a firm can further be investigated to find out the possibility of product platform creation. A bottom-up method is proposed for module-based product platform through mapping, clustering and matching analysis. The framework and the parametric model of the method are presented, which consist of three steps: (1) mapping parameters from existing product families to functional modules, (2) clustering the modules within existing module families based on their parameters so as to generate module clusters, and selecting the satisfactory module clusters based on commonality, and (3) matching the parameters of the module clusters to the functional modules in order to capture platform elements. In addition, the parameter matching criterion and mismatching treatment are put forward to ensure the effectiveness of the platform process, while standardization and serialization of the platform element are presented. A design case of the belt conveyor is studied to demonstrate the feasibility of the proposed method.

  14. YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.

    Science.gov (United States)

    Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh

    2015-01-16

    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the

  15. A Sustainable Architecture for Lunar Resource Prospecting from an EML-based Exploration Platform

    Science.gov (United States)

    Klaus, K.; Post, K.; Lawrence, S. J.

    2012-12-01

    Introduction - We present a point of departure architecture for prospecting for Lunar Resources from an Exploration Platform at the Earth - Moon Lagrange points. Included in our study are launch vehicle, cis-lunar transportation architecture, habitat requirements and utilization, lander/rover concepts and sample return. Different transfer design techniques can be explored by mission designers, testing various propulsive systems, maneuvers, rendezvous, and other in-space and surface operations. Understanding the availability of high and low energy trajectory transfer options opens up the possibility of exploring the human and logistics support mission design space and deriving solutions never before contemplated. For sample return missions from the lunar surface, low-energy transfers could be utilized between EML platform and the surface as well as return of samples to EML-based spacecraft. Human Habitation at the Exploration Platform - Telerobotic and telepresence capabilities are considered by the agency to be "grand challenges" for space technology. While human visits to the lunar surface provide optimal opportunities for field geologic exploration, on-orbit telerobotics may provide attractive early opportunities for geologic exploration, resource prospecting, and other precursor activities in advance of human exploration campaigns and ISRU processing. The Exploration Platform provides a perfect port for a small lander which could be refueled and used for multiple missions including sample return. The EVA and robotic capabilities of the EML Exploration Platform allow the lander to be serviced both internally and externally, based on operational requirements. The placement of the platform at an EML point allows the lander to access any site on the lunar surface, thus providing the global lunar surface access that is commonly understood to be required in order to enable a robust lunar exploration program. Designing the sample return lander for low

  16. Temporary road transport route optimization based on ArcGIS platform conditions

    Science.gov (United States)

    Baoliang, Zhang; Dahua, Li; Xianfeng, Shao

    2017-04-01

    Based on the ArcGIS software platform, the method of digital elevation model (DEM) is established by using the irregular triangulation (TIN) of the “three links and one leveling” project of the Guquan converter station. The calculation principle and the realization steps are discussed. In the clear fill area, site formation and earth temporary transport route design applications. Research shows that the simulation of ground simulation through ArcGIS can be more rapid and efficient land leveling, design optimization route.

  17. Microfluidic platform for neurotransmitter sensing based on cyclic voltammetry and dielectrophoresis for in vitro experiments.

    Science.gov (United States)

    Mathault, Jessy; Zamprogno, Pauline; Greener, Jesse; Miled, Amine

    2015-08-01

    This paper presents a new microfluidic platform that can simultaneously measure and locally modulate neurotransmitter concentration in a neuron network. This work focuses on the development of a first prototype including a potentiostat and electrode functionalization to detect several neurotransmitter's simultaneously. We tested dopamine as proof of concept to validate functionality. The system is based on 320 bidirectional electrode array for dielectrophoretic manipulation and cyclic voltammetry. Each electrode is connected to a mechanical multiplexer in order to reduce noise interference and fully isolate the electrode. The multiplexing rate is 476 kHz and each electrode can drive a signal with an amplitude of 60 V pp for dielectrophoretic manipulation.

  18. A space-based public service platform for terrestrial rescue operations

    Science.gov (United States)

    Fleisig, R.; Bernstein, J.; Cramblit, D. C.

    1977-01-01

    The space-based Public Service Platform (PSP) is a multibeam, high-gain communications relay satellite that can provide a variety of functions for a large number of people on earth equipped with extremely small, very low cost transceivers. This paper describes the PSP concept, the rationale used to derive the concept, the criteria for selecting specific communication functions to be performed, and the advantages of performing such functions via satellite. The discussion focuses on the benefits of using a PSP for natural disaster warning; control of attendant rescue/assistance operations; and rescue of people in downed aircraft, aboard sinking ships, lost or injured on land.

  19. The Personnel Model of Food Professional Practice Based on ERP Simulating Experience Platform

    Directory of Open Access Journals (Sweden)

    Juanjuan Liang

    2015-09-01

    Full Text Available This study has clear understanding on features of experiencing education which is based on ERP on account of the ERP simulation with sand table experiment. Then we established strategic position to applied personnel majoring in food professional practice on account of ERP, so as to establish the practicing platform of experiments, practical practice as well as practice for students majoring in food professional practice, to improve the application ability of students. We put forward practicing discovery on model of applied personnel majoring in food professional practice.

  20. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.

    Science.gov (United States)

    Tomé, Liliana C; Marrucho, Isabel M

    2016-05-21

    During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

  1. On the Supply Chain Management Supported by E-Commerce Service Platform for Agreement based Circulation of Fruits and Vegetables

    Science.gov (United States)

    Bao, Liwei; Huang, Yuchi; Ma, Zengjun; Zhang, Jie; Lv, Qingchu

    According to analysis of the supply chain process of agricultural products, the IT application requirements of the market entities participating in the agreement based circulation of fruits and vegetables have been discussed. The strategy of supply chain management basing on E-commerce service platform for fruits and vegetables has been proposed in this paper. The architecture and function composing of the service platform have been designed and implemented. The platform is constructed on a set of application service modules User can choose some of the application service modules and define them according to the business process. The application service modules chosen and defined by user are integrated as an application service package and applied as management information system of business process. With the E-commerce service platform, the supply chain management for agreement based circulation of agricultural products of vegetables and fruits can be implemented.

  2. Towards the Implementation of an openEHR-based Open Source EHR Platform (a vision paper).

    Science.gov (United States)

    Pazos Gutiérrez, Pablo

    2015-01-01

    Healthcare Information Systems are a big business. Currently there is an explosion of EHR/EMR products available on the market, and the best tools are really expensive. Many developing countries and healthcare providers cannot access such tools, and for those who can, there is not a clear strategy for the evolution, scaling, and cost of these electronic health products. The lack of standard-based implementations conduct to the creation of isolated information silos that cannot be exploited (i.e. shared between providers to promote a holistic view of each patient's medical history). This paper exposes the main elements behind a Standard-based Open Source EHR Platform that is future-proof and allows to evolve and scale with minimal cost. The proposed EHR Architecture is based on openEHR specifications, adding elements emerged from research and development experiences, leading to a design that can be implemented in any modern technology. Different implementations will be interoperable by design. This Platform will leverage contexts of scarce resources, reusing clinical knowledge, a common set of software components and services.

  3. Fast and automated DNA assays on a compact disc (CD)-based microfluidic platform

    Science.gov (United States)

    Jia, Guangyao

    Nucleic acid-based molecular diagnostics offers enormous potential for the rapid and accurate diagnosis of infectious diseases. However, most of the existing commercial tests are time-consuming and technically complicated, and are thus incompatible with the need for rapid identification of infectious agents. We have successfully developed a CD-based microfluidic platform for fast and automated DNA array hybridization and a low cost, disposable plastic microfluidic platform for polymerase chain reaction (PCR). These platforms have proved to be a promising approach to meet the requirements in terms of detection speed and operational convenience in diagnosis of infectious diseases. In the CD-based microfluidic platform for DNA hybridization, convection is introduced to the system to enhance mass transport so as to accelerate the hybridization rate since DNA hybridization is a diffusion limited reaction. Centrifugal force is utilized for sample propulsion and surface force is used for liquid gating. Standard microscope glass slides are used as the substrates for capture probes owing to their compatibility with commercially available instrumentation (e.g. laser scanners) for detection. Microfabricated polydimethylsiloxane (PDMS) structures are used to accomplish the fluidic functions required by the protocols for DNA hybridization. The assembly of the PDMS structure and the glass slide forms a flow-through hybridization unit that can be accommodated onto the CD platform for reagent manipulation. The above scheme has been validated with oligonucleotides as the targets using commercially available enzyme-labeled fluorescence (ELF 97) for detection of the hybridization events, and tested with amplicons of genomic staphylococcus DNA labeled with Cy dye. In both experiments, significantly higher fluorescence intensities were observed in the flow-through hybridization unit compared to the passive assays. The CD fluidic scheme was also adapted to the immobilization of

  4. An Ensemble Generator for Quantitative Precipitation Estimation Based on Censored Shifted Gamma Distributions

    Science.gov (United States)

    Wright, D.; Kirschbaum, D.; Yatheendradas, S.

    2016-12-01

    The considerable uncertainties associated with quantitative precipitation estimates (QPE), whether from satellite platforms, ground-based weather radar, or numerical weather models, suggest that such QPE should be expressed as distributions or ensembles of possible values, rather than as single values. In this research, we borrow a framework from the weather forecast verification community, to "correct" satellite precipitation and generate ensemble QPE. This approach is based on the censored shifted gamma distribution (CSGD). The probability of precipitation, central tendency (i.e. mean), and the uncertainty can be captured by the three parameters of the CSGD. The CSGD can then be applied for simulation of rainfall ensembles using a flexible nonlinear regression framework, whereby the CSGD parameters can be conditioned on one or more reference rainfall datasets and on other time-varying covariates such as modeled or measured estimates of precipitable water and relative humidity. We present the framework and initial results by generating precipitation ensembles based on the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) dataset, using both NLDAS and PERSIANN-CDR precipitation datasets as references. We also incorporate a number of covariates from MERRA2 reanalysis including model-estimated precipitation, precipitable water, relative humidity, and lifting condensation level. We explore the prospects for applying the framework and other ensemble error models globally, including in regions where high-quality "ground truth" rainfall estimates are lacking. We compare the ensemble outputs against those of an independent rain gage-based ensemble rainfall dataset. "Pooling" of regional rainfall observations is explored as one option for improving ensemble estimates of rainfall extremes. The approach has potential applications in near-realtime, retrospective, and scenario modeling of rainfall-driven hazards such as floods and landslides

  5. CANDU in-reactor quantitative visual-based inspection techniques

    Science.gov (United States)

    Rochefort, P. A.

    2009-02-01

    This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is

  6. A Cloud-Based Internet of Things Platform for Ambient Assisted Living

    Science.gov (United States)

    Cubo, Javier; Nieto, Adrián; Pimentel, Ernesto

    2014-01-01

    A common feature of ambient intelligence is that many objects are inter-connected and act in unison, which is also a challenge in the Internet of Things. There has been a shift in research towards integrating both concepts, considering the Internet of Things as representing the future of computing and communications. However, the efficient combination and management of heterogeneous things or devices in the ambient intelligence domain is still a tedious task, and it presents crucial challenges. Therefore, to appropriately manage the inter-connection of diverse devices in these systems requires: (1) specifying and efficiently implementing the devices (e.g., as services); (2) handling and verifying their heterogeneity and composition; and (3) standardizing and managing their data, so as to tackle large numbers of systems together, avoiding standalone applications on local servers. To overcome these challenges, this paper proposes a platform to manage the integration and behavior-aware orchestration of heterogeneous devices as services, stored and accessed via the cloud, with the following contributions: (i) we describe a lightweight model to specify the behavior of devices, to determine the order of the sequence of exchanged messages during the composition of devices; (ii) we define a common architecture using a service-oriented standard environment, to integrate heterogeneous devices by means of their interfaces, via a gateway, and to orchestrate them according to their behavior; (iii) we design a framework based on cloud computing technology, connecting the gateway in charge of acquiring the data from the devices with a cloud platform, to remotely access and monitor the data at run-time and react to emergency situations; and (iv) we implement and generate a novel cloud-based IoT platform of behavior-aware devices as services for ambient intelligence systems, validating the whole approach in real scenarios related to a specific ambient assisted living application

  7. A cloud-based Internet of Things platform for ambient assisted living.

    Science.gov (United States)

    Cubo, Javier; Nieto, Adrián; Pimentel, Ernesto

    2014-08-04

    A common feature of ambient intelligence is that many objects are inter-connected and act in unison, which is also a challenge in the Internet of Things. There has been a shift in research towards integrating both concepts, considering the Internet of Things as representing the future of computing and communications. However, the efficient combination and management of heterogeneous things or devices in the ambient intelligence domain is still a tedious task, and it presents crucial challenges. Therefore, to appropriately manage the inter-connection of diverse devices in these systems requires: (1) specifying and efficiently implementing the devices (e.g., as services); (2) handling and verifying their heterogeneity and composition; and (3) standardizing and managing their data, so as to tackle large numbers of systems together, avoiding standalone applications on local servers. To overcome these challenges, this paper proposes a platform to manage the integration and behavior-aware orchestration of heterogeneous devices as services, stored and accessed via the cloud, with the following contributions: (i) we describe a lightweight model to specify the behavior of devices, to determine the order of the sequence of exchanged messages during the composition of devices; (ii) we define a common architecture using a service-oriented standard environment, to integrate heterogeneous devices by means of their interfaces, via a gateway, and to orchestrate them according to their behavior; (iii) we design a framework based on cloud computing technology, connecting the gateway in charge of acquiring the data from the devices with a cloud platform, to remotely access and monitor the data at run-time and react to emergency situations; and (iv) we implement and generate a novel cloud-based IoT platform of behavior-aware devices as services for ambient intelligence systems, validating the whole approach in real scenarios related to a specific ambient assisted living application.

  8. Detecting and Discriminating Shigella sonnei Using an Aptamer-Based Fluorescent Biosensor Platform

    Directory of Open Access Journals (Sweden)

    Myeong-Sub Song

    2017-05-01

    Full Text Available In this paper, a Whole-Bacteria SELEX (WB-SELEX strategy was adopted to isolate specific aptamers against Shigella sonnei. Real-time PCR amplification and post-SELEX experiment revealed that the selected aptmers possessed a high binding affinity and specificity for S. sonnei. Of the 21 aptamers tested, the C(t values of the SS-3 and SS-4 aptamers (Ct = 13.89 and Ct = 12.23, respectively had the lowest value compared to other aptamer candidates. The SS-3 and SS-4 aptamers also displayed a binding affinity (KD of 39.32 ± 5.02 nM and 15.89 ± 1.77 nM, respectively. An aptamer-based fluorescent biosensor assay was designed to detect and discriminate S. sonnei cells using a sandwich complex pair of SS-3 and SS-4. The detection of S. sonnei by the aptamer based fluorescent biosensor platform consisted of three elements: (1 5’amine-SS-4 modification in a 96-well type microtiter plate surface (N-oxysuccinimide, NOS as capture probes; (2 the incubation with S. sonnei and test microbes in functionalized 96 assay wells in parallel; (3 the readout of fluorescent activity using a Cy5-labeled SS-3 aptamer as the detector. Our platform showed a significant ability to detect and discriminate S. sonnei from other enteric species such as E. coli, Salmonella typhimurium and other Shigella species (S. flexneri, S. boydii. In this study, we demonstrated the feasibility of an aptamer sensor platform to detect S. sonnei in a variety of foods and pave the way for its use in diagnosing shigellosis through multiple, portable designs.

  9. A Cloud-Based Internet of Things Platform for Ambient Assisted Living

    Directory of Open Access Journals (Sweden)

    Javier Cubo

    2014-08-01

    Full Text Available A common feature of ambient intelligence is that many objects are inter-connected and act in unison, which is also a challenge in the Internet of Things. There has been a shift in research towards integrating both concepts, considering the Internet of Things as representing the future of computing and communications. However, the efficient combination and management of heterogeneous things or devices in the ambient intelligence domain is still a tedious task, and it presents crucial challenges. Therefore, to appropriately manage the inter-connection of diverse devices in these systems requires: (1 specifying and efficiently implementing the devices (e.g., as services; (2 handling and verifying their heterogeneity and composition; and (3 standardizing and managing their data, so as to tackle large numbers of systems together, avoiding standalone applications on local servers. To overcome these challenges, this paper proposes a platform to manage the integration and behavior-aware orchestration of heterogeneous devices as services, stored and accessed via the cloud, with the following contributions: (i we describe a lightweight model to specify the behavior of devices, to determine the order of the sequence of exchanged messages during the composition of devices; (ii we define a common architecture using a service-oriented standard environment, to integrate heterogeneous devices by means of their interfaces, via a gateway, and to orchestrate them according to their behavior; (iii we design a framework based on cloud computing technology, connecting the gateway in charge of acquiring the data from the devices with a cloud platform, to remotely access and monitor the data at run-time and react to emergency situations; and (iv we implement and generate a novel cloud-based IoT platform of behavior-aware devices as services for ambient intelligence systems, validating the whole approach in real scenarios related to a specific ambient assisted living

  10. The Construction of a Web-Based Learning Platform from the Perspective of Computer Support for Collaborative Design

    Directory of Open Access Journals (Sweden)

    Cheng Mei

    2012-04-01

    Full Text Available The purpose of this study is to construct a web-based learning platform of Computer Support for Collaborative Design (CSCD based on theories related to a constructivist learning environment model, mind mapping and computer-supported collaborative learning. The platform conforms to the needs of design students and provides effective tools for interaction and collaborative learning by integrating the tools of mind mapping into a learning environment that utilizes CSCD, a computer-assisted support system that can support and enhance group collaboration. The establishment of the CSCD learning platform represents a significant advance from the fixed functions and existing models of current online learning platforms and is the only learning platform in the world that focuses on learners in design departments. The platform is outstanding for its excellence, user-friendly functions, and innovative technology. In terms of funding, technical ability, human resources, organizational strategies, and risk analysis and evaluations, the learning platform is also worthy of expansion and implementation.

  11. Adapting Agriculture Platforms for Nutrition: A Case Study of a Participatory, Video-Based Agricultural Extension Platform in India

    Science.gov (United States)

    Kadiyala, Suneetha; Morgan, Emily H.; Cyriac, Shruthi; Margolies, Amy; Roopnaraine, Terry

    2016-01-01

    nutrition; and enhancement of message diffusion mechanisms to reach pregnant women and mothers of young children at scale. Understanding the experience of developing and delivering this intervention will benefit the design of new nutrition interventions which seek to leverage agriculture platforms. PMID:27736897

  12. Simultaneous Determination of the Main Peanut Allergens in Foods Using Disposable Amperometric Magnetic Beads-Based Immunosensing Platforms

    Directory of Open Access Journals (Sweden)

    Víctor Ruiz-Valdepeñas Montiel

    2016-06-01

    Full Text Available In this work, a novel magnetic beads (MBs-based immunosensing approach for the rapid and simultaneous determination of the main peanut allergenic proteins (Ara h 1 and Ara h 2 is reported. It involves the use of sandwich-type immunoassays using selective capture and detector antibodies and carboxylic acid-modified magnetic beads (HOOC-MBs. Amperometric detection at −0.20 V was performed using dual screen-printed carbon electrodes (SPdCEs and the H2O2/hydroquinone (HQ system. This methodology exhibits high sensitivity and selectivity for the target proteins providing detection limits of 18.0 and 0.07 ng/mL for Ara h 1 and Ara h 2, respectively, with an assay time of only 2 h. The usefulness of the approach was evaluated by detecting the endogenous content of both allergenic proteins in different food extracts as well as trace amounts of peanut allergen (0.0001% or 1.0 mg/kg in wheat flour spiked samples. The developed platform provides better Low detection limits (LODs in shorter assay times than those claimed for the allergen specific commercial ELISA kits using the same immunoreagents and quantitative information on individual food allergen levels. Moreover, the flexibility of the methodology makes it readily translate to the detection of other food-allergens.

  13. Sliding mode control of photoelectric tracking platform based on the inverse system method

    Directory of Open Access Journals (Sweden)

    Yao Zong Chen

    2016-01-01

    Full Text Available In order to improve the photoelectric tracking platform tracking performance, an integral sliding mode control strategy based on inverse system decoupling method is proposed. The electromechanical dynamic model is established based on multi-body system theory and Newton-Euler method. The coupled multi-input multi-output (MIMO nonlinear system is transformed into two pseudo-linear single-input single-output (SISO subsystems based on the inverse system method. An integral sliding mode control scheme is designed for the decoupled pseudo-linear system. In order to eliminate system chattering phenomenon caused by traditional sign function in sliding-mode controller, the sign function is replaced by the Sigmoid function. Simulation results show that the proposed decoupling method and the control strategy can restrain the influences of internal coupling and disturbance effectively, and has better robustness and higher tracking accuracy.

  14. Surface plasmon resonance based biosensor: A new platform for rapid diagnosis of livestock diseases

    Directory of Open Access Journals (Sweden)

    Pravas Ranjan Sahoo

    2016-12-01

    Full Text Available Surface plasmon resonance (SPR based biosensors are the most advanced and developed optical label-free biosensor technique used for powerful detection with vast applications in environmental protection, biotechnology, medical diagnostics, drug screening, food safety, and security as well in livestock sector. The livestock sector which contributes the largest economy of India, harbors many bacterial, viral, and fungal diseases impacting a great loss to the production and productive potential which is a major concern in both small and large ruminants. Hence, an accurate, sensitive, and rapid diagnosis is required for prevention of these above-mentioned diseases. SPR based biosensor assay may fulfill the above characteristics which lead to a greater platform for rapid diagnosis of different livestock diseases. Hence, this review may give a detail idea about the principle, recent development of SPR based biosensor techniques and its application in livestock sector.

  15. A Real-Time de novo DNA Sequencing Assembly Platform Based on an FPGA Implementation.

    Science.gov (United States)

    Hu, Yuanqi; Georgiou, Pantelis

    2016-01-01

    This paper presents an FPGA based DNA comparison platform which can be run concurrently with the sensing phase of DNA sequencing and shortens the overall time needed for de novo DNA assembly. A hybrid overlap searching algorithm is applied which is scalable and can deal with incremental detection of new bases. To handle the incomplete data set which gradually increases during sequencing time, all-against-all comparisons are broken down into successive window-against-window comparison phases and executed using a novel dynamic suffix comparison algorithm combined with a partitioned dynamic programming method. The complete system has been designed to facilitate parallel processing in hardware, which allows real-time comparison and full scalability as well as a decrease in the number of computations required. A base pair comparison rate of 51.2 G/s is achieved when implemented on an FPGA with successful DNA comparison when using data sets from real genomes.

  16. Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms.

    Science.gov (United States)

    Clausell-Tormos, Jenifer; Lieber, Diana; Baret, Jean-Christophe; El-Harrak, Abdeslam; Miller, Oliver J; Frenz, Lucas; Blouwolff, Joshua; Humphry, Katherine J; Köster, Sarah; Duan, Honey; Holtze, Christian; Weitz, David A; Griffiths, Andrew D; Merten, Christoph A

    2008-05-01

    High-throughput, cell-based assays require small sample volumes to reduce assay costs and to allow for rapid sample manipulation. However, further miniaturization of conventional microtiter plate technology is problematic due to evaporation and capillary action. To overcome these limitations, we describe droplet-based microfluidic platforms in which cells are grown in aqueous microcompartments separated by an inert perfluorocarbon carrier oil. Synthesis of biocompatible surfactants and identification of gas-permeable storage systems allowed human cells, and even a multicellular organism (C. elegans), to survive and proliferate within the microcompartments for several days. Microcompartments containing single cells could be reinjected into a microfluidic device after incubation to measure expression of a reporter gene. This should open the way for high-throughput, cell-based screening that can use >1000-fold smaller assay volumes and has approximately 500x higher throughput than conventional microtiter plate assays.

  17. Microfluidics for cell-based high throughput screening platforms - A review.

    Science.gov (United States)

    Du, Guansheng; Fang, Qun; den Toonder, Jaap M J

    2016-01-15

    In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery.

  18. A ratiometric fluorescent probe for gasotransmitter hydrogen sulfide based on a coumarin-benzopyrylium platform.

    Science.gov (United States)

    Duan, Yu-Wei; Yang, Xiao-Feng; Zhong, Yaogang; Guo, Yuan; Li, Zheng; Li, Hua

    2015-02-15

    A ratiometric fluorescent probe for H2S was developed based on a coumarin- benzopyrylium platform. The ratiometric sensing is realized by a selective conversion of acyl azide to the corresponding amide, which subsequently undergoes an intramolecular spirocyclization to alter the large π-conjugated system of CB fluorophore. Compared with the traditional azide-based H2S probes, the proposed probe utilizes the acyl azide as the recognition moiety and exhibits a rapid response (∼1min) towards H2S, which is superior to most of the azide-based H2S probes. Preliminary fluorescence imaging experiments show that probe 1 has potential to track H2S in living cells.

  19. Femtosecond laser fabrication of fiber based optofluidic platform for flow cytometry applications

    Science.gov (United States)

    Serhatlioglu, Murat; Elbuken, Caglar; Ortac, Bulend; Solmaz, Mehmet E.

    2017-02-01

    Miniaturized optofluidic platforms play an important role in bio-analysis, detection and diagnostic applications. The advantages of such miniaturized devices are extremely low sample requirement, low cost development and rapid analysis capabilities. Fused silica is advantageous for optofluidic systems due to properties such as being chemically inert, mechanically stable, and optically transparent to a wide spectrum of light. As a three dimensional manufacturing method, femtosecond laser scanning followed by chemical etching shows great potential to fabricate glass based optofluidic chips. In this study, we demonstrate fabrication of all-fiber based, optofluidic flow cytometer in fused silica glass by femtosecond laser machining. 3D particle focusing was achieved through a straightforward planar chip design with two separately fabricated fused silica glass slides thermally bonded together. Bioparticles in a fluid stream encounter with optical interrogation region specifically designed to allocate 405nm single mode fiber laser source and two multi-mode collection fibers for forward scattering (FSC) and side scattering (SSC) signals detection. Detected signal data collected with oscilloscope and post processed with MATLAB script file. We were able to count number of events over 4000events/sec, and achieve size distribution for 5.95μm monodisperse polystyrene beads using FSC and SSC signals. Our platform shows promise for optical and fluidic miniaturization of flow cytometry systems.

  20. Motion control solution for new PLC-based standard development platform for VLT instrument control systems

    Science.gov (United States)

    Popovic, D.; Brast, R.; Di Lieto, N.; Kiekebusch, M.; Knudstrup, J.; Lucuix, C.

    2014-07-01

    More than a decade ago, due to obsolescence issues, ESO initiated the design and implementation of a custom-made CANbus based motion controller (CAN-RMC) to provide, together with a tailor-made software library (motor library), the motion control capabilities for the VME platform needed for the second generation VLT/VLTI instruments. The CAN-RMC controller has been successfully used in a number of VLT instruments but it has high production costs compared to the commercial off-the-shelf (COTS) industrial solutions available on the market today. In the scope of the selection of a new PLC-based platform for the VLT instrument control systems, ESO has evaluated motion control solutions from the company Beckhoff. This paper presents the investigation, implementation and testing of the PLC/TwinCAT/EtherCAT motion controllers for DC and stepper motors and their adaptation and integration into the VLT instrumentation framework. It reports functional and performance test results for the most typical use cases of astronomical instruments like initialization sequences, tracking, switch position detections, backslash compensation, brake handling, etc. In addition, it gives an overview of the main features of TwinCAT NC/PTP, PLCopen MC, EtherCAT motion control terminals and the engineering tools like TwinCAT Scope that are integrated into the development environment and simplify software development, testing and commissioning of motorized instrument functions.

  1. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    Science.gov (United States)

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.

  2. The Osseus platform: a prototype for advanced web-based distributed simulation

    Science.gov (United States)

    Franceschini, Derrick; Riecken, Mark

    2016-05-01

    Recent technological advances in web-based distributed computing and database technology have made possible a deeper and more transparent integration of some modeling and simulation applications. Despite these advances towards true integration of capabilities, disparate systems, architectures, and protocols will remain in the inventory for some time to come. These disparities present interoperability challenges for distributed modeling and simulation whether the application is training, experimentation, or analysis. Traditional approaches call for building gateways to bridge between disparate protocols and retaining interoperability specialists. Challenges in reconciling data models also persist. These challenges and their traditional mitigation approaches directly contribute to higher costs, schedule delays, and frustration for the end users. Osseus is a prototype software platform originally funded as a research project by the Defense Modeling & Simulation Coordination Office (DMSCO) to examine interoperability alternatives using modern, web-based technology and taking inspiration from the commercial sector. Osseus provides tools and services for nonexpert users to connect simulations, targeting the time and skillset needed to successfully connect disparate systems. The Osseus platform presents a web services interface to allow simulation applications to exchange data using modern techniques efficiently over Local or Wide Area Networks. Further, it provides Service Oriented Architecture capabilities such that finer granularity components such as individual models can contribute to simulation with minimal effort.

  3. A Reward-Based Behavioral Platform to Measure Neural Activity during Head-Fixed Behavior

    Directory of Open Access Journals (Sweden)

    Andrew H. Micallef

    2017-05-01

    Full Text Available Understanding the neural computations that contribute to behavior requires recording from neurons while an animal is behaving. This is not an easy task as most subcellular recording techniques require absolute head stability. The Go/No-Go sensory task is a powerful decision-driven task that enables an animal to report a binary decision during head-fixation. Here we discuss how to set up an Ardunio and Python based platform system to control a Go/No-Go sensory behavior paradigm. Using an Arduino micro-controller and Python-based custom written program, a reward can be delivered to the animal depending on the decision reported. We discuss the various components required to build the behavioral apparatus that can control and report such a sensory stimulus paradigm. This system enables the end user to control the behavioral testing in real-time and therefore it provides a strong custom-made platform for probing the neural basis of behavior.

  4. Alternative profiling platform based on MELDI and its applicability in clinical proteomics.

    Science.gov (United States)

    Najam-ul-Haq, Muhammad; Rainer, Matthias; Trojer, Lukas; Feuerstein, Isabel; Vallant, Rainer Markus; Huck, Christian W; Bakry, Rania; Bonn, Günther Karl

    2007-08-01

    The presence of numerous proteomics data and their results in literature reveal the importance and influence of proteins and peptides on human cell cycle. For instance, the proteomic profiling of biological samples, such as serum, plasma or cells, and their organelles, carried out by surface-enhanced laser desorption/ionization mass spectrometry, has led to the discovery of numerous key proteins involved in many biological disease processes. However, questions still remain regarding the reproducibility, bioinformatic artifacts and cross-validations of such experimental set-ups. The authors have developed a material-based approach, termed material-enhanced laser desorption/ionization mass spectrometry (MELDI-MS), to facilitate and improve the robustness of large-scale proteomic experiments. MELDI-MS includes a fully automated protein-profiling platform, from sample preparation and analysis to data processing involving state-of-the-art methods, which can be further improved. Multiplexed protein pattern analysis, based on material morphology, physical characteristics and chemical functionalities provides a multitude of protein patterns and allows prostate cancer samples to be distinguished from non-prostate cancer samples. Furthermore, MELDI-MS enables not only the analysis of protein signatures, but also the identification of potential discriminating peaks via capillary liquid chromatography mass spectrometry. The optimized MELDI approach offers a complete proteomics platform with improved sensitivity, selectivity and short sample preparation times.

  5. Novel Web-based Education Platforms for Information Communication utilizing Gamification, Virtual and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2015-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.

  6. Porous Bead-Based Diagnostic Platforms: Bridging the Gaps in Healthcare

    Directory of Open Access Journals (Sweden)

    John McDevitt

    2012-11-01

    Full Text Available Advances in lab-on-a-chip systems have strong potential for multiplexed detection of a wide range of analytes with reduced sample and reagent volume; lower costs and shorter analysis times. The completion of high-fidelity multiplexed and multiclass assays remains a challenge for the medical microdevice field; as it struggles to achieve and expand upon at the point-of-care the quality of results that are achieved now routinely in remote laboratory settings. This review article serves to explore for the first time the key intersection of multiplexed bead-based detection systems with integrated microfluidic structures alongside porous capture elements together with biomarker validation studies. These strategically important elements are evaluated here in the context of platform generation as suitable for near-patient testing. Essential issues related to the scalability of these modular sensor ensembles are explored as are attempts to move such multiplexed and multiclass platforms into large-scale clinical trials. Recent efforts in these bead sensors have shown advantages over planar microarrays in terms of their capacity to generate multiplexed test results with shorter analysis times. Through high surface-to-volume ratios and encoding capabilities; porous bead-based ensembles; when combined with microfluidic elements; allow for high-throughput testing for enzymatic assays; general chemistries; protein; antibody and oligonucleotide applications.

  7. Implementing an SIG based platform of application and service for city spatial information in Shanghai

    Science.gov (United States)

    Yu, Bailang; Wu, Jianping

    2006-10-01

    Spatial Information Grid (SIG) is an infrastructure that has the ability to provide the services for spatial information according to users' needs by means of collecting, sharing, organizing and processing the massive distributed spatial information resources. This paper presents the architecture, technologies and implementation of the Shanghai City Spatial Information Application and Service System, a SIG based platform, which is an integrated platform that serves for administration, planning, construction and development of the city. In the System, there are ten categories of spatial information resources, including city planning, land-use, real estate, river system, transportation, municipal facility construction, environment protection, sanitation, urban afforestation and basic geographic information data. In addition, spatial information processing services are offered as a means of GIS Web Services. The resources and services are all distributed in different web-based nodes. A single database is created to store the metadata of all the spatial information. A portal site is published as the main user interface of the System. There are three main functions in the portal site. First, users can search the metadata and consequently acquire the distributed data by using the searching results. Second, some spatial processing web applications that developed with GIS Web Services, such as file format conversion, spatial coordinate transfer, cartographic generalization and spatial analysis etc, are offered to use. Third, GIS Web Services currently available in the System can be searched and new ones can be registered. The System has been working efficiently in Shanghai Government Network since 2005.

  8. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS)

    Science.gov (United States)

    Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip

    2016-02-01

    A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3.

  9. On The Performance of Imt-2000 Communication Link Based on Stratospheric Platforms

    Directory of Open Access Journals (Sweden)

    Iskandar Iskandar

    2010-10-01

    Full Text Available A new means for providing wireless communication has been currently proposed. It is based on aerial vehicle known as High Altitude Platform or Stratospheric Platforms (SPF. The SPF will be operated at an altitude of 17-22 km above the ground. Therefore, the channel condition may be different compared with those of the conventional terrestrial or satellite wireless channel. In this paper, the channel propagation characteristic of such a system is firstly investigated by means of ray tracing algorithm. We emphasize our investigation in a typical urban environment, in which the mobile users mostly exist. We developed building block model for simulation based on building height distribution, which is obtained from measurement inside Tokyo. As a result, propagation loss model and Ricean channel parameter for the SPF channel is reported in different scenarios. By using this result we then estimate the required transmitted power of SPF to serve the mobile users in a several transmission rate that is used in IMT-2000 services. Finally, an evaluation of BER of IMT-2000 link is performed in order to estimate the system level performance. From this evaluation, the main contribution of this paper is to clearly show the critical limitations of both power requirement as well as system level performance of mobile communication IMT-2000 by using the concept of the SPF.

  10. Laser fabrication of porous silicon-based platforms for cell culturing.

    Science.gov (United States)

    Peláez, Ramón-J; Afonso, Carmen-N; Vega, Fidel; Recio-Sánchez, Gonzalo; Torres-Costa, Vicente; Manso-Silván, Miguel; García-Ruiz, Josefa-P; Martín-Palma, Raúl-J

    2013-11-01

    In this study, we explore the selective culturing of human mesenchymal stem cells (hMSCs) on Si-based diffractive platforms. We demonstrate a single-step and flexible method for producing platforms on nanostructured porous silicon (nanoPS) based on the use of single pulses of an excimer laser to expose phase masks. The resulting patterns are typically 1D patterns formed by fringes or 2D patterns formed by circles. They are formed by alternate regions of almost unmodified nanoPS and regions where the nanoPS surface has melted and transformed into Si nanoparticles. The patterns are produced in relatively large areas (a few square millimeters) and can have a wide range of periodicities and aspect ratios. Direct binding, that is, with no previous functionalization of the pattern, alignment, and active polarization of hMSCs are explored. The results show the preferential direct binding of the hMSCs along the transformed regions whenever their width compares with the dimensions of the cells and they escape from patterns for smaller widths suggesting that the selectivity can be tailored through the pattern period.

  11. Portable and Reusable Optofluidics-Based Biosensing Platform for Ultrasensitive Detection of Sulfadimidine in Dairy Products

    Directory of Open Access Journals (Sweden)

    Xiu-Juan Hao

    2015-04-01

    Full Text Available Sulfadimidine (SM2 is a highly toxic and ubiquitous pollutant which requires rapid, sensitive and portable detection method for environmental and food monitoring. Herein, the use for the detection of SM2 of a portable optofluidics-based biosensing platform, which was used for the accurate detection of bisphenol A, atrazine and melamine, is reported for the first time. The proposed compact biosensing system combines the advantages of an evanescent wave immunosensor and microfluidic technology. Through the indirect competitive immunoassay, the detection limit of the proposed optofluidics-based biosensing platform for SM2 reaches 0.05 μg·L−1 at the concentration of Cy5.5-labeled antibody of 0.1 μg·mL−1. Linearity is obtained over a dynamic range from 0.17 μg·L−1 to 10.73 μg·L−1. The surface of the fiber probe can be regenerated more than 300 times by means of 0.5% sodium dodecyl sulfate solution (pH = 1.9 washes without losing sensitivity. This method, featuring high sensitivity, portability and acceptable reproducibility shows potential in the detection of SM2 in real milk and other dairy products.

  12. A Platform-Based Methodology for System-Level Mixed-Signal Design

    Directory of Open Access Journals (Sweden)

    Alberto Sangiovanni-Vincentelli

    2010-01-01

    Full Text Available The complexity of today's embedded electronic systems as well as their demanding performance and reliability requirements are such that their design can no longer be tackled with ad hoc techniques while still meeting tight time to-market constraints. In this paper, we present a system level design approach for electronic circuits, utilizing the platform-based design (PBD paradigm as the natural framework for mixed-domain design formalization. In PBD, a meet-in-the-middle approach allows systematic exploration of the design space through a series of top-down mapping of system constraints onto component feasibility models in a platform library, which is based on bottom-up characterizations. In this framework, new designs can be assembled from the precharacterized library components, giving the highest priority to design reuse, correct assembly, and efficient design flow from specifications to implementation. We apply concepts from design centering to enforce robustness to modeling errors as well as process, voltage, and temperature variations, which are currently plaguing embedded system design in deep-submicron technologies. The effectiveness of our methodology is finally shown on the design of a pipeline A/D converter and two receiver front-ends for UMTS and UWB communications.

  13. Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing.

    Science.gov (United States)

    Wang, Xinhao; Chang, Te-Wei; Lin, Guohong; Gartia, Manas Ranjan; Liu, Gang Logan

    2017-01-03

    Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrated with an internal reference sample along with an image processing method to perform colorimetric sensing. Two sensing principles based on unique nanoplasmonics enabled phenomena from a nanostructured plasmonic sensor, named as nanoLCA (nano Lycurgus cup array), were demonstrated here for colorimetric biochemical sensing: liquid refractive index sensing and optical absorbance enhancement sensing. Refractive indices of colorless liquids were measured by simple smartphone imaging and color analysis. Optical absorbance enhancement in the colorimetric biochemical assay was achieved by matching the plasmon resonance wavelength with the chromophore's absorbance peak wavelength. Such a sensing mechanism improved the limit of detection (LoD) by 100 times in a microplate reader format. Compared with a traditional colorimetric assay such as urine testing strips, a smartphone plasmon enhanced colorimetric sensing system provided 30 times improvement in the LoD. The platform was applied for simulated urine testing to precisely identify the samples with higher protein concentration, which showed potential point-of-care and early detection of kidney disease with the smartphone plasmonic resonance sensing system.

  14. A web-based platform for rice microarray annotation and data analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Rice(Oryza sativa) feeds over half of the global population.A web-based integrated platform for rice microarray annotation and data analysis in various biological contexts is presented,which provides a convenient query for comprehensive annotation compared with similar databases.Coupled with existing rice microarray data,it provides online analysis methods from the perspective of bioinformatics.This comprehensive bioinformatics analysis platform is composed of five modules,including data retrieval,microarray annotation,sequence analysis,results visualization and data analysis.The BioChip module facilitates the retrieval of microarray data information via identifiers of "Probe Set ID","Locus ID" and "Analysis Name".The BioAnno module is used to annotate the gene or probe set based on the gene function,the domain information,the KEGG biochemical and regulatory pathways and the potential microRNA which regulates the genes.The BioSeq module lists all of the related sequence information by a microarray probe set.The BioView module provides various visual results for the microarray data.The BioAnaly module is used to analyze the rice microarray’s data set.

  15. Microplate-based platform for combined chromatin and DNA methylation immunoprecipitation assays

    Directory of Open Access Journals (Sweden)

    Yu Jingjing

    2011-11-01

    Full Text Available Abstract Background The processes that compose expression of a given gene are far more complex than previously thought presenting unprecedented conceptual and mechanistic challenges that require development of new tools. Chromatin structure, which is regulated by DNA methylation and histone modification, is at the center of gene regulation. Immunoprecipitations of chromatin (ChIP and methylated DNA (MeDIP represent a major achievement in this area that allow researchers to probe chromatin modifications as well as specific protein-DNA interactions in vivo and to estimate the density of proteins at specific sites genome-wide. Although a critical component of chromatin structure, DNA methylation has often been studied independently of other chromatin events and transcription. Results To allow simultaneous measurements of DNA methylation with other genomic processes, we developed and validated a simple and easy-to-use high throughput microplate-based platform for analysis of DNA methylation. Compared to the traditional beads-based MeDIP the microplate MeDIP was more sensitive and had lower non-specific binding. We integrated the MeDIP method with a microplate ChIP assay which allows measurements of both DNA methylation and histone marks at the same time, Matrix ChIP-MeDIP platform. We illustrated several applications of this platform to relate DNA methylation, with chromatin and transcription events at selected genes in cultured cells, human cancer and in a model of diabetic kidney disease. Conclusion The high throughput capacity of Matrix ChIP-MeDIP to profile tens and potentially hundreds of different genomic events at the same time as DNA methylation represents a powerful platform to explore complex genomic mechanism at selected genes in cultured cells and in whole tissues. In this regard, Matrix ChIP-MeDIP should be useful to complement genome-wide studies where the rich chromatin and transcription database resources provide fruitful foundation

  16. A new stratospheric sounding platform based on unmanned aerial vehicle (UAV) droppable from meteorological balloon

    Science.gov (United States)

    Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey

    High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical

  17. Carbon nanotube-based electrochemical biosensing platforms: fundamentals, applications, and future possibilities.

    Science.gov (United States)

    Luong, John H T; Male, Keith B; Hrapovic, Sabahudin

    2007-01-01

    Biosensors can be considered as a most plausible and exciting application area for nanobiotechnology. The recent bloom of nanofabrication technology and biofunctionalization methods of carbon nanotubes (CNTs) has stimulated significant research interest to develop CNT-based biosensors for monitoring biorecognition events and biocatalytic processes. The unique properties of CNTs, rolled-up sheets of carbon atoms with a diameter less than 1 nm, offer excellent prospects for interfacing biological recognition events with electronic signal transduction. CNT-based biosensors could be developed to sense only a few or even a single molecule of a chemical or biological agent. Both hydrogen peroxide and NADH, two by-products of over 300 oxidoreductases, are efficiently oxidized by CNT-modified electrodes at significantly lower potentials with minimal surface fouling. This appealing feature enables the development of useful biosensors for diversified applications. Aligned CNT "forests" can act as molecular wires to allow efficient electron transfer between the detecting electrode and the redox centers of enzymes to fabricate reagentless biosensors. Electrochemical sensing for DNA can greatly benefit from the use of CNT based platforms since guanine, one of the four bases, can be detected with significantly enhanced sensitivity. CNTs fluoresce, or emit light after absorbing light, in the near infrared region and retain their ability to fluoresce over time. This feature will allow CNT-based sensors to transmit information from inside the body. The combination of micro/nanofabrication and chemical functionalization, particularly nanoelectrode assembly interfaced with biomolecules, is expected to pave the way to fabricate improved biosensors for proteins, chemicals, and pathogens. However, several technical challenges need to be overcome to tightly integrate CNT-based platforms with sampling, fluidic handling, separation, and other detection principles. The biosensing platform

  18. Design and Research on Platform to Enhance College Students’ Art Appreciation Capability Based on Modern Information Technology

    Directory of Open Access Journals (Sweden)

    Shen Xifei

    2015-01-01

    Full Text Available Nowadays, with the rapid development of modern information technology, the college students could not preferably choose and learn to enhance their own art appreciation capability. Therefore, the colleges and universities have a more urgent desire to organize, develop and provide a good platform to enhance the college students’ art appreciation capability based on modern information technology. This paper describes how to enhance the art appreciation capability in detail, and designs and analyzes the platform to enhance college students’ art appreciation capability based on modern information technology---the “Music Corner” and the “Dance Corner”, indicating that the exchange platform built with modern information technology can promotes the college students’ art appreciation capability. Finally, through the analysis of statistical results of the questionnaire, college students are fonder of art appreciation after the establishment of platform, more inclined to the comprehensive learning of art, more brave to express their own sense of art, and fonder of artistic creation.

  19. Design and Development of Fire Gridding Platform Based on Internet of Things

    Directory of Open Access Journals (Sweden)

    Wei San-Xi

    2016-01-01

    Full Text Available This article describes the construction background about fire gridding platform, reviews the research and progress in fire Internet of Things and fire gridding. The platform includes perception / execution layer, field control layer, network layer, center platform layer and application layer, which provide a good bonding about site control and remote monitoring. This article supplies a detail design for the main functions of application and task flow of fire hazard investigation. At the same time, a digital management platform was developed.

  20. A Quantitative ADME-base Tool for Exploring Human ...

    Science.gov (United States)

    Exposure to a wide range of chemicals through our daily habits and routines is ubiquitous and largely unavoidable within modern society. The potential for human exposure, however, has not been quantified for the vast majority of chemicals with wide commercial use. Creative advances in exposure science are needed to support efficient and effective evaluation and management of chemical risks, particularly for chemicals in consumer products. The U.S. Environmental Protection Agency Office of Research and Development is developing, or collaborating in the development of, scientifically-defensible methods for making quantitative or semi-quantitative exposure predictions. The Exposure Prioritization (Ex Priori) model is a simplified, quantitative visual dashboard that provides a rank-ordered internalized dose metric to simultaneously explore exposures across chemical space (not chemical by chemical). Diverse data streams are integrated within the interface such that different exposure scenarios for “individual,” “population,” or “professional” time-use profiles can be interchanged to tailor exposure and quantitatively explore multi-chemical signatures of exposure, internalized dose (uptake), body burden, and elimination. Ex Priori has been designed as an adaptable systems framework that synthesizes knowledge from various domains and is amenable to new knowledge/information. As such, it algorithmically captures the totality of exposure across pathways. It

  1. The Application of GDT Based on Android Platform%基于Android平台的GDT应用

    Institute of Scientific and Technical Information of China (English)

    邹燕飞; 胡泽江

    2012-01-01

    随着智能手机的普及,Android手机操作系统平台以其开放性为开发人员提供了免费的SDK软件开发工具包而备受欢迎.Android平台的应用开发逐渐普及.随着人们生活节奏的提高,时间管理显得尤为重要.以GDT时间管理法为理论依据,实现了一款基于Android手机平台的时间管理软件.详细介绍了该软件查询功能模块、收集功能模块、里程碑功能模块,并对软件实现的数据库和系统类结构图进行了说明.初步测试表明,该系统具有友好的用户界面,较高的性能,满足手机用户使用.%With the popularity of smart phone,Android operating system platform with its openness is popular for providing the developers with a free SDK software development kit.The application development of Android platform is gradually popularized.With a faster tempo of life,time management is of a crucial importance.Adopting the GDT time management method,we have developed an Android-based mobile phone platform time management software.The paper gives a detailed introduction to the software inquiry function module,the collecting function module,the landmark function module and also describes the database of software realization and the system structure.Preliminary tests show that the system has a friendly user interface and higher performance and can meet the use of mobile phone users.

  2. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records.

    Science.gov (United States)

    Mandel, Joshua C; Kreda, David A; Mandl, Kenneth D; Kohane, Isaac S; Ramoni, Rachel B

    2016-09-01

    In early 2010, Harvard Medical School and Boston Children's Hospital began an interoperability project with the distinctive goal of developing a platform to enable medical applications to be written once and run unmodified across different healthcare IT systems. The project was called Substitutable Medical Applications and Reusable Technologies (SMART). We adopted contemporary web standards for application programming interface transport, authorization, and user interface, and standard medical terminologies for coded data. In our initial design, we created our own openly licensed clinical data models to enforce consistency and simplicity. During the second half of 2013, we updated SMART to take advantage of the clinical data models and the application-programming interface described in a new, openly licensed Health Level Seven draft standard called Fast Health Interoperability Resources (FHIR). Signaling our adoption of the emerging FHIR standard, we called the new platform SMART on FHIR. We introduced the SMART on FHIR platform with a demonstration that included several commercial healthcare IT vendors and app developers showcasing prototypes at the Health Information Management Systems Society conference in February 2014. This established the feasibility of SMART on FHIR, while highlighting the need for commonly accepted pragmatic constraints on the base FHIR specification. In this paper, we describe the creation of SMART on FHIR, relate the experience of the vendors and developers who built SMART on FHIR prototypes, and discuss some challenges in going from early industry prototyping to industry-wide production use. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  3. Mass Spectrometry-Based Monitoring of Millisecond Protein-Ligand Binding Dynamics Using an Automated Microfluidic Platform

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yongzheng; Katipamula, Shanta; Trader, Cameron D.; Orton, Daniel J.; Geng, Tao; Baker, Erin Shammel; Kelly, Ryan T.

    2016-03-24

    Characterizing protein-ligand binding dynamics is crucial for understanding protein function and developing new therapeutic agents. We have developed a novel microfluidic platform that features rapid mixing of protein and ligand solutions, variable incubation times, and on-chip electrospray ionization to perform label-free, solution-based monitoring of protein-ligand binding dynamics. This platform offers many advantages including automated processing, rapid mixing, and low sample consumption.

  4. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2014-10-21

    Paper-based diagnostic assays are gaining increasing popularity for their potential application in resource-limited settings and for point-of-care screening. Achievement of high sensitivity with precision and accuracy can be challenging when using paper substrates. Herein, we implement the red-green-blue color palette of a digital camera for quantitative ratiometric transduction of nucleic acid hybridization on a paper-based platform using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). A nonenzymatic and reagentless means of signal enhancement for QD-FRET assays on paper substrates is based on the use of dry paper substrates for data acquisition. This approach offered at least a 10-fold higher assay sensitivity and at least a 10-fold lower limit of detection (LOD) as compared to hydrated paper substrates. The surface of paper was modified with imidazole groups to assemble a transduction interface that consisted of immobilized QD-probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as an acceptor. A hybridization event that brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs was responsible for a FRET-sensitized emission from the acceptor dye, which served as an analytical signal. A hand-held UV lamp was used as an excitation source and ratiometric analysis using an iPad camera was possible by a relative intensity analysis of the red (Cy3 photoluminescence (PL)) and green (gQD PL) color channels of the digital camera. For digital imaging using an iPad camera, the LOD of the assay in a sandwich format was 450 fmol with a dynamic range spanning 2 orders of magnitude, while an epifluorescence microscope detection platform offered a LOD of 30 fmol and a dynamic range spanning 3 orders of magnitude. The selectivity of the hybridization assay was demonstrated by detection of a single nucleotide polymorphism at a contrast ratio of 60:1. This work provides an

  5. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis

    Directory of Open Access Journals (Sweden)

    Qu Lijia

    2009-03-01

    Full Text Available Abstract Background Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. Results In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion, data reduction (PCA, LDA, ULDA, unsupervised clustering (K-Mean and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM. Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Conclusion Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases

  6. The development and implementation of MOSAIQ Integration Platform (MIP) based on the radiotherapy workflow

    Science.gov (United States)

    Yang, Xin; He, Zhen-yu; Jiang, Xiao-bo; Lin, Mao-sheng; Zhong, Ning-shan; Hu, Jiang; Qi, Zhen-yu; Bao, Yong; Li, Qiao-qiao; Li, Bao-yue; Hu, Lian-ying; Lin, Cheng-guang; Gao, Yuan-hong; Liu, Hui; Huang, Xiao-yan; Deng, Xiao-wu; Xia, Yun-fei; Liu, Meng-zhong; Sun, Ying

    2017-03-01

    To meet the special demands in China and the particular needs for the radiotherapy department, a MOSAIQ Integration Platform CHN (MIP) based on the workflow of radiation therapy (RT) has been developed, as a supplement system to the Elekta MOSAIQ. The MIP adopts C/S (client-server) structure mode, and its database is based on the Treatment Planning System (TPS) and MOSAIQ SQL Server 2008, running on the hospital local network. Five network servers, as a core hardware, supply data storage and network service based on the cloud services. The core software, using C# programming language, is developed based on Microsoft Visual Studio Platform. The MIP server could offer network service, including entry, query, statistics and print information for about 200 workstations at the same time. The MIP was implemented in the past one and a half years, and some practical patient-oriented functions were developed. And now the MIP is almost covering the whole workflow of radiation therapy. There are 15 function modules, such as: Notice, Appointment, Billing, Document Management (application/execution), System Management, and so on. By June of 2016, recorded data in the MIP are as following: 13546 patients, 13533 plan application, 15475 RT records, 14656 RT summaries, 567048 billing records and 506612 workload records, etc. The MIP based on the RT workflow has been successfully developed and clinically implemented with real-time performance, data security, stable operation. And it is demonstrated to be user-friendly and is proven to significantly improve the efficiency of the department. It is a key to facilitate the information sharing and department management. More functions can be added or modified for further enhancement its potentials in research and clinical practice.

  7. Paper membrane-based SERS platform for the determination of glucose in blood samples.

    Science.gov (United States)

    Torul, Hilal; Çiftçi, Hakan; Çetin, Demet; Suludere, Zekiye; Boyacı, Ismail Hakkı; Tamer, Uğur

    2015-11-01

    In this report, we present a paper membrane-based surface-enhanced Raman scattering (SERS) platform for the determination of blood glucose level using a nitrocellulose membrane as substrate paper, and the microfluidic channel was simply constructed by wax-printing method. The rod-shaped gold nanorod particles were modified with 4-mercaptophenylboronic acid (4-MBA) and 1-decanethiol (1-DT) molecules and used as embedded SERS probe for paper-based microfluidics. The SERS measurement area was simply constructed by dropping gold nanoparticles on nitrocellulose membrane, and the blood sample was dropped on the membrane hydrophilic channel. While the blood cells and proteins were held on nitrocellulose membrane, glucose molecules were moved through the channel toward the SERS measurement area. Scanning electron microscopy (SEM) was used to confirm the effective separation of blood matrix, and total analysis is completed in 5 min. In SERS measurements, the intensity of the band at 1070 cm(-1) which is attributed to B-OH vibration decreased depending on the rise in glucose concentration in the blood sample. The glucose concentration was found to be 5.43 ± 0.51 mM in the reference blood sample by using a calibration equation, and the certified value for glucose was 6.17 ± 0.11 mM. The recovery of the glucose in the reference blood sample was about 88 %. According to these results, the developed paper-based microfluidic SERS platform has been found to be suitable for use for the detection of glucose in blood samples without any pretreatment procedure. We believe that paper-based microfluidic systems may provide a wide field of usage for paper-based applications.

  8. Phonon-based scalable platform for chip-scale quantum computing

    Science.gov (United States)

    Reinke, Charles M.; El-Kady, Ihab

    2016-12-01

    We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.

  9. LBVS: an online platform for ligand-based virtual screening using publicly accessible databases.

    Science.gov (United States)

    Zheng, Minghao; Liu, Zhihong; Yan, Xin; Ding, Qianzhi; Gu, Qiong; Xu, Jun

    2014-11-01

    Abundant data on compound bioactivity and publicly accessible chemical databases increase opportunities for ligand-based drug discovery. In order to make full use of the data, an online platform for ligand-based virtual screening (LBVS) using publicly accessible databases has been developed. LBVS adopts Bayesian learning approach to create virtual screening models because of its noise tolerance, speed, and efficiency in extracting knowledge from data. LBVS currently includes data derived from BindingDB and ChEMBL. Three validation approaches have been employed to evaluate the virtual screening models created from LBVS. The tenfold cross validation results of twenty different LBVS models demonstrate that LBVS achieves an average AUC value of 0.86. Our internal and external testing results indicate that LBVS is predictive for lead identifications. LBVS can be publicly accessed at http://rcdd.sysu.edu.cn/lbvs.

  10. Cities as Platforms for Co-creating Experience-based Business and Social Innovations

    DEFF Research Database (Denmark)

    Pogner, Karl-Heinz; Tsakarestou, Betty

    2014-01-01

    to address societies’ challenges remains a concern for governments, cities, businesses and social innovators. These solutions emerge out of changes in technologies, advancement of knowledge as well as of the emerging model of the collaborative and sharing economy and networked peer local and global...... communities. This paper presents the outcomes of the Athens Co-Creation Workshop 2012) a collaborative initiative of two universities: the Panteion University; Athens and the Copenhagen Business School / Co-Creation of Experienced-Based Innovation Consortium (CCEBI); Copenhagen. Our main question is: How can...... co-creation and experience-based learning and innovation in Living Labs, across diverse sectors, organizations, institutions, companies and startups, help cities becoming platforms that facilitate networking, collaboration and innovation? Our main challenge is to explore such an opportunity regarding...

  11. A multi-chip data acquisition system based on a heterogeneous system-on-chip platform

    CERN Document Server

    Fiergolski, Adrian

    2017-01-01

    The Control and Readout Inner tracking BOard (CaRIBOu) is a versatile readout system targeting a multitude of detector prototypes. It profits from the heterogeneous platform of the Zynq System-on-Chip (SoC) and integrates in a monolithic device front-end FPGA resources with a back-end software running on a hard-core ARM-based processor. The user-friendly Linux terminal with the pre-installed DAQ software is combined with the efficiency and throughput of a system fully implemented in the FPGA fabric. The paper presents the design of the SoC-based DAQ system and its building blocks. It also shows examples of the achieved functionality for the CLICpix2 readout ASIC.

  12. Evolvable Smartphone-Based Platforms for Point-Of-Care In-Vitro Diagnostics Applications

    DEFF Research Database (Denmark)

    Patou, François; Al Atraktchi, Fatima Al-Zahraa; Kjærgaard, Claus

    2016-01-01

    The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long......-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application......-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued...

  13. Simulation Platform for Wireless Sensor Networks Based on Impulse Radio Ultra Wide Band

    CERN Document Server

    Berthe, Abdoulaye; Dragomirescu, Daniela; Plana, Robert

    2010-01-01

    Impulse Radio Ultra Wide Band (IR-UWB) is a promising technology to address Wireless Sensor Network (WSN) constraints. However, existing network simulation tools do not provide a complete WSN simulation architecture, with the IR-UWB specificities at the PHYsical (PHY) and the Medium Access Control (MAC) layers. In this paper, we propose a WSN simulation architecture based on the IR-UWB technique. At the PHY layer, we take into account the pulse collision by dealing with the pulse propagation delay. We also modelled MAC protocols specific to IRUWB, for WSN applications. To completely fit the WSN simulation requirements, we propose a generic and reusable sensor and sensing channel model. Most of the WSN application performances can be evaluated thanks to the proposed simulation architecture. The proposed models are implemented on a scalable and well known network simulator: Global Mobile Information System Simulator (GloMoSim). However, they can be reused for all other packet based simulation platforms.

  14. An electrochemical DNA biosensor based on gold nanorods decorated graphene oxide sheets for sensing platform.

    Science.gov (United States)

    Han, Xiaowei; Fang, Xian; Shi, Anqi; Wang, Jiao; Zhang, Yuzhong

    2013-12-15

    A simple electrochemical sensor for sensitive and selective DNA detection was constructed based on gold nanorods (Au NRs) decorated graphene oxide (GO) sheets. The high-quality Au NRs-GO nanocomposite was synthesized via the electrostatic self-assembly technique, which is considered a potential sensing platform. Differential pulse voltammetry was used to monitor the DNA hybridization event using methylene blue as an electrochemical indicator. Under optimal conditions, the peak currents of methylene blue were linear with the logarithm of the concentrations of complementary DNA from 1.0 × 10(-9) to 1.0 × 10(-14)M with a detection limit of 3.5 × 10(-15)M (signal/noise=3). Moreover, the prepared electrochemical sensor can effectively distinguish complementary DNA sequences in the presence of a large amount of single-base mismatched DNA (1000:1), indicating that the biosensor has high selectivity.

  15. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe.

    Science.gov (United States)

    Li, Chongning; Ouyang, Huixiang; Tang, Xueping; Wen, Guiqing; Liang, Aihui; Jiang, Zhiliang

    2017-01-15

    With development of economy and society, there is an urgent need to develop convenient and sensitive methods for detection of Cu(2+) pollution in water. In this article, a simple and sensitive SERS sensor was proposed to quantitative analysis of trace Cu(2+) in water. The SERS sensor platform was prepared a common gold nanoparticle (AuNP)-SiO2 sol substrate platform by adsorbing HSA, coupling with the catalytic reaction of Cu(2+)-ascorbic acid (H2A)-dissolved oxygen, and using label-free Victoria blue B (VBB) as SERS molecular probes. The SERS sensor platform response to the AuNP aggregations by hydroxyl radicals (•OH) oxidizing from the Cu(2+) catalytic reaction, which caused the SERS signal enhancement. Therefore, by monitoring the increase of SERS signal, Cu(2+) in water can be determined accurately. The results show that the SERS sensor platforms owns a linear response with a range from 0.025 to 25μmol/L Cu(2+), and with a detection limit of 0.008μmol/L. In addition, the SERS method demonstrated good specificity for Cu(2+), which can determined accurately trace Cu(2+) in water samples, and good recovery and accuracy are obtained for the water samples. With its high selectivity and good accuracy, the sensitive SERS quantitative analysis method is expected to be a promising candidate for determining copper ions in environmental monitoring and food safety.

  16. Human cell-based micro electrode array platform for studying neurotoxicity

    Directory of Open Access Journals (Sweden)

    Laura eYlä-Outinen

    2010-09-01

    Full Text Available At present, most of the neurotoxicological analyses are based on in vitro and in vivo models utilizing animal cells or animal models. In addition, the used in vitro models are mostly based on molecular biological end-point analyses. Thus, for neurotoxicological screening, human cell-based analysis platforms in which the functional neuronal networks responses for various neurotoxicants can be also detected real-time are highly needed. Microelectrode array (MEA is a method which enables the measurement of functional activity of neuronal cell networks in vitro for long periods of time. Here, we utilize MEA to study the neurotoxicity of methyl mercury chloride (MeHgCl, concentrations 0.5-500 nM to human embryonic stem cell (hESC-derived neuronal cell networks exhibiting spontaneous electrical activity. The neuronal cell cultures were matured on MEAs into networks expressing spontaneous spike train-like activity before exposing the cells to MeHgCl for 72 hours. MEA measurements were performed acutely and 24, 48, and 72 hours after the onset of the exposure. Finally, exposed cells were analyzed with traditional molecular biological methods for cell proliferation, cell survival, and gene and protein expression. Our results show that 500 nM MeHgCl decreases the electrical signaling and alters the pharmacologic response of hESC-derived neuronal networks in delayed manner whereas effects can not be detected with qRT-PCR, immunostainings, or proliferation measurements. Thus, we conclude that human cell-based MEA-platform is a sensitive online method for neurotoxicological screening.

  17. The Geohazards Exploitation Platform: an advanced cloud-based environment for the Earth Science community

    Science.gov (United States)

    Manunta, Michele; Casu, Francesco; Zinno, Ivana; De Luca, Claudio; Pacini, Fabrizio; Caumont, Hervé; Brito, Fabrice; Blanco, Pablo; Iglesias, Ruben; López, Álex; Briole, Pierre; Musacchio, Massimo; Buongiorno, Fabrizia; Stumpf, Andre; Malet, Jean-Philippe; Brcic, Ramon; Rodriguez Gonzalez, Fernando; Elias, Panagiotis

    2017-04-01

    The idea to create advanced platforms for the Earth Observation community, where the users can find data but also state-of-art algorithms, processing tools, computing facilities, and instruments for dissemination and sharing, has been launched several years ago. The initiatives developed in this context have been supported firstly by the Framework Programmes of European Commission and the European Space Agency (ESA) and, progressively, by the Copernicus programme. In particular, ESA created and supported the Grid Processing on Demand (G-POD) environment, where the users can access to advanced processing tools implemented in a GRID environment, satellite data and computing facilities. All these components are located in the same datacentre to significantly reduce and make negligible the time to move the satellite data from the archive. From the experience of G-POD was born the idea of ESA to have an ecosystem of Thematic Exploitation Platforms (TEP) focused on the integration of Ground Segment capabilities and ICT technologies to maximize the exploitation of EO data from past and future missions. A TEP refers to a computing platform that deals with a set of user scenarios involving scientists, data providers and ICT developers, aggregated around an Earth Science thematic area. Among the others, the Geohazards Exploitation Platform (GEP) aims at providing on-demand and systematic processing services to address the need of the geohazards community for common information layers and to integrate newly developed processors for scientists and other expert users. Within GEP, the community benefits from a cloud-based environment, specifically designed for the advanced exploitation of EO data. A partner can bring its own tools and processing chains, but also has access in the same workspace to large satellite datasets and shared data processing tools. GEP is currently in the pre-operations phase under a consortium led by Terradue Srl and six pilot projects concerning

  18. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    Science.gov (United States)

    Chang, Jiyoung; Yoon, Sang-Hee; Mofrad, Mohammad R. K.; Lin, Liwei

    2011-05-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm2 and the separation gaps of 2 µm between them. An electrical voltage of -1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions.

  19. An Attitude Modelling Method Based on the Inherent Frequency of a Satellite Platform

    Science.gov (United States)

    Mo, F.; Tang, X.; Xie, J.; Yan, C.

    2017-05-01

    The accuracy of attitude determination plays a key role in the improvement of surveying and mapping accuracy for high-resolution remote-sensing satellites, and it is a bottleneck in large-scale satellite topographical mapping. As the on-board energy is constrained and the performance of an attitude-measurement device is limited, the attitude acquired is discretely sampled with a settled time interval. The larger the interval, the easier the data transmission, and the more deviation the attitude data will have. Meanwhile, several kinds of jitter frequencies have been detected in satellite platforms. This paper presents a novel attitude modelling (AttModel) method that sufficiently considers the discrete and periodic characteristics, and the attitude model built is continuous and consists of several inherent waves of different frequencies. The process of modelling includes two steps: (a) frequency detection, which uses raw gyroscope data within a period of time to detect the attitude frequencies (as the gyroscope data can actually reflect continuous, very small changes of the satellite platform), and (b) attitude modelling , which processes the attitude data that was filtered by extended Kalman filtering based on general polynomial and trigonometric polynomials, and these trigonometric polynomials are rebuilt by those frequencies detected in the first part of the modelling process. Finally, one experiment designed for verifying the effectiveness of the presented method shows that the AttModel method can reach a slightly better pointing accuracy without ground-control points than traditional attitude-interpolation methods.

  20. Context-Aware AAL Services through a 3D Sensor-Based Platform

    Directory of Open Access Journals (Sweden)

    Alessandro Leone

    2013-01-01

    Full Text Available The main goal of Ambient Assisted Living solutions is to provide assistive technologies and services in smart environments allowing elderly people to have high quality of life. Since 3D sensing technologies are increasingly investigated as monitoring solution able to outperform traditional approaches, in this work a noninvasive monitoring platform based on 3D sensors is presented providing a wide-range solution suitable in several assisted living scenarios. Detector nodes are managed by low-power embedded PCs in order to process 3D streams and extract postural features related to person’s activities. The feature level of details is tuned in accordance with the current context in order to save bandwidth and computational resources. The platform architecture is conceived as a modular system suitable to be integrated into third-party middleware to provide monitoring functionalities in several scenarios. The event detection capabilities were validated by using both synthetic and real datasets collected in controlled and real-home environments. Results show the soundness of the presented solution to adapt to different application requirements, by correctly detecting events related to four relevant AAL services.

  1. Optical Beam Deflection Based AFM with Integrated Hardware and Software Platform for an Undergraduate Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Siu Hong Loh

    2017-02-01

    Full Text Available Atomic force microscopy (AFM has been used extensively in nanoscience research since its invention. Recently, many teaching laboratories in colleges, undergraduate institutions, and even high schools incorporate AFM as an effective teaching tool for nanoscience education. This paper presents an optical beam deflection (OBD based atomic force microscope, designed specifically for the undergraduate engineering laboratory as a teaching instrument. An electronic module for signal conditioning was built with components that are commonly available in an undergraduate electronic laboratory. In addition to off-the-shelf mechanical parts and optics, the design of custom-built mechanical parts waskept as simple as possible. Hence, the overall cost for the setup is greatly reduced. The AFM controller was developed using National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS, an integrated hardware and software platform which can be programmed in LabVIEW. A simple yet effective control algorithm for scanning and feedback control was developed. Despite the use of an educational platform and low-cost components from the undergraduate laboratory, the developed AFM is capable of performing imaging in constant-force mode with submicron resolution and at reasonable scanning speed (approximately 18 min per image. Therefore, the AFM is suitable to be used as an educational tool for nanoscience. Moreover, the construction of the system can be a valuable educational experience for electronic and mechanical engineering students.

  2. Open-source platform to benchmark fingerprints for ligand-based virtual screening.

    Science.gov (United States)

    Riniker, Sereina; Landrum, Gregory A

    2013-05-30

    : Similarity-search methods using molecular fingerprints are an important tool for ligand-based virtual screening. A huge variety of fingerprints exist and their performance, usually assessed in retrospective benchmarking studies using data sets with known actives and known or assumed inactives, depends largely on the validation data sets used and the similarity measure used. Comparing new methods to existing ones in any systematic way is rather difficult due to the lack of standard data sets and evaluation procedures. Here, we present a standard platform for the benchmarking of 2D fingerprints. The open-source platform contains all source code, structural data for the actives and inactives used (drawn from three publicly available collections of data sets), and lists of randomly selected query molecules to be used for statistically valid comparisons of methods. This allows the exact reproduction and comparison of results for future studies. The results for 12 standard fingerprints together with two simple baseline fingerprints assessed by seven evaluation methods are shown together with the correlations between methods. High correlations were found between the 12 fingerprints and a careful statistical analysis showed that only the two baseline fingerprints were different from the others in a statistically significant way. High correlations were also found between six of the seven evaluation methods, indicating that despite their seeming differences, many of these methods are similar to each other.

  3. Development of Power Electronics Based Test Platform for Characterization and Testing of Magnetocaloric Materials

    Directory of Open Access Journals (Sweden)

    Deepak Elamalayil Soman

    2015-01-01

    Full Text Available Magnetocaloric effects of various materials are getting more and more interesting for the future, as they can significantly contribute towards improving the efficiency of many energy intensive applications such as refrigeration, heating, and air conditioning. Accurate characterization of magnetocaloric effects, exhibited by various materials, is an important process for further studies and development of the suitable magnetocaloric heating and cooling solutions. The conventional test facilities have plenty of limitations, as they focus only on the thermodynamic side and use magnetic machines with moving bed of magnetocaloric material or magnet. In this work an entirely new approach for characterization of the magnetocaloric materials is presented, with the main focus on a flexible and efficient power electronic based excitation and a completely static test platform. It can generate a periodically varying magnetic field using superposition of an ac and a dc magnetic field. The scale down prototype uses a customized single phase H-bridge inverter with essential protections and an electromagnet load as actuator. The preliminary simulation and experimental results show good agreement and support the usage of the power electronic test platform for characterizing magnetocaloric materials.

  4. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.

    Science.gov (United States)

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-06-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach.

  5. Control System Design of a DSP-based Real-time Leveling Platform

    Directory of Open Access Journals (Sweden)

    Zhang Jin Ming

    2016-01-01

    Full Text Available Since platform working in the sea is badly influenced by the wave, leveling control system is researched to control the leveling platform, so as to prevent the device which is fixed on the platform from being affected. TMS320F2812 chip is set as the control core, and serial communication module, gyroscope etc. are adopted to design real-time leveling control system. Gyroscopes are used to measure the angular speed of the carrier and the angle of the platform, filtering processing is done to the data collected by the gyroscopes and PID algorithm is adopted to calculate the real-time speed of motor ,in order to control the leveling platform. Tests are conducted to prove that the system can well control the leveling platform, in which the shake range of the platform is (-12°, +12°, while the shake range of carrier is only about (-0.5° +0.5 °.

  6. Reliability-Based Load and Resistance Factors Design for Offshore Jacket Platforms in the Bohai Bay: Calibration on Design Factors

    Institute of Scientific and Technical Information of China (English)

    JIN Wei-liang; HU Qi-zhong; SHEN Zhao-wei; SHI Zhong-min

    2009-01-01

    For the fulfillment of the probability-based structural design for the offshore jacket platforms in the Bohai Bay, the design factors of loads, resistance and load combinations are much necessary to be calibrated according to the proposed target reliability index. Firstly, the limit states function for the offshore jacket platforms is introduced. Then, four ap-proaches to calibrate the factors of load and resistance are presented and compared. Afterwards, the methods to calibrate the load combination factors are developed. Finally, the factors of load, resistance and load combination for the offshore jacket platforms in the Bohai Bay are calibrated and the corresponding design formulae are recommended. The results are proved to be rational in practice, and also illustrate that the proposed target reliability index for offshore jacket platforms in the Bohai Bay is also appropriate.

  7. Total lithography system based on a new application software platform enabling smart scanner management

    Science.gov (United States)

    Kono, Hirotaka; Masaki, Kazuo; Matsuyama, Tomoyuki; Wakamoto, Shinji; Park, Seemoon; Sugihara, Taro; Shibazaki, Yuichi

    2015-03-01

    Along with device shrinkage, higher accuracy will continuously be required from photo-lithography tools in order to enhance on-product yield. In order to achieve higher yield, the advanced photo-lithography tools must be equipped with sophisticated tuning knobs on the tool and with software that is flexible enough to be applied per layer. This means photo-lithography tools must be capable of handling many types of sub-recipes and parameters simultaneously. To enable managing such a large amount of data easily and to setup lithography tools smoothly, we have developed a total lithography system called Litho Turnkey Solution based on a new software application platform, which we call Plug and Play Manager (PPM). PPM has its own graphical user interface, which enables total management of various data. Here various data means recipes, sub-recipes, tuning-parameters, measurement results, and so on. Through PPM, parameter making by intelligent applications such as CDU/Overlay tuning tools can easily be implemented. In addition, PPM is also linked to metrology tools and the customer's host computer, which enables data flow automation. Based on measurement data received from the metrology tools, PPM calculates correction parameters and sends them to the scanners automatically. This scheme can make calibration feedback loops possible. It should be noted that the abovementioned functions are running on the same platform through a user-friendly interface. This leads to smart scanner management and usability improvement. In this paper, we will demonstrate the latest development status of Nikon's total lithography solution based on PPM; describe details of each application; and provide supporting data for the accuracy and usability of the system. Keywords: exposure

  8. Remotely Delivered Exercise-Based Cardiac Rehabilitation: Design and Content Development of a Novel mHealth Platform.

    Science.gov (United States)

    Rawstorn, Jonathan C; Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph

    2016-06-24

    Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients' exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial.

  9. Earth-Base: A Free And Open Source, RESTful Earth Sciences Platform

    Science.gov (United States)

    Kishor, P.; Heim, N. A.; Peters, S. E.; McClennen, M.

    2012-12-01

    This presentation describes the motivation, concept, and architecture behind Earth-Base, a web-based, RESTful data-management, analysis and visualization platform for earth sciences data. Traditionally web applications have been built directly accessing data from a database using a scripting language. While such applications are great at bring results to a wide audience, they are limited in scope to the imagination and capabilities of the application developer. Earth-Base decouples the data store from the web application by introducing an intermediate "data application" tier. The data application's job is to query the data store using self-documented, RESTful URIs, and send the results back formatted as JavaScript Object Notation (JSON). Decoupling the data store from the application allows virtually limitless flexibility in developing applications, both web-based for human consumption or programmatic for machine consumption. It also allows outside developers to use the data in their own applications, potentially creating applications that the original data creator and app developer may not have even thought of. Standardized specifications for URI-based querying and JSON-formatted results make querying and developing applications easy. URI-based querying also allows utilizing distributed datasets easily. Companion mechanisms for querying data snapshots aka time-travel, usage tracking and license management, and verification of semantic equivalence of data are also described. The latter promotes the "What You Expect Is What You Get" (WYEIWYG) principle that can aid in data citation and verification.

  10. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study.

    Science.gov (United States)

    Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice

    2009-11-01

    The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that

  11. 基于软件体系结构的可视化软件开发平台%Platform for Visualization Software Based on Software Architecture

    Institute of Scientific and Technical Information of China (English)

    胡华; 林昌东

    2003-01-01

    Platform for visualization software is a kind of large and complex software system, the work to design and evolve platform for visualization software is also a complex work. This paper proposes using software architecture to analyze and evolve a large visualization platform based plane data to a visualization platform with ability of processing both plane and volume. The result of this paper proves the reasonability of our method.

  12. Design of the Hospital Integrated Information Management System Based on Cloud Platform.

    Science.gov (United States)

    Aijing, L; Jin, Y

    2016-04-18

    At present, the outdated information management style cannot meet the needs of hospital management, and has become the bottleneck of hospital's management and development. In order to improve the integrated management of information, hospitals have increased their investment in integrated information management systems. On account of the lack of reasonable and scientific design, some hospital integrated information management systems have common problems, such as unfriendly interface, poor portability and maintainability, low security and efficiency, lack of interactivity and information sharing. To solve the problem, this paper carries out the research and design of a hospital information management system based on cloud platform, which can realize the optimized integration of hospital information resources and save money.

  13. A RBFNN-Based Adaptive Disturbance Compensation Approach Applied to Magnetic Suspension Inertially Stabilized Platform

    Directory of Open Access Journals (Sweden)

    Quanqi Mu

    2014-01-01

    Full Text Available Compared with traditional mechanical inertially stabilized platform (ISP, magnetic suspension ISP (MSISP can absorb high frequency vibrations via a magnetic suspension bearing system with five degrees of freedom between azimuth and pitch gimbals. However, force acting between rotor and stator will introduce coupling torque to roll and pitch gimbals. Since the disturbance of magnetic bearings has strong nonlinearity, classic state feedback control algorithm cannot bring higher precision control for MSISP. In order to enhance the control accuracy for MSISP, a disturbance compensator based on radial basis function neural network (RBFNN is developed to compensate for the disturbance. Using the Lyapunov theorem, the weighting matrix of RBFNN can be updated online. Therefore, the RBFNN can be constructed without priori training. At last, simulations and experiment results validate that the compensation method proposed in this paper can improve ISP accuracy significantly.

  14. Towards a versatile platform based on magnetic nanoparticles for in vivo applications

    Indian Academy of Sciences (India)

    E Duguet; S Vasseur; S Mornet; G Goglio; A Demourgues; J Portier; F Grasset; P Veverka; E Pollert

    2006-11-01

    Magnetic nanoparticles have attracted wide attention because of their usefulness as contrast agents for magnetic resonance imaging (MRI) or colloidal mediators for cancer magnetic hyperthermia. This paper examines these in vivo applications through an understanding of the problems involved and the current and future possibilities for resolving them. A special emphasis is made on magnetic nanoparticle requirements from a physical viewpoint, the factors affecting their biodistribution and the solutions envisaged for enhancing their half-life in the blood compartment and targeting tumour cells. Then, our synthesis strategies are presented and focused on covalent platforms based on maghemite and dextran and capable to be tailorderivatized by surface molecular chemistry. The opportunity of taking advantage of temperature-dependence of magnetic properties of some complex oxides for controlling the in vivo temperature is also discussed.

  15. CONCEPTION OF THE ARDUINO PLATFORM AS A BASE FOR THE CONSTRUCTION OF DISTRIBUTED DIAGNOSTIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    Tomasz HANISZEWSKI

    2016-12-01

    Full Text Available Systems for distributed parameter measurements are very expensive solutions; however, they offer many possibilities in terms of real-time verification of machine status. Of course, ready, complex and easy-to-use measuring systems can be used, where the cost of such a solution may be prohibitive. In the case of research carried out under the experimental sphere of an object, e.g., using a research measurement system, it is possible to create a project for a system based mainly on the Arduino platform. As an example, the concept of a distributed measurement system will be presented, with the possibility for use on cranes and conveyors, i.e., on the most common machines on industrial plants.

  16. Linux-based Platform for Open Architecture Controller and Its Modular Developing Method

    Institute of Scientific and Technical Information of China (English)

    迟永琳; 王宇晗; 吴祖育; 蔡建国

    2003-01-01

    Linux-based Platform for Open Architecture Controller ( POAC ), a new open architecture controller and its modular developing method are discussed. POAC divides the application software of controller into the developing system and the application system. In the developing system, PAOC abstracts a series of function modules with unified data interface and function interface. In the application system, POAC defines the model of the architecture module, realizing the interoperability and interchangeability between the architecture modules. The modular developing method entitles the users to make up an application system with some architecture modules, which consist of a set of function modules. The modular developing method decreases the developing time from the standard of controller architecture to the product.

  17. Design of the Hospital Integrated Information Management System Based on Cloud Platform

    Science.gov (United States)

    Aijing, L; Jin, Y

    2015-01-01

    ABSTRACT At present, the outdated information management style cannot meet the needs of hospital management, and has become the bottleneck of hospital's management and development. In order to improve the integrated management of information, hospitals have increased their investment in integrated information management systems. On account of the lack of reasonable and scientific design, some hospital integrated information management systems have common problems, such as unfriendly interface, poor portability and maintainability, low security and efficiency, lack of interactivity and information sharing. To solve the problem, this paper carries out the research and design of a hospital information management system based on cloud platform, which can realize the optimized integration of hospital information resources and save money. PMID:27399033

  18. RayPlus: a Web-Based Platform for Medical Image Processing.

    Science.gov (United States)

    Yuan, Rong; Luo, Ming; Sun, Zhi; Shi, Shuyue; Xiao, Peng; Xie, Qingguo

    2017-04-01

    Medical image can provide valuable information for preclinical research, clinical diagnosis, and treatment. As the widespread use of digital medical imaging, many researchers are currently developing medical image processing algorithms and systems in order