WorldWideScience

Sample records for quantitative phenotypes genetics

  1. The quantitative genetics of phenotypic robustness.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    Full Text Available Phenotypic robustness, or canalization, has been extensively investigated both experimentally and theoretically. However, it remains unknown to what extent robustness varies between individuals, and whether factors buffering environmental variation also buffer genetic variation. Here we introduce a quantitative genetic approach to these issues, and apply this approach to data from three species. In mice, we find suggestive evidence that for hundreds of gene expression traits, robustness is polymorphic and can be genetically mapped to discrete genomic loci. Moreover, we find that the polymorphisms buffering genetic variation are distinct from those buffering environmental variation. In fact, these two classes have quite distinct mechanistic bases: environmental buffers of gene expression are predominantly sex-specific and trans-acting, whereas genetic buffers are not sex-specific and often cis-acting. Data from studies of morphological and life-history traits in plants and yeast support the distinction between polymorphisms buffering genetic and environmental variation, and further suggest that loci buffering different types of environmental variation do overlap with one another. These preliminary results suggest that naturally occurring polymorphisms affecting phenotypic robustness could be abundant, and that these polymorphisms may generally buffer either genetic or environmental variation, but not both.

  2. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae.

    Science.gov (United States)

    Swinnen, Steve; Thevelein, Johan M; Nevoigt, Elke

    2012-03-01

    Saccharomyces cerevisiae has become a favorite production organism in industrial biotechnology presenting new challenges to yeast engineers in terms of introducing advantageous traits such as stress tolerances. Exploring subspecies diversity of S. cerevisiae has identified strains that bear industrially relevant phenotypic traits. Provided that the genetic basis of such phenotypic traits can be identified inverse engineering allows the targeted modification of production strains. Most phenotypic traits of interest in S. cerevisiae strains are quantitative, meaning that they are controlled by multiple genetic loci referred to as quantitative trait loci (QTL). A straightforward approach to identify the genetic basis of quantitative traits is QTL mapping which aims at the allocation of the genetic determinants to regions in the genome. The application of high-density oligonucleotide arrays and whole-genome re-sequencing to detect genetic variations between strains has facilitated the detection of large numbers of molecular markers thus allowing high-resolution QTL mapping over the entire genome. This review focuses on the basic principle and state of the art of QTL mapping in S. cerevisiae. Furthermore we discuss several approaches developed during the last decade that allow down-scaling of the regions identified by QTL mapping to the gene level. We also emphasize the particular challenges of QTL mapping in nonlaboratory strains of S. cerevisiae.

  3. A quantitative genetic analysis of intermediate asthma phenotypes

    DEFF Research Database (Denmark)

    Thomsen, S.F.; Ferreira, M.A.R.; Kyvik, K.O.

    2009-01-01

    to the observed data using maximum likelihood methods. RESULTS: Additive genetic factors explained 67% of the variation in FeNO, 43% in airway responsiveness, 22% in airway obstruction, and 81% in serum total IgE. In general, traits had genetically and environmentally distinct variance structures. The most...

  4. Prediction of quantitative phenotypes based on genetic networks: a case study in yeast sporulation

    Directory of Open Access Journals (Sweden)

    Shen Li

    2010-09-01

    Full Text Available Abstract Background An exciting application of genetic network is to predict phenotypic consequences for environmental cues or genetic perturbations. However, de novo prediction for quantitative phenotypes based on network topology is always a challenging task. Results Using yeast sporulation as a model system, we have assembled a genetic network from literature and exploited Boolean network to predict sporulation efficiency change upon deleting individual genes. We observe that predictions based on the curated network correlate well with the experimentally measured values. In addition, computational analysis reveals the robustness and hysteresis of the yeast sporulation network and uncovers several patterns of sporulation efficiency change caused by double gene deletion. These discoveries may guide future investigation of underlying mechanisms. We have also shown that a hybridized genetic network reconstructed from both temporal microarray data and literature is able to achieve a satisfactory prediction accuracy of the same quantitative phenotypes. Conclusions This case study illustrates the value of predicting quantitative phenotypes based on genetic network and provides a generic approach.

  5. Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster

    Science.gov (United States)

    Iyer, Janani; Wang, Qingyu; Le, Thanh; Pizzo, Lucilla; Grönke, Sebastian; Ambegaokar, Surendra S.; Imai, Yuzuru; Srivastava, Ashutosh; Troisí, Beatriz Llamusí; Mardon, Graeme; Artero, Ruben; Jackson, George R.; Isaacs, Adrian M.; Partridge, Linda; Lu, Bingwei; Kumar, Justin P.; Girirajan, Santhosh

    2016-01-01

    About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net), to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions. PMID:26994292

  6. Genetic heterogeneity, modifier genes, and quantitative phenotypes in psychiatric illness: searching for a framework.

    Science.gov (United States)

    Fanous, A H; Kendler, K S

    2005-01-01

    Schizophrenia has long been thought to be clinically heterogeneous. A range of studies suggests that this is due to genetic heterogeneity. Some clinical features, such as negative symptoms, are associated with a greater risk of illness in relatives. Affected sibling pairs are correlated for clinical and course features as well as subforms of illness, and twin studies suggest that this is due to genetic factors. This is further supported by findings that subjects from families linked to some chromosomal regions may differ clinically from those from unlinked families. Moreover, some genes may affect clinical features without altering susceptibility (ie are modifier genes). High-risk genotypes may have quantitative, rather than categorical effects, and may influence milder or subclinical phenotypes. Another recent finding is that nonpsychotic relatives may have personality features that resemble those of their affected relatives. These findings taken together suggest that there may be several classes of gene action in schizophrenia: some genes may influence susceptibility only, others may influence clinical features only, and still others may have a mixed effect. Furthermore, subsets of these classes may affect personality and other traits in nonpsychotic relatives. Understanding these classes of gene action may help guide the design of linkage and association studies that have increased power. We describe five classes of genes and their predictions of the outcomes of family, twin, and several types of linkage studies. We go on to explore how these predictions can in turn be used to aid in the design of linkage studies.

  7. Quantitative Seq-LGS: Genome-Wide Identification of Genetic Drivers of Multiple Phenotypes in Malaria Parasites

    KAUST Repository

    Abkallo, Hussein M.

    2016-10-01

    Identifying the genetic determinants of phenotypes that impact on disease severity is of fundamental importance for the design of new interventions against malaria. Traditionally, such discovery has relied on labor-intensive approaches that require significant investments of time and resources. By combining Linkage Group Selection (LGS), quantitative whole genome population sequencing and a novel mathematical modeling approach (qSeq-LGS), we simultaneously identified multiple genes underlying two distinct phenotypes, identifying novel alleles for growth rate and strain specific immunity (SSI), while removing the need for traditionally required steps such as cloning, individual progeny phenotyping and marker generation. The detection of novel variants, verified by experimental phenotyping methods, demonstrates the remarkable potential of this approach for the identification of genes controlling selectable phenotypes in malaria and other apicomplexan parasites for which experimental genetic crosses are amenable.

  8. Genetic Studies of Quantitative MCI and AD Phenotypes in ADNI: Progress, Opportunities, and Plans

    Science.gov (United States)

    Saykin, Andrew J.; Shen, Li; Yao, Xiaohui; Kim, Sungeun; Nho, Kwangsik; Risacher, Shannon L.; Ramanan, Vijay K.; Foroud, Tatiana M.; Faber, Kelly M.; Sarwar, Nadeem; Munsie, Leanne M.; Hu, Xiaolan; Soares, Holly D.; Potkin, Steven G.; Thompson, Paul M.; Kauwe, John S.K.; Kaddurah-Daouk, Rima; Green, Robert C.; Toga, Arthur W.; Weiner, Michael W.

    2015-01-01

    INTRODUCTION Genetic data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) has been crucial in advancing the understanding of AD pathophysiology. Here we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans. METHODS Lymphoblastoid cell lines and DNA and RNA samples from blood have been collected and banked, and data and biosamples have been widely disseminated. To date, APOE genotyping, genome-wide association study (GWAS), and whole exome and whole genome sequencing (WES, WGS) data have been obtained and disseminated. RESULTS ADNI genetic data have been downloaded thousands of times and over 300 publications have resulted, including reports of large scale GWAS by consortia to which ADNI contributed. Many of the first applications of quantitative endophenotype association studies employed ADNI data, including some of the earliest GWAS and pathway-based studies of biospecimen and imaging biomarkers, as well as memory and other clinical/cognitive variables. Other contributions include some of the first WES and WGS data sets and reports in healthy controls, MCI, and AD. DISCUSSION Numerous genetic susceptibility and protective markers for AD and disease biomarkers have been identified and replicated using ADNI data, and have heavily implicated immune, mitochondrial, cell cycle/fate, and other biological processes. Early sequencing studies suggest that rare and structural variants are likely to account for significant additional phenotypic variation. Longitudinal analyses of transcriptomic, proteomic, metabolomic, and epigenomic changes will also further elucidate dynamic processes underlying preclinical and prodromal stages of disease. Integration of this unique collection of multi-omics data within a systems biology framework will help to separate truly informative markers of early disease mechanisms and potential novel therapeutic targets from the vast background of less relevant biological

  9. Developmental Patterning as a Quantitative Trait: Genetic Modulation of the Hoxb6 Mutant Skeletal Phenotype.

    Directory of Open Access Journals (Sweden)

    Claudia Kappen

    Full Text Available The process of patterning along the anterior-posterior axis in vertebrates is highly conserved. The function of Hox genes in the axis patterning process is particularly well documented for bone development in the vertebral column and the limbs. We here show that Hoxb6, in skeletal elements at the cervico-thoracic junction, controls multiple independent aspects of skeletal pattern, implicating discrete developmental pathways as substrates for this transcription factor. In addition, we demonstrate that Hoxb6 function is subject to modulation by genetic factors. These results establish Hox-controlled skeletal pattern as a quantitative trait modulated by gene-gene interactions, and provide evidence that distinct modifiers influence the function of conserved developmental genes in fundamental patterning processes.

  10. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    Science.gov (United States)

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  11. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    Science.gov (United States)

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  12. Factor analysis in the Genetics of Asthma International Network family study identifies five major quantitative asthma phenotypes

    NARCIS (Netherlands)

    Pillai, S. G.; Tang, Y.; van den Oord, E.; Klotsman, M.; Barnes, K.; Carlsen, K.; Gerritsen, J.; Lenney, W.; Silverman, M.; Sly, P.; Sundy, J.; Tsanakas, J.; von Berg, A.; Whyte, M.; Ortega, H. G.; Anderson, W. H.; Helms, P. J.

    2008-01-01

    Background Asthma is a clinically heterogeneous disease caused by a complex interaction between genetic susceptibility and diverse environmental factors. In common with other complex diseases the lack of a standardized scheme to evaluate the phenotypic variability poses challenges in identifying the

  13. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in Brassica rapa Fast Plants

    Science.gov (United States)

    Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question “What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev),” we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students’ cognitive structures before and after the unit and explanations in students’ final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on “variation” as a proposed threshold concept and primary goal for students’ explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from “plug and play,” this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. PMID:25185225

  14. Quantitative genetic analysis indicates natural selection on leaf phenotypes across wild tomato species (Solanum sect. Lycopersicon; Solanaceae).

    Science.gov (United States)

    Muir, Christopher D; Pease, James B; Moyle, Leonie C

    2014-12-01

    Adaptive evolution requires both raw genetic material and an accessible path of high fitness from one fitness peak to another. In this study, we used an introgression line (IL) population to map quantitative trait loci (QTL) for leaf traits thought to be associated with adaptation to precipitation in wild tomatoes (Solanum sect. Lycopersicon; Solanaceae). A QTL sign test showed that several traits likely evolved under directional natural selection. Leaf traits correlated across species do not share a common genetic basis, consistent with a scenario in which selection maintains trait covariation unconstrained by pleiotropy or linkage disequilibrium. Two large effect QTL for stomatal distribution colocalized with key genes in the stomatal development pathway, suggesting promising candidates for the molecular bases of adaptation in these species. Furthermore, macroevolutionary transitions between vastly different stomatal distributions may not be constrained when such large-effect mutations are available. Finally, genetic correlations between stomatal traits measured in this study and data on carbon isotope discrimination from the same ILs support a functional hypothesis that the distribution of stomata affects the resistance to CO2 diffusion inside the leaf, a trait implicated in climatic adaptation in wild tomatoes. Along with evidence from previous comparative and experimental studies, this analysis indicates that leaf traits are an important component of climatic niche adaptation in wild tomatoes and demonstrates that some trait transitions between species could have involved few, large-effect genetic changes, allowing rapid responses to new environmental conditions.

  15. Integration of molecular genetic technology with quantitative genetic technology for maximizing the speed of genetic improvement

    Institute of Scientific and Technical Information of China (English)

    Jack; C.M.; DEKKERS

    2005-01-01

    To date,most genetic progress for quantita-tive traits in livestock has been made by selec-tion on phenotype or on estimates of breedingvalues(BBV)derived from phenotype,withoutknowledge of the number of genes that affect thetrait or the effects of each gene.In this quantita-tive genetic approach to genetic improvement,the genetic architecture of traits of interest hasessentially been treated as a‘black box’.De-spite this,the substantial rates of genetic im-provement that have been and continue to be a-chie...

  16. Genetic background of phenotypic variation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A noteworthy feature of the living world is its bewildering variability. A key issue in several biological disciplines is the achievement of an understanding of the hereditary basis of this variability. Two opposing, but not necessarily irreconcilable conceptions attempt to explain the underlying mechanism. The gene function paradigm postulates that phenotypic variance is generated by the polymorphism in the coding sequences of genes. However, comparisons of a great number of homologous gene and protein sequences have revealed that they predominantly remained functionally conserved even across distantly related phylogenic taxa. Alternatively, the gene regulation paradigm assumes that differences in the cis-regulatory region of genes do account for phenotype variation within species. An extension of this latter concept is that phenotypic variability is generated by the polyrnorphism in the overall gene expression profiles of gene networks.In other words, the activity of a particular gene is a system property determined both by the cis-regulatory sequences of the given genes and by the other genes of a gene network, whose expressions vary among individuals, too. Novel proponents of gene function paradigm claim that functional genetic variance within the coding sequences of regulatory genes is critical for the generation of morphological polymorphism. Note, however, that these developmental genes play direct regulatory roles in the control of gene expression.

  17. Next generation quantitative genetics in plants.

    Science.gov (United States)

    Jiménez-Gómez, José M

    2011-01-01

    Most characteristics in living organisms show continuous variation, which suggests that they are controlled by multiple genes. Quantitative trait loci (QTL) analysis can identify the genes underlying continuous traits by establishing associations between genetic markers and observed phenotypic variation in a segregating population. The new high-throughput sequencing (HTS) technologies greatly facilitate QTL analysis by providing genetic markers at genome-wide resolution in any species without previous knowledge of its genome. In addition HTS serves to quantify molecular phenotypes, which aids to identify the loci responsible for QTLs and to understand the mechanisms underlying diversity. The constant improvements in price, experimental protocols, computational pipelines, and statistical frameworks are making feasible the use of HTS for any research group interested in quantitative genetics. In this review I discuss the application of HTS for molecular marker discovery, population genotyping, and expression profiling in QTL analysis.

  18. Recommendations for using standardised phenotypes in genetic association studies

    Directory of Open Access Journals (Sweden)

    Naylor Melissa G

    2009-07-01

    Full Text Available Abstract Genetic association studies of complex traits often rely on standardised quantitative phenotypes, such as percentage of predicted forced expiratory volume and body mass index to measure an underlying trait of interest (eg lung function, obesity. These phenotypes are appealing because they provide an easy mechanism for comparing subjects, although such standardisations may not be the best way to control for confounders and other covariates. We recommend adjusting raw or standardised phenotypes within the study population via regression. We illustrate through simulation that optimal power in both population- and family-based association tests is attained by using the residuals from within-study adjustment as the complex trait phenotype. An application of family-based association analysis of forced expiratory volume in one second, and obesity in the Childhood Asthma Management Program data, illustrates that power is maintained or increased when adjusted phenotype residuals are used instead of typical standardised quantitative phenotypes.

  19. Interacting personalities: behavioural ecology meets quantitative genetics.

    Science.gov (United States)

    Dingemanse, Niels J; Araya-Ajoy, Yimen G

    2015-02-01

    Behavioural ecologists increasingly study behavioural variation within and among individuals in conjunction, thereby integrating research on phenotypic plasticity and animal personality within a single adaptive framework. Interactions between individuals (cf. social environments) constitute a major causative factor of behavioural variation at both of these hierarchical levels. Social interactions give rise to complex 'interactive phenotypes' and group-level emergent properties. This type of phenotype has intriguing evolutionary implications, warranting a cohesive framework for its study. We detail here how a reaction-norm framework might be applied to usefully integrate social environment theory developed in behavioural ecology and quantitative genetics. The proposed emergent framework facilitates firm integration of social environments in adaptive research on phenotypic characters that vary within and among individuals.

  20. Evolutionary quantitative genetics of nonlinear developmental systems.

    Science.gov (United States)

    Morrissey, Michael B

    2015-08-01

    In quantitative genetics, the effects of developmental relationships among traits on microevolution are generally represented by the contribution of pleiotropy to additive genetic covariances. Pleiotropic additive genetic covariances arise only from the average effects of alleles on multiple traits, and therefore the evolutionary importance of nonlinearities in development is generally neglected in quantitative genetic views on evolution. However, nonlinearities in relationships among traits at the level of whole organisms are undeniably important to biology in general, and therefore critical to understanding evolution. I outline a system for characterizing key quantitative parameters in nonlinear developmental systems, which yields expressions for quantities such as trait means and phenotypic and genetic covariance matrices. I then develop a system for quantitative prediction of evolution in nonlinear developmental systems. I apply the system to generating a new hypothesis for why direct stabilizing selection is rarely observed. Other uses will include separation of purely correlative from direct and indirect causal effects in studying mechanisms of selection, generation of predictions of medium-term evolutionary trajectories rather than immediate predictions of evolutionary change over single generation time-steps, and the development of efficient and biologically motivated models for separating additive from epistatic genetic variances and covariances.

  1. Genetic architecture of quantitative traits and complex diseases.

    Science.gov (United States)

    Fu, Wenqing; O'Connor, Timothy D; Akey, Joshua M

    2013-12-01

    More than 150 years after Mendel discovered the laws of heredity, the genetic architecture of phenotypic variation remains elusive. Here, we discuss recent progress in deciphering how genotypes map onto phenotypes, sources of genetic complexity, and how model organisms are illuminating general principles about the relationship between genetic and phenotypic variation. Moreover, we highlight insights gleaned from large-scale sequencing studies in humans, and how this knowledge informs outstanding questions about the genetic architecture of quantitative traits and complex diseases. Finally, we articulate how the confluence of technologies enabling whole-genome sequencing, comprehensive phenotyping, and high-throughput functional assays of polymorphisms will facilitate a more principled and mechanistic understanding of the genetic architecture of phenotypic variation.

  2. Quantitative genetics of disease traits.

    Science.gov (United States)

    Wray, N R; Visscher, P M

    2015-04-01

    John James authored two key papers on the theory of risk to relatives for binary disease traits and the relationship between parameters on the observed binary scale and an unobserved scale of liability (James Annals of Human Genetics, 1971; 35: 47; Reich, James and Morris Annals of Human Genetics, 1972; 36: 163). These two papers are John James' most cited papers (198 and 328 citations, November 2014). They have been influential in human genetics and have recently gained renewed popularity because of their relevance to the estimation of quantitative genetics parameters for disease traits using SNP data. In this review, we summarize the two early papers and put them into context. We show recent extensions of the theory for ascertained case-control data and review recent applications in human genetics.

  3. Complex genetic interactions in a quantitative trait locus.

    Directory of Open Access Journals (Sweden)

    Himanshu Sinha

    2006-02-01

    Full Text Available Whether in natural populations or between two unrelated members of a species, most phenotypic variation is quantitative. To analyze such quantitative traits, one must first map the underlying quantitative trait loci. Next, and far more difficult, one must identify the quantitative trait genes (QTGs, characterize QTG interactions, and identify the phenotypically relevant polymorphisms to determine how QTGs contribute to phenotype. In this work, we analyzed three Saccharomyces cerevisiae high-temperature growth (Htg QTGs (MKT1, END3, and RHO2. We observed a high level of genetic interactions among QTGs and strain background. Interestingly, while the MKT1 and END3 coding polymorphisms contribute to phenotype, it is the RHO2 3'UTR polymorphisms that are phenotypically relevant. Reciprocal hemizygosity analysis of the Htg QTGs in hybrids between S288c and ten unrelated S. cerevisiae strains reveals that the contributions of the Htg QTGs are not conserved in nine other hybrids, which has implications for QTG identification by marker-trait association. Our findings demonstrate the variety and complexity of QTG contributions to phenotype, the impact of genetic background, and the value of quantitative genetic studies in S. cerevisiae.

  4. Genetic and phenotypic variation of some reproductive traits in ...

    African Journals Online (AJOL)

    Unknown

    Genetic and phenotypic variation of some reproductive traits in Egyptian buffalo ... genetic and phenotypic parameters for these traits using a multi-trait animal model. Season ..... Genetic improvement of buffalo productivity under farm and field.

  5. Phenotypic evolution from genetic polymorphisms in a radial network architecture

    Directory of Open Access Journals (Sweden)

    Siegel Paul B

    2007-11-01

    Full Text Available Abstract Background The genetic architecture of a quantitative trait influences the phenotypic response to natural or artificial selection. One of the main objectives of genetic mapping studies is to identify the genetic factors underlying complex traits and understand how they contribute to phenotypic expression. Presently, we are good at identifying and locating individual loci with large effects, but there is a void in describing more complex genetic architectures. Although large networks of connected genes have been reported, there is an almost complete lack of information on how polymorphisms in these networks contribute to phenotypic variation and change. To date, most of our understanding comes from theoretical, model-based studies, and it remains difficult to assess how realistic their conclusions are as they lack empirical support. Results A previous study provided evidence that nearly half of the difference in eight-week body weight between two divergently selected lines of chickens was a result of four loci organized in a 'radial' network (one central locus interacting with three 'radial' loci that, in turn, only interacted with the central locus. Here, we study the relationship between phenotypic change and genetic polymorphism in this empirically detected network. We use a model-free approach to study, through individual-based simulations, the dynamic properties of this polymorphic and epistatic genetic architecture. The study provides new insights to how epistasis can modify the selection response, buffer and reveal effects of major loci leading to a progressive release of genetic variation. We also illustrate the difficulty of predicting genetic architecture from observed selection response, and discuss mechanisms that might lead to misleading conclusions on underlying genetic architectures from quantitative trait locus (QTL experiments in selected populations. Conclusion Considering both molecular (QTL and phenotypic (selection

  6. Predicting phenotypic diversity and the underlying quantitative molecular transitions.

    Directory of Open Access Journals (Sweden)

    Claudiu A Giurumescu

    2009-04-01

    Full Text Available During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render approximately 500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network

  7. Theory and Practice in Quantitative Genetics

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Beem, A Leo; de Geus, Eco J C

    2003-01-01

    With the rapid advances in molecular biology, the near completion of the human genome, the development of appropriate statistical genetic methods and the availability of the necessary computing power, the identification of quantitative trait loci has now become a realistic prospect for quantitative...... geneticists. We briefly describe the theoretical biometrical foundations underlying quantitative genetics. These theoretical underpinnings are translated into mathematical equations that allow the assessment of the contribution of observed (using DNA samples) and unobserved (using known genetic relationships......) genetic variation to population variance in quantitative traits. Several statistical models for quantitative genetic analyses are described, such as models for the classical twin design, multivariate and longitudinal genetic analyses, extended twin analyses, and linkage and association analyses. For each...

  8. Nunukan Chicken: Genetic Characteristics, Phenotype and Utilization

    Directory of Open Access Journals (Sweden)

    Tike Sartika

    2006-12-01

    Full Text Available Nunukan chicken is a local chicken from East Kalimantan which spreads out in Tarakan and Nunukan Islands . The chicken has a specific buff color and Columbian type feather and also has very late feathering (VLF trait . The Nunukan cocks and hens have no wing and tail primary feather; the tail feathers are short and fragile . The VLF trait is known to have association with a K gene on the Z chromosome. The chicken is efficient in protein metabolism . Sulfur amino acids (cystine and methionine that needed for feather growth, could be utilized for meat and egg production . The egg production of Nunukan chicken was better than the Kampung chicken . The average of hen day, hen house and peak production of Nunukan chicken was 45 . 39.1 and 62%, respectively, while the Kampung chicken was 35 .9, 30 .9 and 48%, respectively . Based on genetic analysis, the external genotype characteristic of the Nunukan chicken is ii ce ss Idld pp. It means that the phenotype appearance of the Nunukan chicken was columbian and gold feathering type, yellow and white shank color and single comb type. This phenotype is similar to Merawang Chicken . The genetic introgression of the Nunukan chicken is affected by the Rhode Island Red with the genetic introgression value of 0.964 .

  9. Genetic Regulation of Phenotypic Plasticity and Canalisation in Yeast Growth

    OpenAIRE

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-01-01

    The ability of a genotype to show diverse phenotypes in different environments is called phenotypic plasticity. Phenotypic plasticity helps populations to evade extinctions in novel environments, facilitates adaptation and fuels evolution. However, most studies focus on understanding the genetic basis of phenotypic regulation in specific environments. As a result, while it’s evolutionary relevance is well established, genetic mechanisms regulating phenotypic plasticity and their overlap with ...

  10. A synthetic framework for modeling the genetic basis of phenotypic plasticity and its costs.

    Science.gov (United States)

    Zhai, Yi; Lv, Yafei; Li, Xin; Wu, Weimiao; Bo, Wenhao; Shen, Dengfeng; Xu, Fang; Pang, Xiaoming; Zheng, Bingsong; Wu, Rongling

    2014-01-01

    The phenotype of an individual is controlled not only by its genes, but also by the environment in which it grows. A growing body of evidence shows that the extent to which phenotypic changes are driven by the environment, known as phenotypic plasticity, is also under genetic control, but an overall picture of genetic variation for phenotypic plasticity remains elusive. Here, we develop a model for mapping quantitative trait loci (QTLs) that regulate environment-induced plastic response. This model enables geneticists to test whether there exist actual QTLs that determine phenotypic plasticity and, if there are, further test how plasticity QTLs control the costs of plastic response by dissecting the genetic correlation of phenotypic plasticity and trait value. The model was used to analyze real data for grain yield of winter wheat (Triticum aestivum), leading to the detection of pleiotropic QTLs and epistatic QTLs that affect phenotypic plasticity and its cost in this crop.

  11. Quantitative genetic studies of antisocial behaviour.

    Science.gov (United States)

    Viding, Essi; Larsson, Henrik; Jones, Alice P

    2008-08-12

    This paper will broadly review the currently available twin and adoption data on antisocial behaviour (AB). It is argued that quantitative genetic research can make a significant contribution to further the understanding of how AB develops. Genetically informative study designs are particularly useful for investigating several important questions such as whether: the heritability estimates vary as a function of assessment method or gender; the relative importance of genetic and environmental influences varies for different types of AB; the environmental risk factors are truly environmental; and genetic vulnerability influences susceptibility to environmental risk. While the current data are not yet directly translatable for prevention and treatment programmes, quantitative genetic research has concrete translational potential. Quantitative genetic research can supplement neuroscience research in informing about different subtypes of AB, such as AB coupled with callous-unemotional traits. Quantitative genetic research is also important in advancing the understanding of the mechanisms by which environmental risk operates.

  12. Sex differences in genetic architecture of complex phenotypes?

    Directory of Open Access Journals (Sweden)

    Jacqueline M Vink

    Full Text Available We examined sex differences in familial resemblance for a broad range of behavioral, psychiatric and health related phenotypes (122 complex traits in children and adults. There is a renewed interest in the importance of genotype by sex interaction in, for example, genome-wide association (GWA studies of complex phenotypes. If different genes play a role across sex, GWA studies should consider the effect of genetic variants separately in men and women, which affects statistical power. Twin and family studies offer an opportunity to compare resemblance between opposite-sex family members to the resemblance between same-sex relatives, thereby presenting a test of quantitative and qualitative sex differences in the genetic architecture of complex traits. We analyzed data on lifestyle, personality, psychiatric disorder, health, growth, development and metabolic traits in dizygotic (DZ same-sex and opposite-sex twins, as these siblings are perfectly matched for age and prenatal exposures. Sample size varied from slightly over 300 subjects for measures of brain function such as EEG power to over 30,000 subjects for childhood psychopathology and birth weight. For most phenotypes, sample sizes were large, with an average sample size of 9027 individuals. By testing whether the resemblance in DZ opposite-sex pairs is the same as in DZ same-sex pairs, we obtain evidence for genetic qualitative sex-differences in the genetic architecture of complex traits for 4% of phenotypes. We conclude that for most traits that were examined, the current evidence is that same the genes are operating in men and women.

  13. Strategies for MCMC computation in quantitative genetics

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Ibánez, N.; Sorensen, Daniel

    2006-01-01

    Given observations of a trait and a pedigree for a group of animals, the basic model in quantitative genetics is a linear mixed model with genetic random effects. The correlation matrix of the genetic random effects is determined by the pedigree and is typically very highdimensional...

  14. Difference in MSA phenotype distribution between populations: genetics or environment?

    Science.gov (United States)

    Ozawa, Tetsutaro; Revesz, Tamas; Paviour, Dominic; Lees, Andrew J; Quinn, Niall; Tada, Mari; Kakita, Akiyoshi; Onodera, Osamu; Wakabayashi, Koichi; Takahashi, Hitoshi; Nishizawa, Masatoyo; Holton, Janice L

    2012-01-01

    The reasons for the differences in emphasis on striatonigral or olivopontocerebellar involvement in multiple system atrophy (MSA) remain to be determined. Semi-quantitative pathological analyses carried out in the United Kingdom and Japan demonstrated that olivopontocerebellar-predominant pathology was more frequent in Japanese MSA than British MSA. This observation provides evidence for a difference in phenotype distribution between British and Japanese patients with definite MSA. Studies of the natural history and epidemiology of MSA carried out in various populations have revealed that the relative prevalences of clinical subtypes of MSA probably differ among populations; the majority of MSA patients diagnosed in Europe have predominant parkinsonism (MSA-P), while the majority of MSA patients diagnosed in Asia have predominant cerebellar ataxia (MSA-C). Although potential drawbacks to the published frequencies of clinical subtypes and pathological subtypes should be considered because of selection biases, the difference demonstrated in pathological subtype is also consistent with the differences in clinical subtype of MSA demonstrated between Europe and Asia. Modest alterations in susceptibility factors may contribute to the difference in MSA phenotype distribution between populations. Synergistic interactions between genetic risk variants and environmental toxins responsible for parkinsonism or cerebellar dysfunction should therefore be explored. Further investigations are needed to determine the environmental, genetic, and epigenetic factors that account for the differences in clinicopathological phenotype of MSA among different populations.

  15. Theory and practice in quantitative genetics.

    Science.gov (United States)

    Posthuma, Daniëlle; Beem, A Leo; de Geus, Eco J C; van Baal, G Caroline M; von Hjelmborg, Jacob B; Iachine, Ivan; Boomsma, Dorret I

    2003-10-01

    With the rapid advances in molecular biology, the near completion of the human genome, the development of appropriate statistical genetic methods and the availability of the necessary computing power, the identification of quantitative trait loci has now become a realistic prospect for quantitative geneticists. We briefly describe the theoretical biometrical foundations underlying quantitative genetics. These theoretical underpinnings are translated into mathematical equations that allow the assessment of the contribution of observed (using DNA samples) and unobserved (using known genetic relationships) genetic variation to population variance in quantitative traits. Several statistical models for quantitative genetic analyses are described, such as models for the classical twin design, multivariate and longitudinal genetic analyses, extended twin analyses, and linkage and association analyses. For each, we show how the theoretical biometrical model can be translated into algebraic equations that may be used to generate scripts for statistical genetic software packages, such as Mx, Lisrel, SOLAR, or MERLIN. For using the former program a web-library (available from http://www.psy.vu.nl/mxbib) has been developed of freely available scripts that can be used to conduct all genetic analyses described in this paper.

  16. Methods for Analyzing Multivariate Phenotypes in Genetic Association Studies

    Directory of Open Access Journals (Sweden)

    Qiong Yang

    2012-01-01

    Full Text Available Multivariate phenotypes are frequently encountered in genetic association studies. The purpose of analyzing multivariate phenotypes usually includes discovery of novel genetic variants of pleiotropy effects, that is, affecting multiple phenotypes, and the ultimate goal of uncovering the underlying genetic mechanism. In recent years, there have been new method development and application of existing statistical methods to such phenotypes. In this paper, we provide a review of the available methods for analyzing association between a single marker and a multivariate phenotype consisting of the same type of components (e.g., all continuous or all categorical or different types of components (e.g., some are continuous and others are categorical. We also reviewed causal inference methods designed to test whether the detected association with the multivariate phenotype is truly pleiotropy or the genetic marker exerts its effects on some phenotypes through affecting the others.

  17. Data-driven encoding for quantitative genetic trait prediction.

    Science.gov (United States)

    He, Dan; Wang, Zhanyong; Parida, Laxmi

    2015-01-01

    Given a set of biallelic molecular markers, such as SNPs, with genotype values on a collection of plant, animal or human samples, the goal of quantitative genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Quantitative genetic trait prediction is usually represented as linear regression models which require quantitative encodings for the genotypes: the three distinct genotype values, corresponding to one heterozygous and two homozygous alleles, are usually coded as integers, and manipulated algebraically in the model. Further, epistasis between multiple markers is modeled as multiplication between the markers: it is unclear that the regression model continues to be effective under this. In this work we investigate the effects of encodings to the quantitative genetic trait prediction problem. We first showed that different encodings lead to different prediction accuracies, in many test cases. We then proposed a data-driven encoding strategy, where we encode the genotypes according to their distribution in the phenotypes and we allow each marker to have different encodings. We show in our experiments that this encoding strategy is able to improve the performance of the genetic trait prediction method and it is more helpful for the oligogenic traits, whose values rely on a relatively small set of markers. To the best of our knowledge, this is the first paper that discusses the effects of encodings to the genetic trait prediction problem.

  18. Quantitative genetic studies of antisocial behaviour

    OpenAIRE

    Viding, Essi; Larsson, Henrik; Jones, Alice P.

    2008-01-01

    This paper will broadly review the currently available twin and adoption data on antisocial behaviour (AB). It is argued that quantitative genetic research can make a significant contribution to further the understanding of how AB develops. Genetically informative study designs are particularly useful for investigating several important questions such as whether: the heritability estimates vary as a function of assessment method or gender; the relative importance of genetic and environmental ...

  19. Original Paper Patterns of genetic structure and phenotypic diversity ...

    African Journals Online (AJOL)

    Patterns of genetic structure and phenotypic diversity in sorghum landraces in relation to farmers' management in Burkina Faso ... the role of farmer practices in phenotypic and genetic evolution of sorghum. ... varieties to marginal environments such as ...... Supporting the Convention on Biological ... A new method to.

  20. The genetics of maternal care: direct and indirect genetic effects on phenotype in the dung beetle Onthophagus taurus.

    Science.gov (United States)

    Hunt, John; Simmons, Leigh W

    2002-05-14

    While theoretical models of the evolution of parental care are based on the assumption of underlying genetic variance, surprisingly few quantitative genetic studies of this life-history trait exist. Estimation of the degree of genetic variance in parental care is important because it can be a significant source of maternal effects, which, if genetically based, represent indirect genetic effects. A major prediction of indirect genetic effect theory is that traits without heritable variation can evolve because of the heritable environmental variation that indirect genetic effects provide. In the dung beetle, Onthophagus taurus, females provide care to offspring by provisioning a brood mass. The size of the brood mass has pronounced effects on offspring phenotype. Using a half-sib breeding design we show that the weight of the brood mass females produce exhibits significant levels of additive genetic variance due to sires. However, variance caused by dams is considerably larger, demonstrating that maternal effects are also important. Body size exhibited low additive genetic variance. However, body size exerts a strong maternal influence on the weight of brood masses produced, accounting for 22% of the nongenetic variance in offspring body size. Maternal body size also influenced the number of offspring produced but there was no genetic variance for this trait. Offspring body size and brood mass weight exhibited positive genetic and phenotypic correlations. We conclude that both indirect genetic effects, via maternal care, and nongenetic maternal effects, via female size, play important roles in the evolution of phenotype in this species.

  1. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI.

    Science.gov (United States)

    Adler, Sophie; Lorio, Sara; Jacques, Thomas S; Benova, Barbora; Gunny, Roxana; Cross, J Helen; Baldeweg, Torsten; Carmichael, David W

    2017-01-01

    Focal cortical dysplasias (FCDs) are a range of malformations of cortical development each with specific histopathological features. Conventional radiological assessment of standard structural MRI is useful for the localization of lesions but is unable to accurately predict the histopathological features. Quantitative MRI offers the possibility to probe tissue biophysical properties in vivo and may bridge the gap between radiological assessment and ex-vivo histology. This review will cover histological, genetic and radiological features of FCD following the ILAE classification and will explain how quantitative voxel- and surface-based techniques can characterise these features. We will provide an overview of the quantitative MRI measures available, their link with biophysical properties and finally the potential application of quantitative MRI to the problem of FCD subtyping. Future research linking quantitative MRI to FCD histological properties should improve clinical protocols, allow better characterisation of lesions in vivo and tailored surgical planning to the individual.

  2. Automated identification of pathways from quantitative genetic interaction data

    Science.gov (United States)

    Battle, Alexis; Jonikas, Martin C; Walter, Peter; Weissman, Jonathan S; Koller, Daphne

    2010-01-01

    High-throughput quantitative genetic interaction (GI) measurements provide detailed information regarding the structure of the underlying biological pathways by reporting on functional dependencies between genes. However, the analytical tools for fully exploiting such information lag behind the ability to collect these data. We present a novel Bayesian learning method that uses quantitative phenotypes of double knockout organisms to automatically reconstruct detailed pathway structures. We applied our method to a recent data set that measures GIs for endoplasmic reticulum (ER) genes, using the unfolded protein response as a quantitative phenotype. The results provided reconstructions of known functional pathways including N-linked glycosylation and ER-associated protein degradation. It also contained novel relationships, such as the placement of SGT2 in the tail-anchored biogenesis pathway, a finding that we experimentally validated. Our approach should be readily applicable to the next generation of quantitative GI data sets, as assays become available for additional phenotypes and eventually higher-level organisms. PMID:20531408

  3. Genome-wide pathway association studies of multiple correlated quantitative phenotypes using principle component analyses.

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    Full Text Available Genome-wide pathway association studies provide novel insight into the biological mechanism underlying complex diseases. Current pathway association studies primarily focus on single important disease phenotype, which is sometimes insufficient to characterize the clinical manifestations of complex diseases. We present a multi-phenotypes pathway association study(MPPAS approach using principle component analysis(PCA. In our approach, PCA is first applied to multiple correlated quantitative phenotypes for extracting a set of orthogonal phenotypic components. The extracted phenotypic components are then used for pathway association analysis instead of original quantitative phenotypes. Four statistics were proposed for PCA-based MPPAS in this study. Simulations using the real data from the HapMap project were conducted to evaluate the power and type I error rates of PCA-based MPPAS under various scenarios considering sample sizes, additive and interactive genetic effects. A real genome-wide association study data set of bone mineral density (BMD at hip and spine were also analyzed by PCA-based MPPAS. Simulation studies illustrated the performance of PCA-based MPPAS for identifying the causal pathways underlying complex diseases. Genome-wide MPPAS of BMD detected associations between BMD and KENNY_CTNNB1_TARGETS_UP as well as LONGEVITYPATHWAY pathways in this study. We aim to provide a applicable MPPAS approach, which may help to gain deep understanding the potential biological mechanism of association results for complex diseases.

  4. Precision phenotyping of biomass accumulation in triticale reveals temporal genetic patterns of regulation

    Science.gov (United States)

    Busemeyer, Lucas; Ruckelshausen, Arno; Möller, Kim; Melchinger, Albrecht E.; Alheit, Katharina V.; Maurer, Hans Peter; Hahn, Volker; Weissmann, Elmar A.; Reif, Jochen C.; Würschum, Tobias

    2013-08-01

    To extend agricultural productivity by knowledge-based breeding and tailor varieties adapted to specific environmental conditions, it is imperative to improve our ability to assess the dynamic changes of the phenome of crops under field conditions. To this end, we have developed a precision phenotyping platform that combines various sensors for a non-invasive, high-throughput and high-dimensional phenotyping of small grain cereals. This platform yielded high prediction accuracies and heritabilities for biomass of triticale. Genetic variation for biomass accumulation was dissected with 647 doubled haploid lines derived from four families. Employing a genome-wide association mapping approach, two major quantitative trait loci (QTL) for biomass were identified and the genetic architecture of biomass accumulation was found to be characterized by dynamic temporal patterns. Our findings highlight the potential of precision phenotyping to assess the dynamic genetics of complex traits, especially those not amenable to traditional phenotyping.

  5. [Genetic components and the uncertainty of the phenotypic realization of the mass of newborns in domestic pigs Sus scrofa L].

    Science.gov (United States)

    Nikitin, S V; Kniazev, S P; Ermolaev, V I

    2014-01-01

    In this article, we discuss the features of the genetic determination of a continuous quantitative trait, the mass of newborn offspring in populations of the domestic pig. We defined several components that determine the phenotypic trait, such as the maternal effect, complete dominance, interaction of the parental alleles in the genotype of the offspring, and the uncertainty of phenotypic realization of genotype. We found that a phenotypic trait of high genetic determinacy can also have a maximum range in phenotypic realization, in which case each genotype encountered in the population can realize within the entire range of possible phenotypes.

  6. Whole genome approaches to quantitative genetics.

    Science.gov (United States)

    Visscher, Peter M

    2009-06-01

    Apart from parent-offspring pairs and clones, relative pairs vary in the proportion of the genome that they share identical by descent. In the past, quantitative geneticists have used the expected value of sharing genes by descent to estimate genetic parameters and predict breeding values. With the possibility to genotype individuals for many markers across the genome it is now possible to empirically estimate the actual relationship between relatives. We review some of the theory underlying the variation in genetic identity, show applications to estimating genetic variance for height in humans and discuss other applications.

  7. Advancing genetic theory and application by metabolic quantitative trait loci analysis.

    Science.gov (United States)

    Kliebenstein, Danielj

    2009-06-01

    This review describes recent advances in the analysis of metabolism using quantitative genetics. It focuses on how recent metabolic quantitative trait loci (QTL) studies enhance our understanding of the genetic architecture underlying naturally variable phenotypes and the impact of this fundamental research on agriculture, specifically crop breeding. In particular, the role of whole-genome duplications in generating quantitative genetic variation within a species is highlighted and the potential uses of this phenomenon presented. Additionally, the review describes how new observations from metabolic QTL mapping analyses are helping to shape and expand the concepts of genetic epistasis.

  8. Klinefelter syndrome (KS): genetics, clinical phenotype and hypogonadism.

    Science.gov (United States)

    Bonomi, M; Rochira, V; Pasquali, D; Balercia, G; Jannini, E A; Ferlin, A

    2017-02-01

    Klinefelter Syndrome (KS) is characterized by an extreme heterogeneity in its clinical and genetic presentation. The relationship between clinical phenotype and genetic background has been partially disclosed; nevertheless, physicians are aware that several aspects concerning this issue are far to be fully understood. By improving our knowledge on the role of some genetic aspects as well as on the KS, patients' interindividual differences in terms of health status will result in a better management of this chromosomal disease. The aim of this review is to provide an update on both genetic and clinical phenotype and their interrelationships.

  9. Genetic Regulation of Phenotypic Plasticity and Canalisation in Yeast Growth.

    Science.gov (United States)

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-01-01

    The ability of a genotype to show diverse phenotypes in different environments is called phenotypic plasticity. Phenotypic plasticity helps populations to evade extinctions in novel environments, facilitates adaptation and fuels evolution. However, most studies focus on understanding the genetic basis of phenotypic regulation in specific environments. As a result, while it's evolutionary relevance is well established, genetic mechanisms regulating phenotypic plasticity and their overlap with the environment specific regulators is not well understood. Saccharomyces cerevisiae is highly sensitive to the environment, which acts as not just external stimulus but also as signalling cue for this unicellular, sessile organism. We used a previously published dataset of a biparental yeast population grown in 34 diverse environments and mapped genetic loci regulating variation in phenotypic plasticity, plasticity QTL, and compared them with environment-specific QTL. Plasticity QTL is one whose one allele exhibits high plasticity whereas the other shows a relatively canalised behaviour. We mapped phenotypic plasticity using two parameters-environmental variance, an environmental order-independent parameter and reaction norm (slope), an environmental order-dependent parameter. Our results show a partial overlap between pleiotropic QTL and plasticity QTL such that while some plasticity QTL are also pleiotropic, others have a significant effect on phenotypic plasticity without being significant in any environment independently. Furthermore, while some plasticity QTL are revealed only in specific environmental orders, we identify large effect plasticity QTL, which are order-independent such that whatever the order of the environments, one allele is always plastic and the other is canalised. Finally, we show that the environments can be divided into two categories based on the phenotypic diversity of the population within them and the two categories have differential regulators of

  10. The Genetics of Phenotypic Plasticity. XIV. Coevolution.

    Science.gov (United States)

    Scheiner, Samuel M; Gomulkiewicz, Richard; Holt, Robert D

    2015-05-01

    Plastic changes in organisms' phenotypes can result from either abiotic or biotic effectors. Biotic effectors create the potential for a coevolutionary dynamic. Through the use of individual-based simulations, we examined the coevolutionary dynamic of two species that are phenotypically plastic. We explored two modes of biotic and abiotic interactions: ecological interactions that determine the form of natural selection and developmental interactions that determine phenotypes. Overall, coevolution had a larger effect on the evolution of phenotypic plasticity than plasticity had on the outcome of coevolution. Effects on the evolution of plasticity were greater when the fitness-maximizing coevolutionary outcomes were antagonistic between the species pair (predator-prey interactions) than when those outcomes were augmenting (competitive or mutualistic). Overall, evolution in the context of biotic interactions reduced selection for plasticity even when trait development was responding to just the abiotic environment. Thus, the evolution of phenotypic plasticity must always be interpreted in the full context of a species' ecology. Our results show how the merging of two theory domains--coevolution and phenotypic plasticity--can deepen our understanding of both and point to new empirical research.

  11. A census of cells in time: quantitative genetics meets developmental biology.

    Science.gov (United States)

    Chitwood, Daniel H; Sinha, Neelima R

    2013-02-01

    Quantitative genetics has become a popular method for determining the genetic basis of natural variation. Combined with genomic methods, it provides a tool for discerning the genetic basis of gene expression. So-called genetical genomics approaches yield a wealth of genomic information, but by necessity, because of cost and time, fail to resolve the differences between organs, tissues, and/or cell types. Similarly, quantitative approaches in development that might potentially address these issues are seldom applied to quantitative genetics. We discuss recent advances in cell type-specific isolation methods, the quantitative analysis of phenotype, and developmental modeling that are compatible with quantitative genetics and, with time, promise to bridge the gap between these two powerful disciplines yielding unprecedented biological insight.

  12. Quantitative trait loci mapping of phenotypic plasticity and genotype-environment interactions in plant and insect performance.

    Science.gov (United States)

    Tétard-Jones, C; Kertesz, M A; Preziosi, R F

    2011-05-12

    Community genetic studies generally ignore the plasticity of the functional traits through which the effect is passed from individuals to the associated community. However, the ability of organisms to be phenotypically plastic allows them to rapidly adapt to changing environments and plasticity is commonly observed across all taxa. Owing to the fitness benefits of phenotypic plasticity, evolutionary biologists are interested in its genetic basis, which could explain how phenotypic plasticity is involved in the evolution of species interactions. Two current ideas exist: (i) phenotypic plasticity is caused by environmentally sensitive loci associated with a phenotype; (ii) phenotypic plasticity is caused by regulatory genes that simply influence the plasticity of a phenotype. Here, we designed a quantitative trait loci (QTL) mapping experiment to locate QTL on the barley genome associated with barley performance when the environment varies in the presence of aphids, and the composition of the rhizosphere. We simultaneously mapped aphid performance across variable rhizosphere environments. We mapped main effects, QTL × environment interaction (QTL×E), and phenotypic plasticity (measured as the difference in mean trait values) for barley and aphid performance onto the barley genome using an interval mapping procedure. We found that QTL associated with phenotypic plasticity were co-located with main effect QTL and QTL×E. We also located phenotypic plasticity QTL that were located separately from main effect QTL. These results support both of the current ideas of how phenotypic plasticity is genetically based and provide an initial insight into the functional genetic basis of how phenotypically plastic traits may still be important sources of community genetic effects.

  13. SIBSIM - quantitative phenotype simulation in extended pedigreesFranke

    Directory of Open Access Journals (Sweden)

    Franke, Daniel

    2006-02-01

    Full Text Available A tool (SIBSIM is described for quantitative phenotype simulation in extended pedigrees. Download and installation information are given and the advantages and limitations of the tool are described. The input format is based on XML and the different sections of an input file are explained. A short explanation of the algorithm is given. Links to the download site, the user manual, and related literature as well as a detailed example are included.Availability: The software is available at: http://www.imbs.uni-luebeck.de/pub/sibsim

  14. Genetic variability, heritability and genetic advance of quantitative ...

    African Journals Online (AJOL)

    ONOS

    2010-05-10

    May 10, 2010 ... clusters/plant, number of pods/plant, number of seeds/pod, yield/plant and 100 seed weight of black gram in M2 ... Key words: Genetic variability, gamma rays, quantitative traits, black gram. ... MATERIALS AND METHODS.

  15. Phenotypic and genetic consequences of protein damage.

    Directory of Open Access Journals (Sweden)

    Anita Krisko

    Full Text Available Although the genome contains all the information necessary for maintenance and perpetuation of life, it is the proteome that repairs, duplicates and expresses the genome and actually performs most cellular functions. Here we reveal strong phenotypes of physiological oxidative proteome damage at the functional and genomic levels. Genome-wide mutations rates and biosynthetic capacity were monitored in real time, in single Escherichia coli cells with identical levels of reactive oxygen species and oxidative DNA damage, but with different levels of irreversible oxidative proteome damage (carbonylation. Increased protein carbonylation correlates with a mutator phenotype, whereas reducing it below wild type level produces an anti-mutator phenotype identifying proteome damage as the leading cause of spontaneous mutations. Proteome oxidation elevates also UV-light induced mutagenesis and impairs cellular biosynthesis. In conclusion, protein damage reduces the efficacy and precision of vital cellular processes resulting in high mutation rates and functional degeneracy akin to cellular aging.

  16. Methods for Analyzing Multivariate Phenotypes in Genetic Association Studies.

    Science.gov (United States)

    Yang, Qiong; Wang, Yuanjia

    2012-05-01

    This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Multivariate phenotypes are frequently encountered in genetic association studies. The purpose of analyzing multivariate phenotypes usually includes discovery of novel genetic variants of pleiotropy effects, that is, affecting multiple phenotypes, and the ultimate goal of uncovering the underlying genetic mechanism. In recent years, there have been new method development and application of existing statistical methods to such phenotypes. In this paper, we provide a review of the available methods for analyzing association between a single marker and a multivariate phenotype consisting of the same type of components (e.g., all continuous or all categorical) or different types of components (e.g., some are continuous and others are categorical). We also reviewed causal inference methods designed to test whether the detected association with the multivariate phenotype is truly pleiotropy or the genetic marker exerts its effects on some phenotypes through affecting the others.

  17. Improving Phenotypic Prediction by Combining Genetic and Epigenetic Associations

    NARCIS (Netherlands)

    Shah, Sonia; Bonder, Marc J.; Marioni, Riccardo E.; Zhu, Zhihong; McRae, Allan F.; Zhernakova, Alexandra; Harris, Sarah E.; Liewald, Dave; Henders, Anjali K.; Mendelson, Michael M.; Liu, Chunyu; Joehanes, Roby; Liang, Liming; Levy, Daniel; Martin, Nicholas G.; Starr, John M.; Wijmenga, Cisca; Wray, Naomi R.; Yang, Jian; Montgomery, Grant W.; Franke, Lude; Deary, Ian J.; Visscher, Peter M.

    2015-01-01

    We tested whether DNA-methylation profiles account for inter-individual variation in body mass index (BMI) and height and whether they predict these phenotypes over and above genetic factors. Genetic predictors were derived from published summary results from the largest genome-wide association stud

  18. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities.

    Science.gov (United States)

    Chong, Jessica X; Buckingham, Kati J; Jhangiani, Shalini N; Boehm, Corinne; Sobreira, Nara; Smith, Joshua D; Harrell, Tanya M; McMillin, Margaret J; Wiszniewski, Wojciech; Gambin, Tomasz; Coban Akdemir, Zeynep H; Doheny, Kimberly; Scott, Alan F; Avramopoulos, Dimitri; Chakravarti, Aravinda; Hoover-Fong, Julie; Mathews, Debra; Witmer, P Dane; Ling, Hua; Hetrick, Kurt; Watkins, Lee; Patterson, Karynne E; Reinier, Frederic; Blue, Elizabeth; Muzny, Donna; Kircher, Martin; Bilguvar, Kaya; López-Giráldez, Francesc; Sutton, V Reid; Tabor, Holly K; Leal, Suzanne M; Gunel, Murat; Mane, Shrikant; Gibbs, Richard A; Boerwinkle, Eric; Hamosh, Ada; Shendure, Jay; Lupski, James R; Lifton, Richard P; Valle, David; Nickerson, Deborah A; Bamshad, Michael J

    2015-08-06

    Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Habitat Fragmentation Differentially Affects Genetic Variation, Phenotypic Plasticity and Survival in Populations of a Gypsum Endemic.

    Science.gov (United States)

    Matesanz, Silvia; Rubio Teso, María Luisa; García-Fernández, Alfredo; Escudero, Adrián

    2017-01-01

    Habitat fragmentation, i.e., fragment size and isolation, can differentially alter patterns of neutral and quantitative genetic variation, fitness and phenotypic plasticity of plant populations, but their effects have rarely been tested simultaneously. We assessed the combined effects of size and connectivity on these aspects of genetic and phenotypic variation in populations of Centaurea hyssopifolia, a narrow endemic gypsophile that previously showed performance differences associated with fragmentation. We grew 111 maternal families sampled from 10 populations that differed in their fragment size and connectivity in a common garden, and characterized quantitative genetic variation, phenotypic plasticity to drought for key functional traits, and plant survival, as a measure of population fitness. We also assessed neutral genetic variation within and among populations using eight microsatellite markers. Although C. hyssopifolia is a narrow endemic gypsophile, we found substantial neutral genetic variation and quantitative variation for key functional traits. The partition of genetic variance indicated that a higher proportion of variation was found within populations, which is also consistent with low population differentiation in molecular markers, functional traits and their plasticity. This, combined with the generally small effect of habitat fragmentation suggests that gene flow among populations is not restricted, despite large differences in fragment size and isolation. Importantly, population's similarities in genetic variation and plasticity did not reflect the lower survival observed in isolated populations. Overall, our results indicate that, although the species consists of genetically variable populations able to express functional plasticity, such aspects of adaptive potential may not always reflect populations' survival. Given the differential effects of habitat connectivity on functional traits, genetic variation and fitness, our study highlights

  20. Habitat Fragmentation Differentially Affects Genetic Variation, Phenotypic Plasticity and Survival in Populations of a Gypsum Endemic

    Directory of Open Access Journals (Sweden)

    Silvia Matesanz

    2017-05-01

    Full Text Available Habitat fragmentation, i.e., fragment size and isolation, can differentially alter patterns of neutral and quantitative genetic variation, fitness and phenotypic plasticity of plant populations, but their effects have rarely been tested simultaneously. We assessed the combined effects of size and connectivity on these aspects of genetic and phenotypic variation in populations of Centaurea hyssopifolia, a narrow endemic gypsophile that previously showed performance differences associated with fragmentation. We grew 111 maternal families sampled from 10 populations that differed in their fragment size and connectivity in a common garden, and characterized quantitative genetic variation, phenotypic plasticity to drought for key functional traits, and plant survival, as a measure of population fitness. We also assessed neutral genetic variation within and among populations using eight microsatellite markers. Although C. hyssopifolia is a narrow endemic gypsophile, we found substantial neutral genetic variation and quantitative variation for key functional traits. The partition of genetic variance indicated that a higher proportion of variation was found within populations, which is also consistent with low population differentiation in molecular markers, functional traits and their plasticity. This, combined with the generally small effect of habitat fragmentation suggests that gene flow among populations is not restricted, despite large differences in fragment size and isolation. Importantly, population’s similarities in genetic variation and plasticity did not reflect the lower survival observed in isolated populations. Overall, our results indicate that, although the species consists of genetically variable populations able to express functional plasticity, such aspects of adaptive potential may not always reflect populations’ survival. Given the differential effects of habitat connectivity on functional traits, genetic variation and fitness

  1. Evolution of phenotypic plasticity and environmental tolerance of a labile quantitative character in a fluctuating environment.

    Science.gov (United States)

    Lande, R

    2014-05-01

    Quantitative genetic models of evolution of phenotypic plasticity are used to derive environmental tolerance curves for a population in a changing environment, providing a theoretical foundation for integrating physiological and community ecology with evolutionary genetics of plasticity and norms of reaction. Plasticity is modelled for a labile quantitative character undergoing continuous reversible development and selection in a fluctuating environment. If there is no cost of plasticity, a labile character evolves expected plasticity equalling the slope of the optimal phenotype as a function of the environment. This contrasts with previous theory for plasticity influenced by the environment at a critical stage of early development determining a constant adult phenotype on which selection acts, for which the expected plasticity is reduced by the environmental predictability over the discrete time lag between development and selection. With a cost of plasticity in a labile character, the expected plasticity depends on the cost and on the environmental variance and predictability averaged over the continuous developmental time lag. Environmental tolerance curves derived from this model confirm traditional assumptions in physiological ecology and provide new insights. Tolerance curve width increases with larger environmental variance, but can only evolve within a limited range. The strength of the trade-off between tolerance curve height and width depends on the cost of plasticity. Asymmetric tolerance curves caused by male sterility at high temperature are illustrated. A simple condition is given for a large transient increase in plasticity and tolerance curve width following a sudden change in average environment.

  2. The Genetic Architecture of Quantitative Traits Cannot Be Inferred from Variance Component Analysis

    Science.gov (United States)

    Huang, Wen; Mackay, Trudy F. C.

    2016-01-01

    Classical quantitative genetic analyses estimate additive and non-additive genetic and environmental components of variance from phenotypes of related individuals without knowing the identities of quantitative trait loci (QTLs). Many studies have found a large proportion of quantitative trait variation can be attributed to the additive genetic variance (VA), providing the basis for claims that non-additive gene actions are unimportant. In this study, we show that arbitrarily defined parameterizations of genetic effects seemingly consistent with non-additive gene actions can also capture the majority of genetic variation. This reveals a logical flaw in using the relative magnitudes of variance components to indicate the relative importance of additive and non-additive gene actions. We discuss the implications and propose that variance component analyses should not be used to infer the genetic architecture of quantitative traits. PMID:27812106

  3. The Genetic Architecture of Quantitative Traits Cannot Be Inferred from Variance Component Analysis.

    Directory of Open Access Journals (Sweden)

    Wen Huang

    2016-11-01

    Full Text Available Classical quantitative genetic analyses estimate additive and non-additive genetic and environmental components of variance from phenotypes of related individuals without knowing the identities of quantitative trait loci (QTLs. Many studies have found a large proportion of quantitative trait variation can be attributed to the additive genetic variance (VA, providing the basis for claims that non-additive gene actions are unimportant. In this study, we show that arbitrarily defined parameterizations of genetic effects seemingly consistent with non-additive gene actions can also capture the majority of genetic variation. This reveals a logical flaw in using the relative magnitudes of variance components to indicate the relative importance of additive and non-additive gene actions. We discuss the implications and propose that variance component analyses should not be used to infer the genetic architecture of quantitative traits.

  4. The evolution of phenotypic plasticity: genealogy of a debate in genetics.

    Science.gov (United States)

    Nicoglou, Antonine

    2015-04-01

    The paper describes the context and the origin of a particular debate that concerns the evolution of phenotypic plasticity. In 1965, British biologist A. D. Bradshaw proposed a widely cited model intended to explain the evolution of norms of reaction, based on his studies of plant populations. Bradshaw's model went beyond the notion of the "adaptive norm of reaction" discussed before him by Dobzhansky and Schmalhausen by suggesting that "plasticity"--the ability of a phenotype to be modified by the environment--should be genetically determined. To prove Bradshaw's hypothesis, it became necessary for some authors to identify the pressures exerted by natural selection on phenotypic plasticity in particular traits, and thus to model its evolution. In this paper, I contrast two different views, based on quantitative genetic models, proposed in the mid-1980s: Russell Lande and Sara Via's conception of phenotypic plasticity, which assumes that the evolution of plasticity is linked to the evolution of the plastic trait itself, and Samuel Scheiner and Richard Lyman's view, which assumes that the evolution of plasticity is independent from the evolution of the trait. I show how the origin of this specific debate, and different assumptions about the evolution of phenotypic plasticity, depended on Bradshaw's definition of plasticity and the context of quantitative genetics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. From classical genetics to quantitative genetics to systems biology: modeling epistasis.

    Directory of Open Access Journals (Sweden)

    David L Aylor

    2008-03-01

    Full Text Available Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci, and multiple environments.

  6. Genetical Genomics of Plants: From Genotype to Phenotype

    NARCIS (Netherlands)

    Joosen, R.V.L.; Ligterink, W.; Hilhorst, H.W.M.; Keurentjes, J.J.B.

    2013-01-01

    Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the cau

  7. Genetic Factors in Systemic Lupus Erythematosus: Contribution to Disease Phenotype

    Science.gov (United States)

    Ceccarelli, Fulvia; Perricone, Carlo; Borgiani, Paola; Ciccacci, Cinzia; Rufini, Sara; Cipriano, Enrica; Alessandri, Cristiano; Spinelli, Francesca Romana; Sili Scavalli, Antonio; Novelli, Giuseppe; Valesini, Guido; Conti, Fabrizio

    2015-01-01

    Genetic factors exert an important role in determining Systemic Lupus Erythematosus (SLE) susceptibility, interplaying with environmental factors. Several genetic studies in various SLE populations have identified numerous susceptibility loci. From a clinical point of view, SLE is characterized by a great heterogeneity in terms of clinical and laboratory manifestations. As widely demonstrated, specific laboratory features are associated with clinical disease subset, with different severity degree. Similarly, in the last years, an association between specific phenotypes and genetic variants has been identified, allowing the possibility to elucidate different mechanisms and pathways accountable for disease manifestations. However, except for Lupus Nephritis (LN), no studies have been designed to identify the genetic variants associated with the development of different phenotypes. In this review, we will report data currently known about this specific association. PMID:26798662

  8. Challenging behavior: Behavioral phenotypes of some genetic syndromes

    Directory of Open Access Journals (Sweden)

    Buha Nataša

    2014-01-01

    Full Text Available Challenging behavior in individuals with mental retardation (MR is relatively frequent, and represents a significant obstacle to adaptive skills. The frequency of specific forms and manifestations of challenging behavior can depend on a variety of personal and environmental factors. There are several prominent theoretical models regarding the etiology of challenging behavior and psychopathology in persons with MR: behavioral, developmental, socio-cultural and biological. The biological model emphasizes the physiological, biochemical and genetic factors as the potential source of challenging behavior. The progress in the field of genetics and neuroscience has opened the opportunity to study and discover the neurobiological basis of phenotypic characteristics. Genetic syndromes associated with MR can be followed by a specific set of problems and disorders which constitutes their behavioral phenotype. The aim of this paper was to present challenging behaviors that manifest in the most frequently studied syndromes: Down syndrome, Fragile X syndrome, Williams syndrome, Prader-Willi syndrome and Angelman syndrome. The concept of behavioral phenotype implies a higher probability of manifesting specific developmental characteristics and specific behaviors in individuals with a certain genetic syndrome. Although the specific set of (possible problems and disorders is distinctive for the described genetic syndromes, the connection between genetics and behavior should be viewed through probabilistic dimension. The probabilistic concept takes into consideration the possibility of intra-syndrome variability in the occurrence, intensity and time onset of behavioral characteristics, at which the higher variability the lower is the specificity of the genetic syndrome. Identifying the specific pattern of behavior can be most important for the process of early diagnosis and prognosis. In addition, having knowledge about behavioral phenotype can be a landmark in

  9. Quantifying the contribution of genetic variants for survival phenotypes.

    Science.gov (United States)

    Müller, Martina; Döring, Angela; Küchenhoff, Helmut; Lamina, Claudia; Malzahn, Dörthe; Bickeböller, Heike; Vollmert, Caren; Klopp, Norman; Meisinger, Christa; Heinrich, Joachim; Kronenberg, Florian; Wichmann, H Erich; Heid, Iris M

    2008-09-01

    Particularly in studies based on population representative samples, it is of major interest what impact a genetic variant has on the phenotype of interest, which cannot be answered by mere association estimates alone. One possible measure for quantifying the phenotype's variance explained by the genetic variant is R(2). However, for survival outcomes, no clear definition of R(2) is available in the presence of censored observations. We selected three criteria proposed for this purpose in the literature and compared their performance for single nucleotide polymorphism (SNP) data through simulation studies and for mortality data with candidate SNPs in the general population-based KORA cohort. The evaluated criteria were based on: (1) the difference of deviance residuals, (2) the variation of individual survival curves, and (3) the variation of Schoenfeld residuals. Our simulation studies included various censoring and genetic scenarios. The simulation studies revealed that the deviance residuals' criterion had a high dependence on the censoring percentage, was generally not limited to the range [0; 1] and therefore lacked interpretation as a percentage of explained variation. The second criterion (variation of survival curves) hardly reached values above 60%. Our requirements were best fulfilled by the criterion based on Schoenfeld residuals. Our mortality data analysis also supported the findings in simulation studies. With the criterion based on Schoenfeld residuals, we recommend a powerful and flexible tool for genetic epidemiological studies to refine genetic association studies by judging the contribution of genetic variants to survival phenotype.

  10. Genetic and phenotypic diversity in breast tumor metastases

    NARCIS (Netherlands)

    Almendro, Vanessa; Kim, Hee Jung; Cheng, Yu-Kang; Gönen, Mithat; Itzkovitz, Shalev; Argani, Pedram; van Oudenaarden, Alexander; Sukumar, Saraswati; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    Metastatic disease is the main cause of cancer-related mortality due to almost universal therapeutic resistance. Despite its high clinical relevance, our knowledge of how cancer cell populations change during metastatic progression is limited. Here, we investigated intratumor genetic and phenotypic

  11. Genetic and phenotypic diversity in breast tumor metastases

    NARCIS (Netherlands)

    Almendro, Vanessa; Kim, Hee Jung; Cheng, Yu-Kang; Gönen, Mithat; Itzkovitz, Shalev; Argani, Pedram; van Oudenaarden, Alexander; Sukumar, Saraswati; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    Metastatic disease is the main cause of cancer-related mortality due to almost universal therapeutic resistance. Despite its high clinical relevance, our knowledge of how cancer cell populations change during metastatic progression is limited. Here, we investigated intratumor genetic and phenotypic

  12. Genetic association in multivariate phenotypic data: power in five models

    NARCIS (Netherlands)

    Minica, C.C.; Boomsma, D.I.; van der Sluis, S.; Dolan, C.V.

    2010-01-01

    This article concerns the power of various data analytic strategies to detect the effect of a single genetic variant (GV) in multivariate data. We simulated exactly fitting monozygotic and dizygotic phenotypic data according to single and two common factor models, and simplex models. We calculated t

  13. Behavioral Genetic Toolkits: Toward the Evolutionary Origins of Complex Phenotypes.

    Science.gov (United States)

    Rittschof, C C; Robinson, G E

    2016-01-01

    The discovery of toolkit genes, which are highly conserved genes that consistently regulate the development of similar morphological phenotypes across diverse species, is one of the most well-known observations in the field of evolutionary developmental biology. Surprisingly, this phenomenon is also relevant for a wide array of behavioral phenotypes, despite the fact that these phenotypes are highly complex and regulated by many genes operating in diverse tissues. In this chapter, we review the use of the toolkit concept in the context of behavior, noting the challenges of comparing behaviors and genes across diverse species, but emphasizing the successes in identifying genetic toolkits for behavior; these successes are largely attributable to the creative research approaches fueled by advances in behavioral genomics. We have two general goals: (1) to acknowledge the groundbreaking progress in this field, which offers new approaches to the difficult but exciting challenge of understanding the evolutionary genetic basis of behaviors, some of the most complex phenotypes known, and (2) to provide a theoretical framework that encompasses the scope of behavioral genetic toolkit studies in order to clearly articulate the research questions relevant to the toolkit concept. We emphasize areas for growth and highlight the emerging approaches that are being used to drive the field forward. Behavioral genetic toolkit research has elevated the use of integrative and comparative approaches in the study of behavior, with potentially broad implications for evolutionary biologists and behavioral ecologists alike.

  14. Social-Cognition and the Broad Autism Phenotype: Identifying Genetically Meaningful Phenotypes

    Science.gov (United States)

    Losh, Molly; Piven, Joseph

    2007-01-01

    Background: Strong evidence from twin and family studies suggests that the genetic liability to autism may be expressed through personality and language characteristics qualitatively similar, but more subtly expressed than those defining the full syndrome. This study examined behavioral features of this "broad autism phenotype" (BAP) in relation…

  15. Kidney aging: from phenotype to genetics.

    Science.gov (United States)

    Buemi, Michele; Nostro, Lorena; Aloisi, Carmela; Cosentini, Vincenzo; Criseo, Manila; Frisina, Nicola

    2005-01-01

    Aging is a physiological process that causes structural and functional changes in human body systems, sometimes leading to various organ failure. As far as the kidney is concerned, both genetic factors and environmental agents may influence the tissues damage in elderly people and the related loss of function. On the other hand, functional adaptations to structural changes appear to be compromised by co-morbid conditions that are frequently found in elderly people, such as atherosclerosis and hypertension. It is not yet known whether physiological aging is inevitably accompanied by a decline in renal function or how rapidly it might happen. The discovery of molecular mechanisms responsible for tissue damage in aging could offer new perspectives on interventions. The role of nitric oxide, oxidative stress, the renin-angiotensin system, changes in length of telomeres, and klotho gene expression are important subjects for further in-depth studies about aging. A better understanding of physiological renal aging could improve the clinical approach to this process and widen the therapeutic possibilities offered by transplantation.

  16. Genetic neurological channelopathies: molecular genetics and clinical phenotypes.

    Science.gov (United States)

    Spillane, J; Kullmann, D M; Hanna, M G

    2016-01-01

    Evidence accumulated over recent years has shown that genetic neurological channelopathies can cause many different neurological diseases. Presentations relating to the brain, spinal cord, peripheral nerve or muscle mean that channelopathies can impact on almost any area of neurological practice. Typically, neurological channelopathies are inherited in an autosomal dominant fashion and cause paroxysmal disturbances of neurological function, although the impairment of function can become fixed with time. These disorders are individually rare, but an accurate diagnosis is important as it has genetic counselling and often treatment implications. Furthermore, the study of less common ion channel mutation-related diseases has increased our understanding of pathomechanisms that is relevant to common neurological diseases such as migraine and epilepsy. Here, we review the molecular genetic and clinical features of inherited neurological channelopathies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. A century after Fisher: time for a new paradigm in quantitative genetics.

    Science.gov (United States)

    Nelson, Ronald M; Pettersson, Mats E; Carlborg, Örjan

    2013-12-01

    Quantitative genetics traces its roots back through more than a century of theory, largely formed in the absence of directly observable genotype data, and has remained essentially unchanged for decades. By contrast, molecular genetics arose from direct observations and is currently undergoing rapid changes, making the amount of available data ever greater. Thus, the two disciplines are disparate both in their origins and their current states, yet they address the same fundamental question: how does the genotype affect the phenotype? The rapidly accumulating genomic data necessitate sophisticated analysis, but many of the current tools are adaptations of methods designed during the early days of quantitative genetics. We argue here that the present analysis paradigm in quantitative genetics is at its limits in regards to unraveling complex traits and it is necessary to re-evaluate the direction that genetic research is taking for the field to realize its full potential.

  18. Phenotype in 18 Danish subjects with genetically verified CHARGE syndrome

    DEFF Research Database (Denmark)

    Husu, E; Hove, Hd; Farholt, Stense

    2012-01-01

    Husu E, Hove HD, Farholt S, Bille M, Tranebjaerg L, Vogel I, Kreiborg S. Phenotype in 18 Danish subjects with genetically verified CHARGE syndrome. CHARGE (coloboma of the eye, heart defects, choanal atresia, retarded growth and development, genital hypoplasia and ear anomalies and/or hearing loss...... problems (12/15) were other frequent cranial nerve dysfunctions. Three-dimensional reconstructions of MRI scans showed temporal bone abnormalities in >85%. CHARGE syndrome present a broad phenotypic spectrum, although some clinical features are more frequently occurring than others. Here, we suggest...

  19. Genomewide linkage analysis of quantitative spirometric phenotypes in severe early-onset chronic obstructive pulmonary disease.

    Science.gov (United States)

    Silverman, Edwin K; Palmer, Lyle J; Mosley, Jonathan D; Barth, Matthew; Senter, Jody M; Brown, Alison; Drazen, Jeffrey M; Kwiatkowski, David J; Chapman, Harold A; Campbell, Edward J; Province, Michael A; Rao, D C; Reilly, John J; Ginns, Leo C; Speizer, Frank E; Weiss, Scott T

    2002-05-01

    Chronic obstructive pulmonary disease (COPD) is a common, complex disease associated with substantial morbidity and mortality. COPD is defined by irreversible airflow obstruction; airflow obstruction is typically determined by reductions in quantitative spirometric indices, including forced expiratory volume at 1 s (FEV(1)) and the ratio of FEV(1) to forced vital capacity (FVC). To identify genetic determinants of quantitative spirometric phenotypes, an autosomal 10-cM genomewide scan of short tandem repeat (STR) polymorphic markers was performed in 72 pedigrees (585 individuals) ascertained through probands with severe early-onset COPD. Multipoint variance-component linkage analysis (using SOLAR) was performed for quantitative phenotypes, including FEV(1), FVC, and FEV(1)/FVC. In the initial genomewide scan, significant evidence for linkage to FEV(1)/FVC was demonstrated on chromosome 2q (LOD score 4.12 at 222 cM). Suggestive evidence was found for linkage to FEV(1)/FVC on chromosomes 1 (LOD score 1.92 at 120 cM) and 17 (LOD score 2.03 at 67 cM) and to FVC on chromosome 1 (LOD score 2.05 at 13 cM). The highest LOD score for FEV(1) in the initial genomewide scan was 1.53, on chromosome 12, at 36 cM. After inclusion of 12 additional STR markers on chromosome 12p, which had been previously genotyped in this population, suggestive evidence for linkage of FEV(1) (LOD score 2.43 at 37 cM) to this region was demonstrated. These observations provide both significant evidence for an early-onset COPD-susceptibility locus on chromosome 2 and suggestive evidence for linkage of spirometry-related phenotypes to several other genomic regions. The significant linkage of FEV(1)/FVC to chromosome 2q could reflect one or more genes influencing the development of airflow obstruction or dysanapsis.

  20. Environment Changes Genetic Effects on Respiratory Conditions and Allergic Phenotypes

    DEFF Research Database (Denmark)

    Song, Yong; Schwager, Michelle J; Backer, Vibeke

    2017-01-01

    separated population. We evaluated 18 single nucleotide polymorphisms (SNPs) corresponding to 8 genes (ADAM33, ALOX5, LT-α, LTC4S, NOS1, ORMDL3, TBXA2R and TNF-α), the lung function and five respiratory/allergic conditions (ever asthma, bronchitis, rhinitis, dermatitis and atopy) in two populations of Inuit...... associated with bronchitis risk. LT-α SNP rs2844484 was related to dermatitis susceptibility and was significantly influenced by the place of residence. The observed gene-phenotype relationships were exclusively present in one population and absent in the other population. We conclude that the genotype......-phenotype associations relating to bronchitis and allergy susceptibility are dependent on the environment and that environmental factors/lifestyles modify genetic predisposition and change the genetic effects on diseases....

  1. Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure

    Directory of Open Access Journals (Sweden)

    Jaeyong Yee

    2015-01-01

    Full Text Available A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait.

  2. Genetically meaningful phenotypic subgroups in autism spectrum disorders.

    Science.gov (United States)

    Veatch, O J; Veenstra-Vanderweele, J; Potter, M; Pericak-Vance, M A; Haines, J L

    2014-03-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with strong evidence for genetic susceptibility. However, the effect sizes for implicated chromosomal loci are small, hard to replicate and current evidence does not explain the majority of the estimated heritability. Phenotypic heterogeneity could be one phenomenon complicating identification of genetic factors. We used data from the Autism Diagnostic Interview-Revised, Autism Diagnostic Observation Schedule, Vineland Adaptive Behavior Scales, head circumferences, and ages at exams as classifying variables to identify more clinically similar subgroups of individuals with ASD. We identified two distinct subgroups of cases within the Autism Genetic Resource Exchange dataset, primarily defined by the overall severity of evaluated traits. In addition, there was significant familial clustering within subgroups (odds ratio, OR ≈ 1.38-1.42, P Autism Genome Project, we similarly identified two distinct subgroups of cases and confirmed this severity-based dichotomy. We also observed evidence for genetic contributions to subgroups identified in the replication dataset. Our results provide more effective methods of phenotype definition that should increase power to detect genetic factors influencing risk for ASD.

  3. Genetic and phenotypic diversity in breast tumor metastases.

    Science.gov (United States)

    Almendro, Vanessa; Kim, Hee Jung; Cheng, Yu-Kang; Gönen, Mithat; Itzkovitz, Shalev; Argani, Pedram; van Oudenaarden, Alexander; Sukumar, Saraswati; Michor, Franziska; Polyak, Kornelia

    2014-03-01

    Metastatic disease is the main cause of cancer-related mortality due to almost universal therapeutic resistance. Despite its high clinical relevance, our knowledge of how cancer cell populations change during metastatic progression is limited. Here, we investigated intratumor genetic and phenotypic heterogeneity during metastatic progression of breast cancer. We analyzed cellular genotypes and phenotypes at the single cell level by performing immunoFISH in intact tissue sections of distant metastatic tumors from rapid autopsy cases and from primary tumors and matched lymph node metastases collected before systemic therapy. We calculated the Shannon index of intratumor diversity in all cancer cells and within phenotypically distinct cell populations. We found that the extent of intratumor genetic diversity was similar regardless of the chromosomal region analyzed, implying that it may reflect an inherent property of the tumors. We observed that genetic diversity was highest in distant metastases and was generally concordant across lesions within the same patient, whereas treatment-naïve primary tumors and matched lymph node metastases were frequently genetically more divergent. In contrast, cellular phenotypes were more discordant between distant metastases than primary tumors and matched lymph node metastases. Diversity for 8q24 was consistently higher in HER2(+) tumors compared with other subtypes and in metastases of triple-negative tumors relative to primary sites. We conclude that our integrative method that couples ecologic models with experimental data in human tissue samples could be used for the improved prognostication of patients with cancer and for the design of more effective therapies for progressive disease.

  4. Deep phenotyping unveils hidden traits and genetic relations in subtle mutants

    Science.gov (United States)

    San-Miguel, Adriana; Kurshan, Peri T.; Crane, Matthew M.; Zhao, Yuehui; McGrath, Patrick T.; Shen, Kang; Lu, Hang

    2016-11-01

    Discovering mechanistic insights from phenotypic information is critical for the understanding of biological processes. For model organisms, unlike in cell culture, this is currently bottlenecked by the non-quantitative nature and perceptive biases of human observations, and the limited number of reporters that can be simultaneously incorporated in live animals. An additional challenge is that isogenic populations exhibit significant phenotypic heterogeneity. These difficulties limit genetic approaches to many biological questions. To overcome these bottlenecks, we developed tools to extract complex phenotypic traits from images of fluorescently labelled subcellular landmarks, using C. elegans synapses as a test case. By population-wide comparisons, we identified subtle but relevant differences inaccessible to subjective conceptualization. Furthermore, the models generated testable hypotheses of how individual alleles relate to known mechanisms or belong to new pathways. We show that our model not only recapitulates current knowledge in synaptic patterning but also identifies novel alleles overlooked by traditional methods.

  5. Independent genetic control of maize (Zea mays L.) kernel weight determination and its phenotypic plasticity.

    Science.gov (United States)

    Alvarez Prado, Santiago; Sadras, Víctor O; Borrás, Lucas

    2014-08-01

    Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits.

  6. Etiologic Ischemic Stroke Phenotypes in the NINDS Stroke Genetics Network

    Science.gov (United States)

    Ay, Hakan; Arsava, Ethem Murat; Andsberg, Gunnar; Benner, Thomas; Brown, Robert D.; Chapman, Sherita N.; Cole, John W.; Delavaran, Hossein; Dichgans, Martin; Engström, Gunnar; Giralt-Steinhauer, Eva; Grewal, Raji P.; Gwinn, Katrina; Jern, Christina; Jimenez-Conde, Jordi; Jood, Katarina; Katsnelson, Michael; Kissela, Brett; Kittner, Steven J.; Kleindorfer, Dawn O.; Labovitz, Daniel L.; Lanfranconi, Silvia; Lee, Jin-Moo; Lehm, Manuel; Lemmens, Robin; Levi, Chris; Li, Linxin; Lindgren, Arne; Markus, Hugh S.; McArdle, Patrick F.; Melander, Olle; Norrving, Bo; Peddareddygari, Leema Reddy; Pedersén, Annie; Pera, Joanna; Rannikmäe, Kristiina; Rexrode, Kathryn M.; Rhodes, David; Rich, Stephen S.; Roquer, Jaume; Rosand, Jonathan; Rothwell, Peter M.; Rundek, Tatjana; Sacco, Ralph L.; Schmidt, Reinhold; Schürks, Markus; Seiler, Stephan; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie; Thijs, Vincent; Woodfield, Rebecca; Worrall, Bradford B.; Meschia, James F.

    2014-01-01

    Background and Purpose NINDS Stroke Genetics Network (SiGN) is an international consortium of ischemic stroke studies that aims to generate high quality phenotype data to identify the genetic basis of etiologic stroke subtypes. This analysis characterizes the etiopathogenetic basis of ischemic stroke and reliability of stroke classification in the consortium. Methods Fifty-two trained and certified adjudicators determined both phenotypic (abnormal test findings categorized in major etiologic groups without weighting towards the most likely cause) and causative ischemic stroke subtypes in 16,954 subjects with imaging-confirmed ischemic stroke from 12 US studies and 11 studies from 8 European countries using the web-based Causative Classification of Stroke System. Classification reliability was assessed with blinded re-adjudication of 1509 randomly selected cases. Results The distribution of etiologic categories varied by study, age, sex, and race (pstroke etiology (phenotypic subtype) were classified into the same final causative category with high confidence. There was good agreement for both causative (kappa 0.72, 95%CI:0.69-0.75) and phenotypic classifications (kappa 0.73, 95%CI:0.70-0.75). Conclusions This study demonstrates that etiologic subtypes can be determined with good reliability in studies that include investigators with different expertise and background, institutions with different stroke evaluation protocols and geographic location, and patient populations with different epidemiological characteristics. The discordance between phenotypic and causative stroke subtypes highlights the fact that the presence of an abnormality in a stroke patient does not necessarily mean that it is the cause of stroke. PMID:25378430

  7. Phenotype Similarity Regression for Identifying the Genetic Determinants of Rare Diseases

    Science.gov (United States)

    Greene, Daniel; Richardson, Sylvia; Turro, Ernest

    2016-01-01

    Rare genetic disorders, which can now be studied systematically with affordable genome sequencing, are often caused by high-penetrance rare variants. Such disorders are often heterogeneous and characterized by abnormalities spanning multiple organ systems ascertained with variable clinical precision. Existing methods for identifying genes with variants responsible for rare diseases summarize phenotypes with unstructured binary or quantitative variables. The Human Phenotype Ontology (HPO) allows composite phenotypes to be represented systematically but association methods accounting for the ontological relationship between HPO terms do not exist. We present a Bayesian method to model the association between an HPO-coded patient phenotype and genotype. Our method estimates the probability of an association together with an HPO-coded phenotype characteristic of the disease. We thus formalize a clinical approach to phenotyping that is lacking in standard regression techniques for rare disease research. We demonstrate the power of our method by uncovering a number of true associations in a large collection of genome-sequenced and HPO-coded cases with rare diseases. PMID:26924528

  8. Phenotype Similarity Regression for Identifying the Genetic Determinants of Rare Diseases.

    Science.gov (United States)

    Greene, Daniel; Richardson, Sylvia; Turro, Ernest

    2016-03-01

    Rare genetic disorders, which can now be studied systematically with affordable genome sequencing, are often caused by high-penetrance rare variants. Such disorders are often heterogeneous and characterized by abnormalities spanning multiple organ systems ascertained with variable clinical precision. Existing methods for identifying genes with variants responsible for rare diseases summarize phenotypes with unstructured binary or quantitative variables. The Human Phenotype Ontology (HPO) allows composite phenotypes to be represented systematically but association methods accounting for the ontological relationship between HPO terms do not exist. We present a Bayesian method to model the association between an HPO-coded patient phenotype and genotype. Our method estimates the probability of an association together with an HPO-coded phenotype characteristic of the disease. We thus formalize a clinical approach to phenotyping that is lacking in standard regression techniques for rare disease research. We demonstrate the power of our method by uncovering a number of true associations in a large collection of genome-sequenced and HPO-coded cases with rare diseases.

  9. Genetics of resistant hypertension: a novel pharmacogenomics phenotype.

    Science.gov (United States)

    El Rouby, Nihal; Cooper-DeHoff, Rhonda M

    2015-09-01

    Resistant hypertension (RHTN), defined as an uncontrolled blood pressure despite the use of multiple antihypertensive medications, is an increasing clinical problem associated with increased cardiovascular (CV) risk, including stroke and target organ damage. Genetic variability in blood pressure (BP)-regulating genes and pathways may, in part, account for the variability in BP response to antihypertensive agents, when taken alone or in combination, and may contribute to the RHTN phenotype. Pharmacogenomics focuses on the identification of genetic factors responsible for inter-individual variability in drug response. Expanding pharmacogenomics research to include patients with RHTN taking multiple BP-lowering medications may identify genetic markers associated with RHTN. To date, the available evidence surrounding pharmacogenomics in RHTN is limited and primarily focused on candidate genes. In this review, we summarize the most current data in RHTN pharmacogenomics and offer some recommendations on how to advance the field.

  10. Superoxide dismutase phenotypes in duodenal ulcers: A genetic marker?

    Directory of Open Access Journals (Sweden)

    Sulekha S

    2006-01-01

    Full Text Available Background:Cu-Zn superoxide dismutases are antioxidative defensive enzymes that catalyze the reduction of superoxide anions to hydrogen peroxide. Aim:The study focuses on the association of electromorph of superoxide dismutase with duodenal ulcers, which result due to an imbalance between aggressive and defensive factors. Materials and Methods:Endoscopically confirmed 210 duodenal ulcer patients and 185 healthy individuals for comparative analysis were considered for the present study. Phenotyping of superoxide dismutase was carried out by subjecting the RBC membranes to polyacrylamide gel electrophoresis, using appropriate staining protocols. Results:Statistical analysis of SOD phenotypes revealed a significant increase of SOD AFNx012 allele and Superoxide dismutases (SOD 2-2 phenotype in duodenal ulcer group. Among these individuals, a predominance of Helicobacter pylori infection was observed. The increased preponderance of homozygotes can be explained on the basis of reduced and altered enzyme activity, which may lead to disturbance in homeostasis of antioxidant/oxidant culminating in high lipid peroxidative gastric mucosal tissue damage and ulceration. No variation in the distribution of SOD phenotypes with respect to Helicobacter pylori indicates the role of Mn-SOD rather than Cu-Zn SOD in the Helicobacter pylori infected cases as reported earlier. Conclusions:Superoxide dismutase as a genetic marker / gene modifier, encoding for an antioxidant enzyme in maintaining tissue homeostasis of the gastric mucosa is discussed.

  11. The genetic basis of hair whorl, handedness, and other phenotypes

    Science.gov (United States)

    Hatfield, J.S.

    2006-01-01

    Evidence is presented that RHO, RHCE, and other RH genes, may be interesting candidates to consider when searching for the genetic basis of hair whorl rotation (i.e., clockwise or counterclockwise), handedness (i.e., right handed, left handed or ambidextrous), speech laterality (i.e., right brained or left brained), speech dyslexia (e.g., stuttering), sexual orientation (i.e., heterosexual, homosexual, bisexual, or transsexual), schizophrenia, bipolar disorder, and autism spectrum disorder. Such evidence involves the need for a genetic model that includes maternal immunization to explain some of the empirical results reported in the literature. The complex polymorphisms present among the maternally immunizing RH genes can then be used to explain other empirical results. Easily tested hypotheses are suggested, based upon genotypic (but not phenotypic) frequencies of the RH genes. In particular, homozygous dominant individuals are expected to be less common or lacking entirely among the alternative phenotypes. If it is proven that RH genes are involved in brain architecture, it will have a profound effect upon our understanding of the development and organization of the asymmetrical vertebrate brain and may eventually lead to a better understanding of the developmental processes which occur to produce the various alternative phenotypes discussed here. In addition, if RH genes are shown to be involved in the production of these phenotypes, then the evolutionary studies can be performed to demonstrate the beneficial effect of the recessive alleles of RHO and RHCE, and why human evolution appears to be selecting for the recessive alleles even though an increase in the frequency of such alleles may imply lower average fecundity among some individuals possessing them.

  12. Phenotypic and quantitative relationship of red cell acid phosphatase with haemoglobin, haptoglobin, and G6PD phenotypes.

    Science.gov (United States)

    Saha, N; Patgunarajah, N

    1981-08-01

    The phenotypic and quantitative relationship of red cell acid phosphatase with haemoglobin, haptoglobin, and G6PD phenotypes was investigated in three populations in the Sudan and one population in Nilgiris, India. No significant consistent association of red cell acid phosphatase phenotypes was observed with these polymorphisms. However, there was a lack of acid phosphatase AB in G6PD deficient subjects from Nilgiris. The relative quantitative expression of red cell acid phosphatase genes PA, PB, and PC was 1.0, 1.2, and 1.3, respectively. The red cell acid phosphatase activity was higher (15%) in the presence of raised haemoglobin A2 and in sickle cell anaemia (21%). Those with Hp2 had 18% higher level of acid phosphatase than those with Hp1. G6PD deficient subjects had a lower level of acid phosphatase activity (20%) than those with normal G6PD activity.

  13. When three traits make a line: evolution of phenotypic plasticity and genetic assimilation through linear reaction norms in stochastic environments.

    Science.gov (United States)

    Ergon, T; Ergon, R

    2017-03-01

    Genetic assimilation emerges from selection on phenotypic plasticity. Yet, commonly used quantitative genetics models of linear reaction norms considering intercept and slope as traits do not mimic the full process of genetic assimilation. We argue that intercept-slope reaction norm models are insufficient representations of genetic effects on linear reaction norms and that considering reaction norm intercept as a trait is unfortunate because the definition of this trait relates to a specific environmental value (zero) and confounds genetic effects on reaction norm elevation with genetic effects on environmental perception. Instead, we suggest a model with three traits representing genetic effects that, respectively, (i) are independent of the environment, (ii) alter the sensitivity of the phenotype to the environment and (iii) determine how the organism perceives the environment. The model predicts that, given sufficient additive genetic variation in environmental perception, the environmental value at which reaction norms tend to cross will respond rapidly to selection after an abrupt environmental change, and eventually becomes equal to the new mean environment. This readjustment of the zone of canalization becomes completed without changes in genetic correlations, genetic drift or imposing any fitness costs of maintaining plasticity. The asymptotic evolutionary outcome of this three-trait linear reaction norm generally entails a lower degree of phenotypic plasticity than the two-trait model, and maximum expected fitness does not occur at the mean trait values in the population.

  14. [Paternal GNAS mutations: Which phenotypes? What genetic counseling?].

    Science.gov (United States)

    Kottler, Marie-Laure

    2015-05-01

    Parental imprinting and the type of the genetic alteration play a determinant role in the phenotype expression of GNAS locus associated to pseudohypoparathyroidism (PHP). GNAS locus gives rise to several different messenger RNA transcripts that are derived from the paternal allele, the maternal allele, or both and can be either coding or non-coding. As a consequence, GNAS mutations lead to a wide spectrum of phenotypes. An alteration in the coding sequence of the gene leads to a haplo-insufficiency and a dysmorphic phenotype (Albright's syndrome or AHO). AHO is a clinical syndrome defined by specific physical features including short stature, obesity, round-shaped face, subcutaneous ossifications, brachymetarcapy (mainly of the 4th and 5th ray). If the alteration is on the maternal allele, there is a hormonal resistance to the PTH at the kidney level and to the TSH at the thyroid level. The phenotype is known as pseudohypoparathyroidism type 1a (PHP1a). If the alteration is on the paternal allele, there are few clinical signs with no hormonal resistance and the phenotype is known as pseudopseudo hypoparathyroidism (pseudo-PPHP). Heterozygous GNAS mutations on the paternal GNAS allele were associated with intra uterin growth retardation (IUGR). Moreover, birth weights were lower with paternal GNAS mutations affecting exon 2-13 than with exon 1/intron 1 mutations suggesting a role for loss of function XLαs. Progressive osseous heteroplasia (POH) is a rare disease of ectopic bone formation, characterized by cutaneous and subcutaneous ossifications progressing towards deep connective and muscular tissues. POH is caused by a heterozygous GNAS inactivating mutation and has been associated with paternal inheritance. However, genotype/phenotype correlations suggest that there is no direct correlation between the ossifying process and parental origin, as there is high variability in heterotopic ossification. Clinical heterogeneity makes genetic counseling a very delicate

  15. Uncovering the Genetic Architectures of Quantitative Traits.

    Science.gov (United States)

    Lee, James J; Vattikuti, Shashaank; Chow, Carson C

    2016-01-01

    The aim of a genome-wide association study (GWAS) is to identify loci in the human genome affecting a phenotype of interest. This review summarizes some recent work on conceptual and methodological aspects of GWAS. The average effect of gene substitution at a given causal site in the genome is the key estimand in GWAS, and we argue for its fundamental importance. Implicit in the definition of average effect is a linear model relating genotype to phenotype. The fraction of the phenotypic variance ascribable to polymorphic sites with nonzero average effects in this linear model is called the heritability, and we describe methods for estimating this quantity from GWAS data. Finally, we show that the theory of compressed sensing can be used to provide a sharp estimate of the sample size required to identify essentially all sites contributing to the heritability of a given phenotype.

  16. Uncovering the Genetic Architectures of Quantitative Traits

    Directory of Open Access Journals (Sweden)

    James J. Lee

    2016-01-01

    Full Text Available The aim of a genome-wide association study (GWAS is to identify loci in the human genome affecting a phenotype of interest. This review summarizes some recent work on conceptual and methodological aspects of GWAS. The average effect of gene substitution at a given causal site in the genome is the key estimand in GWAS, and we argue for its fundamental importance. Implicit in the definition of average effect is a linear model relating genotype to phenotype. The fraction of the phenotypic variance ascribable to polymorphic sites with nonzero average effects in this linear model is called the heritability, and we describe methods for estimating this quantity from GWAS data. Finally, we show that the theory of compressed sensing can be used to provide a sharp estimate of the sample size required to identify essentially all sites contributing to the heritability of a given phenotype.

  17. Structural mapping: how to study the genetic architecture of a phenotypic trait through its formation mechanism.

    Science.gov (United States)

    Tong, Chunfa; Shen, Lianying; Lv, Yafei; Wang, Zhong; Wang, Xiaoling; Feng, Sisi; Li, Xin; Sui, Yihan; Pang, Xiaoming; Wu, Rongling

    2014-01-01

    Traditional approaches for genetic mapping are to simply associate the genotypes of a quantitative trait locus (QTL) with the phenotypic variation of a complex trait. A more mechanistic strategy has emerged to dissect the trait phenotype into its structural components and map specific QTLs that control the mechanistic and structural formation of a complex trait. We describe and assess such a strategy, called structural mapping, by integrating the internal structural basis of trait formation into a QTL mapping framework. Electrical impedance spectroscopy (EIS) has been instrumental for describing the structural components of a phenotypic trait and their interactions. By building robust mathematical models on circuit EIS data and embedding these models within a mixture model-based likelihood for QTL mapping, structural mapping implements the EM algorithm to obtain maximum likelihood estimates of QTL genotype-specific EIS parameters. The uniqueness of structural mapping is to make it possible to test a number of hypotheses about the pattern of the genetic control of structural components. We validated structural mapping by analyzing an EIS data collected for QTL mapping of frost hardiness in a controlled cross of jujube trees. The statistical properties of parameter estimates were examined by simulation studies. Structural mapping can be a powerful alternative for genetic mapping of complex traits by taking account into the biological and physical mechanisms underlying their formation.

  18. Genetic variations strongly influence phenotypic outcome in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Austin S Jelcick

    Full Text Available Variation in genetic background can significantly influence the phenotypic outcome of both disease and non-disease associated traits. Additionally, differences in temporal and strain specific gene expression can also contribute to phenotypes in the mammalian retina. This is the first report of microarray based cross-strain analysis of gene expression in the retina investigating genetic background effects. Microarray analyses were performed on retinas from the following mouse strains: C57BL6/J, AKR/J, CAST/EiJ, and NOD.NON-H2(-nb1 at embryonic day 18.5 (E18.5 and postnatal day 30.5 (P30.5. Over 3000 differentially expressed genes were identified between strains and developmental stages. Differential gene expression was confirmed by qRT-PCR, Western blot, and immunohistochemistry. Three major gene networks were identified that function to regulate retinal or photoreceptor development, visual perception, cellular transport, and signal transduction. Many of the genes in these networks are implicated in retinal diseases such as bradyopsia, night-blindness, and cone-rod dystrophy. Our analysis revealed strain specific variations in cone photoreceptor cell patterning and retinal function. This study highlights the substantial impact of genetic background on both development and function of the retina and the level of gene expression differences tolerated for normal retinal function. These strain specific genetic variations may also be present in other tissues. In addition, this study will provide valuable insight for the development of more accurate models for human retinal diseases.

  19. The quantitative genetic architecture of the bold-shy continuum in zebrafish, Danio rerio.

    Directory of Open Access Journals (Sweden)

    Mary E Oswald

    Full Text Available In studies of consistent individual differences (personality along the bold-shy continuum, a pattern of behavioral correlations frequently emerges: individuals towards the bold end of the continuum are more likely to utilize risky habitat, approach potential predators, and feed under risky conditions. Here, we address the hypothesis that observed phenotypic correlations among component behaviors of the bold-shy continuum are a result of underlying genetic correlations (quantitative genetic architecture. We used a replicated three-generation pedigree of zebrafish (Danio rerio to study three putative components of the bold-shy continuum: horizontal position, swim level, and feeding latency. We detected significant narrow-sense heritabilities as well as significant genetic and phenotypic correlations among all three behaviors, such that fish selected for swimming at the front of the tank swam closer to the observer, swam higher in the water column, and fed more quickly than fish selected for swimming at the back of the tank. Further, the lines varied in their initial open field behavior (swim level and activity level. The quantitative genetic architecture of the bold-shy continuum indicates that the multivariate behavioral phenotype characteristic of a "bold" personality type may be a result of correlated evolution via underlying genetic correlations.

  20. Behavioral phenotypes of genetic mouse models of autism.

    Science.gov (United States)

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.

  1. [Genetic analysis of an individual with para-Bombay phenotype].

    Science.gov (United States)

    Lin, Jia-jin; Huang, Ying; Zhu, Sui-yong

    2013-04-01

    To study genetic characteristics of an individual with para-Bombay phenotype and her family members. ABO and H antigens were detected with routine serological techniques.The entire coding region of FUT1 gene was amplified by polymerase chain reaction (PCR). PCR products was purified with enzymes digestion and directly sequenced. The RBCs of the proband did not agglutinate with H antibody. The proband therefore has a para-Bombay phenotype (Bmh). Direct sequencing indicated the FUT1 sequence of the proband contained a homozygous 547-552 del AG and heterozygous 814A>G mutation, which gave rise to two haplotypes of 547-552delAG, 547-552delAG and 814A>G. The ABO blood type of the proband' s mother and sisters were all B.Sequencing of the FUT1 gene has found heterozygous 547-552 del AG, 814A>G mutations in the mother and elder sister, and heterozygous 547-552 del AG mutation in her younger sister. The FUT1 547-552 del AG and 814 A>G mutations of the proband were inherited from her mother. A complex mutation of the FUT1 gene consisting of 547-55 del AG and 814 A>G has been identified in an individual with para-Bombay phenotype.

  2. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection

    Science.gov (United States)

    MacDuff, Donna A; Reese, Tiffany A; Kimmey, Jacqueline M; Weiss, Leslie A; Song, Christina; Zhang, Xin; Kambal, Amal; Duan, Erning; Carrero, Javier A; Boisson, Bertrand; Laplantine, Emmanuel; Israel, Alain; Picard, Capucine; Colonna, Marco; Edelson, Brian T; Sibley, L David; Stallings, Christina L; Casanova, Jean-Laurent; Iwai, Kazuhiro; Virgin, Herbert W

    2015-01-01

    Variation in the presentation of hereditary immunodeficiencies may be explained by genetic or environmental factors. Patients with mutations in HOIL1 (RBCK1) present with amylopectinosis-associated myopathy with or without hyper-inflammation and immunodeficiency. We report that barrier-raised HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium but show minimal signs of hyper-inflammation. However, they show immunodeficiency upon acute infection with Listeria monocytogenes, Toxoplasma gondii or Citrobacter rodentium. Increased susceptibility to Listeria was due to HOIL-1 function in hematopoietic cells and macrophages in production of protective cytokines. In contrast, HOIL-1-deficient mice showed enhanced control of chronic Mycobacterium tuberculosis or murine γ-herpesvirus 68 (MHV68), and these infections conferred a hyper-inflammatory phenotype. Surprisingly, chronic infection with MHV68 complemented the immunodeficiency of HOIL-1, IL-6, Caspase-1 and Caspase-1;Caspase-11-deficient mice following Listeria infection. Thus chronic herpesvirus infection generates signs of auto-inflammation and complements genetic immunodeficiency in mutant mice, highlighting the importance of accounting for the virome in genotype-phenotype studies. DOI: http://dx.doi.org/10.7554/eLife.04494.001 PMID:25599590

  3. The genetics of phenotypic plasticity. XIII. Interactions with developmental instability.

    Science.gov (United States)

    Scheiner, Samuel M

    2014-04-01

    In a heterogeneous environment, natural selection on a trait can lead to a variety of outcomes, including phenotypic plasticity and bet-hedging through developmental instability. These outcomes depend on the magnitude and pattern of that heterogeneity and the spatial and temporal distribution of individuals. However, we do not know if and how those two outcomes might interact with each other. I examined the joint evolution of plasticity and instability through the use of an individual-based simulation in which each could be genetically independent or pleiotropically linked. When plasticity and instability were determined by different loci, the only effect on the evolution of plasticity was the elimination of plasticity as a bet-hedging strategy. In contrast, the effects on the evolution of instability were more substantial. If conditions were such that the population was likely to evolve to the optimal reaction norm, then instability was disfavored. Instability was favored only when the lack of a reliable environmental cue disfavored plasticity. When plasticity and instability were determined by the same loci, instability acted as a strong limitation on the evolution of plasticity. Under some conditions, selection for instability resulted in maladaptive plasticity. Therefore, before testing any models of plasticity or instability evolution, or interpreting empirical patterns, it is important to know the ecological, life history, developmental, and genetic contexts of trait phenotypic plasticity and developmental instability.

  4. What drivers phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation?

    Science.gov (United States)

    Yuan, Shan; Ma, Linna; Guo, Chengyuan; Wang, Renzhong

    2016-05-01

    Elucidating the driving factors among-population divergence is an important task in evolutionary biology, however the relative contribution from natural selection and neutral genetic differentiation has been less debated. A manipulation experiment was conducted to examine whether the phenotypic divergence of Leymus chinensis depended on climate variations or genetic differentiations at 18 wild sites along a longitudinal gradient from 114 to 124°E in northeast China and at common garden condition of transplantation. Demographical, morphological and physiological phenotypes of 18 L. chinensis populations exhibited significant divergence along the gradient, but these divergent variations narrowed significantly at the transplantation. Moreover, most of the phenotypes were significantly correlated with mean annual precipitation and temperature in wild sites, suggesting that climatic variables played vital roles in phenotypic divergence of the species. Relative greater heterozygosity (HE), genotype evenness (E) and Shannon-Wiener diversity (I) in western group of populations suggested that genetic differentiation also drove phenotypic divergence of the species. However, neutral genetic differentiation (FST = 0.041) was greatly lower than quantitative differentiation (QST = 0.199), indicating that divergent selection/climate variable was the main factor in determining the phenotypic divergence of the species along the large-scale gradient.

  5. A quantitative neural network approach to understanding aging phenotypes.

    Science.gov (United States)

    Ash, Jessica A; Rapp, Peter R

    2014-05-01

    Basic research on neurocognitive aging has traditionally adopted a reductionist approach in the search for the basis of cognitive preservation versus decline. However, increasing evidence suggests that a network level understanding of the brain can provide additional novel insight into the structural and functional organization from which complex behavior and dysfunction emerge. Using graph theory as a mathematical framework to characterize neural networks, recent data suggest that alterations in structural and functional networks may contribute to individual differences in cognitive phenotypes in advanced aging. This paper reviews literature that defines network changes in healthy and pathological aging phenotypes, while highlighting the substantial overlap in key features and patterns observed across aging phenotypes. Consistent with current efforts in this area, here we outline one analytic strategy that attempts to quantify graph theory metrics more precisely, with the goal of improving diagnostic sensitivity and predictive accuracy for differential trajectories in neurocognitive aging. Ultimately, such an approach may yield useful measures for gauging the efficacy of potential preventative interventions and disease modifying treatments early in the course of aging. Published by Elsevier B.V.

  6. Developments in statistical analysis in quantitative genetics

    DEFF Research Database (Denmark)

    Sorensen, Daniel

    2009-01-01

    A remarkable research impetus has taken place in statistical genetics since the last World Conference. This has been stimulated by breakthroughs in molecular genetics, automated data-recording devices and computer-intensive statistical methods. The latter were revolutionized by the bootstrap and ...

  7. Toward conservation of genetic and phenotypic diversity in Japanese sticklebacks.

    Science.gov (United States)

    Kitano, Jun; Mori, Seiichi

    2016-10-13

    Stickleback fishes have been established as a leading model system for studying the genetic mechanisms that underlie naturally occurring phenotypic diversification. Because of the tremendous diversification achieved by stickleback species in various environments, different geographical populations have unique phenotypes and genotypes, which provide us with unique opportunities for evolutionary genetic research. Among sticklebacks, Japanese species have several unique characteristics that have not been found in other populations. The sympatric marine threespine stickleback species Gasterosteus aculeatus and G. nipponicus (Japan Sea stickleback) are a good system for speciation research. Gasterosteus nipponicus also has several unique characteristics, such as neo-sex chromosomes and courtship behaviors, that differ from those of G. aculeatus. Several freshwater populations derived from G. aculeatus (Hariyo threespine stickleback) inhabit spring-fed ponds and streams in central Honshu and exhibit year-round reproduction, which has never been observed in other stickleback populations. Four species of ninespine stickleback, including Pungitius tymensis and the freshwater, brackish water and Omono types of the P. pungitius-P. sinensis complex, are also excellent model systems for speciation research. Anthropogenic alteration of environments, however, has exposed several Japanese stickleback populations to the risk of extinction and has actually led to extinction of several populations and species. Pungitius kaibarae, which is endemic to East Asia, used to inhabit Kyoto and Hyogo prefectures, but is now extinct. Causes of extinction include depletion of spring water, landfill of habitats, and construction of river-mouth weirs. Here, we review the importance of Japanese sticklebacks as genetic resources, the status of several endangered stickleback populations and species, and the factors putting these populations at risk.

  8. Event History Analysis in Quantitative Genetics

    DEFF Research Database (Denmark)

    Maia, Rafael Pimentel

    Event history analysis is a clas of statistical methods specially designed to analyze time-to-event characteristics, e.g. the time until death. The aim of the thesis was to present adequate multivariate versions of mixed survival models that properly represent the genetic aspects related to a given...... time-to-event characteristic of interest. Real genetic longevity studies based on female animals of different species (sows, dairy cows, and sheep) exemplifies the use of the methods. Moreover these studies allow to understand som genetic mechanisms related to the lenght of the productive life...

  9. Quantitative trait locus mapping reveals complex genetic architecture of quantitative virulence in the wheat pathogen Zymoseptoria tritici.

    Science.gov (United States)

    Stewart, Ethan L; Croll, Daniel; Lendenmann, Mark H; Sanchez-Vallet, Andrea; Hartmann, Fanny E; Palma-Guerrero, Javier; Ma, Xin; McDonald, Bruce A

    2016-11-21

    We conducted a comprehensive analysis of virulence in the fungal wheat pathogen Zymoseptoria tritici using quantitative trait locus (QTL) mapping. High-throughput phenotyping based on automated image analysis allowed the measurement of pathogen virulence on a scale and with a precision that was not previously possible. Across two mapping populations encompassing more than 520 progeny, 540 710 pycnidia were counted and their sizes and grey values were measured. A significant correlation was found between pycnidia size and both spore size and number. Precise measurements of percentage leaf area covered by lesions provided a quantitative measure of host damage. Combining these large and accurate phenotypic datasets with a dense panel of restriction site-associated DNA sequencing (RADseq) genetic markers enabled us to genetically dissect pathogen virulence into components related to host damage and those related to pathogen reproduction. We showed that different components of virulence can be under separate genetic control. Large- and small-effect QTLs were identified for all traits, with some QTLs specific to mapping populations, cultivars and traits and other QTLs shared among traits within the same mapping population. We associated the presence of four accessory chromosomes with small, but significant, increases in several virulence traits, providing the first evidence for a meaningful function associated with accessory chromosomes in this organism. A large-effect QTL involved in host specialization was identified on chromosome 7, leading to the identification of candidate genes having a large effect on virulence.

  10. [Leber's hereditary optic neuropathy - phenotype, genetics, therapeutic options].

    Science.gov (United States)

    Gallenmüller, C; Klopstock, T

    2014-03-01

    Leber's hereditary optic neuropathy is a rare genetic disorder affecting the retinal ganglion cells leading to a persistent severe bilateral loss of visual acuity within weeks or months. Males are much more likely to be affected than females, disease onset in most cases takes place between age 15 and 35 years. The disease is caused by point mutations in the mitochondrial DNA. The penetrance of the disease is incomplete, i.e., not all mutation carriers develop clinical symptoms. The phenotype is relatively uniform, but age at onset, severity and prognosis may vary even within the same family. Environmental and endocrine factors, optic disc anatomy as well as mitochondrial and nuclear genetic factors are discussed to influence penetrance as well as interindividual and intrafamilial variability. However, only cigarette smoking and excessive alcohol consumption have been shown to trigger disease onset. The disease is characterised by a central visual field defect, impaired colour vision and fundoscopically a peripapillary microangiopathy in the acute phase. Most patients end up after some months with a severe visual loss below 0.1 and in most cases there is no significant improvement of visual acuity in the course. In rare cases patients experience a mostly partial visual recovery which depends on the type of mutation. For confirmation of the diagnosis a detailed ophthalmological examination with fundoscopy, family history and genetic analysis of the mitochondrial DNA is needed. To date, there is no proven causal therapy, but at early disease stages treatment with idebenone can be tried.

  11. The quantitative genetics of disgust sensitivity.

    Science.gov (United States)

    Sherlock, James M; Zietsch, Brendan P; Tybur, Joshua M; Jern, Patrick

    2016-02-01

    [Correction Notice: An Erratum for this article was reported in Vol 16(1) of Emotion (see record 2015-57029-001). In the article, the name of author Joshua M. Tybur was misspelled as Joshua M. Tyber. All versions of this article have been corrected.] Response sensitivity to common disgust elicitors varies considerably among individuals. The sources of these individual differences are largely unknown. In the current study, we use a large sample of female identical and nonidentical twins (N = 1,041 individuals) and their siblings (N = 170) to estimate the proportion of variation due to genetic effects, the shared environment, and other (residual) sources across multiple domains of disgust sensitivity. We also investigate the genetic and environmental influences on the covariation between the different disgust domains. Twin modeling revealed that approximately half of the variation in pathogen, sexual, and moral disgust is due to genetic effects. An independent pathways twin model also revealed that sexual and pathogen disgust sensitivity were influenced by unique sources of genetic variation, while also being significantly affected by a general genetic factor underlying all 3 disgust domains. Moral disgust sensitivity, in contrast, did not exhibit domain-specific genetic variation. These findings are discussed in light of contemporary evolutionary approaches to disgust sensitivity.

  12. Integration of Genetic and Phenotypic Data in 48 Lineages of Philippine Birds Shows Heterogeneous Divergence Processes and Numerous Cryptic Species.

    Science.gov (United States)

    Campbell, Kyle K; Braile, Thomas; Winker, Kevin

    2016-01-01

    The Philippine Islands are one of the most biologically diverse archipelagoes in the world. Current taxonomy, however, may underestimate levels of avian diversity and endemism in these islands. Although species limits can be difficult to determine among allopatric populations, quantitative methods for comparing phenotypic and genotypic data can provide useful metrics of divergence among populations and identify those that merit consideration for elevation to full species status. Using a conceptual approach that integrates genetic and phenotypic data, we compared populations among 48 species, estimating genetic divergence (p-distance) using the mtDNA marker ND2 and comparing plumage and morphometrics of museum study skins. Using conservative speciation thresholds, pairwise comparisons of genetic and phenotypic divergence suggested possible species-level divergences in more than half of the species studied (25 out of 48). In speciation process space, divergence routes were heterogeneous among taxa. Nearly all populations that surpassed high genotypic divergence thresholds were Passeriformes, and non-Passeriformes populations surpassed high phenotypic divergence thresholds more commonly than expected by chance. Overall, there was an apparent logarithmic increase in phenotypic divergence with respect to genetic divergence, suggesting the possibility that divergence among these lineages may initially be driven by divergent selection in this allopatric system. Also, genetic endemism was high among sampled islands. Higher taxonomy affected divergence in genotype and phenotype. Although broader lineage, genetic, phenotypic, and numeric sampling is needed to further explore heterogeneity among divergence processes and to accurately assess species-level diversity in these taxa, our results support the need for substantial taxonomic revisions among Philippine birds. The conservation implications are profound.

  13. Integration of Genetic and Phenotypic Data in 48 Lineages of Philippine Birds Shows Heterogeneous Divergence Processes and Numerous Cryptic Species.

    Directory of Open Access Journals (Sweden)

    Kyle K Campbell

    Full Text Available The Philippine Islands are one of the most biologically diverse archipelagoes in the world. Current taxonomy, however, may underestimate levels of avian diversity and endemism in these islands. Although species limits can be difficult to determine among allopatric populations, quantitative methods for comparing phenotypic and genotypic data can provide useful metrics of divergence among populations and identify those that merit consideration for elevation to full species status. Using a conceptual approach that integrates genetic and phenotypic data, we compared populations among 48 species, estimating genetic divergence (p-distance using the mtDNA marker ND2 and comparing plumage and morphometrics of museum study skins. Using conservative speciation thresholds, pairwise comparisons of genetic and phenotypic divergence suggested possible species-level divergences in more than half of the species studied (25 out of 48. In speciation process space, divergence routes were heterogeneous among taxa. Nearly all populations that surpassed high genotypic divergence thresholds were Passeriformes, and non-Passeriformes populations surpassed high phenotypic divergence thresholds more commonly than expected by chance. Overall, there was an apparent logarithmic increase in phenotypic divergence with respect to genetic divergence, suggesting the possibility that divergence among these lineages may initially be driven by divergent selection in this allopatric system. Also, genetic endemism was high among sampled islands. Higher taxonomy affected divergence in genotype and phenotype. Although broader lineage, genetic, phenotypic, and numeric sampling is needed to further explore heterogeneity among divergence processes and to accurately assess species-level diversity in these taxa, our results support the need for substantial taxonomic revisions among Philippine birds. The conservation implications are profound.

  14. Phenotypic evolution by distance in fluctuating environments: The contribution of dispersal, selection and random genetic drift.

    Science.gov (United States)

    Engen, Steinar; Sæther, Bernt-Erik

    2016-06-01

    Here we analyze how dispersal, genetic drift, and adaptation to the local environment affect the geographical differentiation of a quantitative character through natural selection using a spatial dynamic model for the evolution of the distribution of mean breeding values in space and time. The variation in optimal phenotype is described by local Ornstein-Uhlenbeck processes with a given spatial autocorrelation. Selection and drift are assumed to be governed by phenotypic variation within areas with a given mean breeding value and constant additive genetic variance. Between such neighboring areas there will be white noise variation in mean breeding values, while the variation at larger distances has a spatial structure and a spatial scale that we investigate. The model is analyzed by solving balance equations for the stationary distribution of mean breeding values. We also present scaling results for the spatial autocovariance function for mean breeding values as well as that for the covariance between mean breeding value and the optimal phenotype expressing local adaption. Our results show in particular how these spatial scales depend on population density. For large densities the spatial scale of fluctuations in mean breeding values have similarities with corresponding results in population dynamics, where the effect of migration on spatial scales may be large if the local strength of density regulation is small. In our evolutionary model strength of density regulation corresponds to strength of local selection so that weak local selection may produce large spatial scales of autocovariances. Genetic drift and stochastic migration are shown to act through the population size within a characteristic area with much smaller variation in optimal phenotypes than in the whole population.

  15. Quantitative genetics of shape in cricket wings: developmental integration in a functional structure.

    Science.gov (United States)

    Klingenberg, Christian Peter; Debat, Vincent; Roff, Derek A

    2010-10-01

    The role of developmental and genetic integration for evolution is contentious. One hypothesis states that integration acts as a constraint on evolution, whereas an alternative is that developmental and genetic systems evolve to match the functional modularity of organisms. This study examined a morphological structure, the cricket wing, where developmental and functional modules are discordant, making it possible to distinguish the two alternatives. Wing shape was characterized with geometric morphometrics, quantitative genetic information was extracted using a full-sibling breeding design, and patterns of developmental integration were inferred from fluctuating asymmetry of wing shape. The patterns of genetic, phenotypic, and developmental integration were clearly similar, but not identical. Heritabilities for different shape variables varied widely, but no shape variables were devoid of genetic variation. Simulated selection for specific shape changes produced predicted responses with marked deflections due to the genetic covariance structure. Three hypotheses of modularity according to the wing structures involved in sound production were inconsistent with the genetic, phenotypic, or developmental covariance structure. Instead, there appears to be strong integration throughout the wing. The hypothesis that genetic and developmental integration evolve to match functional modularity can therefore be rejected for this example.

  16. Fine mapping quantitative trait loci under selective phenotyping strategies based on linkage and linkage disequilibrium criteria

    DEFF Research Database (Denmark)

    Ansari-Mahyari, S; Berg, P; Lund, M S

    2009-01-01

    In fine mapping of a large-scale experimental population where collection of phenotypes are very expensive, difficult to record or time-demanding, selective phenotyping could be used to phenotype the most informative individuals. Linkage analyses based sampling criteria (LAC) and linkage...... disequilibrium-based sampling criteria (LDC) for selecting individuals to phenotype are compared to random phenotyping in a quantitative trait loci (QTL) verification experiment using stochastic simulation. Several strategies based on LAC and LDC for selecting the most informative 30%, 40% or 50% of individuals...... for phenotyping to extract maximum power and precision in a QTL fine mapping experiment were developed and assessed. Linkage analyses for the mapping was performed for individuals sampled on LAC within families and combined linkage disequilibrium and linkage analyses was performed for individuals sampled across...

  17. Smallpox virus plaque phenotypes: genetic, geographical and case fatality relationships.

    Science.gov (United States)

    Olson, Victoria A; Karem, Kevin L; Smith, Scott K; Hughes, Christine M; Damon, Inger K

    2009-04-01

    Smallpox (infection with Orthopoxvirus variola) remains a feared illness more than 25 years after its eradication. Historically, case-fatality rates (CFRs) varied between outbreaks (<1 to approximately 40 %), the reasons for which are incompletely understood. The extracellular enveloped virus (EEV) form of orthopoxvirus progeny is hypothesized to disseminate infection. Investigations with the closely related Orthopoxvirus vaccinia have associated increased comet formation (EEV production) with increased mouse mortality (pathogenicity). Other vaccinia virus genetic manipulations which affect EEV production inconsistently support this association. However, antisera against vaccinia virus envelope protect mice from lethal challenge, further supporting a critical role for EEV in pathogenicity. Here, we show that the increased comet formation phenotypes of a diverse collection of variola viruses associate with strain phylogeny and geographical origin, but not with increased outbreak-related CFRs; within clades, there may be an association of plaque size with CFR. The mechanisms for variola virus pathogenicity probably involves multiple host and pathogen factors.

  18. Quantitative founder-effect analysis of French Canadian families identifies specific loci contributing to metabolic phenotypes of hypertension.

    Science.gov (United States)

    Hamet, P; Merlo, E; Seda, O; Broeckel, U; Tremblay, J; Kaldunski, M; Gaudet, D; Bouchard, G; Deslauriers, B; Gagnon, F; Antoniol, G; Pausová, Z; Labuda, M; Jomphe, M; Gossard, F; Tremblay, G; Kirova, R; Tonellato, P; Orlov, S N; Pintos, J; Platko, J; Hudson, T J; Rioux, J D; Kotchen, T A; Cowley, A W

    2005-05-01

    The Saguenay-Lac St-Jean population of Quebec is relatively isolated and has genealogical records dating to the 17th-century French founders. In 120 extended families with at least one sib pair affected with early-onset hypertension and/or dyslipidemia, we analyzed the genetic determinants of hypertension and related cardiovascular and metabolic conditions. Variance-components linkage analysis revealed 46 loci after 100,000 permutations. The most prominent clusters of overlapping quantitative-trait loci were on chromosomes 1 and 3, a finding supported by principal-components and bivariate analyses. These genetic determinants were further tested by classifying families by use of LOD score density analysis for each measured phenotype at every 5 cM. Our study showed the founder effect over several generations and classes of living individuals. This quantitative genealogical approach supports the notion of the ancestral causality of traits uniquely present and inherited in distinct family classes. With the founder effect, traits determined within population subsets are measurably and quantitatively transmitted through generational lineage, with a precise component contributing to phenotypic variance. These methods should accelerate the uncovering of causal haplotypes in complex diseases such as hypertension and metabolic syndrome.

  19. Aarskog-Scott syndrome: phenotypic and genetic heterogeneity

    Directory of Open Access Journals (Sweden)

    Ignacio Briceno

    2016-03-01

    Full Text Available Aarskog-Scott syndrome (AAS is a rare developmental disorder which primarily affects males and has a relative prevalence of 1 in 25,000 in the general population. AAS patients usually present with developmental complications including short stature and facial, skeletal and urogenital anomalies. The spectrum of genotype-phenotype correlations in AAS is unclear and mutations of the FGD1 gene on the proximal short arm of chromosome X account for only 20% of the incidence of the disorder. Failure to identify pathogenic variants in patients referred for FGD1 screening suggests heterogeneity underlying pathophysiology of the condition. Furthermore, overlapping features of AAS with several other developmental disorders increase the complexity of diagnosis. Cytoskeletal signaling may be involved in the pathophysiology of AAS. The FGD1 protein family has a role in activation of CDC42 (Cell Division Control protein 42 homolog which has a core function in remodeling of extracellular matrix and the transcriptional activation of many modulators of development. Therefore, mutations in components in the EGFR1 (Epidermal Growth Factor Receptor 1 signaling pathway, to which CDC42 belongs, may contribute to pathophysiology. Parallel sequencing strategies (so-called next generation sequencing or high throughput sequencing enables simultaneous production of millions of sequencing reads that enormously facilitate cost-effective identification of cryptic mutations in heterogeneous monogenic disorders. Here we review the source of phenotypic and genetic heterogeneity in the context of AAS and discuss the applicability of next generation sequencing for identification of novel mutations underlying AAS.

  20. Genetic Determinism vs. Phenotypic Plasticity in Protist Morphology.

    Science.gov (United States)

    Mulot, Matthieu; Marcisz, Katarzyna; Grandgirard, Lara; Lara, Enrique; Kosakyan, Anush; Robroek, Bjorn J M; Lamentowicz, Mariusz; Payne, Richard J; Mitchell, Edward A D

    2017-02-23

    Untangling the relationships between morphology and phylogeny is key to building a reliable taxonomy, but is especially challenging for protists, where the existence of cryptic or pseudocryptic species makes finding relevant discriminant traits difficult. Here we use Hyalosphenia papilio (a testate amoeba) as a model species to investigate the contribution of phylogeny and phenotypic plasticity in its morphology. We study the response of H. papilio morphology (shape and pores number) to environmental variables in (i) a manipulative experiment with controlled conditions (water level), (ii) an observational study of a within-site natural ecological gradient (water level), and (iii) an observational study across 37 European peatlands (climate). We showed that H. papilio morphology is correlated to environmental conditions (climate and water depth) as well as geography, while no relationship between morphology and phylogeny was brought to light. The relative contribution of genetic inheritance and phenotypic plasticity in shaping morphology varies depending on the taxonomic group and the trait under consideration. Thus, our data call for a reassessment of taxonomy based on morphology alone. This clearly calls for a substantial increase in taxonomic research on these globally still under-studied organisms leading to a reassessment of estimates of global microbial eukaryotic diversity.

  1. The quantitative basis of the Arabidopsis innate immune system to endemic pathogens depends on pathogen genetics

    DEFF Research Database (Denmark)

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie

    2016-01-01

    the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B...... of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total......, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study...

  2. The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks.

    Science.gov (United States)

    Morozova, Tatiana V; Goldman, David; Mackay, Trudy F C; Anholt, Robert R H

    2012-02-20

    Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms.

  3. The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks

    OpenAIRE

    Morozova, Tatiana V.; Goldman, David; Mackay, Trudy FC; Anholt, Robert RH

    2012-01-01

    Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms.

  4. Pathogenic Ischemic Stroke Phenotypes in the NINDS-Stroke Genetics Network

    National Research Council Canada - National Science Library

    Ay, Hakan; Arsava, Ethem Murat; Andsberg, Gunnar; Benner, Thomas; Brown, Jr, Robert D; Chapman, Sherita N; Cole, John W; Delavaran, Hossein; Dichgans, Martin; Engström, Gunnar; Giralt-Steinhauer, Eva; Grewal, Raji P; Gwinn, Katrina; Jern, Christina; Jimenez-Conde, Jordi; Jood, Katarina; Katsnelson, Michael; Kissela, Brett; Kittner, Steven J; Kleindorfer, Dawn O; Labovitz, Daniel L; Lanfranconi, Silvia; Lee, Jin-Moo; Lehm, Manuel; Lemmens, Robin; Levi, Chris; Li, Linxin; Lindgren, Arne; Markus, Hugh S; McArdle, Patrick F; Melander, Olle; Norrving, Bo; Peddareddygari, Leema Reddy; Pedersén, Annie; Pera, Joanna; Rannikmäe, Kristiina; Rexrode, Kathryn M; Rhodes, David; Rich, Stephen S; Roquer, Jaume; Rosand, Jonathan; Rothwell, Peter M; Rundek, Tatjana; Sacco, Ralph L; Schmidt, Reinhold; Schürks, Markus; Seiler, Stephan; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie; Thijs, Vincent; Woodfield, Rebecca; Worrall, Bradford B; Meschia, James F

    2014-01-01

    ...)-SiGN (Stroke Genetics Network) is an international consortium of ischemic stroke studies that aims to generate high-quality phenotype data to identify the genetic basis of pathogenic stroke subtypes...

  5. Genetic and phenotypic consequences of introgression between humans and Neanderthals.

    Science.gov (United States)

    Wills, Christopher

    2011-01-01

    Strong evidence for introgression of Neanderthal genes into parts of the modern human gene pool has recently emerged. The evidence indicates that some populations of modern humans have received infusions of genes from two different groups of Neanderthals. One of these Neanderthal groups lived in the Middle East and Central Europe and the other group (the Denisovans) is known to have lived in Central Asia and was probably more widespread. This review examines two questions. First, how were these introgressions detected and what does the genetic evidence tell us about their nature and extent? We will see that an unknown but possibly large fraction of the entire Neanderthal gene complement may have survived in modern humans. Even though each modern European and Asian carries only a few percent of genes that can be traced back to Neanderthals, different individuals carry different subgroups of these introgressed genes. Second, what is the likelihood that this Neanderthal genetic legacy has had phenotypic effects on modern humans? We examine evidence for and against the possibility that some of the surviving fragments of Neanderthal genomes have been preserved by natural selection, and we explore the ways in which more evidence bearing on this question will become available in the future.

  6. Comparing partial least square approaches in a gene- or region-based association study for multiple quantitative phenotypes.

    Science.gov (United States)

    Yuan, Zhongshang; Zhang, Xiaoshuai; Li, Fangyu; Zhao, Jinghua; Xue, Fuzhong

    2014-01-01

    On thinking quantitatively of complex diseases, there are at least three statistical strategies for association studies: one single-nucleotide polymorphism (SNP) on a single trait, gene or region (with multiple SNPs) on a single trait, and gene or region on multiple traits. The third approach is the most general in dissecting genetic mechanisms underlying complex diseases underpinning multiple quantitative traits. Gene or region association methods based on partial least square (PLS) approaches have been shown to have apparent power advantage. However, few approaches have been developed for multiple quantitative phenotypes or traits underlying a condition or disease, and the performance of various PLS approaches used in association studies for multiple quantitative traits have not been assessed. Here we exploit association between multiple SNPs and multiple phenotypes or traits, from a regression perspective, through exhaustive scan statistics (sliding window) using PLS and sparse PLS regressions. Simulations were conducted to assess the performance of the proposed scan statistics and compare them with existing methods. The proposed methods were applied to 12 regions of genome-wide association study data from the European Prospective Investigation of Cancer-Norfolk study.

  7. Qualitative and quantitative peptidomic and proteomic approaches to phenotyping chicken semen.

    Science.gov (United States)

    Labas, Valérie; Grasseau, Isabelle; Cahier, Karine; Gargaros, Audrey; Harichaux, Grégoire; Teixeira-Gomes, Ana-Paula; Alves, Sabine; Bourin, Marie; Gérard, Nadine; Blesbois, Elisabeth

    2015-01-01

    Understanding of the avian male gamete biology is essential to improve the conservation of genetic resources and performance in farming. In this study, the chicken semen peptidome/proteome and the molecular phenotype related to sperm quality were investigated. Spermatozoa (SPZ) and corresponding seminal plasma (SP) from 11 males with different fertilizing capacity were analyzed using three quantitative strategies (fluid and intact cells MALDI-MS, SDS-PAGE combined to LC-MS/MS with spectral counting and XIC methods). Individual MALDI profiling in combination with top-down MS allowed to characterize specific profiles per male and to identify 16 biomolecules (e.g.VMO1, AvBD10 and AvBD9 including polymorphism). Qualitative analysis identified 1165 proteins mainly involved in oxidoreduction mechanisms, energy processes, proteolysis and protein localization. Comparative analyses between the most and the least fertile males were performed. The enzymes involved in energy metabolism, respiratory chain or oxido-reduction activity were over-represented in SPZ of the most fertile males. The SP of the most and the least fertile males differed also on many proteins (e.g. ACE, AvBD10 and AvBD9, NEL precursor, acrosin). Thus proteomic is a "phenomic molecular tool" that may help to discriminate avian males on their reproductive capacity. The data have been deposited with ProteomeXchange (identifiers PXD000287 and PXD001254). This peptidomic and proteomic study i) characterized for the first time the semen protein composition of the main domestic avian species (Gallus gallus) by analysis of ejaculated spermatozoa and corresponding seminal plasma; ii) established a characteristic molecular phenotype distinguishing semen and males at an individual level; and iii) proposedthe first evidence of biomarkers related to fertility. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. EVOLUTION AND EXTINCTION IN A CHANGING ENVIRONMENT: A QUANTITATIVE-GENETIC ANALYSIS.

    Science.gov (United States)

    Bürger, Reinhard; Lynch, Michael

    1995-02-01

    Because of the ubiquity of genetic variation for quantitative traits, virtually all populations have some capacity to respond evolutionarily to selective challenges. However, natural selection imposes demographic costs on a population, and if these costs are sufficiently large, the likelihood of extinction will be high. We consider how the mean time to extinction depends on selective pressures (rate and stochasticity of environmental change, and strength of selection), population parameters (carrying capacity, and reproductive capacity), and genetics (rate of polygenic mutation). We assume that in a randomly mating, finite population subject to density-dependent population growth, individual fitness is determined by a single quantitative-genetic character under Gaussian stabilizing selection with the optimum phenotype exhibiting directional change, or random fluctuations, or both. The quantitative trait is determined by a finite number of freely recombining, mutationally equivalent, additive loci. The dynamics of evolution and extinction are investigated, assuming that the population is initially under mutation-selection-drift balance. Under this model, in a directionally changing environment, the mean phenotype lags behind the optimum, but on the average evolves parallel to it. The magnitude of the lag determines the vulnerability to extinction. In finite populations, stochastic variation in the genetic variance can be quite pronounced, and bottlenecks in the genetic variance temporarily can impair the population's adaptive capacity enough to cause extinction when it would otherwise be unlikely in an effectively infinite population. We find that maximum sustainable rates of evolution or, equivalently, critical rates of environmental change, may be considerably less than 10% of a phenotypic standard deviation per generation. © 1995 The Society for the Study of Evolution.

  9. A quantitative genetic analysis of intermediate asthma phenotypes

    DEFF Research Database (Denmark)

    Thomsen, S F; Ferreira, M A R; Kyvik, K O;

    2009-01-01

    the Danish Twin Registry, a total of 575 subjects (256 intact pairs and 63 single twins) who either themselves and/or their co-twins reported a history of asthma at a nationwide questionnaire survey, were clinically examined. Traits were measured using standard techniques. Latent factor models were fitted...... responsiveness, rho(E) = 0.34. Conclusions: Asthma is a complex disease characterized by a set of etiologically heterogeneous biomarkers, which likely constitute diverse targets of intervention....

  10. The quantitative basis of the Arabidopsis innate immune system to endemic pathogens depends on pathogen genetics

    DEFF Research Database (Denmark)

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie;

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used...... the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B....... cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence...

  11. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information

    Directory of Open Access Journals (Sweden)

    Wang S Alex

    2010-01-01

    Full Text Available Abstract Background The genetic contributions to human common disorders and mouse genetic models of disease are complex and often overlapping. In common human diseases, unlike classical Mendelian disorders, genetic factors generally have small effect sizes, are multifactorial, and are highly pleiotropic. Likewise, mouse genetic models of disease often have pleiotropic and overlapping phenotypes. Moreover, phenotypic descriptions in the literature in both human and mouse are often poorly characterized and difficult to compare directly. Methods In this report, human genetic association results from the literature are summarized with regard to replication, disease phenotype, and gene specific results; and organized in the context of a systematic disease ontology. Similarly summarized mouse genetic disease models are organized within the Mammalian Phenotype ontology. Human and mouse disease and phenotype based gene sets are identified. These disease gene sets are then compared individually and in large groups through dendrogram analysis and hierarchical clustering analysis. Results Human disease and mouse phenotype gene sets are shown to group into disease and phenotypically relevant groups at both a coarse and fine level based on gene sharing. Conclusion This analysis provides a systematic and global perspective on the genetics of common human disease as compared to itself and in the context of mouse genetic models of disease.

  12. The relative importance of genetic diversity and phenotypic plasticity in determining invasion success of a clonal weed in the USA and China

    Directory of Open Access Journals (Sweden)

    Yupeng eGeng

    2016-02-01

    Full Text Available Phenotypic plasticity has been proposed as an important adaptive strategy for clonal plants in heterogeneous habitats. Increased phenotypic plasticity can be especially beneficial for invasive clonal plants, allowing them to colonize new environments even when genetic diversity is low. However, the relative importance of genetic diversity and phenotypic plasticity for invasion success remains largely unknown. Here, we performed molecular marker analyses and a common garden experiment to investigate the genetic diversity and phenotypic plasticity of the globally important weed Alternanthera philoxeroides in response to different water availability (terrestrial versus aquatic habitats. This species relies predominantly on clonal propagation in introduced ranges. We therefore expected genetic diversity to be restricted in the two sampled introduced ranges (the USA and China when compared to the native range (Argentina, but that phenotypic plasticity may allow the species’ full niche range to nonetheless be exploited. We found clones from China had very low genetic diversity in terms of both marker diversity and quantitative variation when compared with those from the USA and Argentina, probably reflecting different introduction histories. In contrast, similar patterns of phenotypic plasticity were found for clones from all three regions. Furthermore, despite the different levels of genetic diversity, bioclimatic modeling suggested that the full potential bioclimatic distribution had been invaded in both China and USA. Phenotypic plasticity, not genetic diversity, was therefore critical in allowing A. philoxeroides to invade diverse habitats across broad geographic areas.

  13. The Relative Importance of Genetic Diversity and Phenotypic Plasticity in Determining Invasion Success of a Clonal Weed in the USA and China.

    Science.gov (United States)

    Geng, Yupeng; van Klinken, Rieks D; Sosa, Alejandro; Li, Bo; Chen, Jiakuan; Xu, Cheng-Yuan

    2016-01-01

    Phenotypic plasticity has been proposed as an important adaptive strategy for clonal plants in heterogeneous habitats. Increased phenotypic plasticity can be especially beneficial for invasive clonal plants, allowing them to colonize new environments even when genetic diversity is low. However, the relative importance of genetic diversity and phenotypic plasticity for invasion success remains largely unknown. Here, we performed molecular marker analyses and a common garden experiment to investigate the genetic diversity and phenotypic plasticity of the globally important weed Alternanthera philoxeroides in response to different water availability (terrestrial vs. aquatic habitats). This species relies predominantly on clonal propagation in introduced ranges. We therefore expected genetic diversity to be restricted in the two sampled introduced ranges (the USA and China) when compared to the native range (Argentina), but that phenotypic plasticity may allow the species' full niche range to nonetheless be exploited. We found clones from China had very low genetic diversity in terms of both marker diversity and quantitative variation when compared with those from the USA and Argentina, probably reflecting different introduction histories. In contrast, similar patterns of phenotypic plasticity were found for clones from all three regions. Furthermore, despite the different levels of genetic diversity, bioclimatic modeling suggested that the full potential bioclimatic distribution had been invaded in both China and USA. Phenotypic plasticity, not genetic diversity, was therefore critical in allowing A. philoxeroides to invade diverse habitats across broad geographic areas.

  14. EvolQG - An R package for evolutionary quantitative genetics [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Diogo Melo

    2016-06-01

    Full Text Available We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the EvolQG package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification.

  15. Understanding mammalian genetic systems: the challenge of phenotyping in the mouse.

    Directory of Open Access Journals (Sweden)

    Steve D M Brown

    2006-08-01

    Full Text Available Understanding mammalian genetic systems is predicated on the determination of the relationship between genetic variation and phenotype. Several international programmes are under way to deliver mutations in every gene in the mouse genome. The challenge for mouse geneticists is to develop approaches that will provide comprehensive phenotype datasets for these mouse mutant libraries. Several factors are critical to success in this endeavour. It will be important to catalogue assay and environment and where possible to adopt standardised procedures for phenotyping tests along with common environmental conditions to ensure comparable datasets of phenotypes. Moreover, the scale of the task underlines the need to invest in technological development improving both the speed and cost of phenotyping platforms. In addition, it will be necessary to develop new informatics standards that capture the phenotype assay as well as other factors, genetic and environmental, that impinge upon phenotype outcome.

  16. Quantitative Genetic Analysis of Biomass and Wood Chemistry of Populus under Different Nitrogen Levels

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, E.; Osorio, L.; Drost, D. R.; Miles, B. L.; Boaventura-Novaes, C. R. D.; Benedict, C.; Dervinis, C.; Yu, Q.; Sykes, R.; Davis, M.; Martin, T. A.; Peter, G. F.; Kirst, M.

    2009-01-01

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration, biofuels and other wood-based industries. It is also unclear how environmental cues, such as nitrogen availability, impact the genes that regulate growth, biomass allocation and wood composition in trees. We phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above- and below-ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Sixty-three quantitative trait loci were identified for the 20 traits analyzed. The majority of quantitative trait loci are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and quantitative trait loci co-localization identified the genomic position of potential pleiotropic regulators. Pleiotropic loci linking higher growth rates to wood with less lignin are excellent targets to engineer tree germplasm improved for pulp, paper and cellulosic ethanol production. The causative genes are being identified with a genetical genomics approach.

  17. Absolute pitch exhibits phenotypic and genetic overlap with synesthesia.

    Science.gov (United States)

    Gregersen, Peter K; Kowalsky, Elena; Lee, Annette; Baron-Cohen, Simon; Fisher, Simon E; Asher, Julian E; Ballard, David; Freudenberg, Jan; Li, Wentian

    2013-05-15

    Absolute pitch (AP) and synesthesia are two uncommon cognitive traits that reflect increased neuronal connectivity and have been anecdotally reported to occur together in an individual. Here we systematically evaluate the occurrence of synesthesia in a population of 768 subjects with documented AP. Out of these 768 subjects, 151 (20.1%) reported synesthesia, most commonly with color. These self-reports of synesthesia were validated in a subset of 21 study subjects, using an established methodology. We further carried out combined linkage analysis of 53 multiplex families with AP and 36 multiplex families with synesthesia. We observed a peak NPL LOD = 4.68 on chromosome 6q, as well as evidence of linkage on chromosome 2, using a dominant model. These data establish the close phenotypic and genetic relationship between AP and synesthesia. The chromosome 6 linkage region contains 73 genes; several leading candidate genes involved in neurodevelopment were investigated by exon resequencing. However, further studies will be required to definitively establish the identity of the causative gene(s) in the region.

  18. Role of phenotypic and genetic testing in managing clopidogrel therapy.

    Science.gov (United States)

    Chan, Noel C; Eikelboom, John W; Ginsberg, Jeffrey S; Lauw, Mandy N; Vanassche, Thomas; Weitz, Jeffrey I; Hirsh, Jack

    2014-07-31

    The P2Y12 inhibitors, clopidogrel, prasugrel, and ticagrelor, are administered in fixed doses without laboratory monitoring. Randomized trials in acute coronary syndrome have shown that prasugrel and ticagrelor are more effective than standard-dose clopidogrel. Nonetheless, standard-dose clopidogrel remains widely used because it causes less bleeding and is less expensive. Patients treated with standard-dose clopidogrel have substantial variability in platelet inhibition, which is partly explained by genetic polymorphisms encoding CYP2C19, the hepatic enzyme involved in biotransformation of clopidogrel to its active metabolite. Some advocate tailoring P2Y12 inhibitor therapy according to the results of routine laboratory testing. Although there is good evidence for analytic, biological, and clinical validity of several phenotypic and genotypic biomarkers, the benefit of a management strategy that incorporates routine biomarker testing over standard of care without such testing remains unproven. Appropriately designed, adequately powered trials are needed but face the challenges of feasibility, cost, and the progressive switch from clopidogrel to prasugrel or ticagrelor.

  19. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.

    Directory of Open Access Journals (Sweden)

    Jason A Corwin

    2016-02-01

    Full Text Available The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs and nucleotide-binding site leucine-rich repeat proteins (NLRs, were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60% when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen

  20. Impact of measurement error on testing genetic association with quantitative traits.

    Directory of Open Access Journals (Sweden)

    Jiemin Liao

    Full Text Available Measurement error of a phenotypic trait reduces the power to detect genetic associations. We examined the impact of sample size, allele frequency and effect size in presence of measurement error for quantitative traits. The statistical power to detect genetic association with phenotype mean and variability was investigated analytically. The non-centrality parameter for a non-central F distribution was derived and verified using computer simulations. We obtained equivalent formulas for the cost of phenotype measurement error. Effects of differences in measurements were examined in a genome-wide association study (GWAS of two grading scales for cataract and a replication study of genetic variants influencing blood pressure. The mean absolute difference between the analytic power and simulation power for comparison of phenotypic means and variances was less than 0.005, and the absolute difference did not exceed 0.02. To maintain the same power, a one standard deviation (SD in measurement error of a standard normal distributed trait required a one-fold increase in sample size for comparison of means, and a three-fold increase in sample size for comparison of variances. GWAS results revealed almost no overlap in the significant SNPs (p<10(-5 for the two cataract grading scales while replication results in genetic variants of blood pressure displayed no significant differences between averaged blood pressure measurements and single blood pressure measurements. We have developed a framework for researchers to quantify power in the presence of measurement error, which will be applicable to studies of phenotypes in which the measurement is highly variable.

  1. Genetic variations and miRNA-target interactions contribute to natural phenotypic variations in Populus.

    Science.gov (United States)

    Chen, Jinhui; Xie, Jianbo; Chen, Beibei; Quan, Mingyang; Li, Ying; Li, Bailian; Zhang, Deqiang

    2016-10-01

    Variation in regulatory factors, including microRNAs (miRNAs), contributes to variation in quantitative and complex traits. However, in plants, variants in miRNAs and their target genes that contribute to natural phenotypic variation, and the underlying regulatory networks, remain poorly characterized. We investigated the associations and interactions of single-nucleotide polymorphisms (SNPs) in miRNAs and their target genes with phenotypes in 435 individuals from a natural population of Populus. We used RNA-seq to identify 217 miRNAs differentially expressed in a tension wood system, and identified 1196 candidate target genes; degradome sequencing confirmed 60 of the target sites. In addition, 72 miRNA-target pairs showed significant co-expression. Gene ontology (GO) term analysis showed that most of the genes in the co-regulated pairs participate in biological regulation. Genome resequencing found 5383 common SNPs (frequency ≥ 0.05) in 139 miRNAs and 31 037 SNPs in 819 target genes. Single-SNP association analyses identified 232 significant associations between wood traits (P ≤ 0.05) and SNPs in 102 miRNAs and 1387 associations with 478 target genes. Among these, 102 miRNA-target pairs associated with the same traits. Multi-SNP associations found 102 epistatic pairs associated with traits. Furthermore, a reconstructed regulatory network contained 12 significantly co-expressed pairs, including eight miRNAs and nine targets associated with traits. Lastly, both expression and genetic association showed that miR156i, miR156j, miR396a and miR6445b were involved in the formation of tension wood. This study shows that variants in miRNAs and target genes contribute to natural phenotypic variation and annotated roles and interactions of miRNAs and their target genes by genetic association analysis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Segregation Analysis on Genetic System of Quantitative Traits in Plants

    Institute of Scientific and Technical Information of China (English)

    Gai Junyi

    2006-01-01

    Based on the traditional polygene inheritance model of quantitative traits,the author suggests the major gene and polygene mixed inheritance model.The model was considered as a general one,while the pure major gene and pure polygene inheritance model was a specific case of the general model.Based on the proposed theory,the author established the segregation analysis procedure to study the genetic system of quantitative traits of plants.At present,this procedure can be used to evaluate the genetic effect of individual major genes (up to two to three major genes),the collective genetic effect of polygene,and their heritability value.This paper introduces how to establish the procedure,its main achievements,and its applications.An example is given to illustrate the steps,methods,and effectiveness of the procedure.

  3. [Phenotype-based genetic association studies (PGAS): a new approach to understanding the genotype contribution to schizophrenic phenotypes].

    Science.gov (United States)

    Ehrenreich, H

    2013-05-01

    Schizophrenias are diagnosed purely clinically. The biological basis for this clinical entity is still fully unknown. Genetic studies have revealed some interesting hints but have not led to the identification of actual disease genotypes. On the contrary, it has become more and more probable that widely differing genotype constellations together with manifold environmental factors can trigger schizophrenia according to the motto "many roads lead to Rome...". Thus, new strategies that allow a better insight into complex genotype-phenotype relationships, e. g. PGAS (phenotype-based genetic associations studies) are urgently needed. PGAS became possible on the basis of the GRAS data collection, the as yet largest worldwide phenotypical databank of schizophrenic patients. First PGAS proof-of-concept results on cognition or development-relevant genes are already available.

  4. Phenotypic Characterization and Genetic Dissection of Growth Period Traits in Soybean (Glycine max Using Association Mapping.

    Directory of Open Access Journals (Sweden)

    Zhangxiong Liu

    Full Text Available The growth period traits are important traits that affect soybean yield. The insights into the genetic basis of growth period traits can provide theoretical basis for cultivated area division, rational distribution, and molecular breeding for soybean varieties. In this study, genome-wide association analysis (GWAS was exploited to detect the quantitative trait loci (QTL for number of days to flowering (ETF, number of days from flowering to maturity (FTM, and number of days to maturity (ETM using 4032 single nucleotide polymorphism (SNP markers with 146 cultivars mainly from Northeast China. Results showed that abundant phenotypic variation was presented in the population, and variation explained by genotype, environment, and genotype by environment interaction were all significant for each trait. The whole accessions could be clearly clustered into two subpopulations based on their genetic relatedness, and accessions in the same group were almost from the same province. GWAS based on the unified mixed model identified 19 significant SNPs distributed on 11 soybean chromosomes, 12 of which can be consistently detected in both planting densities, and 5 of which were pleotropic QTL. Of 19 SNPs, 7 SNPs located in or close to the previously reported QTL or genes controlling growth period traits. The QTL identified with high resolution in this study will enrich our genomic understanding of growth period traits and could then be explored as genetic markers to be used in genomic applications in soybean breeding.

  5. Genetic and Environmental Regulation on Longitudinal Change of Metabolic Phenotypes in Danish and Chinese Adult Twins

    DEFF Research Database (Denmark)

    Li, Shuxia; Kyvik, Kirsten Ohm; Pang, Zengchang

    2016-01-01

    OBJECTIVE: The rate of change in metabolic phenotypes can be highly indicative of metabolic disorders and disorder-related modifications. We analyzed data from longitudinal twin studies on multiple metabolic phenotypes in Danish and Chinese twins representing two populations of distinct ethnic...... environmental contribution to blood pressure but no genetic contribution to longitudinal change in body mass traits. CONCLUSION: Our results emphasize the major contribution of unique environment to the observed intra-individual variation in all metabolic phenotypes in both samples, and meanwhile reveal...... differential patterns of genetic and common environmental regulation on changes over time in metabolic phenotypes across the two samples....

  6. What monozygotic twins discordant for phenotype illustrate about mechanisms influencing genetic forms of neurodegeneration

    NARCIS (Netherlands)

    Ketelaar, M. E.; Hofstra, R. M. W.; Hayden, M. R.

    2012-01-01

    As monozygotic (MZ) twins are believed to be genetically identical, discordance for disease phenotype between MZ twins has been used in genetic research to understand the contribution of genetic vs environmental factors in disease development. However, recent studies show that MZ twins can differ bo

  7. Quantitative Genetics in the Era of Molecular Genetics: Learning Abilities and Disabilities as an Example

    Science.gov (United States)

    Haworth, Claire M. A.; Plomin, Robert

    2010-01-01

    Objective: To consider recent findings from quantitative genetic research in the context of molecular genetic research, especially genome-wide association studies. We focus on findings that go beyond merely estimating heritability. We use learning abilities and disabilities as examples. Method: Recent twin research in the area of learning…

  8. Autistic phenotypes and genetic testing: state-of-the-art for the clinical geneticist.

    Science.gov (United States)

    Lintas, C; Persico, A M

    2009-01-01

    Autism spectrum disorders represent a group of developmental disorders with strong genetic underpinnings. Several cytogenetic abnormalities or de novo mutations able to cause autism have recently been uncovered. In this study, the literature was reviewed to highlight genotype-phenotype correlations between causal gene mutations or cytogenetic abnormalities and behavioural or morphological phenotypes. Based on this information, a set of practical guidelines is proposed to help clinical geneticists pursue targeted genetic testing for patients with autism whose clinical phenotype is suggestive of a specific genetic or genomic aetiology.

  9. The nature of quantitative genetic variation for Drosophila longevity.

    Science.gov (United States)

    Mackay, Trudy F C

    2002-01-01

    Longevity is a typical quantitative trait: the continuous variation in life span observed in natural populations is attributable to genetic variation at multiple quantitative trait loci (QTL), environmental sensitivity of QTL alleles, and truly continuous environmental variation. To begin to understand the genetic architecture of longevity at the level of individual QTL, we have mapped QTL for Drosophila life span that segregate between two inbred strains that were not selected for longevity. A mapping population of 98 recombinant inbred lines (RIL) was derived from these strains, and life span of virgin male and female flies measured under control culture conditions, chronic heat and cold stress, heat shock and starvation stress, and high and low density larval environments. The genotypes of the RIL were determined for polymorphic roo transposable element insertion sites, and life span QTL were mapped using composite interval mapping methods. A minimum of 19 life span QTL were detected by recombination mapping. The life span QTL exhibited strong genotype by sex, genotype by environment, and genotype by genotype (epistatic) interactions. These interactions complicate mapping efforts, but evolutionary theory predicts such properties of segregating QTL alleles. Quantitative deficiency mapping of four longevity QTL detected in the control environment by recombination mapping revealed a minimum of 11 QTL in these regions. Clearly, longevity is a complex quantitative trait. In the future, linkage disequilibrium mapping can be used to determine which candidate genes in a QTL region correspond to the genetic loci affecting variation in life span, and define the QTL alleles at the molecular level.

  10. Molecular ABO phenotyping in cynomolgus macaques using real-time quantitative PCR.

    Science.gov (United States)

    Premasuthan, A; Ng, J; Kanthaswamy, S; Trask, J S; Houghton, P; Farkas, T; Sestak, K; Smith, D G

    2012-10-01

    Macaques are commonly used in biomedical research as animal models of human disease. The ABO phenotype of donors and recipients plays an important role in the success of transplantation and stem cell research of both human and macaque tissue. Traditional serological methods for ABO phenotyping can be time consuming, provide ambiguous results and/or require tissue that is unavailable or unsuitable. We developed a novel method to detect the A, B, and AB phenotypes of macaques using real-time quantitative polymerase chain reaction. This method enables the simple and rapid screening of these phenotypes in macaques without the need for fresh blood or saliva. This study reports the distribution of the A, B, and AB phenotypes of captive cynomolgus macaques that, while regionally variable, closely resembles that of rhesus macaques. Blood group B, as in rhesus macaques, predominates in cynomolgus macaques and its frequency distribution leads to a probability of major incompatibility of 41%. No silencing mutations have been identified in exon 6 or 7 in macaques that could be responsible for the O phenotype, that, although rare, have been reported. The excess homozygosity of rhesus and cynomolgus macaque genotypes in this study, that assumes the absence of the O allele, suggests the possibility of some mechanism preventing the expression of the A and B transferases.

  11. Quantitative genetic analysis of injury liability in infants and toddlers

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, K.; Matheny, A.P. Jr. [Univ. of Louisville Medical School, KY (United States)

    1995-02-27

    A threshold model of latent liability was applied to infant and toddler twin data on total count of injuries sustained during the interval from birth to 36 months of age. A quantitative genetic analysis of estimated twin correlations in injury liability indicated strong genetic dominance effects, but no additive genetic variance was detected. Because interpretations involving overdominance have little research support, the results may be due to low order epistasis or other interaction effects. Boys had more injuries than girls, but this effect was found only for groups whose parents were prompted and questioned in detail about their children`s injuries. Activity and impulsivity are two behavioral predictors of childhood injury, and the results are discussed in relation to animal research on infant and adult activity levels, and impulsivity in adult humans. Genetic epidemiological approaches to childhood injury should aid in targeting higher risk children for preventive intervention. 30 refs., 4 figs., 3 tabs.

  12. The quantitative genetics of indirect genetic effects: a selective review of modelling issues : Review

    NARCIS (Netherlands)

    Bijma, P.

    2014-01-01

    Indirect genetic effects (IGE) occur when the genotype of an individual affects the phenotypic trait value of another conspecific individual. IGEs can have profound effects on both the magnitude and the direction of response to selection. Models of inheritance and response to selection in traits sub

  13. Genetic and phenotypic parameters of body weight in Zandi sheep

    African Journals Online (AJOL)

    DR. TONUKARI NYEROVWO

    2011-11-02

    Nov 2, 2011 ... from the Khojir Sheep Breeding Station, Tehran, Iran. Number of ..... food intake and performance in the young lamb; although this trend was not also .... genetic parameters and genetic trends for live weight and fleece traits.

  14. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.).

    Science.gov (United States)

    Gu, Riliang; Chen, Fanjun; Liu, Bingran; Wang, Xin; Liu, Jianchao; Li, Pengcheng; Pan, Qingchun; Pace, Jordon; Soomro, Ayaz-Ali; Lübberstedt, Thomas; Mi, Guohua; Yuan, Lixing

    2015-09-01

    Understanding the correlations of seven minerals for concentration, content and yield in maize grain, and exploring their genetic basis will help breeders to develop high grain quality maize. Biofortification by enhanced mineral accumulation in grain through genetic improvement is an efficient way to solve global nutrient malnutrition, in which one key step is to detect the underlying quantitative trait loci (QTL). Herein, a maize recombinant inbred population (RIL) was field grown to maturity across four environments (two locations × two years). Phenotypic data for grain mineral concentration, content and yield were determined for copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), magnesium (Mg), potassium (K) and phosphorus (P). Significant effects of genotype, location and year were observed for all investigated traits. The strongest location effects were found for Zn accumulation traits probably due to distinct soil Zn availabilities across locations. Heritability (H (2)) of different traits varied with higher H (2) (72-85 %) for mineral concentration and content, and lower (48-63 %) for mineral yield. Significant positive correlations for grain concentration were revealed between several minerals. QTL analysis revealed 28, 25, and 12 QTL for mineral concentration, content and yield, respectively; and identified 8 stable QTL across at least two environments. All these QTL were assigned into 12 distinct QTL clusters. A cluster at chromosome Bin 6.07/6.08 contained 6 QTL for kernel weight, mineral concentration (Mg) and content (Zn, K, Mg, P). Another cluster at Bin 4.05/4.06 contained a stable QTL for Mn concentration, which were previously identified in other maize and rice RIL populations. These results highlighted the phenotypic and genetic performance of grain mineral accumulation, and revealed two promising chromosomal regions for genetic improvement of grain biofortification in maize.

  15. Phenotypic characterization and genetic diversity of Flavobacterium columnare isolated from red tilapia, Oreochromis sp. in Thailand

    Science.gov (United States)

    Flavobacterium columnare is the etiologic agent of columnaris disease and severely affects various freshwater aquaculture fish species worldwide. The objectives of this study were to determine the phenotypic characteristics and genetic variability among F. columnare isolates isolated from red tilapi...

  16. In-depth metabolic phenotyping of genetically engineered mouse models in obesity and diabetes.

    Science.gov (United States)

    Lee, Hui-Young; Jeong, Kyeong-Hoon; Choi, Cheol Soo

    2014-10-01

    The world-wide prevalence of obesity and diabetes has increased sharply during the last two decades. Accordingly, the metabolic phenotyping of genetically engineered mouse models is critical for evaluating the functional roles of target genes in obesity and diabetes, and for developing new therapeutic targets. In this review, we discuss the practical meaning of metabolic phenotyping, the strategy of choosing appropriate tests, and considerations when designing and performing metabolic phenotyping in mice.

  17. Quantitative genetic activity graphical profiles for use in chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Waters, M.D. [Environmental Protection Agency, Washington, DC (United States); Stack, H.F.; Garrett, N.E.; Jackson, M.A. [Environmental Health Research and Testing, Inc., Research Triangle Park, NC (United States)

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  18. Genetic architecture and phenotypic plasticity of thermally-regulated traits in an eruptive species, Dendroctonus ponderosae

    Science.gov (United States)

    Barbara J. Bentz; Ryan B. Bracewell; Karen E. Mock; Michael E. Pfrender

    2011-01-01

    Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic...

  19. Movement disorders in 2014 : Genetic advances spark a revolution in dystonia phenotyping

    NARCIS (Netherlands)

    de Koning, Tom J; Tijssen, Marina A J

    2015-01-01

    Genetic revelations in 2014 are testing traditional classification systems for movement disorders, and our approach to clinical diagnostics. Mutations in dystonia-associated genes lead to a spectrum of disorders with different phenotypes, underscoring the need for stringent clinical phenotyping of p

  20. A machine learning pipeline for quantitative phenotype prediction from genotype data

    Directory of Open Access Journals (Sweden)

    Jurman Giuseppe

    2010-10-01

    Full Text Available Abstract Background Quantitative phenotypes emerge everywhere in systems biology and biomedicine due to a direct interest for quantitative traits, or to high individual variability that makes hard or impossible to classify samples into distinct categories, often the case with complex common diseases. Machine learning approaches to genotype-phenotype mapping may significantly improve Genome-Wide Association Studies (GWAS results by explicitly focusing on predictivity and optimal feature selection in a multivariate setting. It is however essential that stringent and well documented Data Analysis Protocols (DAP are used to control sources of variability and ensure reproducibility of results. We present a genome-to-phenotype pipeline of machine learning modules for quantitative phenotype prediction. The pipeline can be applied for the direct use of whole-genome information in functional studies. As a realistic example, the problem of fitting complex phenotypic traits in heterogeneous stock mice from single nucleotide polymorphims (SNPs is here considered. Methods The core element in the pipeline is the L1L2 regularization method based on the naïve elastic net. The method gives at the same time a regression model and a dimensionality reduction procedure suitable for correlated features. Model and SNP markers are selected through a DAP originally developed in the MAQC-II collaborative initiative of the U.S. FDA for the identification of clinical biomarkers from microarray data. The L1L2 approach is compared with standard Support Vector Regression (SVR and with Recursive Jump Monte Carlo Markov Chain (MCMC. Algebraic indicators of stability of partial lists are used for model selection; the final panel of markers is obtained by a procedure at the chromosome scale, termed ’saturation’, to recover SNPs in Linkage Disequilibrium with those selected. Results With respect to both MCMC and SVR, comparable accuracies are obtained by the L1L2 pipeline

  1. Genetic Architectures of Quantitative Variation in RNA Editing Pathways.

    Science.gov (United States)

    Gu, Tongjun; Gatti, Daniel M; Srivastava, Anuj; Snyder, Elizabeth M; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L; Dotu, Ivan; Chuang, Jeffrey H; Keller, Mark P; Attie, Alan D; Braun, Robert E; Churchill, Gary A

    2016-02-01

    RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing.

  2. Genetic selection for context-dependent stochastic phenotypes: Sp1 and TATA mutations increase phenotypic noise in HIV-1 gene expression.

    Directory of Open Access Journals (Sweden)

    Kathryn Miller-Jensen

    Full Text Available The sequence of a promoter within a genome does not uniquely determine gene expression levels and their variability; rather, promoter sequence can additionally interact with its location in the genome, or genomic context, to shape eukaryotic gene expression. Retroviruses, such as human immunodeficiency virus-1 (HIV, integrate their genomes into those of their host and thereby provide a biomedically-relevant model system to quantitatively explore the relationship between promoter sequence, genomic context, and noise-driven variability on viral gene expression. Using an in vitro model of the HIV Tat-mediated positive-feedback loop, we previously demonstrated that fluctuations in viral Tat-transactivating protein levels generate integration-site-dependent, stochastically-driven phenotypes, in which infected cells randomly 'switch' between high and low expressing states in a manner that may be related to viral latency. Here we extended this model and designed a forward genetic screen to systematically identify genetic elements in the HIV LTR promoter that modulate the fraction of genomic integrations that specify 'Switching' phenotypes. Our screen identified mutations in core promoter regions, including Sp1 and TATA transcription factor binding sites, which increased the Switching fraction several fold. By integrating single-cell experiments with computational modeling, we further investigated the mechanism of Switching-fraction enhancement for a selected Sp1 mutation. Our experimental observations demonstrated that the Sp1 mutation both impaired Tat-transactivated expression and also altered basal expression in the absence of Tat. Computational analysis demonstrated that the observed change in basal expression could contribute significantly to the observed increase in viral integrations that specify a Switching phenotype, provided that the selected mutation affected Tat-mediated noise amplification differentially across genomic contexts. Our study

  3. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study.

    Science.gov (United States)

    Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice

    2009-11-01

    The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that

  4. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    Science.gov (United States)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks

  5. Genetic modifier loci of mouse Mfrp(rd6) identified by quantitative trait locus analysis.

    Science.gov (United States)

    Won, Jungyeon; Charette, Jeremy R; Philip, Vivek M; Stearns, Timothy M; Zhang, Weidong; Naggert, Jürgen K; Krebs, Mark P; Nishina, Patsy M

    2014-01-01

    The identification of genes that modify pathological ocular phenotypes in mouse models may improve our understanding of disease mechanisms and lead to new treatment strategies. Here, we identify modifier loci affecting photoreceptor cell loss in homozygous Mfrp(rd6) mice, which exhibit a slowly progressive photoreceptor degeneration. A cohort of 63 F2 homozygous Mfrp(rd6) mice from a (B6.C3Ga-Mfrp(rd6)/J × CAST/EiJ) F1 intercross exhibited a variable number of cell bodies in the retinal outer nuclear layer at 20 weeks of age. Mice were genotyped with a panel of single nucleotide polymorphism markers, and genotypes were correlated with phenotype by quantitative trait locus (QTL) analysis to map modifier loci. A genome-wide scan revealed a statistically significant, protective candidate locus on CAST/EiJ Chromosome 1 and suggestive modifier loci on Chromosomes 6 and 11. Multiple regression analysis of a three-QTL model indicated that the modifier loci on Chromosomes 1 and 6 together account for 26% of the observed phenotypic variation, while the modifier locus on Chromosome 11 explains only an additional 4%. Our findings indicate that the severity of the Mfrp(rd6) retinal degenerative phenotype in mice depends on the strain genetic background and that a significant modifier locus on CAST/EiJ Chromosome 1 protects against Mfrp(rd6)-associated photoreceptor loss.

  6. GPA-MDS: A Visualization Approach to Investigate Genetic Architecture among Phenotypes Using GWAS Results.

    Science.gov (United States)

    Wei, Wei; Ramos, Paula S; Hunt, Kelly J; Wolf, Bethany J; Hardiman, Gary; Chung, Dongjun

    2016-01-01

    Genome-wide association studies (GWAS) have identified tens of thousands of genetic variants associated with hundreds of phenotypes and diseases, which have provided clinical and medical benefits to patients with novel biomarkers and therapeutic targets. Recently, there has been accumulating evidence suggesting that different complex traits share a common risk basis, namely, pleiotropy. Previously, a statistical method, namely, GPA (Genetic analysis incorporating Pleiotropy and Annotation), was developed to improve identification of risk variants and to investigate pleiotropic structure through a joint analysis of multiple GWAS datasets. While GPA provides a statistically rigorous framework to evaluate pleiotropy between phenotypes, it is still not trivial to investigate genetic relationships among a large number of phenotypes using the GPA framework. In order to address this challenge, in this paper, we propose a novel approach, GPA-MDS, to visualize genetic relationships among phenotypes using the GPA algorithm and multidimensional scaling (MDS). This tool will help researchers to investigate common etiology among diseases, which can potentially lead to development of common treatments across diseases. We evaluate the proposed GPA-MDS framework using a simulation study and apply it to jointly analyze GWAS datasets examining 18 unique phenotypes, which helps reveal the shared genetic architecture of these phenotypes.

  7. Conflict between genetic and phenotypic differentiation: the evolutionary history of a 'lost and rediscovered' shorebird.

    Directory of Open Access Journals (Sweden)

    Frank E Rheindt

    Full Text Available Understanding and resolving conflicts between phenotypic and genetic differentiation is central to evolutionary research. While phenotypically monomorphic species may exhibit deep genetic divergences, some morphologically distinct taxa lack notable genetic differentiation. Here we conduct a molecular investigation of an enigmatic shorebird with a convoluted taxonomic history, the White-faced Plover (Charadrius alexandrinus dealbatus, widely regarded as a subspecies of the Kentish Plover (C. alexandrinus. Described as distinct in 1863, its name was consistently misapplied in subsequent decades until taxonomic clarification ensued in 2008. Using a recently proposed test of species delimitation, we reconfirm the phenotypic distinctness of dealbatus. We then compare three mitochondrial and seven nuclear DNA markers among 278 samples of dealbatus and alexandrinus from across their breeding range and four other closely related plovers. We fail to find any population genetic differentiation between dealbatus and alexandrinus, whereas the other species are deeply diverged at the study loci. Kentish Plovers join a small but growing list of species for which low levels of genetic differentiation are accompanied by the presence of strong phenotypic divergence, suggesting that diagnostic phenotypic characters may be encoded by few genes that are difficult to detect. Alternatively, gene expression differences may be crucial in producing different phenotypes whereas neutral differentiation may be lagging behind.

  8. Genetic and Environmental Regulation on Longitudinal Change of Metabolic Phenotypes in Danish and Chinese Adult Twins.

    Science.gov (United States)

    Li, Shuxia; Kyvik, Kirsten Ohm; Pang, Zengchang; Zhang, Dongfeng; Duan, Haiping; Tan, Qihua; Hjelmborg, Jacob; Kruse, Torben; Dalgård, Christine

    2016-01-01

    The rate of change in metabolic phenotypes can be highly indicative of metabolic disorders and disorder-related modifications. We analyzed data from longitudinal twin studies on multiple metabolic phenotypes in Danish and Chinese twins representing two populations of distinct ethnic, cultural, social-economic backgrounds and geographical environments. The study covered a relatively large sample of 502 pairs of Danish adult twins followed up for a long period of 12 years with a mean age at intake of 38 years (range: 18-65) and a total of 181 Chinese adult twin pairs traced for about 7 years with a mean baseline age of 39.5 years (range: 23-64). The classical twin models were fitted to the longitudinal change in each phenotypephenotype) to estimate the genetic and environmental contributions to the variation in Δphenotype. Moderate to high contributions by the unique environment were estimated for all phenotypes in both Danish (from 0.51 for low density lipoprotein cholesterol up to 0.72 for triglycerides) and Chinese (from 0.41 for triglycerides up to 0.73 for diastolic blood pressure) twins; low to moderate genetic components were estimated for long-term change in most of the phenotypes in Danish twins except for triglycerides and hip circumference. Compared with Danish twins, the Chinese twins tended to have higher genetic control over the longitudinal changes in lipids (except high density lipoprotein cholesterol) and glucose, higher unique environmental contribution to blood pressure but no genetic contribution to longitudinal change in body mass traits. Our results emphasize the major contribution of unique environment to the observed intra-individual variation in all metabolic phenotypes in both samples, and meanwhile reveal differential patterns of genetic and common environmental regulation on changes over time in metabolic phenotypes across the two samples.

  9. Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ulrike Ober

    Full Text Available Predicting organismal phenotypes from genotype data is important for plant and animal breeding, medicine, and evolutionary biology. Genomic-based phenotype prediction has been applied for single-nucleotide polymorphism (SNP genotyping platforms, but not using complete genome sequences. Here, we report genomic prediction for starvation stress resistance and startle response in Drosophila melanogaster, using ∼2.5 million SNPs determined by sequencing the Drosophila Genetic Reference Panel population of inbred lines. We constructed a genomic relationship matrix from the SNP data and used it in a genomic best linear unbiased prediction (GBLUP model. We assessed predictive ability as the correlation between predicted genetic values and observed phenotypes by cross-validation, and found a predictive ability of 0.239±0.008 (0.230±0.012 for starvation resistance (startle response. The predictive ability of BayesB, a Bayesian method with internal SNP selection, was not greater than GBLUP. Selection of the 5% SNPs with either the highest absolute effect or variance explained did not improve predictive ability. Predictive ability decreased only when fewer than 150,000 SNPs were used to construct the genomic relationship matrix. We hypothesize that predictive power in this population stems from the SNP-based modeling of the subtle relationship structure caused by long-range linkage disequilibrium and not from population structure or SNPs in linkage disequilibrium with causal variants. We discuss the implications of these results for genomic prediction in other organisms.

  10. Longitudinal investigation into genetics in the conservation of metabolic phenotypes in Danish and Chinese twins

    DEFF Research Database (Denmark)

    Li, Shuxia; Kyvik, Kirsten Ohm; Duan, Haiping

    2016-01-01

    twin study on long-term stability of metabolic phenotypes in Danish and Chinese twins identified a common pattern of high genetic control over phenotype conservation, and at the same time revealed population-specific patterns of genetic and common environmental regulation on the variance as well...... for 12 years and Chinese twins traced for 7 years. The study covered a relatively large sample of 502 pairs of Danish adult twins with a mean age at intake of 38 years and a total of 181 Chinese adult twin pairs with a mean baseline age of 39.5 years. Bivariate twin models were fitted to the longitudinal...... estimated in both Danish (h2>0.75 except fasting blood glucose) and Chinese (h2>0.72 except blood pressure) twins; moderate to high genetic contribution to phenotype variation at the two time points were also estimated except for the low genetic regulation on glucose in Danish and on blood pressure...

  11. Analysis of malaria parasite phenotypes using experimental genetic crosses of Plasmodium falciparum

    OpenAIRE

    Ranford-Cartwright, Lisa C; Mwangi, Jonathan M.

    2012-01-01

    We review the principles of linkage analysis of experimental genetic crosses and their application to Plasmodium falciparum. Three experimental genetic crosses have been performed using the human malaria parasite P. falciparum. Linkage analysis of the progeny of these crosses has been used to identify parasite genes important in phenotypes such as drug resistance, parasite growth and virulence, and transmission to mosquitoes. The construction and analysis of genetic maps has been used to char...

  12. A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Ibánez-Escriche, Noelia; Sorensen, Daniel

    2008-01-01

    In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications...

  13. Identification of quantitative trait loci for fibrin clot phenotypes: The EuroCLOT study

    Science.gov (United States)

    Williams, Frances MK; Carter, Angela M; Kato, Bernet; Falchi, Mario; Bathum, Lise; Surdulescu, Gabriela; Kyvik, Kirsten Ohm; Palotie, Aarno; Spector, Tim D; Grant, Peter J

    2012-01-01

    Objectives Fibrin makes up the structural basis of an occlusive arterial thrombus and variability in fibrin phenotype relates to cardiovascular risk. The aims of the current study from the EU consortium EuroCLOT were to 1) determine the heritability of fibrin phenotypes and 2) identify QTLs associated with fibrin phenotypes. Methods 447 dizygotic (DZ) and 460 monozygotic (MZ) pairs of healthy UK Caucasian female twins and 199 DZ twin pairs from Denmark were studied. D-dimer, an indicator of fibrin turnover, was measured by ELISA and measures of clot formation, morphology and lysis were determined by turbidimetric assays. Heritability estimates and genome-wide linkage analysis were performed. Results Estimates of heritability for d-dimer and turbidometric variables were in the range 17 - 46%, with highest levels for maximal absorbance which provides an estimate of clot density. Genome-wide linkage analysis revealed 6 significant regions with LOD>3 on 5 chromosomes (5, 6, 9, 16 and 17). Conclusions The results indicate a significant genetic contribution to variability in fibrin phenotypes and highlight regions in the human genome which warrant further investigation in relation to ischaemic cardiovascular disorders and their therapy. PMID:19150881

  14. Statistical equivalent of the classical TDT for quantitative traits and multivariate phenotypes

    Indian Academy of Sciences (India)

    Tanushree Haldar; Saurabh Ghosh

    2015-12-01

    Clinical end-point traits are usually governed by quantitative precursors. Hence, there is active research interest in developing statistical methods for association mapping of quantitative traits. Unlike population-based tests for association, family-based tests for transmission disequilibrium are protected against population stratification. In this study, we propose a logistic regression model to test the association for quantitative traits based on a trio design. We show that the method can be viewed as a direct extension of the classical transmission diequilibrium test for binary traits to quantitative traits. We evaluate the performance of our method using extensive simulations and compare it with an existing method, family-based association test. We found that the two methods yield comparable powers if all families are considered. However, unlike FBAT, which yields an inflated rate of false positives when noninformative trios with all three individuals’ heterozygous are removed, our method maintains the correct size without compromising too much on power. We show that our method can be easily modified to incorporate multivariate phenotypes. Here, we applied this method to analyse a quantitative endophenotype associated with alcoholism.

  15. Quantitative genetic-interaction mapping in mammalian cells

    Science.gov (United States)

    Roguev, Assen; Talbot, Dale; Negri, Gian Luca; Shales, Michael; Cagney, Gerard; Bandyopadhyay, Sourav; Panning, Barbara; Krogan, Nevan J

    2013-01-01

    Mapping genetic interactions (GIs) by simultaneously perturbing pairs of genes is a powerful tool for understanding complex biological phenomena. Here we describe an experimental platform for generating quantitative GI maps in mammalian cells using a combinatorial RNA interference strategy. We performed ~11,000 pairwise knockdowns in mouse fibroblasts, focusing on 130 factors involved in chromatin regulation to create a GI map. Comparison of the GI and protein-protein interaction (PPI) data revealed that pairs of genes exhibiting positive GIs and/or similar genetic profiles were predictive of the corresponding proteins being physically associated. The mammalian GI map identified pathways and complexes but also resolved functionally distinct submodules within larger protein complexes. By integrating GI and PPI data, we created a functional map of chromatin complexes in mouse fibroblasts, revealing that the PAF complex is a central player in the mammalian chromatin landscape. PMID:23407553

  16. Quantitative Genetic Interactions Reveal Layers of Biological Modularity

    Science.gov (United States)

    Beltrao, Pedro; Cagney, Gerard; Krogan, Nevan J.

    2010-01-01

    In the past, biomedical research has embraced a reductionist approach, primarily focused on characterizing the individual components that comprise a system of interest. Recent technical developments have significantly increased the size and scope of data describing biological systems. At the same time, advances in the field of systems biology have evoked a broader view of how the underlying components are interconnected. In this essay, we discuss how quantitative genetic interaction mapping has enhanced our view of biological systems, allowing a deeper functional interrogation at different biological scales. PMID:20510918

  17. Genetic and phenotypic population divergence on a microgeographic scale in brown trout.

    Science.gov (United States)

    Stelkens, Rike B; Jaffuel, Geoffrey; Escher, Matthias; Wedekind, Claus

    2012-06-01

    Salmonid populations of many rivers are rapidly declining. One possible explanation is that habitat fragmentation increases genetic drift and reduces the populations' potential to adapt to changing environmental conditions. We measured the genetic and eco-morphological diversity of brown trout (Salmo trutta) in a Swiss stream system, using multivariate statistics and Bayesian clustering. We found large genetic and phenotypic variation within only 40 km of stream length. Eighty-eight percent of all pairwise F(ST) comparisons and 50% of the population comparisons in body shape were significant. High success rates of population assignment tests confirmed the distinctiveness of populations in both genotype and phenotype. Spatial analysis revealed that divergence increased with waterway distance, the number of weirs, and stretches of poor habitat between sampling locations, but effects of isolation-by-distance and habitat fragmentation could not be fully disentangled. Stocking intensity varied between streams but did not appear to erode genetic diversity within populations. A lack of association between phenotypic and genetic divergence points to a role of local adaptation or phenotypically plastic responses to habitat heterogeneity. Indeed, body shape could be largely explained by topographic stream slope, and variation in overall phenotype matched the flow regimes of the respective habitats.

  18. Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation.

    Science.gov (United States)

    Schlichting, Carl D; Wund, Matthew A

    2014-03-01

    The relationship between genotype (which is inherited) and phenotype (the target of selection) is mediated by environmental inputs on gene expression, trait development, and phenotypic integration. Phenotypic plasticity or epigenetic modification might influence evolution in two general ways: (1) by stimulating evolutionary responses to environmental change via population persistence or by revealing cryptic genetic variation to selection, and (2) through the process of genetic accommodation, whereby natural selection acts to improve the form, regulation, and phenotypic integration of novel phenotypic variants. We provide an overview of models and mechanisms for how such evolutionary influences may be manifested both for plasticity and epigenetic marking. We point to promising avenues of research, identifying systems that can best be used to address the role of plasticity in evolution, as well as the need to apply our expanding knowledge of genetic and epigenetic mechanisms to our understanding of how genetic accommodation occurs in nature. Our review of a wide variety of studies finds widespread evidence for evolution by genetic accommodation.

  19. Genetic and Phenotypic Characterization of a Salmonella enterica serovar Enteritidis Emerging Strain with Superior Intra-macrophage Replication Phenotype

    Science.gov (United States)

    Shomer, Inna; Avisar, Alon; Desai, Prerak; Azriel, Shalhevet; Smollan, Gill; Belausov, Natasha; Keller, Nathan; Glikman, Daniel; Maor, Yasmin; Peretz, Avi; McClelland, Michael; Rahav, Galia; Gal-Mor, Ohad

    2016-01-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the ubiquitous Salmonella serovars worldwide and a major cause of food-born outbreaks, which are often associated with poultry and poultry derivatives. Here we report a nation-wide S. Enteritidis clonal outbreak that occurred in Israel during the last third of 2015. Pulsed field gel electrophoresis and whole genome sequencing identified genetically related strains that were circulating in Israel as early as 2008. Global comparison linked this outbreak strain to several clinical and marine environmental isolates that were previously isolated in California and Canada, indicating that similar strains are prevalent outside of Israel. Phenotypic comparison between the 2015 outbreak strain and other clinical and reference S. Enteritidis strains showed only limited intra-serovar phenotypic variation in growth in rich medium, invasion into Caco-2 cells, uptake by J774.1A macrophages, and host cell cytotoxicity. In contrast, significant phenotypic variation was shown among different S. Enteritidis isolates when biofilm-formation, motility, invasion into HeLa cells and uptake by THP-1 human macrophages were studied. Interestingly, the 2015 outbreak clone was found to possess superior intra-macrophage replication ability within both murine and human macrophages in comparison to the other S. Enteritidis strains studied. This phenotype is likely to play a role in the virulence and host-pathogen interactions of this emerging clone. PMID:27695450

  20. The evolution of phenotypes and genetic parameters under preferential mating

    Science.gov (United States)

    Roff, Derek A; Fairbairn, Daphne J

    2014-01-01

    This article extends and adds more realism to Lande's analytical model for evolution under mate choice by using individual-based simulations in which females sample a finite number of males and the genetic architecture of the preference and preferred trait evolves. The simulations show that the equilibrium heritabilities of the preference and preferred trait and the genetic correlation between them (rG), depend critically on aspects of the mating system (the preference function, mode of mate choice, choosiness, and number of potential mates sampled), the presence or absence of natural selection on the preferred trait, and the initial genetic parameters. Under some parameter combinations, preferential mating increased the heritability of the preferred trait, providing a possible resolution for the lek paradox. The Kirkpatrick–Barton approximation for rG proved to be biased downward, but the realized genetic correlations were also low, generally <0.2. Such low values of rG indicate that coevolution of the preference and preferred trait is likely to be very slow and subject to significant stochastic variation. Lande's model accurately predicted the incidence of runaway selection in the simulations, except where preferences were relative and the preferred trait was subject to natural selection. In these cases, runaways were over- or underestimated, depending on the number of males sampled. We conclude that rapid coevolution of preferences and preferred traits is unlikely in natural populations, but that the parameter combinations most conducive to it are most likely to occur in lekking species. PMID:25077025

  1. Toward automatic phenotyping of retinal images from genetically determined mono- and dizygotic twins using amplitude modulation-frequency modulation methods

    Science.gov (United States)

    Soliz, P.; Davis, B.; Murray, V.; Pattichis, M.; Barriga, S.; Russell, S.

    2010-03-01

    This paper presents an image processing technique for automatically categorize age-related macular degeneration (AMD) phenotypes from retinal images. Ultimately, an automated approach will be much more precise and consistent in phenotyping of retinal diseases, such as AMD. We have applied the automated phenotyping to retina images from a cohort of mono- and dizygotic twins. The application of this technology will allow one to perform more quantitative studies that will lead to a better understanding of the genetic and environmental factors associated with diseases such as AMD. A method for classifying retinal images based on features derived from the application of amplitude-modulation frequency-modulation (AM-FM) methods is presented. Retinal images from identical and fraternal twins who presented with AMD were processed to determine whether AM-FM could be used to differentiate between the two types of twins. Results of the automatic classifier agreed with the findings of other researchers in explaining the variation of the disease between the related twins. AM-FM features classified 72% of the twins correctly. Visual grading found that genetics could explain between 46% and 71% of the variance.

  2. Inherited Platelet Function Disorders: Algorithms for Phenotypic and Genetic Investigation.

    Science.gov (United States)

    Gresele, Paolo; Bury, Loredana; Falcinelli, Emanuela

    2016-04-01

    Inherited platelet function disorders (IPFDs) manifest with mucocutaneous bleeding and are frequently difficult to diagnose due to their heterogeneity, the complexity of the platelet activation pathways and a lack of standardization of the platelet function laboratory assays and of their use for this purpose. A rational diagnostic approach to IPFDs should follow an algorithm where clinical examination and a stepwise laboratory evaluation play a crucial role. A streamlined panel of laboratory tests, with consecutive steps of increasing level of complexity, allows the phenotypic characterization of most IPFDs. A first-line diagnosis of a significant fraction of the IPFD may be made also at nonspecialized centers by using relatively simple tests, including platelet count, peripheral blood smear, light transmission aggregometry, measurement of platelet granule content and release, and the expression of glycoproteins by flow cytometry. Some of the most complex, second- and third-step tests may be performed only in highly specialized laboratories. Genotyping, including the widespread application of next-generation sequencing, has enabled discovery in the last few years of several novel genes associated with platelet disorders and this method may eventually become a first-line diagnostic approach; however, a preliminary clinical and laboratory phenotypic characterization nowadays still remains crucial for diagnosis of IPFDs.

  3. Genetic studies of two inherited human phenotypes : Hearing loss and monoamine oxidase activity

    OpenAIRE

    Balciuniene, Jorune

    2001-01-01

    This thesis focuses on the identification of genetic factors underlying two inherited human phenotypes: hearing loss and monoamine oxidase activity. Non-syndromic hearing loss segregating in a Swedish family was tested for linkage to 13 previously reported candidate loci for hearing disabilities. Linkage was found to two loci: DFNA12 (llq22-q24) and DFNA2 (lp32). A detailed analysis of the phenotypes and haplotypes shared by the affected individuals supported the hypothesis of digenic inheri...

  4. Phenotypic, genetic, and environmental relationships between self-reported talents and measured intelligence.

    Science.gov (United States)

    Schermer, Julie Aitken; Johnson, Andrew M; Jang, Kerry L; Vernon, Philip A

    2015-02-01

    The relationship between self-report abilities and measured intelligence was examined at both the phenotypic (zero-order) level as well as at the genetic and environmental levels. Twins and siblings (N = 516) completed a timed intelligence test and a self-report ability questionnaire, which has previously been found to produce 10 factors, including: politics, interpersonal relationships, practical tasks, intellectual pursuits, academic skills, entrepreneur/business, domestic skills, vocal abilities, and creativity. At the phenotypic level, the correlations between the ability factor scores and intelligence ranged from 0.01 to 0.42 (between self-report academic abilities and verbal intelligence). Further analyses found that some of the phenotypic relationships between self-report ability scores and measured intelligence also had significant correlations at the genetic and environmental levels, suggesting that some of the observed relationships may be due to common genetic and/or environmental factors.

  5. Genetic variants and early cigarette smoking and nicotine dependence phenotypes in adolescents.

    Science.gov (United States)

    O'Loughlin, Jennifer; Sylvestre, Marie-Pierre; Labbe, Aurélie; Low, Nancy C; Roy-Gagnon, Marie-Hélène; Dugas, Erika N; Karp, Igor; Engert, James C

    2014-01-01

    While the heritability of cigarette smoking and nicotine dependence (ND) is well-documented, the contribution of specific genetic variants to specific phenotypes has not been closely examined. The objectives of this study were to test the associations between 321 tagging single-nucleotide polymorphisms (SNPs) that capture common genetic variation in 24 genes, and early smoking and ND phenotypes in novice adolescent smokers, and to assess if genetic predictors differ across these phenotypes. In a prospective study of 1294 adolescents aged 12-13 years recruited from ten Montreal-area secondary schools, 544 participants who had smoked at least once during the 7-8 year follow-up provided DNA. 321 single-nucleotide polymorphisms (SNPs) in 24 candidate genes were tested for an association with number of cigarettes smoked in the past 3 months, and with five ND phenotypes (a modified version of the Fagerstrom Tolerance Questionnaire, the ICD-10 and three clusters of ND symptoms representing withdrawal symptoms, use of nicotine for self-medication, and a general ND/craving symptom indicator). The pattern of SNP-gene associations differed across phenotypes. Sixteen SNPs in seven genes (ANKK1, CHRNA7, DDC, DRD2, COMT, OPRM1, SLC6A3 (also known as DAT1)) were associated with at least one phenotype with a p-value genetic predictors differ, specific cigarette smoking and ND phenotypes should be distinguished in genetic studies in adolescents. Fifteen of the 16 top-ranked SNPs identified in this study were from loci involved in dopaminergic pathways (ANKK1/DRD2, DDC, COMT, OPRM1, and SLC6A3). Dopaminergic pathways may be salient during early smoking and the development of ND.

  6. Consistent and reproducible positioning in longitudinal imaging for phenotyping genetically modified swine

    Science.gov (United States)

    Hammond, Emily; Dilger, Samantha K. N.; Stoyles, Nicholas; Judisch, Alexandra; Morgan, John; Sieren, Jessica C.

    2015-03-01

    Recent growth of genetic disease models in swine has presented the opportunity to advance translation of developed imaging protocols, while characterizing the genotype to phenotype relationship. Repeated imaging with multiple clinical modalities provides non-invasive detection, diagnosis, and monitoring of disease to accomplish these goals; however, longitudinal scanning requires repeatable and reproducible positioning of the animals. A modular positioning unit was designed to provide a fixed, stable base for the anesthetized animal through transit and imaging. Post ventilation and sedation, animals were placed supine in the unit and monitored for consistent vitals. Comprehensive imaging was performed with a computed tomography (CT) chest-abdomen-pelvis scan at each screening time point. Longitudinal images were rigidly registered, accounting for rotation, translation, and anisotropic scaling, and the skeleton was isolated using a basic thresholding algorithm. Assessment of alignment was quantified via eleven pairs of corresponding points on the skeleton with the first time point as the reference. Results were obtained with five animals over five screening time points. The developed unit aided in skeletal alignment within an average of 13.13 +/- 6.7 mm for all five subjects providing a strong foundation for developing qualitative and quantitative methods of disease tracking.

  7. Systematic Discovery of Archaeal Transcription Factor Functions in Regulatory Networks through Quantitative Phenotyping Analysis.

    Science.gov (United States)

    Darnell, Cynthia L; Tonner, Peter D; Gulli, Jordan G; Schmidler, Scott C; Schmid, Amy K

    2017-01-01

    Gene regulatory networks (GRNs) are critical for dynamic transcriptional responses to environmental stress. However, the mechanisms by which GRN regulation adjusts physiology to enable stress survival remain unclear. Here we investigate the functions of transcription factors (TFs) within the global GRN of the stress-tolerant archaeal microorganism Halobacterium salinarum. We measured growth phenotypes of a panel of TF deletion mutants in high temporal resolution under heat shock, oxidative stress, and low-salinity conditions. To quantitate the noncanonical functional forms of the growth trajectories observed for these mutants, we developed a novel modeling framework based on Gaussian process regression and functional analysis of variance (FANOVA). We employ unique statistical tests to determine the significance of differential growth relative to the growth of the control strain. This analysis recapitulated known TF functions, revealed novel functions, and identified surprising secondary functions for characterized TFs. Strikingly, we observed that the majority of the TFs studied were required for growth under multiple stress conditions, pinpointing regulatory connections between the conditions tested. Correlations between quantitative phenotype trajectories of mutants are predictive of TF-TF connections within the GRN. These phenotypes are strongly concordant with predictions from statistical GRN models inferred from gene expression data alone. With genome-wide and targeted data sets, we provide detailed functional validation of novel TFs required for extreme oxidative stress and heat shock survival. Together, results presented in this study suggest that many TFs function under multiple conditions, thereby revealing high interconnectivity within the GRN and identifying the specific TFs required for communication between networks responding to disparate stressors. IMPORTANCE To ensure survival in the face of stress, microorganisms employ inducible damage repair

  8. Quantitative genetics of functional characters in Drosophila melanogaster populations subjected to laboratory selection

    Indian Academy of Sciences (India)

    Henrique Teotónio; Margarida Matos; Michael R. Rose

    2004-12-01

    What are the genetics of phenotypes other than fitness, in outbred populations? To answer this question, the quantitative-genetic basis of divergence was characterized for outbred Drosophila melanogaster populations that had previously undergone selection to enhance characters related to fitness. Line-cross analysis using first-generation and second-generation hybrids from reciprocal crosses was conducted for two types of cross, each replicated fivefold. One type of cross was between representatives of the ancestral population, a set of five populations maintained for several hundred generations on a two-week discrete-generation life cycle and a set of five populations adapted to starvation stress. The other type of cross was between the same set of ancestral-representative populations and another set of five populations selected for accelerated development from egg to egg. Developmental time from egg to eclosion, starvation resistance, dry body weight and fecundity at day 14 from egg were fit to regression models estimating single-locus additive and dominant effects, maternal and paternal effects, and digenic additive and dominance epistatic effects. Additive genetic variation explained most of the differences between populations, with additive maternal and cytoplasmic effects also commonly found. Both within-locus and between-locus dominance effects were inferred in some cases, as well as one instance of additive epistasis. Some of these effects may have been caused by linkage disequilibrium. We conclude with a brief discussion concerning the relationship of the genetics of population differentiation to adaptation.

  9. Elevated oxidative membrane damage associated with genetic modifiers of Lyst-mutant phenotypes.

    Directory of Open Access Journals (Sweden)

    Colleen M Trantow

    2010-07-01

    Full Text Available LYST is a large cytosolic protein that influences the biogenesis of lysosome-related organelles, and mutation of the encoding gene, LYST, can cause Chediak-Higashi syndrome. Recently, Lyst-mutant mice were recognized to also exhibit an iris disease resembling exfoliation syndrome, a common cause of glaucoma in humans. Here, Lyst-mutant iris phenotypes were used in a search for genes that influence Lyst pathways. In a candidate gene-driven approach, albino Lyst-mutant mice homozygous for a mutation in Tyr, whose product is key to melanin synthesis within melanosomes, exhibited complete rescue of Lyst-mutant iris phenotypes. In a genetic background-driven approach using a DBA/2J strain of congenic mice, an interval containing Tyrp1 enhanced Lyst-dependent iris phenotypes. Thus, both experimental approaches implicated the melanosome, an organelle that is a potential source of oxidative stress, as contributing to the disease phenotype. Confirming an association with oxidative damage, Lyst mutation resulted in genetic context-sensitive changes in iris lipid hydroperoxide levels, being lowest in albino and highest in DBA/2J mice. Surprisingly, the DBA/2J genetic background also exposed a late-onset neurodegenerative phenotype involving cerebellar Purkinje-cell degeneration. These results identify an association between oxidative damage to lipid membranes and the severity of Lyst-mutant phenotypes, revealing a new mechanism that contributes to pathophysiology involving LYST.

  10. Quantitative Genetics and Functional-Structural Plant Growth Models: Simulation of Quantitative Trait Loci Detection for Model Parameters and Application to Potential Yield Optimization

    CERN Document Server

    Letort, Veronique; Cournède, Paul-Henry; De Reffye, Philippe; Courtois, Brigitte; 10.1093/aob/mcm197

    2010-01-01

    Background and Aims: Prediction of phenotypic traits from new genotypes under untested environmental conditions is crucial to build simulations of breeding strategies to improve target traits. Although the plant response to environmental stresses is characterized by both architectural and functional plasticity, recent attempts to integrate biological knowledge into genetics models have mainly concerned specific physiological processes or crop models without architecture, and thus may prove limited when studying genotype x environment interactions. Consequently, this paper presents a simulation study introducing genetics into a functional-structural growth model, which gives access to more fundamental traits for quantitative trait loci (QTL) detection and thus to promising tools for yield optimization. Methods: The GreenLab model was selected as a reasonable choice to link growth model parameters to QTL. Virtual genes and virtual chromosomes were defined to build a simple genetic model that drove the settings ...

  11. Syndromic albinism: a review of genetics and phenotypes.

    Science.gov (United States)

    Scheinfeld, Noah S

    2003-12-01

    There are several syndromes of albinism associated with systemic pathology. These include Chediak-Higashi Syndrome (CHS), Hermansky-Pudlack Syndrome (HPS), Griscelli Syndrome (GS), Elejalde Syndrome (ES) and Cross-McKusick-Breen Syndrome (CMBS). In the last several years the genetic defects underlying some of these syndromes have been described. HPS is related to 7 genes in humans. GS is related to 3 genes: MYOVA, Rab-27A, and melanophilin (Mlph). CHS is related to one gene: LYST. The genetic defects in ES and CMBS are yet to be defined. Syndromic forms of albinism are associated with defects in the packaging of melanin and other cellular proteins. As such they are distinct from oculocutaneous albinism, which is associated with defects in the production of melanin (e.g., TRP1, P gene, and tyrosinase).

  12. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    Science.gov (United States)

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-06-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  13. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    KAUST Repository

    Hoehndorf, Robert

    2015-06-08

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  14. The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity.

    Science.gov (United States)

    Crispo, Erika

    2007-11-01

    Two different, but related, evolutionary theories pertaining to phenotypic plasticity were proposed by James Mark Baldwin and Conrad Hal Waddington. Unfortunately, these theories are often confused with one another. Baldwin's notion of organic selection posits that plasticity influences whether an individual will survive in a new environment, thus dictating the course of future evolution. Heritable variations can then be selected upon to direct phenotypic evolution (i.e., "orthoplasy"). The combination of these two processes (organic selection and orthoplasy) is now commonly referred to as the "Baldwin effect." Alternately, Waddington's genetic assimilation is a process whereby an environmentally induced phenotype, or "acquired character," becomes canalized through selection acting upon the developmental system. Genetic accommodation is a modern term used to describe the process of heritable changes that occur in response to a novel induction. Genetic accommodation is a key component of the Baldwin effect, and genetic assimilation is a type of genetic accommodation. I here define both the Baldwin effect and genetic assimilation in terms of genetic accommodation, describe cases in which either should occur in nature, and propose that each could play a role in evolutionary diversification.

  15. Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush

    Science.gov (United States)

    Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles Conrad; Bentzen, Paul

    2016-01-01

    BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake

  16. Translating inter-individual genetic variation to biological function in complex phenotypes

    DEFF Research Database (Denmark)

    Yadav, Rachita

    . The project work discussed in chapter 6 is aimed towards understanding the various underlying differences in obesity responses in fat cells from different white adipose tissue depots under diet-induced and genetic obesity by decoding the global epigenetic modifications. The fourth section of this thesis work...... examines epigenetic, genetic, transcriptomic and proteomic variations within different multifactorial diseases and this pivotal information is then annotated and associated to its corresponding phenotype. Childhood asthma and obesity are the two main phenotypic themes in this thesis. In the first section...... artificial neural network (ANN) based methodology of selecting genetic and clinical features with predictive power for childhood asthma. The goal of these studies is to understand the complex genetics of childhood asthma. The third part of this thesis (chapters 5 and 6) focuses on various mechanisms involved...

  17. Is Ankyrin a genetic risk factor for psychiatric phenotypes?

    Directory of Open Access Journals (Sweden)

    Stöber Gerald

    2011-06-01

    Full Text Available Abstract Background Genome wide association studies reported two single nucleotide polymorphisms in ANK3 (rs9804190 and rs10994336 as independent genetic risk factors for bipolar disorder. Another SNP in ANK3 (rs10761482 was associated with schizophrenia in a large European sample. Within the debate on common susceptibility genes for schizophrenia and bipolar disorder, we tried to investigate common findings by analyzing association of ANK3 with schizophrenia, bipolar disorder and unipolar depression. Methods We genotyped three single nucleotide polymorphisms (SNPs in ANK3 (rs9804190, rs10994336, and rs10761482 in a case-control sample of German descent including 920 patients with schizophrenia, 400 with bipolar affective disorder, 220 patients with unipolar depression according to ICD 10 and 480 healthy controls. Sample was further differentiated according to Leonhard's classification featuring disease entities with specific combination of bipolar and psychotic syndromes. Results We found no association of rs9804190 and rs10994336 with bipolar disorder, unipolar depression or schizophrenia. In contrast to previous findings rs10761482 was associated with bipolar disorder (p = 0.015 but not with schizophrenia or unipolar depression. We observed no association with disease entities according to Leonhard's classification. Conclusion Our results support a specific genetic contribution of ANK3 to bipolar disorder though we failed to replicate findings for schizophrenia. We cannot confirm ANK3 as a common risk factor for different diseases.

  18. Autosomal dominant cyclic hematopoiesis: Genetics, phenotype, and natural history

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, S.E.; Stephens, K.; Dale, D.C. [Univ. of Washington, Seattle, WA (United States)

    1994-09-01

    Autosomal dominant cyclic hematopoiesis (ADCH; cyclic neutropenia) is a rare disorder manifested by transient neutropenia that recurs every three weeks. To facilitate mapping the ADCH gene by genetic linkage analysis, we studied 9 ADCH families with 42 affected individuals. Pedigrees revealed AD inheritance with no evidence for decreased penetrance. Similar intra- and interfamilial variable expression was observed, with no evidence to support heterogeneity. At least 3 families displayed apparent new mutations. Many adults developed chronic neutropenia, while offspring always cycled during childhood. Children displayed recurrent oral ulcers, gingivitis, lymphadenopathy, fever, and skin and other infections with additional symptoms. Interestingly, there were no cases of neonatal infection. Some children required multiple hospitalizations for treatment. Four males under age 18 died of Clostridium sepsis following necrotizing enterocolitis; all had affected mothers. No other deaths due to ADCH were found; most had improvement of symptoms and infections as adults. Adults experienced increased tooth loss prior to age 30 (16 out of 27 adults, with 9 edentulous). No increase in myelodysplasia, malignancy, or congenital anomalies was observed. Recombinant G-CSF treatment resulted in dramatic improvement of symptoms and infections. The results suggest that ADCH is not a benign disorder, especially in childhood, and abdominal pain requires immediate evaluation. Diagnosis of ADCH requires serial blood counts in the proband and at least one CBC in relatives to exclude similar disorders. Genetic counseling requires specific histories as well as CBCs of each family member at risk to determine status regardless of symptom history, especially to assess apparent new mutations.

  19. Reversible non-genetic phenotypic heterogeneity in bacterial quorum sensing.

    Science.gov (United States)

    Pradhan, Binod B; Chatterjee, Subhadeep

    2014-05-01

    Bacteria co-ordinate their social behaviour in a density-dependent manner by production of diffusible signal molecules by a process known as quorum sensing (QS). It is generally assumed that in homogenous environments and at high cell density, QS synchronizes cells in the population to perform collective social tasks in unison which maximize the benefit at the inclusive fitness of individuals. However, evolutionary theory predicts that maintaining phenotypic heterogeneity in performing social tasks is advantageous as it can serve as a bet-hedging survival strategy. Using Pseudomonas syringae and Xanthomonas campestris as model organisms, which use two diverse classes of QS signals, we show that two distinct subpopulations of QS-responsive and non-responsive cells exist in the QS-activated population. Addition of excess exogenous QS signal does not significantly alter the distribution of QS-responsive and non-responsive cells in the population. We further show that progeny of cells derived from these subpopulations also exhibited heterogeneous distribution patterns similar to their respective parental strains. Overall, these results support the model that bacteria maintain QS-responsive and non-responsive subpopulations at high cell densities in a bet-hedging strategy to simultaneously perform functions that are both positively and negatively regulated by QS to improve their fitness in fluctuating environments.

  20. The genetic architecture of heterochronsy as a quantitative trait: lessons from a computational model.

    Science.gov (United States)

    Sun, Lidan; Sang, Mengmeng; Zheng, Chenfei; Wang, Dongyang; Shi, Hexin; Liu, Kaiyue; Guo, Yanfang; Cheng, Tangren; Zhang, Qixiang; Wu, Rongling

    2017-05-30

    Heterochrony is known as a developmental change in the timing or rate of ontogenetic events across phylogenetic lineages. It is a key concept synthesizing development into ecology and evolution to explore the mechanisms of how developmental processes impact on phenotypic novelties. A number of molecular experiments using contrasting organisms in developmental timing have identified specific genes involved in heterochronic variation. Beyond these classic approaches that can only identify single genes or pathways, quantitative models derived from current next-generation sequencing data serve as a more powerful tool to precisely capture heterochronic variation and systematically map a complete set of genes that contribute to heterochronic processes. In this opinion note, we discuss a computational framework of genetic mapping that can characterize heterochronic quantitative trait loci that determine the pattern and process of development. We propose a unifying model that charts the genetic architecture of heterochrony that perceives and responds to environmental perturbations and evolves over geologic time. The new model may potentially enhance our understanding of the adaptive value of heterochrony and its evolutionary origins, providing a useful context for designing new organisms that can best use future resources. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Phenotype-Based Genetic Association Studies (PGAS)-Towards Understanding the Contribution of Common Genetic Variants to Schizophrenia Subphenotypes.

    Science.gov (United States)

    Ehrenreich, Hannelore; Nave, Klaus-Armin

    2014-02-27

    Neuropsychiatric diseases ranging from schizophrenia to affective disorders and autism are heritable, highly complex and heterogeneous conditions, diagnosed purely clinically, with no supporting biomarkers or neuroimaging criteria. Relying on these "umbrella diagnoses", genetic analyses, including genome-wide association studies (GWAS), were undertaken but failed to provide insight into the biological basis of these disorders. "Risk genotypes" of unknown significance with low odds ratios of mostly definition of biological subgroups of mental diseases. For that purpose, the GRAS (Göttingen Research Association for Schizophrenia) data collection was initiated in 2005. With >3000 phenotypical data points per patient, it comprises the world-wide largest currently available schizophrenia database (N > 1200), combining genome-wide SNP coverage and deep phenotyping under highly standardized conditions. First PGAS results on normal genetic variants, relevant for e.g., cognition or catatonia, demonstrated proof-of-concept. Presently, an autistic subphenotype of schizophrenia is being defined where an unfortunate accumulation of normal genotypes, so-called pro-autistic variants of synaptic genes, explains part of the phenotypical variance. Deep phenotyping and comprehensive clinical data sets, however, are expensive and it may take years before PGAS will complement conventional GWAS approaches in psychiatric genetics.

  2. Relaxed genetic constraint is ancestral to the evolution of phenotypic plasticity.

    Science.gov (United States)

    Leichty, Aaron R; Pfennig, David W; Jones, Corbin D; Pfennig, Karin S

    2012-07-01

    Phenotypic plasticity--the capacity of a single genotype to produce different phenotypes in response to varying environmental conditions--is widespread. Yet, whether, and how, plasticity impacts evolutionary diversification is unclear. According to a widely discussed hypothesis, plasticity promotes rapid evolution because genes expressed differentially across different environments (i.e., genes with "biased" expression) experience relaxed genetic constraint and thereby accumulate variation faster than do genes with unbiased expression. Indeed, empirical studies confirm that biased genes evolve faster than unbiased genes in the same genome. An alternative hypothesis holds, however, that the relaxed constraint and faster evolutionary rates of biased genes may be a precondition for, rather than a consequence of, plasticity's evolution. Here, we evaluated these alternative hypotheses by characterizing evolutionary rates of biased and unbiased genes in two species of frogs that exhibit a striking form of phenotypic plasticity. We also characterized orthologs of these genes in four species of frogs that had diverged from the two plastic species before the plasticity evolved. We found that the faster evolutionary rates of biased genes predated the evolution of the plasticity. Furthermore, biased genes showed greater expression variance than did unbiased genes, suggesting that they may be more dispensable. Phenotypic plasticity may therefore evolve when dispensable genes are co-opted for novel function in environmentally induced phenotypes. Thus, relaxed genetic constraint may be a cause--not a consequence--of the evolution of phenotypic plasticity, and thereby contribute to the evolution of novel traits.

  3. Using genetic networks and homology to understand the evolution of phenotypic traits.

    Science.gov (United States)

    McCune, Amy R; Schimenti, John C

    2012-03-01

    Homology can have different meanings for different kinds of biologists. A phylogenetic view holds that homology, defined by common ancestry, is rigorously identified through phylogenetic analysis. Such homologies are taxic homologies (=synapomorphies). A second interpretation, "biological homology" emphasizes common ancestry through the continuity of genetic information underlying phenotypic traits, and is favored by some developmental geneticists. A third kind of homology, deep homology, was recently defined as "the sharing of the genetic regulatory apparatus used to build morphologically and phylogenetically disparate features." Here we explain the commonality among these three versions of homology. We argue that biological homology, as evidenced by a conserved gene regulatory network giving a trait its "essential identity" (a Character Identity Network or "ChIN") must also be a taxic homology. In cases where a phenotypic trait has been modified over the course of evolution such that homology (taxic) is obscured (e.g. jaws are modified gill arches), a shared underlying ChIN provides evidence of this transformation. Deep homologies, where molecular and cellular components of a phenotypic trait precede the trait itself (are phylogenetically deep relative to the trait), are also taxic homologies, undisguised. Deep homologies inspire particular interest for understanding the evolutionary assembly of phenotypic traits. Mapping these deeply homologous building blocks on a phylogeny reveals the sequential steps leading to the origin of phenotypic novelties. Finally, we discuss how new genomic technologies will revolutionize the comparative genomic study of non-model organisms in a phylogenetic context, necessary to understand the evolution of phenotypic traits.

  4. Whole-genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations.

    Science.gov (United States)

    Kardos, Marty; Husby, Arild; McFarlane, S Eryn; Qvarnström, Anna; Ellegren, Hans

    2016-05-01

    Dissecting the genetic basis of phenotypic variation in natural populations is a long-standing goal in evolutionary biology. One open question is whether quantitative traits are determined only by large numbers of genes with small effects, or whether variation also exists in large-effect loci. We conducted genomewide association analyses of forehead patch size (a sexually selected trait) on 81 whole-genome-resequenced male collared flycatchers with extreme phenotypes, and on 415 males sampled independent of patch size and genotyped with a 50K SNP chip. No SNPs were genomewide statistically significantly associated with patch size. Simulation-based power analyses suggest that the power to detect large-effect loci responsible for 10% of phenotypic variance was 0.8 for resequencing of extreme phenotypes (N = 243), but power remained 0.8 when analysing 415 randomly sampled phenotypes. However, power of the 50K SNP chip to detect large-effect loci was nearly 0.8 in simulations with a small effective population size of 1500. These results suggest that reliably detecting large-effect trait loci in large natural populations will often require thousands of individuals and near complete sampling of the genome. Encouragingly, far fewer individuals and loci will often be sufficient to reliably detect large-effect loci in small populations with widespread strong linkage disequilibrium.

  5. A Unifying Model for the Analysis of Phenotypic, Genetic and Geographic Data

    DEFF Research Database (Denmark)

    Guillot, Gilles; Rena, Sabrina; Ledevin, Ronan

    2012-01-01

    Recognition of evolutionary units (species, populations) requires integrating several kinds of data such as genetic or phenotypic markers or spatial information, in order to get a comprehensive view concerning the dierentiation of the units. We propose a statistical model with a double original a...

  6. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype.

    NARCIS (Netherlands)

    Rueda, B.; Broen, J.; Simeon, C.; Hesselstrand, R.; Diaz, B.; Suarez, H.; Ortego-Centeno, N.; Riemekasten, G.; Fonollosa, V.; Vonk, M.C.; Hoogen, F.H.J. van den; Sanchez-Roman, J.; Aguirre-Zamorano, M.A.; Garcia-Portales, R.; Pros, A.; Camps, M.T.; Gonzalez-Gay, M.A.; Coenen, M.J.H.; Airo, P.; Beretta, L.; Scorza, R.; Laar, J. van; Gonzalez-Escribano, M.F.; Nelson, J.L.; Radstake, T.R.D.J.; Martin, J.

    2009-01-01

    The aim of this study was to investigate the possible role of STAT4 gene in the genetic predisposition to systemic sclerosis (SSc) susceptibility or clinical phenotype. A total of 1317 SSc patients [896 with limited cutaneous SSc (lcSSc) and 421 with diffuse cutaneous SSc (dcSSc)] and 3113 healthy c

  7. Parapatric genetic introgression and phenotypic assimilation: testing conditions for introgression between Hercules beetles (Dynastes, Dynastinae).

    Science.gov (United States)

    Huang, Jen-Pan

    2016-11-01

    The prevalence and consequences of genetic introgression between species have been intensively debated. I used Hercules beetles as examples to test for conditions that may be associated with the occurrence of introgression. RADseq data were used to reconstruct the species tree and history of introgression between Hercules beetles. Image data from museum specimens were used to investigate the phenotypic similarity of two adaptive traits between species from two distinct climatic realms (Nearctic vs. Neotropical). Genetic introgression was identified between Hercules beetles living in geographic proximity (parapatric). Phylogenetic relatedness and phenotypic similarity did not predict nor preclude genetic introgression between species. Phenotypic assimilation in body coloration was evident between distantly related Hercules beetles codistributed in Central America, where directional introgression was also statistically supported from the putative donor to receiver lineages. The number of introgressed loci was significantly higher between species with than without phenotypic similarity. I discuss the implications of recent studies on adaptive genetic introgression by providing supporting evidence from the Hercules beetle system.

  8. Genetic and phenotypically flexible components of seasonal variation in immune function

    NARCIS (Netherlands)

    Versteegh, M. A.; Helm, B.; Kleynhans, E. J.; Gwinner, E.; Tieleman, B. I.

    2014-01-01

    Animals cope with seasonal variation in environmental factors by adjustments of physiology and life history. When seasonal variation is partly predictable, such adjustments can be based on a genetic component or be phenotypically flexible. Animals have to allocate limited resources over different de

  9. Genetic variation in variability: phenotypic variability of fledging weight and its evolution in a songbird population

    NARCIS (Netherlands)

    Mulder, H.A.; Gienapp, P; Visser, ME

    2016-01-01

    Variation in traits is essential for natural selection to operate and genetic and environmental effects can contribute to this phenotypic variation. From domesticated populations, we know that families can differ in their level of within-family variance, which leads to the intriguing situation that

  10. Genetic variation in variability : phenotypic variability of fledging weight and its evolution in a songbird population

    NARCIS (Netherlands)

    Mulder, Han A.; Gienapp, P; Visser, Marcel

    2016-01-01

    Variation in traits is essential for natural selection to operate and genetic and environmental effects can contribute to this phenotypic variation. From domesticated populations we know that families can differ in their level of within-family variance, which leads to the intriguing situation that w

  11. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype.

    NARCIS (Netherlands)

    Rueda, B.; Broen, J.; Simeon, C.; Hesselstrand, R.; Diaz, B.; Suarez, H.; Ortego-Centeno, N.; Riemekasten, G.; Fonollosa, V.; Vonk, M.C.; Hoogen, F.H.J. van den; Sanchez-Roman, J.; Aguirre-Zamorano, M.A.; Garcia-Portales, R.; Pros, A.; Camps, M.T.; Gonzalez-Gay, M.A.; Coenen, M.J.H.; Airo, P.; Beretta, L.; Scorza, R.; Laar, J. van; Gonzalez-Escribano, M.F.; Nelson, J.L.; Radstake, T.R.D.J.; Martin, J.

    2009-01-01

    The aim of this study was to investigate the possible role of STAT4 gene in the genetic predisposition to systemic sclerosis (SSc) susceptibility or clinical phenotype. A total of 1317 SSc patients [896 with limited cutaneous SSc (lcSSc) and 421 with diffuse cutaneous SSc (dcSSc)] and 3113 healthy

  12. Pedimap: Software for the Visualization of Genetic and Phenotypic Data in Pedigrees

    NARCIS (Netherlands)

    Voorrips, R.E.; Bink, M.C.A.M.; Weg, van de W.E.

    2012-01-01

    Pedimap is a user-friendly software tool for visualizing phenotypic and genotypic data for related individuals linked in pedigrees. Genetic data can include marker scores, Identity-by-Descent probabilities, and marker linkage map positions, allowing the visualization of haplotypes through lineages.

  13. GENETIC BACKGROUND BUT NOT METALLOTHIONEIN PHENOTYPE DICTATES SENSITIVITY TO CADMIUM-INDUCED TESTICULAR INJURY IN MICE

    Science.gov (United States)

    Genetic Background but not Metallothionein Phenotype Dictates Sensitivity to Cadmium-Induced Testicular Injury in MiceJie Liu1,2, Chris Corton3, David J. Dix4, Yaping Liu1, Michael P. Waalkes2 and Curtis D. Klaassen1 ABSTRACTParenteral administrati...

  14. An interview study of phenotypic characterization of genetically-modified mice.

    NARCIS (Netherlands)

    Thon, R.; Vondeling, H.; Lassen, J.; Hansen, A.K.; Ritskes-Hoitinga, M.

    2009-01-01

    An interview study was carried out with the aim of clarifying the reasons for the limited use of phenotypic characterization of genetically-modified mice (GMM) and identifying issues hindering its implementation. A total of 15 users of GMM participated in semi-structured face-to-face interviews, whi

  15. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method

    NARCIS (Netherlands)

    Rietveld, Cornelius A; Esko, Tõnu; Davies, Gail; Pers, Tune H; Turley, Patrick; Benyamin, Beben; Chabris, Christopher F; Emilsson, Valur; Johnson, Andrew D; Lee, James J; de Leeuw, Christiaan; Marioni, Riccardo E; Medland, Sarah E; Miller, Michael B; Rostapshova, Olga; van der Lee, Sven J; Vinkhuyzen, Anna A E; Amin, Najaf; Conley, Dalton; Derringer, Jaime; van Duijn, Cornelia M; Fehrmann, Rudolf; Franke, Lude; Glaeser, Edward L; Hansell, Narelle K; Hayward, Caroline; Iacono, William G; Ibrahim-Verbaas, Carla; Jaddoe, Vincent; Karjalainen, Juha; Laibson, David; Lichtenstein, Paul; Liewald, David C; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McMahon, George; Pedersen, Nancy L; Pinker, Steven; Porteous, David J; Posthuma, Danielle; Rivadeneira, Fernando; Smith, Blair H; Starr, John M; Tiemeier, Henning; Timpson, Nicholas J; Trzaskowski, Maciej; Uitterlinden, André G; Verhulst, Frank C; Ward, Mary E; Wright, Margaret J; Davey Smith, George; Deary, Ian J; Johannesson, Magnus; Plomin, Robert; Visscher, Peter M; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D

    2014-01-01

    We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated

  16. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method

    NARCIS (Netherlands)

    Rietveld, Cornelius A; Esko, Tõnu; Davies, Gail; Pers, Tune H; Turley, Patrick; Benyamin, Beben; Chabris, Christopher F; Emilsson, Valur; Johnson, Andrew D; Lee, James J; de Leeuw, Christiaan; Marioni, Riccardo E; Medland, Sarah E; Miller, Michael B; Rostapshova, Olga; van der Lee, Sven J; Vinkhuyzen, Anna A E; Amin, Najaf; Conley, Dalton; Derringer, Jaime; van Duijn, Cornelia M; Fehrmann, Rudolf; Franke, Lude; Glaeser, Edward L; Hansell, Narelle K; Hayward, Caroline; Iacono, William G; Ibrahim-Verbaas, Carla; Jaddoe, Vincent; Karjalainen, Juha; Laibson, David; Lichtenstein, Paul; Liewald, David C; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McMahon, George; Pedersen, Nancy L; Pinker, Steven; Porteous, David J; Posthuma, Danielle; Rivadeneira, Fernando; Smith, Blair H; Starr, John M; Tiemeier, Henning; Timpson, Nicholas J; Trzaskowski, Maciej; Uitterlinden, André G; Verhulst, Frank C; Ward, Mary E; Wright, Margaret J; Davey Smith, George; Deary, Ian J; Johannesson, Magnus; Plomin, Robert; Visscher, Peter M; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D

    2014-01-01

    We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated

  17. Phenopolis: an open platform for harmonization and analysis of genetic and phenotypic data.

    Science.gov (United States)

    Pontikos, Nikolas; Yu, Jing; Moghul, Ismail; Withington, Lucy; Blanco-Kelly, Fiona; Vulliamy, Tom; Wong, Tsz Lun Ernest; Murphy, Cian; Cipriani, Valentina; Fiorentino, Alessia; Arno, Gavin; Greene, Daniel; Jacobsen, Julius O B; Clark, Tristan; Gregory, David S; Nemeth, Andrea M; Halford, Stephanie; Inglehearn, Chris F; Downes, Susan; Black, Graeme C; Webster, Andrew R; Hardcastle, Alison J; Plagnol, Vincent

    2017-08-01

    Phenopolis is an open-source web server providing an intuitive interface to genetic and phenotypic databases. It integrates analysis tools such as variant filtering and gene prioritization based on phenotype. The Phenopolis platform will accelerate clinical diagnosis, gene discovery and encourage wider adoption of the Human Phenotype Ontology in the study of rare genetic diseases. A demo of the website is available at https://phenopolis.github.io . If you wish to install a local copy, source code and installation instruction are available at https://github.com/phenopolis . The software is implemented using Python, MongoDB, HTML/Javascript and various bash shell scripts. n.pontikos@ucl.ac.uk. Supplementary data are available at Bioinformatics online.

  18. Phenotype-Based Genetic Association Studies (PGAS—Towards Understanding the Contribution of Common Genetic Variants to Schizophrenia Subphenotypes

    Directory of Open Access Journals (Sweden)

    Hannelore Ehrenreich

    2014-02-01

    Full Text Available Neuropsychiatric diseases ranging from schizophrenia to affective disorders and autism are heritable, highly complex and heterogeneous conditions, diagnosed purely clinically, with no supporting biomarkers or neuroimaging criteria. Relying on these “umbrella diagnoses”, genetic analyses, including genome-wide association studies (GWAS, were undertaken but failed to provide insight into the biological basis of these disorders. “Risk genotypes” of unknown significance with low odds ratios of mostly <1.2 were extracted and confirmed by including ever increasing numbers of individuals in large multicenter efforts. Facing these results, we have to hypothesize that thousands of genetic constellations in highly variable combinations with environmental co-factors can cause the individual disorder in the sense of a final common pathway. This would explain why the prevalence of mental diseases is so high and why mutations, including copy number variations, with a higher effect size than SNPs, constitute only a small part of variance. Elucidating the contribution of normal genetic variation to (disease phenotypes, and so re-defining disease entities, will be extremely labor-intense but crucial. We have termed this approach PGAS (“phenotype-based genetic association studies”. Ultimate goal is the definition of biological subgroups of mental diseases. For that purpose, the GRAS (Göttingen Research Association for Schizophrenia data collection was initiated in 2005. With >3000 phenotypical data points per patient, it comprises the world-wide largest currently available schizophrenia database (N > 1200, combining genome-wide SNP coverage and deep phenotyping under highly standardized conditions. First PGAS results on normal genetic variants, relevant for e.g., cognition or catatonia, demonstrated proof-of-concept. Presently, an autistic subphenotype of schizophrenia is being defined where an unfortunate accumulation of normal genotypes, so

  19. Narcissism predicts impulsive buying: phenotypic and genetic evidence.

    Science.gov (United States)

    Cai, Huajian; Shi, Yuanyuan; Fang, Xiang; Luo, Yu L L

    2015-01-01

    Impulsive buying makes billions of dollars for retail businesses every year, particularly in an era of thriving e-commerce. Narcissism, characterized by impulsivity and materialism, may serve as a potential antecedent to impulsive buying. To test this hypothesis, two studies examined the relationship between narcissism and impulsive buying. In Study 1, we surveyed an online sample and found that while adaptive narcissism was not correlated with impulsive buying, maladaptive narcissism was significantly predictive of the impulsive buying tendency. By investigating 304 twin pairs, Study 2 showed that global narcissism and its two components, adaptive and maladaptive narcissism, as well as the impulsive buying tendency were heritable. The study found, moreover, that the connections between global narcissism and impulsive buying, and between maladaptive narcissism and impulsive buying were genetically based. These findings not only establish a link between narcissism and impulsive buying but also help to identify the origins of the link. The present studies deepen our understanding of narcissism, impulsive buying, and their interrelationship.

  20. Narcissism predicts impulsive buying: phenotypic and genetic evidence

    Directory of Open Access Journals (Sweden)

    Huajian eCai

    2015-07-01

    Full Text Available Impulsive buying makes billions of dollars for retail businesses every year, particularly in an era of thriving e-commerce. Narcissism, characterized by impulsivity and materialism, may serve as a potential antecedent to impulsive buying. To test this hypothesis, two studies examined the relationship between narcissism and impulsive buying. In study 1, we surveyed narcissism and the impulsive buying tendency among an online sample and found that while adaptive narcissism was not correlated with impulsive buying, maladaptive narcissism was significantly predictive of the impulsive buying tendency. By investigating narcissism and the impulsive buying tendency in 304 twin pairs, study 2 showed that global narcissism and its two components, adaptive and maladaptive narcissism, as well as the impulsive buying tendency were heritable. The study found, moreover, that the connections between global narcissism and impulsive buying, and between maladaptive narcissism and impulsive buying were genetically based. These findings not only establish a link between narcissism and impulsive buying but also help to identify the origins of the link. The present studies deepen our understanding of narcissism, impulsive buying, and their interrelationship.

  1. Narcissism predicts impulsive buying: phenotypic and genetic evidence

    Science.gov (United States)

    Cai, Huajian; Shi, Yuanyuan; Fang, Xiang; Luo, Yu L. L.

    2015-01-01

    Impulsive buying makes billions of dollars for retail businesses every year, particularly in an era of thriving e-commerce. Narcissism, characterized by impulsivity and materialism, may serve as a potential antecedent to impulsive buying. To test this hypothesis, two studies examined the relationship between narcissism and impulsive buying. In Study 1, we surveyed an online sample and found that while adaptive narcissism was not correlated with impulsive buying, maladaptive narcissism was significantly predictive of the impulsive buying tendency. By investigating 304 twin pairs, Study 2 showed that global narcissism and its two components, adaptive and maladaptive narcissism, as well as the impulsive buying tendency were heritable. The study found, moreover, that the connections between global narcissism and impulsive buying, and between maladaptive narcissism and impulsive buying were genetically based. These findings not only establish a link between narcissism and impulsive buying but also help to identify the origins of the link. The present studies deepen our understanding of narcissism, impulsive buying, and their interrelationship. PMID:26217251

  2. Quantitative shape analysis of chemoresistant colon cancer cells: correlation between morphotype and phenotype.

    Science.gov (United States)

    Pasqualato, A; Palombo, A; Cucina, A; Mariggiò, M A; Galli, L; Passaro, D; Dinicola, S; Proietti, S; D'Anselmi, F; Coluccia, P; Bizzarri, M

    2012-04-15

    Morphological, qualitative observations allow pathologists to correlate the shape the cells acquire with the progressive, underlying neoplastic transformation they are experienced. Cell morphology, indeed, roughly scales with malignancy. A quantitative parameter for characterizing complex irregular structures is the Normalized Bending Energy (NBE). NBE provides a global feature for shape characterization correspondent to the amount of energy needed to transform the specific shape under analysis into its lowest energy state. We hypothesized that a chemotherapy resistant cancer cell line would experience a significant change in its shape, and that such a modification might be quantified by means of NBE parameterization. We checked out the usefulness of a mathematical algorithm to distinguish wild and 5-fluorouracil (5-FU)-resistant colon cancer HCT-8 cells (HCT-8FUres). NBE values, as well as cellular and molecular parameters, were recorded in both cell populations. Results demonstrated that acquisition of drug resistance is accompanied by statistically significant morphological changes in cell membrane, as well as in biological parameters. Namely, NBE increased progressively meanwhile cells become more resistant to increasing 5-FU concentrations. These data indicate how tight the relationships between morphology and phenotype is, and they support the idea to follow a cell transition toward a drug-resistant phenotype by means of morphological monitoring.

  3. Estimating genetic correlations based on phenotypic data: a simulation-based method

    Indian Academy of Sciences (India)

    Elias Zintzaras

    2011-04-01

    Knowledge of genetic correlations is essential to understand the joint evolution of traits through correlated responses to selection, a difficult and seldom, very precise task even with easy-to-breed species. Here, a simulation-based method to estimate genetic correlations and genetic covariances that relies only on phenotypic measurements is proposed. The method does not require any degree of relatedness in the sampled individuals. Extensive numerical results suggest that the propose method may provide relatively efficient estimates regardless of sample sizes and contributions from common environmental effects.

  4. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings.

    Science.gov (United States)

    Birlanga, Virginia; Villanova, Joan; Cano, Antonio; Cano, Emilio A; Acosta, Manuel; Pérez-Pérez, José Manuel

    2015-01-01

    Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders' rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species.

  5. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings.

    Directory of Open Access Journals (Sweden)

    Virginia Birlanga

    Full Text Available Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i during commercial production at a breeders' rooting station and (ii on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species.

  6. Phenotypic and Genetic Associations between Reading Comprehension, Decoding Skills, and ADHD Dimensions: Evidence from Two Population-Based Studies

    Science.gov (United States)

    Plourde, Vickie; Boivin, Michel; Forget-Dubois, Nadine; Brendgen, Mara; Vitaro, Frank; Marino, Cecilia; Tremblay, Richard T.; Dionne, Ginette

    2015-01-01

    Background: The phenotypic and genetic associations between decoding skills and ADHD dimensions have been documented but less is known about the association with reading comprehension. The aim of the study is to document the phenotypic and genetic associations between reading comprehension and ADHD dimensions of inattention and…

  7. Phenotypic and Genetic Associations between Reading Comprehension, Decoding Skills, and ADHD Dimensions: Evidence from Two Population-Based Studies

    Science.gov (United States)

    Plourde, Vickie; Boivin, Michel; Forget-Dubois, Nadine; Brendgen, Mara; Vitaro, Frank; Marino, Cecilia; Tremblay, Richard T.; Dionne, Ginette

    2015-01-01

    Background: The phenotypic and genetic associations between decoding skills and ADHD dimensions have been documented but less is known about the association with reading comprehension. The aim of the study is to document the phenotypic and genetic associations between reading comprehension and ADHD dimensions of inattention and…

  8. Phenotypic and Genetic Effects of Contrasting Ethanol Environments on Physiological and Developmental Traits in Drosophila melanogaster

    Science.gov (United States)

    Castañeda, Luis E.; Nespolo, Roberto F.

    2013-01-01

    A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (co)variances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile), using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity) to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (co)variances of developmental traits), whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster. PMID:23505567

  9. Phenotypic and genetic effects of contrasting ethanol environments on physiological and developmental traits in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Luis E Castañeda

    Full Text Available A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (covariances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile, using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (covariances of developmental traits, whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster.

  10. Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy

    Directory of Open Access Journals (Sweden)

    Claudia Gonzaga-Jauregui

    2015-08-01

    Full Text Available Charcot-Marie-Tooth (CMT disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ∼45% (17/37 of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy-associated genes in subjects versus controls, confirmed in a second ethnically discrete neuropathy cohort, suggesting that mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HPMVs and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity.

  11. Exome sequence analysis suggests genetic burden contributes to phenotypic variability and complex neuropathy

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Harel, Tamar; Gambin, Tomasz; Kousi, Maria; Griffin, Laurie B.; Francescatto, Ludmila; Ozes, Burcak; Karaca, Ender; Jhangiani, Shalini; Bainbridge, Matthew N.; Lawson, Kim S.; Pehlivan, Davut; Okamoto, Yuji; Withers, Marjorie; Mancias, Pedro; Slavotinek, Anne; Reitnauer, Pamela J; Goksungur, Meryem T.; Shy, Michael; Crawford, Thomas O.; Koenig, Michel; Willer, Jason; Flores, Brittany N.; Pediaditrakis, Igor; Us, Onder; Wiszniewski, Wojciech; Parman, Yesim; Antonellis, Anthony; Muzny, Donna M.; Katsanis, Nicholas; Battaloglu, Esra; Boerwinkle, Eric; Gibbs, Richard A.; Lupski, James R.

    2015-01-01

    Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ~45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy associated genes in subjects versus controls; confirmed in a second ethnically discrete neuropathy cohort, suggesting mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HMPVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity. PMID:26257172

  12. Genetic variants and early cigarette smoking and nicotine dependence phenotypes in adolescents.

    Directory of Open Access Journals (Sweden)

    Jennifer O'Loughlin

    Full Text Available While the heritability of cigarette smoking and nicotine dependence (ND is well-documented, the contribution of specific genetic variants to specific phenotypes has not been closely examined. The objectives of this study were to test the associations between 321 tagging single-nucleotide polymorphisms (SNPs that capture common genetic variation in 24 genes, and early smoking and ND phenotypes in novice adolescent smokers, and to assess if genetic predictors differ across these phenotypes.In a prospective study of 1294 adolescents aged 12-13 years recruited from ten Montreal-area secondary schools, 544 participants who had smoked at least once during the 7-8 year follow-up provided DNA. 321 single-nucleotide polymorphisms (SNPs in 24 candidate genes were tested for an association with number of cigarettes smoked in the past 3 months, and with five ND phenotypes (a modified version of the Fagerstrom Tolerance Questionnaire, the ICD-10 and three clusters of ND symptoms representing withdrawal symptoms, use of nicotine for self-medication, and a general ND/craving symptom indicator.The pattern of SNP-gene associations differed across phenotypes. Sixteen SNPs in seven genes (ANKK1, CHRNA7, DDC, DRD2, COMT, OPRM1, SLC6A3 (also known as DAT1 were associated with at least one phenotype with a p-value <0.01 using linear mixed models. After permutation and FDR adjustment, none of the associations remained statistically significant, although the p-values for the association between rs557748 in OPRM1 and the ND/craving and self-medication phenotypes were both 0.076.Because the genetic predictors differ, specific cigarette smoking and ND phenotypes should be distinguished in genetic studies in adolescents. Fifteen of the 16 top-ranked SNPs identified in this study were from loci involved in dopaminergic pathways (ANKK1/DRD2, DDC, COMT, OPRM1, and SLC6A3.Dopaminergic pathways may be salient during early smoking and the development of ND.

  13. Charting the genotype-phenotype map: lessons from the Drosophila melanogaster Genetic Reference Panel.

    Science.gov (United States)

    Mackay, Trudy F C; Huang, Wen

    2017-08-22

    Understanding the genetic architecture (causal molecular variants, their effects, and frequencies) of quantitative traits is important for precision agriculture and medicine and predicting adaptive evolution, but is challenging in most species. The Drosophila melanogaster Genetic Reference Panel (DGRP) is a collection of 205 inbred strains with whole genome sequences derived from a single wild population in Raleigh, NC, USA. The large amount of quantitative genetic variation, lack of population structure, and rapid local decay of linkage disequilibrium in the DGRP and outbred populations derived from DGRP lines present a favorable scenario for performing genome-wide association (GWA) mapping analyses to identify candidate causal genes, polymorphisms, and pathways affecting quantitative traits. The many GWA studies utilizing the DGRP have revealed substantial natural genetic variation for all reported traits, little evidence for variants with large effects but enrichment for variants with low P-values, and a tendency for lower frequency variants to have larger effects than more common variants. The variants detected in the GWA analyses rarely overlap those discovered using mutagenesis, and often are the first functional annotations of computationally predicted genes. Variants implicated in GWA analyses typically have sex-specific and genetic background-specific (epistatic) effects, as well as pleiotropic effects on other quantitative traits. Studies in the DGRP reveal substantial genetic control of environmental variation. Taking account of genetic architecture can greatly improve genomic prediction in the DGRP. These features of the genetic architecture of quantitative traits are likely to apply to other species, including humans. For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  14. The relative contribution of environmental and genetic factors to phenotypic variation in familial Mediterranean fever (FMF).

    Science.gov (United States)

    Ben-Zvi, Ilan; Brandt, Benny; Berkun, Yackov; Lidar, Merav; Livneh, Avi

    2012-01-10

    Familial Mediterranean fever (FMF) is an autosomal recessive disease, caused by mutations in the FMF gene MEFV (MEditerranean FeVer). It has a large phenotypic diversity even in patients with similar genotypes. Despite evidence that environmental factors (EFs) and genetic factors, including MEFV mutations (such as M694V, E148Q) and background modifier genes (MGs), affect the clinical manifestations of FMF, the relative contribution of each remains unknown. To investigate the relative contribution of environmental and genetic factors to the phenotype of FMF, we compared the intra-pair clinical concordance of 10 mono and 7 dizygotic twins with FMF. The part played by EFs was determined by the phenotypic discordance of the monozygous twins, and the MGs effect was determined by deducing the environmental effect, computed for MZ twins, from the phenotypic discordance of the dizygous twins. The mean±SD of intra-pair concordance was higher in the MZ than in DZ twin group (88.1±13.2 vs. 70.7±14.1 respectively, P valueFMF is estimated as 11.9%±6.6% and the MGs effect as 17.4%±15.5% in average. In FMF the phenotype is affected by MEFV mutations, MGs and EFs in an estimated ratio of about 6:1.5:1 respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Trichophyton tonsurans strains from Brazil: phenotypic heterogeneity, genetic homology, and detection of virulence genes.

    Science.gov (United States)

    Sidrim, José Julio Costa; Rocha, Marcos Fábio Gadelha; Leite, João Jaime Giffoni; Maranhão, Fernanda Cristina de Albuquerque; Lima, Rita Amanda Chaves; Castelo-Branco, Débora de Souza Collares Maia; Bandeira, Tereza de Jesus Pinheiro Gomes; Cordeiro, Rossana de Aguiar; Brilhante, Raimunda Sâmia Nogueira

    2013-11-01

    The objective of this study was to establish the phenotypical and molecular patterns of clinical isolates of Trichophyton tonsurans circulating in the state of Ceará, northeastern Brazil. For this purpose, 25 T. tonsurans strains isolated from independent cases of tinea capitis in children were phenotypically evaluated regarding their macro- and micro-morphological characteristics, vitamin requirements, urease production, and antifungal susceptibility. The molecular characterization was carried out with random amplified polymorphic DNA molecular markers and M13 fingerprinting. The presence of the genes CarbM14, Sub2, CER, URE, ASP, PBL, and LAC, which encode enzymes related to fungal virulence, was also evaluated. Finally, melanin production was assessed through specific staining. The data obtained demonstrated that these T. tonsurans strains have considerable phenotypical variation, although they showed a low degree of genetic polymorphism according to the markers used. The genes CarbM14, Sub2, CER, and URE were detected in all the analyzed strains. The gene LAC was also identified in all the strains, and melanin synthesis was phenotypically confirmed. The strains were susceptible to antifungals, especially itraconazole (GM = 0.06 μg/mL) and ketoconazole (GM = 0.24 μg/mL). Therefore, T. tonsurans strains can present great phenotypical heterogeneity, even in genetically similar isolates. Moreover, the presence of the LAC gene indicates the possible participation of melanin in the pathogenesis of these dermatophytes.

  16. Punctuated emergences of genetic and phenotypic innovations in eumetazoan, bilaterian, euteleostome, and hominidae ancestors.

    Science.gov (United States)

    Wenger, Yvan; Galliot, Brigitte

    2013-01-01

    Phenotypic traits derive from the selective recruitment of genetic materials over macroevolutionary times, and protein-coding genes constitute an essential component of these materials. We took advantage of the recent production of genomic scale data from sponges and cnidarians, sister groups from eumetazoans and bilaterians, respectively, to date the emergence of human proteins and to infer the timing of acquisition of novel traits through metazoan evolution. Comparing the proteomes of 23 eukaryotes, we find that 33% human proteins have an ortholog in nonmetazoan species. This premetazoan proteome associates with 43% of all annotated human biological processes. Subsequently, four major waves of innovations can be inferred in the last common ancestors of eumetazoans, bilaterians, euteleostomi (bony vertebrates), and hominidae, largely specific to each epoch, whereas early branching deuterostome and chordate phyla show very few innovations. Interestingly, groups of proteins that act together in their modern human functions often originated concomitantly, although the corresponding human phenotypes frequently emerged later. For example, the three cnidarians Acropora, Nematostella, and Hydra express a highly similar protein inventory, and their protein innovations can be affiliated either to traits shared by all eumetazoans (gut differentiation, neurogenesis); or to bilaterian traits present in only some cnidarians (eyes, striated muscle); or to traits not identified yet in this phylum (mesodermal layer, endocrine glands). The variable correspondence between phenotypes predicted from protein enrichments and observed phenotypes suggests that a parallel mechanism repeatedly produce similar phenotypes, thanks to novel regulatory events that independently tie preexisting conserved genetic modules.

  17. Evidence for multiple genetic forms with similar eyeless phenotypes in the blind cavefish, Astyanax mexicanus.

    Science.gov (United States)

    Dowling, Thomas E; Martasian, David P; Jeffery, William R

    2002-04-01

    A diverse group of animals has adapted to caves and lost their eyes and pigmentation, but little is known about how these animals and their striking phenotypes have evolved. The teleost Astyanax mexicanus consists of an eyed epigean form (surface fish) and at least 29 different populations of eyeless hypogean forms (cavefish). Current alternative hypotheses suggest that adaptation to cave environments may have occurred either once or multiple times during the evolutionary history of this species. If the latter is true, the unique phenotypes of different cave-dwelling populations may result from convergence of form, and different genetic changes and developmental processes may have similar morphological consequences. Here we report an analysis of variation in the mitochondrial NADH dehydrogenase 2 (ND2) gene among different surface fish and cavefish populations. The results identify a minimum of two genetically distinctive cavefish lineages with similar eyeless phenotypes. The distinction between these divergent forms is supported by differences in the number of rib-bearing thoracic vertebrae in their axial skeletons. The geographic distribution of ND2 haplotypes is consistent with roles for multiple founder events and introgressive hybridization in the evolution of cave-related phenotypes. The existence of multiple genetic lineages makes A. mexicanus an excellent model to study convergence and the genes and developmental pathways involved in the evolution of the eye and pigment degeneration.

  18. Genetic difference in HLA-DR phenotypes between coeliac disease and transitory gluten intolerance.

    OpenAIRE

    Meuli, R; Pichler, W J; Gaze, H; Lentze, M J

    1995-01-01

    Genetic differences in HLA phenotypes were studied in coeliac disease to investigate why some patients do not react with mucosal damage after gluten challenge. Forty five children with coeliac disease and 16 with transitory gluten intolerance were typed; 76 subjects served as controls. HLA phenotypes in children with coeliac disease had significantly higher proportions of DR3/X and DR5/7 than controls (48.8% v 11.8% and 26.7% v 5.3%). Children with transitory gluten intolerance had lower DR3/...

  19. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection.

    Science.gov (United States)

    Lind, Martin I; Yarlett, Kylie; Reger, Julia; Carter, Mauricio J; Beckerman, Andrew P

    2015-10-07

    Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments.

  20. A comparison of strategies for Markov chain Monte Carlo computation in quantitative genetics

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Ibánez-Escriche, Noelia; Sorensen, Daniel

    2008-01-01

    In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications...... in quantitative genetics is to obtain efficient updates of the high-dimensional vectors of genetic random effects and the associated covariance parameters. We discuss various strategies to approach this problem including reparameterization, Langevin-Hastings updates, and updates based on normal approximations....... The methods are compared in applications to Bayesian inference for three data sets using a model with genetically structured variance heterogeneity...

  1. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    Directory of Open Access Journals (Sweden)

    Tali Gidalevitz

    2009-03-01

    Full Text Available Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.

  2. Genetic control of environmental variation of two quantitative traits of Drosophila melanogaster revealed by whole-genome sequencing

    DEFF Research Database (Denmark)

    Sørensen, Peter; de los Campos, Gustavo; Morgante, Fabio

    2015-01-01

    Genetic studies usually focus on quantifying and understanding the existence of genetic control on expected phenotypic outcomes. However, there is compelling evidence suggesting the existence of genetic control at the level of environmental variability, with some genotypes exhibiting more stable ...

  3. Logistics for Working Together to Facilitate Genomic/Quantitative Genetic Prediction

    Science.gov (United States)

    The incorporation of DNA tests into the national cattle evaluation system will require estimation of variances of and covariances among the additive genetic components of the DNA tests and the phenotypic traits they are intended to predict. Populations with both DNA test results and phenotypes will ...

  4. Quantitative genetics theory for genomic selection and efficiency of breeding value prediction in open-pollinated populations

    Directory of Open Access Journals (Sweden)

    José Marcelo Soriano Viana

    2016-06-01

    Full Text Available ABSTRACT To date, the quantitative genetics theory for genomic selection has focused mainly on the relationship between marker and additive variances assuming one marker and one quantitative trait locus (QTL. This study extends the quantitative genetics theory to genomic selection in order to prove that prediction of breeding values based on thousands of single nucleotide polymorphisms (SNPs depends on linkage disequilibrium (LD between markers and QTLs, assuming dominance. We also assessed the efficiency of genomic selection in relation to phenotypic selection, assuming mass selection in an open-pollinated population, all QTLs of lower effect, and reduced sample size, based on simulated data. We show that the average effect of a SNP substitution is proportional to LD measure and to average effect of a gene substitution for each QTL that is in LD with the marker. Weighted (by SNP frequencies and unweighted breeding value predictors have the same accuracy. Efficiency of genomic selection in relation to phenotypic selection is inversely proportional to heritability. Accuracy of breeding value prediction is not affected by the dominance degree and the method of analysis, however, it is influenced by LD extent and magnitude of additive variance. The increase in the number of markers asymptotically improved accuracy of breeding value prediction. The decrease in the sample size from 500 to 200 did not reduce considerably accuracy of breeding value prediction.

  5. Entering the second century of maize quantitative genetics

    Science.gov (United States)

    Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architectur...

  6. Evidence of phenotypic and genetic relationships between sociality, emotional reactivity and production traits in Japanese quail.

    Directory of Open Access Journals (Sweden)

    Julien Recoquillay

    Full Text Available The social behavior of animals, which is partially controlled by genetics, is one of the factors involved in their adaptation to large breeding groups. To understand better the relationships between different social behaviors, fear behaviors and production traits, we analyzed the phenotypic and genetic correlations of these traits in Japanese quail by a second generation crossing of two lines divergently selected for their social reinstatement behavior. Analyses of results for 900 individuals showed that the phenotypic correlations between behavioral traits were low with the exception of significant correlations between sexual behavior and aggressive pecks both at phenotypic (0.51 and genetic (0.90 levels. Significant positive genetic correlations were observed between emotional reactivity toward a novel object and sexual (0.89 or aggressive (0.63 behaviors. The other genetic correlations were observed mainly between behavioral and production traits. Thus, the level of emotional reactivity, estimated by the duration of tonic immobility, was positively correlated with weight at 17 and 65 days of age (0.76 and 0.79, respectively and with delayed egg laying onset (0.74. In contrast, a higher level of social reinstatement behavior was associated with an earlier egg laying onset (-0.71. In addition, a strong sexual motivation was correlated with an earlier laying onset (-0.68 and a higher number of eggs laid (0.82. A low level of emotional reactivity toward a novel object and also a higher aggressive behavior were genetically correlated with a higher number of eggs laid (0.61 and 0.58, respectively. These results bring new insights into the complex determinism of social and emotional reactivity behaviors in birds and their relationships with production traits. Furthermore, they highlight the need to combine animal welfare and production traits in selection programs by taking into account traits of sociability and emotional reactivity.

  7. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype.

    LENUS (Irish Health Repository)

    Winchester, Robert

    2012-04-01

    Rigorously ascertained cases of psoriatic arthritis in subjects presenting to a rheumatology unit were compared with cases of psoriasis in subjects presenting to a dermatology unit, where subjects with musculoskeletal features were excluded, to address 1) the extent to which the contribution of the major histocompatibility complex (MHC) to psoriatic arthritis susceptibility resembles that in psoriasis, and 2) whether MHC genes determine quantitative traits within the psoriatic arthritis phenotype.

  8. Genetic Similarities between Compulsive Overeating and Addiction Phenotypes: A Case for "Food Addiction"?

    Science.gov (United States)

    Carlier, Nina; Marshe, Victoria S; Cmorejova, Jana; Davis, Caroline; Müller, Daniel J

    2015-12-01

    There exists a continuous spectrum of overeating, where at the extremes there are casual overindulgences and at the other a 'pathological' drive to consume palatable foods. It has been proposed that pathological eating behaviors may be the result of addictive appetitive behavior and loss of ability to regulate the consumption of highly processed foods containing refined carbohydrates, fats, salt, and caffeine. In this review, we highlight the genetic similarities underlying substance addiction phenotypes and overeating compulsions seen in individuals with binge eating disorder. We relate these similarities to findings from neuroimaging studies on reward processing and clinical diagnostic criteria based on addiction phenotypes. The abundance of similarities between compulsive overeating and substance addictions puts forth a case for a 'food addiction' phenotype as a valid, diagnosable disorder.

  9. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects

    NARCIS (Netherlands)

    Korstanje, Ron; Desai, Jigar; Lazar, Gloria; King, Benjamin; Rollins, Jarod; Spurr, Melissa; Joseph, Jamie; Kadambi, Sindhuja; Li, Yang; Cherry, Allison; Matteson, Paul G.; Paigen, Beverly; Millonig, James H.

    2008-01-01

    Korstanje R, Desai J, Lazar G, King B, Rollins J, Spurr M, Joseph J, Kadambi S, Li Y, Cherry A, Matteson PG, Paigen B, Millonig JH. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects. Physiol Genomics 35: 296-30

  10. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    Science.gov (United States)

    Malvezzi, Alex J; Murray, Christopher S; Feldheim, Kevin A; DiBattista, Joseph D; Garant, Dany; Gobler, Christopher J; Chapman, Demian D; Baumann, Hannes

    2015-01-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (∼2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent–offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection. PMID:25926880

  11. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification.

    Science.gov (United States)

    Malvezzi, Alex J; Murray, Christopher S; Feldheim, Kevin A; DiBattista, Joseph D; Garant, Dany; Gobler, Christopher J; Chapman, Demian D; Baumann, Hannes

    2015-04-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (∼2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent-offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection.

  12. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    KAUST Repository

    Malvezzi, Alex J.

    2015-02-01

    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (~2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent-offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection.

  13. Pedimap: software for the visualization of genetic and phenotypic data in pedigrees.

    Science.gov (United States)

    Voorrips, Roeland E; Bink, Marco C A M; van de Weg, W Eric

    2012-01-01

    Pedimap is a user-friendly software tool for visualizing phenotypic and genotypic data for related individuals linked in pedigrees. Genetic data can include marker scores, Identity-by-Descent probabilities, and marker linkage map positions, allowing the visualization of haplotypes through lineages. The pedigrees can accommodate all types of inheritance, including selfing, cloning, and repeated backcrossing, and all ploidy levels are supported. Visual association of the genetic data with phenotypic data simplifies the exploration of large data sets, thereby improving breeding decision making. Data are imported from text files; in addition data exchange with other software packages (FlexQTL(TM) and GenomeStudio(TM)) is possible. Instructions for use and an executable version compatible with the Windows platform are available for free from http://www.plantbreeding.wur.nl/UK/software_pedimap.html.

  14. Punctuated Emergences of Genetic and Phenotypic Innovations in Eumetazoan, Bilaterian, Euteleostome, and Hominidae Ancestors

    OpenAIRE

    Wenger, Yvan; Galliot, Brigitte

    2013-01-01

    Phenotypic traits derive from the selective recruitment of genetic materials over macroevolutionary times, and protein-coding genes constitute an essential component of these materials. We took advantage of the recent production of genomic scale data from sponges and cnidarians, sister groups from eumetazoans and bilaterians, respectively, to date the emergence of human proteins and to infer the timing of acquisition of novel traits through metazoan evolution. Comparing the proteomes of 23 eu...

  15. Selection in a fluctuating environment leads to decreased genetic variation and facilitates the evolution of phenotypic plasticity.

    Science.gov (United States)

    Hallsson, L R; Björklund, M

    2012-07-01

    Changes in the environment are expected to induce changes in the quantitative genetic variation, which influences the ability of a population to adapt to environmental change. Furthermore, environmental changes are not constant in time, but fluctuate. Here, we investigate the effect of rapid, continuous and/or fluctuating temperature changes in the seed beetle Callosobruchus maculatus, using an evolution experiment followed by a split-brood experiment. In line with expectations, individuals responded in a plastic way and had an overall higher potential to respond to selection after a rapid change in the environment. After selection in an environment with increasing temperature, plasticity remained unchanged (or decreased) and environmental variation decreased, especially when fluctuations were added; these results were unexpected. As expected, the genetic variation decreased after fluctuating selection. Our results suggest that fluctuations in the environment have major impact on the response of a population to environmental change; in a highly variable environment with low predictability, a plastic response might not be beneficial and the response is genetically and environmentally canalized resulting in a low potential to respond to selection and low environmental sensitivity. Interestingly, we found greater variation for phenotypic plasticity after selection, suggesting that the potential for plasticity to evolve is facilitated after exposure to environmental fluctuations. Our study highlights that environmental fluctuations should be considered when investigating the response of a population to environmental change.

  16. ESTIMATION OF PHENOTYPIC AND GENETIC CORRELATIONS FOR QUALITY TRAITS IN A WHEAT POPULATION

    Directory of Open Access Journals (Sweden)

    Dario Novoselović

    2012-06-01

    Full Text Available The objective of this paper was to estimate phenotypic and genetic correlations in order to improve existing wheat quality breeding methodology in early generations. For this purpose, one-year trial with population of 143 recombinant inbred lines from crossing combination Bezostaja/Klara was carried out on Osijek and Slavonski Brod locations in 2008/09 year. Among analyzed traits (grain protein content, wet gluten content, gluten index, mid-line peak time -MPT, mid-line peak height -MPH and mid-line tail width -MTW consistent positive phenotypic and genetic pattern of correlations was found between grain protein content and wet gluten content, negative between gluten index with grain protein content and wet gluten content, and positive between grain protein content and wet gluten content with MPT and MPH. Conformity of the phenotypic and genetic correlations was confirmed by Mantel test on both locations (for Osijek r=0.81** and for Slavonski Brod r=0.88**.

  17. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy

    Science.gov (United States)

    Wang, Yu; Kang, Soyoung; Khan, Altaz; Ruttner, Gabriel; Leigh, Steven Y.; Murray, Melissa; Abeytunge, Sanjee; Peterson, Gary; Rajadhyaksha, Milind; Dintzis, Suzanne; Javid, Sara; Liu, Jonathan T. C.

    2016-02-01

    There is a need to image excised tissues during tumor-resection procedures in order to identify residual tumors at the margins and to guide their complete removal. The imaging of dysregulated cell-surface receptors is a potential means of identifying the presence of diseases with high sensitivity and specificity. However, due to heterogeneities in the expression of protein biomarkers in tumors, molecular-imaging technologies should ideally be capable of visualizing a multiplexed panel of cancer biomarkers. Here, we demonstrate that the topical application and quantification of a multiplexed cocktail of receptor-targeted surface-enhanced Raman scattering (SERS) nanoparticles (NPs) enables rapid quantitative molecular phenotyping (QMP) of the surface of freshly excised tissues to determine the presence of disease. In order to mitigate the ambiguity due to nonspecific sources of contrast such as off-target binding or uneven delivery, a ratiometric method is employed to quantify the specific vs. nonspecific binding of the multiplexed NPs. Validation experiments with human tumor cell lines, fresh human tumor xenografts in mice, and fresh human breast specimens demonstrate that QMP imaging of excised tissues agrees with flow cytometry and immunohistochemistry, and that this technique may be achieved in less than 15 minutes for potential intraoperative use in guiding breast-conserving surgeries.

  18. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa.

    Science.gov (United States)

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-09-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted "mountain refugia hypothesis" states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity.

  19. Local versus Generalized Phenotypes in Two Sympatric Aurelia Species: Understanding Jellyfish Ecology Using Genetics and Morphometrics.

    Science.gov (United States)

    Chiaverano, Luciano M; Bayha, Keith W; Graham, William M

    2016-01-01

    For individuals living in environmentally heterogeneous environments, a key component for adaptation and persistence is the extent of phenotypic differentiation in response to local environmental conditions. In order to determine the extent of environmentally induced morphological variation in a natural population distributed along environmental gradients, it is necessary to account for potential genetic differences contributing to morphological differentiation. In this study, we set out to quantify geographic morphological variation in the moon jellyfish Aurelia exposed at the extremes of a latitudinal environmental gradient in the Gulf of Mexico (GoM). We used morphological data based on 28 characters, and genetic data taken from mitochondrial cytochrome oxidase I (COI) and nuclear internal transcribed spacer 1 (ITS-1). Molecular analyses revealed the presence of two genetically distinct species of Aurelia co-occurring in the GoM: Aurelia sp. 9 and Aurelia c.f. sp. 2, named for its divergence from (for COI) and similarity to (for ITS-1) Aurelia sp. 2 (Brazil). Neither species exhibited significant population genetic structure between the Northern and the Southeastern Gulf of Mexico; however, they differed greatly in the degree of geographic morphological variation. The morphology of Aurelia sp. 9 exhibited ecophenotypic plasticity and varied significantly between locations, while morphology of Aurelia c.f. sp. 2 was geographically invariant (i.e., canalized). The plastic, generalist medusae of Aurelia sp. 9 are likely able to produce environmentally-induced, "optimal" phenotypes that confer high relative fitness in different environments. In contrast, the non-plastic generalist individuals of Aurelia c.f. sp. 2 likely produce environmentally-independent phenotypes that provide the highest fitness across environments. These findings suggest the two Aurelia lineages co-occurring in the GoM were likely exposed to different past environmental conditions (i

  20. Local versus Generalized Phenotypes in Two Sympatric Aurelia Species: Understanding Jellyfish Ecology Using Genetics and Morphometrics.

    Directory of Open Access Journals (Sweden)

    Luciano M Chiaverano

    Full Text Available For individuals living in environmentally heterogeneous environments, a key component for adaptation and persistence is the extent of phenotypic differentiation in response to local environmental conditions. In order to determine the extent of environmentally induced morphological variation in a natural population distributed along environmental gradients, it is necessary to account for potential genetic differences contributing to morphological differentiation. In this study, we set out to quantify geographic morphological variation in the moon jellyfish Aurelia exposed at the extremes of a latitudinal environmental gradient in the Gulf of Mexico (GoM. We used morphological data based on 28 characters, and genetic data taken from mitochondrial cytochrome oxidase I (COI and nuclear internal transcribed spacer 1 (ITS-1. Molecular analyses revealed the presence of two genetically distinct species of Aurelia co-occurring in the GoM: Aurelia sp. 9 and Aurelia c.f. sp. 2, named for its divergence from (for COI and similarity to (for ITS-1 Aurelia sp. 2 (Brazil. Neither species exhibited significant population genetic structure between the Northern and the Southeastern Gulf of Mexico; however, they differed greatly in the degree of geographic morphological variation. The morphology of Aurelia sp. 9 exhibited ecophenotypic plasticity and varied significantly between locations, while morphology of Aurelia c.f. sp. 2 was geographically invariant (i.e., canalized. The plastic, generalist medusae of Aurelia sp. 9 are likely able to produce environmentally-induced, "optimal" phenotypes that confer high relative fitness in different environments. In contrast, the non-plastic generalist individuals of Aurelia c.f. sp. 2 likely produce environmentally-independent phenotypes that provide the highest fitness across environments. These findings suggest the two Aurelia lineages co-occurring in the GoM were likely exposed to different past environmental conditions

  1. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population.

    Science.gov (United States)

    Bonnet, Timothée; Wandeler, Peter; Camenisch, Glauco; Postma, Erik

    2017-01-01

    In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is

  2. Quantitative Trait Locus and Genetical Genomics Analysis Identifies Putatively Causal Genes for Fecundity and Brooding in the Chicken

    Directory of Open Access Journals (Sweden)

    Martin Johnsson

    2016-02-01

    Full Text Available Life history traits such as fecundity are important to evolution because they make up components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits. We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between egg loci and expression loci, and trait–gene expression correlations identify 29 candidates from bone and five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes for egg traits in the chicken that may have been affected by regulatory variants under chicken domestication. These represent, to the best of our knowledge, some of the first candidate genes identified by genome-wide mapping for life history traits in an avian species.

  3. Quantitative Trait Locus and Genetical Genomics Analysis Identifies Putatively Causal Genes for Fecundity and Brooding in the Chicken.

    Science.gov (United States)

    Johnsson, Martin; Jonsson, Kenneth B; Andersson, Leif; Jensen, Per; Wright, Dominic

    2015-12-04

    Life history traits such as fecundity are important to evolution because they make up components of lifetime fitness. Due to their polygenic architectures, such traits are difficult to investigate with genetic mapping. Therefore, little is known about their molecular basis. One possible way toward finding the underlying genes is to map intermediary molecular phenotypes, such as gene expression traits. We set out to map candidate quantitative trait genes for egg fecundity in the chicken by combining quantitative trait locus mapping in an advanced intercross of wild by domestic chickens with expression quantitative trait locus mapping in the same birds. We measured individual egg fecundity in 232 intercross chickens in two consecutive trials, the second one aimed at measuring brooding. We found 12 loci for different aspects of egg fecundity. We then combined the genomic confidence intervals of these loci with expression quantitative trait loci from bone and hypothalamus in the same intercross. Overlaps between egg loci and expression loci, and trait-gene expression correlations identify 29 candidates from bone and five from hypothalamus. The candidate quantitative trait genes include fibroblast growth factor 1, and mitochondrial ribosomal proteins L42 and L32. In summary, we found putative quantitative trait genes for egg traits in the chicken that may have been affected by regulatory variants under chicken domestication. These represent, to the best of our knowledge, some of the first candidate genes identified by genome-wide mapping for life history traits in an avian species.

  4. Speciation in the highlands of Mexico: genetic and phenotypic divergence in the Mexican jay (Aphelocoma ultramarina).

    Science.gov (United States)

    McCormack, J E; Peterson, A T; Bonaccorso, E; Smith, T B

    2008-05-01

    The pine-oak woodlands of the Mexican highlands harbour significant biological diversity, yet little is known about the evolutionary history of organisms inhabiting this region. We assessed genetic and phenotypic differentiation in 482 individuals representing 27 populations of the Mexican jay (Aphelocoma ultramarina) - a widespread bird species of the Mexican highlands - to test whether populations in the central and northern Mexican sierras display discrete breaks between groups, which would be consistent with a role for the different mountain chains in divergence and speciation. We found abrupt breaks in mitochondrial DNA (mtDNA; ND2 and control region) delineating four major genetic groups found in the Sierra Madre Occidental, Sierra Madre Oriental, southern Central Plateau (Bajio), and Transvolcanic Belt. These mtDNA groups were largely corroborated by data from nuclear microsatellites and phenotypic data, except that clades from the Central Plateau and Sierra Madre Oriental showed clinal change in these data sets. Uncertainty about the mutation rate for our mitochondrial markers warrants considerable caution with regard to estimating divergence times, but the major genetic groups appear to have split before the most extreme period of glacial cycling that marked the last 0.7 million years and after Mexico's period of major mountain formation. The fact that some genetic breaks do not coincide with well-known geographic barriers suggests a role for ecology in divergence and speciation, and we discuss implications for taxonomy and conservation.

  5. Multiple mating but not recombination causes quantitative increase in offspring genetic diversity for varying genetic architectures.

    Directory of Open Access Journals (Sweden)

    Olav Rueppell

    Full Text Available Explaining the evolution of sex and recombination is particularly intriguing for some species of eusocial insects because they display exceptionally high mating frequencies and genomic recombination rates. Explanations for both phenomena are based on the notion that both increase colony genetic diversity, with demonstrated benefits for colony disease resistance and division of labor. However, the relative contributions of mating number and recombination rate to colony genetic diversity have never been simultaneously assessed. Our study simulates colonies, assuming different mating numbers, recombination rates, and genetic architectures, to assess their worker genotypic diversity. The number of loci has a strong negative effect on genotypic diversity when the allelic effects are inversely scaled to locus number. In contrast, dominance, epistasis, lethal effects, or limiting the allelic diversity at each locus does not significantly affect the model outcomes. Mating number increases colony genotypic variance and lowers variation among colonies with quickly diminishing returns. Genomic recombination rate does not affect intra- and inter-colonial genotypic variance, regardless of mating frequency and genetic architecture. Recombination slightly increases the genotypic range of colonies and more strongly the number of workers with unique allele combinations across all loci. Overall, our study contradicts the argument that the exceptionally high recombination rates cause a quantitative increase in offspring genotypic diversity across one generation. Alternative explanations for the evolution of high recombination rates in social insects are therefore needed. Short-term benefits are central to most explanations of the evolution of multiple mating and high recombination rates in social insects but our results also apply to other species.

  6. Pathogenic ischemic stroke phenotypes in the NINDS-stroke genetics network.

    Science.gov (United States)

    Ay, Hakan; Arsava, Ethem Murat; Andsberg, Gunnar; Benner, Thomas; Brown, Robert D; Chapman, Sherita N; Cole, John W; Delavaran, Hossein; Dichgans, Martin; Engström, Gunnar; Giralt-Steinhauer, Eva; Grewal, Raji P; Gwinn, Katrina; Jern, Christina; Jimenez-Conde, Jordi; Jood, Katarina; Katsnelson, Michael; Kissela, Brett; Kittner, Steven J; Kleindorfer, Dawn O; Labovitz, Daniel L; Lanfranconi, Silvia; Lee, Jin-Moo; Lehm, Manuel; Lemmens, Robin; Levi, Chris; Li, Linxin; Lindgren, Arne; Markus, Hugh S; McArdle, Patrick F; Melander, Olle; Norrving, Bo; Peddareddygari, Leema Reddy; Pedersén, Annie; Pera, Joanna; Rannikmäe, Kristiina; Rexrode, Kathryn M; Rhodes, David; Rich, Stephen S; Roquer, Jaume; Rosand, Jonathan; Rothwell, Peter M; Rundek, Tatjana; Sacco, Ralph L; Schmidt, Reinhold; Schürks, Markus; Seiler, Stephan; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie; Thijs, Vincent; Woodfield, Rebecca; Worrall, Bradford B; Meschia, James F

    2014-12-01

    NINDS (National Institute of Neurological Disorders and Stroke)-SiGN (Stroke Genetics Network) is an international consortium of ischemic stroke studies that aims to generate high-quality phenotype data to identify the genetic basis of pathogenic stroke subtypes. This analysis characterizes the etiopathogenetic basis of ischemic stroke and reliability of stroke classification in the consortium. Fifty-two trained and certified adjudicators determined both phenotypic (abnormal test findings categorized in major pathogenic groups without weighting toward the most likely cause) and causative ischemic stroke subtypes in 16 954 subjects with imaging-confirmed ischemic stroke from 12 US studies and 11 studies from 8 European countries using the web-based Causative Classification of Stroke System. Classification reliability was assessed with blinded readjudication of 1509 randomly selected cases. The distribution of pathogenic categories varied by study, age, sex, and race (Pstroke pathogenesis (phenotypic subtype) were classified into the same final causative category with high confidence. There was good agreement for both causative (κ 0.72; 95% confidence interval, 0.69-0.75) and phenotypic classifications (κ 0.73; 95% confidence interval, 0.70-0.75). This study demonstrates that pathogenic subtypes can be determined with good reliability in studies that include investigators with different expertise and background, institutions with different stroke evaluation protocols and geographic location, and patient populations with different epidemiological characteristics. The discordance between phenotypic and causative stroke subtypes highlights the fact that the presence of an abnormality in a patient with stroke does not necessarily mean that it is the cause of stroke. © 2014 American Heart Association, Inc.

  7. [Angelman syndrome: physical characteristics and behavioural phenotype in 37 patients with confirmed genetic diagnosis].

    Science.gov (United States)

    Galván-Manso, M; Campistol, J; Monros, E; Póo, P; Vernet, A M; Pineda, M; Sans, A; Colomer, J; Conill, J J; Sanmartí, F X

    Angelman syndrome (AS) is characterised by mental retardation, ataxic gait, epilepsy, absence of language and a special series of physical traits behavioural phenotype. Its incidence is estimated as one in every 20,000 individuals. On the basis of discoveries made in molecular biology, patients can be classified as belonging to five types: deletion, paternal uniparental disomy (UPD), imprinting defects, mutation of the UBE3A ubiquitin protein ligase gene and unidentified mechanism (15% 20% of patients). Some studies report significant correlations between the phenotype and the genetic cause. We reviewed, retrospectively, 37 patients suffering from AS with a positive genetic study and who had been controlled for at least two years in the Neurological Service at the Hospital Sant Joan de D u. Data was collected on physical characteristics, behavioural phenotype, type of communication, sleep disorders and the medication they needed, as well as epilepsy, start age, types of seizures, medication, schooling and social integration. 87% of cases were due to de novo deletion, 8% were caused by UPD, and 5% had their origins in imprinting defects. The average age of diagnosis was 6.5 years. The sleep disorders present in 48% of the patients required medication in 67% of cases, and 95% presented epilepsy. The most frequent seizures were myoclonic, tonic clonic and atonic. The electroencephalogram (EEG) was the characteristic found in the AS in 68%. The most effective treatment was afforded by valproate and clonazepam. As regards the phenotype, no differences were found according to the genetic alteration. The most effective treatment for the sleep disorders was melatonin. Epilepsy was an almost constant finding in our series, as was cognitive affectation. Lastly, it must be pointed out that educational and socio occupational integration is difficult for patients suffering from AS.

  8. Genetic Variation in Autophagy-Related Genes Influences the Risk and Phenotype of Buruli Ulcer.

    Directory of Open Access Journals (Sweden)

    Carlos Capela

    2016-04-01

    Full Text Available Buruli ulcer (BU is a severe necrotizing human skin disease caused by Mycobacterium ulcerans. Clinically, presentation is a sum of these diverse pathogenic hits subjected to critical immune-regulatory mechanisms. Among them, autophagy has been demonstrated as a cellular process of critical importance. Since microtubules and dynein are affected by mycolactone, the critical pathogenic exotoxin produced by M. ulcerans, cytoskeleton-related changes might potentially impair the autophagic process and impact the risk and progression of infection.Genetic variants in the autophagy-related genes NOD2, PARK2 and ATG16L1 has been associated with susceptibility to mycobacterial diseases. Here, we investigated their association with BU risk, its severe phenotypes and its progression to an ulcerative form.Genetic variants were genotyped using KASPar chemistry in 208 BU patients (70.2% with an ulcerative form and 28% in severe WHO category 3 phenotype and 300 healthy endemic controls.The rs1333955 SNP in PARK2 was significantly associated with increased susceptibility to BU [odds ratio (OR, 1.43; P = 0.05]. In addition, both the rs9302752 and rs2066842 SNPs in NOD2 gee significantly increased the predisposition of patients to develop category 3 (OR, 2.23; P = 0.02; and OR 12.7; P = 0.03, respectively, whereas the rs2241880 SNP in ATG16L1 was found to significantly protect patients from presenting the ulcer phenotype (OR, 0.35; P = 0.02.Our findings indicate that specific genetic variants in autophagy-related genes influence susceptibility to the development of BU and its progression to severe phenotypes.

  9. Parallel Genetic and Phenotypic Evolution of DNA Superhelicity in Experimental Populations of Escherichia coli

    DEFF Research Database (Denmark)

    Crozat, Estelle; Winkworth, Cynthia; Gaffé, Joël

    2010-01-01

    DNA supercoiling is the master function that interconnects chromosome structure and global gene transcription. This function has recently been shown to be under strong selection in Escherichia coli. During the evolution of 12 initially identical populations propagated in a defined environment...... for 20,000 generations, parallel increases in DNA supercoiling were observed in ten populations. The genetic changes associated with the increased supercoiling were examined in one population, and beneficial mutations in the genes topA (encoding topoisomerase I) and fis (encoding a histone-like protein......) were identified. To elucidate the molecular basis and impact of these changes, we quantified the level of genetic, phenotypic, and molecular parallelism linked to DNA supercoiling in all 12 evolving populations. First, sequence determination of DNA topology-related loci revealed strong genetic...

  10. [Modern evolutional developmental biology: mechanical and molecular genetic or phenotypic approaches?].

    Science.gov (United States)

    Vorob'eva, É I

    2010-01-01

    Heightened interest in the evolutionary problems of developmental biology in the 1980s was due to the success of molecular genetics and disappointment in the synthetic theory of evolution, where the chapters of embryology and developmental biology seem to have been left out. Modern evo-devo, which turned out to be antipodean to the methodology of the synthetic theory of evolution, propagandized in the development of evolutionary problems only the mechanical and molecular genetic approach to the evolution of ontogenesis, based on cellular and intercellular interactions. The phonotypical approach to the evaluation of evolutionary occurrences in ontogenesis, which aids in the joining of the genetic and epigenetic levels of research, the theory of natural selection, the nomogenetic conception, and the problem of the wholeness of the organism in onto- and phylogenesis may be against this. The phenotypic approach to ontogenesis is methodologically the most perspective for evolutionary developmental biology.

  11. Genetic and environmental dissections of sub-phenotypes of metabolic syndrome in the chinese population: a twin-based heritability study

    DEFF Research Database (Denmark)

    Duan, Haiping; Pang, Zengchang; Zhang, Dongfeng

    2011-01-01

    Objective: We perform a comprehensive heritability study on multiple phenotypes related to metabolic syndrome using Chinese twins to assess the genetic and environmental effects in determining the variation and covariation of the phenotypes in the Chinese population. Methods: The studied sample...... of the phenotypes. Conclusions: Our results showed significant genetic contributions to the sub-phenotypes of metabolic syndrome. Although pleiotropic genetic control may exist for some physiologically similar phenotypes, our results do not support a common genetic mechanism among the phenotypes covered in our...

  12. Personality as an intermediate phenotype for genetic dissection of alcohol use disorder.

    Science.gov (United States)

    Oreland, Lars; Lagravinese, Gianvito; Toffoletto, Simone; Nilsson, Kent W; Harro, Jaanus; Robert Cloninger, C; Comasco, Erika

    2017-01-04

    Genetic and environmental interactive influences on predisposition to develop alcohol use disorder (AUD) account for the high heterogeneity among AUD patients and make research on the risk and resiliency factors complicated. Several attempts have been made to identify the genetic basis of AUD; however, only few genetic polymorphisms have consistently been associated with AUD. Intermediate phenotypes are expected to be in-between proxies of basic neuronal biological processes and nosological symptoms of AUD. Personality is likely to be a top candidate intermediate phenotype for the dissection of the genetic underpinnings of different subtypes of AUD. To date, 38 studies have investigated personality traits, commonly assessed by the Cloninger's Tridimensional Personality Questionnaire (TPQ) or Temperament and Character Inventory (TCI), in relation to polymorphisms of candidate genes of neurotransmitter systems in alcohol-dependent patients. Particular attention has been given to the functional polymorphism of the serotonin transporter gene (5-HTTLPR), however, leading to contradictory results, whereas results with polymorphisms in other candidate monoaminergic genes (e.g., tryptophan hydroxylase, serotonin receptors, monoamine oxidases, dopamine receptors and transporter) are sparse. Only one genome-wide association study has been performed so far and identified the ABLIM1 gene of relevance for novelty seeking, harm avoidance and reward dependence in alcohol-dependent patients. Studies investigating genetic factors together with personality could help to define more homogenous subgroups of AUD patients and facilitate treatment strategies. This review also urges the scientific community to combine genetic data with psychobiological and environmental data to further dissect the link between personality and AUD.

  13. Inference of Tumor Evolution during Chemotherapy by Computational Modeling and In Situ Analysis of Genetic and Phenotypic Cellular Diversity

    Directory of Open Access Journals (Sweden)

    Vanessa Almendro

    2014-02-01

    Full Text Available Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.

  14. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity.

    Science.gov (United States)

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-02-13

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.

  15. Working-memory endophenotype and dyslexia-associated genetic variant predict dyslexia phenotype.

    Science.gov (United States)

    Männel, Claudia; Meyer, Lars; Wilcke, Arndt; Boltze, Johannes; Kirsten, Holger; Friederici, Angela D

    2015-10-01

    Developmental dyslexia, a severe impairment of literacy acquisition, is known to have a neurological basis and a strong genetic background. However, effects of individual genetic variations on dyslexia-associated deficits are only moderate and call for the assessment of the genotype's impact on mediating neuro-endophenotypes by the imaging genetics approach. Using voxel-based morphometry (VBM) in German participants with and without dyslexia, we investigated gray matter changes and their association with impaired phonological processing, such as reduced verbal working memory. These endophenotypical alterations were, together with dyslexia-associated genetic variations, examined on their suitability as potential predictors of dyslexia. We identified two gray matter clusters in the left posterior temporal cortex related to verbal working memory capacity. Regional cluster differences correlated with genetic risk variants in TNFRSF1B. High-genetic-risk participants exhibit a structural predominance of auditory-association areas relative to auditory-sensory areas, which may partly compensate for deficient early auditory-sensory processing stages of verbal working memory. The reverse regional predominance observed in low-genetic-risk participants may in turn reflect reliance on these early auditory-sensory processing stages. Logistic regression analysis further supported that regional gray matter differences and genetic risk interact in the prediction of individuals' diagnostic status: With increasing genetic risk, the working-memory related structural predominance of auditory-association areas relative to auditory-sensory areas classifies participants with dyslexia versus control participants. Focusing on phonological deficits in dyslexia, our findings suggest endophenotypical changes in the left posterior temporal cortex could comprise novel pathomechanisms for verbal working memory-related processes translating TNFRSF1B genotype into the dyslexia phenotype.

  16. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.

    Science.gov (United States)

    Zhang-James, Yanli; Faraone, Stephen V

    2016-07-01

    Genetic studies of human aggression have mainly focused on known candidate genes and pathways regulating serotonin and dopamine signaling and hormonal functions. These studies have taught us much about the genetics of human aggression, but no genetic locus has yet achieved genome-significance. We here present a review based on a paradoxical hypothesis that studies of rare, functional genetic variations can lead to a better understanding of the molecular mechanisms underlying complex multifactorial disorders such as aggression. We examined all aggression phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM), an Online Catalog of Human Genes and Genetic Disorders. We identified 95 human disorders that have documented aggressive symptoms in at least one individual with a well-defined genetic variant. Altogether, we retrieved 86 causal genes. Although most of these genes had not been implicated in human aggression by previous studies, the most significantly enriched canonical pathways had been previously implicated in aggression (e.g., serotonin and dopamine signaling). Our findings provide strong evidence to support the causal role of these pathways in the pathogenesis of aggression. In addition, the novel genes and pathways we identified suggest additional mechanisms underlying the origins of human aggression. Genome-wide association studies with very large samples will be needed to determine if common variants in these genes are risk factors for aggression. © 2015 Wiley Periodicals, Inc.

  17. Genome-wide genetic interaction analysis of glaucoma using expert knowledge derived from human phenotype networks.

    Science.gov (United States)

    Hu, Ting; Darabos, Christian; Cricco, Maria E; Kong, Emily; Moore, Jason H

    2015-01-01

    The large volume of GWAS data poses great computational challenges for analyzing genetic interactions associated with common human diseases. We propose a computational framework for characterizing epistatic interactions among large sets of genetic attributes in GWAS data. We build the human phenotype network (HPN) and focus around a disease of interest. In this study, we use the GLAUGEN glaucoma GWAS dataset and apply the HPN as a biological knowledge-based filter to prioritize genetic variants. Then, we use the statistical epistasis network (SEN) to identify a significant connected network of pairwise epistatic interactions among the prioritized SNPs. These clearly highlight the complex genetic basis of glaucoma. Furthermore, we identify key SNPs by quantifying structural network characteristics. Through functional annotation of these key SNPs using Biofilter, a software accessing multiple publicly available human genetic data sources, we find supporting biomedical evidences linking glaucoma to an array of genetic diseases, proving our concept. We conclude by suggesting hypotheses for a better understanding of the disease.

  18. Functional genomics bridges the gap between quantitative genetics and molecular biology.

    Science.gov (United States)

    Lappalainen, Tuuli

    2015-10-01

    Deep characterization of molecular function of genetic variants in the human genome is becoming increasingly important for understanding genetic associations to disease and for learning to read the regulatory code of the genome. In this paper, I discuss how recent advances in both quantitative genetics and molecular biology have contributed to understanding functional effects of genetic variants, lessons learned from eQTL studies, and future challenges in this field.

  19. Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis

    Science.gov (United States)

    Simeone, Ines; Anjum, Samreen; Mokrab, Younes; Bertucci, François; Finetti, Pascal; Curigliano, Giuseppe; Cerulo, Luigi; Tomei, Sara; Delogu, Lucia Gemma; Maccalli, Cristina; Miller, Lance D.; Ceccarelli, Michele

    2017-01-01

    ABSTRACT Cancer immunotherapy is revolutionizing the clinical management of several tumors, but has demonstrated limited activity in breast cancer. The development of more effective treatments is hindered by incomplete knowledge of the genetic determinant of immune responsiveness. To fill this gap, we mined copy number alteration, somatic mutation, and expression data from The Cancer Genome Atlas (TCGA). By using RNA-sequencing data from 1,004 breast cancers, we defined distinct immune phenotypes characterized by progressive expression of transcripts previously associated with immune-mediated rejection. The T helper 1 (Th-1) phenotype (ICR4), which also displays upregulation of immune-regulatory transcripts such as PDL1, PD1, FOXP3, IDO1, and CTLA4, was associated with prolonged patients' survival. We validated these findings in an independent meta-cohort of 1,954 breast cancer gene expression data. Chromosome segment 4q21, which includes genes encoding for the Th-1 chemokines CXCL9-11, was significantly amplified only in the immune favorable phenotype (ICR4). The mutation and neoantigen load progressively decreased from ICR4 to ICR1 but could not fully explain immune phenotypic differences. Mutations of TP53 were enriched in the immune favorable phenotype (ICR4). Conversely, the presence of MAP3K1 and MAP2K4 mutations were tightly associated with an immune-unfavorable phenotype (ICR1). Using both the TCGA and the validation dataset, the degree of MAPK deregulation segregates breast tumors according to their immune disposition. These findings suggest that mutation-driven perturbations of MAPK pathways are linked to the negative regulation of intratumoral immune response in breast cancer. Modulations of MAPK pathways could be experimentally tested to enhance breast cancer immune sensitivity. PMID:28344865

  20. Grocery Store Genetics: A PCR-Based Genetics Lab that Links Genotype to Phenotype

    Science.gov (United States)

    Briju, Betsy J.; Wyatt, Sarah E.

    2015-01-01

    Instructors often present Mendelian genetics and molecular biology separately. As a result, students often fail to connect the two topics in a tangible manner. We have adopted a simple experiment to help link these two important topics in a basic biology course, using red and white onions bought from a local grocery store. A lack of red coloration…

  1. Grocery Store Genetics: A PCR-Based Genetics Lab that Links Genotype to Phenotype

    Science.gov (United States)

    Briju, Betsy J.; Wyatt, Sarah E.

    2015-01-01

    Instructors often present Mendelian genetics and molecular biology separately. As a result, students often fail to connect the two topics in a tangible manner. We have adopted a simple experiment to help link these two important topics in a basic biology course, using red and white onions bought from a local grocery store. A lack of red coloration…

  2. Genetic epidemiology, prevalence, and genotype–phenotype correlations in the Swedish population with osteogenesis imperfecta

    Science.gov (United States)

    Lindahl, Katarina; Åström, Eva; Rubin, Carl-Johan; Grigelioniene, Giedre; Malmgren, Barbro; Ljunggren, Östen; Kindmark, Andreas

    2015-01-01

    Osteogenesis imperfecta (OI) is a rare hereditary bone fragility disorder, caused by collagen I mutations in 90% of cases. There are no comprehensive genotype–phenotype studies on >100 families outside North America, and no population-based studies determining the genetic epidemiology of OI. Here, detailed clinical phenotypes were recorded, and the COL1A1 and COL1A2 genes were analyzed in 164 Swedish OI families (223 individuals). Averages for bone mineral density (BMD), height and yearly fracture rate were calculated and related to OI and mutation type. N-terminal helical mutations in both the α1- and α2-chains were associated with the absence of dentinogenesis imperfecta (P95% of the complete Swedish pediatric OI population. The prevalence of OI types I, III, and IV was 5.16, 0.89, and 1.35/100 000, respectively (7.40/100 000 overall), corresponding to what has been estimated but not unequivocally proven in any population. Collagen I mutation analysis was performed in the family of 97% of known cases, with causative mutations found in 87%. Qualitative mutations caused 32% of OI type I. The data reported here may be helpful to predict phenotype, and describes for the first time the genetic epidemiology in >95% of an entire OI population. PMID:25944380

  3. Genetic epidemiology, prevalence, and genotype-phenotype correlations in the Swedish population with osteogenesis imperfecta.

    Science.gov (United States)

    Lindahl, Katarina; Åström, Eva; Rubin, Carl-Johan; Grigelioniene, Giedre; Malmgren, Barbro; Ljunggren, Östen; Kindmark, Andreas

    2015-08-01

    Osteogenesis imperfecta (OI) is a rare hereditary bone fragility disorder, caused by collagen I mutations in 90% of cases. There are no comprehensive genotype-phenotype studies on >100 families outside North America, and no population-based studies determining the genetic epidemiology of OI. Here, detailed clinical phenotypes were recorded, and the COL1A1 and COL1A2 genes were analyzed in 164 Swedish OI families (223 individuals). Averages for bone mineral density (BMD), height and yearly fracture rate were calculated and related to OI and mutation type. N-terminal helical mutations in both the α1- and α2-chains were associated with the absence of dentinogenesis imperfecta (P95% of the complete Swedish pediatric OI population. The prevalence of OI types I, III, and IV was 5.16, 0.89, and 1.35/100 000, respectively (7.40/100 000 overall), corresponding to what has been estimated but not unequivocally proven in any population. Collagen I mutation analysis was performed in the family of 97% of known cases, with causative mutations found in 87%. Qualitative mutations caused 32% of OI type I. The data reported here may be helpful to predict phenotype, and describes for the first time the genetic epidemiology in >95% of an entire OI population.

  4. Genetic and phenotypic trends of fertility traits for Holstein dairy population in warm and temperate climate

    Directory of Open Access Journals (Sweden)

    Rabie Rahbar

    2016-04-01

    Full Text Available The main objective of this study was to investigate genetic and phenotypic trends for fertility traits in Holstein dairy population under warm and temperate climate. Fertility traits were: success in first service, gestation length, number of inseminations, insemination outcome, calving interval, calving birth weight and days open. The edited data set included up to 23,402 records from 9,486 cows. The mean and standard deviation for fertility traits were 0.32 ± 0.003, 278.2 ± 5.58, 2.73 ± 1.94,0.31 ± 0.001, 415.99 ± 79.62, 40.4 ± 6.08 and 140.36 ± 76.16 for success in first service, gestation length, number of inseminations, insemination outcome, calving interval, calving birth weight and days open, respectively. In general, there were decreasing genetic trends for all traits over the years. On the other hand, there were decreasing phenotypic trend for days open, calving interval, gestation length, number of inseminations and calving birth weight, but estimates of phenotypic trends were positive for success in first service and insemination outcome over the years. It was concluded decreased trend for days open, calving interval, gestation length, number of inseminations and calving birth weight and increased trend for success in first service and insemination outcome traits over time indicated that Holstein dairy producers in warm and temperate climate were successful in managing and improving in nutrition during 1999 to 2013.

  5. The genetic diversity and phenotypic characterisation of Streptococcus agalactiae isolates from Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Beatriz de Almeida Corrêa

    2011-12-01

    Full Text Available Streptococcus agalactiae isolates are more common among pregnant women, neonates and nonpregnant adults with underlying diseases compared to other demographic groups. In this study, we evaluate the genetic and phenotypic diversity in S. agalactiae strains from Rio de Janeiro (RJ that were isolated from asymptomatic carriers. We analysed these S. agalactiae strains using pulsed-field gel electrophoresis (PFGE, serotyping and antimicrobial susceptibility testing, as well as by determining the macrolide resistance phenotype, and detecting the presence of the ermA/B, mefA/E and lnuB genes. The serotypes Ia, II, III and V were the most prevalent serotypes observed. The 60 strains analysed were susceptible to penicillin, vancomycin and levofloxacin. Resistance to clindamycin, chloramphenicol, erythromycin, rifampin and tetracycline was observed. Among the erythromycin and/or clindamycin resistant strains, the ermA, ermB and mefA/E genes were detected and the constitutive macrolides, lincosamides and streptogramin B-type resistance was the most prevalent phenotype observed. The lnuB gene was not detected in any of the strains studied. We found 56 PFGE electrophoretic profiles and only 22 of them were allocated in polymorphism patterns. This work presents data on the genetic diversity and prevalent capsular serotypes among RJ isolates. Approximately 85% of these strains came from pregnant women; therefore, these data may be helpful in developing future prophylaxis and treatment strategies for neonatal syndromes in RJ.

  6. [Molecular genetic basis for para-Bombay phenotypes in two cases].

    Science.gov (United States)

    He, Yang-Ming; Xu, Xian-Guo; Zhu, Fa-Ming; Yan, Li-Xing

    2007-06-01

    This study was purposed to investigate the molecular genetics basis for para-Bombay phenotype. The para-Bombay phenotype of two probands was identified by routine serological techniques. The full coding region of alpha (1, 2) fucosyltransferase gene (FUT1 and FUT2) in the probands was amplified by polymerase chain reaction and the amplified fragments were directly sequenced, meanwhile the mutations of FUT1 were also identified by TOPO TA cloning sequence method. The results indicated that two heterozygous mutations were detected by directly sequencing in two probands: AG deletion at position 547 - 552 and C to T mutation at position 658. Two different mutations were confirmed to be true compound heterozygotes with each mutation on a separate homologous chromosome by TOPO TA cloning sequence method. AG deletion at position 547 - 552 caused a reading frame shift and a premature stop codon. C658T mutation resulted in Arg-->Cys at amino acid position 220. It is suggested that the FUT1 mutation of two probands are compound heterozygous mutation with different chromosomes, which are named h1h3 and may be the genetics basis of para-Bombay phenotype.

  7. eCOMPAGT – efficient Combination and Management of Phenotypes and Genotypes for Genetic Epidemiology

    Directory of Open Access Journals (Sweden)

    Specht Günther

    2009-05-01

    Full Text Available Abstract Background High-throughput genotyping and phenotyping projects of large epidemiological study populations require sophisticated laboratory information management systems. Most epidemiological studies include subject-related personal information, which needs to be handled with care by following data privacy protection guidelines. In addition, genotyping core facilities handling cooperative projects require a straightforward solution to monitor the status and financial resources of the different projects. Description We developed a database system for an efficient combination and management of phenotypes and genotypes (eCOMPAGT deriving from genetic epidemiological studies. eCOMPAGT securely stores and manages genotype and phenotype data and enables different user modes with different rights. Special attention was drawn on the import of data deriving from TaqMan and SNPlex genotyping assays. However, the database solution is adjustable to other genotyping systems by programming additional interfaces. Further important features are the scalability of the database and an export interface to statistical software. Conclusion eCOMPAGT can store, administer and connect phenotype data with all kinds of genotype data and is available as a downloadable version at http://dbis-informatik.uibk.ac.at/ecompagt.

  8. [The study of tomato fruit weight quantitative trait locus and its application in genetics teaching].

    Science.gov (United States)

    Wang, Haiyan

    2015-08-01

    The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.

  9. Does Degree of Gyrification Underlie the Phenotypic and Genetic Associations between Cortical Surface Area and Cognitive Ability?

    Science.gov (United States)

    Docherty, Anna R.; Hagler, Donald J.; Panizzon, Matthew S.; Neale, Michael C.; Eyler, Lisa T.; Fennema-Notestine, Christine; Franz, Carol E.; Jak, Amy; Lyons, Michael J.; Rinker, Daniel A.; Thompson, Wesley K.; Tsuang, Ming T.; Dale, Anders M.; Kremen, William S.

    2015-01-01

    The phenotypic and genetic relationship between global cortical size and general cognitive ability (GCA) appears to be driven by surface area (SA) and not cortical thickness (CT). Gyrification (cortical folding) is an important property of the cortex that helps to increase SA within a finite space, and may also improve connectivity by reducing distance between regions. Hence, gyrification may be what underlies the SA-GCA relationship. In previous phenotypic studies, a 3-dimensional gyrification index (3DGI) has been positively associated with cognitive ability and negatively associated with mild cognitive impairment, Alzheimer’s disease, and psychiatric disorders affecting cognition. However, the differential genetic associations of 3DGI and SA with GCA are still unclear. We examined the heritability of 3DGI, and the phenotypic, genetic, and environmental associations of 3DGI with SA and GCA in a large sample of adult male twins (N = 512). Nearly 85% of the variance in 3DGI was due to genes, and 3DGI had a strong phenotypic and genetic association with SA. Both 3DGI and total SA had positive phenotypic correlations with GCA. However, the SA-GCA correlation remained significant after controlling for 3DGI, but not the other way around. There was also significant genetic covariance between SA and GCA, but not between 3DGI and GCA. Thus, despite the phenotypic and genetic associations between 3DGI and SA, our results do not support the hypothesis that gyrification underlies the association between SA and GCA. PMID:25433211

  10. From integrative genomics to systems genetics in the rat to link genotypes to phenotypes

    Science.gov (United States)

    Moreno-Moral, Aida

    2016-01-01

    ABSTRACT Complementary to traditional gene mapping approaches used to identify the hereditary components of complex diseases, integrative genomics and systems genetics have emerged as powerful strategies to decipher the key genetic drivers of molecular pathways that underlie disease. Broadly speaking, integrative genomics aims to link cellular-level traits (such as mRNA expression) to the genome to identify their genetic determinants. With the characterization of several cellular-level traits within the same system, the integrative genomics approach evolved into a more comprehensive study design, called systems genetics, which aims to unravel the complex biological networks and pathways involved in disease, and in turn map their genetic control points. The first fully integrated systems genetics study was carried out in rats, and the results, which revealed conserved trans-acting genetic regulation of a pro-inflammatory network relevant to type 1 diabetes, were translated to humans. Many studies using different organisms subsequently stemmed from this example. The aim of this Review is to describe the most recent advances in the fields of integrative genomics and systems genetics applied in the rat, with a focus on studies of complex diseases ranging from inflammatory to cardiometabolic disorders. We aim to provide the genetics community with a comprehensive insight into how the systems genetics approach came to life, starting from the first integrative genomics strategies [such as expression quantitative trait loci (eQTLs) mapping] and concluding with the most sophisticated gene network-based analyses in multiple systems and disease states. Although not limited to studies that have been directly translated to humans, we will focus particularly on the successful investigations in the rat that have led to primary discoveries of genes and pathways relevant to human disease. PMID:27736746

  11. Use of genetic data to infer population-specific ecological and phenotypic traits from mixed aggregations.

    Directory of Open Access Journals (Sweden)

    Paul Moran

    Full Text Available Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions.

  12. Genetics of kidney disease and related cardiometabolic phenotypes in Zuni Indians: The Zuni Kidney Project

    Directory of Open Access Journals (Sweden)

    Sandra L Laston

    2015-01-01

    Full Text Available The objective of this study is to identify genetic factors associated with chronic kidney disease (CKD and related cardiometabolic phenotypes among participants of the Genetics of Kidney Disease in Zuni Indians study. The study was conducted as a community-based participatory research project in the Zuni Indians, a small endogamous tribe in rural New Mexico. We recruited 998 members from 28 extended multigenerational families, ascertained through probands with CKD who had at least one sibling with CKD. We used the Illumina Infinium Human1M-Duo v3.0 BeadChips to type 1.1 million single nucleotide polymorphisms (SNPs. Prevalence estimates for CKD, hyperuricemia, diabetes and hypertension were 24%, 30%, 17% and 34%, respectively. We found a significant (p<1.58 × 10-7 association for a SNP in a novel gene for serum creatinine (PTPLAD2. We replicated significant associations for genes with serum uric acid (SLC2A9, triglyceride levels (APOA1, BUD13, ZNF259, and total cholesterol (PVRL2. We found novel suggestive associations (p<1.58 × 10-6 for SNPs in genes with systolic (OLFML2B, and diastolic blood pressure (NFIA. We identified a series of genes associated with CKD and related cardiometabolic phenotypes among Zuni Indians, a population with a high prevalence of kidney disease. Illuminating genetic variations that modulate the risk for these disorders may ultimately provide a basis for novel preventive strategies and therapeutic interventions.

  13. Approaches for the identification of genetic modifiers of nutrient dependent phenotypes: Examples from folate

    Directory of Open Access Journals (Sweden)

    Amanda J. Macfarlane

    2014-07-01

    Full Text Available By combining the sciences of nutrition, bioinformatics, genomics, population genetics and epidemiology, nutrigenomics is improving our understanding of how diet and nutrient intake can interact with or modify gene expression and disease risk. In this review, we explore various approaches to examine gene-nutrient interactions and the modifying role of nutrient consumption, as they relate to nutrient status and disease risk in human populations. Two common approaches include the use of SNPs in candidate genes to identify their association with nutritional status or disease outcomes, or genome wide association studies to identify genetic polymorphisms associated with a given phenotype. Here, we examine the results of various gene-nutrient interaction studies, the association of genetic polymorphisms with disease expression and the identification of nutritional factors that modify gene-dependent disease phenotypes. We have focussed on specific examples from investigations of the interactions of folate and B-vitamin consumption and polymorphisms in the genes of B vitamin dependent enzymes and their association with disease risk, followed by an examination of the strengths and limitations of the methods employed. We also present suggestions for future studies, including an approach from an on-going large scale study, to examine the interaction of nutrient intake and genotypic variation and their impact on nutritional status.

  14. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease.

    Science.gov (United States)

    Pinnapureddy, Ashish R; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-09-02

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review.

  15. Rapid phenotyping of knockout mice to identify genetic determinants of bone strength

    Science.gov (United States)

    Freudenthal, Bernard; Logan, John; Croucher, Peter I

    2016-01-01

    The genetic determinants of osteoporosis remain poorly understood, and there is a large unmet need for new treatments in our ageing society. Thus, new approaches for gene discovery in skeletal disease are required to complement the current genome-wide association studies in human populations. The International Knockout Mouse Consortium (IKMC) and the International Mouse Phenotyping Consortium (IMPC) provide such an opportunity. The IKMC generates knockout mice representing each of the known protein-coding genes in C57BL/6 mice and, as part of the IMPC initiative, the Origins of Bone and Cartilage Disease project identifies mutants with significant outlier skeletal phenotypes. This initiative will add value to data from large human cohorts and provide a new understanding of bone and cartilage pathophysiology, ultimately leading to the identification of novel drug targets for the treatment of skeletal disease. PMID:27535945

  16. The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype.

    Science.gov (United States)

    Kere, Juha

    2014-09-19

    Among complex disorders, those concerning neuropsychiatric phenotypes involve particular challenges compared to disorders with more easily distinguished clinical signs and measures. One such common and unusually challenging phenotype to disentangle genetically is developmental dyslexia (DD), or reading disability, defined as the inability to learn to read and write for an otherwise normally intelligent child with normal senses and educational opportunity. There is presently ample evidence for the strongly biological etiology for DD, and a dozen susceptibility genes have been suggested. Many of these genes point to common but previously unsuspected biological mechanisms, such as neuronal migration and cilia functions. I discuss here the state-of-the-art in genomic and neurobiological aspects of DD research, starting with short general background to its history.

  17. Genetic ablation of NMDA receptor subunit NR3B in mouse reveals motoneuronal and nonmotoneuronal phenotypes.

    Science.gov (United States)

    Niemann, Stephan; Kanki, Hiroaki; Fukui, Yasuyuki; Takao, Keizo; Fukaya, Masahiro; Hynynen, Meri N; Churchill, Michael J; Shefner, Jeremy M; Bronson, Roderick T; Brown, Robert H; Watanabe, Masahiko; Miyakawa, Tsuyoshi; Itohara, Shigeyoshi; Hayashi, Yasunori

    2007-09-01

    NR3B is a modulatory subunit of the NMDA receptor, abundantly expressed in both cranial and spinal somatic motoneurons and at lower levels in other regions of the brain as well. Recently, we found the human NR3B gene (GRIN3B) to be highly genetically heterogeneous, and that approximately 10% of the normal European-American population lacks NR3B due to homozygous occurrence of a null allele in the gene. Therefore, it is especially important to understand the phenotypic consequences of the genetic loss of NR3B in both humans and animal models. We here provide results of behavioral analysis of mice genetically lacking NR3B, which is an ideal animal model due to homogeneity in genetic and environmental background. The NR3B(-/-) mice are viable and fertile. Consistent with the expression of NR3B in somatic motoneurons, the NR3B(-/-) mice showed a moderate but significant impairment in motor learning or coordination, and decreased activity in their home cages. Remarkably, the NR3B(-/-) mice showed a highly increased social interaction with their familiar cage mates in their home cage but moderately increased anxiety-like behaviour and decreased social interaction in a novel environment, consistent with the inhibitory role of NR3B on the functions of NMDA receptors. This work is the first reporting of the functional significance of NR3B in vivo and may give insight into the contribution of genetic variability of NR3B in the phenotypic heterogeneity among human population.

  18. Estimates of genetic variability and association studies in quantitative plant traits of Eruca spp. landraces

    Directory of Open Access Journals (Sweden)

    Bozokalfa Kadri Mehmet

    2010-01-01

    Full Text Available Despite the increasing of economical importance of rocket plant limited information is available on genetic variability for the agronomic traits among Eruca spp. Hence, heritability and association studies of plant properties are necessities for a successful further rocket breeding programme. The objective of this study was to examine phenotypic and genotypic variability, broad sense heritability, genetic advance, genotypic and phenotypic correlation and mean for agronomic traits of rocket plant. The magnitude of phenotypic coefficient of variation values for all the traits were higher than the corresponding values and broad sense heritability estimates exceeded 65% for all traits. Phenotypic coefficients of variability (PCV ranged from 7.60 to 34.34% and genotypic coefficients of variability (GCV ranged between 5.58% for petiole thickness and 34.30% for plant weight. The results stated that plant weight, siliqua width, seed per siliqua and seed weight could be useful character for improved Eruca spp. breeding programme.

  19. A quantitative genetic study of starvation resistance at different geographic scales in natural populations of Drosophila melanogaster.

    Science.gov (United States)

    Goenaga, Julieta; José Fanara, Juan; Hasson, Esteban

    2010-08-01

    Food shortage is a stress factor that commonly affects organisms in nature. Resistance to food shortage or starvation resistance (SR) is a complex quantitative trait with direct implications on fitness. However, surveys of natural genetic variation in SR at different geographic scales are scarce. Here, we have measured variation in SR in sets of lines derived from nine natural populations of Drosophila melanogaster collected in western Argentina. Our study shows that within population variation explained a larger proportion of overall phenotypic variance (80%) than among populations (7·2%). We also noticed that an important fraction of variation was sex-specific. Overall females were more resistant to starvation than males; however, the magnitude of the sexual dimorphism (SD) in SR varied among lines and explained a significant fraction of phenotypic variance in all populations. Estimates of cross-sex genetic correlations suggest that the genetic architecture of SR is only partially shared between sexes in the populations examined, thus, facilitating further evolution of the SD.

  20. Identifying Genetic Sources of Phenotypic Heterogeneity in Orofacial Clefts by Targeted Sequencing.

    Science.gov (United States)

    Carlson, Jenna C; Taub, Margaret A; Feingold, Eleanor; Beaty, Terri H; Murray, Jeffrey C; Marazita, Mary L; Leslie, Elizabeth J

    2017-07-17

    Orofacial clefts (OFCs), including nonsyndromic cleft lip with or without cleft palate (NSCL/P), are common birth defects. NSCL/P is highly heterogeneous with multiple phenotypic presentations. Two common subtypes of NSCL/P are cleft lip (CL) and cleft lip with cleft palate (CLP) which have different population prevalence. Similarly, NSCL/P can be divided into bilateral and unilateral clefts, with unilateral being the most common. Individuals with unilateral NSCL/P are more likely to be affected on the left side of the upper lip, but right side affection also occurs. Moreover, NSCL/P is twice as common in males as in females. The goal of this study is to discover genetic variants that have different effects in case subgroups. We conducted both common variant and rare variant analyses in 1034 individuals of Asian ancestry with NSCL/P, examining four sources of heterogeneity within CL/P: cleft type, sex, laterality, and side. We identified several regions associated with subtype differentiation: cleft type differences in 8q24 (p = 1.00 × 10(-4) ), laterality differences in IRF6, a gene previously implicated with wound healing (p = 2.166 × 10(-4) ), sex differences and side of unilateral CL differences in FGFR2 (p = 3.00 × 10(-4) ; p = 6.00 × 10(-4) ), and sex differences in VAX1 (p < 1.00 × 10(-4) ) among others. Many of the regions associated with phenotypic modification were either adjacent to or overlapping functional elements based on ENCODE chromatin marks and published craniofacial enhancers. We have identified multiple common and rare variants as potential phenotypic modifiers of NSCL/P, and suggest plausible elements responsible for phenotypic heterogeneity, further elucidating the complex genetic architecture of OFCs. Birth Defects Research 109:1030-1038, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Multivariate genetic analysis of atopy phenotypes in a selected sample of twins

    DEFF Research Database (Denmark)

    Thomsen, SF; Ulrik, Charlotte Suppli; Kyvik, KO

    2006-01-01

    BACKGROUND: Atopic traits often co-occur and this can potentially be caused by common aetiological relationships between traits, i.e. a common genetic or a common environmental background. OBJECTIVE: To estimate to what extent the same genetic and environmental factors influence wheeze, rhinitis...... traits were estimated and latent factor models of genetic and environmental effects were fitted to the observed data using maximum likelihood methods. RESULTS: The various phenotypic correlations between wheeze, rhinitis, AHR and posSPT were all significant and ranged between 0.50 and 0.86. Traits...... that showed highest genetic correlations were wheeze-rhinitis (rho(A)=0.95), wheeze-AHR (rho(A)=0.85) and rhinitis-posSPT (rho(A)=0.92), whereas lower genetic correlations were observed for rhinitis-AHR (rho(A)=0.43) and AHR-posSPT (rho(A)=0.59). Traits with a high degree of environmental sharing were...

  2. Phenotypic and genetic characterization of a novel phenotype in pigs characterized by juvenile hairlessness and age dependent emphysema

    DEFF Research Database (Denmark)

    Bruun, Camilla S.; Jørgensen, Claus B.; Bay, Lene

    2008-01-01

    ß6-/- knockout phenotype seen in mice, the two genes encoding the two subunits of integrin avß6, i.e. ITGB6 and ITGAV, were considered candidate genes for this trait. Results: The mutated pig phenotype is characterized by hairlessness until puberty, thin skin with few hair follicles and absence...... resembling the integrin ß6-/- knockout phenotype seen in mice has been characterized in the pig. The candidate region on SSC15 has been confirmed by linkage analysis but molecular and functional analyses have excluded that the mutated phenotype is caused by structural mutations in or ablation of any...

  3. Demographic, phenotypic, and genetic characteristics of centenarians in Okinawa and Japan: Part 1-centenarians in Okinawa.

    Science.gov (United States)

    Willcox, Bradley J; Willcox, Donald Craig; Suzuki, Makoto

    2017-07-01

    A study of elderly Okinawans has been carried out by the Okinawa Centenarian Study (OCS) research group for over four decades. The OCS began in 1975 as a population-based study of centenarians (99-year-olds and older) and other selected elderly persons residing in the main island of the Japanese prefecture of Okinawa. As of 2015, over 1000 centenarians have been examined. By several measures of health and longevity the Okinawans can claim to be the world's healthiest and longest-lived people. In this paper we explore the demographic, phenotypic, and genetic characteristics of this fascinating population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. [Phenotypic variability in a family with genetically verified familial hemiplegic migraine type 2].

    Science.gov (United States)

    Hogaard, Nina; Klit, Henriette; Vogel, Ida; Thelle, Thomas

    2015-01-26

    After playing handball, a 13-year-old girl developed a comatose condition during 7-10 days with hemiparesis and aphasia. From age three to nine she was treated for partial epilepsy. She never had symptoms of migraine. Her father had childhood epilepsy and at the age of 40 and 44 he experienced two attacks with prolonged coma, fever, seizures, hemiparesis and aphasia. His mother had symptoms of severe hemiplegic migraine. Father and daughter were genetically tested and an earlier described mutation in ATP1A2 gene was found. These cases illustrate the phenotypic variability in familial hemiplegic migraine type 2.

  5. Blue eyes in lemurs and humans: same phenotype, different genetic mechanism

    DEFF Research Database (Denmark)

    Bradley, Brenda J; Pedersen, Anja; Mundy, Nicholas I

    2009-01-01

    Almost all mammals have brown or darkly-pigmented eyes (irises), but among primates, there are some prominent blue-eyed exceptions. The blue eyes of some humans and lemurs are a striking example of convergent evolution of a rare phenotype on distant branches of the primate tree. Recent work...... on humans indicates that blue eye color is associated with, and likely caused by, a single nucleotide polymorphism (rs12913832) in an intron of the gene HERC2, which likely regulates expression of the neighboring pigmentation gene OCA2. This raises the immediate question of whether blue eyes in lemurs might...... have a similar genetic basis. We addressed this by sequencing the homologous genetic region in the blue-eyed black lemur (Eulemur macaco flavifrons; N = 4) and the closely-related black lemur (Eulemur macaco macaco; N = 4), which has brown eyes. We then compared a 166-bp segment corresponding...

  6. Prevalence and genetic analysis of phenotypically Vi- negative Salmonella typhi isolates in children from Kathmandu, Nepal.

    Science.gov (United States)

    Pulickal, Anoop S; Callaghan, Martin J; Kelly, Dominic F; Maskey, Mitu; Mahat, Sandeep; Hamaluba, Mainga; Dongol, Sabina; Adhikari, Neelam; Thorson, Stephen; Basynat, Buddha; Murdoch, David R; Farrar, Jeremy J; Pollard, Andrew J

    2013-08-01

    The Vi capsular polysaccharide (ViPS) protects Salmonella enterica subspecies enterica serotype Typhi (S.Typhi) in vivo by multiple mechanisms. Recent microbiological reports from typhoid endemic countries suggest that acapsulate S.Typhi may occur in nature and contribute to clinical typhoid fever that is indistinguishable from disease caused by capsulate strains. The prevalence and genetic basis of ViPS-negative S.Typhi isolates in children from Kathmandu, Nepal, were tested in 68 isolates. Although 5.9% of isolates tested negative for capsular expression by slide agglutination tests, a novel multiplex PCR assay and individual PCR analyses demonstrated the presence of all 14 genes responsible for the synthesis, transportation and regulation of the ViPS. These data suggest that phenotypically acapsulate S.Typhi may not have a genetic basis for the same.

  7. Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Lloyd, Colton J.; Palsson, Bernhard O.

    2017-01-01

    Adaptive laboratory evolution (ALE) experiments are often designed to maintain a static culturing environment to minimize confounding variables that could influence the adaptive process, but dynamic nutrient conditions occur frequently in natural and bioprocessing settings. To study the nature...... of carbon substrate fitness tradeoffs, we evolved batch cultures of Escherichia coli via serial propagation into tubes alternating between glucose and either xylose, glycerol, or acetate. Genome sequencing of evolved cultures revealed several genetic changes preferentially selected for under dynamic...... to the observed distinct adaptive strategies. This study gives insight into the population dynamics of adaptation in an alternating environment and into the underlying metabolic and genetic mechanisms. Furthermore, ALE-generated optimized strains have phenotypes with potential industrial bioprocessing...

  8. Phenotypic and genetic evidence for a unifactorial structure of spatial abilities.

    Science.gov (United States)

    Rimfeld, Kaili; Shakeshaft, Nicholas G; Malanchini, Margherita; Rodic, Maja; Selzam, Saskia; Schofield, Kerry; Dale, Philip S; Kovas, Yulia; Plomin, Robert

    2017-03-07

    Spatial abilities encompass several skills differentiable from general cognitive ability (g). Importantly, spatial abilities have been shown to be significant predictors of many life outcomes, even after controlling for g. To date, no studies have analyzed the genetic architecture of diverse spatial abilities using a multivariate approach. We developed "gamified" measures of diverse putative spatial abilities. The battery of 10 tests was administered online to 1,367 twin pairs (age 19-21) from the UK-representative Twins Early Development Study (TEDS). We show that spatial abilities constitute a single factor, both phenotypically and genetically, even after controlling for g This spatial ability factor is highly heritable (69%). We draw three conclusions: (i) The high heritability of spatial ability makes it a good target for gene-hunting research; (ii) some genes will be specific to spatial ability, independent of g; and (iii) these genes will be associated with all components of spatial ability.

  9. Genetic Causes of Phenotypic Adaptation to the Second Fermentation of Sparkling Wines in Saccharomyces cerevisiae

    Science.gov (United States)

    Martí-Raga, Maria; Peltier, Emilien; Mas, Albert; Beltran, Gemma; Marullo, Philippe

    2016-01-01

    Hybridization is known to improve complex traits due to heterosis and phenotypic robustness. However, these phenomena have been rarely explained at the molecular level. Here, the genetic determinism of Saccharomyces cerevisiae fermentation performance was investigated using a QTL mapping approach on an F1-progeny population. Three main QTL were detected, with positive alleles coming from both parental strains. The heterosis effect found in the hybrid was partially explained by three loci showing pseudooverdominance and dominance effects. The molecular dissection of those QTL revealed that the adaptation to second fermentation is related to pH, lipid, or osmotic regulation. Our results suggest that the stressful conditions of second fermentation have driven the selection of rare genetic variants adapted to maintain yeast cell homeostasis and, in particular, to low pH conditions. PMID:27903630

  10. Genetic Causes of Phenotypic Adaptation to the Second Fermentation of Sparkling Wines in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maria Martí-Raga

    2017-02-01

    Full Text Available Hybridization is known to improve complex traits due to heterosis and phenotypic robustness. However, these phenomena have been rarely explained at the molecular level. Here, the genetic determinism of Saccharomyces cerevisiae fermentation performance was investigated using a QTL mapping approach on an F1-progeny population. Three main QTL were detected, with positive alleles coming from both parental strains. The heterosis effect found in the hybrid was partially explained by three loci showing pseudooverdominance and dominance effects. The molecular dissection of those QTL revealed that the adaptation to second fermentation is related to pH, lipid, or osmotic regulation. Our results suggest that the stressful conditions of second fermentation have driven the selection of rare genetic variants adapted to maintain yeast cell homeostasis and, in particular, to low pH conditions.

  11. Genetic susceptibility and genotype-phenotype association in 588 Danish children with inflammatory bowel disease

    DEFF Research Database (Denmark)

    Jakobsen, C; Cleynen, I; Andersen, Susanne Pia;

    2014-01-01

    AIM: To investigate the association between known inflammatory bowel disease (IBD)-associated genetic variants and development of paediatric IBD, and specific clinical sub-phenotypes. MATERIAL AND METHODS: In this case-control study we included IBD patients ... retrieved and clinical information was extracted. DNA was obtained from Guthrie cards from the Danish National Neonatal Screening Biobank (PKU-biobanken) at Statens Serum Institut and from blood samples. RESULTS: A total of 588 IBD patients (244 Crohn's disease (CD), 318 ulcerative colitis (UC) and 26 IBD...... associated with disease localisation, medical treatment or surgery after correcting for multiple analyses. CONCLUSION: We found an association between CD and three previously published genetic variants and replicated the association with the paediatric specific ZMIZ1 gene. No Bonferroni corrected significant...

  12. Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study

    Science.gov (United States)

    Cleynen, Isabelle; Boucher, Gabrielle; Jostins, Luke; Schumm, L Philip; Zeissig, Sebastian; Ahmad, Tariq; Andersen, Vibeke; Andrews, Jane M; Annese, Vito; Brand, Stephan; Brant, Steven R; Cho, Judy H; Daly, Mark J; Dubinsky, Marla; Duerr, Richard H; Ferguson, Lynnette R; Franke, Andre; Gearry, Richard B; Goyette, Philippe; Hakonarson, Hakon; Halfvarson, Jonas; Hov, Johannes R; Huang, Hailang; Kennedy, Nicholas A; Kupcinskas, Limas; Lawrance, Ian C; Lee, James C; Satsangi, Jack; Schreiber, Stephan; Théâtre, Emilie; van der Meulen-de Jong, Andrea E; Weersma, Rinse K; Wilson, David C; Parkes, Miles; Vermeire, Severine; Rioux, John D; Mansfield, John; Silverberg, Mark S; Radford-Smith, Graham; McGovern, Dermot P B; Barrett, Jeffrey C; Lees, Charlie W

    2016-01-01

    Summary Background Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases. Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34 819 patients (19 713 with Crohn's disease, 14 683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype–phenotype associations across 156 154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile. Findings After quality control, the primary analysis included 29 838 patients (16 902 with Crohn's disease, 12 597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for

  13. A new system identification approach to identify genetic variants in sequencing studies for a binary phenotype.

    Science.gov (United States)

    Kang, Guolian; Bi, Wenjian; Zhao, Yanlong; Zhang, Ji-Feng; Yang, Jun J; Xu, Heng; Loh, Mignon L; Hunger, Stephen P; Relling, Mary V; Pounds, Stanley; Cheng, Cheng

    2014-01-01

    We propose in this paper a set-valued (SV) system model, which is a generalized form of logistic (LG) and Probit (Probit) regression, to be considered as a method for discovering genetic variants, especially rare genetic variants in next-generation sequencing studies, for a binary phenotype. We propose a new SV system identification method to estimate all underlying key system parameters for the Probit model and compare it with the LG model in the setting of genetic association studies. Across an extensive series of simulation studies, the Probit method maintained type I error control and had similar or greater power than the LG method, which is robust to different distributions of noise: logistic, normal, or t distributions. Additionally, the Probit association parameter estimate was 2.7-46.8-fold less variable than the LG log-odds ratio association parameter estimate. Less variability in the association parameter estimate translates to greater power and robustness across the spectrum of minor allele frequencies (MAFs), and these advantages are the most pronounced for rare variants. For instance, in a simulation that generated data from an additive logistic model with an odds ratio of 7.4 for a rare single nucleotide polymorphism with a MAF of 0.005 and a sample size of 2,300, the Probit method had 60% power whereas the LG method had 25% power at the α = 10(-6) level. Consistent with these simulation results, the set of variants identified by the LG method was a subset of those identified by the Probit method in two example analyses. Thus, we suggest the Probit method may be a competitive alternative to the LG method in genetic association studies such as candidate gene, genome-wide, or next-generation sequencing studies for a binary phenotype.

  14. A New System Identification Approach to Identifying Genetic Variants in Sequencing Studies for A Binary Phenotype

    Science.gov (United States)

    Kang, Guolian; Bi, Wenjian; Zhao, Yanlong; Zhang, Ji-Feng; Yang, Jun J.; Xu, Heng; Loh, Mignon L.; Hunger, Stephen P.; Relling, Mary V.; Pounds, Stanley; Cheng, Cheng

    2014-01-01

    We propose in this paper a set-valued (SV) system model, which is a generalized form of Logistic (LG) and Probit (Probit) regression, to be considered as a method for discovering genetic variants, especially rare genetic variants in next generation sequencing studies, for a binary phenotype. We propose a new set-valued system identification method to estimate all the underlying key system parameters for the Probit model and compare it with the LG model in the setting of genetic association studies. Across an extensive series of simulation studies, the Probit method maintained Type I error control and had similar or greater power than the LG method which is robust to different distributions of noise: logistic, normal or t distributions. Additionally, the Probit association parameter estimate was 2.7–46.8 fold less variable than the LG log-odds ratio association parameter estimate. Less variability in the association parameter estimate translates to greater power and robustness across the spectrum of minor allele frequencies (MAFs), and these advantages are the most pronounced for rare variants. For instance, in a simulation that generated data from an additive logistic model with odds ratio of 7.4 for a rare single nucleotide polymorphism with a MAF of 0.005 and a sample size of 2300, the Probit method had 60% power whereas the LG method had 25% power at the α=10−6 level. Consistent with these simulation results, the set of variants identified by the LG method was a subset of those identified by the Probit method in two example analyses. Thus, we suggest the Probit method may be a competitive alternative to the LG method in genetic association studies such as candidate gene, genome-wide, or next generation sequencing studies for a binary phenotype. PMID:25096228

  15. Subspecies delineation amid phenotypic, geographic and genetic discordance in a songbird.

    Science.gov (United States)

    Walsh, Jennifer; Lovette, Irby J; Winder, Virginia; Elphick, Chris S; Olsen, Brian J; Shriver, Gregory; Kovach, Adrienne I

    2017-03-01

    Understanding the processes that drive divergence within and among species is a long-standing goal in evolutionary biology. Traditional approaches to assessing differentiation rely on phenotypes to identify intra- and interspecific variation, but many species express subtle morphological gradients in which boundaries among forms are unclear. This intraspecific variation may be driven by differential adaptation to local conditions and may thereby reflect the evolutionary potential within a species. Here, we combine genetic and morphological data to evaluate intraspecific variation within the Nelson's (Ammodramus nelsoni) and salt marsh (Ammodramus caudacutus) sparrow complex, a group with populations that span considerable geographic distributions and a habitat gradient. We evaluated genetic structure among and within five putative subspecies of A. nelsoni and A. caudacutus using a reduced-representation sequencing approach to generate a panel of 1929 SNPs among 69 individuals. Although we detected morphological differences among some groups, individuals sorted along a continuous phenotypic gradient. In contrast, the genetic data identified three distinct clusters corresponding to populations that inhabit coastal salt marsh, interior freshwater marsh and coastal brackish-water marsh habitats. These patterns support the current species-level recognition but do not match the subspecies-level taxonomy within each species-a finding which may have important conservation implications. We identified loci exhibiting patterns of elevated divergence among and within these species, indicating a role for local selective pressures in driving patterns of differentiation across the complex. We conclude that this evidence for adaptive variation among subspecies warrants the consideration of evolutionary potential and genetic novelty when identifying conservation units for this group. © 2017 John Wiley & Sons Ltd.

  16. Detecting the Common and Individual Effects of Rare Variants on Quantitative Traits by Using Extreme Phenotype Sampling

    Directory of Open Access Journals (Sweden)

    Ya-Jing Zhou

    2016-01-01

    Full Text Available Next-generation sequencing technology has made it possible to detect rare genetic variants associated with complex human traits. In recent literature, various methods specifically designed for rare variants are proposed. These tests can be broadly classified into burden and nonburden tests. In this paper, we take advantage of the burden and nonburden tests, and consider the common effect and the individual deviations from the common effect. To achieve robustness, we use two methods of combining p-values, Fisher’s method and the minimum-p method. In rare variant association studies, to improve the power of the tests, we explore the advantage of the extreme phenotype sampling. At first, we dichotomize the continuous phenotypes before analysis, and the two extremes are treated as two different groups representing a dichotomous phenotype. We next compare the powers of several methods based on extreme phenotype sampling and random sampling. Extensive simulation studies show that our proposed methods by using extreme phenotype sampling are the most powerful or very close to the most powerful one in various settings of true models when the same sample size is used.

  17. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci

    NARCIS (Netherlands)

    Jansen, R.C.; Ooijen, J.W. van; Stam, P.; Lister, C.; Dean, C.

    1995-01-01

    The interval mapping method is widely used for the genetic mapping of quantitative trait loci (QTLs), though true resolution of quantitative variation into QTLs is hampered with this method. Separation of QTLs is troublesome, because single-QTL is models are fitted. Further, genotype-by-environment

  18. Genetic mapping of quantitative trait loci in plants - a novel statistical approach.

    NARCIS (Netherlands)

    Jansen, R.C.

    1995-01-01

    Quantitative variation is a feature of many important traits such as yield, quality and disease resistance in crop plants and farm animals, and diseases in humans. The genetic mapping, understanding and manipulation of quantitative trait loci (QTLs) are therefore of prime importance. Only by using g

  19. Effects of long-term averaging of quantitative blood pressure traits on the detection of genetic associations.

    Science.gov (United States)

    Ganesh, Santhi K; Chasman, Daniel I; Larson, Martin G; Guo, Xiuqing; Verwoert, Germain; Bis, Joshua C; Gu, Xiangjun; Smith, Albert V; Yang, Min-Lee; Zhang, Yan; Ehret, Georg; Rose, Lynda M; Hwang, Shih-Jen; Papanicolau, George J; Sijbrands, Eric J; Rice, Kenneth; Eiriksdottir, Gudny; Pihur, Vasyl; Ridker, Paul M; Vasan, Ramachandran S; Newton-Cheh, Christopher; Raffel, Leslie J; Amin, Najaf; Rotter, Jerome I; Liu, Kiang; Launer, Lenore J; Xu, Ming; Caulfield, Mark; Morrison, Alanna C; Johnson, Andrew D; Vaidya, Dhananjay; Dehghan, Abbas; Li, Guo; Bouchard, Claude; Harris, Tamara B; Zhang, He; Boerwinkle, Eric; Siscovick, David S; Gao, Wei; Uitterlinden, Andre G; Rivadeneira, Fernando; Hofman, Albert; Willer, Cristen J; Franco, Oscar H; Huo, Yong; Witteman, Jacqueline C M; Munroe, Patricia B; Gudnason, Vilmundur; Palmas, Walter; van Duijn, Cornelia; Fornage, Myriam; Levy, Daniel; Psaty, Bruce M; Chakravarti, Aravinda

    2014-07-03

    Blood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged the idea that averaging BP measured across time would improve phenotypic accuracy and thereby increase statistical power to detect genetic associations. We studied systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) averaged over multiple years in 46,629 individuals of European ancestry. We identified 39 trait-variant associations across 19 independent loci (p < 5 × 10(-8)); five associations (in four loci) uniquely identified by our LTA analyses included those of SBP and MAP at 2p23 (rs1275988, near KCNK3), DBP at 2q11.2 (rs7599598, in FER1L5), and PP at 6p21 (rs10948071, near CRIP3) and 7p13 (rs2949837, near IGFBP3). Replication analyses conducted in cohorts with single-visit BP data showed positive replication of associations and a nominal association (p < 0.05). We estimated a 20% gain in statistical power with long-term average (LTA) as compared to single-visit BP association studies. Using LTA analysis, we identified genetic loci influencing BP. LTA might be one way of increasing the power of genetic associations for continuous traits in extant samples for other phenotypes that are measured serially over time. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Integrating Quantitative Genetics and Practical Aspects in a Fish Breeding Network in Denmark

    DEFF Research Database (Denmark)

    Meier, Kristian; Sørensen, Anders Christian; Norberg, Elise;

    simulations are given to show how different practical aspects of a breeding plan can be optimized. By combining quantitative genetic theory with current breeding practice we are able to optimize different breeding plans increasing genetic gain while controlling the level of inbreeding and building up...

  1. Phenotype diversity in type 1 Gaucher disease: discovering the genetic basis of Gaucher disease/hematologic malignancy phenotype by individual genome analysis.

    Science.gov (United States)

    Lo, Sarah M; Choi, Murim; Liu, Jun; Jain, Dhanpat; Boot, Rolf G; Kallemeijn, Wouter W; Aerts, Johannes M F G; Pashankar, Farzana; Kupfer, Gary M; Mane, Shrikant; Lifton, Richard P; Mistry, Pramod K

    2012-05-17

    Gaucher disease (GD), an inherited macrophage glycosphingolipidosis, manifests with an extraordinary variety of phenotypes that show imperfect correlation with mutations in the GBA gene. In addition to the classic manifestations, patients suffer from increased susceptibility to hematologic and nonhematologic malignancies. The mechanism(s) underlying malignancy in GD is not known, but is postulated to be secondary to macrophage dysfunction and immune dysregulation arising from lysosomal accumulation of glucocerebroside. However, there is weak correlation between GD/cancer phenotype and the systemic burden of glucocerebroside-laden macrophages. Therefore, we hypothesized that genetic modifier(s) may underlie the GD/cancer phenotype. In the present study, the genetic basis of GD/T-cell acute lymphoblastic lymphoma in 2 affected siblings was deciphered through genomic analysis. GBA gene sequencing revealed homozygosity for a novel mutation, D137N. Whole-exome capture and massively parallel sequencing combined with homozygosity mapping identified a homozygous novel mutation in the MSH6 gene that leads to constitutional mismatch repair deficiency syndrome and increased cancer risk. Enzyme studies demonstrated that the D137N mutation in GBA is a pathogenic mutation, and immunohistochemistry confirmed the absence of the MSH6 protein. Therefore, precise phenotype annotation followed by individual genome analysis has the potential to identify genetic modifiers of GD, facilitate personalized management, and provide novel insights into disease pathophysiology.

  2. [Study on the molecular genetics basis for one para-Bombay phenotype].

    Science.gov (United States)

    Hong, Xiao-Zhen; Shao, Xiao-Chun; Xu, Xian-Guo; Hu, Qing-Fa; Wu, Jun-Jie; Zhu, Fa-Ming; Fu, Qi-Hua; Yan, Li-Xing

    2005-12-01

    To investigate the molecular genetics basis for one para-Bombay phenotype, the red blood cell phenotype of the proband was characterized by standard serological techniques. Exon 6 and 7 of ABO gene, the entire coding region of FUT1 gene and FUT2 gene were amplified by polymerase chain reaction from genomic DNA of the proband respectively. The PCR products were purified by agarose gels and directly sequenced. The PCR-SSP and genescan were performed to confirm the mutations detected by sequencing. The results showed that the proband ABO genotype was A(102)A(102). Two heterozygous mutations of FUT1 gene, an A to G transition at position 682 and AG deletion at position 547-552 were detected in the proband. A682G could cause transition of Met-->Val at amino acid position 228, AG deletion at position 547-552 caused a reading frame shift and a premature stop codon. The FUT2 genotype was heterozygous for a functional allele Se(357) and a weakly functional allele Se(357), 385 (T/T homozygous at position 357 and A/T heterozygous at 385 position). It is concluded that the compound heterozygous mutation--a novel A682G missense mutation and a 547-552 del AG is the molecular mechanism of this para-Bombay phenotype.

  3. MSH1-induced non-genetic variation provides a source of phenotypic diversity in Sorghum bicolor.

    Directory of Open Access Journals (Sweden)

    Roberto de la Rosa Santamaria

    Full Text Available MutS Homolog 1 (MSH1 encodes a plant-specific protein that functions in mitochondria and chloroplasts. We showed previously that disruption or suppression of the MSH1 gene results in a process of developmental reprogramming that is heritable and non-genetic in subsequent generations. In Arabidopsis, this developmental reprogramming process is accompanied by striking changes in gene expression of organellar and stress response genes. This developmentally reprogrammed state, when used in crossing, results in a range of variation for plant growth potential. Here we investigate the implications of MSH1 modulation in a crop species. We found that MSH1-mediated phenotypic variation in Sorghum bicolor is heritable and potentially valuable for crop breeding. We observed phenotypic variation for grain yield, plant height, flowering time, panicle architecture, and above-ground biomass. Focusing on grain yield and plant height, we found some lines that appeared to respond to selection. Based on amenability of this system to implementation in a range of crops, and the scope of phenotypic variation that is derived, our results suggest that MSH1 suppression provides a novel approach for breeding in crops.

  4. Facial Phenotyping by Quantitative Photography Reflects Craniofacial Morphology Measured on Magnetic Resonance Imaging in Icelandic Sleep Apnea Patients

    Science.gov (United States)

    Sutherland, Kate; Schwab, Richard J.; Maislin, Greg; Lee, Richard W.W.; Benedikstdsottir, Bryndis; Pack, Allan I.; Gislason, Thorarinn; Juliusson, Sigurdur; Cistulli, Peter A.

    2014-01-01

    Study Objectives: (1) To determine whether facial phenotype, measured by quantitative photography, relates to underlying craniofacial obstructive sleep apnea (OSA) risk factors, measured with magnetic resonance imaging (MRI); (2) To assess whether these associations are independent of body size and obesity. Design: Cross-sectional cohort. Setting: Landspitali, The National University Hospital, Iceland. Participants: One hundred forty patients (87.1% male) from the Icelandic Sleep Apnea Cohort who had both calibrated frontal and profile craniofacial photographs and upper airway MRI. Mean ± standard deviation age 56.1 ± 10.4 y, body mass index 33.5 ± 5.05 kg/m2, with on-average severe OSA (apnea-hypopnea index 45.4 ± 19.7 h-1). Interventions: N/A. Measurements and Results: Relationships between surface facial dimensions (photos) and facial bony dimensions and upper airway soft-tissue volumes (MRI) was assessed using canonical correlation analysis. Photo and MRI craniofacial datasets related in four significant canonical correlations, primarily driven by measurements of (1) maxillary-mandibular relationship (r = 0.8, P photography and MRI. This study confirms that facial photographic phenotype reflects underlying aspects of craniofacial skeletal abnormalities associated with OSA. Therefore, facial photographic phenotyping may be a useful tool to assess intermediate phenotypes for OSA, particularly in large-scale studies. Citation: Sutherland K, Schwab RJ, Maislin G, Lee RW, Benedikstdsottir B, Pack AI, Gislason T, Juliusson S, Cistulli PA. Facial phenotyping by quantitative photography reflects craniofacial morphology measured on magnetic resonance imaging in icelandic sleep apnea patients. SLEEP 2014;37(5):959-968. PMID:24790275

  5. Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy.

    Science.gov (United States)

    Beasley, David W C; McAuley, Alexander J; Bente, Dennis A

    2015-03-01

    Yellow fever virus (YFV) is the prototypical hemorrhagic fever virus, yet our understanding of its phenotypic diversity and any molecular basis for observed differences in disease severity and epidemiology is lacking, when compared to other arthropod-borne and haemorrhagic fever viruses. This is, in part, due to the availability of safe and effective vaccines resulting in basic YFV research taking a back seat to those viruses for which no effective vaccine occurs. However, regular outbreaks occur in endemic areas, and the spread of the virus to new, previously unaffected, areas is possible. Analysis of isolates from endemic areas reveals a strong geographic association for major genotypes, and recent epidemics have demonstrated the emergence of novel sequence variants. This review aims to outline the current understanding of YFV genetic and phenotypic diversity and its sources, as well as the available animal models for characterizing these differences in vivo. The consequences of genetic diversity for detection and diagnosis of yellow fever and development of new vaccines and therapeutics are discussed.

  6. Symptom dimensions as alternative phenotypes to address genetic heterogeneity in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Labbe, Aurélie; Bureau, Alexandre; Moreau, Isabel; Roy, Marc-André; Chagnon, Yvon; Maziade, Michel; Merette, Chantal

    2012-11-01

    This study introduces a novel way to use the lifetime ratings of symptoms of psychosis, mania and depression in genetic linkage analysis of schizophrenia (SZ) and bipolar disorder (BP). It suggests using a latent class model developed for family data to define more homogeneous symptom subtypes that are influenced by a smaller number of genes that will thus be more easily detectable. In a two-step approach, we proposed: (i) to form homogeneous clusters of subjects based on the symptom dimensions and (ii) to use the information from these homogeneous clusters in linkage analysis. This framework was applied to a unique SZ and BP sample composed of 1278 subjects from 48 large kindreds from the Eastern Quebec population. The results suggest that our strategy has the power to increase linkage signals previously obtained using the diagnosis as phenotype and allows for a better characterization of the linkage signals. This is the case for a linkage signal, which we formerly obtained in chromosome 13q and enhanced using the dimension mania. The analysis also suggests that the methods may detect new linkage signals not previously uncovered by using diagnosis alone, as in chromosomes 2q (delusion), 15q (bizarre behavior), 7p (anhedonia) and 9q (delusion). In the case of the 15q and 2q region, the results coincide with linkage signals detected in other studies. Our results support the view that dissecting phenotypic heterogeneity by modeling symptom dimensions may provide new insights into the genetics of SZ and BP.

  7. Genetic heterogeneity among slow acetylator N-acetyltransferase 2 phenotypes in cryopreserved human hepatocytes.

    Science.gov (United States)

    Doll, Mark A; Hein, David W

    2017-07-01

    Genetic polymorphisms in human N-acetyltransferase 2 (NAT2) modify the metabolism of numerous drugs and carcinogens. These genetic polymorphisms modify both drug efficacy and toxicity and cancer risk associated with carcinogen exposure. Previous studies have suggested phenotypic heterogeneity among different NAT2 slow acetylator genotypes. NAT2 phenotype was investigated in vitro and in situ in samples of human hepatocytes obtained from various NAT2 slow and intermediate NAT2 acetylator genotypes. NAT2 gene dose response (NAT2*5B/*5B > NAT2*5B/*6A > NAT2*6A/*6A) was observed towards the N-acetylation of the NAT2-specific drug sulfamethazine by human hepatocytes both in vitro and in situ. N-acetylation of 4-aminobiphenyl, an arylamine carcinogen substrate for both N-acetyltransferase 1 and NAT2, showed the same trend both in vitro and in situ although the differences were not significant (p > 0.05). The N-acetylation of the N-acetyltransferase 1-specific substrate p-aminobenzoic acid did not follow this trend. In comparisons of NAT2 intermediate acetylator genotypes, differences in N-acetylation between NAT2*4/*5B and NAT2*4/*6B hepatocytes were not observed in vitro or in situ towards any of these substrates. These results further support phenotypic heterogeneity among NAT2 slow acetylator genotypes, consistent with differential risks of drug failure or toxicity and cancer associated with carcinogen exposure.

  8. Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats

    Directory of Open Access Journals (Sweden)

    Nijman Isaäc J

    2010-05-01

    Full Text Available Abstract Background Genetic variation in the regulatory region of the human serotonin transporter gene (SLC6A4 has been shown to affect brain functionality and personality. However, large heterogeneity in its biological effects is observed, which is at least partially due to genetic modifiers. To gain insight into serotonin transporter (SERT-specific genetic modifiers, we studied an intercross between the Wistar SERT-/- rat and the behaviorally and genetically divergent Brown Norway rat, and performed a QTL analysis. Results In a cohort of >150 intercross SERT-/- and control (SERT+/+ rats we characterized 12 traits that were previously associated with SERT deficiency, including activity, exploratory pattern, cocaine-induced locomotor activity, and abdominal and subcutaneous fat. Using 325 genetic markers, 10 SERT-/--specific quantitative trait loci (QTLs for parameters related to activity and exploratory pattern (Chr.1,9,11,14, and cocaine-induced anxiety and locomotor activity (Chr.5,8 were identified. No significant QTLs were found for fat parameters. Using in silico approaches we explored potential causal genes within modifier QTL regions and found interesting candidates, amongst others, the 5-HT1D receptor (Chr. 5, dopamine D2 receptor (Chr. 8, cannabinoid receptor 2 (Chr. 5, and genes involved in fetal development and plasticity (across chromosomes. Conclusions We anticipate that the SERT-/--specific QTLs may lead to the identification of new modulators of serotonergic signaling, which may be targets for pharmacogenetic and therapeutic approaches.

  9. Contribution and perspectives of quantitative genetics to plant breeding in Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Henrique Ribeiro Barrozo Toledo

    2012-12-01

    Full Text Available The purpose of this article is to show how quantitative genetics has contributed to the huge genetic progress obtained inplant breeding in Brazil in the last forty years. The information obtained through quantitative genetics has given Brazilian breedersthe possibility of responding to innumerable questions in their work in a much more informative way, such as the use or not of hybridcultivars, which segregating population to use, which breeding method to employ, alternatives for improving the efficiency of selectionprograms, and how to handle the data of progeny and/or cultivars evaluations to identify the most stable ones and thus improverecommendations.

  10. Genetic background of nonmutant Piebald-Virol-Glaxo rats does not influence nephronophthisis phenotypes

    Directory of Open Access Journals (Sweden)

    Yengkopiong JP

    2013-02-01

    Full Text Available Jada Pasquale Yengkopiong, Joseph Daniel Wani LakoJohn Garang Memorial University of Science and Technology, Faculty of Science and Technology, Bor, Jonglei State, Republic of South SudanBackground: Nephronophthisis (NPHP, which affects multiple organs, is a hereditary cystic kidney disease (CKD, characterized by interstitial fibrosis and numerous fluid-filled cysts in the kidneys. It is caused by mutations in NPHP genes, which encode for ciliary proteins known as nephrocystins. The disorder affects many people across the world and leads to end-stage renal disease. The aim of this study was to determine if the genetic background of the nonmutant female Piebald-Virol-Glaxo (PVG/Seac-/- rat influences phenotypic inheritance of NPHP from mutant male Lewis polycystic kidney rats.Methods: Mating experiments were performed between mutant Lewis polycystic kidney male rats with CKD and nonmutant PVG and Wistar Kyoto female rats without cystic kidney disease to raise second filial and backcross 1 progeny, respectively. Rats that developed cystic kidneys were identified. Systolic blood pressure was determined in each rat at 12 weeks of age using the tail and cuff method. After euthanasia, blood samples were collected and chemistry was determined. Histological examination of the kidneys, pancreas, and liver of rats with and without cystic kidney disease was performed.Results: It was established that the genetic background of nonmutant female PVG rats did not influence the phenotypic inheritance of the CKD from mutant male Lewis polycystic kidney rats. The disease arose as a result of a recessive mutation in a single gene (second filial generation, CKD = 13, non-CKD = 39, Χ2 = 0.00, P ≥ 0.97; backcross 1 generation, CKD = 67, non-CKD = 72, Χ2 = 0.18, P > 0.05 and inherited as NPHP. The rats with CKD developed larger fluid-filled cystic kidneys, higher systolic blood pressure, and anemia, but there were no extrarenal cysts and disease did not lead to

  11. Skin-Based DNA Repair Phenotype for Cancer Risk from GCR in Genetically Diverse Populations

    Science.gov (United States)

    Guiet, Elodie; Viger, Louise; Snijders, Antoine; Costes, Sylvian V.

    2017-01-01

    Predicting cancer risk associated with cosmic radiation remains a mission-critical challenge for NASA radiation health scientists and mission planners. Epidemiological data are lacking and risk methods do not take individual radiation sensitivity into account. In our approach we hypothesize that genetic factors strongly influence risk of cancer from space radiation and that biomarkers reflecting DNA damage and cell death are ideal tools to predict risk and monitor potential health effects post-flight. At this workshop, we will be reporting the work we have done over the first 9 months of this proposal. Skin cells from 15 different strains of mice already characterized for radiation-induced cancer sensitivity (B6C3F; BALB/cByJ, C57BL/6J, CBA/CaJ, C3H/HeMsNrsf), and 10 strains from the DOE collaborative cross-mouse model were expanded from ear biopsy and cultivated until Passage 3. On average, 3 males and 3 females for each strain were expanded and frozen for further characterization at the NSRL beam line during the NSRL16C run for three LET (350 MeV/n Si, 350 MeV/n Ar and 600 MeV/n Fe) and two ion fluences (1 and 3 particles per cell). The mice work has established new metrics for the usage of Radiation Induced Foci as a marker for various aspect of DNA repair deficiencies. In year 2, we propose to continue characterization of the mouse lines with low LET to identify loci specific to high- versus low- LET and establish genetic linkage for the various DNA repair biomarkers. Correlation with cancer risk from each animals strain and gender will also be investigated. On the human side, we will start characterizing the DNA damage response induced ex-vivo in 200 human's blood donors for radiation sensitivity with a tentative 500 donors by the end of this project. All ex-vivo phenotypic data will be correlated to genetic characterization of each individual human donors using SNP arrays characterization as done for mice. Similarly, ex-vivo phenotypic features from mice will

  12. Genetic mapping of quantitative trait loci (QTLs) with effects on ...

    African Journals Online (AJOL)

    SERVER

    2008-02-05

    Feb 5, 2008 ... 2Department of Crop Protection and Environmental Biology, ... identify genetic loci associated with the expression of resistance to FTh. ... indicated that resistance to FTh may be controlled by ... population or to pyramid resistance into new populations. .... environment and human health (Eigenbrode and.

  13. Genetic and phenotypic characterization of manufacturing seeds for a tetravalent dengue vaccine (DENVax.

    Directory of Open Access Journals (Sweden)

    Claire Y-H Huang

    Full Text Available BACKGROUND: We have developed a manufacturing strategy that can improve the safety and genetic stability of recombinant live-attenuated chimeric dengue vaccine (DENVax viruses. These viruses, containing the pre-membrane (prM and envelope (E genes of dengue serotypes 1-4 in the replicative background of the attenuated dengue-2 PDK-53 vaccine virus candidate, were manufactured under cGMP. METHODOLOGY/PRINCIPAL FINDINGS: After deriving vaccine viruses from RNA-transfected Vero cells, six plaque-purified viruses for each serotype were produced. The plaque-purified strains were then analyzed to select one stock for generation of the master seed. Full genetic and phenotypic characterizations of the master virus seeds were conducted to ensure these viruses retained the previously identified attenuating determinants and phenotypes of the vaccine viruses. We also assessed vector competence of the vaccine viruses in sympatric (Thai Aedes aegypti mosquito vectors. CONCLUSION/SIGNIFICANCE: All four serotypes of master vaccine seeds retained the previously defined safety features, including all three major genetic loci of attenuation, small plaques, temperature sensitivity in mammalian cells, reduced replication in mosquito cell cultures, and reduced neurovirulence in new-born mice. In addition, the candidate vaccine viruses demonstrated greatly reduced infection and dissemination in Aedes aegypti mosquitoes, and are not likely to be transmissible by these mosquitoes. This manufacturing strategy has successfully been used to produce the candidate tetravalent vaccine, which is currently being tested in human clinical trials in the United States, Central and South America, and Asia.

  14. Genetic and phenotypically flexible components of seasonal variation in immune function.

    Science.gov (United States)

    Versteegh, M A; Helm, B; Kleynhans, E J; Gwinner, E; Tieleman, B I

    2014-05-01

    Animals cope with seasonal variation in environmental factors by adjustments of physiology and life history. When seasonal variation is partly predictable, such adjustments can be based on a genetic component or be phenotypically flexible. Animals have to allocate limited resources over different demands, including immune function. Accordingly, immune traits could change seasonally, and such changes could have a genetic component that differs between environments. We tested this hypothesis in genotypically distinct groups of a widespread songbird, the stonechat (Saxicola torquata). We compared variation in immunity during 1 year in long-distance migrants, short-distance migrants, tropical residents and hybrids in a common garden environment. Additionally, we investigated phenotypically flexible responses to temperature by applying different temperature regimes to one group. We assessed constitutive immunity by measuring hemagglutination, hemolysis, haptoglobin and bactericidal ability against Escherichia coli and Staphylococcus aureus. Genotypic groups differed in patterns of variation of all measured immune indices except haptoglobin. Hybrids differed from, but were rarely intermediate to, parental subspecies. Temperature treatment only influenced patterns of hemolysis and bactericidal ability against E. coli. We conclude that seasonal variation in constitutive immunity has a genetic component, that heredity does not follow simple Mendelian rules, and that some immune measures are relatively rigid while others are more flexible. Furthermore, our results support the idea that seasonal variability in constitutive immunity is associated with variability in environment and annual-cycle demands. This study stresses the importance of considering seasonal variation in immune function in relation to the ecology and life history of the organism of interest.

  15. The genetics of phenotypic plasticity. XI. Joint evolution of plasticity and dispersal rate.

    Science.gov (United States)

    Scheiner, Samuel M; Barfield, Michael; Holt, Robert D

    2012-08-01

    In a spatially heterogeneous environment, the rate at which individuals move among habitats affects whether selection favors phenotypic plasticity or genetic differentiation, with high dispersal rates favoring trait plasticity. Until now, in theoretical explorations of plasticity evolution, dispersal rate has been treated as a fixed, albeit probabilistic, characteristic of a population, raising the question of what happens when the propensity to disperse and trait plasticity are allowed to evolve jointly. We examined the effects of their joint evolution on selection for plasticity using an individual-based computer simulation model. In the model, the environment consisted of a linear gradient of 50 demes with dispersal occurring either before or after selection. Individuals consisted of loci whose phenotypic expression either are affected by the environment (plastic) or are not affected (nonplastic), plus a locus determining the propensity to disperse. When dispersal rate and trait plasticity evolve jointly, the system tends to dichotomous outcomes of either high trait plasticity and high dispersal, or low trait plasticity and low dispersal. The outcome strongly depended on starting conditions, with high trait plasticity and dispersal favored when the system started at high values for either trait plasticity or dispersal rate (or both). Adding a cost of plasticity tended to drive the system to genetic differentiation, although this effect also depended on initial conditions. Genetic linkage between trait plasticity loci and dispersal loci further enhanced this strong dichotomy in evolutionary outcomes. All of these effects depended on organismal life history pattern, and in particular whether selection occurred before or after dispersal. These results can explain why adaptive trait plasticity is less common than might be expected.

  16. Disentangling the role of phenotypic plasticity and genetic divergence in contemporary ecotype formation during a biological invasion.

    Science.gov (United States)

    Lucek, Kay; Sivasundar, Arjun; Seehausen, Ole

    2014-09-01

    The occurrence of contemporary ecotype formation through adaptive divergence of populations within the range of an invasive species typically requires standing genetic variation but can be facilitated by phenotypic plasticity. The relative contributions of both of these to adaptive trait differentiation have rarely been simultaneously quantified in recently diverging vertebrate populations. Here we study a case of intraspecific divergence into distinct lake and stream ecotypes of threespine stickleback that evolved in the past 140 years within the invasive range in Switzerland. Using a controlled laboratory experiment with full-sib crosses and treatments mimicking a key feature of ecotypic niche divergence, we test if the phenotypic divergence that we observe in the wild results from phenotypic plasticity or divergent genetic predisposition. Our experimental groups show qualitatively similar phenotypic divergence as those observed among wild adults. The relative contribution of plasticity and divergent genetic predisposition differs among the traits studied, with traits related to the biomechanics of feeding showing a stronger genetic predisposition, whereas traits related to locomotion are mainly plastic. These results implicate that phenotypic plasticity and standing genetic variation interacted during contemporary ecotype formation in this case.

  17. Genetic toxicology at the crossroads-from qualitative hazard evaluation to quantitative risk assessment.

    Science.gov (United States)

    White, Paul A; Johnson, George E

    2016-05-01

    Applied genetic toxicology is undergoing a transition from qualitative hazard identification to quantitative dose-response analysis and risk assessment. To facilitate this change, the Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC) sponsored a workshop held in Lancaster, UK on July 10-11, 2014. The event included invited speakers from several institutions and the contents was divided into three themes-1: Point-of-departure Metrics for Quantitative Dose-Response Analysis in Genetic Toxicology; 2: Measurement and Estimation of Exposures for Better Extrapolation to Humans and 3: The Use of Quantitative Approaches in Genetic Toxicology for human health risk assessment (HHRA). A host of pertinent issues were discussed relating to the use of in vitro and in vivo dose-response data, the development of methods for in vitro to in vivo extrapolation and approaches to use in vivo dose-response data to determine human exposure limits for regulatory evaluations and decision-making. This Special Issue, which was inspired by the workshop, contains a series of papers that collectively address topics related to the aforementioned themes. The Issue includes contributions that collectively evaluate, describe and discuss in silico, in vitro, in vivo and statistical approaches that are facilitating the shift from qualitative hazard evaluation to quantitative risk assessment. The use and application of the benchmark dose approach was a central theme in many of the workshop presentations and discussions, and the Special Issue includes several contributions that outline novel applications for the analysis and interpretation of genetic toxicity data. Although the contents of the Special Issue constitutes an important step towards the adoption of quantitative methods for regulatory assessment of genetic toxicity, formal acceptance of quantitative methods for HHRA and regulatory decision-making will require consensus regarding the

  18. Genetic, phenotypic and environmental relationships between sow body weight and sow productivity traits.

    Science.gov (United States)

    Ferguson, P W; Harvey, W R; Irvin, K M

    1985-02-01

    Yorkshire and Duroc litter records were used to estimate genetic, phenotypic and environmental relationships between sow body weight and sow productivity traits. Two data sets with two subsets each were used to complete this study; 663 and 460 records included litter traits only, while 522 and 359 records also contained sow body weight for Yorkshires and Durocs, respectively. Heritability estimates for number born (NB), number born alive (NBA), total birth weight of live pigs (BWLIT), litter weight at 3 wk (WT3WK), sow weight at parturition (WTDAMPAR) and sow weight at weaning (WTDAMWN) were .24 +/- .14, .21 +/- .14, .42 +/- .16, .19 +/- .14, .72 +/- .21 and .42 +/- .18, respectively, for Yorkshires and .05 +/- .10, .04 +/- .10, .21 +/- .14, .25 +/- .15, .85 +/- .25 and .87 +/- .26, respectively, for the Durocs. Repeatability estimates for NB, NBA, BWLIT, WT3WK, WTDAMPAR and WTDAMWN were .13 +/- .06, .17 +/- .06, .27 +/- .06, .13 +/- .06, .64 +/- .05 and .54 +/- .05, respectively, for Yorkshires and .17 +/- .06, .21 +/- .06, .14 +/- .06, .17 +/- .06, .28 +/- .07 and .39 +/- .07, respectively, for Durocs. Genetic correlations among litter traits were high and positive in the Yorkshire data. Genetic correlations between NBA and WTDAMPAR, NBA and WTDAMWN, WT3WK and WTDAMPAR, and WT3WK and WTDAMWN were .37 +/- .25, .18 +/- .34, .60 +/- .29 and .29 +/- .45, respectively, in the Yorkshire data. Genetic correlations among litter traits in the Duroc analysis had large standard errors but were generally similar to the estimates obtained from the Yorkshire data. The genetic correlation between WTDAMPAR and WTDAMWN was .93 +/- .09 for Yorkshire sows. The primary conclusion from this study is that as selection increases sow productivity traits, there will be a positive correlated response in sow body weight.

  19. Systems genetics of liver fibrosis: identification of fibrogenic and expression quantitative trait loci in the BXD murine reference population.

    Directory of Open Access Journals (Sweden)

    Rabea A Hall

    Full Text Available The progression of liver fibrosis in response to chronic injury varies considerably among individual patients. The underlying genetics is highly complex due to large numbers of potential genes, environmental factors and cell types involved. Here, we provide the first toxicogenomic analysis of liver fibrosis induced by carbon tetrachloride in the murine 'genetic reference panel' of recombinant inbred BXD lines. Our aim was to define the core of risk genes and gene interaction networks that control fibrosis progression. Liver fibrosis phenotypes and gene expression profiles were determined in 35 BXD lines. Quantitative trait locus (QTL analysis identified seven genomic loci influencing fibrosis phenotypes (pQTLs with genome-wide significance on chromosomes 4, 5, 7, 12, and 17. Stepwise refinement was based on expression QTL mapping with stringent selection criteria, reducing the number of 1,351 candidate genes located in the pQTLs to a final list of 11 cis-regulated genes. Our findings demonstrate that the BXD reference population represents a powerful experimental resource for shortlisting the genes within a regulatory network that determine the liver's vulnerability to chronic injury.

  20. Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data

    OpenAIRE

    Sourav Bandyopadhyay; Ryan Kelley; Krogan, Nevan J.; Trey Ideker

    2008-01-01

    Recently, a number of advanced screening technologies have allowed for the comprehensive quantification of aggravating and alleviating genetic interactions among gene pairs. In parallel, TAP-MS studies (tandem affinity purification followed by mass spectroscopy) have been successful at identifying physical protein interactions that can indicate proteins participating in the same molecular complex. Here, we propose a method for the joint learning of protein complexes and their functional relat...

  1. The role of inflammatory pathway genetic variation on maternal metabolic phenotypes during pregnancy.

    Directory of Open Access Journals (Sweden)

    Margrit Urbanek

    Full Text Available BACKGROUND: Since mediators of inflammation are associated with insulin resistance, and the risk of developing diabetes mellitus and gestational diabetes, we hypothesized that genetic variation in members of the inflammatory gene pathway impact glucose levels and related phenotypes in pregnancy. We evaluated this hypothesis by testing for association between genetic variants in 31 inflammatory pathway genes in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO cohort, a large multiethnic multicenter study designed to address the impact of glycemia less than overt diabetes on pregnancy outcome. RESULTS: Fasting, 1-hour, and 2-hour glucose, fasting and 1-hour C-peptide, and HbA1c levels were measured in blood samples obtained from HAPO participants during an oral glucose tolerance test at 24-32 weeks gestation. We tested for association between 458 SNPs mapping to 31 genes in the inflammatory pathway and metabolic phenotypes in 3836 European ancestry and 1713 Thai pregnant women. The strongest evidence for association was observed with TNF alpha and HbA1c (rs1052248; 0.04% increase per allele C; p-value = 4.4×10(-5, RETN and fasting plasma glucose (rs1423096; 0.7 mg/dl decrease per allele A; p-value = 1.1×10(-4, IL8 and 1 hr plasma glucose (rs2886920; 2.6 mg/dl decrease per allele T; p-value = 1.3×10(-4, ADIPOR2 and fasting C-peptide (rs2041139; 0.55 ug/L decrease per allele A; p-value = 1.4×10(-4, LEPR and 1-hour C-peptide (rs1171278; 0.62 ug/L decrease per allele T; p-value = 2.4×10(-4, and IL6 and 1-hour plasma glucose (rs6954897; -2.29 mg/dl decrease per allele G, p-value = 4.3×10(-4. CONCLUSIONS: Based on the genes surveyed in this study the inflammatory pathway is unlikely to have a strong impact on maternal metabolic phenotypes in pregnancy although variation in individual members of the pathway (e.g. RETN, IL8, ADIPOR2, LEPR, IL6, and TNF alpha, may contribute to metabolic phenotypes in pregnant women.

  2. Combined use of phenotypic and genotypic information in sampling animalsfor genotyping in detection of quantitative trait loci

    DEFF Research Database (Denmark)

    Ansari-Mahyari, S; Berg, P

    2008-01-01

    Conventional selective genotyping which is using the extreme phenotypes (EP) was compared with alternative criteria to find the most informative animals for genotyping with respects to mapping quantitative trait loci (QTL). Alternative sampling strategies were based on minimizing the sampling error...... of the estimated QTL effect (MinERR) and maximizing likelihood ratio test (MaxLRT) using both phenotypic and genotypic information. In comparison, animals were randomly genotyped either within or across families. One hundred data sets were simulated each with 30 half-sib families and 120 daughters per family....... The strategies were compared in these datasets with respect to estimated effect and position of a QTL within a previously defined genomic region at genotyping 10, 20 or 30% of the animals. Combined linkage disequilibrium linkage analysis (LDLA) was applied in a variance component approach. Power to detect QTL...

  3. Genetic variation in variability: Phenotypic variability of fledging weight and its evolution in a songbird population.

    Science.gov (United States)

    Mulder, Han A; Gienapp, Philip; Visser, Marcel E

    2016-09-01

    Variation in traits is essential for natural selection to operate and genetic and environmental effects can contribute to this phenotypic variation. From domesticated populations, we know that families can differ in their level of within-family variance, which leads to the intriguing situation that within-family variance can be heritable. For offspring traits, such as birth weight, this implies that within-family variance in traits can vary among families and can thus be shaped by natural selection. Empirical evidence for this in wild populations is however lacking. We investigated whether within-family variance in fledging weight is heritable in a wild great tit (Parus major) population and whether these differences are associated with fitness. We found significant evidence for genetic variance in within-family variance. The genetic coefficient of variation (GCV) was 0.18 and 0.25, when considering fledging weight a parental or offspring trait, respectively. We found a significant quadratic relationship between within-family variance and fitness: families with low or high within-family variance had lower fitness than families with intermediate within-family variance. Our results show that within-family variance can respond to selection and provides evidence for stabilizing selection on within-family variance. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. Behavioral phenotypes of genetic syndromes with intellectual disability: comparison of adaptive profiles.

    Science.gov (United States)

    Di Nuovo, Santo; Buono, Serafino

    2011-10-30

    The study of distinctive and consistent behaviors in the most common genetic syndromes with intellectual disability is useful to explain abnormalities or associated psychiatric disorders. The behavioral phenotypes revealed outcomes totally or partially specific for each syndrome. The aim of our study was to compare similarities and differences in the adaptive profiles of the five most frequent genetic syndromes, i.e. Down syndrome, Williams syndrome, Angelman syndrome, Prader-Willi syndrome, and Fragile-X syndrome (fully mutated), taking into account the relation with chronological age and the overall IQ level. The research was carried out using the Vineland Adaptive Behavior Scale (beside the Wechsler Intelligence scales to obtain IQ) with a sample of 181 persons (107 males and 74 females) showing genetic syndromes and mental retardation. Syndrome-based groups were matched for chronological age and mental age (excluding the Angelman group, presenting with severe mental retardation). Similarities and differences in the adaptive profiles are described, relating them to IQs and maladaptive behaviors. The results might be useful in obtaining a global index of adjustment for the assessment of intellectual disability level as well as for educational guidance and rehabilitative plans. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Temporal patterns of genetic and phenotypic variation in the epidemiologically important drone fly, Eristalis tenax.

    Science.gov (United States)

    Francuski, Lj; Matić, I; Ludoški, J; Milankov, V

    2011-06-01

    Eristalis tenax L. (Diptera: Syrphidae) is commonly known as the drone fly (adult) or rat-tailed maggot (immature). Both adults and immature stages are identified as potential mechanical vectors of mycobacterial pathogens, and early-stage maggots cause accidental myiasis. We compared four samples from Mount Fruška Gora, Serbia, with the aim of obtaining insights into the temporal variations and sexual dimorphism in the species. This integrative approach was based on allozyme loci, morphometric wing parameters (shape and size) and abdominal colour patterns. Consistent sexual dimorphism was observed, indicating that male specimens had lighter abdomens and smaller and narrower wings than females. The distribution of genetic diversity at polymorphic loci indicated genetic divergence among collection dates. Landmark-based geometric morphometrics revealed, contrary to the lack of divergence in wing size, significant wing shape variation throughout the year. In addition, temporal changes in the frequencies of the abdominal patterns observed are likely to relate to the biology of the species and ecological factors in the locality. Hence, the present study expands our knowledge of the genetic diversity and phenotypic plasticity of E. tenax. The quantification of such variability represents a step towards the evaluation of the adaptive potential of this species of medical and epidemiological importance.

  6. The W303 genetic background affects the isw2 delta mutant phenotype in Saccharomyces cerevisiae.

    Science.gov (United States)

    Trachtulcová, P; Frýdlová, I; Janatová, I; Dorosh, A; Hasek, J

    2003-01-01

    We performed detailed phenotypic analysis of the isw2 delta strains of the W303 genetic background and compared its results with those obtained previously in BY-derived genetic background. Shmoolike morphology was observed in the isw2 delta strain of alpha-mating type of the BY strains, but not in its W303-derived counterpart. On the other hand, derepression of a-specific genes in the isw2 delta (MAT alpha) strain was observed in both genetic backgrounds, although to a different extent. Unlike in BY-derived strain hyperactivation of the Ras2/cAMP pathway reduced invasiveness of the isw2 delta strain (MAT alpha) of the W303 background. Sensitivity to Calcofluor White indicating a cell wall-integrity defect was significantly increased in the isw2 delta strains of the W303 background in contrast to BY-derived strains. Our data indicate that the effects of the isw2 deletion strongly depend on the background in which the deletion, is made.

  7. Identification of quantitative genetic components of fitness variation in farmed, hybrid and native salmon in the wild.

    Science.gov (United States)

    Besnier, F; Glover, K A; Lien, S; Kent, M; Hansen, M M; Shen, X; Skaala, Ø

    2015-07-01

    Feral animals represent an important problem in many ecosystems due to interbreeding with wild conspecifics. Hybrid offspring from wild and domestic parents are often less adapted to local environment and ultimately, can reduce the fitness of the native population. This problem is an important concern in Norway, where each year, hundreds of thousands of farm Atlantic salmon escape from fish farms. Feral fish outnumber wild populations, leading to a possible loss of local adaptive genetic variation and erosion of genetic structure in wild populations. Studying the genetic factors underlying relative performance between wild and domesticated conspecific can help to better understand how domestication modifies the genetic background of populations, and how it may alter their ability to adapt to the natural environment. Here, based upon a large-scale release of wild, farm and wild x farm salmon crosses into a natural river system, a genome-wide quantitative trait locus (QTL) scan was performed on the offspring of 50 full-sib families, for traits related to fitness (length, weight, condition factor and survival). Six QTLs were detected as significant contributors to the phenotypic variation of the first three traits, explaining collectively between 9.8 and 14.8% of the phenotypic variation. The seventh QTL had a significant contribution to the variation in survival, and is regarded as a key factor to understand the fitness variability observed among salmon in the river. Interestingly, strong allelic correlation within one of the QTL regions in farmed salmon might reflect a recent selective sweep due to artificial selection.

  8. Phenotypic, functional, and quantitative characterization of canine peripheral blood monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    R Bueno

    2005-08-01

    Full Text Available The yield as well as phenotypic and functional parameters of canine peripheral blood monocyte-derived macrophages were analyzed. The cells that remained adherent to Teflon after 10 days of culture had high phagocytic activity when inoculated with Leishmania chagasi. Flow cytometric analysis demonstrated that more than 80% of cultured cells were positive for the monocyte/macrophage marker CD14.

  9. Identification of Quantitative Trait Loci for Fibrin Clot Phenotypes. The EuroCLOT Study

    DEFF Research Database (Denmark)

    Williams, Frances M K; Carter, Angela M; Kato, Bernet;

    2009-01-01

    associated with fibrin phenotypes. METHODS AND RESULTS: 447 dizygotic (DZ) and 460 monozygotic (MZ) pairs of healthy UK white female twins and 199 DZ twin pairs from Denmark were studied. D-dimer, an indicator of fibrin turnover, was measured by ELISA and measures of clot formation, morphology, and lysis...

  10. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems

    Science.gov (United States)

    Junker, Astrid; Muraya, Moses M.; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Klukas, Christian; Melchinger, Albrecht E.; Meyer, Rhonda C.; Riewe, David; Altmann, Thomas

    2015-01-01

    Detailed and standardized protocols for plant cultivation in environmentally controlled conditions are an essential prerequisite to conduct reproducible experiments with precisely defined treatments. Setting up appropriate and well defined experimental procedures is thus crucial for the generation of solid evidence and indispensable for successful plant research. Non-invasive and high throughput (HT) phenotyping technologies offer the opportunity to monitor and quantify performance dynamics of several hundreds of plants at a time. Compared to small scale plant cultivations, HT systems have much higher demands, from a conceptual and a logistic point of view, on experimental design, as well as the actual plant cultivation conditions, and the image analysis and statistical methods for data evaluation. Furthermore, cultivation conditions need to be designed that elicit plant performance characteristics corresponding to those under natural conditions. This manuscript describes critical steps in the optimization of procedures for HT plant phenotyping systems. Starting with the model plant Arabidopsis, HT-compatible methods were tested, and optimized with regard to growth substrate, soil coverage, watering regime, experimental design (considering environmental inhomogeneities) in automated plant cultivation and imaging systems. As revealed by metabolite profiling, plant movement did not affect the plants' physiological status. Based on these results, procedures for maize HT cultivation and monitoring were established. Variation of maize vegetative growth in the HT phenotyping system did match well with that observed in the field. The presented results outline important issues to be considered in the design of HT phenotyping experiments for model and crop plants. It thereby provides guidelines for the setup of HT experimental procedures, which are required for the generation of reliable and reproducible data of phenotypic variation for a broad range of applications. PMID

  11. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems.

    Science.gov (United States)

    Junker, Astrid; Muraya, Moses M; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Klukas, Christian; Melchinger, Albrecht E; Meyer, Rhonda C; Riewe, David; Altmann, Thomas

    2014-01-01

    Detailed and standardized protocols for plant cultivation in environmentally controlled conditions are an essential prerequisite to conduct reproducible experiments with precisely defined treatments. Setting up appropriate and well defined experimental procedures is thus crucial for the generation of solid evidence and indispensable for successful plant research. Non-invasive and high throughput (HT) phenotyping technologies offer the opportunity to monitor and quantify performance dynamics of several hundreds of plants at a time. Compared to small scale plant cultivations, HT systems have much higher demands, from a conceptual and a logistic point of view, on experimental design, as well as the actual plant cultivation conditions, and the image analysis and statistical methods for data evaluation. Furthermore, cultivation conditions need to be designed that elicit plant performance characteristics corresponding to those under natural conditions. This manuscript describes critical steps in the optimization of procedures for HT plant phenotyping systems. Starting with the model plant Arabidopsis, HT-compatible methods were tested, and optimized with regard to growth substrate, soil coverage, watering regime, experimental design (considering environmental inhomogeneities) in automated plant cultivation and imaging systems. As revealed by metabolite profiling, plant movement did not affect the plants' physiological status. Based on these results, procedures for maize HT cultivation and monitoring were established. Variation of maize vegetative growth in the HT phenotyping system did match well with that observed in the field. The presented results outline important issues to be considered in the design of HT phenotyping experiments for model and crop plants. It thereby provides guidelines for the setup of HT experimental procedures, which are required for the generation of reliable and reproducible data of phenotypic variation for a broad range of applications.

  12. A unifying study of phenotypic and molecular genetic variability in natural populations of Anadenanthera colubrina var. cebil from Yungas and Paranaense biogeographic provinces in Argentina

    Indian Academy of Sciences (India)

    María Victoria García; Kathleen Prinz; María Eugenia Barrandeguy; Marcos Miretti; Reiner Finkeldey

    2014-04-01

    Anadenanthera colubrina var. cebil is a discontinuously distributed native tree species in South American subtropical forests. Thirteen quantitative traits and eight nuclear microsatellite loci were examined in individuals from two biogeographic provinces of Argentina to determine the number and composition of genetically distinguishable groups of individuals and explore possible spatial patterns of the phenotypic and genetic variability. Means of reproductive traits were higher in the Yungas than in the Paranaense biogeographic province, whereas five out of eight nonreproductive quantitative traits showed higher mean values in the latter. Variance coefficients were moderate, and there were significant differences between and within provinces. Three clusters were defined based on spatial model for cluster membership for quantitative traits. One cluster grouped the individuals from the Paranaense biogeographic province whereas the individuals from the Yungas biogeographic province grouped regarding its population of origin. Parameters of molecular genetic variability showed higher values in the Yungas than in the Paranaense biogeographic province. Observed heterozygosity was lower than expected heterozygosity in both biogeographic provinces, indicating an excess of homozygosity. The homozygosity test by Watterson and the exact test by Slatkin suggested diversifying selection for locus Ac41.1. Bayesian clustering spatial model for microsatellites loci data were performed for both all loci and for all loci excluding locus Ac41.1. In both analyses two clusters were inferred. Analysis of molecular variance revealed similar results for all genotypes and for all genotypes defined excluding locus Ac41.1. Most of the total variance is attributable to genetic variation within clusters. The presence of homogeneous clusters was detected for both the phenotypic and molecular genetic variability. Two Bayesian clustering analyses were performed according to molecular genetic data

  13. Identifying genetic marker sets associated with phenotypes via an efficient adaptive score test

    KAUST Repository

    Cai, T.

    2012-06-25

    In recent years, genome-wide association studies (GWAS) and gene-expression profiling have generated a large number of valuable datasets for assessing how genetic variations are related to disease outcomes. With such datasets, it is often of interest to assess the overall effect of a set of genetic markers, assembled based on biological knowledge. Genetic marker-set analyses have been advocated as more reliable and powerful approaches compared with the traditional marginal approaches (Curtis and others, 2005. Pathways to the analysis of microarray data. TRENDS in Biotechnology 23, 429-435; Efroni and others, 2007. Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS One 2, 425). Procedures for testing the overall effect of a marker-set have been actively studied in recent years. For example, score tests derived under an Empirical Bayes (EB) framework (Liu and others, 2007. Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models. Biometrics 63, 1079-1088; Liu and others, 2008. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC bioinformatics 9, 292-2; Wu and others, 2010. Powerful SNP-set analysis for case-control genome-wide association studies. American Journal of Human Genetics 86, 929) have been proposed as powerful alternatives to the standard Rao score test (Rao, 1948. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Mathematical Proceedings of the Cambridge Philosophical Society, 44, 50-57). The advantages of these EB-based tests are most apparent when the markers are correlated, due to the reduction in the degrees of freedom. In this paper, we propose an adaptive score test which up- or down-weights the contributions from each member of the marker-set based on the Z-scores of

  14. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice.

    Science.gov (United States)

    Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Duan, Lingfeng; Chen, Guoxing; Jiang, Ni; Fang, Wei; Feng, Hui; Xie, Weibo; Lian, Xingming; Wang, Gongwei; Luo, Qingming; Zhang, Qifa; Liu, Qian; Xiong, Lizhong

    2014-10-08

    Even as the study of plant genomics rapidly develops through the use of high-throughput sequencing techniques, traditional plant phenotyping lags far behind. Here we develop a high-throughput rice phenotyping facility (HRPF) to monitor 13 traditional agronomic traits and 2 newly defined traits during the rice growth period. Using genome-wide association studies (GWAS) of the 15 traits, we identify 141 associated loci, 25 of which contain known genes such as the Green Revolution semi-dwarf gene, SD1. Based on a performance evaluation of the HRPF and GWAS results, we demonstrate that high-throughput phenotyping has the potential to replace traditional phenotyping techniques and can provide valuable gene identification information. The combination of the multifunctional phenotyping tools HRPF and GWAS provides deep insights into the genetic architecture of important traits.

  15. Phenotypic and genetic characterization of a novel phenotype in pigs characterized by juvenile hairlessness and age dependent emphysema

    DEFF Research Database (Denmark)

    Bruun, Camilla S.; Jørgensen, Claus B.; Bay, Lene

    2008-01-01

    Background: A pig phenotype characterized by juvenile hairlessness, thin skin and age dependent lung emphysema has been discovered in a Danish pig herd. The trait shows autosomal co-dominant inheritance with all three genotypes distinguishable. Since the phenotype shows resemblance to the integrin...... of musculi arrectores pili, and at puberty or later localized areas of emphysema are seen in the lungs. Comparative mapping predicted that the porcine ITGB6 and ITGAV orthologs map to SSC15. In an experimentall family (n=113), showing segregation of the trait, the candidate region was confirmed by linkage...

  16. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

    DEFF Research Database (Denmark)

    Wolff, Markus; Johannesen, Katrine M; Hedrich, Ulrike B S

    2017-01-01

    for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (...). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients....... In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers...

  17. Multivariate genetic analysis of atopy phenotypes in a selected sample of twins

    DEFF Research Database (Denmark)

    Thomsen, SF; Ulrik, Charlotte Suppli; Kyvik, KO

    2006-01-01

    , airway hyper-responsiveness (AHR), and positive skin prick test (posSPT) in a sample of adult twins. METHODS: Within a sampling frame of 21,162 twin subjects, 20-49 years of age, from the Danish Twin Registry, a total of 575 subjects (256 intact pairs and 63 single twins), who either themselves and....../or their co-twins reported a history of asthma at a nationwide questionnaire survey, were clinically examined. Symptoms of wheeze and rhinitis were obtained by interview; airway responsiveness and skin test reactivity were measured using standard techniques. Correlations in liability between the different...... traits were estimated and latent factor models of genetic and environmental effects were fitted to the observed data using maximum likelihood methods. RESULTS: The various phenotypic correlations between wheeze, rhinitis, AHR and posSPT were all significant and ranged between 0.50 and 0.86. Traits...

  18. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability.

    Science.gov (United States)

    Beckmann, Jacques S; Estivill, Xavier; Antonarakis, Stylianos E

    2007-08-01

    A considerable and unanticipated plasticity of the human genome, manifested as inter-individual copy number variation, has been discovered. These structural changes constitute a major source of inter-individual genetic variation that could explain variable penetrance of inherited (Mendelian and polygenic) diseases and variation in the phenotypic expression of aneuploidies and sporadic traits, and might represent a major factor in the aetiology of complex, multifactorial traits. For these reasons, an effort should be made to discover all common and rare copy number variants (CNVs) in the human population. This will also enable systematic exploration of both SNPs and CNVs in association studies to identify the genomic contributors to the common disorders and complex traits.

  19. Genetic and phenotypic characteristics of importance for clonal success and diversity in Salmonella

    DEFF Research Database (Denmark)

    Müller, Karoline

    dominance of certain clones. These epidemically successful clones are often resistant to antibiotics and associated with severe human illness. They pose a major threat to public health and lead to heavy economic losses. So far, little is known about the environmental and bacterial factors leading......, the isolates were categorized based on their antibiotic resistance pattern into quinolone resistant (Q; at least low level resistance to one fluoroquinolone), multidrug resistant (MR; resistant to four or more antibiotic agents), resistant (R; resistant to less than four antibiotic agents) and sensitive (S...... to freezing nor to dehydration appears to contribute to the epidemic success of Salmonella. MR and Q Salmonella seem to have a virulence or fitness advantage apart from the effect posed by the antibiotic resistance phenotype. Manuscript II describes a study aiming to identify genes and genetic structures in Q...

  20. Heritabilities and genetic and phenotypic correlations of litter uniformity and litter size in Large White sows

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tian; ZHAO Ke-bin; WANG Li-xian; WANG Li-gang; SHI Hui-bi; YAN Hua; ZHANG Long-chao; LIU Xin; PU Lei; LIANG Jing; ZHANG Yue-bo

    2016-01-01

    Litter uniformity, which is usualy represented by within-litter weight coefifcient of variation at birth (CVB), could inlfuence litter performance of sows and the proiftability of pig enterprises. The objective of this study was to characterize CVB and its effect on other reproductive traits in Large White sows. Genetic parameters and genetic correlation of the reproductive traits, including CVB, within-litter weight coefifcient of variation at three weeks (CVT), total number born (TNB), number born alive (NBA), number born dead (NBD), gestation length (GL), piglet mortality at birth (M0), piglet mortality at three weeks (M3), total litter weight at birth (TLW0), and total litter weight at three weeks (TLW3) were estimated for 2032 Large White litters. The effects of parity and classiifed litter size on CVB, CVT, TNB, NBA, NBD, GL, M0, M3, TLW0, and TLW3 were also estimated. The heritabilities of these reproductive traits ranged from 0.06 to 0.17, with the lowest heritability for CVB and the highest heritability for TLW0. Phenotypic and genetic correlations between these reproductive traits were low to highly positive and negative (ranging from −0.03 to 0.93, and −0.53 to 0.93, respectively). The genetic correlations between TNB and CVB, and between M0 and CVB were 0.32 and 0.29, respectively. In addition, CVB was signiifcantly inlfuenced by parity and litter size class (P<0.05). Al the results suggest that piglet uniformity should be maintained in pig production practices and pig breeding programs.

  1. Phenotypic and Genetic Analyses of the Varroa Sensitive Hygienic Trait in Russian Honey Bee (Hymenoptera: Apidae) Colonies

    Science.gov (United States)

    Kirrane, Maria J.; de Guzman, Lilia I.; Holloway, Beth; Frake, Amanda M.; Rinderer, Thomas E.; Whelan, Pádraig M.

    2015-01-01

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an “actual brood removal assay” that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL) to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25). Only two (percentages of brood removed and reproductive foundress Varroa) out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock. PMID:25909856

  2. Phenotypic and genetic analyses of the varroa sensitive hygienic trait in Russian honey bee (hymenoptera: apidae colonies.

    Directory of Open Access Journals (Sweden)

    Maria J Kirrane

    Full Text Available Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH, provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an "actual brood removal assay" that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25. Only two (percentages of brood removed and reproductive foundress Varroa out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock.

  3. Relationship of disease-associated gene expression to cardiac phenotype is buffered by genetic diversity and chromatin regulation.

    Science.gov (United States)

    Karbassi, Elaheh; Monte, Emma; Chapski, Douglas J; Lopez, Rachel; Rosa Garrido, Manuel; Kim, Joseph; Wisniewski, Nicholas; Rau, Christoph D; Wang, Jessica J; Weiss, James N; Wang, Yibin; Lusis, Aldons J; Vondriska, Thomas M

    2016-08-01

    Expression of a cohort of disease-associated genes, some of which are active in fetal myocardium, is considered a hallmark of transcriptional change in cardiac hypertrophy models. How this transcriptome remodeling is affected by the common genetic variation present in populations is unknown. We examined the role of genetics, as well as contributions of chromatin proteins, to regulate cardiac gene expression and heart failure susceptibility. We examined gene expression in 84 genetically distinct inbred strains of control and isoproterenol-treated mice, which exhibited varying degrees of disease. Unexpectedly, fetal gene expression was not correlated with hypertrophic phenotypes. Unbiased modeling identified 74 predictors of heart mass after isoproterenol-induced stress, but these predictors did not enrich for any cardiac pathways. However, expanded analysis of fetal genes and chromatin remodelers as groups correlated significantly with individual systemic phenotypes. Yet, cardiac transcription factors and genes shown by gain-/loss-of-function studies to contribute to hypertrophic signaling did not correlate with cardiac mass or function in disease. Because the relationship between gene expression and phenotype was strain specific, we examined genetic contribution to expression. Strikingly, strains with similar transcriptomes in the basal heart did not cluster together in the isoproterenol state, providing comprehensive evidence that there are different genetic contributors to physiological and pathological gene expression. Furthermore, the divergence in transcriptome similarity versus genetic similarity between strains is organ specific and genome-wide, suggesting chromatin is a critical buffer between genetics and gene expression.

  4. Invited commentary: Personality phenotype and mortality--new avenues in genetic, social, and clinical epidemiology.

    Science.gov (United States)

    Chapman, Benjamin P

    2013-09-01

    In this issue of the Journal, Jokela et al. (Am J Epidemiol. 2013;178(5):667-675) scrutinize the association between personality phenotype and all-cause mortality in remarkable detail by using an "individual-participant meta-analysis" design. Across 7 large cohorts varying in demographics and methods of personality measurement, they find varying prospective associations for 4 dimensions of the five-factor (or "Big Five") model of personality, but robust and consistent prospective associations for Big Five dimension of "conscientiousness." Jokela et al. place an important exclamation point on a long era of study of this topic and hint directly and indirectly at new avenues for this line of research. I consider the following 3 areas particularly rife for further inquiry: the role of genetics in personality and health studies; the role of personality in social inequalities in health; and the health policy and clinical implications of work like that of Jokela et al., including the potential role of personality phenotype in the evolution of personalized medicine.

  5. Development, anatomy, and genetic control of some teratological phenotypes of Ranunculaceae flowers

    Directory of Open Access Journals (Sweden)

    Florian Jabbour

    2016-04-01

    Full Text Available Teratological organisms originate from developmental anomalies, and exhibit structures and a body organization that deviate from the species standard. These monsters give essential clues about the formation and evolutionary significance of the wild-type groundplan. We focus on flower terata, which can be affected in their sterile and/or fertile organs, with special emphasis on the Ranunculaceae. The diversity of perianth shapes and organizations in flowers of this family is huge, and is even increased when anomalies occur during organo- and/or morphogenesis. To begin with, we synthesize the observations and research conducted on the Ranunculacean floral terata, following the most recent phylogenetic framework published in 2016 by our team. Then, we report results regarding the morphology of developing meristems, the anatomy of buds, and the genetic control of selected teratological phenotypes of Ranunculaceae flowers. We focus on species and horticultural varieties belonging to the genera Aquilegia, Delphinium, and Nigella. Wildtype flowers of these species are actinomorphic (Aquilegia, Nigella or zygomorphic (Delphinium, spurred (Aquilegia, Delphinium or with pocket-like petals (Nigella. Last, we discuss the evolutionary potential of such teratological phenotypes when they occur in the wild.

  6. Genetic and phenotypic parameters estimated from Nebraska specific-pathogen-free swine field records.

    Science.gov (United States)

    David, P J; Johnson, R K; Socha, T E

    1983-11-01

    Records collected during 1971 through 1979 from 101,606 hogs raised in 18 Nebraska Specific Pathogen Free herds were analyzed. Traits considered were backfat at 100 kg (BF), weight at 140 d of age (WT) and, in some analyses, number of live pigs/litter at birth (NBA). The phenotypic correlation of BF and WT, averaged across herds, was -.07. The correlations between BF and NBA and between WT and NBA were .04 and -.05, respectively. Average phenotypic standard deviations for BF, WT and NBA were 2.6 mm, 8.8 kg and 2.0 pigs. Estimates of the heritability of BF and WT were lower than most estimates reported from university research herds. Within breed, herd and sex estimates of heritability ranged from -.22 and .51 (unweighted mean = .16 +/- .025) for BF and ranged from -.28 to .49 (mean = .16 +/- .016) for WT. Estimates of the genetic correlation between BF and WT were extremely variable (mean = -.62 +/- 14.3, range = -9.42 to 1.30) among breed-herd-sex subclasses.

  7. Genetic testing in familial AD and FTD: mutation and phenotype spectrum in a Danish cohort.

    Science.gov (United States)

    Lindquist, S G; Schwartz, M; Batbayli, M; Waldemar, G; Nielsen, J E

    2009-08-01

    Autosomal dominantly transmitted Alzheimer's disease (AD) and frontotemporal dementia (FTD) are genetically heterogeneous disorders. To date, three genes have been identified in which mutations cause early-onset autosomal dominant inherited AD: APP, PSEN1, and PSEN2. Mutations in two genes on chromosome 17, the MAPT and the PGRN genes, are associated with autosomal dominant inherited FTD. The aim of this study was to characterize the mutation spectrum and describe genotype-phenotype correlations in families with inherited dementia. The identification of novel mutations and/or atypical genotype-phenotype correlations contributes to further characterizing the disorders. DNA-samples from the 90 index cases from a Danish referral-based cohort representing families with presumed autosomal dominant inherited AD or FTD were screened for mutations in the known genes with sequencing, denaturing high-performance liquid chromatography (DHPLC) and multiplex ligation-dependent probe amplification (MLPA) techniques. Seven presumed pathogenic mutations (two PSEN1, one PSEN2, one APP, one MAPT, and two PGRN) were identified, including a novel PSEN2 mutation (V393M). No dosage aberrations were identified.

  8. Mitochondrial genetics and hearing loss: the missing link between genotype and phenotype.

    Science.gov (United States)

    Fischel-Ghodsian, N

    1998-05-01

    Mitochondrial DNA mutations have been implicated in a great variety of diseases, including such common ones as diabetes, Parkinson's disease and Alzheimer's, but the pathophysiological pathway leading from a specific mutation to a specific phenotype has remained elusive. Individuals with the same mutation can fall along a clinical spectrum ranging from asymptomatic to severely affected, and can even have completely different diseases. Much of this phenotypic heterogeneity has been attributed to the heteroplasmic nature of mitochondrial mutations, with both normal and mutated mitochondrial chromosomes being present in different proportions and tissue distributions. Isolated hearing loss is one of the only mitochondrial disorders that can be caused by homoplasmic mutations (e.g., only mutated mitochondrial mutations are present in all tissues). This review will outline the relationship between mitochondrial mutations and hearing loss while showing that even in a homoplasmic model, the two basic questions of mitochondrial genetics, penetrance and tissue specificity, remain unanswered: Why does the same mutation cause severe hearing loss in some family members but not in others, and why is the ear the only organ affected?

  9. Genetic deletion of fibroblast growth factor 14 recapitulates phenotypic alterations underlying cognitive impairment associated with schizophrenia

    Science.gov (United States)

    Alshammari, T K; Alshammari, M A; Nenov, M N; Hoxha, E; Cambiaghi, M; Marcinno, A; James, T F; Singh, P; Labate, D; Li, J; Meltzer, H Y; Sacchetti, B; Tempia, F; Laezza, F

    2016-01-01

    Cognitive processing is highly dependent on the functional integrity of gamma-amino-butyric acid (GABA) interneurons in the brain. These cells regulate excitability and synaptic plasticity of principal neurons balancing the excitatory/inhibitory tone of cortical networks. Reduced function of parvalbumin (PV) interneurons and disruption of GABAergic synapses in the cortical circuitry result in desynchronized network activity associated with cognitive impairment across many psychiatric disorders, including schizophrenia. However, the mechanisms underlying these complex phenotypes are still poorly understood. Here we show that in animal models, genetic deletion of fibroblast growth factor 14 (Fgf14), a regulator of neuronal excitability and synaptic transmission, leads to loss of PV interneurons in the CA1 hippocampal region, a critical area for cognitive function. Strikingly, this cellular phenotype associates with decreased expression of glutamic acid decarboxylase 67 (GAD67) and vesicular GABA transporter (VGAT) and also coincides with disrupted CA1 inhibitory circuitry, reduced in vivo gamma frequency oscillations and impaired working memory. Bioinformatics analysis of schizophrenia transcriptomics revealed functional co-clustering of FGF14 and genes enriched within the GABAergic pathway along with correlatively decreased expression of FGF14, PVALB, GAD67 and VGAT in the disease context. These results indicate that Fgf14−/− mice recapitulate salient molecular, cellular, functional and behavioral features associated with human cognitive impairment, and FGF14 loss of function might be associated with the biology of complex brain disorders such as schizophrenia. PMID:27163207

  10. Developmental quantitative genetic analysis of body weights and morphological traits in the turbot, Scophthalmusmaximus

    Institute of Scientific and Technical Information of China (English)

    WANG Xinan; MA Aijun; MA Deyou

    2015-01-01

    In order to elucidate the genetic mechanism of growth traits in turbot during ontogeny, developmental genetic analysis of the body weights, total lengths, standard lengths and body heights of turbots was conducted by mixed genetic models with additive-dominance effects, based on complete diallel crosses with four different strains of Scophthalmus maximus from Denmark, Norway, Britain, and France. Unconditional genetic analysis revealed that the unconditional additive effects for the four traits were more significant than unconditional dominance effects, meanwhile, the alternative expressions were also observed between the additive and dominant effects for body weights, total lengths and standard lengths. Conditional analysis showed that the developmental periods with active gene expression for body weights, total lengths, standard lengths and body heights were 15–18, 15 and 21–24, 15 and 24, and 21 and 27 months of age, respectively. The proportions of unconditional/conditional variances indicated that the narrow-sense heritabilities of body weights, total lengths and standard lengths were all increased systematically. The accumulative effects of genes controlling the four quantitative traits were mainly additive effects, suggesting that the selection is more efficient for the genetic improvement of turbots. The conditional genetic procedure is a useful tool to understand the expression of genes controlling developmental quantitative traits at a specific developmental period (t-1→t) during ontogeny. It is also important to determine the appropriate developmental period (t-1→t) for trait measurement in developmental quantitative genetic analysis in fish.

  11. Quantitative genetics of plumage color: lifetime effects of early nest environment on a colorful sexual signal

    Science.gov (United States)

    Hubbard, Joanna K; Jenkins, Brittany R; Safran, Rebecca J

    2015-01-01

    Phenotypic differences among individuals are often linked to differential survival and mating success. Quantifying the relative influence of genetic and environmental variation on phenotype allows evolutionary biologists to make predictions about the potential for a given trait to respond to selection and various aspects of environmental variation. In particular, the environment individuals experience during early development can have lasting effects on phenotype later in life. Here, we used a natural full-sib/half-sib design as well as within-individual longitudinal analyses to examine genetic and various environmental influences on plumage color. We find that variation in melanin-based plumage color – a trait known to influence mating success in adult North American barn swallows (Hirundo rustica erythrogaster) – is influenced by both genetics and aspects of the developmental environment, including variation due to the maternal phenotype and the nest environment. Within individuals, nestling color is predictive of adult color. Accordingly, these early environmental influences are relevant to the sexually selected plumage color variation in adults. Early environmental conditions appear to have important lifelong implications for individual reproductive performance through sexual signal development in barn swallows. Our results indicate that feather color variation conveys information about developmental conditions and maternal care alleles to potential mates in North American barn swallows. Melanin-based colors are used for sexual signaling in many organisms, and our study suggests that these signals may be more sensitive to environmental variation than previously thought. PMID:26380676

  12. Quantitative genetics of plumage color: lifetime effects of early nest environment on a colorful sexual signal.

    Science.gov (United States)

    Hubbard, Joanna K; Jenkins, Brittany R; Safran, Rebecca J

    2015-08-01

    Phenotypic differences among individuals are often linked to differential survival and mating success. Quantifying the relative influence of genetic and environmental variation on phenotype allows evolutionary biologists to make predictions about the potential for a given trait to respond to selection and various aspects of environmental variation. In particular, the environment individuals experience during early development can have lasting effects on phenotype later in life. Here, we used a natural full-sib/half-sib design as well as within-individual longitudinal analyses to examine genetic and various environmental influences on plumage color. We find that variation in melanin-based plumage color - a trait known to influence mating success in adult North American barn swallows (Hirundo rustica erythrogaster) - is influenced by both genetics and aspects of the developmental environment, including variation due to the maternal phenotype and the nest environment. Within individuals, nestling color is predictive of adult color. Accordingly, these early environmental influences are relevant to the sexually selected plumage color variation in adults. Early environmental conditions appear to have important lifelong implications for individual reproductive performance through sexual signal development in barn swallows. Our results indicate that feather color variation conveys information about developmental conditions and maternal care alleles to potential mates in North American barn swallows. Melanin-based colors are used for sexual signaling in many organisms, and our study suggests that these signals may be more sensitive to environmental variation than previously thought.

  13. Clinical phenotype in genetically confirmed von Willebrand disease type 2N patients reflects a haemophilia A phenotype

    NARCIS (Netherlands)

    Meegeren, M.E.R. van; Mancini, T.L.; Schoormans, S.C.M.; Haren, B.J.T. van; Duren, C. van; Diekstra, A.; Laros-van Gorkom, B.A.P.; Brons, P.P.; Simons, A.; Hoefsloot, L.H.; Heerde, W.L. van

    2015-01-01

    INTRODUCTION: Von Willebrand disease (VWD) type 2N is characterized by a defective binding of factor VIII (FVIII) to von Willebrand factor (VWF) resulting in diminished plasma FVIII levels and a clinical phenotype mimicking mild haemophilia A. Several mutations in the FVIII binding site of VWF have

  14. Genetic and phenotypic variance and covariance components for methane emission and postweaning traits in Angus cattle.

    Science.gov (United States)

    Donoghue, K A; Bird-Gardiner, T; Arthur, P F; Herd, R M; Hegarty, R F

    2016-04-01

    Ruminants contribute 80% of the global livestock greenhouse gas (GHG) emissions mainly through the production of methane, a byproduct of enteric microbial fermentation primarily in the rumen. Hence, reducing enteric methane production is essential in any GHG emissions reduction strategy in livestock. Data on 1,046 young bulls and heifers from 2 performance-recording research herds of Angus cattle were analyzed to provide genetic and phenotypic variance and covariance estimates for methane emissions and production traits and to examine the interrelationships among these traits. The cattle were fed a roughage diet at 1.2 times their estimated maintenance energy requirements and measured for methane production rate (MPR) in open circuit respiration chambers for 48 h. Traits studied included DMI during the methane measurement period, MPR, and methane yield (MY; MPR/DMI), with means of 6.1 kg/d (SD 1.3), 132 g/d (SD 25), and 22.0 g/kg (SD 2.3) DMI, respectively. Four forms of residual methane production (RMP), which is a measure of actual minus predicted MPR, were evaluated. For the first 3 forms, predicted MPR was calculated using published equations. For the fourth (RMP), predicted MPR was obtained by regression of MPR on DMI. Growth and body composition traits evaluated were birth weight (BWT), weaning weight (WWT), yearling weight (YWT), final weight (FWT), and ultrasound measures of eye muscle area, rump fat depth, rib fat depth, and intramuscular fat. Heritability estimates were moderate for MPR (0.27 [SE 0.07]), MY (0.22 [SE 0.06]), and the RMP traits (0.19 [SE 0.06] for each), indicating that genetic improvement to reduce methane emissions is possible. The RMP traits and MY were strongly genetically correlated with each other (0.99 ± 0.01). The genetic correlation of MPR with MY as well as with the RMP traits was moderate (0.32 to 0.63). The genetic correlation between MPR and the growth traits (except BWT) was strong (0.79 to 0.86). These results indicate that

  15. MaGelLAn 1.0: a software to facilitate quantitative and population genetic analysis of maternal inheritance by combination of molecular and pedigree information.

    Science.gov (United States)

    Ristov, Strahil; Brajkovic, Vladimir; Cubric-Curik, Vlatka; Michieli, Ivan; Curik, Ino

    2016-09-10

    Identification of genes or even nucleotides that are responsible for quantitative and adaptive trait variation is a difficult task due to the complex interdependence between a large number of genetic and environmental factors. The polymorphism of the mitogenome is one of the factors that can contribute to quantitative trait variation. However, the effects of the mitogenome have not been comprehensively studied, since large numbers of mitogenome sequences and recorded phenotypes are required to reach the adequate power of analysis. Current research in our group focuses on acquiring the necessary mitochondria sequence information and analysing its influence on the phenotype of a quantitative trait. To facilitate these tasks we have produced software for processing pedigrees that is optimised for maternal lineage analysis. We present MaGelLAn 1.0 (maternal genealogy lineage analyser), a suite of four Python scripts (modules) that is designed to facilitate the analysis of the impact of mitogenome polymorphism on quantitative trait variation by combining molecular and pedigree information. MaGelLAn 1.0 is primarily used to: (1) optimise the sampling strategy for molecular analyses; (2) identify and correct pedigree inconsistencies; and (3) identify maternal lineages and assign the corresponding mitogenome sequences to all individuals in the pedigree, this information being used as input to any of the standard software for quantitative genetic (association) analysis. In addition, MaGelLAn 1.0 allows computing the mitogenome (maternal) effective population sizes and probability of mitogenome (maternal) identity that are useful for conservation management of small populations. MaGelLAn is the first tool for pedigree analysis that focuses on quantitative genetic analyses of mitogenome data. It is conceived with the purpose to significantly reduce the effort in handling and preparing large pedigrees for processing the information linked to maternal lines. The software source

  16. Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Matsui Sei-Ichi

    2010-01-01

    Full Text Available Abstract Background Folate (vitamin B9 is essential for cellular proliferation as it is involved in the biosynthesis of deoxythymidine monophosphate (dTMP and s-adenosylmethionine (AdoMet. The link between folate depletion and the genesis and progression of cancers of epithelial origin is of high clinical relevance, but still unclear. We recently demonstrated that sensitivity to low folate availability is affected by the rate of polyamine biosynthesis, which is prominent in prostate cells. We, therefore, hypothesized that prostate cells might be highly susceptible to genetic, epigenetic and phenotypic changes consequent to folate restriction. Results We studied the consequences of long-term, mild folate depletion in a model comprised of three syngenic cell lines derived from the transgenic adenoma of the mouse prostate (TRAMP model, recapitulating different stages of prostate cancer; benign, transformed and metastatic. High-performance liquid chromatography analysis demonstrated that mild folate depletion (100 nM sufficed to induce imbalance in both the nucleotide and AdoMet pools in all prostate cell lines. Random oligonucleotide-primed synthesis (ROPS revealed a significant increase in uracil misincorporation and DNA single strand breaks, while spectral karyotype analysis (SKY identified five novel chromosomal rearrangements in cells grown with mild folate depletion. Using global approaches, we identified an increase in CpG island and histone methylation upon folate depletion despite unchanged levels of total 5-methylcytosine, indicating a broad effect of folate depletion on epigenetic regulation. These genomic changes coincided with phenotype changes in the prostate cells including increased anchorage-independent growth and reduced sensitivity to folate depletion. Conclusions This study demonstrates that prostate cells are highly susceptible to genetic and epigenetic changes consequent to mild folate depletion as compared to cells grown with

  17. Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells

    Science.gov (United States)

    2010-01-01

    Background Folate (vitamin B9) is essential for cellular proliferation as it is involved in the biosynthesis of deoxythymidine monophosphate (dTMP) and s-adenosylmethionine (AdoMet). The link between folate depletion and the genesis and progression of cancers of epithelial origin is of high clinical relevance, but still unclear. We recently demonstrated that sensitivity to low folate availability is affected by the rate of polyamine biosynthesis, which is prominent in prostate cells. We, therefore, hypothesized that prostate cells might be highly susceptible to genetic, epigenetic and phenotypic changes consequent to folate restriction. Results We studied the consequences of long-term, mild folate depletion in a model comprised of three syngenic cell lines derived from the transgenic adenoma of the mouse prostate (TRAMP) model, recapitulating different stages of prostate cancer; benign, transformed and metastatic. High-performance liquid chromatography analysis demonstrated that mild folate depletion (100 nM) sufficed to induce imbalance in both the nucleotide and AdoMet pools in all prostate cell lines. Random oligonucleotide-primed synthesis (ROPS) revealed a significant increase in uracil misincorporation and DNA single strand breaks, while spectral karyotype analysis (SKY) identified five novel chromosomal rearrangements in cells grown with mild folate depletion. Using global approaches, we identified an increase in CpG island and histone methylation upon folate depletion despite unchanged levels of total 5-methylcytosine, indicating a broad effect of folate depletion on epigenetic regulation. These genomic changes coincided with phenotype changes in the prostate cells including increased anchorage-independent growth and reduced sensitivity to folate depletion. Conclusions This study demonstrates that prostate cells are highly susceptible to genetic and epigenetic changes consequent to mild folate depletion as compared to cells grown with supraphysiological

  18. A comparative study on genetic and environmental influences on metabolic phenotypes in Eastern (Chinese) and Western (Danish) populations

    DEFF Research Database (Denmark)

    Li, Shuxia

    2015-01-01

    the risk of clinic diseases e.g. diabetes, atherosclerosis, stroke and cardiovascular disease. Metabolic phenotypes, similar to most complex traits, can be influenced by both genetic and environmental factors as well as their interplay. Many family and twin studies have demonstrated both genetic...... and environmental factors play important role in the variation of metabolic phenotypes and intra-individual change over time. Although both genetic and environmental factors are involved the development of metabolic disorders, the role of environment should be emphasized as the expression or function of gene can...... be regulated to adapt to existing environmental circumstance. In other words, adaptive evolution in populations under distinct environmental and cultural circumstances could have resulted in varying genetic basis of metabolic factors and development of metabolic disorders or diseases. Thus, it can...

  19. Parent-offspring conflict and co-adaptation: behavioural ecology meets quantitative genetics.

    Science.gov (United States)

    Smiseth, Per T; Wright, Jonathan; Kölliker, Mathias

    2008-08-22

    The evolution of the complex and dynamic behavioural interactions between caring parents and their dependent offspring is a major area of research in behavioural ecology and quantitative genetics. While behavioural ecologists examine the evolution of interactions between parents and offspring in the light of parent-offspring conflict and its resolution, quantitative geneticists explore the evolution of such interactions in the light of parent-offspring co-adaptation due to combined effects of parental and offspring behaviours on fitness. To date, there is little interaction or integration between these two fields. Here, we first review the merits and limitations of each of these two approaches and show that they provide important complementary insights into the evolution of strategies for offspring begging and parental resource provisioning. We then outline how central ideas from behavioural ecology and quantitative genetics can be combined within a framework based on the concept of behavioural reaction norms, which provides a common basis for behavioural ecologists and quantitative geneticists to study the evolution of parent-offspring interactions. Finally, we discuss how the behavioural reaction norm approach can be used to advance our understanding of parent-offspring conflict by combining information about the genetic basis of traits from quantitative genetics with key insights regarding the adaptive function and dynamic nature of parental and offspring behaviours from behavioural ecology.

  20. Phenotyping of Campylobacter jejuni and Campylobacter coli by a quantitative antibiogram [MIC] typing scheme using Euclidean distances [QATED

    Directory of Open Access Journals (Sweden)

    Goldsmith Colin E

    2001-07-01

    Full Text Available Abstract Background Enteropathogenic Campylobacter jejuni and C. coli are presently the most common cause of acute bacterial gastroenteritis in the developed world. An understanding of sources and means of transmission of Campylobacter is an essential factor in order to reduce the incidence of Campylobacter-related gastroenteritis in man. Consequently a reproducible, sensitive and well-standardised typing scheme is critical in the successful discrimination of strains and in the subsequent investigations of outbreaks. For this purpose, a phenotypic typing scheme based on quantitative antibiogram determination based on Euclidean distance (QATED, was developed. Results and Conclusion The results obtained with this typing scheme demonstrated that individual livers of colonized pigs could be infected with multiple strains of Campylobacter spp. and subspecies types. In conclusion, phenotyping of Campylobacter jejuni and C. coli by QATED is a simple, inexpensive and discriminatory sub-species characterisation scheme, which may be useful in primary diagnostic clinical laboratories, where no specialist Campylobacter phenotyping or molecular genotyping schemes exist. It is especially suitable for food-bome outbreak investigations in the community, where a rapid and local response is required to aid with public health epidemiological investigations.

  1. Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis

    Science.gov (United States)

    Song, Jiangdian; Liu, Zaiyi; Zhong, Wenzhao; Huang, Yanqi; Ma, Zelan; Dong, Di; Liang, Changhong; Tian, Jie

    2016-01-01

    This was a retrospective study to investigate the predictive and prognostic ability of quantitative computed tomography phenotypic features in patients with non-small cell lung cancer (NSCLC). 661 patients with pathological confirmed as NSCLC were enrolled between 2007 and 2014. 592 phenotypic descriptors was automatically extracted on the pre-therapy CT images. Firstly, support vector machine (SVM) was used to evaluate the predictive value of each feature for pathology and TNM clinical stage. Secondly, Cox proportional hazards model was used to evaluate the prognostic value of these imaging signatures selected by SVM which subjected to a primary cohort of 138 patients, and an external independent validation of 61 patients. The results indicated that predictive accuracy for histopathology, N staging, and overall clinical stage was 75.16%, 79.40% and 80.33%, respectively. Besides, Cox models indicated the signatures selected by SVM: “correlation of co-occurrence after wavelet transform” was significantly associated with overall survival in the two datasets (hazard ratio [HR]: 1.65, 95% confidence interval [CI]: 1.41–2.75, p = 0.010; and HR: 2.74, 95%CI: 1.10–6.85, p = 0.027, respectively). Our study indicates that the phenotypic features might provide some insight in metastatic potential or aggressiveness for NSCLC, which potentially offer clinical value in directing personalized therapeutic regimen selection for NSCLC. PMID:27922113

  2. Relationship between obesity phenotypes and genetic determinants in a mouse model for juvenile obesity.

    Science.gov (United States)

    Brockmann, Gudrun A; Schäfer, Nadine; Hesse, Claudia; Heise, Sebastian; Neuschl, Christina; Wagener, Asja; Churchill, Gary A; Li, Renhua

    2013-09-16

    Obesity, a state of imbalance between lean mass and fat mass, is important for the etiology of diseases affected by the interplay of multiple genetic and environmental factors. Although genome-wide association studies have repeatedly associated genes with obesity and body weight, the mechanisms underlying the interaction between the muscle and adipose tissues remain unknown. Using 351 mice (at 10 wk of age) of an intercross population between Berlin Fat Mouse Inbred (BFMI) and C57BL/6NCrl (B6N) mice, we examined the causal relationships between genetic variations and multiple traits: body lean mass and fat mass, adipokines, and bone mineral density. Furthermore, evidence from structural equation modeling suggests causality among these traits. In the BFMI model, juvenile obesity affects lean mass and impairs bone mineral density via adipokines secreted from the white adipose tissues. While previous studies have indicated that lean mass has a causative effect on adiposity, in the Berlin Fat Mouse model that has been selected for juvenile obesity (at 9 wk of age) for >90 generations, however, the causality is switched from fat mass to lean mass. In addition, linkage studies and statistical modeling have indicated that quantitative trait loci on chromosomes 5 and 6 affect both lean mass and fat mass. These lines of evidence indicate that the muscle and adipose tissues interact with one another and the interaction is modulated by genetic variations that are shaped by selections. Experimental examinations are necessary to verify the biological role of the inferred causalities.

  3. Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters

    Indian Academy of Sciences (India)

    Malcolm Von Schantz

    2008-12-01

    Circadian rhythms and sleep are two separate but intimately related processes. Circadian rhythms are generated through the precisely controlled, cyclic expression of a number of genes designated clock genes. Genetic variability in these genes has been associated with a number of phenotypic differences in circadian as well as sleep parameters, both in mouse models and in humans. Diurnal preferences as determined by the selfreported Horne–Östberg (HÖ) questionnaire, has been associated with polymorphisms in the human genes CLOCK, PER1, PER2 and PER3. Circadian rhythm-related sleep disorders have also been associated with mutations and polymorphisms in clock genes, with the advanced type cosegrating in an autosomal dominant inheritance pattern with mutations in the genes PER2 and CSNK1D, and the delayed type associating without discernible Mendelian inheritance with polymorphisms in CLOCK and PER3. Several mouse models of clock gene null alleles have been demonstrated to have affected sleep homeostasis. Recent findings have shown that the variable number tandem polymorphism in PER3, previously linked to diurnal preference, has profound effects on sleep homeostasis and cognitive performance following sleep loss, confirming the close association between the processes of circadian rhythms and sleep at the genetic level.

  4. Mouse models for pseudoxanthoma elasticum: genetic and dietary modulation of the ectopic mineralization phenotypes.

    Directory of Open Access Journals (Sweden)

    Qiaoli Li

    Full Text Available Pseudoxanthoma elasticum (PXE, a heritable ectopic mineralization disorder, is caused by mutations in the ABCC6 gene. Null mice (Abcc6(-/- recapitulate the genetic, histopathologic and ultrastructural features of PXE, and they demonstrate early and progressive mineralization of vibrissae dermal sheath, which serves as a biomarker of the overall mineralization process. Recently, as part of a mouse aging study at The Jackson Laboratory, 31 inbred mouse strains were necropsied, and two of them, KK/HlJ and 129S1/SvImJ, were noted to have vibrissae dermal mineralization similar to Abcc6(-/- mice. These two strains were shown to harbor a single nucleotide polymorphism (rs32756904 in the Abcc6 gene, which resulted in out-of-frame splicing and marked reduction in ABCC6 protein expression in the liver of these mice. The same polymorphism is present in two additional mouse strains, DBA/2J and C3H/HeJ, with similar reduction in Abcc6 protein levels, yet these mice did not demonstrate tissue mineralization when kept on standard rodent diet. However, all four mouse strains, when placed on experimental diet enriched in phosphate and low in magnesium, developed extensive ectopic mineralization. These results indicate that the genetic background of mice and the mineral composition of their diet can profoundly modulate the ectopic mineralization process predicated on mutations in the Abcc6 gene. These mice provide novel model systems to study the pathomechanisms and the reasons for strain background on phenotypic variability of PXE.

  5. Multivariate analysis of complex gene expression and clinical phenotypes with genetic marker data.

    Science.gov (United States)

    Beyene, Joseph; Tritchler, David; Bull, Shelley B; Cartier, Kevin C; Jonasdottir, Gudrun; Kraja, Aldi T; Li, Na; Nock, Nora L; Parkhomenko, Elena; Rao, J Sunil; Stein, Catherine M; Sutradhar, Rinku; Waaijenborg, Sandra; Wang, Ke-Sheng; Wang, Yuanjia; Wolkow, Pavel

    2007-01-01

    This paper summarizes contributions to group 12 of the 15th Genetic Analysis Workshop. The papers in this group focused on multivariate methods and applications for the analysis of molecular data including genotypic data as well as gene expression microarray measurements and clinical phenotypes. A range of multivariate techniques have been employed to extract signals from the multi-feature data sets that were provided by the workshop organizers. The methods included data reduction techniques such as principal component analysis and cluster analysis; latent variable models including structural equations and item response modeling; joint multivariate modeling techniques as well as multivariate visualization tools. This summary paper categorizes and discusses individual contributions with regard to multiple classifications of multivariate methods. Given the wide variety in the data considered, the objectives of the analysis and the methods applied, direct comparison of the results of the various papers is difficult. However, the group was able to make many interesting comparisons and parallels between the various approaches. In summary, there was a consensus among authors in group 12 that the genetic research community should continue to draw experiences from other fields such as statistics, econometrics, chemometrics, computer science and linear systems theory.

  6. A Validated Phenotyping Algorithm for Genetic Association Studies in Age-related Macular Degeneration

    Science.gov (United States)

    Simonett, Joseph M.; Sohrab, Mahsa A.; Pacheco, Jennifer; Armstrong, Loren L.; Rzhetskaya, Margarita; Smith, Maureen; Geoffrey Hayes, M.; Fawzi, Amani A.

    2015-01-01

    Age-related macular degeneration (AMD), a multifactorial, neurodegenerative disease, is a leading cause of vision loss. With the rapid advancement of DNA sequencing technologies, many AMD-associated genetic polymorphisms have been identified. Currently, the most time consuming steps of these studies are patient recruitment and phenotyping. In this study, we describe the development of an automated algorithm to identify neovascular (wet) AMD, non-neovascular (dry) AMD and control subjects using electronic medical record (EMR)-based criteria. Positive predictive value (91.7%) and negative predictive value (97.5%) were calculated using expert chart review as the gold standard to assess algorithm performance. We applied the algorithm to an EMR-linked DNA bio-repository to study previously identified AMD-associated single nucleotide polymorphisms (SNPs), using case/control status determined by the algorithm. Risk alleles of three SNPs, rs1061170 (CFH), rs1410996 (CFH), and rs10490924 (ARMS2) were found to be significantly associated with the AMD case/control status as defined by the algorithm. With the rapid growth of EMR-linked DNA biorepositories, patient selection algorithms can greatly increase the efficiency of genetic association study. We have found that stepwise validation of such an algorithm can result in reliable cohort selection and, when coupled within an EMR-linked DNA biorepository, replicates previously published AMD-associated SNPs. PMID:26255974

  7. Phenotyping the Genetic Diversity of Wild Agave Species that Coexist in the Same Spatial Region

    Directory of Open Access Journals (Sweden)

    Elí Secundino PORRAS-RAMÍREZ

    2016-12-01

    Full Text Available Phenotypic characteristics are important to identify species and provide valuable information for the uses in plant breeding. The aim of this study was to characterize through morphological traits the genetic diversity of the Agave genus under wild and semi-wild culture conditions in Maguey Largo region in Oaxaca, Mexico. Through field trips, eleven morphological characteristics of the Agave species were recorded. Principal component analysis (PCA, phylogenetic trees, and correlation analyses, were performed. Seven wild species were identified: Agave potatorum Zucc., A. seemanniana, A. nussaviorum subsp. nussaviorum, A. angustifolia Haw., A. marmorata Roezl., A. karwinskii Zucc. and A. americana var. Americana. Also, a semi-wild unclassified specie Agave sp. was found. The values of the first four principal components in the PCA explain more than 89% of the total morphological variance. The dendrogram of the agglomerative hierarchical clustering (AHC shown a high similarity between the species and divide them in two main cluster with one unassociated specie (A. karwinskii Miahuatlán shape. Following the different analyses done, we observed a very close relationship between A. potatorum and A. nussaviorum, and dissociated from A. seemanniana, which are belonging to the “Tobala” complex and never described before. The results obtained in this work suggest a great genetic diversity expressed in a wide morphological variety of agaves in Oaxaca; which can be used in futures molecular studies.

  8. Genetic influences on attention deficit hyperactivity disorder symptoms from age 2 to 3: A quantitative and molecular genetic investigation

    Directory of Open Access Journals (Sweden)

    Saudino Kimberly J

    2010-12-01

    Full Text Available Abstract Background A twin study design was used to assess the degree to which additive genetic variance influences ADHD symptom scores across two ages during infancy. A further objective in the study was to observe whether genetic association with a number of candidate markers reflects results from the quantitative genetic analysis. Method We have studied 312 twin pairs at two time-points, age 2 and age 3. A composite measure of ADHD symptoms from two parent-rating scales: The Child Behavior Checklist/1.5 - 5 years (CBCL hyperactivity scale and the Revised Rutter Parent Scale for Preschool Children (RRPSPC was used for both quantitative and molecular genetic analyses. Results At ages 2 and 3 ADHD symptoms are highly heritable (h2 = 0.79 and 0.78, respectively with a high level of genetic stability across these ages. However, we also observe a significant level of genetic change from age 2 to age 3. There are modest influences of non-shared environment at each age independently (e2 = 0.22 and 0.21, respectively, with these influences being largely age-specific. In addition, we find modest association signals in DAT1 and NET1 at both ages, along with suggestive specific effects of 5-HTT and DRD4 at age 3. Conclusions ADHD symptoms are heritable at ages 2 and 3. Additive genetic variance is largely shared across these ages, although there are significant new effects emerging at age 3. Results from our genetic association analysis reflect these levels of stability and change and, more generally, suggest a requirement for consideration of age-specific genotypic effects in future molecular studies.

  9. Population-based resequencing of APOA1 in 10,330 individuals: spectrum of genetic variation, phenotype, and comparison with extreme phenotype approach.

    Science.gov (United States)

    Haase, Christiane L; Frikke-Schmidt, Ruth; Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2012-01-01

    Rare genetic variants, identified by in-detail resequencing of loci, may contribute to complex traits. We used the apolipoprotein A-I gene (APOA1), a major high-density lipoprotein (HDL) gene, and population-based resequencing to determine the spectrum of genetic variants, the phenotypic characteristics of these variants, and how these results compared with results based on resequencing only the extremes of the apolipoprotein A-I (apoA-I) distribution. First, we resequenced APOA1 in 10,330 population-based participants in the Copenhagen City Heart Study. The spectrum and distribution of genetic variants was determined as a function of the number of individuals resequenced. Second, apoA-I and HDL cholesterol phenotypes were determined for nonsynonymous (NS) and synonymous (S) variants and were validated in the Copenhagen General Population Study (n = 45,239). Third, observed phenotypes were compared with those predicted using an extreme phenotype approach based on the apoA-I distribution. Our results are as follows: First, population-based resequencing of APOA1 identified 40 variants of which only 7 (18%) had minor allele frequencies >1%, and most were exceedingly rare. Second, 0.27% of individuals in the general population were heterozygous for NS variants which were associated with substantial reductions in apoA-I (up to 39 mg/dL) and/or HDL cholesterol (up to 0.9 mmol/L) and, surprisingly, 0.41% were heterozygous for variants predisposing to amyloidosis. NS variants associated with a hazard ratio of 1.72 (1.09-2.70) for myocardial infarction (MI), largely driven by A164S, a variant not associated with apoA-I or HDL cholesterol levels. Third, using the extreme apoA-I phenotype approach, NS variants correctly predicted the apoA-I phenotype observed in the population-based resequencing. However, using the extreme approach, between 79% (screening 0-1(st) percentile) and 21% (screening 0-20(th) percentile) of all variants were not identified; among these were variants

  10. Thermal phenotypic plasticity of body size in Drosophila melanogaster: sexual dimorphism and genetic correlations

    Indian Academy of Sciences (India)

    Jean R. David; Amir Yassin; Jean-Claude Moreteau; Helene Legout; Brigitte Moreteau

    2011-08-01

    Thirty isofemale lines collected in three different years from the same wild French population were grown at seven different temperatures (12–31°C). Two linear measures, wing and thorax length, were taken on 10 females and 10 males of each line at each temperature, also enabling the calculation of the wing/thorax (W/T) ratio, a shape index related to wing loading. Genetic correlations were calculated using family means. The W–T correlation was independent of temperature and on average, 0.75. For each line, characteristic values of the temperature reaction norm were calculated, i.e. maximum value, temperature of maximum value and curvature. Significant negative correlations were found between curvature and maximum value or temperature of maximum value. Sexual dimorphism was analysed by considering either the correlation between sexes or the female/male ratio. Female–male correlation was on average 0.75 at the within line, within temperature level but increased up to 0.90 when all temperatures were averaged for each line. The female/male ratio was genetically variable among lines but without any temperature effect. For the female/male ratio, heritability (intraclass correlation) was about 0.20 and evolvability (genetic coefficient of variation) close to 1. Although significant, these values are much less than for the traits themselves. Phenotypic plasticity of sexual dimorphism revealed very similar reaction norms for wing and thorax length, i.e. a monotonically increasing sigmoid curve from about 1.11 up to 1.17. This shows that the males are more sensitive to a thermal increase than females. In contrast, the W/T ratio was almost identical in both sexes, with only a very slight temperature effect.

  11. Effects of birthplace and individual genetic admixture on lung volume and exercise phenotypes of Peruvian Quechua.

    Science.gov (United States)

    Brutsaert, Tom D; Parra, Esteban; Shriver, Mark; Gamboa, Alfredo; Palacios, Jose-Antonio; Rivera, Maria; Rodriguez, Ivette; León-Velarde, Fabiola

    2004-04-01

    Forced vital capacity (FVC) and maximal exercise response were measured in two populations of Peruvian males (age, 18-35 years) at 4,338 m who differed by the environment in which they were born and raised, i.e., high altitude (Cerro de Pasco, Peru, BHA, n = 39) and sea level (Lima, Peru, BSL, n = 32). BSL subjects were transported from sea level to 4,338 m, and were evaluated within 24 hr of exposure to hypobaric hypoxia. Individual admixture level (ADMIX, % Spanish ancestry) was estimated for each subject, using 22 ancestry-informative genetic markers and also by skin reflectance measurement (MEL). Birthplace accounted for the approximately 10% larger FVC (P < 0.001), approximately 15% higher maximal oxygen consumption (VO(2)max, ml.min(-1).kg(-1)) (P < 0.001), and approximately 5% higher arterial oxygen saturation during exercise (SpO(2)) (P < 0.001) of BHA subjects. ADMIX was low in both study groups, averaging 9.5 +/- 2.6% and 2.1 +/- 0.3% in BSL and BHA subjects, respectively. Mean underarm MEL was significantly higher in the BSL group (P < 0.001), despite higher ADMIX. ADMIX was not associated with any study phenotype, but study power was not sufficient to evaluate hypotheses of genetic adaptation via the ADMIX variable. MEL and FVC were positively correlated in the BHA (P = 0.035) but not BSL (P = 0.335) subjects. However, MEL and ADMIX were not correlated across the entire study sample (P = 0.282). In summary, results from this study emphasize the importance of developmental adaptation to high altitude. While the MEL-FVC correlation may reflect genetic adaptation to high altitude, study results suggest that alternate (environmental) explanations be considered.

  12. Identification of markers associated with highly aggressive metastatic phenotypes using quantitative comparative proteomics

    DEFF Research Database (Denmark)

    Terp, Mikkel G; Lund, Rikke R; Jensen, Ole N;

    2013-01-01

    The spread of cancer cells from a primary tumor to form metastases at distant sites is a complex process that remains poorly defined. Certain tumor cells are more aggressive and thus lead to rapid development of multiple distant metastases. Here, we identify proteins associated with these aggress......The spread of cancer cells from a primary tumor to form metastases at distant sites is a complex process that remains poorly defined. Certain tumor cells are more aggressive and thus lead to rapid development of multiple distant metastases. Here, we identify proteins associated...... with these aggressive phenotypes....

  13. The phenotypic and genetic structure of depression and anxiety disorder symptoms in childhood, adolescence, and young adulthood.

    Science.gov (United States)

    Waszczuk, Monika A; Zavos, Helena M S; Gregory, Alice M; Eley, Thalia C

    2014-08-01

    The DSM-5 classifies mood and anxiety disorders as separate conditions. However, some studies in adults find a unidimensional internalizing factor that underpins anxiety and depression, while others support a bidimensional model where symptoms segregate into distress (depression and generalized anxiety) and fear factors (phobia subscales). However, little is known about the phenotypic and genetic structure of internalizing psychopathology in children and adolescents. To investigate the phenotypic associations between depression and anxiety disorder symptom subscales and to test the genetic structures underlying these symptoms (DSM-5-related, unidimensional and bidimensional) across 3 developmental stages: childhood, adolescence, and early adulthood. Two population-based prospective longitudinal twin/sibling studies conducted in the United Kingdom. The child sample included 578 twins (mean age, approximately 8 and 10 years at waves 1 and 2, respectively). The adolescent and early adulthood sample included 2619 twins/siblings at 3 waves (mean age, 15, 17, and 20 years at each wave). Self-report symptoms of depression and anxiety disorders. Phenotypically, when controlling for other anxiety subscales, depression symptoms were only associated with generalized anxiety disorder symptoms in childhood (r = 0.20-0.21); this association broadened to panic and social phobia symptoms in adolescence (r = 0.17-0.24 and r = 0.14-0.16, respectively) and all anxiety subscales in young adulthood (r = 0.06-0.19). The genetic associations were in line with phenotypic results. In childhood, anxiety subscales were influenced by a single genetic factor that did not contribute to genetic variance in depression symptoms, suggesting largely independent genetic influences on anxiety and depression. In adolescence, genetic influences were significantly shared between depression and all anxiety subscales in agreement with DSM-5 conceptualization. In young adulthood, a genetic

  14. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches.

    Science.gov (United States)

    Bérénos, Camillo; Ellis, Philip A; Pilkington, Jill G; Pemberton, Josephine M

    2014-07-01

    The estimation of quantitative genetic parameters in wild populations is generally limited by the accuracy and completeness of the available pedigree information. Using relatedness at genomewide markers can potentially remove this limitation and lead to less biased and more precise estimates. We estimated heritability, maternal genetic effects and genetic correlations for body size traits in an unmanaged long-term study population of Soay sheep on St Kilda using three increasingly complete and accurate estimates of relatedness: (i) Pedigree 1, using observation-derived maternal links and microsatellite-derived paternal links; (ii) Pedigree 2, using SNP-derived assignment of both maternity and paternity; and (iii) whole-genome relatedness at 37 037 autosomal SNPs. In initial analyses, heritability estimates were strikingly similar for all three methods, while standard errors were systematically lower in analyses based on Pedigree 2 and genomic relatedness. Genetic correlations were generally strong, differed little between the three estimates of relatedness and the standard errors declined only very slightly with improved relatedness information. When partitioning maternal effects into separate genetic and environmental components, maternal genetic effects found in juvenile traits increased substantially across the three relatedness estimates. Heritability declined compared to parallel models where only a maternal environment effect was fitted, suggesting that maternal genetic effects are confounded with direct genetic effects and that more accurate estimates of relatedness were better able to separate maternal genetic effects from direct genetic effects. We found that the heritability captured by SNP markers asymptoted at about half the SNPs available, suggesting that denser marker panels are not necessarily required for precise and unbiased heritability estimates. Finally, we present guidelines for the use of genomic relatedness in future quantitative genetics

  15. Quantitative genetics, version 3.0: where have we gone since 1987 and where are we headed?

    Science.gov (United States)

    Walsh, Bruce

    2009-06-01

    The last 20 years since the previous World Congress have seen tremendous advancements in quantitative genetics, in large part due to the advancements in genomics, computation, and statistics. One central theme of this last 20 years has been the exploitation of the vast harvest of molecular markers--examples include QTL and association mapping, marker-assisted selection and introgression, scans for loci under selection, and methods to infer degree of coancestry, population membership, and past demographic history. One consequence of this harvest is that phenotyping, rather than genotyping, is now the bottleneck in molecular quantitative genetics studies. Equally important have been advances in statistics, many developed to effectively use this treasure trove of markers. Computational improvements in statistics, and in particular Markov Chain Monte Carlo (MCMC) methods, have facilitated many of these methods, as have significantly improved computational abilities for mixed models. Indeed, one could argue that mixed models have had at least as great an impact in quantitative genetics as have molecular markers. A final important theme over the past 20 years has been the fusion of population and quantitative genetics, in particular the importance of coalescence theory with its applications for association mapping, scans for loci under selection, and estimation of the demography history of a population. What are the future directions of the field? While obviously important surprises await us, the general trend seems to be moving into higher and higher dimensional traits and, in general, dimensional considerations. We have methods to deal with infinite-dimensional traits indexed by a single variable (such as a trait varying over time), but the future will require us to treat much more complex objects, such as infinite-dimensional traits indexed over several variables and with graphs and dynamical networks. A second important direction is the interfacing of quantitative

  16. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection.

    NARCIS (Netherlands)

    Pearson, E.R.; Pruhova, S.; Tack, C.J.J.; Johansen, A.; Castleden, H.A.; Lumb, P.J.; Wierzbicki, A.S.; Clark, P.M.; Lebl, J.; Pedersen, O.; Ellard, S.; Hansen, T.; Hattersley, A.T.

    2005-01-01

    AIMS/HYPOTHESIS: Heterozygous mutations in the gene of the transcription factor hepatocyte nuclear factor 4alpha (HNF-4alpha) are considered a rare cause of MODY with only 14 mutations reported to date. The description of the phenotype is limited to single families. We investigated the genetics and

  17. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    NARCIS (Netherlands)

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-

  18. Phenotypic and genetic evaluation of elbow dysplasia in Dutch Labrador Retrievers, Golden Retrievers, and Bernese Mountain dogs

    NARCIS (Netherlands)

    Lavrijsen, I.C.M.; Heuven, H.C.M.; Voorhout, G.; Meij, B.P.; Theyse, L.F.H.; Leegwater, P.A.J.; Hazewinkel, H.A.W.

    2012-01-01

    Vet J. 2012 Aug;193(2):486-92. doi: 10.1016/j.tvjl.2012.01.001. Epub 2012 Feb 14. Phenotypic and genetic evaluation of elbow dysplasia in Dutch Labrador Retrievers, Golden Retrievers, and Bernese Mountain dogs. Lavrijsen IC, Heuven HC, Voorhout G, Meij BP, Theyse LF, Leegwater PA, Hazewinkel HA.

  19. Non-CLL-like monoclonal B-Cell lymphocytosis in the general population: Prevalence and phenotypic/genetic characteristics

    NARCIS (Netherlands)

    W.G. Nieto (Wendy); C. Teodosio (Cristina); A. López (Antonio); A. Rodríguez-Caballero (Arancha); A. Romero (Alfonso); P. Bárcena (Paloma); M.L. Gutierrez; A.W. Langerak (Anton); P. Fernandez-Navarro (Paulino); A. Orfao; J. Almeida (Julia); A.O.M.C.C.S. Santa Marta de Tormes; B.H.P.C.S. Garrido Sur; C.L.M.T.C.S. Ledesma; C.R.J.M.C.S. Alba de Tormes; C.L.R.C.S.F. Villalobos; D.V.P.J.C.S. Peñaranda; F.E.E.C.S. Pizarrales-Vidal; G.R.B.L.C.S. La Alberca; G.S.F.C.S. Periurbana Norte; G.M.J.C.S. Guijuelo; G.M.J.M.C.S. Vitigudino; J.R.M.J.C.S. Garrido Norte; J.C.T.B.C.S. Elena Ginel Diez; M.P.M.C.S. Fuentes de Oñoro; M.L.J.C.S. San Juan; M.D.M.P.C.S. Miguel Armijo; S.A.B.C.S. Aldeadavila de La Ribera; S.P.R.C.S. San Jose

    2010-01-01

    textabstractBackground: Monoclonal B-cell lymphocytosis (MBL) indicates <5 × 109peripheral blood (PB) clonal B-cells/L in healthy individuals. In most cases, MBL cells show similar phenotypic/genetic features to chronic lymphocytic leukemia cells - CLL-like MBL - but little is known about

  20. Data from: Genetic variation in variability: phenotypic variability of fledging weight and its evolution in a songbird population

    NARCIS (Netherlands)

    Mulder, H.A.; Gienapp, P.; Visser, M.E.

    2016-01-01

    Variation in traits is essential for natural selection to operate and genetic and environmental effects can contribute to this phenotypic variation. From domesticated populations, we know that families can differ in their level of within-family variance, which leads to the intriguing situation that

  1. The influence of gene flow and drift on genetic and phenotypic divergence in two species of Zosterops in Vanuatu.

    Science.gov (United States)

    Clegg, Sonya M; Phillimore, Albert B

    2010-04-12

    Colonization of an archipelago sets the stage for adaptive radiation. However, some archipelagos are home to spectacular radiations, while others have much lower levels of diversification. The amount of gene flow among allopatric populations is one factor proposed to contribute to this variation. In island colonizing birds, selection for reduced dispersal ability is predicted to produce changing patterns of regional population genetic structure as gene flow-dominated systems give way to drift-mediated divergence. If this transition is important in facilitating phenotypic divergence, levels of genetic and phenotypic divergence should be associated. We consider population genetic structure and phenotypic divergence among two co-distributed, congeneric (Genus: Zosterops) bird species inhabiting the Vanuatu archipelago. The more recent colonist, Z. lateralis, exhibits genetic patterns consistent with a strong influence of distance-mediated gene flow. However, complex patterns of asymmetrical gene flow indicate variation in dispersal ability or inclination among populations. The endemic species, Z. flavifrons, shows only a partial transition towards a drift-mediated system, despite a long evolutionary history on the archipelago. We find no strong evidence that gene flow constrains phenotypic divergence in either species, suggesting that levels of inter-island gene flow do not explain the absence of a radiation across this archipelago.

  2. Non-CLL-like monoclonal B-Cell lymphocytosis in the general population: Prevalence and phenotypic/genetic characteristics

    NARCIS (Netherlands)

    W.G. Nieto (Wendy); C. Teodosio (Cristina); A. López (Antonio); A. Rodríguez-Caballero (Arancha); A. Romero (Alfonso); P. Bárcena (Paloma); M.L. Gutierrez; A.W. Langerak (Ton); P. Fernandez-Navarro (Paulino); A. Orfao; J. Almeida (Julia); A.O.M.C.C.S. Santa Marta de Tormes; B.H.P.C.S. Garrido Sur; C.L.M.T.C.S. Ledesma; C.R.J.M.C.S. Alba de Tormes; C.L.R.C.S.F. Villalobos; D.V.P.J.C.S. Peñaranda; F.E.E.C.S. Pizarrales-Vidal; G.R.B.L.C.S. La Alberca; G.S.F.C.S. Periurbana Norte; G.M.J.C.S. Guijuelo; G.M.J.M.C.S. Vitigudino; J.R.M.J.C.S. Garrido Norte; J.C.T.B.C.S. Elena Ginel Diez; M.P.M.C.S. Fuentes de Oñoro; M.L.J.C.S. San Juan; M.D.M.P.C.S. Miguel Armijo; S.A.B.C.S. Aldeadavila de La Ribera; S.P.R.C.S. San Jose

    2010-01-01

    textabstractBackground: Monoclonal B-cell lymphocytosis (MBL) indicates <5 × 109peripheral blood (PB) clonal B-cells/L in healthy individuals. In most cases, MBL cells show similar phenotypic/genetic features to chronic lymphocytic leukemia cells - CLL-like MBL - but little is known about non-CLL-li

  3. Genetic and phenotypic correlations between feather pecking behavior, stress response, immune reponse, and egg quality traits in laying hens

    NARCIS (Netherlands)

    Buitenhuis, A.J.; Rodenburg, T.B.; Wissink, P.H.; Visscher, J.; Koene, P.; Bovenhuis, H.; Ducro, B.J.; Poel, van der J.J.

    2004-01-01

    The objective of the current study was to estimate genetic and phenotypic correlations among feather pecking (FP) behavior and stress response, immune response, and egg quality parameters. These traits have been measured in an F-2 cross, coming from a cross between a high and a low FP line of laying

  4. Power and sample size calculations in the presence of phenotype errors for case/control genetic association studies

    Directory of Open Access Journals (Sweden)

    Finch Stephen J

    2005-04-01

    Full Text Available Abstract Background Phenotype error causes reduction in power to detect genetic association. We present a quantification of phenotype error, also known as diagnostic error, on power and sample size calculations for case-control genetic association studies between a marker locus and a disease phenotype. We consider the classic Pearson chi-square test for independence as our test of genetic association. To determine asymptotic power analytically, we compute the distribution's non-centrality parameter, which is a function of the case and control sample sizes, genotype frequencies, disease prevalence, and phenotype misclassification probabilities. We derive the non-centrality parameter in the presence of phenotype errors and equivalent formulas for misclassification cost (the percentage increase in minimum sample size needed to maintain constant asymptotic power at a fixed significance level for each percentage increase in a given misclassification parameter. We use a linear Taylor Series approximation for the cost of phenotype misclassification to determine lower bounds for the relative costs of misclassifying a true affected (respectively, unaffected as a control (respectively, case. Power is verified by computer simulation. Results Our major findings are that: (i the median absolute difference between analytic power with our method and simulation power was 0.001 and the absolute difference was no larger than 0.011; (ii as the disease prevalence approaches 0, the cost of misclassifying a unaffected as a case becomes infinitely large while the cost of misclassifying an affected as a control approaches 0. Conclusion Our work enables researchers to specifically quantify power loss and minimum sample size requirements in the presence of phenotype errors, thereby allowing for more realistic study design. For most diseases of current interest, verifying that cases are correctly classified is of paramount importance.

  5. Phenotypic and Genetic Characterization of a Cohort of Pediatric Wilson Disease Patients

    Directory of Open Access Journals (Sweden)

    Elnaghy Suzan

    2011-06-01

    Full Text Available Abstract Background In Egypt, Wilson disease seems to be under diagnosed and clinical data on large cohorts are limited. The aim of this study is to highlight the clinical, laboratory and genetic characteristics of this disease in our pediatric population as well as to report our experience with both treatment options and outcome. Methods The study included 77 patients from 50 unrelated families (62 were followed up for a mean period of 58.9 ± 6.4 months and 27 were asymptomatic siblings. Data were collected retrospectively by record analysis and patient interviews. Diagnosis was confirmed by sequencing of the ATP7B gene in 64 patients Results Our patients had unique characteristics compared to other populations. They had a younger age of onset (median: 10 years, higher prevalence of Kayser-Fleischer rings (97.6% in the symptomatic patients, low ceruloplasmin (93.5%, high rate of parental consanguinity (78.9% as well as a more severe course. 71.42% of those on long term D-penicillamine improved or were stable during the follow up with severe side effects occurring in only 11.5%. Preemptive treatment with zinc monotherapy was an effective non-toxic alternative to D-penicillamine. Homozygous mutations were found in 85.7%, yet limited by the large number of mutations detected, it was difficult to find genotype-phenotype correlations. Missense mutations were the most common while protein-truncating mutations resulted in a more severe course with higher incidence of acute liver failure and neurological symptoms. Conclusions Egyptian children with Wilson disease present with early Kayser-Fleischer rings and early onset of liver and neurological disease. The mutational spectrum identified differs from that observed in other countries. The high rate of homozygous mutations (reflecting the high rate of consanguinity may potentially offer further insights on genotype-phenotype correlation

  6. Differential phenotypic and genetic expression of defence compounds in a plant-herbivore interaction along elevation.

    Science.gov (United States)

    Salgado, Ana L; Suchan, Tomasz; Pellissier, Loïc; Rasmann, Sergio; Ducrest, Anne-Lyse; Alvarez, Nadir

    2016-09-01

    Elevation gradients impose large differences in abiotic and biotic conditions over short distances, in turn, likely driving differences in gene expression more than would genetic variation per se, as natural selection and drift are less likely to fix alleles at such a narrow spatial scale. As elevation increases, the pressure exerted on plants by herbivores and on arthropod herbivores by predators decreases, and organisms spanning the elevation gradient are thus expected to show lower levels of defence at high elevation. The alternative hypothesis, based on the optimal defence theory, is that defence allocation should be higher in low-resource habitats such as those at high elevation, due to higher costs associated with tissue replacement. In this study, we analyse variation with elevation in (i) defence compound content in the plant Lotus corniculatus and (ii) gene expression associated with defence against predators in the specific phytophagous moth, Zygaena filipendulae. Both species produce cyanogenic glycosides (CNglcs) such as lotaustralin and linamarin as defence mechanisms, with the moth, in addition, being able to sequester CNglcs from its host plant. Specifically, we tested the assumption that the defence-associated phenotype in plants and the gene expression in the insect herbivore should covary between low- and high-elevation environments. We found that L. corniculatus accumulated more CNglcs at high elevation, a result in agreement with the optimal defence theory. By contrast, we found that the levels of expression in the defence genes of Z. filipendulae larvae were not related to the CNglc content of their host plant. Overall, expression levels were not correlated with elevation either, with the exception of the UGT33A1 gene, which showed a marginally significant trend towards higher expression at high elevation when using a simple statistical framework. These results suggest that the defence phenotype of plants against herbivores, and subsequent

  7. Differential phenotypic and genetic expression of defence compounds in a plant–herbivore interaction along elevation

    Science.gov (United States)

    Salgado, Ana L.; Suchan, Tomasz; Pellissier, Loïc; Rasmann, Sergio; Ducrest, Anne-Lyse

    2016-01-01

    Elevation gradients impose large differences in abiotic and biotic conditions over short distances, in turn, likely driving differences in gene expression more than would genetic variation per se, as natural selection and drift are less likely to fix alleles at such a narrow spatial scale. As elevation increases, the pressure exerted on plants by herbivores and on arthropod herbivores by predators decreases, and organisms spanning the elevation gradient are thus expected to show lower levels of defence at high elevation. The alternative hypothesis, based on the optimal defence theory, is that defence allocation should be higher in low-resource habitats such as those at high elevation, due to higher costs associated with tissue replacement. In this study, we analyse variation with elevation in (i) defence compound content in the plant Lotus corniculatus and (ii) gene expression associated with defence against predators in the specific phytophagous moth, Zygaena filipendulae. Both species produce cyanogenic glycosides (CNglcs) such as lotaustralin and linamarin as defence mechanisms, with the moth, in addition, being able to sequester CNglcs from its host plant. Specifically, we tested the assumption that the defence-associated phenotype in plants and the gene expression in the insect herbivore should covary between low- and high-elevation environments. We found that L. corniculatus accumulated more CNglcs at high elevation, a result in agreement with the optimal defence theory. By contrast, we found that the levels of expression in the defence genes of Z. filipendulae larvae were not related to the CNglc content of their host plant. Overall, expression levels were not correlated with elevation either, with the exception of the UGT33A1 gene, which showed a marginally significant trend towards higher expression at high elevation when using a simple statistical framework. These results suggest that the defence phenotype of plants against herbivores, and subsequent

  8. [Phenotypic and genetic features of cultural-morphologic variants of Bacillus anthracis].

    Science.gov (United States)

    Tsygankova, O I; Eremenko, E I; Tsygankova, E A; Buravtseva, N P; Riazanova, A G

    2008-01-01

    Comparative analysis of MVLA-genotypes of 6 Bacillus anthracis strains and 40 their variants differing on capsule- and toxin synthesis, hemolytic, proteolytic and lecitinase activity, nutritional requirements, susceptibility to anthrax bacteriophages, virulence, immunogenicity, and presence of genes for capsule and toxin synthesis was performed. Results of phylogenetic analysis of 5 chromosome locuses and plasmid locus pXO1aat which are variable for this sample of B. anthracis cultures showed that all strains divided on 2 main clusters - A and B. Cluster A consisted of 5 genotypes whereas cluster B - of 1 genotype. All highly virulent original strains and variants with characteristic phenotype Cap(CO2)(+)(O2)(-)Tox(+)ProtA(+)Hly(+) Lec(-)Trp(+) had identical genotype in 4 groups and in 5th group differences were present only in vrrA locus. All original strains and variants with the most atypical complex of phenotypic characteristics Cap (CO2)(+)(O2)(+)Tox(-)ProtA(-)Hly(-)Lec(-)Trp(-) also had the same genotype belonging to cluster B and diverged on characteristic of 5 chromosomal VNTR locuses and pXO1aat locus from typical strains. Absence of toxin production in vitro was not related to loss of genetic determinants of toxin components. Cultures with typical characteristics, one of which was ability to produce toxin in vitro, had larger sizes of amplicons of pXO1aat locus (135 and 132 nbp), whereas atoxigenic original strains and variants with complex of atypical characteristics and identical chromosome genotype had the smallest sizes (123 bnp). All original cultures were isolated in Russia, their genotypes are described for the first time.

  9. From phenotyping towards breeding strategies: using in vivo indicator traits and genetic markers to improve meat quality in an endangered pig breed.

    Science.gov (United States)

    Biermann, A D M; Yin, T; König von Borstel, U U; Rübesam, K; Kuhn, B; König, S

    2015-06-01

    In endangered and local pig breeds of small population sizes, production has to focus on alternative niche markets with an emphasis on specific product and meat quality traits to achieve economic competiveness. For designing breeding strategies on meat quality, an adequate performance testing scheme focussing on phenotyped selection candidates is required. For the endangered German pig breed 'Bunte Bentheimer' (BB), no breeding program has been designed until now, and no performance testing scheme has been implemented. For local breeds, mainly reared in small-scale production systems, a performance test based on in vivo indicator traits might be a promising alternative in order to increase genetic gain for meat quality traits. Hence, the main objective of this study was to design and evaluate breeding strategies for the improvement of meat quality within the BB breed using in vivo indicator traits and genetic markers. The in vivo indicator trait was backfat thickness measured by ultrasound (BFiv), and genetic markers were allele variants at the ryanodine receptor 1 (RYR1) locus. In total, 1116 records of production and meat quality traits were collected, including 613 in vivo ultrasound measurements and 713 carcass and meat quality records. Additionally, 700 pigs were genotyped at the RYR1 locus. Data were used (1) to estimate genetic (co)variance components for production and meat quality traits, (2) to estimate allele substitution effects at the RYR1 locus using a selective genotyping approach and (3) to evaluate breeding strategies on meat quality by combining results from quantitative-genetic and molecular-genetic approaches. Heritability for the production trait BFiv was 0.27, and 0.48 for backfat thickness measured on carcass. Estimated heritabilities for meat quality traits ranged from 0.14 for meat brightness to 0.78 for the intramuscular fat content (IMF). Genetic correlations between BFiv and IMF were higher than estimates based on carcass backfat

  10. The current and future use of ridge regression for prediction in quantitative genetics

    NARCIS (Netherlands)

    R. de Vlaming (Ronald); P.J.F. Groenen (Patrick)

    2015-01-01

    textabstractIn recent years, there has been a considerable amount of research on the use of regularization methods for inference and prediction in quantitative genetics. Such research mostly focuses on selection of markers and shrinkage of their effects. In this review paper, the use of ridge

  11. Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution

    Science.gov (United States)

    Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...

  12. Multilevel selection 1: Quantitative genetics of inheritance and response to selection

    NARCIS (Netherlands)

    Bijma, P.; Muir, W.M.; Arendonk, van J.A.M.

    2007-01-01

    Interaction among individuals is universal, both in animals and in plants, and substantially affects evolution of natural populations and responses to artificial selection in agriculture. Although quantitative genetics has successfully been applied to many traits, it does not provide a general theor

  13. Phenotype and Tissue Expression as a Function of Genetic Risk in Polycystic Ovary Syndrome

    Science.gov (United States)

    Pau, Cindy T.; Mosbruger, Tim; Saxena, Richa; Welt, Corrine K.

    2017-01-01

    Genome-wide association studies and replication analyses have identified (n = 5) or replicated (n = 10) DNA variants associated with risk for polycystic ovary syndrome (PCOS) in European women. However, the causal gene and underlying mechanism for PCOS risk at these loci have not been determined. We hypothesized that analysis of phenotype, gene expression and metformin response as a function of genotype would identify candidate genes and pathways that could provide insight into the underlying mechanism for risk at these loci. To test the hypothesis, subjects with PCOS (n = 427) diagnosed according to the NIH criteria (< 9 menses per year and clinical or biochemical hyperandrogenism) and controls (n = 407) with extensive phenotyping were studied. A subset of subjects (n = 38) underwent a subcutaneous adipose tissue biopsy for RNA sequencing and were subsequently treated with metformin for 12 weeks with standardized outcomes measured. Data were analyzed according to genotype at PCOS risk loci and adjusted for the false discovery rate. A gene variant in the THADA locus was associated with response to metformin and metformin was a predicted upstream regulator at the same locus. Genotype at the FSHB locus was associated with LH levels. Genes near the PCOS risk loci demonstrated differences in expression as a function of genotype in adipose including BLK and NEIL2 (GATA4 locus), GLIPR1 and PHLDA1 (KRR1 locus). Based on the phenotypes, expression quantitative trait loci (eQTL), and upstream regulatory and pathway analyses we hypothesize that there are PCOS subtypes. FSHB, FHSR and LHR loci may influence PCOS risk based on their relationship to gonadotropin levels. The THADA, GATA4, ERBB4, SUMO1P1, KRR1 and RAB5B loci appear to confer risk through metabolic mechanisms. The IRF1, SUMO1P1 and KRR1 loci may confer PCOS risk in development. The TOX3 and GATA4 loci appear to be involved in inflammation and its consequences. The data suggest potential PCOS subtypes and point to

  14. Quantitative, Phenotypical, and Functional Characterization of Cellular Immunity in Children and Adolescents With Down Syndrome.

    Science.gov (United States)

    Schoch, Justine; Rohrer, Tilman R; Kaestner, Michael; Abdul-Khaliq, Hashim; Gortner, Ludwig; Sester, Urban; Sester, Martina; Schmidt, Tina

    2017-05-15

    Infections and autoimmune disorders are more frequent in Down syndrome, suggesting abnormality of adaptive immunity. Although the role of B cells and antibodies is well characterized, knowledge regarding T cells is limited. Lymphocyte subpopulations of 40 children and adolescents with Down syndrome and 51 controls were quantified, and phenotype and functionality of antigen-specific effector T cells were analyzed with flow cytometry after polyclonal and pathogen-specific stimulation (with varicella-zoster virus [VZV] and cytomegalovirus [CMV]). Results were correlated with immunoglobulin (Ig) G responses. Apart from general alterations in the percentage of lymphocytes, regulatory T cells, and T-helper 1 and 17 cells, all major T-cell subpopulations showed higher expression of the inhibitory receptor PD-1. Polyclonally stimulated effector CD4+ T-cell frequencies were significantly higher in subjects with Down syndrome, whereas their inhibitory receptor expression (programmed cell death 1 [PD-1] and cytotoxic T-lymphocyte antigen 4 [CTLA-4]) was similar to that of controls and cytokine expression profiles were only marginally altered. Pathogen-specific immunity showed age-appropriate levels of endemic infection, with correlation of CMV-specific cellular and humoral immunity in all subjects. Among VZV IgG-positive individuals, a higher percentage of VZV-specific T-cell-positive subjects was seen in those with Down syndrome. Despite alterations in lymphocyte subpopulations, individuals with Down syndrome can mount effector T-cell responses with similar phenotype and functionality as controls but may require higher effector T-cell frequencies to ensure pathogen control.

  15. Juglans regia L., phenotypic selection and assessment of genetic variation within a simulated seed orchard

    Directory of Open Access Journals (Sweden)

    Fulvio Ducci

    2010-12-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Noble hardwoods are very important for the Italian furniture industry. Since 1985, approximately 170,000 ha have been planted in Italy with noble hardwoods. Among them, about 50% of species are represented by walnuts. Walnut (Juglans regia L., not native in Italy, has been the focus of a substantial research effort for breeding and improvement programmes. The priority has been to preserve the in situ genetic resource still existing after intensive felling. Phenotypes suitable for timber production showing important traits such as straight stem, nice branch architecture, dominance and adaptation (phenology have needed to be developed and selected. In order to reach this goals, selection of valuable progenies and the evaluation of the interaction genotype x environment, methods based essentially on a multi-trait Selection Index, were developed. Studies have been undertaken also to measure the variation of phenological traits, more correlated to traits valuable for architecture; in addition, neutral markers were used to assess genetic variation among different intensities of the adopted selections. The individual genetic component was found to be higher than at the inter-population level. Results showed that a hypothetical seed orchard made with progenies selected by morphology, phenology and genetic traits could provide material with a good performance and supply a variability similar to larger populations as the total plantation or the pseudo-natural system chosen for comparison. st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso

  16. Dubowitz syndrome is a complex comprised of multiple, genetically distinct and phenotypically overlapping disorders.

    Directory of Open Access Journals (Sweden)

    Douglas R Stewart

    Full Text Available Dubowitz syndrome is a rare disorder characterized by multiple congenital anomalies, cognitive delay, growth failure, an immune defect, and an increased risk of blood dyscrasia and malignancy. There is considerable phenotypic variability, suggesting genetic heterogeneity. We clinically characterized and performed exome sequencing and high-density array SNP genotyping on three individuals with Dubowitz syndrome, including a pair of previously-described siblings (Patients 1 and 2, brother and sister and an unpublished patient (Patient 3. Given the siblings' history of bone marrow abnormalities, we also evaluated telomere length and performed radiosensitivity assays. In the siblings, exome sequencing identified compound heterozygosity for a known rare nonsense substitution in the nuclear ligase gene LIG4 (rs104894419, NM_002312.3:c.2440C>T that predicts p.Arg814X (MAF:0.0002 and an NM_002312.3:c.613delT variant that predicts a p.Ser205Leufs*29 frameshift. The frameshift mutation has not been reported in 1000 Genomes, ESP, or ClinSeq. These LIG4 mutations were previously reported in the sibling sister; her brother had not been previously tested. Western blotting showed an absence of a ligase IV band in both siblings. In the third patient, array SNP genotyping revealed a de novo ∼ 3.89 Mb interstitial deletion at chromosome 17q24.2 (chr 17:62,068,463-65,963,102, hg18, which spanned the known Carney complex gene PRKAR1A. In all three patients, a median lymphocyte telomere length of ≤ 1st centile was observed and radiosensitivity assays showed increased sensitivity to ionizing radiation. Our work suggests that, in addition to dyskeratosis congenita, LIG4 and 17q24.2 syndromes also feature shortened telomeres; to confirm this, telomere length testing should be considered in both disorders. Taken together, our work and other reports on Dubowitz syndrome, as currently recognized, suggest that it is not a unitary entity but instead a collection of

  17. Investigation of the genetic association between quantitative measures of psychosis and schizophrenia

    DEFF Research Database (Denmark)

    Derks, Eske M; Vorstman, Jacob A S; Ripke, Stephan

    2012-01-01

    The presence of subclinical levels of psychosis in the general population may imply that schizophrenia is the extreme expression of more or less continuously distributed traits in the population. In a previous study, we identified five quantitative measures of schizophrenia (positive, negative......, disorganisation, mania, and depression scores). The aim of this study is to examine the association between a direct measure of genetic risk of schizophrenia and the five quantitative measures of psychosis. Estimates of the log of the odds ratios of case/control allelic association tests were obtained from...... the Psychiatric GWAS Consortium (PGC) (minus our sample) which included genome-wide genotype data of 8,690 schizophrenia cases and 11,831 controls. These data were used to calculate genetic risk scores in 314 schizophrenia cases and 148 controls from the Netherlands for whom genotype data and quantitative symptom...

  18. Spontaneous mutations and the origin and maintenance of quantitative genetic variation.

    Science.gov (United States)

    Huang, Wen; Lyman, Richard F; Lyman, Rachel A; Carbone, Mary Anna; Harbison, Susan T; Magwire, Michael M; Mackay, Trudy Fc

    2016-05-23

    Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms. Stabilizing selection could act directly on the traits, or indirectly from pleiotropic effects on fitness. However, our data are not consistent with simple models of mutation-stabilizing selection balance; therefore, further empirical work is needed to assess the balance of evolutionary forces responsible for quantitative genetic variation.

  19. Genomic imprinting: genetic mechanisms and phenotypic consequences in Prader-Willi and Angelman syndromes

    Directory of Open Access Journals (Sweden)

    Cintia Fridman

    2000-12-01

    Full Text Available Chromosomal 15q11-q13 region is of great interest in Human Genetics because many structural rearrangements have been described for it (deletions, duplications and translocations leading to phenotypes resulting in conditions such as the Prader-Willi (PWS and Angelman (AS syndromes which were the first human diseases found to be related to the differential expression of parental alleles (genomic imprinting. Contrary to Mendelian laws where the parental inheritance of genetic information does not influence gene expression, genomic imprinting is characterized by DNA modifications that produce different phenotypes depending on the parental origin of the mutation. Clinical manifestation of PWS appears when the loss of paternally expressed genes occurs and AS results from the loss of a maternally expressed gene. Different genetic mechanisms can lead to PWS or AS, such as deletions, uniparental disomy or imprinting mutation. In AS patients an additional class occurs with mutations on the UBE3A gene. Studies of PWS and AS patients can help us to understand the imprinting process, so that other genomic regions with similar characteristics can be located, and different syndromes can have their genetic mechanisms elucidated.O segmento cromossômico 15q11-q13 é de grande interesse em Genética Humana uma vez que diversos rearranjos estruturais têm sido descritos nessa região (deleções, duplicações e translocações resultando em fenótipos diferentes como os das síndromes de Prader-Willi (PWS e Angelman (AS, que foram as primeiras doenças humanas a serem relacionadas com a expressão diferencial de alelos parentais (imprinting genômico. Contrário às leis de Mendel onde a herança parental da informação genética não influencia a expressão gênica, o imprinting genômico é caracterizado por modificações no DNA que produzem diferentes fenótipos dependendo da origem parental da mutação. A manifestação clínica da PWS aparece quando

  20. Low-Anxiety Rat Phenotypes Can Be Further Reduced through Genetic Intervention

    Science.gov (United States)

    Granzotto, Natalli; Ramos, André

    2013-01-01

    Background A previous study using an intercross between the inbred rat strains Lewis (LEW) and Spontaneously Hypertensive Rats (SHR) identified a locus on chromosome 4, named Anxrr16, influencing an experimental index of anxiety and showing a transgressive effect, with alleles from the LEW strain (more anxious) decreasing rather than increasing anxiety. Objective To confirm the location and isolate the effect of a rat genome region named Anxrr16 through a planned genomic recombination strategy, where the target locus in SHR rats was replaced with LEW genetic material. Methods A new congenic strain, named SHR.LEW-Anxrr16 (SLA16), was developed from a cross between LEW (donor) and SHR (receptor) rats and then evaluated in several anxiety-related tests. The activity and attention levels of the new strain were also evaluated, since hyperactivity was observed during its construction and because SHR is a model of attention deficit hyperactivity disorder. Results Significant effects of Anxrr16 were found for open field central locomotion, as well as for other indices of anxiety from the light/dark box, triple test and T-maze. In all cases, the low-anxiety levels of SHR rats were further reduced by the insertion of LEW alleles. Differences in locomotor activity were found only in unfamiliar (hence stressful) environments and no genetic effects were observed in indices of attention. Conclusion The SLA16 strain can help in the identification of the molecular pathways involved in experimental anxiety and it demonstrates how apparently extreme phenotypes sometimes hide major opposite-acting genes. PMID:24386249

  1. Genetic microheterogeneity and phenotypic variation of Helicobacter pylori arginase in clinical isolates

    Directory of Open Access Journals (Sweden)

    Spadafora Domenico

    2007-04-01

    Full Text Available Abstract Background Clinical isolates of the gastric pathogen Helicobacter pylori display a high level of genetic macro- and microheterogeneity, featuring a panmictic, rather than clonal structure. The ability of H. pylori to survive the stomach acid is due, in part, to the arginase-urease enzyme system. Arginase (RocF hydrolyzes L-arginine to L-ornithine and urea, and urease hydrolyzes urea to carbon dioxide and ammonium, which can neutralize acid. Results The degree of variation in arginase was explored at the DNA sequence, enzyme activity and protein expression levels. To this end, arginase activity was measured from 73 minimally-passaged clinical isolates and six laboratory-adapted strains of H. pylori. The rocF gene from 21 of the strains was cloned into genetically stable E. coli and the enzyme activities measured. Arginase activity was found to substantially vary (>100-fold in both different H. pylori strains and in the E. coli model. Western blot analysis revealed a positive correlation between activity and amount of protein expressed in most H. pylori strains. Several H. pylori strains featured altered arginase activity upon in vitro passage. Pairwise alignments of the 21 rocF genes plus strain J99 revealed extensive microheterogeneity in the promoter region and 3' end of the rocF coding region. Amino acid S232, which was I232 in the arginase-negative clinical strain A2, was critical for arginase activity. Conclusion These studies demonstrated that H. pylori arginase exhibits extensive genotypic and phenotypic variation which may be used to understand mechanisms of microheterogeneity in H. pylori.

  2. Genes Predisposing to Thoracic Aortic Aneurysms and Dissections: Associated Phenotypes, Gene-Specific Management, and Genetic Testing

    Science.gov (United States)

    Milewicz, Dianna M.; Carlson, Alicia A.; Regalado, Ellen S.

    2011-01-01

    Thoracic aortic aneurysms leading to type A dissections (TAAD) are the major diseases affecting the aorta. A genetic predisposition for TAAD can occur as part of a genetic syndrome, as is the case for Marfan syndrome, due to mutations in FBN1, and Loeys-Dietz syndrome, which results from mutations in either TGFBR1 or TGFBR2. A predisposition to TAAD in the absence of syndromic features can be inherited in an autosomal dominant manner with decreased penetrance and variable expression, termed familial TAAD. Familial TAAD exhibits clinical and genetic heterogeneity. Genetic heterogeneity for familial TAAD has been demonstrated by the identification of four genes leading to TAAD, including TGFBR2 and TGFBR1, MYH11, and ACTA2. The phenotype and management of patients harboring mutations in these genes, along with genetic testing, will be addressed in this review. PMID:20452526

  3. The quantitative genetic basis of polyandry in the parasitoid wasp, Nasonia vitripennis.

    Science.gov (United States)

    Shuker, D M; Phillimore, A J; Burton-Chellew, M N; Hodge, S E; West, S A

    2007-02-01

    Understanding the evolution of female multiple mating (polyandry) is crucial for understanding sexual selection and sexual conflict. Despite this interest, little is known about its genetic basis or whether genetics influences the evolutionary origin or maintenance of polyandry. Here, we explore the quantitative genetic basis of polyandry in the parasitoid wasp Nasonia vitripennis, a species in which female re-mating has been observed to evolve in the laboratory. We performed a quantitative genetic experiment on a recently collected population of wasps. We found low heritabilities of female polyandry (re-mating frequency after 18 h), low heritability of courtship duration and a slightly higher heritability of copulation duration. However, the coefficients of additive genetic variance for these traits were all reasonably large (CV(A)>7.0). We also found considerable dam effects for all traits after controlling for common environment, suggesting either dominance or maternal effects. Our work adds to the evidence that nonadditive genetic effects may influence the evolution of mating behaviour in Nasonia vitripennis, and the evolution of polyandry more generally.

  4. Genetic and Phenotypic Analyses of a Papaver somniferum T-DNA Insertional Mutant with Altered Alkaloid Composition

    Directory of Open Access Journals (Sweden)

    Kayo Yoshimatsu

    2012-02-01

    Full Text Available The in vitro shoot culture of a T-DNA insertional mutant of Papaver somniferum L. established by the infection of Agrobacterium rhizogenes MAFF03-01724 accumulated thebaine instead of morphine as a major opium alkaloid. To develop a non-narcotic opium poppy and to gain insight into its genetic background, we have transplanted this mutant to soil, and analyzed its alkaloid content along with the manner of inheritance of T-DNA insertion loci among its selfed progenies. In the transplanted T0 primary mutant, the opium (latex was found to be rich in thebaine (16.3% of dried opium by HPLC analysis. The analyses on T-DNA insertion loci by inverse PCR, adaptor-ligation PCR, and quantitative real-time PCR revealed that as many as 18 copies of T-DNAs were integrated into a poppy genome in a highly complicated manner. The number of copies of T-DNAs was decreased to seven in the selected T3 progenies, in which the average thebaine content was 2.4-fold that of the wild type plant. This may indicate that the high thebaine phenotype was increasingly stabilized as the number of T-DNA copies was decreased. In addition, by reverse transcription PCR analysis on selected morphine biosynthetic genes, the expression of codeine 6-O-demethylase was clearly shown to be diminished in the T0 in vitro shoot culture, which can be considered as one of the key factors of altered alkaloid composition.

  5. Signal function drives phenotypic and genetic diversity: the effects of signalling individual identity, quality or behavioural strategy.

    Science.gov (United States)

    Tibbetts, Elizabeth A; Mullen, Sean P; Dale, James

    2017-07-05

    Animal coloration is influenced by selection pressures associated with communication. During communication, signallers display traits that inform receivers and modify receiver behaviour in ways that benefit signallers. Here, we discuss how selection on signallers to convey different kinds of information influences animal phenotypes and genotypes. Specifically, we address the phenotypic and genetic consequences of communicating three different kinds of information: individual identity, behavioural strategy and quality. Previous work has shown signals that convey different kinds of information differ in terms of the (i) type of selection acting on signallers (e.g. directional, stabilizing, or negative frequency dependent), and (ii) developmental basis of signals (i.e. heritability, genetic architecture). These differences result in signals that convey different information having consistently different phenotypic properties, including the amount, modality and continuity of intraspecific variation. Understanding how communication influences animal phenotypes may allow researchers to quickly identify putative functions of colour variation prior to experimentation. Signals that convey different information will also have divergent evolutionary consequences. For example, signalling individual identity can increase genetic diversity, signalling quality may decrease diversity, and signalling strategy can constrain adaptation and contribute to speciation. Considering recent advances in genomic resources, our framework highlights new opportunities to resolve the evolutionary consequences of selection on communication across diverse taxa and signal types.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  6. Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies.

    Science.gov (United States)

    Zhu, Hao; Shah, Samar; Shyh-Chang, Ng; Shinoda, Gen; Einhorn, William S; Viswanathan, Srinivas R; Takeuchi, Ayumu; Grasemann, Corinna; Rinn, John L; Lopez, Mary F; Hirschhorn, Joel N; Palmert, Mark R; Daley, George Q

    2010-07-01

    Recently, genome-wide association studies have implicated the human LIN28B locus in regulating height and the timing of menarche. LIN28B and its homolog LIN28A are functionally redundant RNA-binding proteins that block biogenesis of let-7 microRNAs. lin-28 and let-7 were discovered in Caenorhabditis elegans as heterochronic regulators of larval and vulval development but have recently been implicated in cancer, stem cell aging and pluripotency. The let-7 targets Myc, Kras, Igf2bp1 and Hmga2 are known regulators of mammalian body size and metabolism. To explore the function of the Lin28-Let-7 pathway in vivo, we engineered transgenic mice to express Lin28a and observed in them increased body size, crown-rump length and delayed onset of puberty. Investigation of metabolic and endocrine mechanisms of overgrowth in these transgenic mice revealed increased glucose metabolism and insulin sensitivity. Here we report a mouse that models the human phenotypes associated with genetic variation in the Lin28-Let-7 pathway.

  7. Infections associated with chronic granulomatous disease: linking genetics to phenotypic expression.

    Science.gov (United States)

    Ben-Ari, Josef; Wolach, Ofir; Gavrieli, Ronit; Wolach, Baruch

    2012-08-01

    Chronic granulomatous disease (CGD) is an inherited primary immunodeficiency characterized by the absence or malfunction of the NADPH oxidase in phagocytic cells. As a result, there is an impaired ability to generate superoxide anions and the subsequent reactive oxygen intermediates. Consequently, CGD patients suffer from two clinical manifestations: recurrent, life-threatening bacterial and fungal infections and excessive inflammatory reactions leading to granulomatous lesions. Although the genotype of CGD was linked to the phenotypic expression of the disease, this connection is still controversial and poorly understood. Certain correlations were reported, but the clinical expression of the disease is usually unpredictable, regardless of the pattern of inheritance. CGD mainly affects the lungs, lymph nodes, skin, GI tract and liver. Patients are particularly susceptible to catalase-positive microorganisms, including Staphyloccocus aureus, Nocardia spp. and Gram-negative bacteria, such as Serratia marcescens, Burkholderia cepacea and Salmonella spp. Unusually, catalase-negative microorganisms were reported as well. New antibacterial and antimycotic agents considerably improved the prognosis of CGD. Therapy with IFN-γ is still controversial. Bone marrow stem cell transplantation is currently the only curative treatment and gene therapy needs further development. In this article, the authors discuss the genetic, functional and molecular aspects of CGD and their impact on the clinical expression, infectious complications and the hyperinflammatory state.

  8. Genetic and phenotypic diversity of carbofuran-degrading bacteria isolated from agricultural soils.

    Science.gov (United States)

    Shin, Dong-Hyeon; Kim, Dong-Uk; Seong, Chi-Nam; Song, Hong-Gyu; Ka, Jong-Ok

    2012-04-01

    Thirty-seven carbofuran-degrading bacteria were isolated from agricultural soils, and their genetic and phenotypic characteristics were investigated. The isolates were able to utilize carbofuran as a sole source of carbon and energy. Analysis of the 16S rRNA gene sequence indicated that the isolates were related to members of the genera Rhodococcus, Sphingomonas, and Sphingobium, including new types of carbofuran-degrading bacteria, Bosea and Microbacterium. Among the 37 isolates, 15 different chromosomal DNA patterns were obtained by polymerase chain reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences. Five of the 15 representative isolates were able to degrade carbofuran phenol, fenoxycarb, and carbaryl, in addition to carbofuran. Ten of the 15 representative isolates had 1 to 8 plasmids. Among the 10 plasmid-containing isolates, plasmid-cured strains were obtained from 5 strains. The cured strains could not degrade carbofuran and other pesticides anymore, suggesting that the carbofuran degradative genes were on the plasmid DNAs in these strains. When analyzed with PCR amplification and dot-blot hybridization using the primers targeting for the previously reported carbofuran hydrolase gene (mcd), all of the isolates did not show any positive signals, suggesting that their carbofuran hydrolase genes had no significant sequence homology with the mcd gene.

  9. Comparison of genetics, phenotypic and behavioral properties of eubacteria and archaebacteria

    Directory of Open Access Journals (Sweden)

    HAMID KAZEMIAN

    2016-06-01

    Full Text Available Background: The genome of the bacteria has considerable diversity and change over the time. With the advancement of bioinformatics science possibility of the vast comparison to living organisms has risen. In this study we compared some of the genetic, phenotypic and behavioral properties of archaebacteria and eubacteria. Methods: Genomic Information of 286 species of archaebacteria and 122 species of eubacteria were collected from the NCBI National Center for Biotechnology Information( site. Mean of gene size, gene number, protein number and  C + G content compared in the two groups of archaebacteria and eubacteria.  Association of genomic characterization of bacteria with several other characteristics were analyzed using SPSS statistical software version 19. Results: There was significant association between means discrepancy in two group. The genome size of eubacteria and archaebacteria have significant association with some of the characteristics of bacteria, such as the C + G content, the number of proteins, genes and habitats of the bacteria. As well as there was significant association between genome size and features such as number of pseudogene, mobility and type of breathing in eubacteria but not in archaebacteria. Conclusion: Many characteristics  of eubacteria and archaebacteria are significantly associated with genomic properties. Comparison genomics of bacteria will help in identification of evolutionary origins as well as differences between different categories of bacterial.

  10. Evaluation of genetic and phenotypic consistency of Bacillus coagulans MTCC 5856: a commercial probiotic strain.

    Science.gov (United States)

    Majeed, Muhammed; Nagabhushanam, Kalyanam; Natarajan, Sankaran; Sivakumar, Arumugam; Eshuis-de Ruiter, Talitha; Booij-Veurink, Janine; de Vries, Ynte P; Ali, Furqan

    2016-04-01

    Commercial probiotics preparation containing Bacillus coagulans have been sold in the market for several decades. Due to its high intra-species genomic diversity, it is very likely that B. coagulans strain may alter in different ways over multiple years of production. Therefore, the present study focuses to evaluate the genetic consistency and probiotic potential of B. coagulans MTCC 5856. Phenotypic and genotypic techniques including biochemical profiling, 16S rRNA sequencing, GTG 5″, BOX PCR fingerprinting, and Multi-Locus-Sequence typing (MLST) were carried out to evaluate the identity and consistency of the B. coagulans MTCC 5856. Further, in vitro probiotic potential, safety and stability at ambient temperature conditions of B. coagulans MTCC 5856 were evaluated. All the samples were identified as B. coagulans by biochemical profiling and 16S rRNA sequencing. GTG 5″, BOX PCR fingerprints and MLST studies revealed that the same strain was present over 3 years of commercial production. B. coagulans MTCC 5856 showed resistance to gastric acid, bile salt and exhibited antimicrobial activity in in-vitro studies. Additionally, B. coagulans MTCC 5856 was found to be non-mutagenic, non-cytotoxic, negative for enterotoxin genes and stable at ambient temperature (25 ± 2 °C) for 36 months. The data of the study verified that the same strain of B. coagulans MTCC 5856 was present in commercial preparation over multiple years of production.

  11. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method

    Science.gov (United States)

    Rietveld, Cornelius A.; Esko, Tõnu; Davies, Gail; Pers, Tune H.; Turley, Patrick; Benyamin, Beben; Chabris, Christopher F.; Emilsson, Valur; Johnson, Andrew D.; Lee, James J.; de Leeuw, Christiaan; Marioni, Riccardo E.; Medland, Sarah E.; Miller, Michael B.; Rostapshova, Olga; van der Lee, Sven J.; Vinkhuyzen, Anna A. E.; Amin, Najaf; Conley, Dalton; Derringer, Jaime; van Duijn, Cornelia M.; Fehrmann, Rudolf; Franke, Lude; Glaeser, Edward L.; Hansell, Narelle K.; Hayward, Caroline; Iacono, William G.; Ibrahim-Verbaas, Carla; Jaddoe, Vincent; Karjalainen, Juha; Laibson, David; Lichtenstein, Paul; Liewald, David C.; Magnusson, Patrik K. E.; Martin, Nicholas G.; McGue, Matt; McMahon, George; Pedersen, Nancy L.; Pinker, Steven; Porteous, David J.; Posthuma, Danielle; Rivadeneira, Fernando; Smith, Blair H.; Starr, John M.; Tiemeier, Henning; Timpson, Nicholas J.; Trzaskowski, Maciej; Uitterlinden, André G.; Verhulst, Frank C.; Ward, Mary E.; Wright, Margaret J.; Davey Smith, George; Deary, Ian J.; Johannesson, Magnus; Plomin, Robert; Visscher, Peter M.; Benjamin, Daniel J.; Koellinger, Philipp D.

    2014-01-01

    We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated SNPs. Second, using independent samples (n = 24,189), we measure the association of these education-associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, and rs2721173) are significantly associated with cognitive performance after correction for multiple hypothesis testing. In an independent sample of older Americans (n = 8,652), we also show that a polygenic score derived from the education-associated SNPs is associated with memory and absence of dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific genes (KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory. PMID:25201988

  12. A forward phenotypically driven unbiased genetic analysis of host genes that moderate herpes simplex virus virulence and stromal keratitis in mice.

    Directory of Open Access Journals (Sweden)

    Richard L Thompson

    Full Text Available Both viral and host genetics affect the outcome of herpes simplex virus type 1 (HSV-1 infection in humans and experimental models. Little is known about specific host gene variants and molecular networks that influence herpetic disease progression, severity, and episodic reactivation. To identify such host gene variants we have initiated a forward genetic analysis using the expanded family of BXD strains, all derived from crosses between C57BL/6J and DBA/2J strains of mice. One parent is highly resistant and one highly susceptible to HSV-1. Both strains have also been fully sequenced, greatly facilitating the search for genetic modifiers that contribute to differences in HSV-1 infection. We monitored diverse disease phenotypes following infection with HSV-1 strain 17syn+ including percent mortality (herpes simplex encephalitis, HSE, body weight loss, severity of herpetic stromal keratitis (HSK, spleen weight, serum neutralizing antibody titers, and viral titers in tear films in BXD strains. A significant quantitative trait locus (QTL on chromosome (Chr 16 was found to associate with both percent mortality and HSK severity. Importantly, this QTL maps close to a human QTL and the gene proposed to be associated with the frequency of recurrent herpetic labialis (cold sores. This suggests that a single host locus may influence these seemingly diverse HSV-1 pathogenic phenotypes by as yet unknown mechanisms. Additional suggestive QTLs for percent mortality were identified--one on Chr X that is epistatically associated with that on Chr 16. As would be anticipated the Chr 16 QTL also modulated weight loss, reaching significance in females. A second significant QTL for maximum weight loss in male and female mice was mapped to Chr 12. To our knowledge this is the first report of a host genetic locus that modulates the severity of both herpetic disease in the nervous system and herpetic stromal keratitis.

  13. DNA Phenotyping: The prediction of human pigmentation traits from genetic data

    NARCIS (Netherlands)

    S. Walsh (Susan)

    2013-01-01

    textabstractPhenotyping is the ability to assign characteristics to an organism based on certain measurable parameters. In the case of DNA phenotyping, it is limited to the sole use of DNA to determine a phenotype such as an externally visible characteristic. In a forensic setting, it encompasses

  14. Recommendations for standardization and phenotype definitions in genetic studies of osteoarthritis: The TREAT-OA consortium

    NARCIS (Netherlands)

    J.M. Kerkhof (Hanneke); I. Meulenbelt (Ingrid); T. Akune (Toru); N.K. Arden (Nigel); A. Aromaa (Arpo); S.M. Bierma-Zeinstra (Sita); C. Cooper (Charles); J. Dai; M. Doherty (Michael); S. Doherty (Sally); D. Felson; A. Gonzalez (Antonio); A. Gordon; A. Harilainen (Arsi); D.J. Hart; V.B. Hauksson (Valdimar); M. Heliovaara (Markku); A. Hofman (Albert); S. Ikegawa; T. Ingvarsson (Torvaldur); Q. Jiang; H. Jonsson; I. Jonsdottir (Ingileif); H. Kawaguchi; M. Kloppenburg (Margreet); U.M. Kujala (Urho); N.E. Lane; P. Leino-Arjas (Päivi I.); L.S. Lohmander (Stefan); F.P. Luyten (Frank); K.N. Malizos (Konstantinos); M. Nakajima; M.C. Nevitt (Michael); H.A.P. Pols (Huib); F. Rivadeneira Ramirez (Fernando); D. Shi; E. Slagboom (Eline); T.D. Spector (Timothy); K. Stefansson (Kari); A. Sudo (Akihiro); A. Tamm; A.E. Tamm (Aile); A. Tsezou (Aspasia); A. Uchida; A.G. Uitterlinden (André); J.M. Wilkinson (Mark); N. Yoshimura; A.M. Valdes (Ana Maria); J.B.J. van Meurs (Joyce); A.J. Carr (Andrew Jonathan)

    2011-01-01

    textabstractObjective: To address the need for standardization of osteoarthritis (OA) phenotypes by examining the effect of heterogeneity among symptomatic (SOA) and radiographic osteoarthritis (ROA) phenotypes. Methods: Descriptions of OA phenotypes of the 28 studies involved in the TREAT-OA consor

  15. DNA Phenotyping: The prediction of human pigmentation traits from genetic data

    NARCIS (Netherlands)

    S. Walsh (Susan)

    2013-01-01

    textabstractPhenotyping is the ability to assign characteristics to an organism based on certain measurable parameters. In the case of DNA phenotyping, it is limited to the sole use of DNA to determine a phenotype such as an externally visible characteristic. In a forensic setting, it encompasses th

  16. Phenotype to genotype using forward-genetic Mu-seq for identification and functional classification of maize mutants

    Directory of Open Access Journals (Sweden)

    Charles T Hunter

    2014-01-01

    Full Text Available In pursuing our long-term goals of identifying causal genes for mutant phenotypes in maize, we have developed a new, phenotype-to-genotype approach for transposon-based resources, and used this to identify candidate genes that co-segregate with visible kernel mutants. The strategy incorporates a redesigned Mu-seq protocol (sequence-based, transposon mapping for high-throughput identification of individual plants carrying Mu insertions. Forward-genetic Mu-seq also involves a genetic pipeline for generating families that segregate for mutants of interest, and grid designs for concurrent analysis of genotypes in multiple families. Critically, this approach not only eliminates gene-specific PCR genotyping, but also profiles all Mu-insertions in hundreds of individuals simultaneously. Here, we employ this scalable approach to study 12 families that showed Mendelian segregation of visible seed mutants. These families were analyzed in parallel, and 7 showed clear co-segregation between the selected phenotype and a Mu insertion in a specific gene. Results were confirmed by PCR. Mutant genes that associated with kernel phenotypes include those encoding: a new allele of Whirly1 (a transcription factor with high affinity for organellar and single-stranded DNA, a predicted splicing factor with a KH domain, a small protein with unknown function, a putative mitochondrial transcription-termination factor, and three proteins with pentatricopeptide repeat domains (predicted mitochondrial. Identification of such associations allows mutants to be prioritized for subsequent research based on their functional annotations. Forward-genetic Mu-seq also allows a systematic dissection of mutant classes with similar phenotypes. In the present work, a high proportion of kernel phenotypes were associated with mutations affecting organellar gene transcription and processing, highlighting the importance and non-redundance of genes controlling these aspects of seed development.

  17. Effect of Genetics, Environment, and Phenotype on the Metabolome of Maize Hybrids Using GC/MS and LC/MS.

    Science.gov (United States)

    Tang, Weijuan; Hazebroek, Jan; Zhong, Cathy; Harp, Teresa; Vlahakis, Chris; Baumhover, Brian; Asiago, Vincent

    2017-06-28

    We evaluated the variability of metabolites in various maize hybrids due to the effect of environment, genotype, phenotype as well as the interaction of the first two factors. We analyzed 480 forage and the same number of grain samples from 21 genetically diverse non-GM Pioneer brand maize hybrids, including some with drought tolerance and viral resistance phenotypes, grown at eight North American locations. As complementary platforms, both GC/MS and LC/MS were utilized to detect a wide diversity of metabolites. GC/MS revealed 166 and 137 metabolites in forage and grain samples, respectively, while LC/MS captured 1341 and 635 metabolites in forage and grain samples, respectively. Univariate and multivariate analyses were utilized to investigate the response of the maize metabolome to the environment, genotype, phenotype, and their interaction. Based on combined percentages from GC/MS and LC/MS datasets, the environment affected 36% to 84% of forage metabolites, while less than 7% were affected by genotype. The environment affected 12% to 90% of grain metabolites, whereas less than 27% were affected by genotype. Less than 10% and 11% of the metabolites were affected by phenotype in forage and grain, respectively. Unsupervised PCA and HCA analyses revealed similar trends, i.e., environmental effect was much stronger than genotype or phenotype effects. On the basis of comparisons of disease tolerant and disease susceptible hybrids, neither forage nor grain samples originating from different locations showed obvious phenotype effects. Our findings demonstrate that the combination of GC/MS and LC/MS based metabolite profiling followed by broad statistical analysis is an effective approach to identify the relative impact of environmental, genetic and phenotypic effects on the forage and grain composition of maize hybrids.

  18. Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation.

    Science.gov (United States)

    Assunção, Ana G L; Pieper, Bjorn; Vromans, Jaap; Lindhout, Pim; Aarts, Mark G M; Schat, Henk

    2006-01-01

    Zinc (Zn) hyperaccumulation seems to be a constitutive species-level trait in Thlaspi caerulescens. When compared under conditions of equal Zn availability, considerable variation in the degree of hyperaccumulation is observed among accessions originating from different soil types. This variation offers an excellent opportunity for further dissection of the genetics of this trait. A T. caerulescens intraspecific cross was made between a plant from a nonmetallicolous accession [Lellingen (LE)], characterized by relatively high Zn accumulation, and a plant from a calamine accession [La Calamine (LC)], characterized by relatively low Zn accumulation. Zinc accumulation in roots and shoots segregated in the F3 population. This population was used to construct an LE/LC amplified fragment length polymorphism (AFLP)-based genetic linkage map and to map quantitative trait loci (QTL) for Zn accumulation. Two QTL were identified for root Zn accumulation, with the trait-enhancing alleles being derived from each of the parents, and explaining 21.7 and 16.6% of the phenotypic variation observed in the mapping population. Future development of more markers, based on Arabidopsis orthologous genes localized in the QTL regions, will allow fine-mapping and map-based cloning of the genes underlying the QTL.

  19. Short-range phenotypic divergence among genetically distinct parapatric populations of an Australian funnel-web spider.

    Science.gov (United States)

    Wong, Mark K L; Woodman, James D; Rowell, David M

    2017-07-01

    Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel-web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum62, 285-392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110-kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders' behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.

  20. Maternal genetic mutations as gestational and early life influences in producing psychiatric disease-like phenotypes in mice

    Directory of Open Access Journals (Sweden)

    Georgia eGleason

    2011-05-01

    Full Text Available Risk factors for psychiatric disorders have traditionally been classified as genetic or environmental. Risk (candidate genes, although typically possessing small effects, represent a clear starting point to elucidate downstream cellular/molecular pathways of disease. Environmental effects, especially during development, can also lead to altered behavior and increased risk for disease. An important environmental factor is the mother, demonstrated by the negative effects elicited by maternal gestational stress and altered maternal care. These maternal effects can also have a genetic basis (e.g. maternal genetic variability and mutations. The focus of this review is maternal genotype effects that influence the emotional development of the offspring resulting in life-long psychiatric disease-like phenotypes. We have recently found that genetic inactivation of the serotonin1A receptor (5-HT1AR and the fmr-1 gene (encoding the fragile X mental retardation protein in mouse dams results in psychiatric disease-like phenotypes in their genetically unaffected offspring. 5-HT1AR deficiency in dams results in anxiety and increased stress responsiveness in their offspring. Mice with 5-HT1AR deficient dams display altered development of the hippocampus, which could be linked to their anxiety-like phenotype. Maternal inactivation of fmr-1, like its inactivation in the offspring, results in a hyperactivity-like condition and is associated with receptor alterations in the striatum. These data indicate a high sensitivity of the offspring to maternal mutations and suggest that maternal genotype effects can increase the impact of genetic risk factors in a population by increasing the risk of the genetically normal offspring as well as by enhancing the effects of offspring mutations.

  1. Phenotypic and genetic associations between reading comprehension, decoding skills, and ADHD dimensions: evidence from two population-based studies.

    Science.gov (United States)

    Plourde, Vickie; Boivin, Michel; Forget-Dubois, Nadine; Brendgen, Mara; Vitaro, Frank; Marino, Cecilia; Tremblay, Richard T; Dionne, Ginette

    2015-10-01

    The phenotypic and genetic associations between decoding skills and ADHD dimensions have been documented but less is known about the association with reading comprehension. The aim of the study is to document the phenotypic and genetic associations between reading comprehension and ADHD dimensions of inattention and hyperactivity/impulsivity in early schooling and compare them to those with decoding skills. Data were collected in two population-based samples of twins (Quebec Newborn Twin Study - QNTS) and singletons (Quebec Longitudinal Study of Child Development - QLSCD) totaling ≈ 2300 children. Reading was assessed with normed measures in second or third grade. Teachers assessed ADHD dimensions in kindergarten and first grade. Both decoding and reading comprehension were correlated with ADHD dimensions in a similar way: associations with inattention remained after controlling for the other ADHD dimension, behavior disorder symptoms and nonverbal abilities, whereas associations with hyperactivity/impulsivity did not. Genetic modeling showed that decoding and comprehension largely shared the same genetic etiology at this age and that their associations with inattention were mostly explained by shared genetic influences. Both reading comprehension and decoding are uniquely associated with inattention through a shared genetic etiology. © 2015 Association for Child and Adolescent Mental Health.

  2. Are Genetically Informed Designs Genetically Informative?: Comment on McGue, Elkins, Walden, and Iacono (2005) and Quantitative Behavioral Genetics

    Science.gov (United States)

    Partridge, Ty

    2005-01-01

    M. McGue, I. Elkins, B. Walden, and W. G. Iacono (see record 2005-14938-011) presented the findings from a twin study examining the relative contributions of genetic and environmental factors to the developmental trajectories of parent-adolescent relationships. From a behavioral genetics perspective, this study is well conceptualized, is well…

  3. Quantitative Genetic Analysis for Yield and Yield Components in Boro Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2010-03-01

    Full Text Available Twenty-nine genotypes of boro rice (Oryza sativa L. were grown in a randomized block design with three replications in plots of 4m x 1m with a crop geometry of 20 cm x 20 cm between November-April, in Regional Agricultural Research Station, Nagaon, India. Quantitative data were collected on five randomly selected plants of each genotype per replication for yield/plant, and six other yield components, namely plant height, panicles/plant, panicle length, effective grains/panicle, 100 grain weight and harvest index. Mean values of the characters for each genotype were used for analysis of variance and covariance to obtain information on genotypic and phenotypic correlation along with coheritability between two characters. Path analyses were carried out to estimate the direct and indirect effects of boro rice�s yield components. The objective of the study was to identify the characters that mostly influence the yield for increasing boro rice productivity through breeding program. Correlation analysis revealed significant positive genotypic correlation of yield/plant with plant height (0.21, panicles/plant (0.53, panicle length (0.53, effective grains/panicle (0.57 and harvest index (0.86. Path analysis based on genotypic correlation coefficients elucidated high positive direct effect of harvest index (0.8631, panicle length (0.2560 and 100 grain weight (0.1632 on yield/plant with a residual effect of 0.33. Plant height and panicles/plant recorded high positive indirect effect on yield/plant via harvest index whereas effective grains/panicle on yield/plant via harvest index and panicle length. Results of the present study suggested that five component characters, namely harvest index, effective grains/plant, panicle length, panicles/plant and plant height influenced the yield of boro rice. A genotype with higher magnitude of these component characters could be either selected from the existing genotypes or evolved by breeding program for genetic

  4. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection.

    Science.gov (United States)

    Brooks, R; Endler, J A

    2001-08-01

    Variation among females in mate choice may influence evolution by sexual selection. The genetic basis of this variation is of interest because the elaboration of mating preferences requires additive genetic variation in these traits. Here we measure the repeatability and heritability of two components of female choosiness (responsiveness and discrimination) and of female preference functions for the multiple ornaments borne by male guppies (Poecilia reticulata). We show that there is significant repeatable variation in both components of choosiness and in some preference functions but not in others. There appear to be several male ornaments that females find uniformly attractive and others for which females differ in preference. One consequence is that there is no universally attractive male phenotype. Only responsiveness shows significant additive genetic variation. Variation in responsiveness appears to mask variation in discrimination and some preference functions and may be the most biologically relevant source of phenotypic and genetic variation in mate-choice behavior. To test the potential evolutionary importance of the phenotypic variation in mate choice that we report, we estimated the opportunity for and the intensity of sexual selection under models of mate choice that excluded and that incorporated individual female variation. We then compared these estimates with estimates based on measured mating success. Incorporating individual variation in mate choice generally did not predict the outcome of sexual selection any better than models that ignored such variation.

  5. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    NARCIS (Netherlands)

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can

  6. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Science.gov (United States)

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  7. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Directory of Open Access Journals (Sweden)

    Nuno D Pires

    2016-01-01

    Full Text Available Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  8. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Directory of Open Access Journals (Sweden)

    Nuno D Pires

    2016-01-01

    Full Text Available Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  9. Mapping quantitative trait loci from a single-tail sample of the phenotype distribution including survival data.

    Science.gov (United States)

    Sillanpää, Mikko J; Hoti, Fabian

    2007-12-01

    A new effective Bayesian quantitative trait locus (QTL) mapping approach for the analysis of single-tail selected samples of the phenotype distribution is presented. The approach extends the affected-only tests to single-tail sampling with quantitative traits such as the log-normal survival time or censored/selected traits. A great benefit of the approach is that it enables the utilization of multiple-QTL models, is easy to incorporate into different data designs (experimental and outbred populations), and can potentially be extended to epistatic models. In inbred lines, the method exploits the fact that the parental mating type and the linkage phases (haplotypes) are known by definition. In outbred populations, two-generation data are needed, for example, selected offspring and one of the parents (the sires) in breeding material. The idea is to statistically (computationally) generate a fully complementary, maximally dissimilar, observation for each offspring in the sample. Bayesian data augmentation is then used to sample the space of possible trait values for the pseudoobservations. The benefits of the approach are illustrated using simulated data sets and a real data set on the survival of F(2) mice following infection with Listeria monocytogenes.

  10. Study of genetics, phenotypic and behavioral properties of eubacteria and archaebacteria

    Directory of Open Access Journals (Sweden)

    Hamid Kazemian

    2016-06-01

    Full Text Available Background: The genome of the bacteria has considerable diversity in terms of sequence of nucleotide bases and change over the time. With the advancement of bioinformatics science possibility of the vast comparison to living organisms has risen. During the last two decades many information about genome sequencing of pathogenic and non-pathogenic bacteria have been published. Using this information and to find connections between them and many phenotypic characteristics and behavior of bacteria could be used in many studies. In this study we compared some of the genetic, phenotypic and behavioral properties of archaebacteria and eubacteria. Methods: In this analytical study, genomic Information of 286 species of archaebacteria and 122 species of eubacteria were collected from the NCBI (National Center for Biotechnology Information site which was conducted in April to June 2015. Mean of gene size, gene number, protein number and C+G content compared in the two groups of archaebacteria and eubacteria. Association of genomic characterization of bacteria with several other characteristics were analyzed using SPSS statistical software version 19 (Chicago, IL, USA. For this purpose, the Pearson correlation coefficient (Pearson, Student’s t-test and ANOVA test (One-way analysis of variance was used. The P values less than 0.05 was considered as significant level. Results: There was significant association between means discrepancy in two group (P= 0.01. The genome size of eubacteria and archaebacteria have significant association with some of the characteristics of bacteria, such as the C+G content, the number of proteins, genes and habitats of the bacteria (P= 0.01. As well as there was significant association between genome size and features such as number of pseudogene, mobility and type of breathing in eubacteria (P= 0.01 but not in archaebacterial (P˃ 0.05. Conclusion: Many characteristics of eubacteria and archaebacteria are significantly

  11. A quantitative framework for flower phenotyping in cultivated carnation (Dianthus caryophyllus L..

    Directory of Open Access Journals (Sweden)

    Borja Chacón

    Full Text Available Most important breeding goals in ornamental crops are plant appearance and flower characteristics where selection is visually performed on direct offspring of crossings. We developed an image analysis toolbox for the acquisition of flower and petal images from cultivated carnation (Dianthus caryophyllus L. that was validated by a detailed analysis of flower and petal size and shape in 78 commercial cultivars of D. caryophyllus, including 55 standard, 22 spray and 1 pot carnation cultivars. Correlation analyses allowed us to reduce the number of parameters accounting for the observed variation in flower and petal morphology. Convexity was used as a descriptor for the level of serration in flowers and petals. We used a landmark-based approach that allowed us to identify eight main principal components (PCs accounting for most of the variance observed in petal shape. The effect and the strength of these PCs in standard and spray carnation cultivars are consistent with shared underlying mechanisms involved in the morphological diversification of petals in both subpopulations. Our results also indicate that neighbor-joining trees built with morphological data might infer certain phylogenetic relationships among carnation cultivars. Based on estimated broad-sense heritability values for some flower and petal features, different genetic determinants shall modulate the responses of flower and petal morphology to environmental cues in this species. We believe our image analysis toolbox could allow capturing flower variation in other species of high ornamental value.

  12. A quantitative framework for flower phenotyping in cultivated carnation (Dianthus caryophyllus L.).

    Science.gov (United States)

    Chacón, Borja; Ballester, Roberto; Birlanga, Virginia; Rolland-Lagan, Anne-Gaëlle; Pérez-Pérez, José Manuel

    2013-01-01

    Most important breeding goals in ornamental crops are plant appearance and flower characteristics where selection is visually performed on direct offspring of crossings. We developed an image analysis toolbox for the acquisition of flower and petal images from cultivated carnation (Dianthus caryophyllus L.) that was validated by a detailed analysis of flower and petal size and shape in 78 commercial cultivars of D. caryophyllus, including 55 standard, 22 spray and 1 pot carnation cultivars. Correlation analyses allowed us to reduce the number of parameters accounting for the observed variation in flower and petal morphology. Convexity was used as a descriptor for the level of serration in flowers and petals. We used a landmark-based approach that allowed us to identify eight main principal components (PCs) accounting for most of the variance observed in petal shape. The effect and the strength of these PCs in standard and spray carnation cultivars are consistent with shared underlying mechanisms involved in the morphological diversification of petals in both subpopulations. Our results also indicate that neighbor-joining trees built with morphological data might infer certain phylogenetic relationships among carnation cultivars. Based on estimated broad-sense heritability values for some flower and petal features, different genetic determinants shall modulate the responses of flower and petal morphology to environmental cues in this species. We believe our image analysis toolbox could allow capturing flower variation in other species of high ornamental value.

  13. A non-parametric mixture model for genome-enabled prediction of genetic value for a quantitative trait.

    Science.gov (United States)

    Gianola, Daniel; Wu, Xiao-Lin; Manfredi, Eduardo; Simianer, Henner

    2010-10-01

    A Bayesian nonparametric form of regression based on Dirichlet process priors is adapted to the analysis of quantitative traits possibly affected by cryptic forms of gene action, and to the context of SNP-assisted genomic selection, where the main objective is to predict a genomic signal on phenotype. The procedure clusters unknown genotypes into groups with distinct genetic values, but in a setting in which the number of clusters is unknown a priori, so that standard methods for finite mixture analysis do not work. The central assumption is that genetic effects follow an unknown distribution with some "baseline" family, which is a normal process in the cases considered here. A Bayesian analysis based on the Gibbs sampler produces estimates of the number of clusters, posterior means of genetic effects, a measure of credibility in the baseline distribution, as well as estimates of parameters of the latter. The procedure is illustrated with a simulation representing two populations. In the first one, there are 3 unknown QTL, with additive, dominance and epistatic effects; in the second, there are 10 QTL with additive, dominance and additive × additive epistatic effects. In the two populations, baseline parameters are inferred correctly. The Dirichlet process model infers the number of unique genetic values correctly in the first population, but it produces an understatement in the second one; here, the true number of clusters is over 900, and the model gives a posterior mean estimate of about 140, probably because more replication of genotypes is needed for correct inference. The impact on inferences of the prior distribution of a key parameter (M), and of the extent of replication, was examined via an analysis of mean body weight in 192 paternal half-sib families of broiler chickens, where each sire was genotyped for nearly 7,000 SNPs. In this small sample, it was found that inference about the number of clusters was affected by the prior distribution of M. For a

  14. Quantitative computed tomographic imaging-based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes.

    Science.gov (United States)

    Choi, Sanghun; Hoffman, Eric A; Wenzel, Sally E; Castro, Mario; Fain, Sean; Jarjour, Nizar; Schiebler, Mark L; Chen, Kun; Lin, Ching-Long

    2017-09-01

    Imaging variables, including airway diameter, wall thickness, and air trapping, have been found to be important metrics when differentiating patients with severe asthma from those with nonsevere asthma and healthy subjects. The objective of this study was to identify imaging-based clusters and to explore the association of the clusters with existing clinical metrics. We performed an imaging-based cluster analysis using quantitative computed tomography-based structural and functional variables extracted from the respective inspiration and expiration scans of 248 asthmatic patients. The imaging-based metrics included a broader set of multiscale variables, such as inspiratory airway dimension, expiratory air trapping, and registration-based lung deformation (inspiration vs expiration). Asthma subgroups derived from a clustering method were associated with subject demographics, questionnaire results, medication history, and biomarker variables. Cluster 1 was composed of younger patients with early-onset nonsevere asthma and reversible airflow obstruction and normal airway structure. Cluster 2 was composed of patients with a mix of patients with nonsevere and severe asthma with marginal inflammation who exhibited airway luminal narrowing without wall thickening. Clusters 3 and 4 were dominated by patients with severe asthma. Cluster 3 patients were obese female patients with reversible airflow obstruction who exhibited airway wall thickening without airway narrowing. Cluster 4 patients were late-onset older male subjects with persistent airflow obstruction who exhibited significant air trapping and reduced regional deformation. Cluster 3 and 4 patients also showed decreased lymphocyte and increased neutrophil counts, respectively. Four image-based clusters were identified and shown to be correlated with clinical characteristics. Such clustering serves to differentiate asthma subgroups that can be used as a basis for the development of new therapies. Copyright © 2017

  15. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Jordan S. Leyton-Mange

    2014-02-01

    Full Text Available In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity.

  16. Field-Based High-Throughput Plant Phenotyping Reveals the Temporal Patterns of Quantitative Trait Loci Associated with Stress-Responsive Traits in Cotton.

    Science.gov (United States)

    Pauli, Duke; Andrade-Sanchez, Pedro; Carmo-Silva, A Elizabete; Gazave, Elodie; French, Andrew N; Heun, John; Hunsaker, Douglas J; Lipka, Alexander E; Setter, Tim L; Strand, Robert J; Thorp, Kelly R; Wang, Sam; White, Jeffrey W; Gore, Michael A

    2016-04-07

    The application of high-throughput plant phenotyping (HTPP) to continuously study plant populations under relevant growing conditions creates the possibility to more efficiently dissect the genetic basis of dynamic adaptive traits. Toward this end, we employed a field-based HTPP system that deployed sets of sensors to simultaneously measure canopy temperature, reflectance, and height on a cotton (Gossypium hirsutum L.) recombinant inbred line mapping population. The evaluation trials were conducted under well-watered and water-limited conditions in a replicated field experiment at a hot, arid location in central Arizona, with trait measurements taken at different times on multiple days across 2010-2012. Canopy temperature, normalized difference vegetation index (NDVI), height, and leaf area index (LAI) displayed moderate-to-high broad-sense heritabilities, as well as varied interactions among genotypes with water regime and time of day. Distinct temporal patterns of quantitative trait loci (QTL) expression were mostly observed for canopy temperature and NDVI, and varied across plant developmental stages. In addition, the strength of correlation between HTPP canopy traits and agronomic traits, such as lint yield, displayed a time-dependent relationship. We also found that the genomic position of some QTL controlling HTPP canopy traits were shared with those of QTL identified for agronomic and physiological traits. This work demonstrates the novel use of a field-based HTPP system to study the genetic basis of stress-adaptive traits in cotton, and these results have the potential to facilitate the development of stress-resilient cotton cultivars. Copyright © 2016 Pauli et al.

  17. Field-Based High-Throughput Plant Phenotyping Reveals the Temporal Patterns of Quantitative Trait Loci Associated with Stress-Responsive Traits in Cotton

    Directory of Open Access Journals (Sweden)

    Duke Pauli

    2016-04-01

    Full Text Available The application of high-throughput plant phenotyping (HTPP to continuously study plant populations under relevant growing conditions creates the possibility to more efficiently dissect the genetic basis of dynamic adaptive traits. Toward this end, we employed a field-based HTPP system that deployed sets of sensors to simultaneously measure canopy temperature, reflectance, and height on a cotton (Gossypium hirsutum L. recombinant inbred line mapping population. The evaluation trials were conducted under well-watered and water-limited conditions in a replicated field experiment at a hot, arid location in central Arizona, with trait measurements taken at different times on multiple days across 2010–2012. Canopy temperature, normalized difference vegetation index (NDVI, height, and leaf area index (LAI displayed moderate-to-high broad-sense heritabilities, as well as varied interactions among genotypes with water regime and time of day. Distinct temporal patterns of quantitative trait loci (QTL expression were mostly observed for canopy temperature and NDVI, and varied across plant developmental stages. In addition, the strength of correlation between HTPP canopy traits and agronomic traits, such as lint yield, displayed a time-dependent relationship. We also found that the genomic position of some QTL controlling HTPP canopy traits were shared with those of QTL identified for agronomic and physiological traits. This work demonstrates the novel use of a field-based HTPP system to study the genetic basis of stress-adaptive traits in cotton, and these results have the potential to facilitate the development of stress-resilient cotton cultivars.

  18. Selection of genetic and phenotypic features associated with inflammatory status of patients on dialysis using relaxed linear separability method.

    Directory of Open Access Journals (Sweden)

    Leon Bobrowski

    Full Text Available Identification of risk factors in patients with a particular disease can be analyzed in clinical data sets by using feature selection procedures of pattern recognition and data mining methods. The applicability of the relaxed linear separability (RLS method of feature subset selection was checked for high-dimensional and mixed type (genetic and phenotypic clinical data of patients with end-stage renal disease. The RLS method allowed for substantial reduction of the dimensionality through omitting redundant features while maintaining the linear separability of data sets of patients with high and low levels of an inflammatory biomarker. The synergy between genetic and phenotypic features in differentiation between these two subgroups was demonstrated.

  19. Single-cell mass spectrometry reveals the importance of genetic diversity and plasticity for phenotypic variation in nitrogen-limited Chlamydomonas.

    Science.gov (United States)

    Krismer, Jasmin; Tamminen, Manu; Fontana, Simone; Zenobi, Renato; Narwani, Anita

    2016-12-09

    Phenotypic variation is vital for microbial populations to survive environmental perturbations. Both genetic and non-genetic factors contribute to an organism's phenotypic variation and therefore its fitness. To investigate the correlation between genetic diversity and phenotypic variation, we applied our recently developed mass spectrometry method that allows for the simultaneous measurement of more than 25 different lipids and pigments with high throughput in the unicellular microalga Chlamydomonas reinhardtii. We monitored the impact of nitrogen limitation on a genetically diverse wild-type strain CC-1690 and two isoclonal isolates from CC-1690 named ANC3 and ANC5. Measuring molecular composition of thousands of single cells at different time points of the experiment allowed us to capture a dynamic picture of the phenotypic composition and adaptation of the populations over time. Although the genetically diverse population maintained phenotypic variation over the whole time course of the experiment, the isoclonal cultures showed higher synchronicity in their phenotypic response. Furthermore, the genetically diverse population showed equal or greater phenotypic variation over the whole time range in multidimensional trait space compared with isoclonal populations. However, along individual trait axes non-genetic variance was higher in isoclonal populations.The ISME Journal advance online publication, 9 December 2016; doi:10.1038/ismej.2016.167.

  20. Phenotypic diversity in patients with multiple serrated polyps: a genetics clinic study.

    Science.gov (United States)

    Buchanan, Daniel D; Sweet, Kevin; Drini, Musa; Jenkins, Mark A; Win, Aung Ko; Gattas, Michael; Walsh, Michael D; Clendenning, Mark; McKeone, Diane; Walters, Rhiannon; Roberts, Aedan; Young, Alasdair; Hampel, Heather; Hopper, John L; Goldblatt, Jack; George, Jill; Suthers, Graeme K; Phillips, Kerry; Young, Graeme P; Chow, Elizabeth; Parry, Susan; Woodall, Sonja; Tucker, Kathy; Muir, Amanda; Field, Michael; Greening, Sian; Gallinger, Steven; Green, Jane; Woods, Michael O; Spaetgens, Renee; de la Chapelle, Albert; Macrae, Finlay; Walker, Neal I; Jass, Jeremy R; Young, Joanne P

    2010-06-01

    Hyperplastic polyposis is a colonic polyposis condition of unknown aetiology. The purpose of this study was to examine the spectrum of phenotypic variation in patients with multiple serrated polyps as a basis for gene discovery. One hundred and twenty-six patients with multiple (> or = 5) serrated polyps were recruited to the study. Polyp counts were extracted from histology and colonoscopy reports. Ethnicity was self-reported. Family history of cancer data were derived from pedigrees. Ascertainment status was classified as either index case or identified by screening. The average reported polyp count was 39. Patients with highest polyp numbers were more likely to be male (P = 0.02). Colorectal cancer (CRC) was identified in 49 of 119 patients (41%) and 28% of these patients had multiple CRC. Young onset patients had higher polyp numbers (P = 0.03) and were more likely to have their CRC in the distal colon (P = 0.02). CRC was significantly associated with the presence of adenomas (P = 0.03). Patients were divided into moderate polyposis (5-79 serrated polyps) and dense polyposis (80 or more) categories. The dense polyposis category was associated with a lack of family history for CRC (P = 0.034) and male gender (P = 0.014), independent of ascertainment status and recruitment site. Multiple serrated polyps were associated with an increased personal risk of CRC. A subset of patients with the highest polyp numbers was more likely to be male and to have no family history of CRC. This result suggests heterogeneous modes of inheritance and has implications for studies investigating the genetic basis of multiple serrated polyps.

  1. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    Science.gov (United States)

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue.

  2. Quantitative genetics of migration syndromes: a study of two barn swallow populations.

    Science.gov (United States)

    Teplitsky, C; Mouawad, N G; Balbontin, J; De Lope, F; Møller, A P

    2011-09-01

    Migration is a complex trait although little is known about genetic correlations between traits involved in such migration syndromes. To assess the migratory responses to climate change, we need information on genetic constraints on evolutionary potential of arrival dates in migratory birds. Using two long-term data sets on barn swallows Hirundo rustica (from Spain and Denmark), we show for the first time in wild populations that spring arrival dates are phenotypically and genetically correlated with morphological and life history traits. In the Danish population, length of outermost tail feathers and wing length were negatively genetically correlated with arrival date. In the Spanish population, we found a negative genetic correlation between arrival date and time elapsed between arrival date and laying date, constraining response to selection that favours both early arrival and shorter delays. This results in a decreased rate of adaptation, not because of constraints on arrival date, but constraints on delay before breeding, that is, a trait that can be equally important in the context of climate change.

  3. A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits

    National Research Council Canada - National Science Library

    Raman, Harsh; Raman, Rosy; Kilian, Andrzej; Detering, Frank; Long, Yan; Edwards, David; Parkin, Isobel A P; Sharpe, Andrew G; Nelson, Matthew N; Larkan, Nick; Zou, Jun; Meng, Jinling; Aslam, M Naveed; Batley, Jacqueline; Cowling, Wallace A; Lydiate, Derek

    2013-01-01

    Dense consensus genetic maps based on high-throughput genotyping platforms are valuable for making genetic gains in Brassica napus through quantitative trait locus identification, efficient predictive...

  4. Genotype-phenotype correlations in a mountain population community with high prevalence of Wilson's disease: genetic and clinical homogeneity.

    Directory of Open Access Journals (Sweden)

    Relu Cocoş

    Full Text Available Wilson's disease is an autosomal recessive disorder caused by more than 500 mutations in ATP7B gene presenting considerably clinical manifestations heterogeneity even in patients with a particular mutation. Previous findings suggested a potential role of additional genetic modifiers and environment factors on phenotypic expression among the affected patients. We conducted clinical and genetic investigations to perform genotype-phenotype correlation in two large families living in a socio-culturally isolated community with the highest prevalence of Wilson's disease ever reported of 1 ∶ 1130. Sequencing of ATP7B gene in seven affected individuals and 43 family members identified a common compound heterozygous genotype, H1069Q/M769H-fs, in five symptomatic and two asymptomatic patients and detected the presence of two out of seven identified single nucleotide polymorphisms in all affected patients. Symptomatic patients had similar clinical phenotype and age at onset (18 ± 1 years showing dysarthria and dysphagia as common clinical features at the time of diagnosis. Moreover, all symptomatic patients presented Kayser-Fleischer rings and lack of dystonia accompanied by unfavourable clinical outcomes. Our findings add value for understanding of genotype-phenotype correlations in Wilson's disease based on a multifamily study in an isolated population with high extent of genetic and environmental homogeneity as opposed to majority of reports. We observed an equal influence of presumed other genetic modifiers and environmental factors on clinical presentation and age at onset of Wilson's disease in patients with a particular genotype. These data provide valuable inferences that could be applied for predicting clinical management in asymptomatic patients in such communities.

  5. Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait.

    Science.gov (United States)

    Husby, Arild; Kawakami, Takeshi; Rönnegård, Lars; Smeds, Linnéa; Ellegren, Hans; Qvarnström, Anna

    2015-05-07

    Understanding the genetic basis of traits involved in adaptation is a major challenge in evolutionary biology but remains poorly understood. Here, we use genome-wide association mapping using a custom 50 k single nucleotide polymorphism (SNP) array in a natural population of collared flycatchers to examine the genetic basis of clutch size, an important life-history trait in many animal species. We found evidence for an association on chromosome 18 where one SNP significant at the genome-wide level explained 3.9% of the phenotypic variance. We also detected two suggestive quantitative trait loci (QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were generally weak and not significant, although there was some indication of a sex-by-genotype interaction for lifetime reproductive success at the suggestive QTL on chromosome 26. This implies that sexual antagonism may play a role in maintaining genetic variation at this QTL. Our findings provide candidate regions for a classic avian life-history trait that will be useful for future studies examining the molecular and cellular function of, as well as evolutionary mechanisms operating at, these loci.

  6. Quantitative autistic trait measurements index background genetic risk for ASD in Hispanic families.

    Science.gov (United States)

    Page, Joshua; Constantino, John Nicholas; Zambrana, Katherine; Martin, Eden; Tunc, Ilker; Zhang, Yi; Abbacchi, Anna; Messinger, Daniel

    2016-01-01