WorldWideScience

Sample records for quantitative phase microscopy

  1. Optofluidic time-stretch quantitative phase microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Quantitative phase microscopy using deep neural networks

    Science.gov (United States)

    Li, Shuai; Sinha, Ayan; Lee, Justin; Barbastathis, George

    2018-02-01

    Deep learning has been proven to achieve ground-breaking accuracy in various tasks. In this paper, we implemented a deep neural network (DNN) to achieve phase retrieval in a wide-field microscope. Our DNN utilized the residual neural network (ResNet) architecture and was trained using the data generated by a phase SLM. The results showed that our DNN was able to reconstruct the profile of the phase target qualitatively. In the meantime, large error still existed, which indicated that our approach still need to be improved.

  3. Quantitative phase imaging with scanning holographic microscopy: an experimental assesment

    Directory of Open Access Journals (Sweden)

    Tada Yoshitaka

    2006-11-01

    Full Text Available Abstract This paper demonstrates experimentally how quantitative phase information can be obtained in scanning holographic microscopy. Scanning holography can operate in both coherent and incoherent modes, simultaneously if desired, with different detector geometries. A spatially integrating detector provides an incoherent hologram of the object's intensity distribution (absorption and/or fluorescence, for example, while a point detector in a conjugate plane of the pupil provides a coherent hologram of the object's complex amplitude, from which a quantitative measure of its phase distribution can be extracted. The possibility of capturing simultaneously holograms of three-dimensional specimens, leading to three-dimensional reconstructions with absorption contrast, reflectance contrast, fluorescence contrast, as was previously demonstrated, and quantitative phase contrast, as shown here for the first time, opens up new avenues for multimodal imaging in biological studies.

  4. Single beam Fourier transform digital holographic quantitative phase microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  5. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC.

    Directory of Open Access Journals (Sweden)

    Zachary F Phillips

    Full Text Available We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC, is a single-shot variant of Differential Phase Contrast (DPC, which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  6. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    Science.gov (United States)

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterization and quantitative determination of calcium aluminate clinker phases through reflected light microscopy

    International Nuclear Information System (INIS)

    Marciano Junior, E.; Cunha Munhoz, F.A. da; Splettstoser Junior, J.; Placido, W.F.

    1989-01-01

    The identification and quantitative determination of phases in calcium aluminate clinker is of great importance to the producer, as it enables a better understanding of the cement and concrete properties, specially those concerning setting time and compressive strenght. Polished sections of three electrofused clinkers, one experimental and two industrial, were used to select the most suitable etchings in order to identify by microscopy the main phases (Ca, CA 2 , C 2 AS, C 12 A 7 , α-Al 2 O 3 ). Quantitative phases determinations by reflected light microscopy showed good results when compared to X-ray diffractometry measurements [pt

  8. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    Science.gov (United States)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  9. Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy.

    Science.gov (United States)

    Rinehart, Matthew T; Drake, Tyler K; Robles, Francisco E; Rohan, Lisa C; Katz, David; Wax, Adam

    2011-12-01

    Quantitative phase microscopy is applied to image temporal changes in the refractive index (RI) distributions of solutions created by microbicidal films undergoing hydration. We present a novel method of using an engineered polydimethylsiloxane structure as a static phase reference to facilitate calibration of the absolute RI across the entire field. We present a study of dynamic structural changes in microbicidal films during hydration and subsequent dissolution. With assumptions about the smoothness of the phase changes induced by these films, we calculate absolute changes in the percentage of film in regions across the field of view.

  10. Improved cancer risk stratification and diagnosis via quantitative phase microscopy (Conference Presentation)

    Science.gov (United States)

    Liu, Yang; Uttam, Shikhar; Pham, Hoa V.; Hartman, Douglas J.

    2017-02-01

    Pathology remains the gold standard for cancer diagnosis and in some cases prognosis, in which trained pathologists examine abnormality in tissue architecture and cell morphology characteristic of cancer cells with a bright-field microscope. The limited resolution of conventional microscope can result in intra-observer variation, missed early-stage cancers, and indeterminate cases that often result in unnecessary invasive procedures in the absence of cancer. Assessment of nanoscale structural characteristics via quantitative phase represents a promising strategy for identifying pre-cancerous or cancerous cells, due to its nanoscale sensitivity to optical path length, simple sample preparation (i.e., label-free) and low cost. I will present the development of quantitative phase microscopy system in transmission and reflection configuration to detect the structural changes in nuclear architecture, not be easily identifiable by conventional pathology. Specifically, we will present the use of transmission-mode quantitative phase imaging to improve diagnostic accuracy of urine cytology and the nuclear dry mass is progressively correlate with negative, atypical, suspicious and positive cytological diagnosis. In a second application, we will present the use of reflection-mode quantitative phase microscopy for depth-resolved nanoscale nuclear architecture mapping (nanoNAM) of clinically prepared formalin-fixed, paraffin-embedded tissue sections. We demonstrated that the quantitative phase microscopy system detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis.

  11. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel.

    Science.gov (United States)

    Roitshtain, Darina; Turko, Nir A; Javidi, Bahram; Shaked, Natan T

    2016-05-15

    We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.

  12. New generation quantitative x-ray microscopy encompassing phase-contrast

    International Nuclear Information System (INIS)

    Wilkins, S.W.; Mayo, S.C.; Gureyev, T.E.; Miller, P.R.; Pogany, A.; Stevenson, A.W.; Gao, D.; Davis, T.J.; Parry, D.J.; Paganin, D.

    2000-01-01

    Full text: We briefly outline a new approach to X-ray ultramicroscopy using projection imaging in a scanning electron microscope (SEM). Compared to earlier approaches, the new approach offers spatial resolution of ≤0.1 micron and includes novel features such as: i) phase contrast to give additional sample information over a wide energy range, rapid phase/amplitude extraction algorithms to enable new real-time modes of microscopic imaging widespread applications are envisaged to fields such as materials science, biomedical research, and microelectronics device inspection. Some illustrative examples are presented. The quantitative methods described here are also very relevant to X-ray projection microscopy using synchrotron sources

  13. Quantitative tracking of tumor cells in phase-contrast microscopy exploiting halo artifact pattern

    Science.gov (United States)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring, among others. Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign groups. We validated segmentation accuracy by comparing our findings with manually obtained results.

  14. New approaches for the analysis of confluent cell layers with quantitative phase digital holographic microscopy

    Science.gov (United States)

    Pohl, L.; Kaiser, M.; Ketelhut, S.; Pereira, S.; Goycoolea, F.; Kemper, Björn

    2016-03-01

    Digital holographic microscopy (DHM) enables high resolution non-destructive inspection of technical surfaces and minimally-invasive label-free live cell imaging. However, the analysis of confluent cell layers represents a challenge as quantitative DHM phase images in this case do not provide sufficient information for image segmentation, determination of the cellular dry mass or calculation of the cell thickness. We present novel strategies for the analysis of confluent cell layers with quantitative DHM phase contrast utilizing a histogram based-evaluation procedure. The applicability of our approach is illustrated by quantification of drug induced cell morphology changes and it is shown that the method is capable to quantify reliable global morphology changes of confluent cell layers.

  15. Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis

    Science.gov (United States)

    Kemper, Björn; Langehanenberg, Patrik; Kosmeier, Sebastian; Schlichthaber, Frank; Remmersmann, Christian; von Bally, Gert; Rommel, Christina; Dierker, Christian; Schnekenburger, Jürgen

    The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.

  16. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  17. Nanoscale nuclear architecture for cancer diagnosis by spatial-domain low-coherence quantitative phase microscopy

    Science.gov (United States)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Staton, Kevin D.; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2011-03-01

    Alterations in nuclear architecture are the hallmark diagnostic characteristic of cancer cells. In this work, we show that the nuclear architectural characteristics quantified by spatial-domain low-coherence quantitative phase microscopy (SL-QPM), is more sensitive for the identification of cancer cells than conventional cytopathology. We demonstrated the importance of nuclear architectural characteristics in both an animal model of intestinal carcinogenesis - APC/Min mouse model and human cytology specimens with colorectal cancer by identifying cancer from cytologically noncancerous appearing cells. The determination of nanoscale nuclear architecture using this simple and practical optical instrument is a significant advance towards cancer diagnosis.

  18. Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method

    Science.gov (United States)

    Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-08-01

    Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.

  19. Investigation of shape memory of red blood cells using optical tweezers and quantitative phase microscopy

    Science.gov (United States)

    Cardenas, Nelson; Mohanty, Samarendra K.

    2012-03-01

    RBC has been shown to possess shape memory subsequent to shear-induced shape transformation. However, this property of RBC may not be generalized to all kinds of stresses. Here, we report our observation on the action of radiation pressure forces on RBC's shape memory using optical manipulation and quantitative phase microscopy (OMQPM). QPM, based on Mach-Zehnder interferrometry, allowed measurement of dynamic changes of shape of RBC in optical tweezers at different trapping laser powers. In high power near-infrared optical tweezers (>200mW), the RBC was found to deform significantly due to optical forces. Upon removal of the tweezers, hysteresis in recovering its original resting shape was observed. In very high power tweezers or long-term stretching events, shape memory was almost erased. This irreversibility of the deformation may be due to temperature rise or stress-induced phase transformation of lipids in RBC membrane.

  20. Compact diffraction phase microscopy for quantitative visualization of cells in biomedical applications

    International Nuclear Information System (INIS)

    Talaikova, N A; Ryabukho, V P

    2016-01-01

    We consider a simplified and compact scheme of interference phase microscopy using a diffraction grating and spatial filtering of the diffracted field, i.e., diffraction phase microscopy. The scheme and the parameters of the device with the possibility of using the optical system of a smartphone and its software are analysed. The results of experimental determination of the spatial structure parameters of erythrocytes are presented. (paper)

  1. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    KAUST Repository

    Marquet, P.

    2016-05-03

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  2. Sequential processing of quantitative phase images for the study of cell behaviour in real-time digital holographic microscopy.

    Science.gov (United States)

    Zikmund, T; Kvasnica, L; Týč, M; Křížová, A; Colláková, J; Chmelík, R

    2014-11-01

    Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The study of the cell is based on extraction of the dynamic data on cell behaviour from the time-lapse sequence of the phase images. However, the phase images are affected by the phase aberrations that make the analysis particularly difficult. This is because the phase deformation is prone to change during long-term experiments. Here, we present a novel algorithm for sequential processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least-squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. All these procedures are performed automatically and applied immediately after obtaining every single phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment by playback of the recorded sequence up to actual time. Such operator's intervention is a forerunner of process automation derived from image analysis. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  3. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    KAUST Repository

    Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J.

    2014-01-01

    Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent

  4. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy

    Science.gov (United States)

    Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn

    2017-02-01

    The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.

  5. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  6. Quantitative phase microscopy for cellular dynamics based on transport of intensity equation.

    Science.gov (United States)

    Li, Ying; Di, Jianglei; Ma, Chaojie; Zhang, Jiwei; Zhong, Jinzhan; Wang, Kaiqiang; Xi, Teli; Zhao, Jianlin

    2018-01-08

    We demonstrate a simple method for quantitative phase imaging of tiny transparent objects such as living cells based on the transport of intensity equation. The experiments are performed using an inverted bright field microscope upgraded with a flipping imaging module, which enables to simultaneously create two laterally separated images with unequal defocus distances. This add-on module does not include any lenses or gratings and is cost-effective and easy-to-alignment. The validity of this method is confirmed by the measurement of microlens array and human osteoblastic cells in culture, indicating its potential in the applications of dynamically measuring living cells and other transparent specimens in a quantitative, non-invasive and label-free manner.

  7. Deciphering the internal complexity of living cells with quantitative phase microscopy: a multiscale approach

    Science.gov (United States)

    Martinez-Torres, Cristina; Laperrousaz, Bastien; Berguiga, Lotfi; Boyer-Provera, Elise; Elezgaray, Juan; Nicolini, Franck E.; Maguer-Satta, Veronique; Arneodo, Alain; Argoul, Françoise

    2015-09-01

    The distribution of refractive indices (RIs) of a living cell contributes in a nonintuitive manner to its optical phase image and quite rarely can be inverted to recover its internal structure. The interpretation of the quantitative phase images of living cells remains a difficult task because (1) we still have very little knowledge on the impact of its internal macromolecular complexes on the local RI and (2) phase changes produced by light propagation through the sample are mixed with diffraction effects by the internal cell bodies. We propose to implement a two-dimensional wavelet-based contour chain detection method to distinguish internal boundaries based on their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are the morphological indicators suited for comparing cells of different origins and/or to follow their transformation in pathologic situations. We use this method to compare nonadherent blood cells from primary and laboratory culture origins and to assess the internal transformation of hematopoietic stem cells by the transduction of the BCR-ABL oncogene responsible for the chronic myelogenous leukemia.

  8. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    KAUST Repository

    Marquet, Pierre

    2014-09-22

    Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.

  9. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  10. Quantitative phase separation in multiferroic Bi0.88Sm0.12FeO3 ceramics via piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Alikin, D. O.; Turygin, A. P.; Shur, V. Ya.; Walker, J.; Rojac, T.; Shvartsman, V. V.; Kholkin, A. L.

    2015-01-01

    BiFeO 3 (BFO) is a classical multiferroic material with both ferroelectric and magnetic ordering at room temperature. Doping of this material with rare-earth oxides was found to be an efficient way to enhance the otherwise low piezoelectric response of unmodified BFO ceramics. In this work, we studied two types of bulk Sm-modified BFO ceramics with compositions close to the morphotropic phase boundary (MPB) prepared by different solid-state processing methods. In both samples, coexistence of polar R3c and antipolar P bam phases was detected by conventional X-ray diffraction (XRD); the non-polar P nma or P bnm phase also has potential to be present due to the compositional proximity to the polar-to-non-polar phase boundary. Two approaches to separate the phases based on the piezoresponse force microscopy measurements have been proposed. The obtained fractions of the polar and non-polar/anti-polar phases were close to those determined by quantitative XRD analysis. The results thus reveal a useful method for quantitative determination of the phase composition in multi-phase ceramic systems, including the technologically most important MPB systems

  11. Quantitative transmission electron microscopy and atom probe tomography study of Ag-dependent precipitation of Ω phase in Al-Cu-Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Song; Ying, Puyou [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Liu, Zhiyi, E-mail: liuzhiyi@csu.edu.cn [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China); Wang, Jian; Li, Junlin [Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083 (China); School of Material Science and Engineering, Central South University, Changsha 410083 (China)

    2017-02-27

    The close association between the Ω precipitation and various Ag additions is systematically investigated by quantitative transmission electron microscopy and atom probe tomography analysis. Our results suggest that the precipitation of Ω phase is strongly dependent on Ag variations. Increasing the bulk Ag content favors a denser Ω precipitation and hence leads to a greater age-hardening response of Al-Cu-Mg-Ag alloy. This phenomenon, as proposed by proximity histograms, is directly related to the greater abundance of Ag solutes within Ω precursors. This feature lowers its nucleation barrier and increases the nucleation rate of Ω phase, finally contributes to the enhanced Ω precipitation. Also, it is noted that increasing Ag remarkably restricts the precipitation of θ' phase.

  12. Three-dimensional morphological imaging of human induced pluripotent stem cells by using low-coherence quantitative phase microscopy

    Science.gov (United States)

    Yamauchi, Toyohiko; Kakuno, Yumi; Goto, Kentaro; Fukami, Tadashi; Sugiyama, Norikazu; Iwai, Hidenao; Mizuguchi, Yoshinori; Yamashita, Yutaka

    2014-03-01

    There is an increasing need for non-invasive imaging techniques in the field of stem cell research. Label-free techniques are the best choice for assessment of stem cells because the cells remain intact after imaging and can be used for further studies such as differentiation induction. To develop a high-resolution label-free imaging system, we have been working on a low-coherence quantitative phase microscope (LC-QPM). LC-QPM is a Linnik-type interference microscope equipped with nanometer-resolution optical-path-length control and capable of obtaining three-dimensional volumetric images. The lateral and vertical resolutions of our system are respectively 0.5 and 0.93 μm and this performance allows capturing sub-cellular morphological features of live cells without labeling. Utilizing LC-QPM, we reported on three-dimensional imaging of membrane fluctuations, dynamics of filopodia, and motions of intracellular organelles. In this presentation, we report three-dimensional morphological imaging of human induced pluripotent stem cells (hiPS cells). Two groups of monolayer hiPS cell cultures were prepared so that one group was cultured in a suitable culture medium that kept the cells undifferentiated, and the other group was cultured in a medium supplemented with retinoic acid, which forces the stem cells to differentiate. The volumetric images of the 2 groups show distinctive differences, especially in surface roughness. We believe that our LC-QPM system will prove useful in assessing many other stem cell conditions.

  13. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Jiang, Yiyue; Tanaka, Yo; Ozeki, Yasuyuki; Goda, Keisuke

    2017-05-01

    The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO 2 via photosynthesis. Unfortunately, conventional analytical methods only provide population-averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single-cell resolution in a non-invasive and interference-free manner. Here high-throughput label-free single-cell screening of lipid-producing microalgal cells with optofluidic time-stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time-stretch quantitative phase microscope is based on an integration of a hydrodynamic-focusing microfluidic chip, an optical time-stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen-sufficient and nitrogen-deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae-based biofuel production. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  14. Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: A quantitative fluorescence microscopy imaging approach

    DEFF Research Database (Denmark)

    Fidorra, Matthias; Garcia, Alejandra; Ipsen, John Hjort

    2009-01-01

    We report a novel analytical procedure to measure the surface areas of coexisting lipid domains in giant unilamellar vesicles (GUVs) based on image processing of 3D fluorescence microscopy data. The procedure involves the segmentation of lipid domains from fluorescent image stacks...

  15. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-11-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.

  16. Quantitative transmission electron microscopy at atomic resolution

    International Nuclear Information System (INIS)

    Allen, L J; D'Alfonso, A J; Forbes, B D; Findlay, S D; LeBeau, J M; Stemmer, S

    2012-01-01

    In scanning transmission electron microscopy (STEM) it is possible to operate the microscope in bright-field mode under conditions which, by the quantum mechanical principle of reciprocity, are equivalent to those in conventional transmission electron microscopy (CTEM). The results of such an experiment will be presented which are in excellent quantitative agreement with theory for specimens up to 25 nm thick. This is at variance with the large contrast mismatch (typically between two and five) noted in equivalent CTEM experiments. The implications of this will be discussed.

  17. Quantitative imaging of bilirubin by photoacoustic microscopy

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  18. Quantitative fluorescence microscopy and image deconvolution.

    Science.gov (United States)

    Swedlow, Jason R

    2013-01-01

    Quantitative imaging and image deconvolution have become standard techniques for the modern cell biologist because they can form the basis of an increasing number of assays for molecular function in a cellular context. There are two major types of deconvolution approaches--deblurring and restoration algorithms. Deblurring algorithms remove blur but treat a series of optical sections as individual two-dimensional entities and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed in this chapter. Image deconvolution in fluorescence microscopy has usually been applied to high-resolution imaging to improve contrast and thus detect small, dim objects that might otherwise be obscured. Their proper use demands some consideration of the imaging hardware, the acquisition process, fundamental aspects of photon detection, and image processing. This can prove daunting for some cell biologists, but the power of these techniques has been proven many times in the works cited in the chapter and elsewhere. Their usage is now well defined, so they can be incorporated into the capabilities of most laboratories. A major application of fluorescence microscopy is the quantitative measurement of the localization, dynamics, and interactions of cellular factors. The introduction of green fluorescent protein and its spectral variants has led to a significant increase in the use of fluorescence microscopy as a quantitative assay system. For quantitative imaging assays, it is critical to consider the nature of the image-acquisition system and to validate its response to known standards. Any image-processing algorithms used before quantitative analysis should preserve the relative signal levels in different parts of the image. A very common image-processing algorithm, image deconvolution, is used

  19. Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with Raman spectroscopy and quantitative phase microscopy.

    Science.gov (United States)

    Singh, S P; Kang, Sungsam; Kang, Jeon Woong; So, Peter T C; Dasari, Ramanchandra Rao; Yaqoob, Zahid; Barman, Ishan

    2017-09-07

    Minimizing morbidities and mortalities associated with skin cancers requires sustained research with the goal of obtaining fresh insights into disease onset and progression under specific stimuli, particularly the influence of ultraviolet rays. In the present study, label-free profiling of skin fibroblasts exposed to time-bound ultra-violet radiation has been performed using quantitative phase imaging and Raman spectroscopy. Statistically significant differences in quantifiable biophysical parameters, such as matter density and cell dry mass, were observed with phase imaging. Accurate estimation of changes in the biochemical constituents, notably nucleic acids and proteins, was demonstrated through a combination of Raman spectroscopy and multivariate analysis of spectral patterns. Overall, the findings of this study demonstrate the promise of these non-perturbative optical modalities in accurately identifying cellular phenotypes and responses to external stimuli by combining molecular and biophysical information.

  20. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    Science.gov (United States)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become

  1. Magnetic force microscopy : Quantitative issues in biomaterials

    NARCIS (Netherlands)

    Passeri, D.; Dong, C.; Reggente, M.; Angeloni, L.; Barteri, M.; Scaramuzzo, F.A.; De Angelis, F.; Marinelli, F.; Antonelli, F.; Rinaldi, F.; Marianecci, C.; Carafa, M.; Sorbo, A.; Sordi, D.; Arends, I.W.C.E.; Rossi, M.

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples

  2. Quantitative DIC microscopy using an off-axis self-interference approach.

    Science.gov (United States)

    Fu, Dan; Oh, Seungeun; Choi, Wonshik; Yamauchi, Toyohiko; Dorn, August; Yaqoob, Zahid; Dasari, Ramachandra R; Feld, Michael S

    2010-07-15

    Traditional Normarski differential interference contrast (DIC) microscopy is a very powerful method for imaging nonstained biological samples. However, one of its major limitations is the nonquantitative nature of the imaging. To overcome this problem, we developed a quantitative DIC microscopy method based on off-axis sample self-interference. The digital holography algorithm is applied to obtain quantitative phase gradients in orthogonal directions, which leads to a quantitative phase image through a spiral integration of the phase gradients. This method is practically simple to implement on any standard microscope without stringent requirements on polarization optics. Optical sectioning can be obtained through enlarged illumination NA.

  3. Biostatistical analysis of quantitative immunofluorescence microscopy images.

    Science.gov (United States)

    Giles, C; Albrecht, M A; Lam, V; Takechi, R; Mamo, J C

    2016-12-01

    Semiquantitative immunofluorescence microscopy has become a key methodology in biomedical research. Typical statistical workflows are considered in the context of avoiding pseudo-replication and marginalising experimental error. However, immunofluorescence microscopy naturally generates hierarchically structured data that can be leveraged to improve statistical power and enrich biological interpretation. Herein, we describe a robust distribution fitting procedure and compare several statistical tests, outlining their potential advantages/disadvantages in the context of biological interpretation. Further, we describe tractable procedures for power analysis that incorporates the underlying distribution, sample size and number of images captured per sample. The procedures outlined have significant potential for increasing understanding of biological processes and decreasing both ethical and financial burden through experimental optimization. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  4. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  5. GPC and quantitative phase imaging

    DEFF Research Database (Denmark)

    Palima, Darwin; Banas, Andrew Rafael; Villangca, Mark Jayson

    2016-01-01

    shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging...

  6. Quantitative measurements of shear displacement using atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-01-01

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  7. Phase-Modulation Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.

    2008-01-01

    We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...... erythrocyte forms and stages of hemolysis and how phase images of neurons reveal their complex intracellular structure. Temporal variations of the refractive index are analyzed to detect cellular rhythmic activity on different time scales as well as to uncover interactions between the cellular processes....

  8. Tissue refractometry using Hilbert phase microscopy.

    Science.gov (United States)

    Lue, Niyom; Bewersdorf, Joerg; Lessard, Mark D; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S; Popescu, Gabriel

    2007-12-15

    We present, for the first time to our knowledge, quantitative phase images associated with unstained 5 mum thick tissue slices of mouse brain, spleen, and liver. The refractive properties of the tissue are retrieved in terms of the average refractive index and its spatial variation. We find that the average refractive index varies significantly with tissue type, such that the brain is characterized by the lowest value and the liver by the highest. The spatial power spectra of the phase images reveal power law behavior with different exponents for each tissue type. This approach opens a new possibility for stain-free characterization of tissues, where the diagnostic power is provided by the intrinsic refractive properties of the biological structure. We present results obtained for liver tissue affected by a lysosomal storage disease and show that our technique can quantify structural changes during this disease development.

  9. Quantitative analysis of myocardial tissue with digital autofluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Thomas Jensen

    2016-01-01

    Full Text Available Background: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including staining may benefit. Methods: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm are presented. Results: It is shown that the autofluorescence intensity of unstained microsections at two different wavelengths is a suitable starting point for automated digital analysis of myocytes, fibrous tissue, lipofuscin, and the extracellular compartment. The output of the method is absolute quantitation along with accurate outlines of above-mentioned components. The digital quantitations are verified by comparison to point grid quantitations performed on the microsections after Van Gieson staining. Conclusion: The presented method is amply described as a prestain multicomponent quantitation and outlining tool for histological sections of cardiac tissue. The main perspective is the opportunity for combination with digital analysis of stained microsections, for which the method may provide an accurate digital framework.

  10. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    Science.gov (United States)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  11. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    Science.gov (United States)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  12. Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning.

    Science.gov (United States)

    Lam, Van K; Nguyen, Thanh C; Chung, Byung M; Nehmetallah, George; Raub, Christopher B

    2018-03-01

    The noninvasive, fast acquisition of quantitative phase maps using digital holographic microscopy (DHM) allows tracking of rapid cellular motility on transparent substrates. On two-dimensional surfaces in vitro, MDA-MB-231 cancer cells assume several morphologies related to the mode of migration and substrate stiffness, relevant to mechanisms of cancer invasiveness in vivo. The quantitative phase information from DHM may accurately classify adhesive cancer cell subpopulations with clinical relevance. To test this, cells from the invasive breast cancer MDA-MB-231 cell line were cultured on glass, tissue-culture treated polystyrene, and collagen hydrogels, and imaged with DHM followed by epifluorescence microscopy after staining F-actin and nuclei. Trends in cell phase parameters were tracked on the different substrates, during cell division, and during matrix adhesion, relating them to F-actin features. Support vector machine learning algorithms were trained and tested using parameters from holographic phase reconstructions and cell geometric features from conventional phase images, and used to distinguish between elongated and rounded cell morphologies. DHM was able to distinguish between elongated and rounded morphologies of MDA-MB-231 cells with 94% accuracy, compared to 83% accuracy using cell geometric features from conventional brightfield microscopy. This finding indicates the potential of DHM to detect and monitor cancer cell morphologies relevant to cell cycle phase status, substrate adhesion, and motility. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  13. Automated quantitative cytological analysis using portable microfluidic microscopy.

    Science.gov (United States)

    Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva

    2016-06-01

    In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantitative Phase Imaging Using Hard X Rays

    International Nuclear Information System (INIS)

    Nugent, K.A.; Gureyev, T.E.; Cookson, D.J.; Paganin, D.; Barnea, Z.

    1996-01-01

    The quantitative imaging of a phase object using 16keV xrays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. We find that our phase image is in quantitative agreement with independent measurements of the object. copyright 1996 The American Physical Society

  15. Quantitative analysis of myocardial tissue with digital autofluorescence microscopy

    DEFF Research Database (Denmark)

    Jensen, Thomas; Holten-Rossing, Henrik; Svendsen, Ida M H

    2016-01-01

    to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including...... staining may benefit. METHODS: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm......BACKGROUND: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar...

  16. Quantitative Image Restoration in Bright Field Optical Microscopy.

    Science.gov (United States)

    Gutiérrez-Medina, Braulio; Sánchez Miranda, Manuel de Jesús

    2017-11-07

    Bright field (BF) optical microscopy is regarded as a poor method to observe unstained biological samples due to intrinsic low image contrast. We introduce quantitative image restoration in bright field (QRBF), a digital image processing method that restores out-of-focus BF images of unstained cells. Our procedure is based on deconvolution, using a point spread function modeled from theory. By comparing with reference images of bacteria observed in fluorescence, we show that QRBF faithfully recovers shape and enables quantify size of individual cells, even from a single input image. We applied QRBF in a high-throughput image cytometer to assess shape changes in Escherichia coli during hyperosmotic shock, finding size heterogeneity. We demonstrate that QRBF is also applicable to eukaryotic cells (yeast). Altogether, digital restoration emerges as a straightforward alternative to methods designed to generate contrast in BF imaging for quantitative analysis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy.

    Science.gov (United States)

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2009-11-26

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ.

  18. Generalised phase contrast: microscopy, manipulation and more

    DEFF Research Database (Denmark)

    Palima, Darwin; Glückstad, Jesper

    2010-01-01

    Generalised phase contrast (GPC) not only leads to more accurate phase imaging beyond thin biological samples, but serves as an enabling framework in developing tools over a wide spectrum of contemporary applications in optics and photonics, including optical trapping and micromanipulation, optic...

  19. Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Daniela P. [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Amaral, A. Luís [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra (Portugal); Ferreira, Eugénio C., E-mail: ecferreira@deb.uminho.pt [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-11-13

    Graphical abstract: -- Highlights: •Quantitative image analysis shows potential to monitor activated sludge systems. •Staining techniques increase the potential for detection of operational problems. •Chemometrics combined with quantitative image analysis is valuable for process monitoring. -- Abstract: In wastewater treatment processes, and particularly in activated sludge systems, efficiency is quite dependent on the operating conditions, and a number of problems may arise due to sludge structure and proliferation of specific microorganisms. In fact, bacterial communities and protozoa identification by microscopy inspection is already routinely employed in a considerable number of cases. Furthermore, quantitative image analysis techniques have been increasingly used throughout the years for the assessment of aggregates and filamentous bacteria properties. These procedures are able to provide an ever growing amount of data for wastewater treatment processes in which chemometric techniques can be a valuable tool. However, the determination of microbial communities’ properties remains a current challenge in spite of the great diversity of microscopy techniques applied. In this review, activated sludge characterization is discussed highlighting the aggregates structure and filamentous bacteria determination by image analysis on bright-field, phase-contrast, and fluorescence microscopy. An in-depth analysis is performed to summarize the many new findings that have been obtained, and future developments for these biological processes are further discussed.

  20. Portable smartphone based quantitative phase microscope

    Science.gov (United States)

    Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2018-01-01

    To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.

  1. Quantitative high dynamic range beam profiling for fluorescence microscopy

    International Nuclear Information System (INIS)

    Mitchell, T. J.; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-01-01

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences

  2. Quantitative phase analysis in industrial research

    International Nuclear Information System (INIS)

    Ahmad Monshi

    1996-01-01

    X-Ray Diffraction (XRD) is the only technique able to identify phase and all the other analytical techniques give information about the elements. Quantitative phase analysis of minerals and industrial products is logically the next step after a qualitative examination and is of great importance in industrial research. Since the application of XRD in industry, early in this century, workers were trying to develop quantitative XRD methods. In this paper some of the important methods are briefly discussed and partly compared. These methods are Internal Standard, Known Additions, Double Dilution, External Standard, Direct Comparison, Diffraction Absorption and Ratio of Slopes

  3. Biological applications of phase-contrast electron microscopy.

    Science.gov (United States)

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  4. Quantitative microwave impedance microscopy with effective medium approximations

    Directory of Open Access Journals (Sweden)

    T. S. Jones

    2017-02-01

    Full Text Available Microwave impedance microscopy (MIM is a scanning probe technique to measure local changes in tip-sample admittance. The imaginary part of the reported change is calibrated with finite element simulations and physical measurements of a standard capacitive sample, and thereafter the output ΔY is given a reference value in siemens. Simulations also provide a means of extracting sample conductivity and permittivity from admittance, a procedure verified by comparing the estimated permittivity of polytetrafluoroethlyene (PTFE to the accepted value. Simulations published by others have investigated the tip-sample system for permittivity at a given conductivity, or conversely conductivity and a given permittivity; here we supply the full behavior for multiple values of both parameters. Finally, the well-known effective medium approximation of Bruggeman is considered as a means of estimating the volume fractions of the constituents in inhomogeneous two-phase systems. Specifically, we consider the estimation of porosity in carbide-derived carbon, a nanostructured material known for its use in energy storage devices.

  5. Dynamic quantitative analysis of adherent cell cultures by means of lens-free video microscopy

    Science.gov (United States)

    Allier, C.; Vincent, R.; Navarro, F.; Menneteau, M.; Ghenim, L.; Gidrol, X.; Bordy, T.; Hervé, L.; Cioni, O.; Bardin, S.; Bornens, M.; Usson, Y.; Morales, S.

    2018-02-01

    We present our implementation of lens-free video microscopy setup for the monitoring of adherent cell cultures. We use a multi-wavelength LED illumination together with a dedicated holographic reconstruction algorithm that allows for an efficient removal of twin images from the reconstructed phase image for densities up to those of confluent cell cultures (>500 cells/mm2). We thereby demonstrate that lens-free video microscopy, with a large field of view ( 30 mm2) can enable us to capture the images of thousands of cells simultaneously and directly inside the incubator. It is then possible to trace and quantify single cells along several cell cycles. We thus prove that lens-free microscopy is a quantitative phase imaging technique enabling estimation of several metrics at the single cell level as a function of time, for example the area, dry mass, maximum thickness, major axis length and aspect ratio of each cell. Combined with cell tracking, it is then possible to extract important parameters such as the initial cell dry mass (just after cell division), the final cell dry mass (just before cell division), the average cell growth rate, and the cell cycle duration. As an example, we discuss the monitoring of a HeLa cell cultures which provided us with a data-set featuring more than 10 000 cell cycle tracks and more than 2x106 cell morphological measurements in a single time-lapse.

  6. New tools for comparing microscopy images : Quantitative analysis of cell types in Bacillus subtilis

    NARCIS (Netherlands)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-01-01

    Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy

  7. Drive frequency dependent phase imaging in piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Bo Huifeng; Kan Yi; Lu Xiaomei; Liu Yunfei; Peng Song; Wang Xiaofei; Cai Wei; Xue Ruoshi; Zhu Jinsong

    2010-01-01

    The drive frequency dependent piezoresponse (PR) phase signal in near-stoichiometric lithium niobate crystals is studied by piezoresponse force microscopy. It is clearly shown that the local and nonlocal electrostatic forces have a great contribution to the PR phase signal. The significant PR phase difference of the antiparallel domains are observed at the contact resonances, which is related to the electrostatic dominated electromechanical interactions of the cantilever and tip-sample system. Moreover, the modulation voltage induced frequency shift at higher eigenmodes could be attributed to the change of indention force depending on the modulation amplitude with a piezoelectric origin. The PR phase of the silicon wafer is also measured for comparison. It is certificated that the electrostatic interactions are universal in voltage modulated scanning probe microscopy and could be extended to other phase imaging techniques.

  8. Quantitative phase imaging and differential interference contrast imaging for biological TEM

    International Nuclear Information System (INIS)

    Allman, B.E.; McMahon, P.J.; Barone-Nugent, E.D.; Nugent, E.D.

    2002-01-01

    Full text: Phase microscopy is a central technique in science. An experienced microscopist uses this effect to visualise (edge) structure within transparent samples by slightly defocusing the microscope. Although widespread in optical microscopy, phase contrast transmission electron microscopy (TEM) has not been widely adopted. TEM for biological specimens has largely relied on staining techniques to yield sufficient contrast. We show here a simple method for quantitative TEM phase microscopy that quantifies this phase contrast effect. Starting with conventional, digital, bright field images of the sample, our algorithm provides quantitative phase information independent of the sample's bright field intensity image. We present TEM phase images of a range of stained and unstained, biological and material science specimens. This independent phase and intensity information is then used to emulate a range of phase visualisation images familiar to optical microscopy, e.g. differential interference contrast. The phase images contain features not visible with the other imaging modalities. Further, if the TEM samples have been prepared on a microtome to a uniform thickness, the phase information can be converted into refractive index structure of the specimen. Copyright (2002) Australian Society for Electron Microscopy Inc

  9. Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science.

    Science.gov (United States)

    Takeda, Seiji; Yoshida, Hideto

    2013-02-01

    We have compiled our recent in-situ quantitative environmental transmission electron microscopy (ETEM) studies on typical gold nanoparticulate catalysts for the low-temperature oxidation of CO to describe the issues surrounding the application of ETEM, with a special regard to catalyst chemistry. Thanks to the recent development of high-resolution environmental transmission electron microscopes that can work robustly to accumulate observation data in controlled environments, we can deal with the electron irradiation effects and heterogeneity of real catalysts. We established a structural evolution diagram that summarizes the structure of catalysts under electron irradiation as a function of the electron current density ϕ and the electron dose, D. By extrapolating to ϕ = 0, D = 0, we could deduce the intrinsic catalysis structure (without electron irradiation) in various environments, including reaction environments. By numerically and statistically analyzing a substantial number of ETEM images of gold nanoparticles, we established a morphology phase diagram that summarizes how the majority of gold nanoparticles change their morphology systematically as a function of the partial pressures of CO and O(2). Similar diagrams will be helpful in elucidating the phenomena that directly correlate with the catalytic activity determined from ETEM observations. Using these quantitative analyses, we could analyze Cs-corrected ETEM images of the catalysts. The surfaces of gold nanoparticles were structurally reconstructed under reaction conditions, via interactions with CO molecules. CO molecules were observed on the surfaces of catalysts under reaction conditions using high-resolution ETEM. Finally, we discuss the potential of environmental transmission electron microscopy for quantitative in-situ microscopy at the atomic scale.

  10. Quantitative electron microscopy and spectroscopy of MgB2 wires and tapes

    International Nuclear Information System (INIS)

    Birajdar, B; Peranio, N; Eibl, O

    2008-01-01

    In MgB 2 the correlation of microstructure with superconducting properties, in particular the critical current density, requires powerful analytical tools. Critical current densities and electrical resistivities of different MgB 2 superconductors differ by orders of magnitudes and the current limiting mechanisms have not been fully understood. Granularity of MgB 2 is one significant reason for reduced critical current densities and is introduced intrinsically by the anisotropy of B c2 but also extrinsically by the microstructure of the material. B c2 enhancement by doping is another important challenge for chemical analysis and, at present, doping levels are not well controlled on the sub-μm scale. In this paper the quantitative electron microscopy and spectroscopy methods essential for the microstructural analysis of MgB 2 are described. By quantitative electron microscopy and spectroscopy we mean a combined SEM and TEM analysis that covers various length scales from μm to nm. Contamination-free sample preparation, chemical mapping including B, and advanced chemical quantification using x-ray microanalysis were essential elements of the applied methodology. The methodology was applied to in situ and ex situ MgB 2 wires and tapes with and without SiC additives. Quantitative B analysis by EDX spectroscopy was applied quantitatively in the SEM and TEM, which is a major achievement. Although MgB 2 is a binary system, the thermodynamics of phase formation is complex, and the complexity is dramatically increased if additives like SiC are used. The small, sub-μm grain sizes of the matrix and secondary phases require TEM methods. However, granularity on the μm scale was also identified and underlines the importance of the combined SEM and TEM studies. Significant differences in the microstructure were observed for in situ and ex situ samples. This holds particularly if SiC was added and yielded Mg 2 Si for in situ samples annealed at 600-650 deg. C and Mg-Si-O phases

  11. DNA origami-based standards for quantitative fluorescence microscopy.

    Science.gov (United States)

    Schmied, Jürgen J; Raab, Mario; Forthmann, Carsten; Pibiri, Enrico; Wünsch, Bettina; Dammeyer, Thorben; Tinnefeld, Philip

    2014-01-01

    Validating and testing a fluorescence microscope or a microscopy method requires defined samples that can be used as standards. DNA origami is a new tool that provides a framework to place defined numbers of small molecules such as fluorescent dyes or proteins in a programmed geometry with nanometer precision. The flexibility and versatility in the design of DNA origami microscopy standards makes them ideally suited for the broad variety of emerging super-resolution microscopy methods. As DNA origami structures are durable and portable, they can become a universally available specimen to check the everyday functionality of a microscope. The standards are immobilized on a glass slide, and they can be imaged without further preparation and can be stored for up to 6 months. We describe a detailed protocol for the design, production and use of DNA origami microscopy standards, and we introduce a DNA origami rectangle, bundles and a nanopillar as fluorescent nanoscopic rulers. The protocol provides procedures for the design and realization of fluorescent marks on DNA origami structures, their production and purification, quality control, handling, immobilization, measurement and data analysis. The procedure can be completed in 1-2 d.

  12. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR MEASUREMENTS, QUANTITATION AND SPECTROSCOPY

    Science.gov (United States)

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  13. Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes

    Science.gov (United States)

    Di Napoli, Claudia; Pope, Iestyn; Masia, Francesco; Watson, Peter; Langbein, Wolfgang; Borri, Paola

    2014-01-01

    In this work, we demonstrate the applicability of coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy for quantitative chemical imaging of saturated and unsaturated lipids in human stem-cell derived adipocytes. We compare dual-frequency/differential CARS (D-CARS), which enables rapid imaging and simple data analysis, with broadband hyperspectral CARS microscopy analyzed using an unsupervised phase-retrieval and factorization method recently developed by us for quantitative chemical image analysis. Measurements were taken in the vibrational fingerprint region (1200–2000/cm) and in the CH stretch region (2600–3300/cm) using a home-built CARS set-up which enables hyperspectral imaging with 10/cm resolution via spectral focussing from a single broadband 5 fs Ti:Sa laser source. Through a ratiometric analysis, both D-CARS and phase-retrieved hyperspectral CARS determine the concentration of unsaturated lipids with comparable accuracy in the fingerprint region, while in the CH stretch region D-CARS provides only a qualitative contrast owing to its non-linear behavior. When analyzing hyperspectral CARS images using the blind factorization into susceptibilities and concentrations of chemical components recently demonstrated by us, we are able to determine vol:vol concentrations of different lipid components and spatially resolve inhomogeneities in lipid composition with superior accuracy compared to state-of-the art ratiometric methods. PMID:24877002

  14. Quantitative phase analysis by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Song, Su Ho; Lee, Jin Ho; Shim, Hae Seop [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    This study is to apply quantitative phase analysis (QPA) by neutron diffraction to the round robin samples provided by the International Union of Crystallography(IUCr). We measured neutron diffraction patterns for mixed samples which have several different weight percentages and their unique characteristic features. Neutron diffraction method has been known to be superior to its complementary methods such as X-ray or Synchrotron, but it is still accepted as highly reliable under limited conditions or samples. Neutron diffraction has strong capability especially on oxides due to its scattering cross-section of the oxygen and it can become a more strong tool for analysis on the industrial materials with this quantitative phase analysis techniques. By doing this study, we hope not only to do one of instrument performance tests on our HRPD but also to improve our ability on the analysis of neutron diffraction data by comparing our QPA results with others from any advanced reactor facilities. 14 refs., 4 figs., 6 tabs. (Author)

  15. Quantitative localization microscopy: effects of photophysics and labeling stoichiometry.

    Directory of Open Access Journals (Sweden)

    Robert P J Nieuwenhuizen

    Full Text Available Quantification in localization microscopy with reversibly switchable fluorophores is severely hampered by the unknown number of switching cycles a fluorophore undergoes and the unknown stoichiometry of fluorophores on a marker such as an antibody. We overcome this problem by measuring the average number of localizations per fluorophore, or generally per fluorescently labeled site from the build-up of spatial image correlation during acquisition. To this end we employ a model for the interplay between the statistics of activation, bleaching, and labeling stoichiometry. We validated our method using single fluorophore labeled DNA oligomers and multiple-labeled neutravidin tetramers where we find a counting error of less than 17% without any calibration of transition rates. Furthermore, we demonstrated our quantification method on nanobody- and antibody-labeled biological specimens.

  16. Accurate quantitative XRD phase analysis of cement clinkers

    International Nuclear Information System (INIS)

    Kern, A.

    2002-01-01

    Full text: Knowledge about the absolute phase abundance in cement clinkers is a requirement for both, research and quality control. Traditionally, quantitative analysis of cement clinkers has been carried out by theoretical normative calculation from chemical analysis using the so-called Bogue method or by optical microscopy. Therefore chemical analysis, mostly performed by X-ray fluorescence (XRF), forms the basis of cement plan control by providing information for proportioning raw materials, adjusting kiln and burning conditions, as well as cement mill feed proportioning. In addition, XRF is of highest importance with respect to the environmentally relevant control of waste recovery raw materials and alternative fuels, as well as filters, plants and sewage. However, the performance of clinkers and cements is governed by the mineralogy and not the elemental composition, and the deficiencies and inherent errors of Bogue as well as microscopic point counting are well known. With XRD and Rietveld analysis a full quantitative analysis of cement clinkers can be performed providing detailed mineralogical information about the product. Until recently several disadvantages prevented the frequent application of the Rietveld method in the cement industry. As the measurement of a full pattern is required, extended measurement times made an integration of this method into existing automation environments difficult. In addition, several drawbacks of existing Rietveld software such as complexity, low performance and severe numerical instability were prohibitive for automated use. The latest developments of on-line instrumentation, as well as dedicated Rietveld software for quantitative phase analysis (TOPAS), now make a decisive breakthrough possible. TOPAS not only allows the analysis of extremely complex phase mixtures in the shortest time possible, but also a fully automated online phase analysis for production control and quality management, free of any human interaction

  17. Phase modulation mode of scanning ion conductance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  18. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    Science.gov (United States)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  19. Light-sheet microscopy for quantitative ovarian folliculometry

    Science.gov (United States)

    Lin, Hsiao-Chun Amy; Dutta, Rahul; Mandal, Subhamoy; Kind, Alexander; Schnieke, Angelika; Razansky, Daniel

    2017-02-01

    Determination of ovarian status and follicle monitoring are common methods of diagnosing female infertility. We evaluated the suitability of selective plane illumination microscopy (SPIM) for the study of ovarian follicles. Owing to the large field of view and fast acquisition speed of our newly developed SPIM system, volumetric image stacks from entire intact samples of pig ovaries have been rendered demonstrating clearly discernible follicular features like follicle diameters (70 μm - 2.5 mm), size of developing Cumulus oophorus complexes (COC ) (40 μm - 110 μm), and follicular wall thicknesses (90 μm-120 μm). The observation of clearly distinguishable COCs protruding into the follicular antrum was also shown possible, and correlation with the developmental stage of the follicles was determined. Follicles of all developmental stages were identified, and even the small primordial follicle clusters forming the egg nest could be observed. The ability of the system to non-destructively generate sub-cellular resolution 3D images of developing follicles, with excellent image contrast and high throughput capacity compared to conventional histology, suggests that it can be used to monitor follicular development and identify structural abnormalities indicative of ovarian ailments. Accurate folliculometric measurements provided by SPIM images can immensely help the understanding of ovarian physiology and provide important information for the proper management of ovarian diseases.

  20. Toward quantitative fluorescence microscopy with DNA origami nanorulers.

    Science.gov (United States)

    Beater, Susanne; Raab, Mario; Tinnefeld, Philip

    2014-01-01

    The dynamic development of fluorescence microscopy has created a large number of new techniques, many of which are able to overcome the diffraction limit. This chapter describes the use of DNA origami nanostructures as scaffold for quantifying microscope properties such as sensitivity and resolution. The DNA origami technique enables placing of a defined number of fluorescent dyes in programmed geometries. We present a variety of DNA origami nanorulers that include nanorulers with defined labeling density and defined distances between marks. The chapter summarizes the advantages such as practically free choice of dyes and labeling density and presents examples of nanorulers in use. New triangular DNA origami nanorulers that do not require photoinduced switching by imaging transient binding to DNA nanostructures are also reported. Finally, we simulate fluorescence images of DNA origami nanorulers and reveal that the optimal DNA nanoruler for a specific application has an intermark distance that is roughly 1.3-fold the expected optical resolution. © 2014 Elsevier Inc. All rights reserved.

  1. Photon-counting-based diffraction phase microscopy combined with single-pixel imaging

    Science.gov (United States)

    Shibuya, Kyuki; Araki, Hiroyuki; Iwata, Tetsuo

    2018-04-01

    We propose a photon-counting (PC)-based quantitative-phase imaging (QPI) method for use in diffraction phase microscopy (DPM) that is combined with a single-pixel imaging (SPI) scheme (PC-SPI-DPM). This combination of DPM with the SPI scheme overcomes a low optical throughput problem that has occasionally prevented us from obtaining quantitative-phase images in DPM through use of a high-sensitivity single-channel photodetector such as a photomultiplier tube (PMT). The introduction of a PMT allowed us to perform PC with ease and thus solved a dynamic range problem that was inherent to SPI. As a proof-of-principle experiment, we performed a comparison study of analogue-based SPI-DPM and PC-SPI-DPM for a 125-nm-thick indium tin oxide (ITO) layer coated on a silica glass substrate. We discuss the basic performance of the method and potential future modifications of the proposed system.

  2. Phase microscopy using light-field reconstruction method for cell observation.

    Science.gov (United States)

    Xiu, Peng; Zhou, Xin; Kuang, Cuifang; Xu, Yingke; Liu, Xu

    2015-08-01

    The refractive index (RI) distribution can serve as a natural label for undyed cell imaging. However, the majority of images obtained through quantitative phase microscopy is integrated along the illumination angle and cannot reflect additional information about the refractive map on a certain plane. Herein, a light-field reconstruction method to image the RI map within a depth of 0.2 μm is proposed. It records quantitative phase-delay images using a four-step phase shifting method in different directions and then reconstructs a similar scattered light field for the refractive sample on the focus plane. It can image the RI of samples, transparent cell samples in particular, in a manner similar to the observation of scattering characteristics. The light-field reconstruction method is therefore a powerful tool for use in cytobiology studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Quantitative optical microscopy: measurement of cellular biophysical features with a standard optical microscope.

    Science.gov (United States)

    Phillips, Kevin G; Baker-Groberg, Sandra M; McCarty, Owen J T

    2014-04-07

    We describe the use of a standard optical microscope to perform quantitative measurements of mass, volume, and density on cellular specimens through a combination of bright field and differential interference contrast imagery. Two primary approaches are presented: noninterferometric quantitative phase microscopy (NIQPM), to perform measurements of total cell mass and subcellular density distribution, and Hilbert transform differential interference contrast microscopy (HTDIC) to determine volume. NIQPM is based on a simplified model of wave propagation, termed the paraxial approximation, with three underlying assumptions: low numerical aperture (NA) illumination, weak scattering, and weak absorption of light by the specimen. Fortunately, unstained cellular specimens satisfy these assumptions and low NA illumination is easily achieved on commercial microscopes. HTDIC is used to obtain volumetric information from through-focus DIC imagery under high NA illumination conditions. High NA illumination enables enhanced sectioning of the specimen along the optical axis. Hilbert transform processing on the DIC image stacks greatly enhances edge detection algorithms for localization of the specimen borders in three dimensions by separating the gray values of the specimen intensity from those of the background. The primary advantages of NIQPM and HTDIC lay in their technological accessibility using "off-the-shelf" microscopes. There are two basic limitations of these methods: slow z-stack acquisition time on commercial scopes currently abrogates the investigation of phenomena faster than 1 frame/minute, and secondly, diffraction effects restrict the utility of NIQPM and HTDIC to objects from 0.2 up to 10 (NIQPM) and 20 (HTDIC) μm in diameter, respectively. Hence, the specimen and its associated time dynamics of interest must meet certain size and temporal constraints to enable the use of these methods. Excitingly, most fixed cellular specimens are readily investigated with

  4. Quantitative Near-field Microscopy of Heterogeneous and Correlated Electron Oxides

    Science.gov (United States)

    McLeod, Alexander Swinton

    Scanning near-field optical microscopy (SNOM) is a novel scanning probe microscopy technique capable of circumventing the conventional diffraction limit of light, affording unparalleled optical resolution (down to 10 nanometers) even for radiation in the infrared and terahertz energy regimes, with light wavelengths exceeding 10 micrometers. However, although this technique has been developed and employed for more than a decade to a qualitatively impressive effect, researchers have lacked a practically quantitative grasp of its capabilities, and its application scope has so far remained restricted by implementations limited to ambient atmospheric conditions. The two-fold objective of this dissertation work has been to address both these shortcomings. The first half of the dissertation presents a realistic, semi-analytic, and benchmarked theoretical description of probe-sample near-field interactions that form the basis of SNOM. Owing its name to the efficient nano-focusing of light at a sharp metallic apex, the "lightning rod model" of probe-sample near-field interactions is mathematically developed from a flexible and realistic scattering formalism. Powerful and practical applications are demonstrated through the accurate prediction of spectroscopic near-field optical contrasts, as well as the "inversion" of these spectroscopic contrasts into a quantitative description of material optical properties. Thus enabled, this thesis work proceeds to present quantitative applications of infrared near-field spectroscopy to investigate nano-resolved chemical compositions in a diverse host of samples, including technologically relevant lithium ion battery materials, astrophysical planetary materials, and invaluable returned extraterrestrial samples. The second half of the dissertation presents the design, construction, and demonstration of a sophisticated low-temperature scanning near-field infrared microscope. This instrument operates in an ultra-high vacuum environment

  5. Diffraction phase microscopy realized with an automatic digital pinhole

    Science.gov (United States)

    Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Zhang, Zhimin; Liu, Xu

    2017-12-01

    We report a novel approach to diffraction phase microscopy (DPM) with automatic pinhole alignment. The pinhole, which serves as a spatial low-pass filter to generate a uniform reference beam, is made out of a liquid crystal display (LCD) device that allows for electrical control. We have made DPM more accessible to users, while maintaining high phase measurement sensitivity and accuracy, through exploring low cost optical components and replacing the tedious pinhole alignment process with an automatic pinhole optical alignment procedure. Due to its flexibility in modifying the size and shape, this LCD device serves as a universal filter, requiring no future replacement. Moreover, a graphic user interface for real-time phase imaging has been also developed by using a USB CMOS camera. Experimental results of height maps of beads sample and live red blood cells (RBCs) dynamics are also presented, making this system ready for broad adaption to biological imaging and material metrology.

  6. Prospects and challenges of quantitative phase imaging in tumor cell biology

    Science.gov (United States)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  7. Quantitating morphological changes in biological samples during scanning electron microscopy sample preparation with correlative super-resolution microscopy.

    Science.gov (United States)

    Zhang, Ying; Huang, Tao; Jorgens, Danielle M; Nickerson, Andrew; Lin, Li-Jung; Pelz, Joshua; Gray, Joe W; López, Claudia S; Nan, Xiaolin

    2017-01-01

    Sample preparation is critical to biological electron microscopy (EM), and there have been continuous efforts on optimizing the procedures to best preserve structures of interest in the sample. However, a quantitative characterization of the morphological changes associated with each step in EM sample preparation is currently lacking. Using correlative EM and superresolution microscopy (SRM), we have examined the effects of different drying methods as well as osmium tetroxide (OsO4) post-fixation on cell morphology during scanning electron microscopy (SEM) sample preparation. Here, SRM images of the sample acquired under hydrated conditions were used as a baseline for evaluating morphological changes as the sample went through SEM sample processing. We found that both chemical drying and critical point drying lead to a mild cellular boundary retraction of ~60 nm. Post-fixation by OsO4 causes at least 40 nm additional boundary retraction. We also found that coating coverslips with adhesion molecules such as fibronectin prior to cell plating helps reduce cell distortion from OsO4 post-fixation. These quantitative measurements offer useful information for identifying causes of cell distortions in SEM sample preparation and improving current procedures.

  8. Efficient Phase Unwrapping Architecture for Digital Holographic Microscopy

    Directory of Open Access Journals (Sweden)

    Wen-Jyi Hwang

    2011-09-01

    Full Text Available This paper presents a novel phase unwrapping architecture for accelerating the computational speed of digital holographic microscopy (DHM. A fast Fourier transform (FFT based phase unwrapping algorithm providing a minimum squared error solution is adopted for hardware implementation because of its simplicity and robustness to noise. The proposed architecture is realized in a pipeline fashion to maximize through put of thecomputation. Moreover, the number of hardware multipliers and dividers are minimized to reduce the hardware costs. The proposed architecture is used as a custom user logic in a system on programmable chip (SOPC for physical performance measurement. Experimental results reveal that the proposed architecture is effective for expediting the computational speed while consuming low hardware resources for designing an embedded DHM system.

  9. Hard-x-ray phase-difference microscopy with a low-brilliance laboratory x-ray source

    International Nuclear Information System (INIS)

    Kuwabara, Hiroaki; Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Mizutani, Haruo

    2011-01-01

    We have developed a hard-X-ray phase-imaging microscopy method using a low-brilliance X-ray source. The microscope consists of a sample, a Fresnel zone plate, a transmission grating, and a source grating creating an array of mutually incoherent X-ray sources. The microscope generates an image exhibiting twin features of the sample with opposite signs separated by a distance, which is processed to generate a phase image. The method is quantitative even for non-weak-phase objects that are difficult to be quantitatively examined by the widely used Zernike phase-contrast microscopy, and it has potentially broad applications in the material and biological science fields. (author)

  10. Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy

    NARCIS (Netherlands)

    Turnhout, van M.C.; Kranenbarg, S.; Leeuwen, van J.L.

    2009-01-01

    Quantitative polarized light microscopy (qPLM) is a popular tool for the investigation of birefringent architectures in biological tissues. Collagen, the most abundant protein in mammals, is such a birefringent material. Interpretation of results of qPLM in terms of collagen network architecture and

  11. Controlled initiation and quantitative visualization of cell interaction dynamics - a novel hybrid microscopy method -

    NARCIS (Netherlands)

    Snijder-van As, M.I.

    2010-01-01

    This thesis describes the development, validation, and application of a hybrid microscopy technique to study cell-substrate and cell-cell interactions in a controlled and quantitative manner. We studied the spatial and temporal dynamics of the selected membrane molecules CD6 and the activated

  12. Phase-shifting Real-time Holographic Microscopy applied in micro-structures surface analysis

    International Nuclear Information System (INIS)

    Brito, I V; Gesualdi, M R R; Muramatsu, M; Ricardo, J

    2011-01-01

    The microscopic real-time analysis of micro structured materials is of great importance in various domains of science and technology. For other hand, the holographic interferometry comprises a group of powerful optical methods for non-destructive testing in surface analysis. The holographic microscopy uses the holographic interferometric techniques to obtain quantitative intensity and phase information of the optical waves by microscopic systems. With the development of CCD cameras, computers (hardware and software), and new materials for holographic recording, these techniques can be used to replace the classical form of registration and became promising tools in surface analysis. In this work, we developed a prototype of Photorefractive and Digital Holographic Microscope for real-time analysis of micro-structured systems based on the phase-shifting real-time holographic interferometry techniques. Using this apparatus, we are made analysis of shapes and surfaces to obtain the phase maps and the 3D profiles of some samples.

  13. LORENTZ PHASE IMAGING AND IN-SITU LORENTZ MICROSCOPY OF PATTERNED CO-ARRAYS

    International Nuclear Information System (INIS)

    VOLKOV, V.V.; ZHU, Y.

    2003-01-01

    Understanding magnetic structures and properties of patterned and ordinary magnetic films at nanometer length-scale is the area of immense technological and fundamental scientific importance. The key feature to such success is the ability to achieve visual quantitative information on domain configurations with a maximum ''magnetic'' resolution. Several methods have been developed to meet these demands (Kerr and Faraday effects, differential phase contrast microscopy, magnetic force microscopy, SEMPA etc.). In particular, the modern off-axis electron holography allows retrieval of the electron-wave phase shifts down to 2π/N (with typical N = 10-20, approaching in the limit N ∼ 100) in TEM equipped with field emission gun, which is already successfully employed for studies of magnetic materials at nanometer scale. However, it remains technically demanding, sensitive to noise and needs highly coherent electron sources. As possible alternative we developed a new method of Lorentz phase microscopy [1,2] based on the Fourier solution [3] of magnetic transport-of-intensity (MTIE) equation. This approach has certain advantages, since it is less sensitive to noise and does not need high coherence of the source required by the holography. In addition, it can be realized in any TEM without basic hardware changes. Our approach considers the electron-wave refraction in magnetic materials (magnetic refraction) and became possible due to general progress in understanding of noninterferometric phase retrieval [4-6] dealing with optical refraction. This approach can also be treated as further development of Fresnel microscopy, used so far for imaging of in-situ magnetization process in magnetic materials studied by TEM. Figs. 1-3 show some examples of what kind information can be retrieved from the conventional Fresnel images using the new approach. Most of these results can be compared with electron-holographic data. Using this approach we can shed more light on fine details of

  14. Holography microscopy as an artifact-free alternative to phase-contrast.

    Science.gov (United States)

    Pastorek, Lukáš; Venit, Tomáš; Hozák, Pavel

    2018-02-01

    Artifact-free microscopic images represent a key requirement of multi-parametric image analysis in modern biomedical research. Holography microscopy (HM) is one of the quantitative phase imaging techniques, which has been finding new applications in life science, especially in morphological screening, cell migration, and cancer research. Rather than the classical imaging of absorbing (typically stained) specimens by bright-field microscopy, the information about the light-wave's phase shifts induced by the biological sample is employed for final image reconstruction. In this comparative study, we investigated the usability and the reported advantage of the holography imaging. The claimed halo-free imaging was analyzed compared to the widely used Zernike phase-contrast microscopy. The intensity and phase cross-membrane profiles at the periphery of the cell were quantified. The intensity profile for cells in the phase-contrast images suffers from the significant increase in intensity values around the cell border. On the contrary, no distorted profile is present outside the cell membrane in holography images. The gradual increase in phase shift values is present in the internal part of the cell body projection in holography image. This increase may be related to the increase in the cell internal material according to the dry mass theory. Our experimental data proved the halo-free nature of the holography imaging, which is an important prerequisite of the correct thresholding and cell segmentation, nowadays frequently required in high-content screening and other image-based analysis. Consequently, HM is a method of choice whenever the image analysis relies on the accurate data on cell boundaries.

  15. Effects of phase change on reflection in phase-measuring interference microscopy

    OpenAIRE

    Dubois , Arnaud

    2004-01-01

    International audience; We show by analytical and numerical calculations that the phase change on reflection that occurs in interference microscopy is almost independent of the numerical aperture of the objective. The shift of the microscope interferogram response due to the phase change on reflection, however, increases with the numerical aperture. Measurements of the interferogram shift are made with a Linnik interference microscope equipped with various numerical-aperture objectives and ar...

  16. Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

  17. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy.

    Directory of Open Access Journals (Sweden)

    Dominik Bettenworth

    Full Text Available Impaired epithelial wound healing has significant pathophysiological implications in several conditions including gastrointestinal ulcers, anastomotic leakage and venous or diabetic skin ulcers. Promising drug candidates for accelerating wound closure are commonly evaluated in in vitro wound assays. However, staining procedures and discontinuous monitoring are major drawbacks hampering accurate assessment of wound assays. We therefore investigated digital holographic microscopy (DHM to appropriately monitor wound healing in vitro and secondly, to provide multimodal quantitative information on morphological and functional cell alterations as well as on motility changes upon cytokine stimulation. Wound closure as reflected by proliferation and migration of Caco-2 cells in wound healing assays was studied and assessed in time-lapse series for 40 h in the presence of stimulating epidermal growth factor (EGF and inhibiting mitomycin c. Therefore, digital holograms were recorded continuously every thirty minutes. Morphological changes including cell thickness, dry mass and tissue density were analyzed by data from quantitative digital holographic phase microscopy. Stimulation of Caco-2 cells with EGF or mitomycin c resulted in significant morphological changes during wound healing compared to control cells. In conclusion, DHM allows accurate, stain-free and continuous multimodal quantitative monitoring of wound healing in vitro and could be a promising new technique for assessment of wound healing.

  18. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    Science.gov (United States)

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  19. Compact, common path quantitative phase microscopic techniques ...

    Indian Academy of Sciences (India)

    2014-01-05

    refractive index information as a change in intensity). ... phase imaging method which provides information about the optical thickness of live .... index values of the material of the glass bead and the surrounding medium was ...

  20. Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, F; Muehl, T; Weissker, U; Lipert, K; Schumann, J; Leonhardt, A; Buechner, B, E-mail: f.wolny@ifw-dresden.de, E-mail: t.muehl@ifw-dresden.de [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2010-10-29

    We present a novel ultrahigh stability sensor for quantitative magnetic force microscopy (MFM) based on an iron filled carbon nanotube. In contrast to the complex magnetic structure of conventional MFM probes, this sensor constitutes a nanomagnet with defined properties. The long iron nanowire can be regarded as an extended dipole of which only the monopole close to the sample surface is involved in the imaging process. We demonstrate its potential for high resolution imaging. Moreover, we present an easy routine to determine its monopole moment and prove that this calibration, unlike other approaches, is universally applicable. For the first time this enables straightforward quantitative MFM measurements.

  1. 3D quantitative phase imaging of neural networks using WDT

    Science.gov (United States)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  2. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

    Science.gov (United States)

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun

    2013-11-05

    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  4. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination.

    Science.gov (United States)

    Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan

    2018-06-15

    Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.

  5. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    Science.gov (United States)

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  7. Experimental evaluation of the ‘transport-of-intensity’ equation for magnetic phase reconstruction in Lorentz transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, Amit, E-mail: akohn@post.tau.ac.il [Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Habibi, Avihay; Mayo, Martin [Department of Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva (Israel)

    2016-01-15

    The ‘transport-of-intensity’ equation (TIE) is a general phase reconstruction methodology that can be applied to Lorentz transmission electron microscopy (TEM) through the use of Fresnel-contrast (defocused) images. We present an experimental study to test the application of the TIE for quantitative magnetic mapping in Lorentz TEM without aberration correction by examining sub-micrometer sized Ni{sub 80}Fe{sub 20} (Permalloy) elements. For a JEOL JEM 2100F adapted for Lorentz microscopy, we find that quantitative magnetic phase reconstructions are possible for defoci distances ranging between approximately 200 μm and 800 μm. The lower limit originates from competing sources of image intensity variations in Fresnel-contrast images, namely structural defects and diffraction contrast. The upper defocus limit is due to a numerical error in the estimation of the intensity derivative based on three images. For magnetic domains, we show quantitative reconstructions of the product of the magnetic induction vector and thickness in element sizes down to approximately 100 nm in lateral size and 5 nm thick resulting in a minimal detection of 5 T nm. Three types of magnetic structures are tested in terms of phase reconstruction: vortex cores, domain walls, and element edges. We quantify vortex core structures at a diameter of 12 nm while the structures of domain walls and element edges are characterized qualitatively. Finally, we show by image simulations that the conclusions of this experimental study are relevant to other Lorentz TEM in which spherical aberration and defocus are dominant aberrations. - Highlights: • Testing TIE for quantitative magnetic phase reconstruction in Lorentz TEM. • Quantitative magnetic phase reconstructions for defoci distances in 200–800 μm range. • Minimal detection of the product of the magnetic induction and thickness is 5 T nm. • Quantitative phase reconstruction for vortex core structures at 12 nm diameter. • Observations

  8. Quantitative determination of phases by X-ray diffraction

    International Nuclear Information System (INIS)

    Azevedo, A.L.T.

    1979-01-01

    The internal standard method for the quantitative determination of phases by X-ray diffraction is presented. The method is applicable to multi-phase materials which may be treated as powder. A discussion on sample preparation and some examples follow. (Author) [pt

  9. Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry.

    Directory of Open Access Journals (Sweden)

    François Vromman

    Full Text Available Chlamydiae are obligate intracellular bacteria. These pathogens develop inside host cells through a biphasic cycle alternating between two morphologically distinct forms, the infectious elementary body and the replicative reticulate body. Recently, C. trachomatis strains stably expressing fluorescent proteins were obtained. The fluorochromes are expressed during the intracellular growth of the microbe, allowing bacterial visualization by fluorescence microscopy. Whether they are also present in the infectious form, the elementary body, to a detectable level has not been studied. Here, we show that a C. trachomatis strain transformed with a plasmid expressing the green fluorescent protein (GFP accumulates sufficient quantities of the probe in elementary bodies for detection by microscopy and flow cytometry. Adhesion of single bacteria was detected. The precise kinetics of bacterial entry were determined by microscopy using automated procedures. We show that during the intracellular replication phase, GFP is a convenient read-out for bacterial growth with several advantages over current methods. In particular, infection rates within a non-homogenous cell population are easily quantified. Finally, in spite of their small size, individual elementary bodies are detected by flow cytometers, allowing for direct enumeration of a bacterial preparation. In conclusion, GFP-expressing chlamydiae are suitable to monitor, in a quantitative manner, progression throughout the developmental cycle. This will facilitate the identification of the developmental steps targeted by anti-chlamydial drugs or host factors.

  10. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    Science.gov (United States)

    Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2010-01-01

    We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464

  11. New tools for comparing microscopy images: quantitative analysis of cell types in Bacillus subtilis.

    Science.gov (United States)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-02-15

    Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy images. We show how image data can be converted to distribution data. These data can be subjected to a cluster analysis that makes it possible to objectively compare microscopy images. The distribution data can further be analyzed using distribution fitting. We illustrate our methods by scrutinizing two independently acquired data sets, each containing microscopy images of a doubly labeled Bacillus subtilis strain. For the first data set, we examined the expression of srfA and tapA, two genes which are expressed in surfactin-producing and matrix-producing cells, respectively. For the second data set, we examined the expression of eps and tapA; these genes are expressed in matrix-producing cells. We show that srfA is expressed by all cells in the population, a finding which contrasts with a previously reported bimodal distribution of srfA expression. In addition, we show that eps and tapA do not always have the same expression profiles, despite being expressed in the same cell type: both operons are expressed in cell chains, while single cells mainly express eps. These findings exemplify that the quantification and comparison of microscopy data can yield insights that otherwise would go unnoticed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Deciphering complex, functional structures with synchrotron-based absorption and phase contrast tomographic microscopy

    Science.gov (United States)

    Stampanoni, M.; Reichold, J.; Weber, B.; Haberthür, D.; Schittny, J.; Eller, J.; Büchi, F. N.; Marone, F.

    2010-09-01

    Nowadays, thanks to the high brilliance available at modern, third generation synchrotron facilities and recent developments in detector technology, it is possible to record volumetric information at the micrometer scale within few minutes. High signal-to-noise ratio, quantitative information on very complex structures like the brain micro vessel architecture, lung airways or fuel cells can be obtained thanks to the combination of dedicated sample preparation protocols, in-situ acquisition schemes and cutting-edge imaging analysis instruments. In this work we report on recent experiments carried out at the TOMCAT beamline of the Swiss Light Source [1] where synchrotron-based tomographic microscopy has been successfully used to obtain fundamental information on preliminary models for cerebral fluid flow [2], to provide an accurate mesh for 3D finite-element simulation of the alveolar structure of the pulmonary acinus [3] and to investigate the complex functional mechanism of fuel cells [4]. Further, we introduce preliminary results on the combination of absorption and phase contrast microscopy for the visualization of high-Z nanoparticles in soft tissues, a fundamental information when designing modern drug delivery systems [5]. As an outlook we briefly discuss the new possibilities offered by high sensitivity, high resolution grating interferomtery as well as Zernike Phase contrast nanotomography [6].

  13. Quantitative sub-surface and non-contact imaging using scanning microwave microscopy

    International Nuclear Information System (INIS)

    Gramse, Georg; Kasper, Manuel; Hinterdorfer, Peter; Brinciotti, Enrico; Rankl, Christian; Kienberger, Ferry; Lucibello, Andrea; Marcelli, Romolo; Patil, Samadhan B.; Giridharagopal, Rajiv

    2015-01-01

    The capability of scanning microwave microscopy for calibrated sub-surface and non-contact capacitance imaging of silicon (Si) samples is quantitatively studied at broadband frequencies ranging from 1 to 20 GHz. Calibrated capacitance images of flat Si test samples with varying dopant density (10 15 –10 19 atoms cm −3 ) and covered with dielectric thin films of SiO 2 (100–400 nm thickness) are measured to demonstrate the sensitivity of scanning microwave microscopy (SMM) for sub-surface imaging. Using standard SMM imaging conditions the dopant areas could still be sensed under a 400 nm thick oxide layer. Non-contact SMM imaging in lift-mode and constant height mode is quantitatively demonstrated on a 50 nm thick SiO 2 test pad. The differences between non-contact and contact mode capacitances are studied with respect to the main parameters influencing the imaging contrast, namely the probe tip diameter and the tip–sample distance. Finite element modelling was used to further analyse the influence of the tip radius and the tip–sample distance on the SMM sensitivity. The understanding of how the two key parameters determine the SMM sensitivity and quantitative capacitances represents an important step towards its routine application for non-contact and sub-surface imaging. (paper)

  14. A method for improved clustering and classification of microscopy images using quantitative co-localization coefficients

    LENUS (Irish Health Repository)

    Singan, Vasanth R

    2012-06-08

    AbstractBackgroundThe localization of proteins to specific subcellular structures in eukaryotic cells provides important information with respect to their function. Fluorescence microscopy approaches to determine localization distribution have proved to be an essential tool in the characterization of unknown proteins, and are now particularly pertinent as a result of the wide availability of fluorescently-tagged constructs and antibodies. However, there are currently very few image analysis options able to effectively discriminate proteins with apparently similar distributions in cells, despite this information being important for protein characterization.FindingsWe have developed a novel method for combining two existing image analysis approaches, which results in highly efficient and accurate discrimination of proteins with seemingly similar distributions. We have combined image texture-based analysis with quantitative co-localization coefficients, a method that has traditionally only been used to study the spatial overlap between two populations of molecules. Here we describe and present a novel application for quantitative co-localization, as applied to the study of Rab family small GTP binding proteins localizing to the endomembrane system of cultured cells.ConclusionsWe show how quantitative co-localization can be used alongside texture feature analysis, resulting in improved clustering of microscopy images. The use of co-localization as an additional clustering parameter is non-biased and highly applicable to high-throughput image data sets.

  15. Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography

    International Nuclear Information System (INIS)

    Rodríguez, L.A.; Magén, C.; Snoeck, E.; Gatel, C.; Marín, L.; Serrano-Ramón, L.

    2013-01-01

    A generalized procedure for the in situ application of magnetic fields by means of the excitation of the objective lens for magnetic imaging experiments in Lorentz microscopy and electron holography is quantitatively described. A protocol for applying magnetic fields with arbitrary in-plane magnitude and orientation is presented, and a freeware script for Digital Micrograph ™ is provided to assist the operation of the microscope. Moreover, a method to accurately reconstruct hysteresis loops is detailed. We show that the out-of-plane component of the magnetic field cannot be always neglected when performing quantitative measurements of the local magnetization. Several examples are shown to demonstrate the accuracy and functionality of the methods. - Highlights: • Generalized procedure for application of magnetic fields with the TEM objective lens. • Arbitrary in-plane magnetic field magnitude and orientation can be applied. • Method to accurately reconstruct hysteresis loops by electron holography. • Out-of-plane field component should be considered in quantitative measurements. • Examples to illustrate the method in Lorentz microscopy and electron holography

  16. Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Approach for tuning algorithm parameters

    Science.gov (United States)

    Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi

    2013-02-01

    The combination of fluorescent contrast agents with microscopy is a powerful technique to obtain real time images of tissue histology without the need for fixing, sectioning, and staining. The potential of this technology lies in the identification of robust methods for image segmentation and quantitation, particularly in heterogeneous tissues. Our solution is to apply sparse decomposition (SD) to monochrome images of fluorescently-stained microanatomy to segment and quantify distinct tissue types. The clinical utility of our approach is demonstrated by imaging excised margins in a cohort of mice after surgical resection of a sarcoma. Representative images of excised margins were used to optimize the formulation of SD and tune parameters associated with the algorithm. Our results demonstrate that SD is a robust solution that can advance vital fluorescence microscopy as a clinically significant technology.

  17. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Salgado, J. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Castro-Domínguez, B. [University of Tokyo, Department of Chemical System Engineering, Faculty of Engineering Bldg. 5, 7F 722, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8656 (Japan); Hernández-Hernández, P. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Newman, R.C. [University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto M5S 3E5 (Canada)

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  18. Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy†

    Science.gov (United States)

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ. PMID:19803506

  19. Quantitative phase imaging of living cells with a swept laser source

    Science.gov (United States)

    Chen, Shichao; Zhu, Yizheng

    2016-03-01

    Digital holographic phase microscopy is a well-established quantitative phase imaging technique. However, interference artifacts from inside the system, typically induced by elements whose optical thickness are within the source coherence length, limit the imaging quality as well as sensitivity. In this paper, a swept laser source based technique is presented. Spectra acquired at a number of wavelengths, after Fourier Transform, can be used to identify the sources of the interference artifacts. With proper tuning of the optical pathlength difference between sample and reference arms, it is possible to avoid these artifacts and achieve sensitivity below 0.3nm. Performance of the proposed technique is examined in live cell imaging.

  20. Multi-spectral quantitative phase imaging based on filtration of light via ultrasonic wave

    Science.gov (United States)

    Machikhin, A. S.; Polschikova, O. V.; Ramazanova, A. G.; Pozhar, V. E.

    2017-07-01

    A new digital holographic microscopy scheme for multi-spectral quantitative phase imaging is proposed and implemented. It is based on acousto-optic filtration of wide-band low-coherence light at the entrance of a Mach-Zehnder interferometer, recording and digital processing of interferograms. The key requirements for the acousto-optic filter are discussed. The effectiveness of the technique is demonstrated by calculating the phase maps of human red blood cells at multiple wavelengths in the range 770-810 nm. The scheme can be used for the measurement of dispersion of thin films and biological samples.

  1. Quantitative surface topography determination by Nomarski reflection microscopy. 2: Microscope modification, calibration, and planar sample experiments

    International Nuclear Information System (INIS)

    Hartman, J.S.; Gordon, R.L.; Lessor, D.L.

    1980-01-01

    The application of reflective Nomarski differential interference contrast microscopy for the determination of quantitative sample topography data is presented. The discussion includes a review of key theoretical results presented previously plus the experimental implementation of the concepts using a commercial Momarski microscope. The experimental work included the modification and characterization of a commercial microscope to allow its use for obtaining quantitative sample topography data. System usage for the measurement of slopes on flat planar samples is also discussed. The discussion has been designed to provide the theoretical basis, a physical insight, and a cookbook procedure for implementation to allow these results to be of value to both those interested in the microscope theory and its practical usage in the metallography laboratory

  2. Quantitative immunofluorescence microscopy of renal glomeruli from mice exhibiting murien lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R H [Lawrence Livermore Lab., CA; Greenspan, J S; Moore, D II; Talal, N; Roubinian, J R

    1981-01-01

    Pathologic changes in renal glomeruli of mice with systemic murine lupus erythematosus were quantified using microfluorophotometry. Cryostat sections were taken from kidneys of affected mice, stained with fluorescein-conjugated anti-mouse immunoglobulin, and the extent of immune complex glomerulonephritis was determined. A subjective microscopic examination procedure, which has been used previously, was compared with quantitative microfluorophotometry and a close correlation between the results using each of the two methods was found. Since the microfluorometric procedure measures the total fluorescence per glomerulus, subjective microscopy must estimate that same quantity in a linear fashion. The present advance in measuring capability indicates good potential for rapid, quantitive measurements for further studies on systemic lupus erythematosus, and on other tissue sections stained with fluorescent antibodies.

  3. Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography.

    Science.gov (United States)

    Rodríguez, L A; Magén, C; Snoeck, E; Gatel, C; Marín, L; Serrano-Ramón, L; Prieto, J L; Muñoz, M; Algarabel, P A; Morellon, L; De Teresa, J M; Ibarra, M R

    2013-11-01

    A generalized procedure for the in situ application of magnetic fields by means of the excitation of the objective lens for magnetic imaging experiments in Lorentz microscopy and electron holography is quantitatively described. A protocol for applying magnetic fields with arbitrary in-plane magnitude and orientation is presented, and a freeware script for Digital Micrograph(™) is provided to assist the operation of the microscope. Moreover, a method to accurately reconstruct hysteresis loops is detailed. We show that the out-of-plane component of the magnetic field cannot be always neglected when performing quantitative measurements of the local magnetization. Several examples are shown to demonstrate the accuracy and functionality of the methods. © 2013 Elsevier B.V. All rights reserved.

  4. A phase-field and electron microscopy study of phase separation in Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hedstroem, Peter, E-mail: pheds@kth.se [Materials Science and Engineering, KTH (Royal Institute of Technology), SE-100 44 Stockholm (Sweden); Baghsheikhi, Saeed [Materials Science and Engineering, KTH (Royal Institute of Technology), SE-100 44 Stockholm (Sweden); Liu, Ping [Sandvik Materials Technology, R and D Centre, SE-81181 Sandviken (Sweden); Odqvist, Joakim [Materials Science and Engineering, KTH (Royal Institute of Technology), SE-100 44 Stockholm (Sweden); Sandvik Materials Technology, R and D Centre, SE-81181 Sandviken (Sweden)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Experimental characterization and Phase-field modeling of phase separation in Fe-Cr. Black-Right-Pointing-Pointer Transition from particle-like to spinodal-like structure observed. Black-Right-Pointing-Pointer Structural evolution generates increased hardness. Black-Right-Pointing-Pointer Results in agreement with recent thermodynamic description. Black-Right-Pointing-Pointer Quantitative kinetic modeling must include thermal noise and improved kinetic data. - Abstract: Phase separation in the binary Fe-Cr system, the basis for the entire stainless steel family, is considered responsible for the low temperature embrittlement in ferritic, martensitic and duplex stainless steels. These steels are often used in load-bearing applications with considerable service time at elevated temperature. Thus, understanding the effect of microstructure on mechanical properties and predicting dynamics of phase separation are key issues. In the present work, experimental evaluation of structure and mechanical properties in binary Fe-Cr alloys as well as phase-field modeling, using a new thermodynamic description of Fe-Cr, is conducted. A significant hardening evolution with time is found for alloys aged between 400 and 550 Degree-Sign C, and it can be attributed to phase separation. The decomposed structure changed with increasing Cr content at 500 Degree-Sign C, with a more particle-like structure at 25 wt% Cr and a more spinodal-like structure at 30 wt% Cr. The observed transition of structure agrees with the thermodynamically predicted spinodal, although the transition is expected to be gradual. The phase-field simulations qualitatively agree with experiments. However, to enable accurate quantitative predictions, the diffusional mobilities must be evaluated further and thermal fluctuations as well as 3D diffusion fields must be properly accounted for.

  5. Direct observation of dopant distribution in GaAs compound semiconductors using phase-shifting electron holography and Lorentz microscopy.

    Science.gov (United States)

    Sasaki, Hirokazu; Otomo, Shinya; Minato, Ryuichiro; Yamamoto, Kazuo; Hirayama, Tsukasa

    2014-06-01

    Phase-shifting electron holography and Lorentz microscopy were used to map dopant distributions in GaAs compound semiconductors with step-like dopant concentration. Transmission electron microscope specimens were prepared using a triple beam focused ion beam (FIB) system, which combines a Ga ion beam, a scanning electron microscope, and an Ar ion beam to remove the FIB damaged layers. The p-n junctions were clearly observed in both under-focused and over-focused Lorentz microscopy images. A phase image was obtained by using a phase-shifting reconstruction method to simultaneously achieve high sensitivity and high spatial resolution. Differences in dopant concentrations between 1 × 10(19) cm(-3) and 1 × 10(18) cm(-3) regions were clearly observed by using phase-shifting electron holography. We also interpreted phase profiles quantitatively by considering inactive layers induced by ion implantation during the FIB process. The thickness of an inactive layer at different dopant concentration area can be measured from the phase image. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Quantitative dopant profiling in semiconductors. A new approach to Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, Christine

    2012-07-01

    Failure analysis and optimization of semiconducting devices request knowledge of their electrical properties. To meet the demands of today's semiconductor industry, an electrical nanometrology technique is required which provides quantitative information about the doping profile and which enables scans with a lateral resolution in the sub-10 nm range. In the presented work it is shown that Kelvin probe force microscopy (KPFM) is a very promising electrical nanometrology technique to face this challenge. The technical and physical aspects of KPFM measurements on semiconductors required for the correct interpretation of the detected KPFM bias are discussed. A new KPFM model is developed which enables the quantitative correlation between the probed KPFM bias and the dopant concentration in the investigated semiconducting sample. Quantitative dopant profiling by means of the new KPFM model is demonstrated by the example of differently structured, n- and p-type doped silicon. Additionally, the transport of charge carriers during KPFM measurements, in particular in the presence of intrinsic electric fields due to vertical and horizontal pn junctions as well as due to surface space charge regions, is discussed. Detailed investigations show that transport of charge carriers in the semiconducting sample is a crucial aspect and has to be taken into account when aiming for a quantitative evaluation of the probed KPFM bias.

  7. A methodology for the extraction of quantitative information from electron microscopy images at the atomic level

    International Nuclear Information System (INIS)

    Galindo, P L; Pizarro, J; Guerrero, E; Guerrero-Lebrero, M P; Scavello, G; Yáñez, A; Sales, D L; Herrera, M; Molina, S I; Núñez-Moraleda, B M; Maestre, J M

    2014-01-01

    In this paper we describe a methodology developed at the University of Cadiz (Spain) in the past few years for the extraction of quantitative information from electron microscopy images at the atomic level. This work is based on a coordinated and synergic activity of several research groups that have been working together over the last decade in two different and complementary fields: Materials Science and Computer Science. The aim of our joint research has been to develop innovative high-performance computing techniques and simulation methods in order to address computationally challenging problems in the analysis, modelling and simulation of materials at the atomic scale, providing significant advances with respect to existing techniques. The methodology involves several fundamental areas of research including the analysis of high resolution electron microscopy images, materials modelling, image simulation and 3D reconstruction using quantitative information from experimental images. These techniques for the analysis, modelling and simulation allow optimizing the control and functionality of devices developed using materials under study, and have been tested using data obtained from experimental samples

  8. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    Science.gov (United States)

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.

  9. Scanning fluorescent microscopy is an alternative for quantitative fluorescent cell analysis.

    Science.gov (United States)

    Varga, Viktor Sebestyén; Bocsi, József; Sipos, Ferenc; Csendes, Gábor; Tulassay, Zsolt; Molnár, Béla

    2004-07-01

    Fluorescent measurements on cells are performed today with FCM and laser scanning cytometry. The scientific community dealing with quantitative cell analysis would benefit from the development of a new digital multichannel and virtual microscopy based scanning fluorescent microscopy technology and from its evaluation on routine standardized fluorescent beads and clinical specimens. We applied a commercial motorized fluorescent microscope system. The scanning was done at 20 x (0.5 NA) magnification, on three channels (Rhodamine, FITC, Hoechst). The SFM (scanning fluorescent microscopy) software included the following features: scanning area, exposure time, and channel definition, autofocused scanning, densitometric and morphometric cellular feature determination, gating on scatterplots and frequency histograms, and preparation of galleries of the gated cells. For the calibration and standardization Immuno-Brite beads were used. With application of shading compensation, the CV of fluorescence of the beads decreased from 24.3% to 3.9%. Standard JPEG image compression until 1:150 resulted in no significant change. The change of focus influenced the CV significantly only after +/-5 microm error. SFM is a valuable method for the evaluation of fluorescently labeled cells. Copyright 2004 Wiley-Liss, Inc.

  10. Segmentation-based retrospective shading correction in fluorescence microscopy E. coli images for quantitative analysis

    Science.gov (United States)

    Mai, Fei; Chang, Chunqi; Liu, Wenqing; Xu, Weichao; Hung, Yeung S.

    2009-10-01

    Due to the inherent imperfections in the imaging process, fluorescence microscopy images often suffer from spurious intensity variations, which is usually referred to as intensity inhomogeneity, intensity non uniformity, shading or bias field. In this paper, a retrospective shading correction method for fluorescence microscopy Escherichia coli (E. Coli) images is proposed based on segmentation result. Segmentation and shading correction are coupled together, so we iteratively correct the shading effects based on segmentation result and refine the segmentation by segmenting the image after shading correction. A fluorescence microscopy E. Coli image can be segmented (based on its intensity value) into two classes: the background and the cells, where the intensity variation within each class is close to zero if there is no shading. Therefore, we make use of this characteristics to correct the shading in each iteration. Shading is mathematically modeled as a multiplicative component and an additive noise component. The additive component is removed by a denoising process, and the multiplicative component is estimated using a fast algorithm to minimize the intra-class intensity variation. We tested our method on synthetic images and real fluorescence E.coli images. It works well not only for visual inspection, but also for numerical evaluation. Our proposed method should be useful for further quantitative analysis especially for protein expression value comparison.

  11. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy

    Science.gov (United States)

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. PMID:27151947

  12. Microscopy

    Science.gov (United States)

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  13. Massively parallel data processing for quantitative total flow imaging with optical coherence microscopy and tomography

    Science.gov (United States)

    Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo

    2017-08-01

    We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU

  14. Newly designed, simple relief phase contrast for microscopy of microorganisms

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk

    2010-01-01

    Roč. 55, č. 6 (2010), s. 662-665 ISSN 0015-5632 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : optical microscopy * Zeiss NG 10/1 * microphotography Subject RIV: EE - Microbiology, Virology Impact factor: 0.977, year: 2010

  15. Quantitative assessment of spinal cord injury using circularly polarized coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Bae, Kideog; Zheng, Wei; Huang, Zhiwei

    2017-08-01

    We report the quantitative assessment of spinal cord injury using the circularly polarized coherent anti-Stokes Raman scattering (CP-CARS) technique together with Stokes parameters in the Poincaré sphere. The pump and Stokes excitation beams are circularly polarized to suppress both the linear polarization-dependent artifacts and the nonresonant background of tissue CARS imaging, enabling quantitative CP-CARS image analysis. This study shows that CP-CARS imaging uncovers significantly increased phase retardance of injured spinal cord tissue as compared to normal tissue, suggesting that CP-CARS is an appealing label-free imaging tool for determining the degree of tissue phase retardance, which could serve as a unique diagnostic parameter associated with nervous tissue injury.

  16. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis

    Directory of Open Access Journals (Sweden)

    Ludovico eSilvestri

    2015-05-01

    Full Text Available Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all Purkinje cells are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent Purkinje cells. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of Purkinje cells, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of Purkinje cells with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments.

  17. Visualization and quantitative analysis of reconstituted tight junctions using localization microscopy.

    Directory of Open Access Journals (Sweden)

    Rainer Kaufmann

    Full Text Available Tight Junctions (TJ regulate paracellular permeability of tissue barriers. Claudins (Cld form the backbone of TJ-strands. Pore-forming claudins determine the permeability for ions, whereas that for solutes and macromolecules is assumed to be crucially restricted by the strand morphology (i.e., density, branching and continuity. To investigate determinants of the morphology of TJ-strands we established a novel approach using localization microscopy.TJ-strands were reconstituted by stable transfection of HEK293 cells with the barrier-forming Cld3 or Cld5. Strands were investigated at cell-cell contacts by Spectral Position Determination Microscopy (SPDM, a method of localization microscopy using standard fluorophores. Extended TJ-networks of Cld3-YFP and Cld5-YFP were observed. For each network, 200,000 to 1,100,000 individual molecules were detected with a mean localization accuracy of ∼20 nm, yielding a mean structural resolution of ∼50 nm. Compared to conventional fluorescence microscopy, this strongly improved the visualization of strand networks and enabled quantitative morphometric analysis. Two populations of elliptic meshes (mean diameter <100 nm and 300-600 nm, respectively were revealed. For Cld5 the two populations were more separated than for Cld3. Discrimination of non-polymeric molecules and molecules within polymeric strands was achieved. For both subtypes of claudins the mean density of detected molecules was similar and estimated to be ∼24 times higher within the strands than outside the strands.The morphometry and single molecule information provided advances the mechanistic analysis of paracellular barriers. Applying this novel method to different TJ-proteins is expected to significantly improve the understanding of TJ on the molecular level.

  18. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy

    Science.gov (United States)

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan

    2016-02-01

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

  19. Quantitative analysis with advanced compensated polarized light microscopy on wavelength dependence of linear birefringence of single crystals causing arthritis

    Science.gov (United States)

    Takanabe, Akifumi; Tanaka, Masahito; Taniguchi, Atsuo; Yamanaka, Hisashi; Asahi, Toru

    2014-07-01

    To improve our ability to identify single crystals causing arthritis, we have developed a practical measurement system of polarized light microscopy called advanced compensated polarized light microscopy (A-CPLM). The A-CPLM system is constructed by employing a conventional phase retardation plate, an optical fibre and a charge-coupled device spectrometer in a polarized light microscope. We applied the A-CPLM system to measure linear birefringence (LB) in the visible region, which is an optical anisotropic property, for tiny single crystals causing arthritis, i.e. monosodium urate monohydrate (MSUM) and calcium pyrophosphate dihydrate (CPPD). The A-CPLM system performance was evaluated by comparing the obtained experimental data using the A-CPLM system with (i) literature data for a standard sample, MgF2, and (ii) experimental data obtained using an established optical method, high-accuracy universal polarimeter, for the MSUM. The A-CPLM system was found to be applicable for measuring the LB spectra of the single crystals of MSUM and CPPD, which cause arthritis, in the visible regions. We quantitatively reveal the large difference in LB between MSUM and CPPD crystals. These results demonstrate the usefulness of the A-CPLM system for distinguishing the crystals causing arthritis.

  20. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.

    Science.gov (United States)

    Jaferzadeh, Keyvan; Moon, Inkyu

    2015-11-01

    Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs.

  1. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    Science.gov (United States)

    Phatak, C.; Petford-Long, A. K.; Beleggia, M.; De Graef, M.

    2014-06-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift computation for a uniformly polarized prolate ellipsoid with varying aspect ratio in the absence of screening charges.

  2. Quantitative characterization of crosstalk effects for friction force microscopy with scan-by-probe SPMs

    Energy Technology Data Exchange (ETDEWEB)

    Prunici, Pavel [Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg (Germany); Hess, Peter [Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg (Germany)], E-mail: peter.hess@urz.uni-heidelberg.de

    2008-06-15

    If the photodetector and cantilever of an atomic force microscope (AFM) are not properly adjusted, crosstalk effects will appear. These effects disturb measurements of the absolute vertical and horizontal cantilever deflections, which are involved in friction force microscopy (FFM). A straightforward procedure is proposed to study quantitatively crosstalk effects observed in scan-by-probe SPMs. The advantage of this simple, fast, and accurate procedure is that no hardware change or upgrade is needed. The results indicate that crosstalk effects depend not only on the alignment of the detector but also on the cantilever properties, position, and detection conditions. The measurements may provide information on the origin of the crosstalk effect. After determination of its magnitude, simple correction formulas can be applied to correct the crosstalk effects and then the single-load wedge method, using a commercially available grating, can be employed for accurate calibration of the lateral force.

  3. Quantitative characterization of crosstalk effects for friction force microscopy with scan-by-probe SPMs

    International Nuclear Information System (INIS)

    Prunici, Pavel; Hess, Peter

    2008-01-01

    If the photodetector and cantilever of an atomic force microscope (AFM) are not properly adjusted, crosstalk effects will appear. These effects disturb measurements of the absolute vertical and horizontal cantilever deflections, which are involved in friction force microscopy (FFM). A straightforward procedure is proposed to study quantitatively crosstalk effects observed in scan-by-probe SPMs. The advantage of this simple, fast, and accurate procedure is that no hardware change or upgrade is needed. The results indicate that crosstalk effects depend not only on the alignment of the detector but also on the cantilever properties, position, and detection conditions. The measurements may provide information on the origin of the crosstalk effect. After determination of its magnitude, simple correction formulas can be applied to correct the crosstalk effects and then the single-load wedge method, using a commercially available grating, can be employed for accurate calibration of the lateral force

  4. Quantitative measurement of solvation shells using frequency modulated atomic force microscopy

    Science.gov (United States)

    Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.

    2005-03-01

    The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.

  5. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk; Gabriel, Jiří

    2015-01-01

    Roč. 60, č. 6 (2015), s. 545-550 ISSN 0015-5632 Institutional support: RVO:61388971 Keywords : polarization microscopy * microbial cells * positive phase contrast Subject RIV: EE - Microbiology, Virology Impact factor: 1.335, year: 2015

  6. In-focal-plane characterization of excitation distribution for quantitative fluorescence microscopy applications

    Science.gov (United States)

    Dietrich, Klaus; Brülisauer, Martina; ćaǧin, Emine; Bertsch, Dietmar; Lüthi, Stefan; Heeb, Peter; Stärker, Ulrich; Bernard, André

    2017-06-01

    The applications of fluorescence microscopy span medical diagnostics, bioengineering and biomaterial analytics. Full exploitation of fluorescent microscopy is hampered by imperfections in illumination, detection and filtering. Mainly, errors stem from deviations induced by real-world components inducing spatial or angular variations of propagation properties along the optical path, and they can be addressed through consistent and accurate calibration. For many applications, uniform signal to noise ratio (SNR) over the imaging area is required. Homogeneous SNR can be achieved by quantifying and compensating for the signal bias. We present a method to quantitatively characterize novel reference materials as a calibration reference for biomaterials analytics. The reference materials under investigation comprise thin layers of fluorophores embedded in polymer matrices. These layers are highly homogeneous in their fluorescence response, where cumulative variations do not exceed 1% over the field of view (1.5 x 1.1 mm). An automated and reproducible measurement methodology, enabling sufficient correction for measurement artefacts, is reported. The measurement setup is equipped with an autofocus system, ensuring that the measured film quality is not artificially increased by out-of-focus reduction of the system modulation transfer function. The quantitative characterization method is suitable for analysis of modified bio-materials, especially through patterned protein decoration. The imaging method presented here can be used to statistically analyze protein patterns, thereby increasing both precision and throughput. Further, the method can be developed to include a reference emitter and detector pair on the image surface of the reference object, in order to provide traceable measurements.

  7. Validities of three multislice algorithms for quantitative low-energy transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ming, W.Q.; Chen, J.H., E-mail: jhchen123@hnu.edu.cn

    2013-11-15

    Three different types of multislice algorithms, namely the conventional multislice (CMS) algorithm, the propagator-corrected multislice (PCMS) algorithm and the fully-corrected multislice (FCMS) algorithm, have been evaluated in comparison with respect to the accelerating voltages in transmission electron microscopy. Detailed numerical calculations have been performed to test their validities. The results show that the three algorithms are equivalent for accelerating voltage above 100 kV. However, below 100 kV, the CMS algorithm will introduce significant errors, not only for higher-order Laue zone (HOLZ) reflections but also for zero-order Laue zone (ZOLZ) reflections. The differences between the PCMS and FCMS algorithms are negligible and mainly appear in HOLZ reflections. Nonetheless, when the accelerating voltage is further lowered to 20 kV or below, the PCMS algorithm will also yield results deviating from the FCMS results. The present study demonstrates that the propagation of the electron wave from one slice to the next slice is actually cross-correlated with the crystal potential in a complex manner, such that when the accelerating voltage is lowered to 10 kV, the accuracy of the algorithms is dependent of the scattering power of the specimen. - Highlights: • Three multislice algorithms for low-energy transmission electron microscopy are evaluated. • The propagator-corrected algorithm is a good alternative for voltages down to 20 kV. • Below 20 kV, a fully-corrected algorithm has to be employed for quantitative simulations.

  8. Quantitative measurement of local elasticity of SiOx film by atomic force acoustic microscopy

    International Nuclear Information System (INIS)

    Cun-Fu, He; Gai-Mei, Zhang; Bin, Wu

    2010-01-01

    In this paper the elastic properties of SiO x film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiO x films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD). The local contact stiffness of the tip-SiO x film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiO x film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiO x surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample. (classical areas of phenomenology)

  9. Validities of three multislice algorithms for quantitative low-energy transmission electron microscopy

    International Nuclear Information System (INIS)

    Ming, W.Q.; Chen, J.H.

    2013-01-01

    Three different types of multislice algorithms, namely the conventional multislice (CMS) algorithm, the propagator-corrected multislice (PCMS) algorithm and the fully-corrected multislice (FCMS) algorithm, have been evaluated in comparison with respect to the accelerating voltages in transmission electron microscopy. Detailed numerical calculations have been performed to test their validities. The results show that the three algorithms are equivalent for accelerating voltage above 100 kV. However, below 100 kV, the CMS algorithm will introduce significant errors, not only for higher-order Laue zone (HOLZ) reflections but also for zero-order Laue zone (ZOLZ) reflections. The differences between the PCMS and FCMS algorithms are negligible and mainly appear in HOLZ reflections. Nonetheless, when the accelerating voltage is further lowered to 20 kV or below, the PCMS algorithm will also yield results deviating from the FCMS results. The present study demonstrates that the propagation of the electron wave from one slice to the next slice is actually cross-correlated with the crystal potential in a complex manner, such that when the accelerating voltage is lowered to 10 kV, the accuracy of the algorithms is dependent of the scattering power of the specimen. - Highlights: • Three multislice algorithms for low-energy transmission electron microscopy are evaluated. • The propagator-corrected algorithm is a good alternative for voltages down to 20 kV. • Below 20 kV, a fully-corrected algorithm has to be employed for quantitative simulations

  10. Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy

    Science.gov (United States)

    Lewin, M.; Hauer, B.; Bornhöfft, M.; Jung, L.; Benke, J.; Michel, A.-K. U.; Mayer, J.; Wuttig, M.; Taubner, T.

    2015-10-01

    Phase Change Materials (PCM) show two stable states in the solid phase with significantly different optical and electronic properties. They can be switched reversibly between those two states and are promising candidates for future non-volatile memory applications. The development of phase change devices demands characterization tools, yielding information about the switching process at high spatial resolution. Scattering-type Scanning Near-field Optical Microscopy (s-SNOM) allows for spectroscopic analyses of the different optical properties of the PCMs on the nm-scale. By correlating the optical s-SNOM images with transmission electron microscopy images of the same sample, we unambiguously demonstrate the correlation of the infrared optical contrast with the structural state of the phase change material. The investigated sample consists of sandwiched amorphous and crystalline regions of Ag 4 In 3 Sb 67 Te 26 below a 100 nm thick ( ZnS ) 80 - ( SiO2 ) 20 capping layer. Our results demonstrate the sensitivity of s-SNOM to small dielectric near-field contrasts even below a comparably thick capping layer ( 100 nm ).

  11. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.

    Science.gov (United States)

    Schmid, Volker J; Cremer, Marion; Cremer, Thomas

    2017-07-01

    Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes.

    Science.gov (United States)

    Phark, Soo-Hyon; Sander, Dirk

    2017-01-01

    Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I /d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).

  13. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    Science.gov (United States)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  14. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tran Khac, Bien Cuong; Chung, Koo-Hyun, E-mail: khchung@ulsan.ac.kr

    2016-02-15

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8–29% smaller than those obtained from the other two methods. This discrepancy decreased to 3–19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method. - Highlights: • Quantitative assessment of three lateral force calibration methods for AFM. • Advantages and disadvantages of three different lateral force calibration method. • Implementation of Multi-Load Pivot method as non-contact calibration technique. • The torsional mode correction for Lateral AFM Thermal-Sader method.

  15. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy

    International Nuclear Information System (INIS)

    Tran Khac, Bien Cuong; Chung, Koo-Hyun

    2016-01-01

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8–29% smaller than those obtained from the other two methods. This discrepancy decreased to 3–19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method. - Highlights: • Quantitative assessment of three lateral force calibration methods for AFM. • Advantages and disadvantages of three different lateral force calibration method. • Implementation of Multi-Load Pivot method as non-contact calibration technique. • The torsional mode correction for Lateral AFM Thermal-Sader method.

  16. Quantitative phase determination by using a Michelson interferometer

    International Nuclear Information System (INIS)

    Pomarico, Juan A; Molina, Pablo F; Angelo, Cristian D'

    2007-01-01

    The Michelson interferometer is one of the best established tools for quantitative interferometric measurements. It has been, and is still successfully used, not only for scientific purposes, but it is also introduced in undergraduate courses for qualitative demonstrations as well as for quantitative determination of several properties such as refractive index, wavelength, optical thickness, etc. Generally speaking, most of the measurements are carried out by determining phase distortions through the changes in the location and/or shape of the interference fringes. However, the extreme sensitivity of this tool, for which minimum deviations of the conditions of its branches can cause very large modifications in the fringe pattern, makes phase changes difficult to follow and measure. The purpose of this communication is to show that, under certain conditions, the sensitivity of the Michelson interferometer can be 'turned down' allowing the quantitative measurement of phase changes with relative ease. As an example we present how the angle (or, optionally, the refractive index) of a transparent standard optical wedge can be determined. Experimental results are shown and compared with the data provided by the manufacturer showing very good agreement

  17. Visualization of phase evolution in model organic photovoltaic structures via energy-filtered transmission electron microscopy.

    Science.gov (United States)

    Herzing, Andrew A; Ro, Hyun Wook; Soles, Christopher L; DeLongchamp, Dean M

    2013-09-24

    The morphology of the active layer in an organic photovoltaic bulk-heterojunction device is controlled by the extent and nature of phase separation during processing. We have studied the effects of fullerene crystallinity during heat treatment in model structures consisting of a layer of poly(3-hexylthiophene) (P3HT) sandwiched between two layers of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Utilizing a combination of focused ion-beam milling and energy-filtered transmission electron microscopy, we monitored the local changes in phase distribution as a function of annealing time at 140 °C. In both cases, dissolution of PCBM within the surrounding P3HT was directly visualized and quantitatively described. In the absence of crystalline PCBM, the overall phase distribution remained stable after intermediate annealing times up to 60 s, whereas microscale PCBM aggregates were observed after annealing for 300 s. Aggregate growth proceeded vertically from the substrate interface via uptake of PCBM from the surrounding region, resulting in a large PCBM-depleted region in their vicinity. When precrystallized PCBM was present, amorphous PCBM was observed to segregate from the intermediate P3HT layer and ripen the crystalline PCBM underneath, owing to the far lower solubility of crystalline PCBM within P3HT. This process occurred rapidly, with segregation already evident after annealing for 10 s and with uptake of nearly all of the amorphous PCBM by the crystalline layer after 60 s. No microscale aggregates were observed in the precrystallized system, even after annealing for 300 s.

  18. Hard-x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating

    International Nuclear Information System (INIS)

    Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Takeuchi, Akihisa; Suzuki, Yoshio

    2010-01-01

    We report on a hard-x-ray imaging microscope consisting of a lens, a sample, and a transmission grating. After the theoretical framework of self-imaging phenomenon by the grating in the system is presented, equations for the electric field on the image plane are derived for ideal and real lenses and an equation for the intensity on the image plane for partially coherent illumination is derived. The equations are simple and similar to those applying to a projection microscope consisting of a transmission grating except that there is no defocusing effect, regardless of whether the grating is in front of or behind the lens. This means that x-ray phase-imaging microscopy can be done without the defocusing effect. It is also shown that, by resolving the self-image on the image plane, high-sensitive x-ray phase-imaging microscopy can be attained without degradation in the spatial resolution due to diffraction by the grating. Experimental results obtained using partially coherent illumination from a synchrotron x-ray source confirm that hard-x-ray phase-imaging microscopy can be quantitatively performed with high sensitivity and without the spatial resolution degradation.

  19. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2013-01-01

    Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. © Wiley Periodicals, Inc.

  20. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion

    International Nuclear Information System (INIS)

    Rodenburg, C.; Viswanathan, P.; Jepson, M.A.E.; Liu, X.; Battaglia, G.

    2014-01-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ∼30 nm and wall thickness variations from ∼100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40–340 nm. - Highlights: • The first helium ion microscopy image of uncoated structures formed from HIPEs is presented. • Unusually high contrast features that change with accelerating voltage are observed. • The origin of the observed contrast is determined to be mass thickness contrast. • A new method for quantitative wall thickness variation/roughness measurements is demonstrated

  1. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Rodenburg, C., E-mail: c.rodenburg@sheffield.ac.uk [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Viswanathan, P. [Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank Sheffield, Sheffield S10 2 TN (United Kingdom); Jepson, M.A.E. [Department of Materials, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Liu, X. [Carl Zeiss Microscopy GmbH, Carl-Zeiss-Strasse 22, 73447 Oberkochen (Germany); Battaglia, G. [Department of Chemistry University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); The MRC/UCL Centre for Medical Molecular Virology, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2014-04-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ∼30 nm and wall thickness variations from ∼100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40–340 nm. - Highlights: • The first helium ion microscopy image of uncoated structures formed from HIPEs is presented. • Unusually high contrast features that change with accelerating voltage are observed. • The origin of the observed contrast is determined to be mass thickness contrast. • A new method for quantitative wall thickness variation/roughness measurements is demonstrated.

  2. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Van Aert, S.; Verbeeck, J.; Erni, R.; Bals, S.; Luysberg, M.; Dyck, D. Van; Tendeloo, G. Van

    2009-01-01

    A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.

  3. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips

    Science.gov (United States)

    Mönig, Harry; Amirjalayer, Saeed; Timmer, Alexander; Hu, Zhixin; Liu, Lacheng; Díaz Arado, Oscar; Cnudde, Marvin; Strassert, Cristian Alejandro; Ji, Wei; Rohlfing, Michael; Fuchs, Harald

    2018-05-01

    Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.

  4. Quantitative localization of (/sup 3/H)TCP binding in rat brain by light microscopy autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, R; Zukin, S R

    1985-09-30

    The anatomical localization of phencyclidine (PCP)/sigma-opiate receptors in rat brain was determined by quantitative light microscopy autoradiography using the new ligand N-(1-(2-thienyl) cyclohexyl(/sup 3/H) piperidine ((/sup 3/H)TCP). TCP is a potent analog of PCP which possesses a higher affinity for PCP/sigma-opiate receptor than does PCP itself. The highest level of (/sup 3/H)TCP binding was detected in the hippocampus. Intermediate levels were found in frontal cortex, striatum, amygdala and cerebellum. Specific (/sup 3/H)TCP binding was undetectable in anterior commissure and corpus callosum. The distribution pattern of (/sup 3/H)TCP binding sites is similar to the pattern obtained with (/sup 3/H)PCP but more sharply defined. On the basis of its greater potency and specificity, (/sup 3/H)TCP may prove superior to (/sup 3/H)PCP as a molecular probe for the study of brain sigma opiate/phencyclidine receptors. 13 refs.; 1 figure; 1 table.

  5. Quantitative analyses of Streptococcus mutans biofilms with quartz crystal microbalance, microjet impingement and confocal microscopy.

    Science.gov (United States)

    Kreth, J; Hagerman, E; Tam, K; Merritt, J; Wong, D T W; Wu, B M; Myung, N V; Shi, W; Qi, F

    2004-10-01

    Microbial biofilm formation can be influenced by many physiological and genetic factors. The conventional microtiter plate assay provides useful but limited information about biofilm formation. With the fast expansion of the biofilm research field, there are urgent needs for more informative techniques to quantify the major parameters of a biofilm, such as adhesive strength and total biomass. It would be even more ideal if these measurements could be conducted in a real-time, non-invasive manner. In this study, we used quartz crystal microbalance (QCM) and microjet impingement (MJI) to measure total biomass and adhesive strength, respectively, of S. mutans biofilms formed under different sucrose concentrations. In conjunction with confocal laser scanning microscopy (CLSM) and the COMSTAT software, we show that sucrose concentration affects the biofilm strength, total biomass, and architecture in both qualitative and quantitative manners. Our data correlate well with previous observations about the effect of sucrose on the adherence of S. mutans to the tooth surface, and demonstrate that QCM is a useful tool for studying the kinetics of biofilm formation in real time and that MJI is a sensitive, easy-to-use device to measure the adhesive strength of a biofilm.

  6. Calibration-free quantitative surface topography reconstruction in scanning electron microscopy

    International Nuclear Information System (INIS)

    Faber, E.T.; Martinez-Martinez, D.; Mansilla, C.; Ocelík, V.; Hosson, J.Th.M. De

    2015-01-01

    This work presents a new approach to obtain reliable surface topography reconstructions from 2D Scanning Electron Microscopy (SEM) images. In this method a set of images taken at different tilt angles are compared by means of digital image correlation (DIC). It is argued that the strength of the method lies in the fact that precise knowledge about the nature of the rotation (vector and/or magnitude) is not needed. Therefore, the great advantage is that complex calibrations of the measuring equipment are avoided. The paper presents the necessary equations involved in the methods, including derivations and solutions. The method is illustrated with examples of 3D reconstructions followed by a discussion on the relevant experimental parameters. - Highlights: • A novel method for quantitative 3D surface reconstruction in SEM is described. • This method uses at least 3 SEM images acquired at different sample tilts. • This method does not need calibration from the movement of the sample holder. • Mathematical background and examples of application are presented

  7. Compositional and quantitative microtextural characterization of historic paintings by micro-X-ray diffraction and Raman microscopy.

    Science.gov (United States)

    Romero-Pastor, Julia; Duran, Adrian; Rodríguez-Navarro, Alejandro Basilio; Van Grieken, René; Cardell, Carolina

    2011-11-15

    This work shows the benefits of characterizing historic paintings via compositional and microtextural data from micro-X-ray diffraction (μ-XRD) combined with molecular information acquired with Raman microscopy (RM) along depth profiles in paint stratigraphies. The novel approach was applied to identify inorganic and organic components from paintings placed at the 14th century Islamic University-Madrasah Yusufiyya-in Granada (Spain), the only Islamic University still standing from the time of Al-Andalus (Islamic Spain). The use of μ-XRD to obtain quantitative microtextural information of crystalline phases provided by two-dimensional diffraction patterns to recognize pigments nature and manufacture, and decay processes in complex paint cross sections, has not been reported yet. A simple Nasrid (14th century) palette made of gypsum, vermilion, and azurite mixed with glue was identified in polychromed stuccos. Here also a Christian intervention was found via the use of smalt, barite, hematite, Brunswick green and gold; oil was the binding media employed. On mural paintings and wood ceilings, more complex palettes dated to the 19th century were found, made of gypsum, anhydrite, barite, dolomite, calcite, lead white, hematite, minium, synthetic ultramarine blue, and black carbon. The identified binders were glue, egg yolk, and oil.

  8. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy

    Science.gov (United States)

    Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.

    2018-03-01

    Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.

  9. Full quantitative phase analysis of hydrated lime using the Rietveld method

    International Nuclear Information System (INIS)

    Lassinantti Gualtieri, Magdalena; Romagnoli, Marcello; Miselli, Paola; Cannio, Maria; Gualtieri, Alessandro F.

    2012-01-01

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2–15 wt.%.

  10. Full quantitative phase analysis of hydrated lime using the Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Romagnoli, Marcello; Miselli, Paola; Cannio, Maria [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Gualtieri, Alessandro F. [Dipartimento di Scienze della Terra, Universita Degli Studi di Modena e Reggio Emilia, I-41100 Modena (Italy)

    2012-09-15

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2-15 wt.%.

  11. Direct imaging of phase objects enables conventional deconvolution in bright field light microscopy.

    Directory of Open Access Journals (Sweden)

    Carmen Noemí Hernández Candia

    Full Text Available In transmitted optical microscopy, absorption structure and phase structure of the specimen determine the three-dimensional intensity distribution of the image. The elementary impulse responses of the bright field microscope therefore consist of separate absorptive and phase components, precluding general application of linear, conventional deconvolution processing methods to improve image contrast and resolution. However, conventional deconvolution can be applied in the case of pure phase (or pure absorptive objects if the corresponding phase (or absorptive impulse responses of the microscope are known. In this work, we present direct measurements of the phase point- and line-spread functions of a high-aperture microscope operating in transmitted bright field. Polystyrene nanoparticles and microtubules (biological polymer filaments serve as the pure phase point and line objects, respectively, that are imaged with high contrast and low noise using standard microscopy plus digital image processing. Our experimental results agree with a proposed model for the response functions, and confirm previous theoretical predictions. Finally, we use the measured phase point-spread function to apply conventional deconvolution on the bright field images of living, unstained bacteria, resulting in improved definition of cell boundaries and sub-cellular features. These developments demonstrate practical application of standard restoration methods to improve imaging of phase objects such as cells in transmitted light microscopy.

  12. Quantitative automated microscopy (QuAM elucidates growth factor specific signalling in pain sensitization

    Directory of Open Access Journals (Sweden)

    Levine Jon D

    2010-12-01

    Full Text Available Abstract Background Dorsal root ganglia (DRG-neurons are commonly characterized immunocytochemically. Cells are mostly grouped by the experimenter's eye as "marker-positive" and "marker-negative" according to their immunofluorescence intensity. Classification criteria remain largely undefined. Overcoming this shortfall, we established a quantitative automated microscopy (QuAM for a defined and multiparametric analysis of adherent heterogeneous primary neurons on a single cell base. The growth factors NGF, GDNF and EGF activate the MAP-kinase Erk1/2 via receptor tyrosine kinase signalling. NGF and GDNF are established factors in regeneration and sensitization of nociceptive neurons. If also the tissue regenerating growth factor, EGF, influences nociceptors is so far unknown. We asked, if EGF can act on nociceptors, and if QuAM can elucidate differences between NGF, GDNF and EGF induced Erk1/2 activation kinetics. Finally, we evaluated, if the investigation of one signalling component allows prediction of the behavioral response to a reagent not tested on nociceptors such as EGF. Results We established a software-based neuron identification, described quantitatively DRG-neuron heterogeneity and correlated measured sample sizes and corresponding assay sensitivity. Analysing more than 70,000 individual neurons we defined neuronal subgroups based on differential Erk1/2 activation status in sensory neurons. Baseline activity levels varied strongly already in untreated neurons. NGF and GDNF subgroup responsiveness correlated with their subgroup specificity on IB4(+- and IB4(--neurons, respectively. We confirmed expression of EGF-receptors in all sensory neurons. EGF treatment induced STAT3 translocation into the nucleus. Nevertheless, we could not detect any EGF induced Erk1/2 phosphorylation. Accordingly, intradermal injection of EGF resulted in a fundamentally different outcome than NGF/GDNF. EGF did not induce mechanical hyperalgesia, but blocked

  13. Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy

    KAUST Repository

    Göröcs, Zoltán

    2016-09-13

    Compact and cost-effective systems for in vivo fluorescence and near-infrared imaging in combination with activatable reporters embedded inside the skin to sample interstitial fluid or blood can enable a variety of biomedical applications. However, the strong autofluorescence of human skin creates an obstacle for fluorescence-based sensing. Here we introduce a method for quantitative fluorescence sensing through highly autofluorescent, scattering, and absorbing media. For this, we created a compact and cost-effective fluorescence microscope weighing <40 g and used it to measure various concentrations of a fluorescent dye embedded inside a tissue phantom, which was designed to mimic the optical characteristics of human skin. We used an elliptical Gaussian beam excitation to digitally separate tissue autofluorescence from target fluorescence, although they severely overlap in both space and optical spectrum. Using ∼10-fold less excitation intensity than the safety limit for skin radiation exposure, we successfully quantified the density of the embedded fluorophores by imaging the skin phantom surface and achieved a detection limit of ∼5 × 105 and ∼2.5 × 107 fluorophores within ∼0.01 μL sample volume that is positioned 0.5 and 2 mm below the phantom surface, corresponding to a concentration of 105.9 pg/mL and 5.3 ng/mL, respectively. We also confirmed that this approach can track the spatial misalignments of the mobile microscope with respect to the embedded target fluorescent volume. This wearable microscopy platform might be useful for designing implantable biochemical sensors with the capability of spatial multiplexing to continuously monitor a panel of biomarkers and chronic conditions even at patients’ home.

  14. Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available BACKGROUND: The engineering of functional tissues is a complex multi-stage process, the success of which depends on the careful control of culture conditions and ultimately tissue maturation. To enable the efficient optimization of tissue development protocols, techniques suitable for monitoring the effects of added stimuli and induced tissue changes are needed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present the quantitative use of two-photon excited fluorescence (TPEF and second harmonic generation (SHG as a noninvasive means to monitor the differentiation of human mesenchymal stem cells (hMSCs using entirely endogenous sources of contrast. We demonstrate that the individual fluorescence contribution from the intrinsic cellular fluorophores NAD(PH, flavoproteins and lipofuscin can be extracted from TPEF images and monitored dynamically from the same cell population over time. Using the redox ratio, calculated from the contributions of NAD(PH and flavoproteins, we identify distinct patterns in the evolution of the metabolic activity of hMSCs maintained in either propagation, osteogenic or adipogenic differentiation media. The differentiation of these cells is mirrored by changes in cell morphology apparent in high resolution TPEF images and by the detection of collagen production via SHG imaging. Finally, we find dramatic increases in lipofuscin levels in hMSCs maintained at 20% oxygen vs. those in 5% oxygen, establishing the use of this chromophore as a potential biomarker for oxidative stress. CONCLUSIONS/SIGNIFICANCE: In this study we demonstrate that it is possible to monitor the metabolic activity, morphology, ECM production and oxidative stress of hMSCs in a non-invasive manner. This is accomplished using generally available multiphoton microscopy equipment and simple data analysis techniques, such that the method can widely adopted by laboratories with a diversity of comparable equipment. This method therefore represents a powerful tool

  15. Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy

    KAUST Repository

    Gö rö cs, Zoltá n; Rivenson, Yair; Ceylan Koydemir, Hatice; Tseng, Derek; Troy, Tamara L.; Demas, Vasiliki; Ozcan, Aydogan

    2016-01-01

    Compact and cost-effective systems for in vivo fluorescence and near-infrared imaging in combination with activatable reporters embedded inside the skin to sample interstitial fluid or blood can enable a variety of biomedical applications. However, the strong autofluorescence of human skin creates an obstacle for fluorescence-based sensing. Here we introduce a method for quantitative fluorescence sensing through highly autofluorescent, scattering, and absorbing media. For this, we created a compact and cost-effective fluorescence microscope weighing <40 g and used it to measure various concentrations of a fluorescent dye embedded inside a tissue phantom, which was designed to mimic the optical characteristics of human skin. We used an elliptical Gaussian beam excitation to digitally separate tissue autofluorescence from target fluorescence, although they severely overlap in both space and optical spectrum. Using ∼10-fold less excitation intensity than the safety limit for skin radiation exposure, we successfully quantified the density of the embedded fluorophores by imaging the skin phantom surface and achieved a detection limit of ∼5 × 105 and ∼2.5 × 107 fluorophores within ∼0.01 μL sample volume that is positioned 0.5 and 2 mm below the phantom surface, corresponding to a concentration of 105.9 pg/mL and 5.3 ng/mL, respectively. We also confirmed that this approach can track the spatial misalignments of the mobile microscope with respect to the embedded target fluorescent volume. This wearable microscopy platform might be useful for designing implantable biochemical sensors with the capability of spatial multiplexing to continuously monitor a panel of biomarkers and chronic conditions even at patients’ home.

  16. Quantitative nanohistological investigation of scleroderma: an atomic force microscopy-based approach to disease characterization

    Directory of Open Access Journals (Sweden)

    Strange AP

    2017-01-01

    Full Text Available Adam P Strange,1 Sebastian Aguayo,1 Tarek Ahmed,1 Nicola Mordan,1 Richard Stratton,2 Stephen R Porter,3 Susan Parekh,4 Laurent Bozec1 1Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 2Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, UCL Medical School, 3UCL Eastman Dental Institute, 4Department of Pediatrics, UCL Eastman Dental Institute, London, UK Abstract: Scleroderma (or systemic sclerosis, SSc is a disease caused by excess crosslinking of collagen. The skin stiffens and becomes painful, while internally, organ function can be compromised by the less elastic collagen. Diagnosis of SSc is often only possible in advanced cases by which treatment time is limited. A more detailed analysis of SSc may provide better future treatment options and information of disease progression. Recently, the histological stain picrosirius red showing collagen register has been combined with atomic force microscopy (AFM to study SSc. Skin from healthy individuals and SSc patients was biopsied, stained and studied using AFM. By investigating the crosslinking of collagen at a smaller hierarchical stage, the effects of SSc were more pronounced. Changes in morphology and Young’s elastic modulus were observed and quantified; giving rise to a novel technique, we have termed “quantitative nanohistology”. An increase in nanoscale stiffness in the collagen for SSc compared with healthy individuals was seen by a significant increase in the Young’s modulus profile for the collagen. These markers of stiffer collagen in SSc are similar to the symptoms experienced by patients, giving additional hope that in the future, nanohistology using AFM can be readily applied as a clinical tool, providing detailed information of the state of collagen. Keywords: rheumatology, adjunct diagnosis, picrosirius red, collagen, nanohistology

  17. Single particle analysis based on Zernike phase contrast transmission electron microscopy.

    Science.gov (United States)

    Danev, Radostin; Nagayama, Kuniaki

    2008-02-01

    We present the first application of Zernike phase-contrast transmission electron microscopy to single-particle 3D reconstruction of a protein, using GroEL chaperonin as the test specimen. We evaluated the performance of the technique by comparing 3D models derived from Zernike phase contrast imaging, with models from conventional underfocus phase contrast imaging. The same resolution, about 12A, was achieved by both imaging methods. The reconstruction based on Zernike phase contrast data required about 30% fewer particles. The advantages and prospects of each technique are discussed.

  18. Holography microscopy as an artifact-free alternative to phase-contrast

    Czech Academy of Sciences Publication Activity Database

    Pastorek, Lukáš; Venit, Tomáš; Hozák, Pavel

    2018-01-01

    Roč. 149, č. 2 (2018), s. 179-186 ISSN 0948-6143 R&D Projects: GA MŠk(CZ) LM2015062 Institutional support: RVO:68378050 Keywords : Holography microscopy * Phase-contrast * Halo effect Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 2.553, year: 2016

  19. Gas-phase synthesis of magnesium nanoparticles : A high-resolution transmission electron microscopy study

    NARCIS (Netherlands)

    Kooi, B.J.; Palasantzas, G.; de Hosson, J.T.M.

    2006-01-01

    Magnesium nanoparticles with size above 10 nm, prepared by gas-phase syntheses, were investigated by high-resolution transmission electron microscopy. The dominant particle shape is a hexagonal prism terminated by Mg(0002) and Mg{1010} facets. Oxidation of Mg yields a MgO shell (similar to 3 nm

  20. Proposals for the solution of the phase problem in electron microscopy

    International Nuclear Information System (INIS)

    Toorn, P. van.

    1979-01-01

    This thesis discusses the phase problem in electron microscopy, i.e. the determination of the unknown complex wave function in the image plane or in the exit pupil from the measured intensity distributions in both planes. The calculation of the wave function is the first problem to be solved for the determination of the object structure from electron micrographs. (Auth.)

  1. Characterisation of phases in nanostructured, multilayered titanium alloys by analytical and high-resolution electron microscopy.

    Science.gov (United States)

    Czyrska-Filemonowicz, A; Buffat, P A

    2009-01-01

    Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.

  2. Automated Method for the Rapid and Precise Estimation of Adherent Cell Culture Characteristics from Phase Contrast Microscopy Images

    Science.gov (United States)

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-01-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. Biotechnol. Bioeng. 2014;111: 504–517. © 2013 Wiley Periodicals, Inc. PMID:24037521

  3. Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography

    International Nuclear Information System (INIS)

    Langer, Max; Cloetens, Peter; Guigay, Jean-Pierre; Peyrin, Francoise

    2008-01-01

    A well-known problem in x-ray microcomputed tomography is low sensitivity. Phase contrast imaging offers an increase of sensitivity of up to a factor of 10 3 in the hard x-ray region, which makes it possible to image soft tissue and small density variations. If a sufficiently coherent x-ray beam, such as that obtained from a third generation synchrotron, is used, phase contrast can be obtained by simply moving the detector downstream of the imaged object. This setup is known as in-line or propagation based phase contrast imaging. A quantitative relationship exists between the phase shift induced by the object and the recorded intensity and inversion of this relationship is called phase retrieval. Since the phase shift is proportional to projections through the three-dimensional refractive index distribution in the object, once the phase is retrieved, the refractive index can be reconstructed by using the phase as input to a tomographic reconstruction algorithm. A comparison between four phase retrieval algorithms is presented. The algorithms are based on the transport of intensity equation (TIE), transport of intensity equation for weak absorption, the contrast transfer function (CTF), and a mixed approach between the CTF and TIE, respectively. The compared methods all rely on linearization of the relationship between phase shift and recorded intensity to yield fast phase retrieval algorithms. The phase retrieval algorithms are compared using both simulated and experimental data, acquired at the European Synchrotron Radiation Facility third generation synchrotron light source. The algorithms are evaluated in terms of two different reconstruction error metrics. While being slightly less computationally effective, the mixed approach shows the best performance in terms of the chosen criteria.

  4. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by Scanning Electron Microscopy

    NARCIS (Netherlands)

    Hartsuiker, Liesbeth; van Es, Peter; Petersen, Wilhelmina; van Leeuwen, Ton; Terstappen, Leonardus Wendelinus Mathias Marie; Otto, Cornelis

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  5. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy

    NARCIS (Netherlands)

    Hartsuiker, L.; van Es, P.; Petersen, W.; van Leeuwen, T. G.; Terstappen, L. W. M. M.; Otto, C.

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  6. Quantitative analysis of aqueous phase composition of model dentin adhesives experiencing phase separation

    Science.gov (United States)

    Ye, Qiang; Park, Jonggu; Parthasarathy, Ranganathan; Pamatmat, Francis; Misra, Anil; Laurence, Jennifer S.; Marangos, Orestes; Spencer, Paulette

    2013-01-01

    There have been reports of the sensitivity of our current dentin adhesives to excess moisture, for example, water-blisters in adhesives placed on over-wet surfaces, and phase separation with concomitant limited infiltration of the critical dimethacrylate component into the demineralized dentin matrix. To determine quantitatively the hydrophobic/hydrophilic components in the aqueous phase when exposed to over-wet environments, model adhesives were mixed with 16, 33, and 50 wt % water to yield well-separated phases. Based upon high-performance liquid chromatography coupled with photodiode array detection, it was found that the amounts of hydrophobic BisGMA and hydrophobic initiators are less than 0.1 wt % in the aqueous phase. The amount of these compounds decreased with an increase in the initial water content. The major components of the aqueous phase were hydroxyethyl methacrylate (HEMA) and water, and the HEMA content ranged from 18.3 to 14.7 wt %. Different BisGMA homologues and the relative content of these homologues in the aqueous phase have been identified; however, the amount of crosslinkable BisGMA was minimal and, thus, could not help in the formation of a crosslinked polymer network in the aqueous phase. Without the protection afforded by a strong crosslinked network, the poorly photoreactive compounds of this aqueous phase could be leached easily. These results suggest that adhesive formulations should be designed to include hydrophilic multimethacrylate monomers and water compatible initiators. PMID:22331596

  7. Low-dose quantitative phase contrast medical CT

    Science.gov (United States)

    Mittone, A.; Bravin, A.; Coan, P.

    2018-02-01

    X-ray computed tomography (CT) is a powerful and routinely used clinical diagnostic technique, which is well tolerated by patients, and which provides high-resolution images and volumetric information about the body. However, two important limitations still affect this examination procedure: (1) its low sensitivity with respect to soft tissues, and (2) the hazards associated with x-ray exposure. Conventional radiology is based on the detection of the different photon absorption properties that characterize biological tissues, and thus the obtainable image contrast from soft and/or similar tissues is intrinsically limited. In this scenario, x-ray phase contrast imaging (XPCI) has been extensively tested and proven to overcome some of the main issues surrounding standard x-ray imaging. In addition to the absorption signal, XPCI relies on detecting the phase shifts induced by an object. Interestingly, as the order of magnitude of the phase contrast is higher than that of absorption, XPCI can, in principle, offer higher sensitivity at lower radiation doses. However, other technical aspects may counterbalance this gain, and an optimized setup and image processing solutions need to be implemented. The work presented here describes the strategies and developments we have realized, with the aim of controlling the radiation dose for the highly sensitive and quantitative XPCI-CT. Different algorithms for the phase retrieval and CT reconstruction of the XPCI data are presented. The CT algorithms we have implemented, namely the equally sloped tomography and the dictionary learning method, allow the image quality to be preserved while reducing the number of angular projections required by a factor of five. The results applied to breast imaging report accurate reconstructions at clinically compatible doses of the 3D distribution of the refractive properties of full human organs obtained by using three different phase retrieval methods. The described methodologies and the

  8. Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip

    Science.gov (United States)

    Guo, Peng; Huang, Jing; Moses, Marsha A.

    2018-02-01

    Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.

  9. Comparative study of quantitative phase imaging techniques for refractometry of optical fibers

    Science.gov (United States)

    de Dorlodot, Bertrand; Bélanger, Erik; Bérubé, Jean-Philippe; Vallée, Réal; Marquet, Pierre

    2018-02-01

    The refractive index difference profile of optical fibers is the key design parameter because it determines, among other properties, the insertion losses and propagating modes. Therefore, an accurate refractive index profiling method is of paramount importance to their development and optimization. Quantitative phase imaging (QPI) is one of the available tools to retrieve structural characteristics of optical fibers, including the refractive index difference profile. Having the advantage of being non-destructive, several different QPI methods have been developed over the last decades. Here, we present a comparative study of three different available QPI techniques, namely the transport-of-intensity equation, quadriwave lateral shearing interferometry and digital holographic microscopy. To assess the accuracy and precision of those QPI techniques, quantitative phase images of the core of a well-characterized optical fiber have been retrieved for each of them and a robust image processing procedure has been applied in order to retrieve their refractive index difference profiles. As a result, even if the raw images for all the three QPI methods were suffering from different shortcomings, our robust automated image-processing pipeline successfully corrected these. After this treatment, all three QPI techniques yielded accurate, reliable and mutually consistent refractive index difference profiles in agreement with the accuracy and precision of the refracted near-field benchmark measurement.

  10. Electron microscopy and phase analysis of fly ash from pressurized fluidized bed combustion

    International Nuclear Information System (INIS)

    Maenami, Hiroki; Isu, Norifumi; Ishida, Emile H.; Mitsuda, Takeshi

    2004-01-01

    The characterization of the typical fly ashes from pressurized fluidized bed combustion system (PFBC) in Japan and Europe was carried out by electron microscopy and phase analysis using energy-dispersive X-ray spectroscopy (EDX). The purity of limestone as in-bed sulfur removal sorbent influences the desulfurization reaction. The high-purity limestone yielded both hydroxyl ellestadite and anhydrite in Japanese PFBC ashes, while dolomite-rich limestone yielded anhydrite in European PFBC ashes. When the high-purity limestone was used, hydroxyl ellestadite particles were observed as the independent particles or the rim around limestone particles. The Al 2 O 3 content in the glassy phase was inversely proportional to the CaO content in the glassy phase, suggesting that the glassy phases were formed from metakaoline and calcite as end members. Since hydroxyl ellestadite, glassy phase and metakaoline are reactive under hydrothermal conditions, PFBC ashes are expected to be used as raw materials for autoclaved products

  11. Transmission electron microscopy studies on nanometer-sized ω phase produced in Gum Metal

    International Nuclear Information System (INIS)

    Yano, Takaaki; Murakami, Yasukazu; Shindo, Daisuke; Hayasaka, Yuichiro; Kuramoto, Shigeru

    2010-01-01

    The morphology, numerical density and average spacing of the ω phase formed in Gum Metal, a Ti-based alloy showing unique mechanical properties, were studied by transmission electron microscopy. Based on dark-field image observations and precise thickness measurements using a thin-foil specimen, the average spacing of the nanometer-sized ω phase was determined to be 6 nm. This spacing appeared to be sufficiently small for trapping dislocations. The results are discussed in conjunction with the dislocation-free deformation mechanism proposed for Gum Metal.

  12. Identification and quantitive analysis of calcium phosphate microparticles in intestinal tissue by nuclear microscopy

    International Nuclear Information System (INIS)

    Gomez-Morilla, Inmaculada; Thoree, Vinay; Powell, Jonathan J.; Kirkby, Karen J.; Grime, Geoffrey W.

    2006-01-01

    Microscopic particles (0.5-2 μm diameter), rich in calcium and phosphorus, are found in the lumen of the mid-distal gut of all mammals investigated, including humans, and these may play a role in immuno-surveillance and immune regulation of antigens from food and symbiotic bacteria that are contained in the gut. Whether these particles can cross in to tissue of the intestinal mucosa is unclear. If so, characterising their morphology and chemical composition is an important task in elucidating their function. The analysis of calcium phosphate in biological tissues has been approached in several ways including optical microscopy, scanning electron microscopy and, most recently in this work, with nuclear microscopy. In this paper, we describe the use of microPIXE and microRBS to locate these particles and to determine, accurately, the ratio of phosphorus to calcium using the information on sample thickness obtained from RBS to allow the PIXE ratios to be corrected. A commercial sample of hydroxy apatite was used to demonstrate accuracy and precision of the technique. Then, in a pilot study on intestinal tissue of mice, we demonstrated the presence of calcium phosphate microparticles, consistent with confocal microscopy observations, and we identified the average molar P:Ca molar ratio as 1.0. Further work will confirm the exact chemical speciation of these particles and will examine the influence of differing calcium containing diets on the formation of these microparticles

  13. Quantitative comparison of two particle tracking methods in fluorescence microscopy images

    CSIR Research Space (South Africa)

    Mabaso, M

    2013-09-01

    Full Text Available that cannot be analysed efficiently by means of manual analysis. In this study we compare the performance of two computer-based tracking methods for tracking of bright particles in fluorescence microscopy image sequences. The methods under comparison are...

  14. Quantitative analysis of structural inhomogeneity in nanomaterials using transmission electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Klinger, Miloslav; Polívka, Leoš; Jäger, Aleš; Tyunina, Marina

    2016-01-01

    Roč. 49, Jun (2016), 762-770 ISSN 1600-5767 R&D Projects: GA ČR GBP108/12/G043; GA ČR GA15-15123S Institutional support: RVO:68378271 Keywords : transmission electron microscopy * structural inhomogeneity * lattice parameters * image processing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.495, year: 2016

  15. Calibration-free quantitative surface topography reconstruction in scanning electron microscopy

    NARCIS (Netherlands)

    Faber, E.T.; Martinez-Martinez, D.; Mansilla, C.; Ocelik, V.; De Hosson, J. Th. M.

    This work presents a new approach to obtain reliable surface topography reconstructions from 2D Scanning Electron Microscopy (SEM) images. In this method a set of images taken at different tilt angles are compared by means of digital image correlation (DlC). It is argued that the strength of the

  16. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Bagatolli, Luis; Needham, David

    2014-01-01

    to study composition-structure-property materials relationships of free-standing lipid bilayer membranes. Because their size (~5 to 100 m diameter) that is well above the resolution limit of regular light microscopes, GUVs are suitable membrane models for optical microscopy and micromanipulation...

  17. Identification and quantitive analysis of calcium phosphate microparticles in intestinal tissue by nuclear microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Morilla, Inmaculada [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)]. E-mail: i.gomez-morilla@surrey.ac.uk; Thoree, Vinay [Gastrointestinal Laboratory, Rayne Institute, St. Thomas' Hospital, London SE1 7EH (United Kingdom); Powell, Jonathan J. [MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL (United Kingdom); Kirkby, Karen J. [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Grime, Geoffrey W. [Department of Physics, University of Surrey, GU2 7XH (United Kingdom)

    2006-08-15

    Microscopic particles (0.5-2 {mu}m diameter), rich in calcium and phosphorus, are found in the lumen of the mid-distal gut of all mammals investigated, including humans, and these may play a role in immuno-surveillance and immune regulation of antigens from food and symbiotic bacteria that are contained in the gut. Whether these particles can cross in to tissue of the intestinal mucosa is unclear. If so, characterising their morphology and chemical composition is an important task in elucidating their function. The analysis of calcium phosphate in biological tissues has been approached in several ways including optical microscopy, scanning electron microscopy and, most recently in this work, with nuclear microscopy. In this paper, we describe the use of microPIXE and microRBS to locate these particles and to determine, accurately, the ratio of phosphorus to calcium using the information on sample thickness obtained from RBS to allow the PIXE ratios to be corrected. A commercial sample of hydroxy apatite was used to demonstrate accuracy and precision of the technique. Then, in a pilot study on intestinal tissue of mice, we demonstrated the presence of calcium phosphate microparticles, consistent with confocal microscopy observations, and we identified the average molar P:Ca molar ratio as 1.0. Further work will confirm the exact chemical speciation of these particles and will examine the influence of differing calcium containing diets on the formation of these microparticles.

  18. Distinction of heterogeneity on Au nanostructured surface based on phase contrast imaging of atomic force microscopy

    International Nuclear Information System (INIS)

    Jung, Mi; Choi, Jeong-Woo

    2010-01-01

    The discrimination of the heterogeneity of different materials on nanostructured surfaces has attracted a great deal of interest in biotechnology as well as nanotechnology. Phase imaging through tapping mode of atomic force microscopy (TMAFM) can be used to distinguish the heterogeneity on a nanostructured surface. Nanostructures were fabricated using anodic aluminum oxide (AAO). An 11-mercaptoundecanoic acid (11-MUA) layer adsorbed onto the Au nanodots through self-assembly to improve the bio-compatibility. The Au nanostructures that were modified with 11-MUA and the concave surfaces were investigated using the TMAFM phase images to compare the heterogeneous and homogeneous nanostructured surfaces. Although the topography and phase images were taken simultaneously, the images were different. Therefore, the contrast in the TMAFM phase images revealed the different compositional materials on the heterogeneous nanostructure surface.

  19. Dual-polarization interference microscopy for advanced quantification of phase associated with the image field.

    Science.gov (United States)

    Bouchal, Petr; Chmelík, Radim; Bouchal, Zdeněk

    2018-02-01

    A new concept of dual-polarization spatial light interference microscopy (DPSLIM) is proposed and demonstrated experimentally. The method works with two orthogonally polarized modes in which signal and reference waves are combined to realize the polarization-sensitive phase-shifting, thus allowing advanced reconstruction of the phase associated with the image field. The image phase is reconstructed directly from four polarization encoded interference records by a single step processing. This is a progress compared with common methods, in which the phase of the image field is reconstructed using the optical path difference and the amplitudes of interfering waves, which are calculated in multiple-step processing of the records. The DPSLIM is implemented in a common-path configuration using a spatial light modulator, which is connected to a commercial microscope Nikon E200. The optical performance of the method is demonstrated in experiments using both polystyrene microspheres and live LW13K2 cells.

  20. High resolution electron microscopy of the triply incommensurate phase of 2H-TaSe2

    Science.gov (United States)

    Onozuka, Takashi; Otsuka, Nobuo; Sato, Hiroshi

    1986-09-01

    The triply incommensurate phase of 2H-TaSe2 obtained by cooling from the normal phase was investigated by transmission electron microscopy between 87 and 113 K with the resolution of 3 Å, one order of magnitude better than earlier experiments. Moirélike patterns observed in this phase were confirmed to be interference fringes due to the first- and second-order diffraction beams (with small separation and possibly with higher-order diffraction beams) from the incommensurate structure and were not due to the dark-field diffraction contrast of domains of the commensurate structure as interpreted earlier. Lattice fringes (~9 Å) of this modulated phase do not show any discontinuity across the boundaries of regions of different contrasts of the moirélike fringes which is expected from domain boundaries. Instead, a periodic change in the spacing of the lattice fringes (phase-slip region) expected from the superposition of split superlattice spots in forming the lattice image is observed. This is what is believed to be the first direct observation of the existence of the phase-slip region which is also expected from the discommensuration theory. A series of observations presented here thus shows that the triply incommensurate phase is intrinsically incommensurate and suggests the need for a modification of interpretations of this phase in terms of the double honeycomb discommensuration model.

  1. Practical aspects of Boersch phase contrast electron microscopy of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Andreas [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Muzik, Heiko; Vieker, Henning; Turchanin, Andrey; Beyer, Andre; Goelzhaeuser, Armin [University of Bielefeld, Physics of Supramolecular Systems and Surfaces, Universitaetsstr. 25, D-33615 Bielefeld (Germany); Lacher, Manfred; Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Kuehlbrandt, Werner [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Rhinow, Daniel, E-mail: daniel.rhinow@biophys.mpg.de [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany)

    2012-05-15

    Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90 Degree-Sign achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen-hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP. -- Highlights: Black-Right-Pointing-Pointer Various obstacles need to be overcome before Boersch phase plates can be used routinely. Black-Right-Pointing-Pointer Technical problems include

  2. Practical aspects of Boersch phase contrast electron microscopy of biological specimens

    International Nuclear Information System (INIS)

    Walter, Andreas; Muzik, Heiko; Vieker, Henning; Turchanin, Andrey; Beyer, André; Gölzhäuser, Armin; Lacher, Manfred; Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter; Kühlbrandt, Werner; Rhinow, Daniel

    2012-01-01

    Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90° achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen–hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP. -- Highlights: ► Various obstacles need to be overcome before Boersch phase plates can be used routinely. ► Technical problems include electrostatic charging, mechanical drift, and image artefacts.

  3. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  4. Invited Review Article: Methods for imaging weak-phase objects in electron microscopy

    International Nuclear Information System (INIS)

    Glaeser, Robert M.

    2013-01-01

    Contrast has traditionally been produced in electron-microscopy of weak phase objects by simply defocusing the objective lens. There now is renewed interest, however, in using devices that apply a uniform quarter-wave phase shift to the scattered electrons relative to the unscattered beam, or that generate in-focus image contrast in some other way. Renewed activity in making an electron-optical equivalent of the familiar “phase-contrast” light microscope is based in part on the improved possibilities that are now available for device microfabrication. There is also a better understanding that it is important to take full advantage of contrast that can be had at low spatial frequency when imaging large, macromolecular objects. In addition, a number of conceptually new phase-plate designs have been proposed, thus increasing the number of options that are available for development. The advantages, disadvantages, and current status of each of these options is now compared and contrasted. Experimental results that are, indeed, superior to what can be accomplished with defocus-based phase contrast have been obtained recently with two different designs of phase-contrast aperture. Nevertheless, extensive work also has shown that fabrication of such devices is inconsistent, and that their working lifetime is short. The main limitation, in fact, appears to be electrostatic charging of any device that is placed into the electron diffraction pattern. The challenge in fabricating phase plates that are practical to use for routine work in electron microscopy thus may be more in the area of materials science than in the area of electron optics

  5. Ultrastructural organization of premature condensed chromosomes at S-phase as observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Fan Yihui; Zhang Xiaohong; Bai Jing; Mao Renfang; Zhang Chunyu; Lei Qingquan; Fu Songbin

    2007-01-01

    In this study, we used calyculin A to induce premature condensed chromosomes (PCC). S-phase PCC is as 'pulverized' appearance when viewed by light microscopy. Then, we applied atomic force microscopy (AFM) to investigate the ultrastructual organization of S-phase PCC. S-phase PCC shows ridges and grooves as observed by AFM. After trypsin treatment, chromosome surface roughness is increased and chromosome thickness is decreased. At high magnification, the ridges are composed of densely packed 30 nm chromatin fibers which form chromosome axis. Around the ridges, many 30 nm chromatin fibers radiate from center. Some of the 30 nm chromatin fibers are free ends. The grooves are not real 'gap', but several 30 nm chromatin fibers which connect two ridges and form 'grid' structure. There are four chromatin fibers detached from chromosome: two free straight 30 nm chromatin fibers, one loop chromatin fiber and one straight combining with loop chromatin fiber. These results suggested that the S-phase PCC was high-order organization of 30 nm chromatin fibers and the 30 nm chromatin fibers could exist as loops and free ends

  6. Quantitative method of X-ray diffraction phase analysis of building materials

    International Nuclear Information System (INIS)

    Czuba, J.; Dziedzic, A.

    1978-01-01

    Quantitative method of X-ray diffraction phase analysis of building materials, with use of internal standard, has been presented. The errors committed by determining the content of particular phases have been also given. (author)

  7. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Shuangmu, E-mail: shuangmuzhuo@gmail.com, E-mail: hanry-yu@nuhs.edu.sg [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007 (China); Yan, Jie [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, MD 11 #04-01A, 117599 Singapore (Singapore); Kang, Yuzhan [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Xu, Shuoyu [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Computation and System Biology Program, Singapore-MIT Alliance, 4 Engineering Drive 3, E4-04-10, 117576 Singapore (Singapore); Peng, Qiwen [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Computation and System Biology Program, Singapore-MIT Alliance, 4 Engineering Drive 3, E4-04-10, 117576 Singapore (Singapore); Mechanobiology Institute, 5A Engineering Drive 1, T-Lab #05-01, 117411 Singapore (Singapore); and others

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  8. A simple optical fiber device for quantitative fluorescence microscopy of single living cells

    NARCIS (Netherlands)

    van Graft, M.; van Graft, Marja; Oosterhuis, B.; Oosterhuis, Bernard; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    1993-01-01

    simple and relatively inexpensive system is described for obtaining quantitative fluorescence measurements on single living cells loaded with a fluorescent probe to study cell physiological processes. The light emitted from the fluorescent cells is captured by and transported through an optical

  9. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    Science.gov (United States)

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  10. Correction of phase-shifting error in wavelength scanning digital holographic microscopy

    Science.gov (United States)

    Zhang, Xiaolei; Wang, Jie; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-05-01

    Digital holographic microscopy is a promising method for measuring complex micro-structures with high slopes. A quasi-common path interferometric apparatus is adopted to overcome environmental disturbances, and an acousto-optic tunable filter is used to obtain multi-wavelength holograms. However, the phase shifting error caused by the acousto-optic tunable filter reduces the measurement accuracy and, in turn, the reconstructed topographies are erroneous. In this paper, an accurate reconstruction approach is proposed. It corrects the phase-shifting errors by minimizing the difference between the ideal interferograms and the recorded ones. The restriction on the step number and uniformity of the phase shifting is relaxed in the interferometry, and the measurement accuracy for complex surfaces can also be improved. The universality and superiority of the proposed method are demonstrated by practical experiments and comparison to other measurement methods.

  11. Quantitative Phase Determination by Using a Michelson Interferometer

    Science.gov (United States)

    Pomarico, Juan A.; Molina, Pablo F.; D'Angelo, Cristian

    2007-01-01

    The Michelson interferometer is one of the best established tools for quantitative interferometric measurements. It has been, and is still successfully used, not only for scientific purposes, but it is also introduced in undergraduate courses for qualitative demonstrations as well as for quantitative determination of several properties such as…

  12. A simple optical fiber device for quantitative fluorescence microscopy of single living cells

    OpenAIRE

    van Graft, M.; van Graft, Marja; Oosterhuis, B.; Oosterhuis, Bernard; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    1993-01-01

    simple and relatively inexpensive system is described for obtaining quantitative fluorescence measurements on single living cells loaded with a fluorescent probe to study cell physiological processes. The light emitted from the fluorescent cells is captured by and transported through an optical fiber. After passage through appropriate filters the light is measured using a photomultiplier tube. The optical fiber is mounted in one of the microscope outlets. Signals derived from the photomultipl...

  13. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy

    Science.gov (United States)

    Adur, Javier; Pelegati, Vitor B.; de Thomaz, Andre A.; D'Souza-Li, Lilia; Assunção, Maria do Carmo; Bottcher-Luiz, Fátima; Andrade, Liliana A. L. A.; Cesar, Carlos L.

    2012-08-01

    We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.

  14. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    Science.gov (United States)

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (3D images of cryo-preserved cells. The relatively low X-ray energy (3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Electron microscopy analyses and electrical properties of the layered Bi2WO6 phase

    International Nuclear Information System (INIS)

    Taoufyq, A.; Ait Ahsaine, H.; Patout, L.; Benlhachemi, A.; Ezahri, M.

    2013-01-01

    The bismuth tungstate Bi 2 WO 6 was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2 1 non centrosymmetric space group previously proposed for this phase. The layers Bi 2 O 2 2+ and WO 4 2− have been directly evidenced from the HRTEM images. The electrical properties of Bi 2 WO 6 compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi 2 WO 6 phase, with a representation of the cell dimensions (b and c vectors). The Bi 2 O 2 2+ and WO 4 2− sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi 2 WO 6 . • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification

  16. Establishing the suitability of quantitative optical CT microscopy of PRESAGE® radiochromic dosimeters for the verification of synchrotron microbeam therapy

    Science.gov (United States)

    Doran, Simon J.; Rahman, A. T. Abdul; Bräuer-Krisch, Elke; Brochard, Thierry; Adamovics, John; Nisbet, Andrew; Bradley, David

    2013-09-01

    Previous research on optical computed tomography (CT) microscopy in the context of the synchrotron microbeam has shown the potential of the technique and demonstrated high quality images, but has left two questions unanswered: (i) are the images suitably quantitative for 3D dosimetry? and (ii) what is the impact on the spatial resolution of the system of the limited depth-of-field of the microscope optics? Cuvette and imaging studies are reported here that address these issues. Two sets of cuvettes containing the radiochromic plastic PRESAGE® were irradiated at the ID17 biomedical beamline of the European Synchrotron Radiation facility over the ranges 0-20 and 0-35 Gy and a third set of cuvettes was irradiated over the range 0-20 Gy using a standard medical linac. In parallel, three cylindrical PRESAGE® samples of diameter 9.7 mm were irradiated with test patterns that allowed the quantitative capabilities of the optical CT microscope to be verified, and independent measurements of the imaging modulation transfer function (MTF) to be made via two different methods. Both spectrophotometric analysis and imaging gave a linear dose response, with gradients ranging from 0.036-0.041 cm-1 Gy-1 in the three sets of cuvettes and 0.037 (optical CT units) Gy-1 for the imaging. High-quality, quantitative imaging results were obtained throughout the 3D volume, as illustrated by depth-dose profiles. These profiles are shown to be monoexponential, and the linear attention coefficient of PRESAGE® for the synchrotron-generated x-ray beam is measured to be (0.185 ± 0.02) cm-1 in excellent agreement with expectations. Low-level (<5%) residual image artefacts are discussed in detail. It was possible to resolve easily slit patterns of width 37 µm (which are smaller than many of the microbeams used on ID-17), but some uncertainty remains as to whether the low values of MTF for the higher spatial frequencies are scanner related or a result of genuine (but non-ideal) dose

  17. Scanning transmission ion microscopy mass measurements for quantitative trace element analysis within biological samples and validation using atomic force microscopy thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Deves, Guillaume [Laboratoire de chimie nucleaire analytique et bioenvironnementale, UMR 5084, CNRS-Universite de Bordeaux 1, BP 120 Chemin du solarium, F33175 Gradignan cedex (France)]. E-mail: deves@cenbg.in2p3.fr; Cohen-Bouhacina, Touria [Centre de Physique Moleculaire Optique et Hertzienne, Universite de Bordeaux 1, 351, cours de la Liberation, F33405 Talence cedex (France); Ortega, Richard [Laboratoire de chimie nucleaire analytique et bioenvironnementale, UMR 5084, CNRS-Universite de Bordeaux 1, BP 120 Chemin du solarium, F33175 Gradignan cedex (France)

    2004-10-08

    We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm)

  18. Gas-phase synthesis of magnesium nanoparticles: A high-resolution transmission electron microscopy study

    International Nuclear Information System (INIS)

    Kooi, B. J.; Palasantzas, G.; De Hosson, J. Th. M.

    2006-01-01

    Magnesium nanoparticles with size above 10 nm, prepared by gas-phase syntheses, were investigated by high-resolution transmission electron microscopy. The dominant particle shape is a hexagonal prism terminated by Mg(0002) and Mg(1010) facets. Oxidation of Mg yields a MgO shell (∼3 nm thick), which has an orientation relation with the Mg. Inhomogeneous facet oxidation influences their growth kinetics resulting in a relatively broad size and shape distribution. Faceted voids between Mg and MgO shells indicate a fast outward diffusion of Mg and vacancy rearrangement into voids. The faceting of polar (220) planes is assisted by electron irradiation

  19. Interference electron microscopy of one-dimensional electron-optical phase objects

    International Nuclear Information System (INIS)

    Fazzini, P.F.; Ortolani, L.; Pozzi, G.; Ubaldi, F.

    2006-01-01

    The application of interference electron microscopy to the investigation of electron optical one-dimensional phase objects like reverse biased p-n junctions and ferromagnetic domain walls is considered. In particular the influence of diffraction from the biprism edges on the interference images is analyzed and the range of applicability of the geometric optical equation for the interpretation of the interference fringe shifts assessed by comparing geometric optical images with full wave-optical simulations. Finally, the inclusion of partial spatial coherence effects are discussed

  20. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    Science.gov (United States)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  1. Atomic-scale Ge diffusion in strained Si revealed by quantitative scanning transmission electron microscopy

    Science.gov (United States)

    Radtke, G.; Favre, L.; Couillard, M.; Amiard, G.; Berbezier, I.; Botton, G. A.

    2013-05-01

    Aberration-corrected scanning transmission electron microscopy is employed to investigate the local chemistry in the vicinity of a Si0.8Ge0.2/Si interface grown by molecular-beam epitaxy. Atomic-resolution high-angle annular dark field contrast reveals the presence of a nonuniform diffusion of Ge from the substrate into the strained Si thin film. On the basis of multislice calculations, a model is proposed to quantify the experimental contrast, showing that the Ge concentration in the thin film reaches about 4% at the interface and decreases monotonically on a typical length scale of 10 nm. Diffusion occurring during the growth process itself therefore appears as a major factor limiting the abruptness of interfaces in the Si-Ge system.

  2. Calibration-free quantitative surface topography reconstruction in scanning electron microscopy.

    Science.gov (United States)

    Faber, E T; Martinez-Martinez, D; Mansilla, C; Ocelík, V; Hosson, J Th M De

    2015-01-01

    This work presents a new approach to obtain reliable surface topography reconstructions from 2D Scanning Electron Microscopy (SEM) images. In this method a set of images taken at different tilt angles are compared by means of digital image correlation (DIC). It is argued that the strength of the method lies in the fact that precise knowledge about the nature of the rotation (vector and/or magnitude) is not needed. Therefore, the great advantage is that complex calibrations of the measuring equipment are avoided. The paper presents the necessary equations involved in the methods, including derivations and solutions. The method is illustrated with examples of 3D reconstructions followed by a discussion on the relevant experimental parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Determination of electrostatic force and its characteristics based on phase difference by amplitude modulation atomic force microscopy

    Science.gov (United States)

    Wang, Kesheng; Cheng, Jia; Yao, Shiji; Lu, Yijia; Ji, Linhong; Xu, Dengfeng

    2016-12-01

    Electrostatic force measurement at the micro/nano scale is of great significance in science and engineering. In this paper, a reasonable way of applying voltage is put forward by taking an electrostatic chuck in a real integrated circuit manufacturing process as a sample, applying voltage in the probe and the sample electrode, respectively, and comparing the measurement effect of the probe oscillation phase difference by amplitude modulation atomic force microscopy. Based on the phase difference obtained from the experiment, the quantitative dependence of the absolute magnitude of the electrostatic force on the tip-sample distance and applied voltage is established by means of theoretical analysis and numerical simulation. The results show that the varying characteristics of the electrostatic force with the distance and voltage at the micro/nano scale are similar to those at the macroscopic scale. Electrostatic force gradually decays with increasing distance. Electrostatic force is basically proportional to the square of applied voltage. Meanwhile, the applicable conditions of the above laws are discussed. In addition, a comparison of the results in this paper with the results of the energy dissipation method shows the two are consistent in general. The error decreases with increasing distance, and the effect of voltage on the error is small.

  4. Mathematical imaging methods for mitosis analysis in live-cell phase contrast microscopy.

    Science.gov (United States)

    Grah, Joana Sarah; Harrington, Jennifer Alison; Koh, Siang Boon; Pike, Jeremy Andrew; Schreiner, Alexander; Burger, Martin; Schönlieb, Carola-Bibiane; Reichelt, Stefanie

    2017-02-15

    In this paper we propose a workflow to detect and track mitotic cells in time-lapse microscopy image sequences. In order to avoid the requirement for cell lines expressing fluorescent markers and the associated phototoxicity, phase contrast microscopy is often preferred over fluorescence microscopy in live-cell imaging. However, common specific image characteristics complicate image processing and impede use of standard methods. Nevertheless, automated analysis is desirable due to manual analysis being subjective, biased and extremely time-consuming for large data sets. Here, we present the following workflow based on mathematical imaging methods. In the first step, mitosis detection is performed by means of the circular Hough transform. The obtained circular contour subsequently serves as an initialisation for the tracking algorithm based on variational methods. It is sub-divided into two parts: in order to determine the beginning of the whole mitosis cycle, a backwards tracking procedure is performed. After that, the cell is tracked forwards in time until the end of mitosis. As a result, the average of mitosis duration and ratios of different cell fates (cell death, no division, division into two or more daughter cells) can be measured and statistics on cell morphologies can be obtained. All of the tools are featured in the user-friendly MATLAB®Graphical User Interface MitosisAnalyser. Copyright © 2017. Published by Elsevier Inc.

  5. Phase-selective staining of metal salt for scanning electron microscopy imaging of block copolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing Ze, E-mail: Lijinge@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronic and Solid-state Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China); State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610054 (China); Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumuqi 830011 (China); Wang, Ying; Hong Wang, Zhi; Mei, Di; Zou, Wei [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronic and Solid-state Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China); Min Chang, Ai [State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610054 (China); Wang, Qi [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumuqi 830011 (China); Komura, Motonori; Ito, Kaori [Division of Integrated Molecular Engineering, Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Iyoda, Tomokazu, E-mail: Iyoda.t.aa@m.titech.ac.jp [Division of Integrated Molecular Engineering, Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2010-09-15

    Three metal salts, i.e., AgNO{sub 3}, HAuCl{sub 4}, and KCl, were proposed as novel staining reagents instead of traditional RuO{sub 4} and OsO{sub 4} labeled with expensive price and extreme toxicity for scanning electron microscopy (SEM) imaging of microphase separated block copolymer film. A simple and costless aqueous solution immersion procedure could ensure selective staining of the metal slat in specific phase of the nanostructured copolymer film, leading to a clear phase contrasted SEM image. The heavy metal salt has better staining effect, demonstrating stable and high signal-to-noise SEM image even at an acceleration voltage as high as 30 kV and magnification up to 250,000 times.

  6. Transmission electron microscopy investigation of interfaces in a two-phase TiAl alloy

    Science.gov (United States)

    Mahon, G. J.; Howe, J. M.

    1990-06-01

    The atomic structures of the γ/α2 and γ/γT interfaces in a TiAl alloy were investigated using conventional and high-resolution transmission electron microscopy (TEM) in order to understand the growth mechanisms and deformation behavior of the two-phase alloy. The results show that the α2 plates grow from the γ phase by the migration of a/6 partial dislocation ledges across the faces and that the γ/α2 interface usually contains closely spaced arrays of interfacial dislocations. Deformation twins cut through both γ twin boundaries and α2 plates during deformation, although slip of twinning c slocations through α2 appears to be a difficult process. Both the γ/α2 and γ/γT interfaces can be imaged and modeled at the atomic level, although slight crystal and/or beam tilt can complicate image interpretation.

  7. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

    Science.gov (United States)

    Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.

    2016-03-01

    A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.

  8. High resolution transmission electron microscopy studies of {sigma} phase in Ni-based single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Pan [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Feng Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Han Xiaodong; Mao Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2012-09-25

    Graphical abstract: (a) TEM micrograph of {sigma} phase; (b) HRTEM image of {sigma}/{gamma} interface corresponding to the area of the white frame in (a); (c) an enlarged image of area from the white frame in (b). The combination of {sigma}/{gamma} interface appears very well, and a two-atomic-layer step is shown on the {sigma}/{gamma} interface. In addition, {sigma} phase has the orientation relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma}}, (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. Highlights: Black-Right-Pointing-Pointer Elemental characteristic of {sigma} phase is studied by HAADF techniques and EDS analysis. Black-Right-Pointing-Pointer Interfacial characteristics of {sigma}/{gamma} interface are revealed by HRTEM. Black-Right-Pointing-Pointer An atomic structural {sigma}/{gamma} interface with a two-atomic-layer step has been proposed. - Abstract: By means of high resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field image technique (HAADF), morphological of plate-shaped {sigma} phase and interfacial characteristics between plate-shaped {sigma} phase and {gamma} phase in Ni-based single crystal superalloys have been studied. On the basis of HRTEM observations, an atomic structural interface between {sigma} phase and {gamma} phase with a step has been proposed. {sigma} Phase has the relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma},} (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. The compositional characteristics of the {sigma} phase which

  9. Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid—carbon nanotube composites using atomic force microscopy

    International Nuclear Information System (INIS)

    Iqbal, Qais; Bernstein, Peter; Zhu, Yazhe; Rahamim, Joseph; Cebe, Peggy; Staii, Cristian

    2015-01-01

    We use atomic force microscopy (AFM) to perform a systematic quantitative characterization of the elastic modulus and dielectric constant of poly(L-lactic acid) electrospun nanofibers (PLLA), as well as composites of PLLA fibers with 1.0 wt% embedded multiwall carbon nanotubes (MWCNTs–PLLA). The elastic moduli are measured in the fiber skin region via AFM nanoindentation, and the dielectric constants are determined by measuring the phase shifts obtained via electrostatic force microscopy (EFM). We find that the average value for the elastic modulus for PLLA fibers is (9.8 ± 0.9) GPa, which is a factor of 2 larger than the measured average elastic modulus for MWCNT–PLLA composites (4.1 ± 0.7) GPa. We also use EFM to measure dielectric constants for both types of fibers. These measurements show that the dielectric constants of the MWCNT–PLLA fibers are significantly larger than the corresponding values obtained for PLLA fiber. This result is consistent with the higher polarizability of the MWCNT–PLLA composites. The measurement methods presented are general, and can be applied to determine the mechanical and electrical properties of other polymers and polymer nanocomposites. (paper)

  10. Quantitative High Resolution Transmission Electron Microscopy (HRTEM): a novel approach towards application oriented basic research

    International Nuclear Information System (INIS)

    Kisielowski, Christian; Weber, Eicke R.; Liliental-Weber, Zuzanna

    1996-01-01

    This paper reviews recent developments of microscopic methods that base on a quantitative analysis of electron micrographs to access subsurface systems at the atomic scale. It focuses on non-equilibrium diffusion processes that are observed in nano structured MBE grown materials if a low growth temperature was used and on local deviations from a stoichiometric composition of materials. As examples we investigate Ga As/Al As and Si/Ge Si heterostructures and Ga N single crystals. The purpose of the research is twofold. On the one hand it helps understanding physical processes at the atomic scale. On the other hand we can use the results to link basic physical knowledge with the performance of semiconductor devices made from nano structured materials. (author). 28 refs., 15 figs

  11. Dual channel rank-based intensity weighting for quantitative co-localization of microscopy images

    LENUS (Irish Health Repository)

    Singan, Vasanth R

    2011-10-21

    Abstract Background Accurate quantitative co-localization is a key parameter in the context of understanding the spatial co-ordination of molecules and therefore their function in cells. Existing co-localization algorithms consider either the presence of co-occurring pixels or correlations of intensity in regions of interest. Depending on the image source, and the algorithm selected, the co-localization coefficients determined can be highly variable, and often inaccurate. Furthermore, this choice of whether co-occurrence or correlation is the best approach for quantifying co-localization remains controversial. Results We have developed a novel algorithm to quantify co-localization that improves on and addresses the major shortcomings of existing co-localization measures. This algorithm uses a non-parametric ranking of pixel intensities in each channel, and the difference in ranks of co-localizing pixel positions in the two channels is used to weight the coefficient. This weighting is applied to co-occurring pixels thereby efficiently combining both co-occurrence and correlation. Tests with synthetic data sets show that the algorithm is sensitive to both co-occurrence and correlation at varying levels of intensity. Analysis of biological data sets demonstrate that this new algorithm offers high sensitivity, and that it is capable of detecting subtle changes in co-localization, exemplified by studies on a well characterized cargo protein that moves through the secretory pathway of cells. Conclusions This algorithm provides a novel way to efficiently combine co-occurrence and correlation components in biological images, thereby generating an accurate measure of co-localization. This approach of rank weighting of intensities also eliminates the need for manual thresholding of the image, which is often a cause of error in co-localization quantification. We envisage that this tool will facilitate the quantitative analysis of a wide range of biological data sets

  12. Sparsity-based multi-height phase recovery in holographic microscopy

    Science.gov (United States)

    Rivenson, Yair; Wu, Yichen; Wang, Hongda; Zhang, Yibo; Feizi, Alborz; Ozcan, Aydogan

    2016-11-01

    High-resolution imaging of densely connected samples such as pathology slides using digital in-line holographic microscopy requires the acquisition of several holograms, e.g., at >6-8 different sample-to-sensor distances, to achieve robust phase recovery and coherent imaging of specimen. Reducing the number of these holographic measurements would normally result in reconstruction artifacts and loss of image quality, which would be detrimental especially for biomedical and diagnostics-related applications. Inspired by the fact that most natural images are sparse in some domain, here we introduce a sparsity-based phase reconstruction technique implemented in wavelet domain to achieve at least 2-fold reduction in the number of holographic measurements for coherent imaging of densely connected samples with minimal impact on the reconstructed image quality, quantified using a structural similarity index. We demonstrated the success of this approach by imaging Papanicolaou smears and breast cancer tissue slides over a large field-of-view of ~20 mm2 using 2 in-line holograms that are acquired at different sample-to-sensor distances and processed using sparsity-based multi-height phase recovery. This new phase recovery approach that makes use of sparsity can also be extended to other coherent imaging schemes, involving e.g., multiple illumination angles or wavelengths to increase the throughput and speed of coherent imaging.

  13. Sparsity-based multi-height phase recovery in holographic microscopy

    KAUST Repository

    Rivenson, Yair

    2016-11-30

    High-resolution imaging of densely connected samples such as pathology slides using digital in-line holographic microscopy requires the acquisition of several holograms, e.g., at >6–8 different sample-to-sensor distances, to achieve robust phase recovery and coherent imaging of specimen. Reducing the number of these holographic measurements would normally result in reconstruction artifacts and loss of image quality, which would be detrimental especially for biomedical and diagnostics-related applications. Inspired by the fact that most natural images are sparse in some domain, here we introduce a sparsity-based phase reconstruction technique implemented in wavelet domain to achieve at least 2-fold reduction in the number of holographic measurements for coherent imaging of densely connected samples with minimal impact on the reconstructed image quality, quantified using a structural similarity index. We demonstrated the success of this approach by imaging Papanicolaou smears and breast cancer tissue slides over a large field-of-view of ~20 mm2 using 2 in-line holograms that are acquired at different sample-to-sensor distances and processed using sparsity-based multi-height phase recovery. This new phase recovery approach that makes use of sparsity can also be extended to other coherent imaging schemes, involving e.g., multiple illumination angles or wavelengths to increase the throughput and speed of coherent imaging.

  14. Trace element mapping in Parkinsonian brain by quantitative ion beam microscopy

    Science.gov (United States)

    Barapatre, Nirav; Morawski, Markus; Butz, Tilman; Reinert, Tilo

    2010-06-01

    The role of iron in the pathogenesis of the Parkinson's disease (PD) is a current subject of research in Neurochemistry, since an abnormal increase in iron is reported in the substantia nigra (SN) of Parkinsonian patients. A severe loss of the cells containing dopamine in the SN in the PD has also drawn attention towards the function of a browny-black pigment called neuromelanin, which accumulates predominantly in these dopaminergic neurons. The neuromelanin has an ability to chelate metal ions, which, in free state, may cause considerable damage to cells by reacting with their lipid-rich membranes. However, it could also potentiate free radical production if it releases the bound metal ions. The highly sensitive and non-destructive micro-PIXE method suits best to quantify and map the trace elements in the SN. The accuracy in charge measurement for such microanalysis studies is of utmost importance for quantitative analysis. Since a Faraday cup is usually placed behind the thin biological sample to measure the charge, the primary and the secondary electrons, knocked out from the sample by traversing ion beam, hamper an exact charge determination. Hence, a new non-interceptive technique was developed for precise charge measurement and for continuous monitoring of beam current.

  15. Trace element mapping in Parkinsonian brain by quantitative ion beam microscopy

    International Nuclear Information System (INIS)

    Barapatre, Nirav; Morawski, Markus; Butz, Tilman; Reinert, Tilo

    2010-01-01

    The role of iron in the pathogenesis of the Parkinson's disease (PD) is a current subject of research in Neurochemistry, since an abnormal increase in iron is reported in the substantia nigra (SN) of Parkinsonian patients. A severe loss of the cells containing dopamine in the SN in the PD has also drawn attention towards the function of a browny-black pigment called neuromelanin, which accumulates predominantly in these dopaminergic neurons. The neuromelanin has an ability to chelate metal ions, which, in free state, may cause considerable damage to cells by reacting with their lipid-rich membranes. However, it could also potentiate free radical production if it releases the bound metal ions. The highly sensitive and non-destructive micro-PIXE method suits best to quantify and map the trace elements in the SN. The accuracy in charge measurement for such microanalysis studies is of utmost importance for quantitative analysis. Since a Faraday cup is usually placed behind the thin biological sample to measure the charge, the primary and the secondary electrons, knocked out from the sample by traversing ion beam, hamper an exact charge determination. Hence, a new non-interceptive technique was developed for precise charge measurement and for continuous monitoring of beam current.

  16. Trace element mapping in Parkinsonian brain by quantitative ion beam microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barapatre, Nirav, E-mail: barapatre@physik.uni-leipzig.d [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Morawski, Markus [Paul-Flechsig-Institut fuer Hirnforschung, Universitaet Leipzig, Jahnalle 59, 04109 Leipzig (Germany); Butz, Tilman; Reinert, Tilo [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2010-06-15

    The role of iron in the pathogenesis of the Parkinson's disease (PD) is a current subject of research in Neurochemistry, since an abnormal increase in iron is reported in the substantia nigra (SN) of Parkinsonian patients. A severe loss of the cells containing dopamine in the SN in the PD has also drawn attention towards the function of a browny-black pigment called neuromelanin, which accumulates predominantly in these dopaminergic neurons. The neuromelanin has an ability to chelate metal ions, which, in free state, may cause considerable damage to cells by reacting with their lipid-rich membranes. However, it could also potentiate free radical production if it releases the bound metal ions. The highly sensitive and non-destructive micro-PIXE method suits best to quantify and map the trace elements in the SN. The accuracy in charge measurement for such microanalysis studies is of utmost importance for quantitative analysis. Since a Faraday cup is usually placed behind the thin biological sample to measure the charge, the primary and the secondary electrons, knocked out from the sample by traversing ion beam, hamper an exact charge determination. Hence, a new non-interceptive technique was developed for precise charge measurement and for continuous monitoring of beam current.

  17. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe

    Directory of Open Access Journals (Sweden)

    Dominika Żurek-Biesiada

    2016-06-01

    Full Text Available Single Molecule Localization Microscopy (SMLM is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015 [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei.

  18. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli.

    Science.gov (United States)

    Sashital, Dipali G; Greeman, Candacia A; Lyumkis, Dmitry; Potter, Clinton S; Carragher, Bridget; Williamson, James R

    2014-10-14

    Ribosome assembly is a complex process involving the folding and processing of ribosomal RNAs (rRNAs), concomitant binding of ribosomal proteins (r-proteins), and participation of numerous accessory cofactors. Here, we use a quantitative mass spectrometry/electron microscopy hybrid approach to determine the r-protein composition and conformation of 30S ribosome assembly intermediates in Escherichia coli. The relative timing of assembly of the 3' domain and the formation of the central pseudoknot (PK) structure depends on the presence of the assembly factor RimP. The central PK is unstable in the absence of RimP, resulting in the accumulation of intermediates in which the 3'-domain is unanchored and the 5'-domain is depleted for r-proteins S5 and S12 that contact the central PK. Our results reveal the importance of the cofactor RimP in central PK formation, and introduce a broadly applicable method for characterizing macromolecular assembly in cells.

  19. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    International Nuclear Information System (INIS)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data

  20. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    Science.gov (United States)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke's tabulated data.

  1. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao [Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573 (Japan)

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  2. A method to validate quantitative high-frequency power doppler ultrasound with fluorescence in vivo video microscopy.

    Science.gov (United States)

    Pinter, Stephen Z; Kim, Dae-Ro; Hague, M Nicole; Chambers, Ann F; MacDonald, Ian C; Lacefield, James C

    2014-08-01

    Flow quantification with high-frequency (>20 MHz) power Doppler ultrasound can be performed objectively using the wall-filter selection curve (WFSC) method to select the cutoff velocity that yields a best-estimate color pixel density (CPD). An in vivo video microscopy system (IVVM) is combined with high-frequency power Doppler ultrasound to provide a method for validation of CPD measurements based on WFSCs in mouse testicular vessels. The ultrasound and IVVM systems are instrumented so that the mouse remains on the same imaging platform when switching between the two modalities. In vivo video microscopy provides gold-standard measurements of vascular diameter to validate power Doppler CPD estimates. Measurements in four image planes from three mice exhibit wide variation in the optimal cutoff velocity and indicate that a predetermined cutoff velocity setting can introduce significant errors in studies intended to quantify vascularity. Consistent with previously published flow-phantom data, in vivo WFSCs exhibited three characteristic regions and detectable plateaus. Selection of a cutoff velocity at the right end of the plateau yielded a CPD close to the gold-standard vascular volume fraction estimated using IVVM. An investigator can implement the WFSC method to help adapt cutoff velocity to current blood flow conditions and thereby improve the accuracy of power Doppler for quantitative microvascular imaging. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. A quantitative phase field model for hydride precipitation in zirconium alloys: Part I. Development of quantitative free energy functional

    International Nuclear Information System (INIS)

    Shi, San-Qiang; Xiao, Zhihua

    2015-01-01

    A temperature dependent, quantitative free energy functional was developed for the modeling of hydride precipitation in zirconium alloys within a phase field scheme. The model takes into account crystallographic variants of hydrides, interfacial energy between hydride and matrix, interfacial energy between hydrides, elastoplastic hydride precipitation and interaction with externally applied stress. The model is fully quantitative in real time and real length scale, and simulation results were compared with limited experimental data available in the literature with a reasonable agreement. The work calls for experimental and/or theoretical investigations of some of the key material properties that are not yet available in the literature

  4. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    Science.gov (United States)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  5. Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting: What are the limits?

    International Nuclear Information System (INIS)

    De Backer, A; De Wael, A; Gonnissen, J; Martinez, G T; Béché, A; Van Aert, S; MacArthur, K E; Jones, L; Nellist, P D

    2015-01-01

    Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atomcounting diagnosed by combining a thorough statistical method and detailed image simulations. (paper)

  6. A four-phase strategy for the implementation of reflectance confocal microscopy in dermatology.

    Science.gov (United States)

    Hoogedoorn, L; Gerritsen, M J P; Wolberink, E A W; Peppelman, M; van de Kerkhof, P C M; van Erp, P E J

    2016-08-01

    Reflectance confocal microscopy (RCM) is gradually implemented in dermatology. Strategies for further implementation and practical 'hands on' guidelines are lacking. The primary outcome was to conduct a general strategy for further implementation of RCM. The secondary outcome was the diagnosis of psoriasis and differentiation of stable from unstable psoriatic plaques by means of the 'hands on' protocol, derived from the strategy. We used a four-phased model; an exploring phase, a systematic literature search, a clinical approach and, finally, an integration phase to develop a clinical guideline for RCM in psoriasis. Receiver operating characteristic curve statistics was applied to define the accuracy for the diagnosis of unstable psoriasis. A general strategy for further implementation of RCM and practical approach was developed to examine psoriasis by RCM and to distinguish stable from unstable psoriasis. Unstable psoriasis was diagnosed by epidermal inflammatory cell counts with a sensitivity and specificity of 91.7% and 98.3%, respectively, and with an accuracy of 0.92 (area under the curve). In addition, a monitoring model was proposed. This is the first study that shows a method for implementation of RCM in dermatology. The strategy and hands on protocol for psoriasis may serve as a model for other dermatological entities and additionally may lead to specialized ready-to-use RCM protocols for clinical dermatological practice. © 2016 European Academy of Dermatology and Venereology.

  7. Depth-variant blind restoration with pupil-phase constraints for 3D confocal microscopy

    International Nuclear Information System (INIS)

    Hadj, Saima Ben; Blanc-Féraud, Laure; Engler, Gilbert

    2013-01-01

    Three-dimensional images of confocal laser scanning microscopy suffer from a depth-variant blur, due to refractive index mismatch between the different mediums composing the system as well as the specimen, leading to optical aberrations. Our goal is to develop an image restoration method for 3D confocal microscopy taking into account the blur variation with depth. The difficulty is that optical aberrations depend on the refractive index of the biological specimen. The depth-variant blur function or the Point Spread Function (PSF) is thus different for each observation. A blind or semi-blind restoration method needs to be developed for this system. For that purpose, we use a previously developed algorithm for the joint estimation of the specimen function (original image) and the 3D PSF, the continuously depth-variant PSF is approximated by a convex combination of a set of space-invariant PSFs taken at different depths. We propose to add to that algorithm a pupil-phase constraint for the PSF estimation, given by the the optical instrument geometry. We thus define a blind estimation algorithm by minimizing a regularized criterion in which we integrate the Gerchberg-Saxton algorithm allowing to include these physical constraints. We show the efficiency of this method relying on some numerical tests

  8. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging.

    Science.gov (United States)

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J Alexander; Bargmann, Cornelia I

    2016-03-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a "precise color" MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans.

  9. Automatic neuron segmentation and neural network analysis method for phase contrast microscopy images.

    Science.gov (United States)

    Pang, Jincheng; Özkucur, Nurdan; Ren, Michael; Kaplan, David L; Levin, Michael; Miller, Eric L

    2015-11-01

    Phase Contrast Microscopy (PCM) is an important tool for the long term study of living cells. Unlike fluorescence methods which suffer from photobleaching of fluorophore or dye molecules, PCM image contrast is generated by the natural variations in optical index of refraction. Unfortunately, the same physical principles which allow for these studies give rise to complex artifacts in the raw PCM imagery. Of particular interest in this paper are neuron images where these image imperfections manifest in very different ways for the two structures of specific interest: cell bodies (somas) and dendrites. To address these challenges, we introduce a novel parametric image model using the level set framework and an associated variational approach which simultaneously restores and segments this class of images. Using this technique as the basis for an automated image analysis pipeline, results for both the synthetic and real images validate and demonstrate the advantages of our approach.

  10. Fresnel diffraction correction by phase-considered iteration procedure in soft X-ray projection microscopy

    International Nuclear Information System (INIS)

    Shiina, Tatsuo; Suzuki, Tsuyoshi; Honda, Toshio; Ito, Atsushi; Kinjo, Yasuhito; Yoshimura, Hideyuki; Yada, Keiji; Shinohara, Kunio

    2009-01-01

    In soft X-ray projection microscopy, it is easy to alter the magnification by changing the distance between the pinhole and the specimen, while the image is blurred because the soft X-rays are diffracted through the propagation from specimen to CCD detector. We corrected the blurred image by the iteration procedure of Fresnel to inverse Fresnel transformation taking phase distribution of the specimen into account. The experiments were conducted at the BL-11A of the Photon Factory, KEK, Japan for the specimens such as glass-capillaries, latex-particles, dried mammalian cells and human chromosomes. Many of those blurred images were corrected adequately by the iteration procedure, though some images such as those which have high-contrast or are overlapped by small cells still remain to be improved.

  11. In Situ Transmission Electron Microscopy Observation of Nanostructural Changes in Phase-Change Memory

    KAUST Repository

    Meister, Stefan

    2011-04-26

    Phase-change memory (PCM) has been researched extensively as a promising alternative to flash memory. Important studies have focused on its scalability, switching speed, endurance, and new materials. Still, reliability issues and inconsistent switching in PCM devices motivate the need to further study its fundamental properties. However, many investigations treat PCM cells as black boxes; nanostructural changes inside the devices remain hidden. Here, using in situ transmission electron microscopy, we observe real-time nanostructural changes in lateral Ge2Sb2Te5 (GST) PCM bridges during switching. We find that PCM devices with similar resistances can exhibit distinct threshold switching behaviors due to the different initial distribution of nanocrystalline and amorphous domains, explaining variability of switching behaviors of PCM cells in the literature. Our findings show a direct correlation between nanostructure and switching behavior, providing important guidelines in the design and operation of future PCM devices with improved endurance and lower variability. © 2011 American Chemical Society.

  12. Phasing of the Triatoma virus diffraction data using a cryo-electron microscopy reconstruction

    International Nuclear Information System (INIS)

    Estrozi, L.F.; Neumann, E.; Squires, G.; Rozas-Dennis, G.; Costabel, M.; Rey, F.A.; Guerin, D.M.A.; Navaza, J.

    2008-01-01

    The blood-sucking reduviid bug Triatoma infestans, one of the most important vector of American human trypanosomiasis (Chagas disease) is infected by the Triatoma virus (TrV). TrV has been classified as a member of the Cripavirus genus (type cricket paralysis virus) in the Dicistroviridae family. This work presents the three-dimensional cryo-electron microscopy (cryo-EM) reconstruction of the TrV capsid at about 25 A resolution and its use as a template for phasing the available crystallographic data by the molecular replacement method. The main structural differences between the cryo-EM reconstruction of TrV and other two viruses, one from the same family, the cricket paralysis virus (CrPV) and the human rhinovirus 16 from the Picornaviridae family are presented and discussed

  13. Quantitative characterization of the formation of an interpenetrating phase composite in polystyrene from the percolation of multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Kota, Arun K; Cipriano, Bani H; Powell, Dan; Raghavan, Srinivasa R; Bruck, Hugh A

    2007-01-01

    For the first time, an interpenetrating phase polymer nanocomposite formed by the percolation of multiwalled carbon nanotubes (MWCNTs) in polystyrene (PS) has been quantitatively characterized through electrical conductivity measurements and melt rheology. Both sets of measurements, in conjunction with scanning electron microscopy (SEM) images, indicate the presence of a continuous phase of percolated MWCNTs appearing at particle concentrations exceeding 2 vol% MWCNTs in PS. To quantify the amount of this continuous phase present in the PS/MWCNT composite, electrical conductivity data at various MWCNT concentrations, β, are correlated with a proposed degree of percolation, C-bar(β), developed using a conventional power-law formula with and without a percolation threshold. To quantify the properties of the interpenetrating phase polymer nanocomposite, the PS/MWCNT composite is treated as a combination of two phases: a continuous phase consisting of a pseudo-solid-like network of percolated MWCNTs, and a continuous PS phase reinforced by non-interacting MWCNTs. The proposed degree of percolation is used to quantify the distribution of MWCNTs among the phases, and is then used in a rule-of-mixtures formulation for the storage modulus, G'(β, C-bar(β), ω), and the loss modulus, G''(β, C-bar(β), ω), to quantify the properties of the continuous phase consisting of percolated MWCNTs and the continuous PS phase reinforced by non-interacting MWCNTs from the experimental melt rheology data. The properties of the continuous phase of percolated MWCNTs are indicative of a scaffold-like microstructure exhibiting an elastic behavior with a complex modulus of 360 kPa at lower frequencies and viscoplastic behavior with a complex viscosity of 6 kPa s rad -1 at higher frequencies, most likely due to a stick-slip friction mechanism at the interface of the percolated MWCNTs. Additional evidence of this microstructure was obtained via scanning electron microscopy. This research

  14. Electron microscopy and microanalysis of uranium phases in primary ores, Eocene and Miocene of south Texas

    International Nuclear Information System (INIS)

    Liang, L.C.; Price, J.G.; Bobeck, P.

    1984-01-01

    Two contrasting types of roll-front uranium deposits occur in south Texas. In the barrier-bar sands of the Eocene Jackson Group, organic matter was essential to uranium reduction, whereas in the fluvial sands of the Miocene Oakville Formation, epigenetic pyrite was the reductant. In a sample of reduced Oakville ore, a uranium phase with grains ranging in diameter from < 1 to 20μm was recognized by SEM backscattered-electron imaging and wavelength-dispersive spectrometer (WDS) elemental-dot mapping. Quantitative microprobe analyses indicated that the phase is a uranium-calcium silicate-phosphate with molar Ca/P approximately equal to 1.0, U/P equal to 2.8 +/- 0.4 (n = 27), and U/Si approaching 1.0 in samples uncontaminated with quartz, feldspar, or clay minerals. Highest uranium content is 59%. Oakville ore is typically easy to leach by in-situ methods. Jackson ore contains 2 uranium phases. Sulfur-rich organic matter contains 4.1 +/- 1.6% uranium (n = 27). Although individual grains of a possible uranium mineral within the organic matter are too small to be resolved by electron imaging, a consistent molar U/Fe (0.5 +/- 0.1) suggests a uranium-iron oxide phase. Alternatively, uranium is adsorbed by or otherwise bound to the organic matter. The second phase is a uranium-calcium silicate-phosphate that differs from the Oakville ore. Molar Ca/P equals 0.8 +/- 0.2 (n = 13), and U/P equals 4.7 +/- 0.4. Small grain size (generally less than 1 μm) prevented analysis of samples uncontaminated with quartz and pyrite. The grain with highest uranium content (43%) has U/Si equal to 0.34. Jackson ore is less favorable for in-situ leaching than Oakville ore in part because the organic-associated uranium is difficult to extract

  15. Phase transition traced by conductivity measurements: quantitative analysis

    DEFF Research Database (Denmark)

    Keding, Ralf; Ruessel, Christian; Tauch, Diana

    2008-01-01

    starting from the electrodes. The change in the conductivity as a function of the temperature was fitted with VFT-equation for both the melt and the crystalline phase. An extrapolation of the resistance of the melt as well as of the crystalline material allows to separate the temperature dependent changes...... of conductivity and the resistance changes caused by phase transformation. This enables to determine the crystal growth velocity in the temperature range between 750 and 860 degrees C in a single experiment.......The measurement of the crystal growth velocity is carried out by analysing the change in the resistivity of the sample. The calculation of the crystal growth velocity is developed for crystal formation in the volume, crystal growth initiated at the electrodes as well as perpendicular...

  16. Transmission electron microscopy characterization of the interfacial structure of a galvanized dual-phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, I., E-mail: ia31@msstate.edu [Center for Advanced Vehicular Systems, Mississippi State University, MS 39759 (United States); Department of Mechanical Engineering, Mississippi State University, MS 39762 (United States); Li, B. [Center for Advanced Vehicular Systems, Mississippi State University, MS 39759 (United States); Department of Chemical and Materials Engineering, University of Nevada, Reno, NV 89557 (United States); Martens, R.L.; Goodwin, J.R. [Central Analytical Facility, the University of Alabama, Tuscaloosa, AL 35487 (United States); Rhee, H.J. [Center for Advanced Vehicular Systems, Mississippi State University, MS 39759 (United States); Department of Mechanical Engineering, Mississippi State University, MS 39762 (United States); Goodwin, F. [International Zinc Association, Durham, NC 27713 (United States)

    2016-10-15

    Site-specific studies were carried out to characterize the interface of a galvanized dual-phase (DP) steel. Focused ion beam (FIB) was used to prepare specimens in the interface region (~ 100 nm thick) between the coating and the substrate. Transmission electron microscopy (TEM), scanning TEM (STEM), and high resolution TEM (HRTEM) were performed to resolve the phases and the structures at the interface between the zinc (Zn) coating and the steel substrate. The STEM and TEM results showed that a continuous manganese oxide (MnO) film with a thickness of ~ 20 nm was present on the surface of the substrate while no silicon (Si) oxides were resolved. Internal oxide particles were observed as well in the sub-surface region. Despite the presence of the continuous oxide film, a well-developed inhibition layer was observed right on top of the oxide film. The inhibition layer has a thickness of ~ 100 nm. Possible mechanisms for the growth of the inhibition layer were discussed. - Highlights: •Site-specific examinations were performed on the Zn/steel interface. •Continuous external MnO oxides (20 nm) were observed at the interface. •No Si oxides were observed at the interface. •Internal oxide particles were distributed in the subsurface. •A continuous inhibition layer grew on top of the external oxides.

  17. Solid-phase characterization in flammable-gas-tank sludges by electron microscopy

    International Nuclear Information System (INIS)

    Liu, J.; Pederson, L.R.; Qang, L.Q.

    1995-09-01

    The crystallinity, morphology, chemical composition, and crystalline phases of several Tank 241-SY-101 (hereinafter referred to as SY-101) and Tank 241-SY-103 (hereinafter referred to as SY-103) solid samples were studied by transmission electron microscopy (TEM), electron energy dispersive spectroscopy (EDS), and electron diffraction. The main focus is on the identification of aluminum hydroxide thought to be present in these tank samples. Aluminum hydroxide was found in SY-103, but not in SY-101. This difference can be explained by the different OH/Al ratios found in the two tank samples: a high OH/Al ratio in SY-101 favors the formation of sodium aluminate, but a low OH/Al ratio in SY-103 favors aluminum hydroxide. These results were confirmed by a magnetic resonance study on SY-101 and SY-103 simulant. The transition from aluminum hydroxide to sodium aluminate occurs at an OH/Al molar ratio of 3.6. It is believed that the study of Al(OH) 3 was not affected by sample preparation because all Al(OH) 3 is in the solid form according to the NMR experiments. There is no Al(OH) 3 in the liquid. It is, therefore, most likely that the observation of Al(OH) 3 is representative of the real sludge sample, and is not affected by drying. Similar conclusions also apply to other insoluble phases such as iron and chromium

  18. Full-angle tomographic phase microscopy of flowing quasi-spherical cells.

    Science.gov (United States)

    Villone, Massimiliano M; Memmolo, Pasquale; Merola, Francesco; Mugnano, Martina; Miccio, Lisa; Maffettone, Pier Luca; Ferraro, Pietro

    2017-12-19

    We report a reliable full-angle tomographic phase microscopy (FA-TPM) method for flowing quasi-spherical cells along microfluidic channels. This method lies in a completely passive optical system, i.e. mechanical scanning or multi-direction probing of the sample is avoided. It exploits the engineered rolling of cells while they are flowing along a microfluidic channel. Here we demonstrate significant progress with respect to the state of the art of in-flow TPM by showing a general extension to cells having almost spherical shapes while they are flowing in suspension. In fact, the adopted strategy allows the accurate retrieval of rotation angles through a theoretical model of the cells' rotation in a dynamic microfluidic flow by matching it with phase-contrast images resulting from holographic reconstructions. So far, the proposed method is the first and the only one that permits to get in-flow TPM by probing the cells with full-angle, achieving accurate 3D refractive index mapping and the simplest optical setup, simultaneously. Proof of concept experiments were performed successfully on human breast adenocarcinoma MCF-7 cells, opening the way for the full characterization of circulating tumor cells (CTCs) in the new paradigm of liquid biopsy.

  19. Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals

    International Nuclear Information System (INIS)

    Hoennicke, M. G.; Cusatis, C.

    2007-01-01

    An analyzer-based x-ray phase-contrast microscopy (ABM) setup combining a standard analyzer-based x-ray phase-contrast imaging (ABI) setup [nondispersive 4-crystal setup (Bonse-Hart setup)] and diffraction by asymmetrically cut crystals is presented here. An attenuation-contrast microscopy setup with conventional x-ray source and asymmetrically cut crystals is first analyzed. Edge-enhanced effects attributed to phase jumps or refraction/total external reflection on the fiber borders were detected. However, the long exposure times and the possibility to achieve high contrast microscopies by using extremely low attenuation-contrast samples motivated us to assemble the ABM setup using a synchrotron source. This setup was found to be useful for low contrast attenuation samples due to the low exposure time, high contrast, and spatial resolution found. Moreover, thanks to the combination with the nondispersive ABI setup, the diffraction-enhanced x-ray imaging algorithm could be applied

  20. Quantitative trait loci and the relevance of phased haplotypes

    DEFF Research Database (Denmark)

    Gregersen, Vivi Raundahl

    Genetic control of different production traits and diseases within livestock has been of great interest since domenstication. SNPs have greatly facilitated the use of QTL studies in the search of genomic regions affecting different phenotypes. The studies have been conducted to identify regions...... underlying gentic control both as traditional linkage studies relying on genetic maps and as GWAS where an approach of phasing haplotypes within the QTL have been conducted to validate the regions. Overall, regions of interest have been identified for chronic pleuritis and osteochondrosis in addition to meat...... quality and boar taint in pigs, and for improved chees production within cows...

  1. Phase transition traced by conductivity measurements: quantitative analysis

    DEFF Research Database (Denmark)

    Keding, Ralf; Ruessel, Christian; Tauch, Diana

    2008-01-01

    to the electrodes, all in a cylindrical geometry. The electrical resistivity of a sample in the system BaAl2B2O7 was measured during cooling between liquidus temperature (T-l) and transformation temperature (T-g) using a fixed frequency of 3.7 Hz. The melt crystallised in this temperature range during cooling...... of conductivity and the resistance changes caused by phase transformation. This enables to determine the crystal growth velocity in the temperature range between 750 and 860 degrees C in a single experiment....

  2. Large field of view quantitative phase imaging of induced pluripotent stem cells and optical pathlength reference materials

    Science.gov (United States)

    Kwee, Edward; Peterson, Alexander; Stinson, Jeffrey; Halter, Michael; Yu, Liya; Majurski, Michael; Chalfoun, Joe; Bajcsy, Peter; Elliott, John

    2018-02-01

    Induced pluripotent stem cells (iPSCs) are reprogrammed cells that can have heterogeneous biological potential. Quality assurance metrics of reprogrammed iPSCs will be critical to ensure reliable use in cell therapies and personalized diagnostic tests. We present a quantitative phase imaging (QPI) workflow which includes acquisition, processing, and stitching multiple adjacent image tiles across a large field of view (LFOV) of a culture vessel. Low magnification image tiles (10x) were acquired with a Phasics SID4BIO camera on a Zeiss microscope. iPSC cultures were maintained using a custom stage incubator on an automated stage. We implement an image acquisition strategy that compensates for non-flat illumination wavefronts to enable imaging of an entire well plate, including the meniscus region normally obscured in Zernike phase contrast imaging. Polynomial fitting and background mode correction was implemented to enable comparability and stitching between multiple tiles. LFOV imaging of reference materials indicated that image acquisition and processing strategies did not affect quantitative phase measurements across the LFOV. Analysis of iPSC colony images demonstrated mass doubling time was significantly different than area doubling time. These measurements were benchmarked with prototype microsphere beads and etched-glass gratings with specified spatial dimensions designed to be QPI reference materials with optical pathlength shifts suitable for cell microscopy. This QPI workflow and the use of reference materials can provide non-destructive traceable imaging method for novel iPSC heterogeneity characterization.

  3. Quantitative phase analysis of uranium carbide from x-ray diffraction data using the Rietveld method

    International Nuclear Information System (INIS)

    Singh Mudher, K.D.; Krishnan, K.

    2003-01-01

    Quantitative phase analysis of a uranium carbide sample was carried out from the x-ray diffraction data by Rietveld profile fitting method. The method does not require the addition of any reference material. The percentage of UC, UC 2 and UO 2 phases in the sample were determined. (author)

  4. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    Science.gov (United States)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  5. Context based mixture model for cell phase identification in automated fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Zhou Xiaobo

    2007-01-01

    Full Text Available Abstract Background Automated identification of cell cycle phases of individual live cells in a large population captured via automated fluorescence microscopy technique is important for cancer drug discovery and cell cycle studies. Time-lapse fluorescence microscopy images provide an important method to study the cell cycle process under different conditions of perturbation. Existing methods are limited in dealing with such time-lapse data sets while manual analysis is not feasible. This paper presents statistical data analysis and statistical pattern recognition to perform this task. Results The data is generated from Hela H2B GFP cells imaged during a 2-day period with images acquired 15 minutes apart using an automated time-lapse fluorescence microscopy. The patterns are described with four kinds of features, including twelve general features, Haralick texture features, Zernike moment features, and wavelet features. To generate a new set of features with more discriminate power, the commonly used feature reduction techniques are used, which include Principle Component Analysis (PCA, Linear Discriminant Analysis (LDA, Maximum Margin Criterion (MMC, Stepwise Discriminate Analysis based Feature Selection (SDAFS, and Genetic Algorithm based Feature Selection (GAFS. Then, we propose a Context Based Mixture Model (CBMM for dealing with the time-series cell sequence information and compare it to other traditional classifiers: Support Vector Machine (SVM, Neural Network (NN, and K-Nearest Neighbor (KNN. Being a standard practice in machine learning, we systematically compare the performance of a number of common feature reduction techniques and classifiers to select an optimal combination of a feature reduction technique and a classifier. A cellular database containing 100 manually labelled subsequence is built for evaluating the performance of the classifiers. The generalization error is estimated using the cross validation technique. The

  6. QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS

    Directory of Open Access Journals (Sweden)

    Benoit Krebs

    2011-05-01

    Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.

  7. Phase analysis in duplex stainless steel: comparison of EBSD and quantitative metallography methods

    International Nuclear Information System (INIS)

    Michalska, J; Chmiela, B

    2014-01-01

    The purpose of the research was to work out the qualitative and quantitative analysis of phases in DSS in as-received state and after thermal aging. For quantitative purposes, SEM observations, EDS analyses and electron backscattered diffraction (EBSD) methods were employed. Qualitative analysis of phases was performed by two methods: EBSD and classical quantitative metallography. A juxtaposition of different etchants for the revealing of microstructure and brief review of sample preparation methods for EBSD studies were presented. Different ways of sample preparation were tested and based on these results a detailed methodology of DSS phase analysis was developed including: surface finishing, selective etching methods and image acquisition. The advantages and disadvantages of applied methods were pointed out and compared the accuracy of the analysis phase performed by both methods

  8. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.

    Science.gov (United States)

    Majeran, Wojciech; Friso, Giulia; Ponnala, Lalit; Connolly, Brian; Huang, Mingshu; Reidel, Edwin; Zhang, Cankui; Asakura, Yukari; Bhuiyan, Nazmul H; Sun, Qi; Turgeon, Robert; van Wijk, Klaas J

    2010-11-01

    C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.

  9. Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles of Condensin Complexes

    Directory of Open Access Journals (Sweden)

    David Llères

    2017-02-01

    Full Text Available How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer-based fluorescence lifetime imaging microscopy (FLIM approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1 and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.

  10. In situ observation of the impact of surface oxidation on the crystallization mechanism of GeTe phase-change thin films by scanning transmission electron microscopy

    Science.gov (United States)

    Berthier, R.; Bernier, N.; Cooper, D.; Sabbione, C.; Hippert, F.; Noé, P.

    2017-09-01

    The crystallization mechanisms of prototypical GeTe phase-change material thin films have been investigated by in situ scanning transmission electron microscopy annealing experiments. A novel sample preparation method has been developed to improve sample quality and stability during in situ annealing, enabling quantitative analysis and live recording of phase change events. Results show that for an uncapped 100 nm thick GeTe layer, exposure to air after fabrication leads to composition changes which promote heterogeneous nucleation at the oxidized surface. We also demonstrate that protecting the GeTe layer with a 10 nm SiN capping layer prevents nucleation at the surface and allows volume nucleation at a temperature 50 °C higher than the onset of crystallization in the oxidized sample. Our results have important implications regarding the integration of these materials in confined memory cells.

  11. On the quantitative X-ray phase analysis of R-Co alloys

    International Nuclear Information System (INIS)

    Lyubushkin, V.A.; Lyubushkina, L.M.; Vetoshkin, I.D.

    1982-01-01

    Using the method of quantitative X-ray phase analysis two-phase (RCo 5 -R 2 Co 17 ) alloys Sm-Co and Pr-Co have been studied. The investigations are made using the DRON-2.0 dif,ractometer in filtrated FeKα-radiation. Calibration diagrams for model binary mixtures are built, their use is recommended for express-evaluation of the amount of the phase determined. Test of the technique suggested is carried out

  12. Atomic force microscopy studies of lateral phase separation in mixed monolayers of dipalmitoylphosphatidylcholine and dilauroylphosphatidylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Jacqueline; Badia, Antonella

    2003-09-01

    Atomic force microscopy imaging of dipalmitoylphosphatidylcholine (DPPC)/dilauroylphosphatidylcholine (DLPC) monolayers deposited onto alkanethiol modified-gold surfaces by the Langmuir-Schaefer technique was used to investigate domain formation in a binary system where phase separation arises from a difference in the alkyl chain lengths of the lipids. We have established how the condensed domain structure (shape and size) in DPPC/DLPC monolayers depends on the surface pressure and lipid composition. The mixed monolayers exhibit a positive deviation from an ideal mixing behavior at surface pressures of {<=}32 mN/m. Lateral compression to pressures greater than the liquid-expanded-to-liquid-condensed (LE-to-LC) phase transition pressure of the mixed monolayer ({approx}8-16 mN/m) induces extensive separation into condensed DPPC-rich domains and a fluid DLPC matrix. The condensed structures observed at a few milliNeutons per meter above the LE-to-LC transition pressure resemble those reported for pure DPPC monolayers in the LE/LC co-existence region. At a bilayer equivalence pressure of 32 mN/m and 20 deg. C, condensed domains exist between x{sub DPPC} {approx}0.25 and {approx}0.80, analogous to aqueous DPPC/DLPC dispersions. Compression from 32 to 40 mN/m results in either a striking distortion of the DPPC domain shape or a break-up of the microscopic DPPC domains into a network of nanoscopic islands (at higher DPPC mol fractions), possibly reflecting a critical mixing behavior. The results of this study provide a fundamental framework for understanding and controlling the formation of lateral domain structures in mixed phospholipid monolayers.

  13. Deleterious phases precipitation on superduplex stainless steel UNS S32750: characterization by light optical and scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Juan Manuel Pardal

    2010-09-01

    Full Text Available Deleterious phases precipitation in superduplex stainless steels is the main concern in fabrication by welding and hot forming of this class of material. Sigma, chi and secondary austenite phases are considered deleterious phases because they produce negative effects on corrosion resistance. Besides, sigma and chi phases also promote strong decrease of toughness. In the present work, the precipitations of sigma, chi and secondary austenite under aging in the 800-950 °C interval were studied in two UNS S32750 steels with different grain sizes. The deleterious phases could be quantified by light optical microscopy, with no distinction between them. Scanning electron microscopy was used to distinguish the individual phases in various aging conditions. The results elucidate the influence of the aging temperature and grain size on the kinetics precipitation and morphology of deleterious phases. The kinetics of deleterious phases is higher in the fine grained material in the initial stage of aging, but the maximum amount of deleterious phases is higher in the coarse grained steel.

  14. Dynamic phase microscopy, a new method to detect viable and killed spores and to estimate the heterogeneity of spore populations

    Science.gov (United States)

    Tychinsky, Vladimir P.; Mulyukin, Andrey L.; Lisovskii, Vitalii V.; Nikolaev, Yury A.; Kretushev, Aleksander V.; Vyshenskaya, Tatyana V.; Suzina, Nataliya E.; Duda, Vitalii I.; El-Registan, Galina I.

    One of the challenging tasks in monitoring studies is to estimate heterogeneity of microbial populations by the physiological state and potential viability of individual cells, especially with regard of their ability to withstand various environmental assaults. Previously, we described some approaches based on electron microscopy methods to discriminate vegetative, dormant, and dead cells in both aged microbial cultures and environmental samples, including permafrost. We propose to extend the arsenal of microscopy methods for monitoring studies by a new non-invasive and informative method - dynamic phase microscopy (DPM). The substantial advantage of DPM is that it gives quantitative (digitized) data of undestroyed (living) microscopic objects, exemplified in our work by Bacillus licheniformis spores. Using DPM made it possible to record interference images of objects (spores) and to produce picture of their "phase thickness" (PT) that is the optical path difference in nm. Thus, it was demonstrated the remarkable difference in the PT of spores at different physiological states: dormant, germinating, and heat-killed spores had PT values of 80, 40-50, and 20 nm, respectively. The other found criterion to distinguish between spores was the PT fluctuations. In contrast to dormant and killed spores, the PT of germinating spores oscillated with amplitude of up to 7 nm, with typical frequencies of 1.3 and 3.4 Hz. A combination of the recorded PT values and PT fluctuations gave a key to detect viable and dead cells. Under the conditions that did not support germination (the lack of nutrients), we were able to follow the response of a single dormant spore and a spore population to heating from 25 °C to 70 °C. Thus, a very small temperature change (from 40 °C to 42 °C) under conditions non-favorable for germination, caused a drastic decrease in the spores' PT; the second drop in the PT values was observed during heating from 60 °C to 70 °C. These changes were

  15. Thickness measurement of soft thin films on periodically patterned magnetic substrates by phase difference magnetic force microscopy.

    Science.gov (United States)

    Passeri, D; Dong, C; Angeloni, L; Pantanella, F; Natalizi, T; Berlutti, F; Marianecci, C; Ciccarello, F; Rossi, M

    2014-01-01

    The need for accurate measurement of the thickness of soft thin films is continuously encouraging the development of techniques suitable for this purpose. We propose a method through which the thickness of the film is deduced from the quantitative measurement of the contrast in the phase images of the sample surface acquired by magnetic force microscopy, provided that the film is deposited on a periodically patterned magnetic substrate. The technique is demonstrated by means of magnetic substrates obtained from standard floppy disks. Colonies of Staphylococcus aureus adherent to such substrates were used to obtain soft layers with limited lateral (a few microns) and vertical (hundreds of nanometers) size. The technique is described and its specific merits, limitations and potentialities in terms of accuracy and measurable thickness range are discussed. These parameters depend on the characteristics of the sensing tip/cantilever as well as of the substrates, the latter in terms of spatial period and homogeneity of the magnetic domains. In particular, with the substrates used in this work we evaluated an uncertainty of about 10%, a limit of detection of 50-100 nm and an upper detection limit (maximum measurable thickness) of 1 μm, all obtained with standard lift height values (50-100 nm). Nonetheless, these parameters can be easily optimized by selecting/realizing substrates with suitable spacing and homogeneity of the magnetic domains. For example, the upper detection limit can be increased up to 25-50 μm while the limit of detection can be reduced to a few tens of nanometers or a few nanometers. © 2013 Elsevier B.V. All rights reserved.

  16. Reducing depth induced spherical aberration in 3D widefield fluorescence microscopy by wavefront coding using the SQUBIC phase mask

    Science.gov (United States)

    Patwary, Nurmohammed; Doblas, Ana; King, Sharon V.; Preza, Chrysanthe

    2014-03-01

    Imaging thick biological samples introduces spherical aberration (SA) due to refractive index (RI) mismatch between specimen and imaging lens immersion medium. SA increases with the increase of either depth or RI mismatch. Therefore, it is difficult to find a static compensator for SA1. Different wavefront coding methods2,3 have been studied to find an optimal way of static wavefront correction to reduce depth-induced SA. Inspired by a recent design of a radially symmetric squared cubic (SQUBIC) phase mask that was tested for scanning confocal microscopy1 we have modified the pupil using the SQUBIC mask to engineer the point spread function (PSF) of a wide field fluorescence microscope. In this study, simulated images of a thick test object were generated using a wavefront encoded engineered PSF (WFEPSF) and were restored using space-invariant (SI) and depth-variant (DV) expectation maximization (EM) algorithms implemented in the COSMOS software4. Quantitative comparisons between restorations obtained with both the conventional and WFE PSFs are presented. Simulations show that, in the presence of SA, the use of the SIEM algorithm and a single SQUBIC encoded WFE-PSF can yield adequate image restoration. In addition, in the presence of a large amount of SA, it is possible to get adequate results using the DVEM with fewer DV-PSFs than would typically be required for processing images acquired with a clear circular aperture (CCA) PSF. This result implies that modification of a widefield system with the SQUBIC mask renders the system less sensitive to depth-induced SA and suitable for imaging samples at larger optical depths.

  17. Visualization and quantitative analysis of the CSF pulsatile flow with cine MR phase imaging

    International Nuclear Information System (INIS)

    Katayama, Shinji; Itoh, Takahiko; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira; Tsuchida, Shohei; Ono, Atsushi; Ikezaki, Yoshikazu; Yoshitome, Eiji.

    1991-01-01

    The visualization and the quantitative analysis of the CSF pulsatile flow were performed on ten healthy volunteers with cine MR phase imaging, a combination of the phase-contrast technique and the cardiac-gating technique. The velocities appropriate for the visualization and the quantitative analysis of the CSF pulsatile flow were from 6.0 cm/sec to 15.0 cm/sec. The applicability of this method for the quantitative analysis was proven with a steady-flow phantom. Phase images clearly demonstrated a to-and-fro motion of the CSF flow in the anterior subarachnoid space and in the posterior subarachnoid space. The flow pattern of CSF on healthy volunteers depends on the cardiac cycle. In the anterior subarachnoid space, the cephalic CSF flow continued until a 70-msec delay after the R-wave of the ECG and then reversed to caudal. At 130-190 msec, the caudal CSF flow reached its maximum velocity; thereafter it reversed again to cephalic. The same turn appeared following the phase, but then the amplitude decreased. The cephalic peaked at 370-430 msec, while the caudal peaked at 490-550 msec. The flow pattern of the CSF flow in the posterior subarachnoid space was almost identical to that in the anterior subarachnoid space. Cine MR phase imaging is thus useful for the visualization and the quantitative analysis of the CSF pulsative flow. (author)

  18. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao [National Synchrotron Radiation Laboratory (China); Liu Yijin [School of Physics (China); Yue Zhengbo; Yu Hanqing [Laboratory of Environmental Engineering, School of Chemistry, University of Science and Technology of China, Hefei Anhui 230029 (China); Wang Chunru, E-mail: ychtian@ustc.edu.c [Institute of Chemistry, Chinese Academy of Sciences, Beijing 10060 (China)

    2009-09-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 {mu}m thickness and 4 {mu}m width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  19. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    International Nuclear Information System (INIS)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao; Liu Yijin; Yue Zhengbo; Yu Hanqing; Wang Chunru

    2009-01-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 μm thickness and 4 μm width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  20. A study of phase separation in peptide-loaded HPMC films using T(zero)-modulated temperature DSC, atomic force microscopy, and scanning electron microscopy.

    Science.gov (United States)

    Hussain, Samana; Grandy, David B; Reading, Mike; Craig, Duncan Q M

    2004-07-01

    Despite the widespread use of drug-loaded polymeric systems, there is still considerable uncertainty with regard to the nature of the distribution of the drug within the polymer matrix. The aim of this investigation was to develop thermal and microscopic techniques whereby the miscibility and spatial distribution of a model peptide, cyclosporin A (CyA), in hydroxypropyl methylcellulose (HPMC) films may be studied. The new technique of T(zero)-modulated temperature differential scanning calorimetry (T(zero) MTDSC), scanning electron microscopy (SEM), and pulse force mode atomic force microscopy (PFM-AFM) were used in conjunction to study films prepared using a solvent evaporation process, with a solvent extraction study performed to elucidate the nature of the observed phases. T(zero) MTDSC studies showed glass transitions for both the HPMC and CycA, with the T(g) for the HPMC and CycA seen for the mixed systems. SEM showed two spherical phases of differing electron density. PFM-AFM also showed spheres of differing adhesion that increased in size on addition of drug. Pixel intensity analysis indicated that the smaller spheres corresponded to CycA. Exposure of the films to dichloromethane, in which CycA is soluble but HPMC is not, resulted in the presence of voids that corresponded well to the spheres suggested to correspond to the drug. It was concluded that the system had undergone extensive or complete phase separation, and that the thermal and microscopic techniques outlined above are an effective means by which this issue may be studied. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:1672-1681, 2004

  1. An XRD technique for quantitative phase analysis of Al-U-Zr alloy

    International Nuclear Information System (INIS)

    Khan, K.B.; Kulkarni, N.K.; Jain, G.C.

    2003-01-01

    In several nuclear research reactors all over the world, Al-U alloy is used as fuel. To stabilise less brittle phase UAl 3 in Al-U alloy, a small amount of Zr (1 to 3 wt% ) is added. A rapid, non destructive and simple x-ray diffraction technique has been developed for quantitative phase analysis Al-U-Zr alloy system containing UAl 4 , UAl 3 and Al. (author)

  2. Solid-phase peptide quantitation assay using labeled monoclonal antibody and glutaraldehyde fixation

    International Nuclear Information System (INIS)

    Kasprzyk, P.G.; Cuttitta, F.; Avis, I.; Nakanishi, Y.; Treston, A.; Wong, H.; Walsh, J.H.; Mulshine, J.L.

    1988-01-01

    A solid-phase radioimmunoassay utilizing iodinated peptide-specific monoclonal antibody as a detection system instead of labeled peptide has been developed. Regional specific monoclonal antibodies to either gastrin-releasing peptide or gastrin were used as models to validate the general application of our modified assay. Conditions for radioactive labeling of the monoclonal antibody were determined to minimize oxidant damage, which compromises the sensitivity of other reported peptide quantitation assays. Pretreatment of 96-well polyvinyl chloride test plates with a 5% glutaraldehyde solution resulted in consistent retention of sufficient target peptide on the solid-phase matrix to allow precise quantitation. This quantitative method is completed within 1 h of peptide solid phasing. Pretreatment of assay plates with glutaraldehyde increased binding of target peptide and maximized antibody binding by optimizing antigen presentation. The hypothesis that glutaraldehyde affects both peptide binding to the plate and orientation of the peptide was confirmed by analysis of several peptide analogs. These studies indicate that peptide binding was mediated through a free amino group leaving the carboxy-terminal portion of the target peptide accessible for antibody binding. It was observed that the length of the peptide also affects the amount of monoclonal antibody that will bind. Under the optimal conditions, results from quantitation of gastrin-releasing peptide in relevant samples agree well with those from previously reported techniques. Thus, we report here a modified microplate assay which may be generally applied for the rapid and sensitive quantitation of peptide hormones

  3. Phase-based vascular input function: Improved quantitative DCE-MRI of atherosclerotic plaques

    NARCIS (Netherlands)

    van Hoof, R. H. M.; Hermeling, E.; Truijman, M. T. B.; van Oostenbrugge, R. J.; Daemen, J. W. H.; van der Geest, R. J.; van Orshoven, N. P.; Schreuder, A. H.; Backes, W. H.; Daemen, M. J. A. P.; Wildberger, J. E.; Kooi, M. E.

    2015-01-01

    Purpose: Quantitative pharmacokinetic modeling of dynamic contrast-enhanced (DCE)-MRI can be used to assess atherosclerotic plaque microvasculature, which is an important marker of plaque vulnerability. Purpose of the present study was (1) to compare magnitude-versus phase-based vascular input

  4. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk; Gabriel, Jiří

    2014-01-01

    Roč. 60, č. 6 (2014), s. 545-550 ISSN 0015-5632 Institutional support: RVO:61388971 Keywords : microbial cells * microscopy * microorganism Subject RIV: EE - Microbiology, Virology Impact factor: 1.000, year: 2014

  5. A four-phase strategy for the implementation of reflectance confocal microscopy in dermatology

    NARCIS (Netherlands)

    Hoogedoorn, L.; Gerritsen, M.J.P.; Wolberink, E.A.W.; Peppelman, M.; Kerkhof, P.C.M. van de; Erp, P.E.J. van

    2016-01-01

    BACKGROUND: Reflectance confocal microscopy (RCM) is gradually implemented in dermatology. Strategies for further implementation and practical 'hands on' guidelines are lacking. OBJECTIVE: The primary outcome was to conduct a general strategy for further implementation of RCM. The secondary outcome

  6. Observation Platform for Dynamic Biomedical and Biotechnology Experiments using the ISS Light Microscopy Module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed "Observation platform for dynamic biomedical and biotechnology experiments using the ISS Light Microscopy Module" consists of a platen sized to fit the...

  7. Natural enamel caries in polarized light microscopy: differences in histopathological features derived from a qualitative versus a quantitative approach to interpret enamel birefringence.

    Science.gov (United States)

    De Medeiros, R C G; Soares, J D; De Sousa, F B

    2012-05-01

    Lesion area measurement of enamel caries using polarized light microscopy (PLM) is currently performed in a large number of studies, but measurements are based mainly on a mislead qualitative interpretation of enamel birefringence in a single immersion medium. Here, five natural enamel caries lesions are analysed by microradiography and in PLM, and the differences in their histopathological features derived from a qualitative versus a quantitative interpretation of enamel birefringence are described. Enamel birefringence in different immersion media (air, water and quinoline) is interpreted by both qualitative and quantitative approaches, the former leading to an underestimation of the depth of enamel caries mainly when the criterion of validating sound enamel as a negatively birefringent area in immersion in water is used (a current common practice in dental research). Procedures to avoid the shortcomings of a qualitative interpretation of enamel birefringence are presented and discussed. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  8. Discussions on the non-equilibrium effects in the quantitative phase field model of binary alloys

    International Nuclear Information System (INIS)

    Zhi-Jun, Wang; Jin-Cheng, Wang; Gen-Cang, Yang

    2010-01-01

    All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the introducing of diffuse interface are analysed based on the thermodynamic status across the diffuse interface in the quantitative phase field model of binary alloys. Results indicate that the non-equilibrium effects are related to the negative driving force in the local region of solid side across the diffuse interface. The negative driving force results from the fact that the phase field model is derived from equilibrium condition but used to simulate the non-equilibrium solidification process. The interface thickness dependence of the non-equilibrium effects and its restriction on the large scale simulation are also discussed. (cross-disciplinary physics and related areas of science and technology)

  9. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    Science.gov (United States)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  10. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  11. Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography.

    Science.gov (United States)

    Hagen, C K; Diemoz, P C; Endrizzi, M; Rigon, L; Dreossi, D; Arfelli, F; Lopez, F C M; Longo, R; Olivo, A

    2014-04-07

    X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object's phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast.

  12. Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging.

    Science.gov (United States)

    Braaf, Boy; de Boer, Johannes F

    2017-03-20

    Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.

  13. Electrical characterization of Ge–Sb–Te phase change nano-pillars using conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Bae, Byeong-Ju; Hong, Sung-Hoon; Hwang, Seon-Yong; Hwang, Jae-Yeon; Yang, Ki-Yeon; Lee, Heon

    2009-01-01

    The electrical characteristic of phase change material was studied in nano-scale using nanoimprint lithography and a conducting atomic force microscopy measurement system. Nanoimprint lithography was used to fabricate the nano-scale phase change material pattern. A Pt-coated AFM tip was used as a top electrode to measure the electrical characteristics of the GST nano-pillar. The GST nano-pillar, which is 200 nm in diameter, was amorphized by 2 V and 5 ns reset pulse and was then brought back to the crystalline phase by applying 1.3 V and 150 ns set pulse. Using this measurement system, the GST nano-pillar was switched between the amorphous and crystalline phases more than five times. The results of the reset and the set current measurement with the GST nano-pillar sizes show that the reset and the set currents also decreased with the decrease of the GST pillar size

  14. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  15. Versatile quantitative phase imaging system applied to high-speed, low noise and multimodal imaging (Conference Presentation)

    Science.gov (United States)

    Federici, Antoine; Aknoun, Sherazade; Savatier, Julien; Wattellier, Benoit F.

    2017-02-01

    Quadriwave lateral shearing interferometry (QWLSI) is a well-established quantitative phase imaging (QPI) technique based on the analysis of interference patterns of four diffraction orders by an optical grating set in front of an array detector [1]. As a QPI modality, this is a non-invasive imaging technique which allow to measure the optical path difference (OPD) of semi-transparent samples. We present a system enabling QWLSI with high-performance sCMOS cameras [2] and apply it to perform high-speed imaging, low noise as well as multimodal imaging. This modified QWLSI system contains a versatile optomechanical device which images the optical grating near the detector plane. Such a device is coupled with any kind of camera by varying its magnification. In this paper, we study the use of a sCMOS Zyla5.5 camera from Andor along with our modified QWLSI system. We will present high-speed live cell imaging, up to 200Hz frame rate, in order to follow intracellular fast motions while measuring the quantitative phase information. The structural and density information extracted from the OPD signal is complementary to the specific and localized fluorescence signal [2]. In addition, QPI detects cells even when the fluorophore is not expressed. This is very useful to follow a protein expression with time. The 10 µm spatial pixel resolution of our modified QWLSI associated to the high sensitivity of the Zyla5.5 enabling to perform high quality fluorescence imaging, we have carried out multimodal imaging revealing fine structures cells, like actin filaments, merged with the morphological information of the phase. References [1]. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express, vol. 17, pp. 13080-13094, 2009. [2] P. Bon, S. Lécart, E. Fort and S. Lévêque-Fort, "Fast label-free cytoskeletal network imaging in living mammalian cells," Biophysical journal, 106

  16. Exploring Neural Cell Dynamics with Digital Holographic Microscopy

    KAUST Repository

    Marquet, Pierre; Jourdain, Pascal; Boss, Daniel; Depeursinge, Christian D.; Magistretti, Pierre J.

    2013-01-01

    In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.

  17. Exploring Neural Cell Dynamics with Digital Holographic Microscopy

    KAUST Repository

    Marquet, Pierre

    2013-04-21

    In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.

  18. Assessment of occupational exposure to asbestos fibers: Contribution of analytical transmission electron microscopy analysis and comparison with phase-contrast microscopy.

    Science.gov (United States)

    Eypert-Blaison, Céline; Romero-Hariot, Anita; Clerc, Frédéric; Vincent, Raymond

    2018-03-01

    From November 2009 to October 2010, the French general directorate for labor organized a large field-study using analytical transmission electron microscopy (ATEM) to characterize occupational exposure to asbestos fibers during work on asbestos containing materials (ACM). The primary objective of this study was to establish a method and to validate the feasibility of using ATEM for the analysis of airborne asbestos of individual filters sampled in various occupational environments. For each sampling event, ATEM data were compared to those obtained by phase-contrast optical microscopy (PCOM), the WHO-recommended reference technique. A total of 265 results were obtained from 29 construction sites where workers were in contact with ACM. Data were sorted depending on the combination of the ACM type and the removal technique. For each "ACM-removal technique" combination, ATEM data were used to compute statistical indicators on short, fine and WHO asbestos fibers. Moreover, exposure was assessed taking into account the use of respiratory protective devices (RPD). As in previous studies, no simple relationship was found between results by PCOM and ATEM counting methods. Some ACM, such as asbestos-containing plasters, generated very high dust levels, and some techniques generated considerable levels of dust whatever the ACM treated. On the basis of these observations, recommendations were made to measure and control the occupational exposure limit. General prevention measures to be taken during work with ACM are also suggested. Finally, it is necessary to continue acquiring knowledge, in particular regarding RPD and the dust levels measured by ATEM for the activities not evaluated during this study.

  19. In-focus electron microscopy of frozen-hydrated biological samples with a Boersch phase plate

    Energy Technology Data Exchange (ETDEWEB)

    Barton, B.; Rhinow, D.; Walter, A.; Schroeder, R. [Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main (Germany); Benner, G.; Majorovits, E.; Matijevic, M.; Niebel, H. [Carl Zeiss NTS GmbH, D-73447 Oberkochen (Germany); Mueller, H.; Haider, M. [CEOS GmbH, Englerstr. 26, 69126 Heidleberg (Germany); Lacher, M.; Schmitz, S.; Holik, P. [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Kuehlbrandt, W., E-mail: werner.kuehlbrandt@mpibp-frankfurt.mpg.de [Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main (Germany)

    2011-12-15

    We report the implementation of an electrostatic Einzel lens (Boersch) phase plate in a prototype transmission electron microscope dedicated to aberration-corrected cryo-EM. The combination of phase plate, C{sub s} corrector and Diffraction Magnification Unit (DMU) as a new electron-optical element ensures minimal information loss due to obstruction by the phase plate and enables in-focus phase contrast imaging of large macromolecular assemblies. As no defocussing is necessary and the spherical aberration is corrected, maximal, non-oscillating phase contrast transfer can be achieved up to the information limit of the instrument. A microchip produced by a scalable micro-fabrication process has 10 phase plates, which are positioned in a conjugate, magnified diffraction plane generated by the DMU. Phase plates remained fully functional for weeks or months. The large distance between phase plate and the cryo sample permits the use of an effective anti-contaminator, resulting in ice contamination rates of <0.6 nm/h at the specimen. Maximal in-focus phase contrast was obtained by applying voltages between 80 and 700 mV to the phase plate electrode. The phase plate allows for in-focus imaging of biological objects with a signal-to-noise of 5-10 at a resolution of 2-3 nm, as demonstrated for frozen-hydrated virus particles and purple membrane at liquid-nitrogen temperature. -- Highlights: Black-Right-Pointing-Pointer We implement an electrostatic Boersch phase plate into a dedicated prototypical TEM. Black-Right-Pointing-Pointer Phase contrast aberration-corrected electron microscope (PACEM) includes a diffraction magnification unit (DMU). Black-Right-Pointing-Pointer DMU minimizes obstruction of low spatial frequencies by the phase plate. Black-Right-Pointing-Pointer In-focus phase contrast generation is demonstrated for frozen-hydrated biological specimens.

  20. Comparison of mounting methods for the evaluation of fibers by phase contrast microscopy.

    Science.gov (United States)

    Lee, Eun Gyung; Pang, Thomas W S; Nelson, John; Andrew, Mike; Harper, Martin

    2011-07-01

    The objectives of this study were to evaluate mounting methods for fiber examination of air sample filters by phase contrast microscopy (PCM) and to evaluate differences in fiber counts that might be due to fiber movement. Acetone/triacetin (AT) with various amounts of triacetin and acetone/Euparal (AE) where the mounting medium was placed between the cleared filter wedge and the coverslip were tested as a function of time. Field sample slides collected from a taconite iron-ore processing mill, a tremolitic talc-ore processing mill, and from around a crusher in a meta-basalt stone quarry were prepared with relocatable coverslips to revisit the same field areas on the slides. For each slide, three or four field areas were randomly selected and pictures were taken every 2 weeks to determine any sign of fiber movement over time. For 11 AT slides (named as AT-3.5) prepared with 3.5 μl of the mounting medium according to the NIOSH 7400 method, no fiber movements were detected over 59 weeks. On the other hand, AT slides prepared with larger quantities (10, 15, and 20 μl) of the mounting medium (named as AT-10) and AE slides prepared with ∼10 μl mounting medium showed fiber movement from the eighth day at the earliest. Fiber movement began earlier for the slides mounted with excess triacetin than for those mounted with Euparal. The sample slide storage method, either vertically or horizontally, did not seem to accelerate fiber movement. Additionally, two other modified methods, dimethylformamide solution/Euparal (mDE) and dimethylformamide solution/triacetin (mDT), were also prepared where the mounting medium was placed between the cleared filter wedge and the glass slide. The findings of fiber movements were similar; when 3.5 μl of triacetin was used for the mDT slides, fiber movements were not detected, while fibers on slides prepared with 10 μl triacetin (mDT-10) moved around. No fiber movements were observed for the mDE slides at any time during 59 weeks. Once

  1. Comparison of the layer structure of vapor phase and leached SRL glass by use of AEM [analytical electron microscopy

    International Nuclear Information System (INIS)

    Biwer, B.M.; Bates, J.K.; Abrajano, T.A. Jr.; Bradley, J.P.

    1989-01-01

    Test samples of 131 type glass that have been reacted for extended time periods in water vapor atmospheres of different relative humidities and in static leaching solution have been examined to characterize the reaction products. Analytical electron microscopy (AEM) was used to characterize the leached samples, and a complicated layer structure was revealed, consisting of phases that precipitate from solution and also form within the residual glass layer. The precipitated phases include birnes-site, saponite, and an iron species, while the intralayer phases include the U-Ti containing phase brannerite distributed within a matrix consisting of bands of an Fe rich montmorillonite clay. Comparison is made between samples leached at 40 degrees C for 4 years with those leached at 90 degrees C for 3-1/2 years. The samples reacted in water vapor were examined with scanning electron microscopy and show increasing reaction as both the relative humidity and time of reaction increases. These samples also contain a layered structure with reaction products on the glass surface. 15 refs., 5 figs

  2. Quantitative determination of the crystalline phases of the ceramic materials utilizing the Rietveld method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Lima, J.C. de; Kuhnen, N.C.; Riella, H.G.; Maliska, A.M.

    2009-01-01

    Ceramic materials have properties defined by their chemical and micro-structural composition. The quantification of the crystalline phases is a fundamental stage in the determination of the structure, properties and applications of a ceramic material. Within this context, this study aims is the quantitative determination of the crystalline phases of the ceramic materials developed with addition of mineral coal bottom ash, utilizing the X ray diffraction technique, through the method proposed by Rietveld. For the formulation of the ceramic mixtures a {3,3} simplex-lattice design was used, giving ten formulations of three components (two different types of clays and coal bottom ash). The crystalline phases identified in the ceramic materials after sintering at 1150 deg C during two hours are: quartz, tridimite, mullite and hematite. The proposed methodology utilizing the Rietveld method for the quantification relating to crystalline phases of the materials was shown to be adequate and efficient. (author)

  3. Quantitative phase analysis of a highly textured industrial sample using a Rietveld profile analysis

    International Nuclear Information System (INIS)

    Shin, Eunjoo; Huh, Moo-Young; Seong, Baek-Seok; Lee, Chang-Hee

    2001-01-01

    For the quantitative phase analysis on highly textured two-phase materials, samples with known weight fractions of zirconium and aluminum were prepared. Strong texture components prevailed in both zirconium and aluminum sheet. The diffraction patterns of samples were measured by the neutron and refined by the Rietveld method. The preferred orientation correction of diffraction patterns was carried out by means of recalculated pole figures from the ODF. The present Rietveld analysis of various samples with different weight fractions showed that the absolute error of the calculated weight fractions was less than 7.1%. (author)

  4. Quantitative analysis of phases by x-ray diffraction and thermogravimetry in Cuban phosphorite ores

    International Nuclear Information System (INIS)

    Casanova Gomez, Abdel; Martinez Montalvo, Asor; Cilano Campos, Guillermo; Arostegui Aguirre, Miladys; Ferreiro Fernandez, Adalyz; Alonso Perez, Jose A.

    2016-01-01

    Phases analysis is performed by instrumental techniques X - ray diffraction and Thermal Analysis in two groups of samples of Cuban minerals carriers'phosphorus, candidates to reference materials. To this end, the variant of structural refinement of the diffraction pattern in the form of adjustment profile is applied, using the Full prof program of Juan Rodriguez-Carvajal. This analysis is the first step to develop the standard specification of these resources and classify them as phosphate rock and / or phospharite from their mass content. The statistical evaluation of the uncertainty of the quantitative analysis (standard deviation) was carried out in ten replicate samples of phosphate rock and eight of phosphate from the field Trinidad de Guedes. The qualitative phase analysis reflected the following phase composition: carbonate fluoroapatite (CFA), Calcite, Quartz and Halloysite (present only in the clayey granular phosphorite ore; FGA). By the method of setting pattern powder diffraction profile, the quantitative phase composition is reported in the sample FGA: 87 (2) % of CFA, 4 (1) % of Calcite, 1% Quartz, and 8 (3) % Halloysite. For granular limestone ore (FGC), the following contents were obtained: 87 (3) % Calcite, 8 (3) % of CFA and 5 (1) % Quartz: The obtained values are corroborated by Thermogravimetric Analysis (TG) through the calculation of the mass content of the thermally active phases (Calcite and CFA) in the range (27-10000 0 C), confirming the validity of the results of XRD. (Author)

  5. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    International Nuclear Information System (INIS)

    Sciancalepore, Corrado; Bondioli, Federica; Manfredini, Tiziano; Gualtieri, Alessandro

    2015-01-01

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals was followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe 3 O 4 nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis

  6. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41100 Modena (Italy); Bondioli, Federica [Department of Industrial Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma (Italy); INSTM Consortium, Via G. Giusti 9, 51121 Firenze (Italy); Manfredini, Tiziano [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41100 Modena (Italy); INSTM Consortium, Via G. Giusti 9, 51121 Firenze (Italy); Gualtieri, Alessandro [Department of Chemical and Geological Science, University of Modena and Reggio Emilia, Via S. Eufemia 19, 41121 Modena Italy (Italy)

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals was followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.

  7. Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications

    Directory of Open Access Journals (Sweden)

    Hyunjoo Park

    2013-03-01

    Full Text Available A cellular-level study of the pathophysiology is crucial for understanding the mechanisms behind human diseases. Recent advances in quantitative phase imaging (QPI techniques show promises for the cellular-level understanding of the pathophysiology of diseases. To provide important insight on how the QPI techniques potentially improve the study of cell pathophysiology, here we present the principles of QPI and highlight some of the recent applications of QPI ranging from cell homeostasis to infectious diseases and cancer.

  8. The binding of cellulase variants to dislocations: a semi-quantitative analysis based on CLSM (confocal laser scanning microscopy) images

    DEFF Research Database (Denmark)

    Hidayat, Budi J.; Weisskopf, Carmen; Felby, Claus

    2015-01-01

    or slip planes. Here we study whether cellulases bind to dislocations to a higher extent than to the surrounding cell wall. The binding of fluorescently labelled cellobiohydrolases and endoglucanases to filter paper fibers was investigated using confocal laser scanning microscopy and a ratiometric method...

  9. Quantitative and Qualitative Changes in Teaching Histology by Means of Virtual Microscopy in an Introductory Course in Human Anatomy

    Science.gov (United States)

    Husmann, Polly R.; O'Loughlin, Valerie Dean; Braun, Mark W.

    2009-01-01

    This study compares overall laboratory averages and individual test scores along with a student survey to determine the effects of using virtual microscopy in place of optical microscopes in a large undergraduate human anatomy course. T-tests revealed that the first two laboratory examinations (of four) and the overall laboratory averages were…

  10. Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of Plasmodium spp: performance, limit of detection analysis and quality assurance

    Directory of Open Access Journals (Sweden)

    Ralevski Filip

    2009-12-01

    Full Text Available Abstract Background Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease. Materials and methods A total of 466 blood specimens from returning travelers to Africa, Asia, and South/Central America with suspected malaria infection were collected between 2007 and 2009 at the reference public health laboratory. These specimens were assessed by reference microscopy, multipex real-time quantitative polymerase chain reaction (QPCR, and two rapid diagnostic immuno-chromatographic tests (ICT in a blinded manner. Key clinical laboratory parameters such as limit of detection (LOD analysis on clinical specimens by parasite stage, inter-reader variability of ICTs, staffing implications, quality assurance and cost analysis were evaluated. Results QPCR is the most analytically sensitive method (sensitivity 99.41%, followed by CARESTART (sensitivity 88.24%, and BINAXNOW (sensitivity 86.47% for the diagnosis of malaria in returning travelers when compared to reference microscopy. However, microscopy was unable to specifically identify Plasmodia spp. in 18 out of 170 positive samples by QPCR. Moreover, the 17 samples that were negative by microscopy and positive by QPCR were also positive by ICTs. Quality assurance was achieved for QPCR by exchanging a blinded proficiency panel with another reference laboratory. The Kappa value of inter-reader variability among three readers for BINAXNOW and CARESTART was calculated to be 0.872 and 0.898 respectively. Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R2 = 0.9746 in a clinically relevant dynamic range and retains a LOD of 11 rDNA copies/μl for P. falciparum, which was several log lower than reference microscopy and ICTs. LOD for QPCR is affected not only by parasitemia but the parasite stage distribution of each clinical specimen. QPCR was approximately 6-fold more

  11. Comparison of rigorous modelling of different structure profiles on photomasks for quantitative linewidth measurements by means of UV- or DUV-optical microscopy

    Science.gov (United States)

    Ehret, Gerd; Bodermann, Bernd; Woehler, Martin

    2007-06-01

    The optical microscopy is an important instrument for dimensional characterisation or calibration of micro- and nanostructures, e.g. chrome structures on photomasks. In comparison to scanning electron microscopy (possible contamination of the sample) and atomic force microscopy (slow, risk of damage) optical microscopy is a fast and non destructive metrology method. The precise quantitative determination of the linewidth from the microscope image is, however, only possible by knowledge of the geometry of the structures and their consideration in the optical modelling. We compared two different rigorous model approaches, the Rigorous Coupled Wave Analysis (RCWA) and the Finite Elements Method (FEM) for modelling of structures with different edge angles, linewidths, line to space ratios and polarisations. The RCWA method can adapt inclined edges profiles only by a staircase approximation leading to increased modelling errors of the RCWA method. Even today's sophisticated rigorous methods still show problems with TM-polarisation. Therefore both rigorous methods are compared in terms of their convergence for TE and TM- polarisation. Beyond that also the influence of typical illumination wavelengths (365 nm, 248 nm and 193 nm) on the microscope images and their contribution to the measuring uncertainty budget will be discussed.

  12. Spectral-domain optical coherence phase microscopy for label-free multiplexed protein microarray assay

    NARCIS (Netherlands)

    Joo, C.; Ozkumur, E.; Unlu, B.; de Boer, J.F.

    2009-01-01

    Quantitative measurement of affinities and kinetics of various biomolecular interactions such as protein-protein, protein-DNA and receptor-ligand is central to our understanding of basic molecular and cellular functions and is useful for therapeutic evaluation. Here, we describe a laser-scanning

  13. Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing.

    Science.gov (United States)

    Girshovitz, Pinhas; Shaked, Natan T

    2014-04-15

    We present a new approach for obtaining significant speedup in the digital processing of extracting unwrapped phase profiles from off-axis digital holograms. The new technique digitally multiplexes two orthogonal off-axis holograms, where the digital reconstruction, including spatial filtering and two-dimensional phase unwrapping on a decreased number of pixels, can be performed on both holograms together, without redundant operations. Using this technique, we were able to reconstruct, for the first time to our knowledge, unwrapped phase profiles from off-axis holograms with 1 megapixel in more than 30 frames per second using a standard single-core personal computer on a MATLAB platform, without using graphic-processing-unit programming or parallel computing. This new technique is important for real-time quantitative visualization and measurements of highly dynamic samples and is applicable for a wide range of applications, including rapid biological cell imaging and real-time nondestructive testing. After comparing the speedups obtained by the new technique for holograms of various sizes, we present experimental results of real-time quantitative phase visualization of cells flowing rapidly through a microchannel.

  14. Rietveld quantitative phase analysis of high surface area commercial alumina doped with niobia

    International Nuclear Information System (INIS)

    Gomes, L.B.; Pereira, A.S.; Pokorny, A.; Bergmann, C.P.

    2014-01-01

    The quantification of crystalline phases present in a given material can provide important information about the phenomena related to the diffusion of new elements in a ceramic matrix, as well as the formation and precipitation of minority phases and their microstructural evaluation. In this work, a high content of niobia (16 and 32 %w.t)was added to a high specific surface commercial alumina powder. The specimens were uniaxially pressed (200 MPa) and sintered in two stages: a first step at 1100°C for 3, 6 or 9 hours followed by a second step at 1350°C for 3 hours. The crystalline phases were analyzed by X-ray Diffraction (XRD) and quantified by the Rietveld method. The morphology of the samples was evaluated by Scanning Electron Microscopy (SEM). From the results obtained, some aluminum niobates phases expected for the Al_2O_3-Nb_2O_5 system could be identified as an intergranular phase and their relative fraction was quantified. (author)

  15. Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase

    Energy Technology Data Exchange (ETDEWEB)

    Taoufyq, A. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Département d‘Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache (France); Société CESIGMA—Signals and Systems, 1576 Chemin de La Planquette, F 83 130 LA GARDE (France); Ait Ahsaine, H. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Patout, L. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Benlhachemi, A.; Ezahri, M. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); and others

    2013-07-15

    The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification.

  16. An improved in situ measurement of offset phase shift towards quantitative damping-measurement with AFM

    International Nuclear Information System (INIS)

    Minary-Jolandan, Majid; Yu Minfeng

    2008-01-01

    An improved approach is introduced in damping measurement with atomic force microscope (AFM) for the in situ measurement of the offset phase shift needed for determining the intrinsic mechanical damping in nanoscale materials. The offset phase shift is defined and measured at a point of zero contact force according to the deflection part of the AFM force plot. It is shown that such defined offset phase shift is independent of the type of sample material, varied from hard to relatively soft materials in this study. This improved approach allows the self-calibrated and quantitative damping measurement with AFM. The ability of dynamic mechanical analysis for the measurement of damping in isolated one-dimensional nanostructures, e.g. individual multiwalled carbon nanotubes, was demonstrated

  17. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution.

    Science.gov (United States)

    Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T

    2018-02-08

    Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text

  18. Study of the structure of the particles of channel black of phase-contrasting electron microscopy of high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Varlakov, V.P.; Fialkov, A.S.; Smirnov, B.N.

    1981-01-01

    The structure of channel black, DG-100, in the initial and graphitized states has been studied by phase-contrasting electron microscopy with a direct resolution of the carbon layers. An individual carbon layer is the main structural element of carbon black. The structure of channel black in the graphitized state looks like a hollow closed polyhedron made up of bundles of continuous carbon layers which can bend and become deformed to a great extent, testifying to the polymeric nature of the structure of channel black. The authors give an interpretation of the roentgen values of the 'dimensions of crystallites' in channel black.

  19. Ex vivo characterization of pathologic fluids with quantitative phase-contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Vivien, E-mail: vivien.richter@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Weg 3, 72076 Tuebingen (Germany); Willner, Marian S., E-mail: marian.willner@ph.tum.de [Department of Physics & Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Henningsen, John, E-mail: john.henningsen@tum.de [Department of Physics & Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Birnbacher, Lorenz, E-mail: lorenz.birnbacher@ph.tum.de [Department of Physics & Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Marschner, Mathias, E-mail: mathias.marschner@ph.tum.de [Department of Physics & Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Herzen, Julia, E-mail: julia.herzen@ph.tum.de [Department of Physics & Institute of Medical Engineering, Technische Universität München, James-Franck-Strasse 1, 85748 Garching (Germany); Kimm, Melanie A., E-mail: melanie.kimm@tum.de [Department of Diagnostic and Interventional Radiology, Technische Universität München, Ismaninger Str. 22, 81675 Munich (Germany); and others

    2017-01-15

    Purpose: X-ray phase-contrast imaging (PCI) provides additional information beyond absorption characteristics by detecting the phase shift of the X-ray beam passing through material. The grating-based system works with standard polychromatic X-ray sources, promising a possible clinical implementation. PCI has been shown to provide additional information in soft-tissue samples. The aim of this study was to determine if ex vivo quantitative phase-contrast computed tomography (PCCT) may differentiate between pathologic fluid collections. Materials and methods: PCCT was performed with the grating interferometry method. A protein serial dilution, human blood samples and 17 clinical samples of pathologic fluid retentions were imaged and correlated with clinical chemistry measurements. Conventional and phase-contrast tomography images were reconstructed. Phase-contrast Hounsfield Units (HUp) were used for quantitative analysis analogously to conventional HU. The imaging was analyzed using overall means, ROI values as well as whole-volume-histograms and vertical gradients. Contrast to noise ratios were calculated between different probes and between imaging methods. Results: HUp showed a very good linear correlation with protein concentration in vitro. In clinical samples, HUp correlated rather well with cell count and triglyceride content. PCI was better than absorption imaging at differentiating protein concentrations in the protein samples as well as at differentiating blood plasma from cellular components. PCI also allowed for differentiation of watery samples (such as lymphoceles) from pus. Conclusion: Phase-contrast computed tomography is a promising tool for the differentiation of pathologic fluids that appear homogenous with conventional attenuation imaging.

  20. In Situ Transmission Electron Microscopy Observation of Nanostructural Changes in Phase-Change Memory

    KAUST Repository

    Meister, Stefan; Kim, SangBum; Cha, Judy J.; Wong, H.-S. Philip; Cui, Yi

    2011-01-01

    Phase-change memory (PCM) has been researched extensively as a promising alternative to flash memory. Important studies have focused on its scalability, switching speed, endurance, and new materials. Still, reliability issues and inconsistent

  1. Fluorescence spectroscopy and confocal microscopy of the mycotoxin citrinin in condensed phase and hydrogel films.

    Science.gov (United States)

    Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S

    2014-05-01

    The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.

  2. The nanoscale phase distinguishing of PCL-PB-PCL blended in epoxy resin by tapping mode atomic force microscopy

    Science.gov (United States)

    Li, Huiqin; Sun, Limin; Shen, Guangxia; Liang, Qi

    2012-02-01

    In this work, we investigated the bulk phase distinguishing of the poly(ɛ-caprolactone)-polybutadiene-poly(ɛ-caprolactone) (PCL-PB-PCL) triblock copolymer blended in epoxy resin by tapping mode atomic force microscopy (TM-AFM). We found that at a set-point amplitude ratio ( r sp) less than or equal to 0.85, a clear phase contrast could be obtained using a probe with a force constant of 40 N/m. When r sp was decreased to 0.1 or less, the measured size of the PB-rich domain relatively shrank; however, the height images of the PB-rich domain would take reverse (translating from the original light to dark) at r sp = 0.85. Force-probe measurements were carried out on the phase-separated regions by TM-AFM. According to the phase shift angle vs. r sp curve, it could be concluded that the different force exerting on the epoxy matrix or on the PB-rich domain might result in the height and phase image reversion. Furthermore, the indentation depth vs. r sp plot showed that with large tapping force (lower r sp), the indentation depth for the PB-rich domain was nearly identical for the epoxy resin matrix.

  3. Effects of phase and coupling between the vibrational modes on selective excitation in coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Patel, Vishesha; Malinovsky, Vladimir S.; Malinovskaya, Svetlana

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy has been a major tool of investigation of biological structures as it contains the vibrational signature of molecules. A quantum control method based on chirped pulse adiabatic passage was recently proposed for selective excitation of a predetermined vibrational mode in CARS microscopy [Malinovskaya and Malinovsky, Opt. Lett. 32, 707 (2007)]. The method utilizes the chirp sign variation at the peak pulse amplitude and gives a robust adiabatic excitation of the desired vibrational mode. Using this method, we investigate the impact of coupling between vibrational modes in molecules on controllability of excitation of the CARS signal. We analyze two models of two coupled two-level systems (TLSs) having slightly different transitional frequencies. The first model, featuring degenerate ground states of the TLSs, gives robust adiabatic excitation and maximum coherence in the resonant TLS for positive value of the chirp. In the second model, implying nondegenerate ground states in the TLSs, a population distribution is observed in both TLSs, resulting in a lack of selectivity of excitation and low coherence. It is shown that the relative phase and coupling between the TLSs play an important role in optimizing coherence in the desired vibrational mode and suppressing unwanted transitions in CARS microscopy.

  4. Short-coherence in-line phase-shifting infrared digital holographic microscopy for measurement of internal structure in silicon

    Science.gov (United States)

    Xi, Teli; Dou, Jiazhen; Di, Jianglei; Li, Ying; Zhang, Jiwei; Ma, Chaojie; Zhao, Jianlin

    2017-06-01

    Short-coherence in-line phase-shifting digital holographic microscopy based on Michelson interferometer is proposed to measure internal structure in silicon. In the configuration, a short-coherence infrared laser is used as the light source in order to avoid the interference formed by the reference wave and the reflected wave from the front surface of specimen. At the same time, in-line phase-shifting configuration is introduced to overcome the problem of poor resolution and large pixel size of the infrared camera and improve the space bandwidth product of the system. A specimen with staircase structure is measured by using the proposed configuration and the 3D shape distribution are given to verify the effectiveness and accuracy of the method.

  5. Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction.

    Science.gov (United States)

    Robert, Donatien; Douillard, Thierry; Boulineau, Adrien; Brunetti, Guillaume; Nowakowski, Pawel; Venet, Denis; Bayle-Guillemaud, Pascale; Cayron, Cyril

    2013-12-23

    LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 μm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.

  6. Atomic force microscopy for the determination of refractive index profiles of optical fibres and waveguides: a quantitative study

    International Nuclear Information System (INIS)

    Huntington, S.T.; Mulvaney, P.; Roberts, K.A.

    1997-01-01

    The use of preferential etching and atomic force microscopy to measure refractive index profiles of optical fibres is investigated. Both the etch rate and the position of lateral features are shown to be independent of etch time. An elliptical core fibre has been studied and the resultant profile found to be in qualitative agreement with the preform index profile. It is shown, however, that the ellipticity of the core has changed during the drawing process. The method has been extended to fluorine and germanium doped planar waveguides and the results correlated with the fabrication process

  7. Differential dynamic optical microscopy for the characterization of soft matter: liquid crystal dynamics, volume phase transition of hydrogels, and phase transition of binary mixtures

    Science.gov (United States)

    Yoon, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan; Smith, Michael H.; Lyon, L. Andrew

    2011-03-01

    The structure and dynamics of soft matter were studied by differential dynamic optical microscopy. One can retrieve q-space information through image processing and Fourier analysis, even when the feature sizes in real space image are too small to be resolved or even visible in an optical microscope. The temporal sequence of real space images were Fourier transformed, and analyzed for the temporal and spatial fluctuations of power spectrum. Here, we present the results on liquid crystal dynamics and their elastic properties, volume phase transition of hydrogels when their dimensions are sub-micron, and critical opalescence of binary mixtures (water/2,6-lutidine).

  8. Quantitative phase imaging using quadri-wave lateral shearing interferometry. Application to X-ray domain

    International Nuclear Information System (INIS)

    Rizzi, Julien

    2013-01-01

    Since Roentgen discovered X-rays, X-ray imaging systems are based on absorption contrast. This technique is inefficient for weakly absorbing objects. As a result, X-ray standard radiography can detect bones lesions, but cannot detect ligament lesions. However, phase contrast imaging can overcome this limitation. Since the years 2000, relying on former works of opticians, X-ray scientists are developing phase sensitive devices compatible with industrial applications such as medical imaging or non destructive control. Standard architectures for interferometry are challenging to implement in the X-ray domain. This is the reason why grating based interferometers became the most promising devices to envision industrial applications. They provided the first x-ray phase contrast images of living human samples. Nevertheless, actual grating based architectures require the use of at least two gratings, and are challenging to adapt on an industrial product. So, the aim of my thesis was to develop a single phase grating interferometer. I demonstrated that such a device can provide achromatic and propagation invariant interference patterns. I used this interferometer to perform quantitative phase contrast imaging of a biological fossil sample and x-ray at mirror metrology. (author)

  9. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy

    DEFF Research Database (Denmark)

    Hettler, Simon; Kano, Emi; Dries, Manuel

    2018-01-01

    A systematic study on charging of carbon thin films under intense electron-beam irradiation was performed in a transmission electron microscope to identify the underlying physics for the functionality of hole-free phase plates. Thin amorphous carbon films fabricated by different deposition techni...

  10. Complete staining of human spermatozoa and immature germ cells combined with phase contrast microscopy

    DEFF Research Database (Denmark)

    Michael, A Y; Drejer, J O; Bagger, P V

    1987-01-01

    A method combining Janus green B and Thymol blue stains the anterior part of the head, the nuclear membrane, middle piece, and tail of spermatozoa light green and the nucleus deep purple. The method provides excellent stained preparations for the evaluation of sperm morphology by phase contrast...

  11. Liquid-solid phase transition of Ge-Sb-Te alloy observed by in-situ transmission electron microscopy

    International Nuclear Information System (INIS)

    Berlin, Katja; Trampert, Achim

    2017-01-01

    Melting and crystallization dynamics of the multi-component Ge-Sb-Te alloy have been investigated by in-situ transmission electron microscopy (TEM). Starting point of the phase transition study is an ordered hexagonal Ge 1 Sb 2 Te 4 thin film on Si(111) where the crystal structure and the chemical composition are verified by scanning TEM and electron energy-loss spectroscopy, respectively. The in-situ observation of the liquid phase at 600°C including the liquid-solid and liquid-vacuum interfaces and their movements was made possible due to an encapsulation of the TEM sample. The solid-liquid interface during melting displays a broad and diffuse transition zone characterized by a vacancy induced disordered state. Although the velocities of interface movements are measured to be in the nanometer per second scale, both, for crystallization and solidification, the underlying dynamic processes are considerably different. Melting reveals linear dependence on time, whereas crystallization exhibits a non-linear time-dependency featuring a superimposed start-stop motion. Our results may provide valuable insight into the atomic mechanisms at interfaces during the liquid-solid phase transition of Ge-Sb-Te alloys. - Highlights: • In-situ TEM observation of liquid Ge-Sb-Te phase transition due to encapsulation. • During melting: Observation of non-ordered interface transition due to premelting. • During solidification: Observation of non-linear time-dependent crystallization.

  12. Liquid-solid phase transition of Ge-Sb-Te alloy observed by in-situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Katja, E-mail: katja.berlin@pdi-berlin.de; Trampert, Achim

    2017-07-15

    Melting and crystallization dynamics of the multi-component Ge-Sb-Te alloy have been investigated by in-situ transmission electron microscopy (TEM). Starting point of the phase transition study is an ordered hexagonal Ge{sub 1}Sb{sub 2}Te{sub 4} thin film on Si(111) where the crystal structure and the chemical composition are verified by scanning TEM and electron energy-loss spectroscopy, respectively. The in-situ observation of the liquid phase at 600°C including the liquid-solid and liquid-vacuum interfaces and their movements was made possible due to an encapsulation of the TEM sample. The solid-liquid interface during melting displays a broad and diffuse transition zone characterized by a vacancy induced disordered state. Although the velocities of interface movements are measured to be in the nanometer per second scale, both, for crystallization and solidification, the underlying dynamic processes are considerably different. Melting reveals linear dependence on time, whereas crystallization exhibits a non-linear time-dependency featuring a superimposed start-stop motion. Our results may provide valuable insight into the atomic mechanisms at interfaces during the liquid-solid phase transition of Ge-Sb-Te alloys. - Highlights: • In-situ TEM observation of liquid Ge-Sb-Te phase transition due to encapsulation. • During melting: Observation of non-ordered interface transition due to premelting. • During solidification: Observation of non-linear time-dependent crystallization.

  13. A competitive solid-phase radioimmunoassay for quantitation of the major allergen of Parietaria pollen

    International Nuclear Information System (INIS)

    Corbi, A.L.; Ayuso, R.; Lombardero, M.; Duffort, O.; Carreira, J.

    1985-01-01

    A competitive solid-phase radioimmunoassay has been developed for quantitation of the major allergen of Parietaria judaica pollen. The assay is based on: (1) the ability of AC/1.1 monoclonal antibody to bind specifically to the P. judaica major allergen, and (2) the ability of crude pollen extracts or purified allergen to inhibit the binding of 125 I-labelled allergen to solid-phase-bound AC/1.1 monoclonal antibody. The assay is sensitive enough to detect as little as 10 ng of allergen. A good correlation is found when the results obtained are compared with those produced by RAST inhibition (r = 0.95; P < 0.001). Thus, this method can also be used for the estimation of the allergenic activity of P. judaica pollen extracts. The assay is easily completed in 2 h, allowing simultaneous analysis of a number of extracts. (Auth.)

  14. Quantitation of complement factor D in human serum by a solid-phase radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Barnum, S R; Niemann, M A; Kearney, J F; Volanakis, J E [Alabama Univ., Birmingham (USA)

    1984-03-16

    A sensitive solid-phase radioimmunoassay is described which quantitates human D to 1-2 ng/ml. The assay was used to measure the concentration of D in normal and acute-phase sera and sera from individuals with systemic lupus erythematosus. All 3 groups of sera had comparable levels of D with mean values of 1.8, 2.3 and 2.5 ..mu..g/ml, respectively. Also tested were sera decomplemented in vitro by activators of the classical and alternative pathways. The results indicated that D is not depleted by alternative or classical pathway activation. However, heat inactivation (56/sup 0/C, 30 min) of serum resulted in almost complete loss of antigenic D.

  15. Quantitative and Qualitative Aspects of Gas-Metal-Oxide Mass Transfer in High-Temperature Confocal Scanning Laser Microscopy

    Science.gov (United States)

    Piva, Stephano P. T.; Pistorius, P. Chris; Webler, Bryan A.

    2018-05-01

    During high-temperature confocal scanning laser microscopy (HT-CSLM) of liquid steel samples, thermal Marangoni flow and rapid mass transfer between the sample and its surroundings occur due to the relatively small sample size (diameter around 5 mm) and large temperature gradients. The resulting evaporation and steel-slag reactions tend to change the chemical composition in the metal. Such mass transfer effects can change observed nonmetallic inclusions. This work quantifies oxide-metal-gas mass transfer of solutes during HT-CSLM experiments using computational simulations and experimental data for (1) dissolution of MgO inclusions in the presence and absence of slag and (2) Ca, Mg-silicate inclusion changes upon exposure of a Si-Mn-killed steel to an oxidizing gas atmosphere.

  16. Quantitative analysis of phosphoinositide 3-kinase (PI3K) signaling using live-cell total internal reflection fluorescence (TIRF) microscopy.

    Science.gov (United States)

    Johnson, Heath E; Haugh, Jason M

    2013-12-02

    This unit focuses on the use of total internal reflection fluorescence (TIRF) microscopy and image analysis methods to study the dynamics of signal transduction mediated by class I phosphoinositide 3-kinases (PI3Ks) in mammalian cells. The first four protocols cover live-cell imaging experiments, image acquisition parameters, and basic image processing and segmentation. These methods are generally applicable to live-cell TIRF experiments. The remaining protocols outline more advanced image analysis methods, which were developed in our laboratory for the purpose of characterizing the spatiotemporal dynamics of PI3K signaling. These methods may be extended to analyze other cellular processes monitored using fluorescent biosensors. Copyright © 2013 John Wiley & Sons, Inc.

  17. Quantitative Transmission Electron Microscopy of Nanoparticles and Thin-Film Formation in Electroless Metallization of Polymeric Surfaces

    Science.gov (United States)

    Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket

    2011-03-01

    Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.

  18. Fracture healing: Quantitative three-phase bone scintigraphy as a prognostic factor

    International Nuclear Information System (INIS)

    Dodig, D.; Kasal, B.; Kragic-Pranic, A.; Predic, P.

    2002-01-01

    Aim: Careful clinical examination and conventional radiography, together with other standard methods for evaluation of bone fracture healing, are frequently inconclusive. Furthermore, it is difficult to predict the complications of healing on the basis of clinical and radiographic findings only. Bone scintigraphy plays an important role in detecting bone fractures. This method is very sensitive, but not enough specific. The aim of this work was to evaluate the role of three-phase bone scintigraphy in the healing prognosis of long bone fractures. Material and Methods: We evaluated the three elements (perfusion, blood pool and static image) of three-phase bone scintigraphy in early prognosis of the course of fracture healing in patients with fractures of femur or tibia. Three-phase bone scintigraphy was performed in 73 patients. The patients were divided into 4 groups according to X-ray and clinical examination: 1) Non operated patients with stable fracture, 2) Operated patients with unstable fracture (infection), 3) Fractures with delayed union, 4) Patients with pseudoarthrosis. Using region of interest (ROI) method we compared the activity on the site of fracture with the activity on the symmetrical place in the healthy bone. The relative indices for each group of patients and for each element of three-bone scintigraphy were calculated in order to make possible the follow up of the fracture healing and to obtain data for prognosis and evaluation of possible complications. Results: The most valuable results were obtained by quantitative analysis of perfusion data immediately after trauma and 2-3 weeks later. Our results show a high diagnostic accuracy in identifying infection by perfusion scintigrams immediately after trauma. The perfusion indices obtained immediately and after 2-3 weeks could predict delayed union after the trauma. Quantitative analysis of blood pool phase gave no data of clinical significance in distinguishing various pathologies. Conclusion: Our

  19. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  20. Stable and simple quantitative phase-contrast imaging by Fresnel biprism

    Science.gov (United States)

    Ebrahimi, Samira; Dashtdar, Masoomeh; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Javidi, Bahram

    2018-03-01

    Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the beams simultaneously. In the overlapping area, linear interference fringes with high contrast are produced. The frequency of the interference pattern could be easily adjusted by displacement of the biprism along the optical axis without a decrease in fringe contrast. To evaluate the validity of the method, the spatial noise and temporal stability of the setup are compared with the common off-axis DH microscope based on a Mach-Zehnder interferometer. It is shown that the proposed technique has low mechanical noise as well as superb temporal stability with sub-nanometer precision without any external vibration isolation. The higher temporal stability improves the capabilities of the microscope for studying micro-object fluctuations, particularly in the case of biological specimens. Experimental results are presented using red blood cells and silica microspheres to demonstrate the system performance.

  1. Investigating hyperoxic effects in the rat brain using quantitative susceptibility mapping based on MRI phase.

    Science.gov (United States)

    Hsieh, Meng-Chi; Kuo, Li-Wei; Huang, Yun-An; Chen, Jyh-Horng

    2017-02-01

    To test whether susceptibility imaging can detect microvenous oxygen saturation changes, induced by hyperoxia, in the rat brain. A three-dimensional gradient-echo with a flow compensation sequence was used to acquire T2*-weighted images of rat brains during hyperoxia and normoxia. Quantitative susceptibility mapping (QSM) and QSM-based microvenous oxygenation venography were computed from gradient-echo (GRE) phase images and compared between the two conditions. Pulse oxygen saturation (SpO 2 ) in the cortex was examined and compared with venous oxygen saturation (SvO 2 ) estimated by QSM. Oxygen saturation change calculated by a conventional Δ R2* map was also compared with the ΔSvO 2 estimated by QSM. Susceptibilities of five venous and tissue regions were quantified separately by QSM. Venous susceptibility was reduced by nearly 10%, with an SvO 2 shift of 10% during hyperoxia. A hyperoxic effect, confirmed by SpO 2 measurement, resulted in an SvO 2 increase in the cortex. The ΔSvO 2 between hyperoxia and normoxia was consistent with what was estimated by the Δ R2* map in five regions. These findings suggest that a quantitative susceptibility map is a promising technique for SvO 2 measurement. This method may be useful for quantitatively investigating oxygenation-dependent functional MRI studies. Magn Reson Med 77:592-602, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning

    Science.gov (United States)

    Nguyen, Tan H.; Sridharan, Shamira; Macias, Virgilia; Kajdacsy-Balla, Andre; Melamed, Jonathan; Do, Minh N.; Popescu, Gabriel

    2017-03-01

    We present an approach for automatic diagnosis of tissue biopsies. Our methodology consists of a quantitative phase imaging tissue scanner and machine learning algorithms to process these data. We illustrate the performance by automatic Gleason grading of prostate specimens. The imaging system operates on the principle of interferometry and, as a result, reports on the nanoscale architecture of the unlabeled specimen. We use these data to train a random forest classifier to learn textural behaviors of prostate samples and classify each pixel in the image into different classes. Automatic diagnosis results were computed from the segmented regions. By combining morphological features with quantitative information from the glands and stroma, logistic regression was used to discriminate regions with Gleason grade 3 versus grade 4 cancer in prostatectomy tissue. The overall accuracy of this classification derived from a receiver operating curve was 82%, which is in the range of human error when interobserver variability is considered. We anticipate that our approach will provide a clinically objective and quantitative metric for Gleason grading, allowing us to corroborate results across instruments and laboratories and feed the computer algorithms for improved accuracy.

  3. Pattern decomposition and quantitative-phase analysis in pulsed neutron transmission

    International Nuclear Information System (INIS)

    Steuwer, A.; Santisteban, J.R.; Withers, P.J.; Edwards, L.

    2004-01-01

    Neutron diffraction methods provide accurate quantitative insight into material properties with applications ranging from fundamental physics to applied engineering research. Neutron radiography or tomography on the other hand, are useful tools in the non-destructive spatial imaging of materials or engineering components, but are less accurate with respect to any quantitative analysis. It is possible to combine the advantages of diffraction and radiography using pulsed neutron transmission in a novel way. Using a pixellated detector at a time-of-flight source it is possible to collect 2D 'images' containing a great deal of interesting information in the thermal regime. This together with the unprecedented intensities available at spallation sources and improvements in computing power allow for a re-assessment of the transmission methods. It opens the possibility of simultaneous imaging of diverse material properties such as strain or temperature, as well as the variation in attenuation, and can assist in the determination of phase volume fraction. Spatial and time resolution (for dynamic experiment) are limited only by the detector technology and the intensity of the source. In this example, phase information contained in the cross-section is extracted from Bragg edges using an approach similar to pattern decomposition

  4. Application of extraction replicas and analytical electron microscopy to precipitate phase studies

    International Nuclear Information System (INIS)

    Kenik, E.A.; Maziasz, P.J.

    1984-01-01

    Extraction replicas provide a powerful extension of AEM techniques for analysis of fine precipitates. In many cases, replicas allow more accurate analyses to be performed and, in some cases, allow unique analyses which cannot be performed in-foil. However, there are limitations to the use of extraction replicas in AEM, of which the analyst must be aware. Many can be eliminated by careful preparation. Often, combined AEM studies of precipitates in-foil and on extraction replicas provide complementary and corroborative information for the fullest analysis of precipitate phases

  5. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy

    International Nuclear Information System (INIS)

    Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.

    2017-01-01

    We describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We then observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wave trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.

  6. Linearity of amplitude and phase in tapping-mode atomic force microscopy

    International Nuclear Information System (INIS)

    Salapaka, M.V.; Chen, D.J.; Cleveland, J.P.

    2000-01-01

    In this article tapping-mode atomic force microscope dynamics is studied. The existence of a periodic orbit at the forcing frequency is shown under unrestrictive conditions. The dynamics is further analyzed using the impact model for the tip-sample interaction and a spring-mass-damper model of the cantilever. Stability of the periodic orbit is established. Closed-form expressions for various variables important in tapping-mode imaging are obtained. The linear relationship of the amplitude and the sine of the phase of the first harmonic of the periodic orbit with respect to cantilever-sample offset is shown. The study reinforces gentleness of the tapping-mode on the sample. Experimental results are in excellent qualitative agreement with the theoretical predictions. The linear relationship of the sine of the phase and the amplitude can be used to infer sample properties. The comparison between the theory and the experiments indicates essential features that are needed in a more refined model

  7. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy

    Science.gov (United States)

    Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.

    2017-12-01

    Here, we describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wave trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.

  8. Effect of data quality on quantitative phase analysis (QPA) using the Rietveld method

    International Nuclear Information System (INIS)

    Scarlett, N.; Madsen, I.; Lwin, T.

    1999-01-01

    Full text: Quantitative phase analysis using the Rietveld method has become a valuable tool in modern X-ray diffraction. XRD is a recognised research tool and has been successfully employed in the developmental stages of many industrial processes. It is now becoming increasingly important as a means of process control either (i) in site quality control laboratories or (ii) even on-line. In on-line applications, the optimisation of data collection regimes is of critical importance if rapid turn-around, and hence timely process control, is to be achieved. This paper examines the effect of data quality on the quantification of phases in well characterised suites of minerals. A range of data collection regimes has been systematically investigated with a view to determining the minimum data required for acceptable quantitative phase analyses. Data has been collected with variations in the following process factors: 1st step, width ranging from 0.01 to 0.3 deg 2θ ;2nd step, counting time ranging from 0.0125 to 4 sec/step 3rd step, upper limit in the scan range varying from 40 to 148 deg 2θ. The data has been analysed using whole-pattern (Rietveld) based methods using two distinctly different analytical approaches: (i) refinement of only pattern background and individual scale factors for each phase; (ii) refinement of unit cell dimensions, overall thermal parameters, peak width and shape in addition to the background and scale factors. The experimental design for this work included a ternary design of the three component phases (fluorite, CaF 2 ; zincite, ZnO; corundum, Al 2 O 3 ) to form seven mixtures of major and minor phases of different scattering powers and the combination of the three process factors (variables) to form a factorial plan. The final data generation plan is a combination/crossing of the three process variable factorial plan with the three component mixture plan. It allows a detailed data analysis to provide information on the effect of the process

  9. Study of NaCl:Mn2+ nanostructures in the Suzuki phase by optical spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Mejía-Uriarte, E.V.; Kolokoltsev, O.; Navarrete Montesinos, M.; Camarillo, E.; Hernández A, J.; Murrieta S, H.

    2015-01-01

    NaCl:Mn 2+ nanostructures in the Suzuki phase have been studied by fluorescence (emission and excitation) spectroscopy and atomic force microscopy (AFM) as a function of temperature. The “as-grown” samples give rise to two broad emission bands that peak at 508 (green emission) and 610 nm (red emission). The excitation spectrum shows peaks at 227 nm and 232 nm for emission wavelengths at 508 nm and 610 nm, respectively. When the samples are heated continuously from room temperature up to 220 °C, the green emission (associated to the excitation peak at 227 nm) disappears at a temperature close to 120 °C, whilst only the red emission remains, which is characteristic of manganese ions. AFM images on the (0 0 1) surface (freshly cleaved) show several conformations of nanostructures, such as disks of 20–50 nm in diameter. Particularly, the images also reveal nanostructures with rectangular shape of ~280×160 nm 2 and ~6 nm height; these are present only in samples with green emission associated to the Suzuki phase. Then, the evidence suggests that this topographic configuration might be related to the interaction with the first neighbors and the next neighbors, according to the configuration that has been suggested for the Suzuki phase. - Highlights: • NaCl:Mn 2+ single crystals in the Suzuki phase contain rectangular nanostructures. • Double emission of manganese ions: green (508 nm) and red (610 nm) bands. • The excitation peak at 227 nm is attributed to rectangular nanostructures. • The green emission band associated to Suzuki phase is extinguished at 120 °C

  10. Isolation and quantitation of metallothionein isoforms using reversed-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Richards, M.P.; Darcey, S.E.; Steele, N.C.

    1986-01-01

    Reversed-phase HPLC (RP-HPLC) was used to isolate and quantify metallothionein (MT) isoforms from a variety of animal species and tissues. Separations were performed on C 18 radially compressed cartridge columns, eluted with a 2-step linear gradient of acetonitrile in 10 mM sodium phosphate, pH 7.0. Isoforms were detected by UV absorbance (214 nm) and by on-line interfacing with an atomic absorption spectrophotometer (HPLC-AA) to determine bound Zn, Cd and Cu. Rabbit liver and horse kidney MT's exhibited 7 distinct peaks on RP-HPLC, 2 of which were predominant (MT1 and 2). Pig liver and kidney MT2 yielded 2 subspecies on RP-HPLC, while MT1 yielded a single peak. Avian liver MT was unique from mammalian MT's in that MT2 was about tenfold more abundant than MT1. RP-HPLC and HPLC-AA were used to isolate and quantitate MT isoforms and their Zn content directly from cytosol. Quantitation was achieved by peak area integration and extrapolation from a standard curve of purified avian liver MT2. Both RP-HPLC and HPLC-AA had a lower detection limit of 1 + g of peptide and .1 μg of Zn. Recoveries (92-98%) were determined with labeled ( 35 S) MT and MT of known Zn content. Cytoplasmic MT-Zn in avian embryo hepatocytes cultured with added Zn was quantitated using HPLC-AA. In conclusion, both RP-HPLC and HPLC-AA are rapid and powerful separation techniques for the isolation, quantitation and characterization of the isoproteins comprising the MT gene family

  11. Dual light-emitting diode-based multichannel microscopy for whole-slide multiplane, multispectral and phase imaging.

    Science.gov (United States)

    Liao, Jun; Wang, Zhe; Zhang, Zibang; Bian, Zichao; Guo, Kaikai; Nambiar, Aparna; Jiang, Yutong; Jiang, Shaowei; Zhong, Jingang; Choma, Michael; Zheng, Guoan

    2018-02-01

    We report the development of a multichannel microscopy for whole-slide multiplane, multispectral and phase imaging. We use trinocular heads to split the beam path into 6 independent channels and employ a camera array for parallel data acquisition, achieving a maximum data throughput of approximately 1 gigapixel per second. To perform single-frame rapid autofocusing, we place 2 near-infrared light-emitting diodes (LEDs) at the back focal plane of the condenser lens to illuminate the sample from 2 different incident angles. A hot mirror is used to direct the near-infrared light to an autofocusing camera. For multiplane whole-slide imaging (WSI), we acquire 6 different focal planes of a thick specimen simultaneously. For multispectral WSI, we relay the 6 independent image planes to the same focal position and simultaneously acquire information at 6 spectral bands. For whole-slide phase imaging, we acquire images at 3 focal positions simultaneously and use the transport-of-intensity equation to recover the phase information. We also provide an open-source design to further increase the number of channels from 6 to 15. The reported platform provides a simple solution for multiplexed fluorescence imaging and multimodal WSI. Acquiring an instant focal stack without z-scanning may also enable fast 3-dimensional dynamic tracking of various biological samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    Science.gov (United States)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  13. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging.

    Science.gov (United States)

    Sahay, Peeyush; Shukla, Pradeep K; Ghimire, Hemendra M; Almabadi, Huda M; Tripathi, Vibha; Mohanty, Samarendra K; Rao, Radhakrishna; Pradhan, Prabhakar

    2017-03-01

    Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10-12 week-old mice fed a Lieber-DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.

  14. Quantitative EPMA of Nano-Phase Iron-Silicides in Apollo 16 Lunar Regolith

    Science.gov (United States)

    Gopon, P.; Fournelle, J.; Valley, J. W.; Pinard, P. T.; Sobol, P.; Horn, W.; Spicuzza, M.; Llovet, X.; Richter, S.

    2013-12-01

    Until recently, quantitative EPMA of phases under a few microns in size has been extremely difficult. In order to achieve analytical volumes to analyze sub-micron features, accelerating voltages between 5 and 8 keV need to be used. At these voltages the normally used K X-ray transitions (of higher Z elements) are no longer excited, and we must rely of outer shell transitions (L and M). These outer shell transitions are difficult to use for quantitative EPMA because they are strongly affected by different bonding environments, the error associated with their mass attenuation coefficients (MAC), and their proximity to absorption edges. These problems are especially prevalent for the transition metals, because of the unfilled M5 electron shell where the Lα transition originates. Previous studies have tried to overcome these limitations by using standards that almost exactly matched their unknowns. This, however, is cumbersome and requires accurate knowledge of the composition of your sample beforehand, as well as an exorbitant number of well characterized standards. Using a 5 keV electron beam and utilizing non-standard X-ray transitions (Ll) for the transition metals, we are able to conduct accurate quantitative analyses of phases down to ~300nm. The Ll transition in the transition metals behaves more like a core-state transition, and unlike the Lα/β lines, is unaffected by bonding effects and does not lie near an absorption edge. This allows for quantitative analysis using standards do not have to exactly match the unknown. In our case pure metal standards were used for all elements except phosphorus. We present here data on iron-silicides in two Apollo 16 regolith grains. These plagioclase grains (A6-7 and A6-8) were collected between North and South Ray Craters, in the lunar highlands, and thus are associated with one or more large impact events. We report the presence of carbon, nickel, and phosphorus (in order of abundance) in these iron-silicide phases

  15. Quantitative measurement of normal and hydrocephalic cerebrospinal fluid flow using phase contrast cine MR imaging

    International Nuclear Information System (INIS)

    Katayama, Shinji; Asari, Shoji; Ohmoto, Takashi

    1993-01-01

    Measurements of the cerebrospinal fluid (CSF) flow using phase contrast cine magnetic resonance (MR) imaging were performed on a phantom, 12 normal subjects and 20 patients with normal pressure hydrocephalus (NPH). The phantom study demonstrated the applicability of phase contrast in quantitative measurement of the slow flow. The CSF flows of the normal subjects showed a consistent pattern with a to-and-fro movement of the flow in the anterior subarachnoid space at the C2/3 level, and they were dependent on the cardiac cycle in all subjects. However, the patients with NPH showed variable patterns of the CSF pulsatile flow and these patterns could be divided into four types according to velocity and amplitude. The amplitudes of each type were as follows: type 0 (n=1), 87.6 mm; type I (n=2), 58.2 mm (mean); type II (n=6), 48.0±5.0 mm (mean±SEM); and type III (n=11), 19.9±1.8 mm (mean±SEM). The decrease of the amplitudes correlated to a worsening of the clinical symptoms. After the shunting operation, the amplitude of to-and-fro movement of the CSF increased again in the patients with NPH who improved clinically. Some of the type III cases were reclassified type II, I and 0 and also one of the type II cases changed type I after the shunting operation. We conclude that the phase contrast cine MR imaging is a practically and clinically applicable technique for the quantitative measurement of the CSF flow. (author)

  16. Synthesis and Purification of Iodoaziridines Involving Quantitative Selection of the Optimal Stationary Phase for Chromatography

    Science.gov (United States)

    Boultwood, Tom; Affron, Dominic P.; Bull, James A.

    2014-01-01

    The highly diastereoselective preparation of cis-N-Ts-iodoaziridines through reaction of diiodomethyllithium with N-Ts aldimines is described. Diiodomethyllithium is prepared by the deprotonation of diiodomethane with LiHMDS, in a THF/diethyl ether mixture, at -78 °Cin the dark. These conditions are essential for the stability of the LiCHI2 reagent generated. The subsequent dropwise addition of N-Ts aldimines to the preformed diiodomethyllithium solution affords an amino-diiodide intermediate, which is not isolated. Rapid warming of the reaction mixture to 0 °C promotes cyclization to afford iodoaziridines with exclusive cis-diastereoselectivity. The addition and cyclization stages of the reaction are mediated in one reaction flask by careful temperature control. Due to the sensitivity of the iodoaziridines to purification, assessment of suitable methods of purification is required. A protocol to assess the stability of sensitive compounds to stationary phases for column chromatography is described. This method is suitable to apply to new iodoaziridines, or other potentially sensitive novel compounds. Consequently this method may find application in range of synthetic projects. The procedure involves firstly the assessment of the reaction yield, prior to purification, by 1H NMR spectroscopy with comparison to an internal standard. Portions of impure product mixture are then exposed to slurries of various stationary phases appropriate for chromatography, in a solvent system suitable as the eluent in flash chromatography. After stirring for 30 min to mimic chromatography, followed by filtering, the samples are analyzed by 1H NMR spectroscopy. Calculated yields for each stationary phase are then compared to that initially obtained from the crude reaction mixture. The results obtained provide a quantitative assessment of the stability of the compound to the different stationary phases; hence the optimal can be selected. The choice of basic alumina, modified to

  17. Transportable and vibration-free full-field low-coherent quantitative phase microscope

    Science.gov (United States)

    Yamauchi, Toyohiko; Yamada, Hidenao; Goto, Kentaro; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio

    2018-02-01

    We developed a transportable Linnik-type full-field low-coherent quantitative phase microscope that is able to compensate for optical path length (OPL) disturbance due to environmental mechanical noises. Though two-beam interferometers such as Linnik ones suffer from unstable OPL difference, we overcame this problem with a mechanical feedback system based on digital signal-processing that controls the OPL difference in sub-nanometer resolution precisely with a feedback bandwidth of 4 kHz. The developed setup has a footprint of 200 mm by 200 mm, a height of 500 mm, and a weight of 4.5 kilograms. In the transmission imaging mode, cells were cultured on a reflection-enhanced glass-bottom dish, and we obtained interference images sequentially while performing stepwise quarter-wavelength phase-shifting. Real-time image processing, including retrieval of the unwrapped phase from interference images and its background correction, along with the acquisition of interference images, was performed on a laptop computer. Emulation of the phase contrast (PhC) images and the differential interference contrast (DIC) images was also performed in real time. Moreover, our setup was applied for full-field cell membrane imaging in the reflection mode, where the cells were cultured on an anti-reflection (AR)-coated glass-bottom dish. The phase and intensity of the light reflected by the membrane revealed the outer shape of the cells independent of the refractive index. In this paper, we show imaging results on cultured cells in both transmission and reflection modes.

  18. Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy.

    Science.gov (United States)

    Silva, D F C; Azevedo, A M; Fernandes, P; Chu, V; Conde, J P; Aires-Barros, M R

    2017-03-03

    Aqueous two phase systems (ATPS) offer great potential for selective separation of a wide range of biomolecules by exploring differences in molecular solubility in each of the two immiscible phases. However, ATPS use has been limited due to the difficulty in predicting the behavior of a given biomolecule in the partition environment together with the empirical and time-consuming techniques that are used for the determination of partition and extraction parameters. In this work, a fast and novel technique based on a microfluidic platform and using fluorescence microscopy was developed to determine the partition coefficients of biomolecules in different ATPS. This method consists of using a microfluidic device with a single microchannel and three inlets. In two of the inlets, solutions containing the ATPS forming components were loaded while the third inlet was fed with the FITC tagged biomolecule of interest prepared in milli-Q water. Using fluorescence microscopy, it was possible to follow the location of the FITC-tagged biomolecule and, by simply varying the pumping rates of the solutions, to quickly test a wide variety of ATPS compositions. The ATPS system is allowed 4min for stabilization and fluorescence micrographs are used to determine the partition coefficient.The partition coefficients obtained were shown to be consistent with results from macroscale ATPS partition. This process allows for faster screening of partition coefficients using only a few microliters of material for each ATPS composition and is amenable to automation. The partitioning behavior of several biomolecules with molecular weights (MW) ranging from 5.8 to 150kDa, and isoelectric points (pI) ranging from 4.7 to 6.4 was investigated, as well as the effect of the molecular weight of the polymer ATPS component. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Accuracy in quantitative phase analysis of mixtures with large amorphous contents. The case of stoneware ceramics and bricks

    Czech Academy of Sciences Publication Activity Database

    Gualtieri, A. F.; Riva, V.; Bresciani, A.; Maretti, S.; Tamburini, M.; Viani, Alberto

    2014-01-01

    Roč. 47, č. 3 (2014), s. 835-846 ISSN 0021-8898 R&D Projects: GA MŠk(CZ) LO1219 Keywords : amorphous phases * bricks * ceramics * internal standards * quantitative phase analysis Subject RIV: JN - Civil Engineering Impact factor: 3.720, year: 2014 http://scripts.iucr.org/cgi-bin/paper?S160057671400627X

  20. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Aschi, Massimiliano; D'Archivio, Angelo Antonio; Maggi, Maria Anna; Mazzeo, Pietro; Ruggieri, Fabrizio

    2007-01-01

    In this paper, a quantitative structure-retention relationships (QSRR) method is employed to predict the retention behaviour of pesticides in reversed-phase high-performance liquid chromatography (HPLC). A six-parameter nonlinear model is developed by means of a feed-forward artificial neural network (ANN) with back-propagation learning rule. Accurate description of the retention factors of 26 compounds including commonly used insecticides, herbicides and fungicides and some metabolites is successfully achieved. In addition to the acetonitrile content, included to describe composition of the water-acetonitrile mobile phase, the octanol-water partition coefficient (from literature) and four quantum chemical descriptors are considered to account for the effect of solute structure on the retention. These are: the total dipole moment, the mean polarizability, the anisotropy of polarizability and a descriptor of hydrogen bonding ability based on the atomic charges on hydrogen bond donor and acceptor chemical functionalities. The proposed nonlinear QSRR model exhibits a high degree of correlation between observed and computed retention factors and a good predictive performance in wide range of mobile phase composition (40-65%, v/v acetonitrile) that supports its application for the prediction of the chromatographic behaviour of unknown pesticides. A multilinear regression model based on the same six descriptors shows a significantly worse predictive capability

  1. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Aschi, Massimiliano [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); D' Archivio, Angelo Antonio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)]. E-mail: darchivi@univaq.it; Maggi, Maria Anna [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Mazzeo, Pietro [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)

    2007-01-23

    In this paper, a quantitative structure-retention relationships (QSRR) method is employed to predict the retention behaviour of pesticides in reversed-phase high-performance liquid chromatography (HPLC). A six-parameter nonlinear model is developed by means of a feed-forward artificial neural network (ANN) with back-propagation learning rule. Accurate description of the retention factors of 26 compounds including commonly used insecticides, herbicides and fungicides and some metabolites is successfully achieved. In addition to the acetonitrile content, included to describe composition of the water-acetonitrile mobile phase, the octanol-water partition coefficient (from literature) and four quantum chemical descriptors are considered to account for the effect of solute structure on the retention. These are: the total dipole moment, the mean polarizability, the anisotropy of polarizability and a descriptor of hydrogen bonding ability based on the atomic charges on hydrogen bond donor and acceptor chemical functionalities. The proposed nonlinear QSRR model exhibits a high degree of correlation between observed and computed retention factors and a good predictive performance in wide range of mobile phase composition (40-65%, v/v acetonitrile) that supports its application for the prediction of the chromatographic behaviour of unknown pesticides. A multilinear regression model based on the same six descriptors shows a significantly worse predictive capability.

  2. Quantitative Segmentation of Fluorescence Microscopy Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins.

    Science.gov (United States)

    Mueller, Jenna L; Harmany, Zachary T; Mito, Jeffrey K; Kennedy, Stephanie A; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G; Willett, Rebecca M; Brown, J Quincy; Ramanujam, Nimmi

    2013-01-01

    To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features. TISSUE EXCISED FROM A GENETICALLY ENGINEERED MOUSE MODEL OF SARCOMA WAS IMAGED USING A SUBCELLULAR RESOLUTION MICROENDOSCOPE AFTER TOPICAL APPLICATION OF A FLUORESCENT ANATOMICAL CONTRAST AGENT: acriflavine. An algorithm based on sparse component analysis (SCA) and the circle transform (CT) was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma. Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity). For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach. The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.

  3. Optical-sectioning microscopy of protoporphyrin IX fluorescence in human gliomas: standardization and quantitative comparison with histology

    Science.gov (United States)

    Wei, Linpeng; Chen, Ye; Yin, Chengbo; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.

    2017-04-01

    Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.

  4. Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy

    International Nuclear Information System (INIS)

    Pantzas, K; Voss, P L; Ougazzaden, A; Patriarche, G; Largeau, L; Mauguin, O; Troadec, D; Gautier, S; Moudakir, T; Suresh, S

    2012-01-01

    Using elastic scattering theory we show that a small set of energy dispersive x-ray spectroscopy (EDX) measurements is sufficient to experimentally evaluate the scattering function of electrons in high-angle annular dark field scanning transmission microscopy (HAADF-STEM). We then demonstrate how to use this function to transform qualitative HAADF-STEM images of InGaN layers into precise, quantitative chemical maps of the indium composition. The maps obtained in this way combine the resolution of HAADF-STEM and the chemical precision of EDX. We illustrate the potential of such chemical maps by using them to investigate nanometer-scale fluctuations in the indium composition and their impact on the growth of epitaxial InGaN layers. (paper)

  5. MR microscopy of human skin using phased-array of microcoils at 9.4 T

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Katharina; Leupold, Jochen; LeVan, Pierre; Hennig, Juergen; Elverfeldt, Dominik von [Dept. of Radiology, Medical Physics, University Medical Center Freiburg (Germany); Gruschke, Oliver G. [Lab. of Simulation, University of Freiburg - IMTEK (Germany); Kern, Johannes S. [Dept. of Dermatology, University Medical Center Freiburg (Germany); Korvink, Jan G. [Lab. of Simulation, University of Freiburg - IMTEK (Germany); Freiburg Institute for Advanced Studies, University of Freiburg (Germany); Baxan, Nicoleta [Dept. of Radiology, Medical Physics, University Medical Center Freiburg (Germany); Bruker BioSpin MRI GmbH, Ettlingen (Germany)

    2013-07-01

    MRI of the skin as non-invasive alternative to histopathology requires dedicated approaches to overcome both the low sensitivity and low contrast of standard MR investigations applied at microscale. The geometry of the skin with layers of large lateral dimensions and a few μm thickness demands exceptionally high resolution combined with large imaging matrix size. A home-made microcoil-based MR detector in planar phased-array geometry (diameter=5.5 mm) was developed to alleviate such limitations by combining the advantages of a large field-of-view and high signal-to-noise ratio. The detector was first characterized in terms of influence on B{sub 0} homogeneity and SNR. Trials on healthy and Acne inversa diseased human skin biopsies allowed the acquisition of high resolution images (30 x 30 x 100 μm{sup 3}) in reasonable scan time. Histology was subsequently performed to validate the MRI results, demonstrating the suitability of this methodological approach for the characterization and early detection of structural skin changes.

  6. Simple and reliable identification of the human round spermatid by inverted phase-contrast microscopy.

    Science.gov (United States)

    Verheyen, G; Crabbé, E; Joris, H; Van Steirteghem, A

    1998-06-01

    Based on the results of animal studies, round spermatid injection (ROSI) has been introduced into the clinical practice of several in-vitro fertilization (IVF) centres. The efficiency of this procedure in terms of fertilization rates and pregnancy rates, however, remains very poor. An essential aspect which does not receive enough attention is the correct identification of this type of round cell within a heterogeneous population of testicular cells. A Nikon inverted microscope equipped with phase-contrast optics (DLL) provided a clear image which allowed reliable recognition of round spermatids in cell suspensions smeared at the glass bottom of the dish. Fluorescent in-situ hybridization confirmed the haploid status of the selected cells. However, exploration of several biopsies from patients with non-obstructive azoospermia showing no spermatozoa after extensive search did not reveal any round spermatids. This observation questions whether enough effort is spent on searching for mature spermatozoa or late spermatids. Experimental investigations should precede the introduction of ROSI into the clinical practice of any IVF centre.

  7. Wavelet-SVM classification and automatic recognition of unstained viable cells in phase-contrast microscopy

    International Nuclear Information System (INIS)

    Skoczylas, M.; Rakowski, W.; Cherubini, R.; Gerardi, S.

    2011-01-01

    Irradiation of individual cultured mammalian cells with a pre-selected number of ions down to one ion per single cell is a useful experimental approach to investigating the low-dose ionising radiation exposure effects and thus contributing to a more realistic human cancer risk assessment. One of the crucial tasks of all the microbeam apparatuses is the visualisation, recognition and positioning of every individual cell of the cell culture to be irradiated. Before irradiations, mammalian cells (specifically, Chinese hamster V79 cells) are seeded and grown as a monolayer on a mylar surface used as the bottom of a specially designed holder. Manual recognition of unstained cells in a bright-field microscope is a time-consuming procedure; therefore, a parallel algorithm has been conceived and developed in order to speed up this irradiation protocol step. Many technical problems have been faced to overcome the complexity of the images to be analysed: cell discrimination in an inhomogeneous background, among many disturbing bodies mainly due to the mylar surface roughness and culture medium bodies; cell shapes, depending on how they attach to the surface, which phase of the cell cycle they are in and on cell density. Preliminary results of the recognition and classification based on a method of wavelet kernels for the support vector machine classifier will be presented. (authors)

  8. Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy

    International Nuclear Information System (INIS)

    Lozano, Gabriel; Barten, Tommy; Grzela, Grzegorz; Rivas, Jaime Gómez

    2014-01-01

    We demonstrate that an ordered array of aluminum nanopyramids, behaving as a phased array of optical antennae, strongly modifies light absorption in thin layers of dye molecules. Photoluminescence measurements as a function of the illumination angle are performed using a time-reversed Fourier microscope. This technique enables a variable-angle plane-wave illumination of nanostructures in a microscope-based setup. Our measurements reveal an enhancement of the light conversion in certain directions of illumination, which indicate the efficient diffractive coupling between the free space radiation and the surface plasmons. Numerical simulations confirm that surface modes supported by the periodic array enhance the intensity of the pump field in the space between particles, where the dye molecules are located, yielding a directional plasmonic-mediated enhancement of the optical absorption. This combined experimental and numerical characterization of the angular dependence of light absorption in nanostructures can be beneficial for the design and optimization of devices in which the harvesting of light plays a major role. (paper)

  9. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merson, E. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Kudrya, A.V.; Trachenko, V.A. [Department of Physical Metallurgy and the Physics of Strength, NUST MISiS, Moscow 119490 (Russian Federation); Merson, D. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Laboratory for Advanced Materials, Kazan Federal University, Naberezhnye Chelny 423812, Republic of Tatarstan (Russian Federation); Danilov, V. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Vinogradov, A. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Department of Engineering Design and Materials, Norwegian University of Science and Technology – NTNU, N-7491 Trondheim (Norway)

    2016-05-17

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  10. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Merson, E.; Kudrya, A.V.; Trachenko, V.A.; Merson, D.; Danilov, V.; Vinogradov, A.

    2016-01-01

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  11. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Jr., Billy W. [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  12. The use of epifluorescent microscopy and quantitative polymerase chain reaction to determine the presence/absence and identification of microorganisms associated with domestic and foreign wallboard samples

    Science.gov (United States)

    Griffin, Dale W.

    2011-01-01

    Epifluorescent microscopy and quantitative polymerase chain reaction (qPCR) were utilized to determine the presence, concentration and identification of bacteria, and more specifically sulfate reducing bacteria (SRB) in subsamples of Chinese and North American wallboard, and wallboard-mine rock. Bacteria were visible in most subsamples, which included wallboard-lining paper from each side of the wallboard, wallboard filler, wallboard tape and fragments of mined wallboard rock via microscopy. Observed bacteria occurred as single or small clusters of cells and no mass aggregates indicating colonization were noted. Universal 16S qPCR was utilized to directly examine samples and detected bacteria at concentrations ranging from 1.4 x 103 to 6.4 x 104 genomic equivalents per mm2 of paper or per gram of wallboard filler or mined rock, in 12 of 41 subsamples. Subsamples were incubated in sulfate reducing broth for ~30 to 60 days (enrichment assay) and then analyzed by universal 16S and SRB qPCR. Enrichment universal 16S qPCR detected bacteria in 32 of 41 subsamples at concentrations ranging from 1.5 x 104 to 4.2 x 107 genomic equivalents per ml of culture broth. Evaluation of enriched subsamples by SRB qPCR demonstrated that SRB were not detectable in most of the samples and if they were detected, detection was not reproducible (an indication of low concentrations, if present). Enrichment universal 16S and SRB qPCR demonstrated that viable bacteria were present in subsamples (as expected given exposure of the samples following manufacture, transport and use) but that SRB were either not present or present at very low numbers. Further, no differences in trends were noted between the various Chinese and North American wallboard samples. In all, the microscopy and qPCR data indicated that the suspected ‘sulfur emissions’ emanating from suspect wallboard samples is not due to microbial activity.

  13. In-vivo nonlinear optical microscopy (NLOM) of epithelial-connective tissue interface (ECTI) reveals quantitative measures of neoplasia in hamster oral mucosa.

    Science.gov (United States)

    Pal, Rahul; Yang, Jinping; Ortiz, Daniel; Qiu, Suimin; Resto, Vicente; McCammon, Susan; Vargas, Gracie

    2015-01-01

    The epithelial-connective tissue interface (ECTI) plays an integral role in epithelial neoplasia, including oral squamous cell carcinoma (OSCC). This interface undergoes significant alterations due to hyperproliferating epithelium that supports the transformation of normal epithelium to precancers and cancer. We present a method based on nonlinear optical microscopy to directly assess the ECTI and quantify dysplastic alterations using a hamster model for oral carcinogenesis. Neoplastic and non-neoplastic normal mucosa were imaged in-vivo by both multiphoton autofluorescence microscopy (MPAM) and second harmonic generation microscopy (SHGM) to obtain cross-sectional reconstructions of the oral epithelium and lamina propria. Imaged sites were biopsied and processed for histopathological grading and measurement of ECTI parameters. An ECTI shape parameter was calculated based on deviation from the linear geometry (ΔLinearity) seen in normal mucosa was measured using MPAM-SHGM and histology. The ECTI was readily visible in MPAM-SHGM and quantitative shape analysis showed ECTI deformation in dysplasia but not in normal mucosa. ΔLinearity was significantly (p tissue with 87.9% sensitivity and 97.6% specificity, while calculations from histology provided 96.4% sensitivity and 85.7% specificity. Among other quantifiable architectural changes, a progressive statistically significant increase in epithelial thickness was seen with increasing grade of dysplasia. MPAM-SHGM provides new noninvasive ways for direct characterization of ECTI which may be used in preclinical studies to investigate the role of this interface in early transformation. Further development of the method may also lead to new diagnostic approaches to differentiate non-neoplastic tissue from precancers and neoplasia, possibly with other cellular and layer based indicators of abnormality.

  14. Quantitative Segmentation of Fluorescence Microscopy Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins.

    Directory of Open Access Journals (Sweden)

    Jenna L Mueller

    Full Text Available To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features.TISSUE EXCISED FROM A GENETICALLY ENGINEERED MOUSE MODEL OF SARCOMA WAS IMAGED USING A SUBCELLULAR RESOLUTION MICROENDOSCOPE AFTER TOPICAL APPLICATION OF A FLUORESCENT ANATOMICAL CONTRAST AGENT: acriflavine. An algorithm based on sparse component analysis (SCA and the circle transform (CT was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma.Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity. For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach.The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.

  15. Quantitative X-ray dark-field and phase tomography using single directional speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2016-03-21

    X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematic investigation of complex samples containing both soft and hard materials.

  16. A method to extract quantitative information in analyzer-based x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Pagot, E.; Cloetens, P.; Fiedler, S.; Bravin, A.; Coan, P.; Baruchel, J.; Haertwig, J.; Thomlinson, W.

    2003-01-01

    Analyzer-based imaging is a powerful phase-sensitive technique that generates improved contrast compared to standard absorption radiography. Combining numerically two images taken on either side at ±1/2 of the full width at half-maximum (FWHM) of the rocking curve provides images of 'pure refraction' and of 'apparent absorption'. In this study, a similar approach is made by combining symmetrical images with respect to the peak of the analyzer rocking curve but at general positions, ±α·FWHM. These two approaches do not consider the ultrasmall angle scattering produced by the object independently, which can lead to inconsistent results. An accurate way to separately retrieve the quantitative information intrinsic to the object is proposed. It is based on a statistical analysis of the local rocking curve, and allows one to overcome the problems encountered using the previous approaches

  17. A quantitative infrared spectral library of vapor phase chemicals: applications to environmental monitoring and homeland defense

    Science.gov (United States)

    Sharpe, Steven W.; Johnson, Timothy J.; Sams, Robert L.

    2004-12-01

    The utility of infrared spectroscopy for monitoring and early warning of accidental or deliberate chemical releases to the atmosphere is well documented. Regardless of the monitoring technique (open-path or extractive) or weather the spectrometer is passive or active (Fourier transform or lidar) a high quality, quantitative reference library is essential for meaningful interpretation of the data. Pacific Northwest National Laboratory through the support of the Department of Energy has been building a library of pure, vapor phase chemical species for the last 4 years. This infrared spectral library currently contains over 300 chemicals and is expected to grow to over 400 chemicals before completion. The library spectra are based on a statistical fit to many spectra at different concentrations, allowing for rigorous error analysis. The contents of the library are focused on atmospheric pollutants, naturally occurring chemicals, toxic industrial chemicals and chemicals specifically designed to do damage. Applications, limitations and technical details of the spectral library will be discussed.

  18. Preliminary outcomes of the IUCR CPD round robin on quantitative phase analysis

    International Nuclear Information System (INIS)

    Madsen, I.

    1999-01-01

    Full text: The International Union for Crystallography - Commission on Powder Diffraction is currently sponsoring a round robin on quantitative phase analysis (QPA). The round robin is focusing on the analysis of powder diffraction data, namely laboratory X-ray, synchrotron X-ray and neutron diffraction data for the derivation of phase abundances. The general goals of the round robin include the following: 1. To document the methods and strategies commonly employed in quantitative phase analysis, especially those involving powder diffraction. 2. To assess (i) levels of accuracy and precision, and (ii) lower limits of detection of methods used in QPA. 3. To identify specific problem areas and develop practical solutions. 4. To formulate recommended procedures for QPA using diffraction data. 5. To create a standard set of samples for future reference. The samples used in the study consist of mixtures of major and minor components covering a wide range of analytical complexity. Initial samples are synthetic mixtures of crystallographically 'simple' materials and should present little problem to the analyst. Additional samples introduce problems such as preferred orientation, microabsorption and amorphous content to assess the degree to which these problems affect QPA. Several very complex materials have also been included in the sample suite including a natural granodiorite, synthetic bauxite and a mixture of pharmaceutical phases. These last three samples represent a significant analytical challenge as they exhibit preferred orientation, microabsorption and grain size effects in addition to severe peak overlap. The round robin was tailored to allow variation in the level of participation including (i) analysis of 'standard' data sets supplied by the CPD, (ii) collection and analysis of data from at least two of the samples supplied by the CPD and (iii) selection of additional samples at the discretion of the participant. At the time of writing this abstract, some 130

  19. Quantitative metrics for evaluating the phased roll-out of clinical information systems.

    Science.gov (United States)

    Wong, David; Wu, Nicolas; Watkinson, Peter

    2017-09-01

    We introduce a novel quantitative approach for evaluating the order of roll-out during phased introduction of clinical information systems. Such roll-outs are associated with unavoidable risk due to patients transferring between clinical areas using both the old and new systems. We proposed a simple graphical model of patient flow through a hospital. Using a simple instance of the model, we showed how a roll-out order can be generated by minimising the flow of patients from the new system to the old system. The model was applied to admission and discharge data acquired from 37,080 patient journeys at the Churchill Hospital, Oxford between April 2013 and April 2014. The resulting order was evaluated empirically and produced acceptable orders. The development of data-driven approaches to clinical Information system roll-out provides insights that may not necessarily be ascertained through clinical judgment alone. Such methods could make a significant contribution to the smooth running of an organisation during the roll-out of a potentially disruptive technology. Unlike previous approaches, which are based on clinical opinion, the approach described here quantitatively assesses the appropriateness of competing roll-out strategies. The data-driven approach was shown to produce strategies that matched clinical intuition and provides a flexible framework that may be used to plan and monitor Clinical Information System roll-out. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Investigation of the martensitic phase transformations in CoFe single crystals using high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Waitz, T.

    1999-06-01

    In CoFe crystals containing 0.85, 1.5, 5.75 and 6.0at.% Fe the thermally induced martensitic phase transformations between the close packed lattices face centered cubic (fcc), double hexagonal close packed (dhcp) and hexagonal close packed (hcp) were studied. Transmission electron microscopy methods were applied including in-situ experiments; both high-resolution transmission electron microscopy (HRTEM) images and lattice fringe images were used to analyze the transformations at an atomic scale. Based on the results of both the transformations in the bulk and the in-situ transformations it is concluded that the phase transitions occur by the formation of lamellae on the close packed habit planes. The lamellae have a minimum thickness of 10 to 15 close packed planes; therefore transformation models that are based on random overlap of stacking faults can be excluded. The glissile transformation fronts of the lamellae contain transformation dislocations (partials) that are correlated on an atomic scale. In the HRTEM images partials that are only about 0.2 nm apart were resolved and analyzed in detail by circuits that are similar to Burgers circuits. Two attracting partials on adjacent close packed planes are the structural units of the transformation fronts; they are dipoles and paired partials (with a total Burgers vector of a single partial) in the case of the transformations hcp dhcp and fcc dhcp, respectively. Different arrangements of the partials at the transformation fronts lead to two different modes A and B of the phase transition. These two modes seem to be competitive processes that can be favored by different parameters of the material (as chemical composition and microstructure). Partials of mode A transformations have the same Burgers vectors; therefore the partials repel each other causing long range internal stresses and large transformation shear strains that can lead to a surface relief. Whereas, partials of mode B transformations have different

  1. Rigorous quantitative elemental microanalysis by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) with spectrum processing by NIST DTSA-II

    Science.gov (United States)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2014-09-01

    Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  2. Quantitative method for the detection and localization of quantum-limited events from radionuclides in cells and tissue sections by computer-enhanced video microscopy

    International Nuclear Information System (INIS)

    Pressman, N.J.; Frost, J.K.; Gupta, P.K.; Showers, R.L.; Gill, G.W.; Cook, D.L.; Frost, J.K. Jr.; Traub, R.K.

    1987-01-01

    Cellular dynamics often involve extremely low concentrations of biologically active substances, which can be radiolabeled and detected, localized and quantitated by autoradiography. The latter may require exposures from a few days to many months. The objective of this research was to demonstrate the feasibility of reducing this long period of data collection by one to two orders of magnitude, while maintaining or improving the spatial resolution and localization in tissues and the quantitative characteristics inherent in autoradiography. A mathematical model describing the complete system was generated using energy partition calculations to estimate photon production via scintillant per H3 beta particle emission and to estimate the subsequent photon capture based upon imaging system parameters and microscope geometry. Calculations showed that, typically, a single tritium beta particle produces a maximum of 5.8 X 10(3) photons. A photon-limited camera and microscope imaging system were selected and optimized in conjunction with a specially developed physical scintillation model. Results showed that the number of detected photoevents increases monotonically with both signal integration time and, independently, with the concentration of the radionuclide. Consequently, this work demonstrates that video microscopy imaging methods can spatially and temporally quantify very low concentrations of radiolabeled substances and can reduce data acquisition times

  3. Quantitative hard x-ray phase contrast imaging of micropipes in SiC

    International Nuclear Information System (INIS)

    Kohn, V. G.; Argunova, T. S.; Je, J. H.

    2013-01-01

    Peculiarities of quantitative hard x-ray phase contrast imaging of micropipes in SiC are discussed. The micropipe is assumed as a hollow cylinder with an elliptical cross section. The major and minor diameters can be restored using the least square fitting procedure by comparing the experimental data, i.e. the profile across the micropipe axis, with those calculated based on phase contrast theory. It is shown that one projection image gives an information which does not allow a complete determination of the elliptical cross section, if an orientation of micropipe is not known. Another problem is a weak accuracy in estimating the diameters, partly because of using pink synchrotron radiation, which is necessary because a monochromatic beam intensity is not sufficient to reveal the weak contrast from a very small object. The general problems of accuracy in estimating the two diameters using the least square procedure are discussed. Two experimental examples are considered to demonstrate small as well as modest accuracies in estimating the diameters

  4. Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED

    Science.gov (United States)

    Guo, Rongli; Wang, Fan; Hu, Xiaoying; Yang, Wenqian

    2017-11-01

    Off-axis digital holographic interferometry with the light source of a light emitting diode (LED) is presented and its application for quantitative phase imaging in a large range with low noise is demonstrated. The scheme is implemented in a grating based Mach-Zehnder interferometer. To achieve off-axis interferometry, firstly, the collimated beam emitted from an LED is diffracted into multiple orders by a grating and they are split into two copies by a beam splitter; secondly, in the object arm the zero order of one copy is filtered in the Fourier plane and is reshaped to illuminate the sample, while in the reference arm one of its first order of another copy is selected to serve as the reference beam, and then an off-axis hologram can be obtained at the image plane. The main advantage stemming from an LED illumination is its high spatial phase resolution, due to the subdued speckle effect. The off-axis geometry enables one-shot recording of the hologram in the millisecond scale. The utility of the proposed setup is illustrated with measurements of a resolution target and part of a wing of green-lacewing, and dynamic evaporation process of an ethanol film.

  5. Quantitative study of substorm-associated VLF phase anomalies and precipitating energetic electrons on November 13, 1979

    International Nuclear Information System (INIS)

    Kikuchi, T.; Evans, D.S.

    1983-01-01

    The phase anomalies associated with substorms are observed on VLF signals propagating on transauroral paths (transmitters at OMEGA-ALDRA (13.6 kHz), GBR (16.0 kHz), and OMEGA--NORTH DAKOTA (13.6 kHz)) which were continually received at Inubo, Japan, during the events on November 13, 1979. Detailed comparisons are made between these phase anomalies and geomagnetic bays, and quantitative relations are obtained with precipitating energetic electrons (E>30, E>100, and E>300 keV) detected on board the TIROS-N and NOAA 6 satellites. It is concluded that two types of VLF phase anomalies exist which, in turn, are associated with two phases in the history of energetic electron precipitation into the atmosphere. The first type of phase anomaly is associated with direct injection of energetic electrons into the outer magnetosphere and atmosphere which, in turn, is completely correlated in time with development of the auroral electrojet current system. The second type arises from energetic electrons which subsequently precipitate from a trapped electron population and has a delayed onset and prolonged duration. An excellent quantitative correlation is obtained between the logarithm of the electron flux and the magnitude of the phase anomaly on the OMEGA-ALDRA signal. From the local time characteristics of this quantitative relation it is deduced that the electrons with E>300 keV are the main source of D region ionization responsible for the VLF phase anomaly

  6. Effective segmentation of fresh post-mortem murine lung parenchyma in phase contrast X-ray tomographic microscopy images

    International Nuclear Information System (INIS)

    Oikonomidis, Ioannis Vogiatzis; Cremona, Tiziana P; Schittny, Johannes C; Lovric, Goran; Arcadu, Filippo; Stampanoni, Marco

    2017-01-01

    The acinus represents the functional unit of the mammalian lung. It is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Different hypotheses exist on how the fine structure of the acinus changes during ventilation and development. Since in classical 2-dimensional (2D) sections of the lung the borders of the acini are not detectable, every study of acini requires 3-dimensional (3D) datasets. As a basis for further studies of pulmonary acini we imaged rodent lungs as close to life as possible using phase contrast synchrotron radiation-based X-ray tomographic microscopy (SRXTM), and developed a protocol for the segmentation of the alveolar septa. The method is based on a combined multilevel filtering approach. Seeds are automatically defined for separate regions of tissue and airspace during each 2D filtering level and then given as input to a 3D random walk segmentation. Thus, the different types of artifacts present in the images are treated separately, taking into account the sample’s structural complexity. The proposed procedure yields high-quality 3D segmentations of acinar microstructure that can be used for a reliable morphological analysis. (paper)

  7. Diffraction phase microscopy imaging and multi-physics modeling of the nanoscale thermal expansion of a suspended resistor.

    Science.gov (United States)

    Wang, Xiaozhen; Lu, Tianjian; Yu, Xin; Jin, Jian-Ming; Goddard, Lynford L

    2017-07-04

    We studied the nanoscale thermal expansion of a suspended resistor both theoretically and experimentally and obtained consistent results. In the theoretical analysis, we used a three-dimensional coupled electrical-thermal-mechanical simulation and obtained the temperature and displacement field of the suspended resistor under a direct current (DC) input voltage. In the experiment, we recorded a sequence of images of the axial thermal expansion of the central bridge region of the suspended resistor at a rate of 1.8 frames/s by using epi-illumination diffraction phase microscopy (epi-DPM). This method accurately measured nanometer level relative height changes of the resistor in a temporally and spatially resolved manner. Upon application of a 2 V step in voltage, the resistor exhibited a steady-state increase in resistance of 1.14 Ω and in relative height of 3.5 nm, which agreed reasonably well with the predicted values of 1.08 Ω and 4.4 nm, respectively.

  8. Scanning force microscopy study of phase segregation in fuel cell membrane materials as a function of solvent polarity and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Marilyn Emily [Los Alamos National Laboratory; Kim, Yu S [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory

    2010-01-01

    Scanning force microscopy (SFM) phase imaging provides a powerful method for directly studying and comparing phase segregation in fuel cell membrane materials due to different preparation and under different temperature and hwnidity exposures. In this work, we explored two parameters that can influence phase segregation: the properties of the solvents used in casting membrane films and how these solvents alter phase segregation after exposure to boiling water as a function of time. SFM was used under ambient conditions to image phase segregation in Nafion samples prepared using five different solvents. Samples were then subjected to water vapor maintained at 100C for periods ranging from 30 minutes to three hours and re-imaged using the same phase imaging conditions. SFM shows what appears to be an increase in phase segregation as a function of solvent polarity that changes as a function of water exposure.

  9. Automated high resolution full-field spatial coherence tomography for quantitative phase imaging of human red blood cells

    Science.gov (United States)

    Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.

    2018-02-01

    We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.

  10. Some potentialities of instrumental implementation of quantitative phase analysis techniques for ferromagnetic materials on the basis of Moessbauer effect

    International Nuclear Information System (INIS)

    Danilov, G.I.; Mamikonyan, S.V.; Shlokov, G.N.

    1973-01-01

    In the article the results of work are presented on instrument development for quantitative phase analysis of ferromagnetic materials on the basis of using Moessbauer effect. Analysis of the defined ferromagnetic phase content in sample is carried out by spectrum band intensity of this phase, brought in paramagnetic state. Tyrical structural scheme of instrument model is presented, intended for control of degree of ferritization of ferrite compositions in the process of low temperature baking. Advantages of the proposed method and possibilities of increasing accuracy and sensitivity of particular instruments schemes are discussed. Advantages of using resonance detectors in the proposed method are shown. Sources, detectors and measurement schemes considered, allowed to use proposed quantitative phase analysis method for analysis of ferrite compositions by 40-65% of its possibilities

  11. Direct characterization of phase transformations and morphologies in moving reaction zones in Al/Ni nanolaminates using dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.S., E-mail: judy.kim@materials.ox.ac.uk [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Chemical Engineering and Materials Science/Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616 (United States); LaGrange, T.; Reed, B.W. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Knepper, R.; Weihs, T.P. [Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Browning, N.D. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Chemical Engineering and Materials Science/Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Campbell, G.H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)

    2011-05-15

    Highlights: > Fast phase transformations are examined in Al/Ni reactive nanolaminates. > Results visible only by dynamic transmission electron microscopy at ns resolution. > NiAl forms under 15 ns after reaction front in all three stoichiometries studied. > DTEM imaging reveals a transient cellular morphology in nonequiatomic films. - Abstract: Phase transformations and transient morphologies are examined as exothermic formation reactions self-propagate across Al/Ni nanolaminate films. The rapid evolution of these phases and sub-micrometer morphological features requires nanoscale temporal and spatial resolution that is not available with traditional in situ electron microscopy. This work uses dynamic transmission electron microscopy to identify intermetallic products and phase morphologies, as exothermic formation reactions self-propagate in nanolaminate films grown with 3:2, 2:3 and 1:1 Al/Ni atomic ratios. Single-shot diffraction patterns with 15 ns temporal resolution reveal that the NiAl intermetallic forms within {approx}15 ns of the reaction front's arrival in all three types of films and is the only intermetallic phase to form, as the reactions self-propagate and quench very rapidly. Time-resolved imaging reveals a transient cellular morphology in the Al-rich and Ni-rich foils, but not in the equiatomic films. The cellular features in the Al-rich and Ni-rich films are attributed to a cooling trajectory through a two-phase field of liquid + NiAl.

  12. Quantitative phase imaging of platelets in patients with chronic renal failure treated with hemodialysis

    Science.gov (United States)

    Vasilenko, Irina; Vlasova, Elizaveta; Metelin, Vladislav; Kardasheva, Ziver

    2018-02-01

    The development of robust non-invasive laboratory screening methods for early diagnosis on the out-patient basis seems quite relevant for practical medicine. It is known, that platelet is an original biosensor, a detector of early changes in hemostasis condition. The aim of this study was to assess a potential of the quantitative phase imaging (QPI) technique for real time evaluation the influence of low-molecular weight and unfractionated heparin on platelets in patients with the end-stage of chronic renal failure, who were treated with program hemodialysis (PHD). The main group consisted of 21 patients who were administered a low-molecular weight heparin for hypocoagulation during the procedure of hemodialysis. The control group (15 patients) received unfractionated heparin. Morphodensitometric state of living platelets we evaluated by QPI using computer phase-interference microscope MIM (Moscow, Russia). We analyzed the optical-geometrical parameters and the morphological features of living platelets which reflected the degree of their activation at the beginning of PHD (before administration of heparin), in 15 minutes after it and at the end of the procedure. The results allow us to conclude that the use of low-molecular weight heparin provides better ratio of efficacy/safety and causes a reduction of the platelet activation during the hemodialysis procedure. Practical implementation of QPI for clinical monitoring of platelets makes it possible to obtain important information on hemostasis cell. It opens new opportunities to assess the efficacy of treatment, as well as for early diagnosis of complications for disease.

  13. Microsegregation in multicomponent alloy analysed by quantitative phase-field model

    International Nuclear Information System (INIS)

    Ohno, M; Takaki, T; Shibuta, Y

    2015-01-01

    Microsegregation behaviour in a ternary alloy system has been analysed by means of quantitative phase-field (Q-PF) simulations with a particular attention directed at an influence of tie-line shift stemming from different liquid diffusivities of the solute elements. The Q-PF model developed for non-isothermal solidification in multicomponent alloys with non-zero solid diffusivities was applied to analysis of microsegregation in a ternary alloy consisting of fast and slow diffusing solute elements. The accuracy of the Q-PF simulation was first verified by performing the convergence test of segregation ratio with respect to the interface thickness. From one-dimensional analysis, it was found that the microsegregation of slow diffusing element is reduced due to the tie-line shift. In two-dimensional simulations, the refinement of microstructure, viz., the decrease of secondary arms spacing occurs at low cooling rates due to the formation of diffusion layer of slow diffusing element. It yields the reductions of degrees of microsegregation for both the fast and slow diffusing elements. Importantly, in a wide range of cooling rates, the degree of microsegregation of the slow diffusing element is always lower than that of the fast diffusing element, which is entirely ascribable to the influence of tie-line shift. (paper)

  14. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    KAUST Repository

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, Christian; Jourdain, P.; Magistretti, Pierre J.

    2016-01-01

    parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  15. Qualitative and Quantitative Analysis of ROS-Mediated Oridonin-Induced Oesophageal Cancer KYSE-150 Cell Apoptosis by Atomic Force Microscopy.

    Directory of Open Access Journals (Sweden)

    Jiang Pi

    Full Text Available High levels of intracellular reactive oxygen species (ROS in cells is recognized as one of the major causes of cancer cell apoptosis and has been developed into a promising therapeutic strategy for cancer therapy. However, whether apoptosis associated biophysical properties of cancer cells are related to intracellular ROS functions is still unclear. Here, for the first time, we determined the changes of biophysical properties associated with the ROS-mediated oesophageal cancer KYSE-150 cell apoptosis using high resolution atomic force microscopy (AFM. Oridonin was proved to induce ROS-mediated KYSE-150 cell apoptosis in a dose dependent manner, which could be reversed by N-acetylcysteine (NAC pretreatment. Based on AFM imaging, the morphological damage and ultrastructural changes of KYSE-150 cells were found to be closely associated with ROS-mediated oridonin-induced KYSE-150 cell apoptosis. The changes of cell stiffness determined by AFM force measurement also demonstrated ROS-dependent changes in oridonin induced KYSE-150 cell apoptosis. Our findings not only provided new insights into the anticancer effects of oridonin, but also highlighted the use of AFM as a qualitative and quantitative nanotool to detect ROS-mediated cancer cell apoptosis based on cell biophysical properties, providing novel information of the roles of ROS in cancer cell apoptosis at nanoscale.

  16. Quantitative X-ray diffraction analysis of development of Z phase in 12%Cr–Nb–V–N steel

    DEFF Research Database (Denmark)

    Di Nunzio, P. E.; Cipolla, L.; Vipraio, S. Tiberi

    2010-01-01

    . A quantitative determination of the volume fractions of the extracted nitrides that had formed after aging treatments at 650uC for up to 10 000 h was carried out by an X-ray diffraction procedure, based on the Rietveld approach. The investigation of the Z phase evolution by the Johnson...

  17. Quantitative determination of phases in ZrO2 (MgO) (Y2O3) using the Rietveld method

    International Nuclear Information System (INIS)

    Castro, Antonio Carlos de

    2007-01-01

    The key objective of this work is the crystallographic characterization of the zircon co-doped with Yttria and magnesium with the application of the Rietveld method for quantitative phase analysis of zircon polymorph (zircon monoclinic, tetragonal, and cubic). Samples of zircon polymorph were obtained from zircon doped with Yttria and magnesium at defined molar concentrations. The zircon polymorph stability during subeutetoid aging at 1350 deg C were investigated to determine ZrO 2 - MgO - Y 2 0 3 phases degradation and to define the solid solutions stability environment. ZrO 2 powders doped with 8 mol por cent of MgO and 1 mol por cent of Y 2 O 3 , and 9 mol por cent of MgO and 0 mol por cent of Y 2 O 3 have been prepared by chemical route using the co-precipitation method. These samples have been calcinate at 550 deg C, sintered at 1500 deg C and characterized by the Rietveld method using the X-ray diffraction data. The variation of the lattice parameter, changes in the phase composition and their microstructures are discussed. The application of the Rietveld method for quantitative phase analysis of zircon polymorph (zircon tetragonal and cubic) reveals no formation of tetragonal phase and indicating that the matrix is the cubic phase with low concentration of monoclinic phase.(author)

  18. Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung

    International Nuclear Information System (INIS)

    Mohammadi, Sara; Larsson, Emanuel; Alves, Frauke; Dal Monego, Simeone; Biffi, Stefania; Garrovo, Chiara; Lorenzon, Andrea; Tromba, Giuliana; Dullin, Christian

    2014-01-01

    Quantitative analysis concerning the application of a single-distance phase-retrieval algorithm on in-line phase-contrast images of a mouse lung at different sample-to-detector distances is presented. Propagation-based X-ray phase-contrast computed tomography (PBI) has already proven its potential in a great variety of soft-tissue-related applications including lung imaging. However, the strong edge enhancement, caused by the phase effects, often hampers image segmentation and therefore the quantitative analysis of data sets. Here, the benefits of applying single-distance phase retrieval prior to the three-dimensional reconstruction (PhR) are discussed and quantified compared with three-dimensional reconstructions of conventional PBI data sets in terms of contrast-to-noise ratio (CNR) and preservation of image features. The PhR data sets show more than a tenfold higher CNR and only minor blurring of the edges when compared with PBI in a predominately absorption-based set-up. Accordingly, phase retrieval increases the sensitivity and provides more functionality in computed tomography imaging

  19. General approach to standardization of the solid-phase radioimmunoassay for quantitation of class-specific antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Zollinger, W D; Boslego, J W [Walter Reed Army Inst. of Research, Washington, DC (USA)

    1981-10-30

    The feasibility of using an anti-human immunoglobulin/human immunoglobulin/(/sup 125/I)anti-human immunoglobulin 'sandwich' in a solid-phase radioimmunoassay to produce a standard curve which could be used to quantitate antigen-specific antibody of a particular immunoglobulin class was investigated. The amount of secondary antibody (SAb) bound was determined as a function of whether the primary antibody (PAb) was bound to its specific solid-phase antigen or by a solid-phase anti-human immunoglobulin. No significant difference between the two values was observed. Quantitation of anti-tetanus toxoid antibody by this method was in a good agreement with quantitative precipitin tests. Comparison of SAb binding as a function of the way the PAb is bound was extended to class-specific PAb by use of murine monoclonal antibodies to meningococcal antigens. In most cases somewhat greater binding of SAb occurred when PAb was bound to antigen, but in several cases where low avidity antibody and/or poor quality antigens were used, greater SAb binding occurred when PAb was bound by anti-mouse immunoglobulin. The results indicate that this approach may be useful as a general method for standardizing the SPRIA and other solid-phase immunoassays such as the ELISA to measure class-specific antibody.

  20. Water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) amorphous solid dispersions: Insights with confocal fluorescence microscopy.

    Science.gov (United States)

    Saboo, Sugandha; Taylor, Lynne S

    2017-08-30

    The aim of this study was to evaluate the utility of confocal fluorescence microscopy (CFM) to study the water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) (mico-PVPVA) amorphous solid dispersions (ASDs), induced during preparation, upon storage at high relative humidity (RH) and during dissolution. Different fluorescent dyes were added to drug-polymer films and the location of the dyes was evaluated using CFM. Orthogonal techniques, in particular atomic force microscopy (AFM) coupled with nanoscale infrared spectroscopy (AFM-nanoIR), were used to provide additional analysis of the drug-polymer blends. The initial miscibility of mico-PVPVA ASDs prepared under low humidity conditions was confirmed by AFM-nanoIR. CFM enabled rapid identification of drug-rich and polymer-rich phases in phase separated films prepared under high humidity conditions. The identity of drug- and polymer-rich domains was confirmed using AFM-nanoIR imaging and localized IR spectroscopy, together with Lorentz contact resonance (LCR) measurements. The CFM technique was then utilized successfully to further investigate phase separation in mico-PVPVA films exposed to high RH storage and to visualize phase separation dynamics following film immersion in buffer. CFM is thus a promising new approach to study the phase behavior of ASDs, utilizing drug and polymer specific dyes to visualize the evolution of heterogeneity in films exposed to water. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Quantitative assessment of intermetallic phase precipitation in a super duplex stainless steel weld metal using automatic image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, A. [AB Sandvik Steel, Sandviken (Sweden). R and D Centre; Nilsson, J.-O. [AB Sandvik Steel, R and D Centre, Sandviken (Sweden); Bonollo, F. [Univ. di Padova, DTGSI, Vicenza (Italy)

    1999-07-01

    The microstructure of weld metal of the type 25%Cr-10%Ni-4%Mo-0.28%N in both as-welded and isothermally heat treated (temperature range: 700-1050 C: time range: 10s-72h) conditions has been investigated. Multipass welding was performed in Ar+2%N{sub 2} atmosphere using GTAW. By means of the electron diffraction technique. {sigma}-phase and {chi}-phase were detected and investigated. {chi}-phase precipitated more readily than {sigma}-phase and was found to be a precursor to {sigma}-phase by providing suitable nucleation sites. Quantitative image analysis of ferrite and intermetallic phases was performed as well as manual point counting (ISO 9042). Automatic image analysis was found to be more accurate. The results were used to assess the TTT-diagram with respect to intermetallic phase formation. On the basis of these results a CCT-diagram was computed, considering the intermetallic phase formation described by an Avrami type equation and adopting the additivity rule. (orig.)

  2. Real-time observation of growth and orientation of Sm-Ba-Cu-O phases on a Sm-211 whisker substrate by high-temperature optical microscopy

    Czech Academy of Sciences Publication Activity Database

    Sun, J.L.; Huang, Y.B.; Cheng, L.; Yao, X.; Lai, Y.J.; Jirsa, Miloš

    2009-01-01

    Roč. 9, č. 2 (2009), 898-902 ISSN 1528-7483 R&D Projects: GA ČR GA202/08/0722 Institutional research plan: CEZ:AV0Z10100520 Keywords : high-temperature optical microscopy * growth and orientation of Sm-Ba-Cu-O phases * Sm-211 whisker substrate Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.162, year: 2009

  3. Development of Scanning-Imaging X-Ray Microscope for Quantitative Three-Dimensional Phase Contrast Microimaging

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Suzuki, Yoshio; Uesugi, Kentaro

    2013-01-01

    A novel x-ray microscope system has been developed for the purpose of quantitative and sensitive three-dimensional (3D) phase-contrast x-ray microimaging. The optical system is a hybrid that consists of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. These two optics are orthogonally arranged regarding their common optical axis. Each is used for forming each dimension of two-dimensional (2D) image. The same data acquisition process as that of the scanning microscope system enables quantitative and sensitive x-ray imaging such as phase contrast and absorption contrast. Because a 2D image is measured with only 1D translation scan, much shorter measurement time than that of conventional scanning optics has been realized. By combining a computed tomography (CT) technique, some 3D CT application examples are demonstrated

  4. Quantitative Phase-Field Approach for Simulating Grain Growth in Anisotropic Systems with Arbitrary Inclination and Misorientation Dependence

    International Nuclear Information System (INIS)

    Moelans, N.; Blanpain, B.; Wollants, P.

    2008-01-01

    A phase-field approach for quantitative simulations of grain growth in anisotropic systems is introduced, together with a new methodology to derive appropriate model parameters that reproduce given misorientation and inclination dependent grain boundary energy and mobility in the simulations. The proposed model formulation and parameter choice guarantee a constant diffuse interface width and consequently give high controllability of the accuracy in grain growth simulations

  5. Small Submersible Robust Microflow Cytometer for Quantitative Detection of Phytoplankton, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Translume will develop an extremely robust, inexpensive micro flow cytometer (mFCM) for quantitative detection of phytoplankton. This device will be designed to be...

  6. French Society of Microscopies, 11. Colloquium. SFM Paris 2009. Compilation of summaries

    International Nuclear Information System (INIS)

    2009-06-01

    The 11. conference of the SFM (French Society of Microscopies), held in Paris in 2009, was divided into 14 symposiums, 4 GN-MEBA symposiums, and 10 workshops. The titles of the symposiums are: homage to Nicolas Boisset, advanced microscopies, alternative microscopies, new optical and plasmonic imaging microscopies, dynamic and quantitative microscopy of the living matter, photonic and correlative electronic microscopy, near field microscopy, molecular and cellular electronic cryo-microscopy, cellular compartmentation and dynamics (CFPU), microscopy and materials, dynamical microscopy in materials science, minerals/bio-minerals and environment, structure and properties of nano-materials, sub-eV and sub-nm chemical bonds imaging. The titles of the GN-MEBA symposiums are: microscopy and metals, microscopy and minerals, microscopy and living beings, microscopy and new materials. The titles of the workshops are: Correlative Light and Electron Microscopy (CLEM), Cryo and electronic tomography in cellular biology, Cryo electronic microscopy of vitreous sections (CEMOVIS), Atomic Force Microscopy (AFM), ULTRASTEM, Digital Micrograph programming, Cryo-Microscopy and molecular tomography, Cryo-ultra-microtomy and immuno-marking, FIB, ASTAR(EBSD-MET) - rapid mapping of crystalline orientations and phases

  7. Qualitative and quantitative changes in detrital reservoir rocks caused by CO2-brine-rock interactions during first injection phases (Utrillas sandstones, northern Spain)

    Science.gov (United States)

    Berrezueta, E.; Ordóñez-Casado, B.; Quintana, L.

    2016-01-01

    The aim of this article is to describe and interpret qualitative and quantitative changes at rock matrix scale of lower-upper Cretaceous sandstones exposed to supercritical (SC) CO2 and brine. The effects of experimental injection of CO2-rich brine during the first injection phases were studied at rock matrix scale, in a potential deep sedimentary reservoir in northern Spain (Utrillas unit, at the base of the Cenozoic Duero Basin).Experimental CO2-rich brine was exposed to sandstone in a reactor chamber under realistic conditions of deep saline formations (P ≈ 7.8 MPa, T ≈ 38 °C and 24 h exposure time). After the experiment, exposed and non-exposed equivalent sample sets were compared with the aim of assessing possible changes due to the effect of the CO2-rich brine exposure. Optical microscopy (OpM) and scanning electron microscopy (SEM) aided by optical image analysis (OIA) were used to compare the rock samples and get qualitative and quantitative information about mineralogy, texture and pore network distribution. Complementary chemical analyses were performed to refine the mineralogical information and to obtain whole rock geochemical data. Brine composition was also analyzed before and after the experiment.The petrographic study of contiguous sandstone samples (more external area of sample blocks) before and after CO2-rich brine injection indicates an evolution of the pore network (porosity increase ≈ 2 %). It is probable that these measured pore changes could be due to intergranular quartz matrix detachment and partial removal from the rock sample, considering them as the early features produced by the CO2-rich brine. Nevertheless, the whole rock and brine chemical analyses after interaction with CO2-rich brine do not present important changes in the mineralogical and chemical configuration of the rock with respect to initial conditions, ruling out relevant precipitation or dissolution at these early stages to rock-block scale. These results

  8. Corrosion of non-irradiated UAl{sub x}-Al fuel in the presence of clay pore solution. A quantitative XRD secondary phase analysis applying the DDM method

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Andreas [Halle-Wittenberg Univ. (Germany). Dept. of Mineralogy and Geochemistry; RWTH Aachen Univ. (Germany). Inst. of Crystallography; Klinkenberg, Martina; Curtius, Hildegard [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research, IEK-6 Nuclear Waste Management

    2017-04-01

    Corrosion experiments with non-irradiated metallic UAl{sub x}-Al research reactor fuel elements were carried out in autoclaves to identify and quantify the corrosion products. Such compounds, considering the long-term safety assessment of final repositories, can interact with the released inventory and this constitutes a sink for radionuclide migration in formation waters. Therefore, the metallic fuel sample was subjected to clay pore solution to investigate its process of disintegration by analyzing the resulting products and the remnants, i.e. the secondary phases. Due to the fast corrosion rate a full sample disintegration was observed within the experimental period of 1 year at 90 C. The obtained solids were subdivided into different grain size fractions and prepared for analysis. The elemental analysis of the suspension showed that, uranium and aluminum are concentrated in the solids, whereas iron was mainly dissolved. Non-ambient X-ray diffraction (XRD) combined with the derivative difference minimization (DDM) method was applied for the qualitative and quantitative phase analysis (QPA) of the secondary phases. Gypsum and hemihydrate (bassanite), residues of non-corroded nuclear fuel, hematite, and goethite were identified. The quantitative phase analysis showed that goethite is the major crystalline phase. The amorphous content exceeded 80 wt% and hosted the uranium. All other compounds were present to a minor content. The obtained results by XRD were well supported by complementary scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis.

  9. A method for the quantitative determination of crystalline phases by X-ray

    Science.gov (United States)

    Petzenhauser, I.; Jaeger, P.

    1988-01-01

    A mineral analysis method is described for rapid quantitative determination of crystalline substances in those cases in which the sample is present in pure form or in a mixture of known composition. With this method there is no need for prior chemical analysis.

  10. Quantitation of anticonvulsant drugs in serum by gas-chromatography on the stationary phase SP-2510.

    Science.gov (United States)

    Godolphin, W; Thoma, J

    1978-03-01

    A new column packing, SP-2510 DA (Supelco, Inc., Bellefonte, Pa. 16823), is an excellent stationary phase for the determination of a wide variety of anticonvulsant drugs by gas--liquid chromatography without derivatization. However, when uncomplicated extraction procedures are used, serum cholesterol interferes with the determination of primidone. By the simple expedient of adding a short "pre-column" containing another phase (SP-2250 DA) the problem is overcome.

  11. Prebeta-migrating high density lipoprotein: quantitation in normal and hyperlipidemic plasma by solid phase radioimmunoassay following electrophoretic transfer

    International Nuclear Information System (INIS)

    Ishida, B.Y.; Frolich, J.; Fielding, C.J.

    1987-01-01

    A quantitative solid phase immunoassay has been developed for the determination of the mass of electrophoretically separated prebeta apolipoprotein A-I (apoA-I) in human plasma. Conditions have been identified for the quantitative transfer and immunoblotting of the apolipoprotein in the absence of organic solvents or detergents. In normolipidemic plasma, the prebeta-migrating fraction of apoA-I represented 4.2 +/- 1.8% of total apoA-I (61 +/- 26 micrograms of apoA-I per ml of plasma). Significantly higher levels were found in hypercholesterolemia of genetic origin, in primary and secondary hypertriglyceridemia, and in congenital lecithin:cholesterol acyltransferase deficiency. In all cases prebeta-migrating apoA-I consisted in large part of low molecular weight lipoprotein species, compared to the size of the major, alpha-migrating apoA-I fraction

  12. Quantitative relationship between VLF phase deviations and 1-8 A solar X-ray fluxes during solar flares

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Y; Murata, H; Sato, T [Hyogo Coll. Of Medicine (Japan). Dept. of Physics

    1977-07-01

    An attempt is made to investigate the quantitative relationship between VLF phase deviations in SPA (sudden phase anomalies) events and associated solar X-ray fluxes in the 1 to 8 A band during solar flares. The phase deviations (..delta..phi) of the 18.6 kHz VLF wave transmitted from NLK, USA are used in this analysis which were recorded at Nishinomiya, Japan during the period June 1974 to May 1975. The solar X-ray fluxes (F/sub 0/) in the 1 to 8 A band are estimated from fsub(min) variations using the empirical expression given by Sato (J.Geomag.Geoelectr.;27: 95(1975)), because no observed data were available on the 1 to 8 a X-ray fluxes during the period of the VLF observation. The result shows that the normalized phase variation, ..delta..phi/coschisub(min), where chisub(min) represents the minimum solar zenith angle on the VLF propagation path, increases with increasing logF/sub 0/. A theoretical explanation for this is presented assuming that enhanced ionizations produced in the lower ionosphere by a monochromatic solar X-ray emission are responsible for the VLF phase deviations. Also it is found that a threshold X-ray flux to produce a detectable SPA effect is approximately 1.5 x 10/sup -3/ cm/sup -2/ sec/sup -1/ in the 1 to 8 a band.

  13. High-throughput, high-resolution X-ray phase contrast tomographic microscopy for visualisation of soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S A; Marone, F; Hintermueller, C; Stampanoni, M [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bensadoun, J-C; Aebischer, P, E-mail: samuel.mcdonald@psi.c [EPFL, School of Life Sciences, Station 15, 1015 Lausanne (Switzerland)

    2009-09-01

    The use of conventional absorption based X-ray microtomography can become limited for samples showing only very weak absorption contrast. However, a wide range of samples studied in biology and materials science can produce significant phase shifts of the X-ray beam, and thus the use of the phase signal can provide substantially increased contrast and therefore new and otherwise inaccessible information. The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomography, both available on the TOMCAT beamline of the SLS, is illustrated. Differential Phase Contrast (DPC) imaging uses a grating interferometer and a phase-stepping technique. It has been integrated into the beamline environment on TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. The second phase contrast approach is a modified transfer of intensity approach that can yield the 3D distribution of the phase (refractive index) of a weakly absorbing object from a single tomographic dataset. These methods are being used for the evaluation of cell integrity in 3D, with the specific aim of following and analyzing progressive cell degeneration to increase knowledge of the mechanistic events of neurodegenerative disorders such as Parkinson's disease.

  14. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    International Nuclear Information System (INIS)

    Choi, H. J.; Lee, H. S.; Kim, K. R.; Cheong, H. S.; Ahn, D. H.; Lee, S. H.; Paek, S. W.; Kang, H. S.; Kim, J. G.

    2001-01-01

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip

  15. Validation of the method of quantitative phase analysis by X-ray diffraction in API: case of Tibolone

    International Nuclear Information System (INIS)

    Silva, R P; Ambrósio, M F S; Epprecht, E K; Avillez, R R; Achete, C A; Kuznetsov, A; Visentin, L C

    2016-01-01

    In this study, different structural and microstructural models applied to X-ray analysis of powder diffraction data of polymorphic mixtures of known concentrations of Tibolone were investigated. The X-ray data obtained in different diffraction instruments were analysed via Rietveld method using the same analytical models. The results of quantitative phase analysis show that regardless of the instrument used, the values of the calculated concentrations follow the same systematics with respect to the final errors. The strategy to select a specific analytical model that leads to lower measurement errors is here presented. (paper)

  16. Role of the tip induced local anodic oxidation in the conductive atomic force microscopy of mixed phase silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Vetushka, Aliaksi; Fejfar, Antonín; Ledinský, Martin; Rezek, Bohuslav; Stuchlík, Jiří; Kočka, Jan

    2010-01-01

    Roč. 7, 3-4 (2010), s. 728-731 ISSN 1862-6351 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510; GA AV ČR(CZ) IAA100100902 Institutional research plan: CEZ:AV0Z10100521 Keywords : local anodic oxidation (LAO) * conductive atomic force microscopy (C-AFM) Subject RIV: BM - Solid Matter Physics ; Magnetism http://www3.interscience.wiley.com/journal/123289759/abstract

  17. Topological phases of silicene and germanene in an external magnetic field: Quantitative results

    KAUST Repository

    Singh, Nirpendra; Schwingenschlö gl, Udo

    2014-01-01

    We investigate the topological phases of silicene and germanene that arise due to the strong spin-orbit interaction in an external perpendicular magnetic field. Below and above a critical field of 10 T, respectively, we demonstrate for silicene under 3% tensile strain quantum spin Hall and quantum anomalous Hall phases. Not far above the critical field, and therefore in the experimentally accessible regime, we obtain an energy gap in the meV range, which shows that the quantum anomalous Hall phase can be realized experimentally in silicene, in contrast to graphene (tiny energy gap) and germanene (enormous field required). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Topological phases of silicene and germanene in an external magnetic field: Quantitative results

    KAUST Repository

    Singh, Nirpendra

    2014-03-17

    We investigate the topological phases of silicene and germanene that arise due to the strong spin-orbit interaction in an external perpendicular magnetic field. Below and above a critical field of 10 T, respectively, we demonstrate for silicene under 3% tensile strain quantum spin Hall and quantum anomalous Hall phases. Not far above the critical field, and therefore in the experimentally accessible regime, we obtain an energy gap in the meV range, which shows that the quantum anomalous Hall phase can be realized experimentally in silicene, in contrast to graphene (tiny energy gap) and germanene (enormous field required). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development of Direct Reversed-Phase High Performance liquid chromatographic method for quantitative determination of gabapentin in pharmaceutical dosage

    International Nuclear Information System (INIS)

    Hassan, W.; Zaman, B.; Rahman, S.; Rahman, A.U.; Ali, N.; Mohammadzai, I.U.

    2012-01-01

    The objective of the present work was to develop and validate a rapid analytical method for quantitative determination of Gabapentin in pharmaceutical dosage tablets and capsules. An accurate, simple, and sensitive reversed-phase high performance liquid chromatographic (HPLC) method, UV detection at 215 nm and flow rate at 1.0 ml/min has been developed. Isocratic elution was used instead of gradient elution to reduce the time and cost of serial analysis. The mobile phase was a mixture of water and methanol (HPLC grade). The retention time (Rt) of Gabapentin was 4.681 +- 0.013 minutes. Recovery, Precision, accuracy, and linearity were determined for the stated method. The calibration curve was linear and the correlation coefficient was 0.9996. There was no chromatographic interference from other excipients present in dosage form. The method was validated appropriately and successfully used for determination of Gabapentin in Pharmaceutical formulations. (author)

  20. Qualitative and quantitative determination of sediments phases in Chillon River by x-ray diffraction

    International Nuclear Information System (INIS)

    Miramira Tipula, Biviano; Zeballos Velasquez, Elvira; Chui Betancur, Heber; Valencia Salazar, Edilberto; Huaypar Vasquez, Yesena; Olivera de Lescano, Paula

    2008-01-01

    With this paper, we pretend to contribute with the recovery of Chillon River from a characterization of sediments. The objectives are the identification of pollution places along the bed of the Chillon River, from the Canta Province to Lima Province (Comas) and the determination of the preponderant factors of pollution. The qualitative and semi-quantitative determination of the sediments components have been carried out using the x-ray diffraction and x-ray fluorescence techniques, both of them will allow us to identify the pollute elements, for example the lead level in the Chillon River. (author)

  1. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).

    Science.gov (United States)

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen

    2016-01-21

    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  2. A suggestion of reference data for flow distribution at ankle and foot level using quantitative 99Tc-HDP three-phase bone scintigraphy

    DEFF Research Database (Denmark)

    Tøndevold, Niklas; Reving, Sofie; Møller, Nette

    2012-01-01

    To determine reference intervals for quantitative 99mTc-hydroxymethylene diphosphonate (99mTc-HDP) three-phase bone scintigraphy regarding flow distribution at ankle and mid-foot level.......To determine reference intervals for quantitative 99mTc-hydroxymethylene diphosphonate (99mTc-HDP) three-phase bone scintigraphy regarding flow distribution at ankle and mid-foot level....

  3. Quantitative comparison of errors in 15N transverse relaxation rates measured using various CPMG phasing schemes

    International Nuclear Information System (INIS)

    Myint Wazo; Cai Yufeng; Schiffer, Celia A.; Ishima, Rieko

    2012-01-01

    Nitrogen-15 Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiment are widely used to characterize protein backbone dynamics and chemical exchange parameters. Although an accurate value of the transverse relaxation rate, R 2 , is needed for accurate characterization of dynamics, the uncertainty in the R 2 value depends on the experimental settings and the details of the data analysis itself. Here, we present an analysis of the impact of CPMG pulse phase alternation on the accuracy of the 15 N CPMG R 2 . Our simulations show that R 2 can be obtained accurately for a relatively wide spectral width, either using the conventional phase cycle or using phase alternation when the r.f. pulse power is accurately calibrated. However, when the r.f. pulse is miscalibrated, the conventional CPMG experiment exhibits more significant uncertainties in R 2 caused by the off-resonance effect than does the phase alternation experiment. Our experiments show that this effect becomes manifest under the circumstance that the systematic error exceeds that arising from experimental noise. Furthermore, our results provide the means to estimate practical parameter settings that yield accurate values of 15 N transverse relaxation rates in the both CPMG experiments.

  4. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform.

    Science.gov (United States)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-12-14

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.

  5. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    Science.gov (United States)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (r

  6. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy

    DEFF Research Database (Denmark)

    Møller, Søren; Pedersen, Anne Rathmann; Poulsen, L.K.

    1996-01-01

    As a representative member of the toluene-degrading population in a biofilter for waste gas treatment, Pseudomonas putida was investigated with a 16S rRNA targeting probe, The three-dimensional distribution of P. putida was visualized in the biofilm matrix by scanning confocal laser microscopy...

  7. FLIPPER, a combinatorial probe for correlated live imaging and electron microscopy, allows identification and quantitative analysis of various cells and organelles

    NARCIS (Netherlands)

    Kuipers, Jeroen; van Ham, Tjakko J.; Kalicharan, Ruby D.; Veenstra-Algra, Anneke; Sjollema, Klaas A.; Dijk, Freerk; Schnell, Ulrike; Giepmans, Ben N. G.

    Ultrastructural examination of cells and tissues by electron microscopy (EM) yields detailed information on subcellular structures. However, EM is typically restricted to small fields of view at high magnification; this makes quantifying events in multiple large-area sample sections extremely

  8. FLIPPER, a combinatorial probe for correlated live imaging and electron microscopy, allows identification and quantitative analysis of various cells and organelles

    NARCIS (Netherlands)

    J. Kuipers (Jeroen); T.J. van Ham (Tjakko); R.D. Kalicharan (Ruby); A. Veenstra-Algra (Anneke); K.A. Sjollema (Klaas A.); F.N. Dijk (Nicole); U. Schnell (Ulrike); B.N.G. Giepmans (Ben)

    2015-01-01

    textabstractUltrastructural examination of cells and tissues by electron microscopy (EM) yields detailed information on subcellular structures. However, EM is typically restricted to small fields of view at high magnification; this makes quantifying events in multiple large-area sample sections

  9. The effect of phase constitution on the magnetic structure of nanophase NdFeB alloys observed by magnetic force microscopy

    Science.gov (United States)

    Al-Khafaji, M. A.; Rainforth, W. M.; Gibbs, M. R. J.; Davies, H. A.; Bishop, J. E. L.

    1998-09-01

    Magnetic force microscopy (MFM) has been employed to image the magnetic structure in nanocrystalline melt spun ribbon samples of NdFeB alloys of three markedly different and contrasting compositions: Low-Nd (Nd 9.5Fe 84.5B 6) containing Nd 2Fe 14B and α-Fe phases, stoichiometric (Nd 11.8Fe 82.3B 5.9), and high-Nd (Nd 18Fe 76B 6) containing Nd 2Fe 14B and Nd-rich phases. It was found that the magnetic domain length scale is significantly larger than the mean Nd 2Fe 14B grain size (˜35 nm) in each case, although small changes in force gradient occurred down to ˜20 nm. However, both the domain length scale and the tip-sample interaction `strength' were found to decrease with increasing Nd-content. An interpretation of these results in terms of the microstructure is given.

  10. Quantitative phase analysis using the whole-powder-pattern decomposition method. Pt. 1. Solution from knowledge of chemical compositions

    International Nuclear Information System (INIS)

    Toraya, H.; Tusaka, S.

    1995-01-01

    A new procedure for quantitative phase analysis using the whole-powder-pattern decomposition method is proposed. The procedure consists of two steps. In the first, the whole powder patterns of single-component materials are decomposed separately. The refined parameters of integrated intensity, unit cell and profile shape for respective phases are stored in computer data files. In the second step, the whole powder pattern of a mixture sample is fitted, where the parameters refined in the previous step are used to calculate the profile intensity. The integrated intensity parameters are, however, not varied during the least-squares fitting, while the scale factors for the profile intensities of individual phases are adjusted instead. Weight fractions are obtained by solving simultaneous equations, coefficients of which include the scale factors and the mass-absorption coefficients calculated from chemical formulas of respective phases. The procedure can be applied to all mixture samples, including those containing an amorphous material, if single-component samples with known chemical compositions and their approximate unit-cell parameters are provided. The procedure has been tested by using two-to five-component samples, giving average deviations of 1 to 1.5%. Optimum refinement conditions are discussed in connection with the accuracy of the procedure. (orig.)

  11. Quantitative anomalous small-angle X-ray scattering - The determination of chemical concentrations in nano-scale phases

    International Nuclear Information System (INIS)

    Goerigk, G.; Huber, K.; Mattern, N.; Williamson, D.L.

    2012-01-01

    In the last years Anomalous Small-Angle X-ray Scattering became a precise quantitative method resolving scattering contributions two or three orders of magnitude smaller compared to the overall small-angle scattering, which are related to the so-called pure-resonant scattering contribution. Additionally to the structural information precise quantitative information about the different constituents of multi-component systems like the fraction of a chemical component implemented into the materials nano-structures are obtained from these scattering contributions. The application of the Gauss elimination algorithm to the vector equation established by ASAXS measurements at three X-ray energies is demonstrated for three examples from chemistry and solid state physics. All examples deal with the quantitative analysis of the Resonant Invariant (RI-analysis). From the integrals of the pure-resonant scattering contribution the chemical concentrations in nano-scaled phases are determined. In one example the correlated analysis of the Resonant Invariant and the Non-resonant Invariant (NI-analysis) is employed. (authors)

  12. Phase transformation mechanism in lithium manganese nickel oxide revealed by single-crystal hard X-ray microscopy

    Science.gov (United States)

    Kuppan, Saravanan; Xu, Yahong; Liu, Yijin; Chen, Guoying

    2017-02-01

    Understanding the reaction pathway and kinetics of solid-state phase transformation is critical in designing advanced electrode materials with better performance and stability. Despite the first-order phase transition with a large lattice mismatch between the involved phases, spinel LiMn1.5Ni0.5O4 is capable of fast rate even at large particle size, presenting an enigma yet to be understood. The present study uses advanced two-dimensional and three-dimensional nano-tomography on a series of well-formed LixMn1.5Ni0.5O4 (0growth process instead of a shrinking-core or a particle-by-particle process. Superior kinetics of (100) facets at the vertices of truncated octahedral particles promote preferential delithiation, whereas the observation of strain-induced cracking suggests mechanical degradation in the material.

  13. Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging.

    Science.gov (United States)

    Gilbert, Guillaume; Savard, Geneviève; Bard, Céline; Beaudoin, Gilles

    2012-06-01

    The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. A simplified edge illumination set-up for quantitative phase contrast mammography with synchrotron radiation at clinical doses

    International Nuclear Information System (INIS)

    Longo, Mariaconcetta; Rigon, Luigi; Lopez, Frances C M; Longo, Renata; Chen, Rongchang; Dreossi, Diego; Zanconati, Fabrizio

    2015-01-01

    This work presents the first study of x-ray phase contrast imaging based on a simple implementation of the edge illumination method (EIXPCi) in the field of mammography with synchrotron radiation. A simplified EIXPCi set-up was utilized to study a possible application in mammography at clinical doses. Moreover, through a novel algorithm capable of separating and quantifying absorption and phase perturbations of images acquired in EIXPCi modality, it is possible to extract quantitative information on breast images, allowing an accurate tissue identification. The study was carried out at the SYRMEP beamline of Elettra synchrotron radiation facility (Trieste, Italy), where a mastectomy specimen was investigated with the EIXPCi technique. The sample was exposed at three different energies suitable for mammography with synchrotron radiation in order to test the validity of the novel algorithm in extracting values of linear attenuation coefficients integrated over the sample thickness. It is demonstrated that the quantitative data are in good agreement with the theoretical values of linear attenuation coefficients calculated on the hypothesis of the breast with a given composition. The results are promising and encourage the current efforts to apply the method in mammography with synchrotron radiation. (note)

  15. Usefulness of asymmetry score on quantitative three-phase bone scintigraphy in the evaluation of complex regional pain syndrome

    International Nuclear Information System (INIS)

    Sampath, Santhosh; Mittal, Bhagwant Rai; Arun, Sasikumar; Sood, Ashwani; Bhattacharya, Anish; Sharma, Aman

    2013-01-01

    Complex regional pain syndrome (CRPS) is primarily a clinical diagnosis. Diagnostic imaging in CRPS can be used, especially to exclude other disorders. The sensitivity and specificity of three phase bone scintigraphy (TPBS) for the diagnosis of CRPS is variable throughout the literature. To establish a simple and effective quantitative approach to help in the diagnosis of CRPS by TPBS. TPBS done in patients (n = 68) with suspected CRPS was analyzed retrospectively. They were classified into bone scan positive group (BSP), bone scan negative group (BSN) and non-CRPS group based on diffusely increased periarticular uptake, symmetrical uptake, and focal uptake respectively. Asymmetry score (AS) was also measured between the affected and unaffected side. 16 patients showed focal uptake, 37 were in BSP group with mean AS score of 1.57 ± 0.5 and 15 were in BSN group with mean AS score of 1.01 ± 0.05. The mean AS was significantly different (P < 0.0001). AS of 1.06 had sensitivity and specificity of 96.43% and 100% respectively (P = 0.0001). There was a trend of negative correlation between the AS and the duration, r = −0.21; however, it was not statistically significant (P = 0.28). TPBS should be considered in the evaluation of CRPS to rule out patients who have focal involvement, not diagnostic of CRPS (~24% in this study). Quantitative AS of 1.06 can be included to support visual interpretation in the delayed phase

  16. Quantitative determination of reserpine, ajmaline, and ajmalicine in Rauvolfia serpentina by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Srivastava, A; Tripathi, A K; Pandey, R; Verma, R K; Gupta, M M

    2006-10-01

    A sensitive and reproducible reversed-phase high-performance liquid chromatography (HPLC) method using photodiode array detection is established for the simultaneous quantitation of important root alkaloids of Rauvolfia serpentina, namely, reserpine, ajmaline, and ajmalicine. A Chromolith Performance RP-18e column (100 x 4.6-mm i.d.) and a binary gradient mobile phase composed of 0.01 M (pH 3.5) phosphate buffer (NaH(2)PO(4)) containing 0.5% glacial acetic acid and acetonitrile are used. Analysis is run at a flow rate of 1.0 mL/min with the detector operated at a wavelength of 254 nm. The calibration curves are linear over a concentration range of 1-20 microg/mL (r = 1.000) for all the alkaloids. The various other aspects of analysis (i.e., peak purity, similarity, recovery, and repeatability) are also validated. For the three components, the recoveries are found to be 98.27%, 97.03%, and 98.38%, respectively. The limits of detection are 6, 4, and 8 microg/mL for ajmaline, ajmalicine, and reserpine, respectively, and the limits of quantitation are 19, 12, and 23 microg/mL for ajmaline, ajmalicine, and reserpine, respectively. The developed method is simple, reproducible, and easy to operate. It is useful for the evaluation of R. serpentina.

  17. /sup 99m/Tc-labeled solid-phase meal: a quantitative clinical measurement of human gastric emptying

    International Nuclear Information System (INIS)

    Martin, J.L.; Beck, W.J.; McDonald, A.P.; Carlson, G.M.; Mathias, J.R.

    1983-01-01

    A solid-phase meal labeled with /sup 99m/Tc-sulfur colloid provides an improved clinical test for the quantitative evaluation of human gastric emptying. We studied 12 healthy male controls and five male patients with known gastric stasis secondary to a vagotomy and drainage procedure. All subjects were fasted for 8 hours before the study, and each consumed an unbuttered biscuit and a poached egg white containing 1 mCi of /sup 99m/Tc-sulfur colloid. For 2 hours, 60-second counts were measured every 10 minutes by a Pho Gamma III scintillation camera. The t 1 / 2 for control subjects was 60 minutes, at which time patients with gastric stasis had retained 98% of the test meal. At 120 minutes, control subjects and patients with gastric stasis had 4.7% and 89%, respectively, of the meal remaining in the stomach. The solid-phase test meal labeled with /sup 99m/Tc-sulfur colloid is easy to perform and can be used clinically to quantitatively measure gastric emptying in humans. This test can discriminate between control subjects and patients with known gastric stasis

  18. Quantitation of promethazine and metabolites in urine samples using on-line solid-phase extraction and column-switching

    Science.gov (United States)

    Song, Q.; Putcha, L.; Harm, D. L. (Principal Investigator)

    2001-01-01

    A chromatographic method for the quantitation of promethazine (PMZ) and its three metabolites in urine employing on-line solid-phase extraction and column-switching has been developed. The column-switching system described here uses an extraction column for the purification of PMZ and its metabolites from a urine matrix. The extraneous matrix interference was removed by flushing the extraction column with a gradient elution. The analytes of interest were then eluted onto an analytical column for further chromatographic separation using a mobile phase of greater solvent strength. This method is specific and sensitive with a range of 3.75-1400 ng/ml for PMZ and 2.5-1400 ng/ml for the metabolites promethazine sulfoxide, monodesmethyl promethazine sulfoxide and monodesmethyl promethazine. The lower limits of quantitation (LLOQ) were 3.75 ng/ml with less than 6.2% C.V. for PMZ and 2.50 ng/ml with less than 11.5% C.V. for metabolites based on a signal-to-noise ratio of 10:1 or greater. The accuracy and precision were within +/- 11.8% in bias and not greater than 5.5% C.V. in intra- and inter-assay precision for PMZ and metabolites. Method robustness was investigated using a Plackett-Burman experimental design. The applicability of the analytical method for pharmacokinetic studies in humans is illustrated.

  19. /sup 99m/Tc-labeled solid-phase meal: a quantitative clinical measurement of human gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.L.; Beck, W.J.; McDonald, A.P.; Carlson, G.M.; Mathias, J.R.

    1983-08-01

    A solid-phase meal labeled with /sup 99m/Tc-sulfur colloid provides an improved clinical test for the quantitative evaluation of human gastric emptying. We studied 12 healthy male controls and five male patients with known gastric stasis secondary to a vagotomy and drainage procedure. All subjects were fasted for 8 hours before the study, and each consumed an unbuttered biscuit and a poached egg white containing 1 mCi of /sup 99m/Tc-sulfur colloid. For 2 hours, 60-second counts were measured every 10 minutes by a Pho Gamma III scintillation camera. The t/sup 1///sup 2/ for control subjects was 60 minutes, at which time patients with gastric stasis had retained 98% of the test meal. At 120 minutes, control subjects and patients with gastric stasis had 4.7% and 89%, respectively, of the meal remaining in the stomach. The solid-phase test meal labeled with /sup 99m/Tc-sulfur colloid is easy to perform and can be used clinically to quantitatively measure gastric emptying in humans. This test can discriminate between control subjects and patients with known gastric stasis.

  20. Exploring neural cell dynamics with digital holographic microscopy

    KAUST Repository

    Marquet, Pierre; Depeursinge, Christian D.; Magistretti, Pierre J.

    2013-01-01

    In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.

  1. Exploring neural cell dynamics with digital holographic microscopy

    KAUST Repository

    Marquet, Pierre

    2013-07-11

    In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.

  2. Quantitative comparison of tympanic membrane displacements using two optical methods to recover the optical phase

    Science.gov (United States)

    Santiago-Lona, Cynthia V.; Hernández-Montes, María del Socorro; Mendoza-Santoyo, Fernando; Esquivel-Tejeda, Jesús

    2018-02-01

    The study and quantification of the tympanic membrane (TM) displacements add important information to advance the knowledge about the hearing process. A comparative statistical analysis between two commonly used demodulation methods employed to recover the optical phase in digital holographic interferometry, namely the fast Fourier transform and phase-shifting interferometry, is presented as applied to study thin tissues such as the TM. The resulting experimental TM surface displacement data are used to contrast both methods through the analysis of variance and F tests. Data are gathered when the TMs are excited with continuous sound stimuli at levels 86, 89 and 93 dB SPL for the frequencies of 800, 1300 and 2500 Hz under the same experimental conditions. The statistical analysis shows repeatability in z-direction displacements with a standard deviation of 0.086, 0.098 and 0.080 μm using the Fourier method, and 0.080, 0.104 and 0.055 μm with the phase-shifting method at a 95% confidence level for all frequencies. The precision and accuracy are evaluated by means of the coefficient of variation; the results with the Fourier method are 0.06143, 0.06125, 0.06154 and 0.06154, 0.06118, 0.06111 with phase-shifting. The relative error between both methods is 7.143, 6.250 and 30.769%. On comparing the measured displacements, the results indicate that there is no statistically significant difference between both methods for frequencies at 800 and 1300 Hz; however, errors and other statistics increase at 2500 Hz.

  3. Imaging the morphological change of tissue structure during the early phase of esophageal tumor progression using multiphoton microscopy

    Science.gov (United States)

    Xu, Jian; Kang, Deyong; Xu, Meifang; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2012-12-01

    Esophageal cancer is a common malignancy with a very poor prognosis. Successful strategies for primary prevention and early detection are critically needed to control this disease. Multiphoton microscopy (MPM) is becoming a novel optical tool of choice for imaging tissue architecture and cellular morphology by two-photon excited fluorescence. In this study, we used MPM to image microstructure of human normal esophagus, carcinoma in situ (CIS), and early invasive carcinoma in order to establish the morphological features to differentiate these tissues. The diagnostic features such as the appearance of cancerous cells, the significant loss of stroma, the absence of the basement membrane were extracted to distinguish between normal and cancerous esophagus tissue. These results correlated well with the paired histological findings. With the advancement of clinically miniaturized MPM and the multi-photon probe, combining MPM with standard endoscopy will therefore allow us to make a real-time in vivo diagnosis of early esophageal cancer at the cellular level.

  4. Fluorescence microscopy.

    Science.gov (United States)

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  5. Column selectivity in reversed-phase liquid chromatography I. A general quantitative relationship.

    Science.gov (United States)

    Wilson, N S; Nelson, M D; Dolan, J W; Snyder, L R; Wolcott, R G; Carr, P W

    2002-07-05

    Retention factors k have been measured for 67 neutral, acidic and basic solutes of highly diverse molecular structure (size, shape, polarity, hydrogen bonding, pKa, etc.) on 10 different C18 columns (other conditions constant). These data have been combined with k values from a previous study (86 solutes, five different C8 and C18 columns) to develop a six-term equation for the correlation of retention as a function of solute and column. Values of k can be correlated with an accuracy of +/- 1-2% (1 standard deviation). This suggests that all significant contributions to column selectivity have been identified (and can be measured) for individual alkyl-silica columns which do not have an embedded polar group. That is, columns of the latter kind can be quantitatively characterized in terms of selectivity for use in the separation of any sample.

  6. Effects of fecal sampling on preanalytical and analytical phases in quantitative fecal immunochemical tests for hemoglobin.

    Science.gov (United States)

    Rapi, Stefano; Berardi, Margherita; Cellai, Filippo; Ciattini, Samuele; Chelazzi, Laura; Ognibene, Agostino; Rubeca, Tiziana

    2017-07-24

    Information on preanalytical variability is mandatory to bring laboratories up to ISO 15189 requirements. Fecal sampling is greatly affected by lack of harmonization in laboratory medicine. The aims of this study were to obtain information on the devices used for fecal sampling and to explore the effect of different amounts of feces on the results from the fecal immunochemical test for hemoglobin (FIT-Hb). Four commercial sample collection devices for quantitative FIT-Hb measurements were investigated. The volume of interest (VOI) of the probes was measured from diameter and geometry. Quantitative measurements of the mass of feces were carried out by gravimetry. The effects of an increased amount of feces on the analytical environment were investigated measuring the Hb values with a single analytical method. VOI was 8.22, 7.1 and 9.44 mm3 for probes that collected a target of 10 mg of feces, and 3.08 mm3 for one probe that targeted 2 mg of feces. The ratio between recovered and target amounts of devices ranged from 56% to 121%. Different changes in the measured Hb values were observed, in adding increasing amounts of feces in commercial buffers. The amounts of collected materials are related to the design of probes. Three out 4 manufacturers declare the same target amount using different sampling volumes and obtaining different amounts of collected materials. The introduction of a standard probes to reduce preanalytical variability could be an useful step for fecal test harmonization and to fulfill the ISO 15189 requirements.

  7. Myosin helical pitch angle as a quantitative imaging biomarker for characterization of cardiac programming in fetal growth restriction measured by polarization second harmonic microscopy

    Science.gov (United States)

    Amat-Roldan, I.; Psilodimitrakopoulos, S.,; Eixarch, E.,; Torre, I.; Wotjas, B.; Crispi, F.; Figueras, F.; Artigas, D.,; Loza-Alvarez, P.; Gratacos, E.,

    2009-07-01

    Fetal growth restriction (FGR) has recently shown a strong association with cardiac programming which predisposes to cardiovascular mortality in adulthood. Polarization Second Harmonic Microscopy can quantify molecular architecture changes with high sensitivity in cardiac myofibrils. In this work, we use myosin helical pitch angle as an example to quantify such alterations related to this high risk population. Importantly, this shows a potential use of the technique as an early diagnostic tool and an alternative method to understand pathophysiological processes.

  8. Kinetic pathways of the nematic-isotropic phase transition as studied by confocal microscopy on rod-like viruses

    International Nuclear Information System (INIS)

    Lettinga, M Paul; Kang, Kyongok; Imhof, Arnout; Derks, Didi; Dhont, Jan K G

    2005-01-01

    We investigate the kinetics of phase separation for a mixture of rod-like viruses (fd) and polymer (dextran), which effectively constitutes a system of attractive rods. This dispersion is quenched from a flow-induced fully nematic state into the region where the nematic and the isotropic phase coexist. We show experimental evidence that the kinetic pathway depends on the overall concentration. When the quench is made at high concentrations, the system is meta-stable and we observe typical nucleation-and-growth. For quenches at low concentration the system is unstable and the system undergoes a spinodal decomposition. At intermediate concentrations we see the transition between both demixing processes, where we locate the spinodal point

  9. Quantitative Comparison of Ternary Eutectic Phase-Field Simulations with Analytical 3D Jackson-Hunt Approaches

    Science.gov (United States)

    Steinmetz, Philipp; Kellner, Michael; Hötzer, Johannes; Nestler, Britta

    2018-02-01

    For the analytical description of the relationship between undercoolings, lamellar spacings and growth velocities during the directional solidification of ternary eutectics in 2D and 3D, different extensions based on the theory of Jackson and Hunt are reported in the literature. Besides analytical approaches, the phase-field method has been established to study the spatially complex microstructure evolution during the solidification of eutectic alloys. The understanding of the fundamental mechanisms controlling the morphology development in multiphase, multicomponent systems is of high interest. For this purpose, a comparison is made between the analytical extensions and three-dimensional phase-field simulations of directional solidification in an ideal ternary eutectic system. Based on the observed accordance in two-dimensional validation cases, the experimentally reported, inherently three-dimensional chain-like pattern is investigated in extensive simulation studies. The results are quantitatively compared with the analytical results reported in the literature, and with a newly derived approach which uses equal undercoolings. A good accordance of the undercooling-spacing characteristics between simulations and the analytical Jackson-Hunt apporaches are found. The results show that the applied phase-field model, which is based on the Grand potential approach, is able to describe the analytically predicted relationship between the undercooling and the lamellar arrangements during the directional solidification of a ternary eutectic system in 3D.

  10. Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Ebbehøj, Søren Lyng; Hauch, Anne

    2015-01-01

    of the pathways through which they can be reached. New methods for performing TPB specific pathway analysis on 3D image data are introduced, analyzing the pathway properties of each TPB site in the electrode structure. The methods seek to provide additional information beyond whether the TPB sites are percolating......The density and percolation of Triple phase boundary sites are important quantities in analyzing microstructures of solid oxide fuel cell electrodes from tomography data. However, these measures do not provide descriptions of the quality of the TPB sites in terms of the length and radius...... or not by also analyzing the pathway length to the TPB sites and the bottleneck radius of the pathway. We show how these methods can be utilized in quantifying and relating the TPB specific results to cell test data of an electrode reduction protocol study for Ni/Scandia-and-Yttria-doped-Zirconia (Ni...

  11. Leukotriene B4 catabolism: quantitation of leukotriene B4 and its omega-oxidation products by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Shak, S

    1987-01-01

    LTB4 and its omega-oxidation products may be rapidly, sensitively, and specifically quantitated by the methods of solid-phase extraction and reversed-phase high-performance liquid chromatography (HPLC), which are described in this chapter. Although other techniques, such as radioimmunoassay or gas chromatography-mass spectrometry, may be utilized for quantitative analysis of the lipoxygenase products of arachidonic acid, only the technique of reversed-phase HPLC can quantitate as many as 10 metabolites in a single analysis, without prior derivatization. In this chapter, we also reviewed the chromatographic theory which we utilized in order to optimize reversed-phase HPLC analysis of LTB4 and its omega-oxidation products. With this information and a gradient HPLC system, it is possible for any investigator to develop a powerful assay for the potent inflammatory mediator, LTB4, or for any other lipoxygenase product of arachidonic acid.

  12. Quantitative analysis of crystalline and remaining glass phases in CaO-B2O3-SiO2 ternary system glass ceramics

    International Nuclear Information System (INIS)

    He Ming; Wu Mengqiang; Zhang Shuren; Zhou Xiaohua; Zhang Ting; Chen Song

    2010-01-01

    Research highlights: → As for CBS ternary system glass ceramics, due to the complex phase compositions, many methods could be difficult to determine quantitatively the absolute amounts of crystalline and remaining oxides. In this study, an available method based on the Rietveld method was used to quantitatively analyze the relative weight fraction and densities of crystalline phases. These above data are used to obtain a table of both relative weight fraction of crystalline phases and densities of all phases including CBS LTCC. Using volume additivity rule, it is possible to analysis quantitatively the absolute weight fraction of crystalline phases and also the oxides molar content in the remaining glass. - Abstract: Based on Rietveld method of X-ray techniques and volume additivity rule, a new method was developed to quantitatively analyze the phase composition of CaO-B 2 O 3 -SiO 2 ternary system glass ceramics. Lattice parameters, densities and relative weight fractions of crystalline phases in CaO-B 2 O 3 -SiO 2 ternary system were obtained by X-ray diffraction (XRD) refinement. According to the relative weight fraction of crystalline phases and densities of various components, the volume additivity rule was revealed by calculating the absolute weight fraction of crystalline phases of CaO-B 2 O 3 -SiO 2 glass ceramics. In addition, molar contents of the oxides in the remaining glass can also be determined by this method. Comparing this method with internal standard method, it is found that the maximum deviations of the crystallinity and the absolute weight fraction of crystalline phases are less than 2.6% and 2.9%, respectively. As a result, quantitative evaluation of CaO-B 2 O 3 -SiO 2 ternary system glass ceramics can be achieved using this method.

  13. Transmission electron microscopy observations on phase transformations during aluminium/mullite composites formation by gas pressure infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Pawlyta, M., E-mail: miroslawa.pawlyta@polsl.pl [Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18A, 44-100 Gliwice (Poland); Tomiczek, B.; Dobrzański, L.A.; Kujawa, M. [Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18A, 44-100 Gliwice (Poland); Bierska-Piech, B. [Silesian Centre for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland)

    2016-04-15

    The porous ceramic preforms were manufactured using the powder metallurgy technique. First, the start-up material (halloysite with the addition of carbon fibres as the pore-forming agent) was slowly heated to 800 °C and then sintered at 1300 °C. Degradation of the carbon fibres enabled the open canals to form. At the end of the sintering process, the porous ceramic material consisting mainly of two phases (mullite and cristobalite) was formed, without any residual carbon content. During infiltration, the liquid metal filled the empty spaces (pores) effectively and formed the three-dimensional network of metal in the ceramic. The cristobalite was almost entirely decomposed. In the areas of its previous occurrence, there are new pores, only in the ceramic grains. The mullite, which was formed from halloysite during annealing, crystallized in the Pbam orthorhombic space group, with the (3Al{sub 2}O{sub 3}·2SiO{sub 2}) stoichiometric composition. The mullite structure does not change during the infiltration. The composite components are tightly connected. A transition zone between the ceramics and the metal, having the thickness of about 200 nm, was formed. The nanocrystalline zone, identified as γ-Al{sub 2}O{sub 3}, was formed by diffusing the product of the cristobalite decomposition into the aluminium alloy matrix. There is an additional, new phase, identified as (Mg,Si)Al{sub 2}O{sub 4} in the outer parts of the transition zone. - Highlights: • Phase changes after the infiltration of aluminium into porous mullite preforms were observed by TEM. • TEM observations confirm that during infiltration cristobalite was decomposed and the structure of mullite did not change. • Between the ceramic and the metal, a transition zone comprising a layer of γ-Al{sub 2}O{sub 3} and (Mg,Si)Al{sub 2}O{sub 4} was formed.

  14. Micromechanical analysis of martensite distribution on strain localization in dual phase steels by scanning electron microscopy and crystal plasticity simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Ziaei-Rad, S., E-mail: szrad@cc.iut.ac.ir [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Saeidi, N. [Department of Materials Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Jamshidian, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2016-07-18

    The morphology and distribution of the dispersed martensite islands in the ferrite matrix plays a key role in the formation of shear bands in dual phase steels. In this study, we investigate the relationship between the martensite dispersion and the strain localization regions due to the formation of shear bands in fine-grained DP 780 steel, employing experimental observations as well as numerical simulations. SEM studies of the deformed microstructure showed that voids nucleated at ferrite-martensite interface within larger ferrite grains and regions with low local martensite fraction. The experimental results were precisely analyzed by finite element simulations based on the theory of crystal plasticity. A parametric study was then performed to obtain a deeper insight in to the effect of martensite dispersion on the strain localization of the neighboring ferrite. Crystal plasticity simulation results revealed that in a more regular structure compared to a random structure, a greater region of the ferrite phase contributes to accommodate plasticity. In addition, these regions limit the formation of main shear bands by creating barriers against stress concentration regions, results in lower growth and interaction of stress concentration regions with each others.

  15. Quantitative measurement of total cerebral blood flow using 2D phase-contrast MRI and doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Keum Soo; Choi, Sun Seob; Lee, Young Il [Dong-A Univ., College of Medicine, Busan (Korea, Republic of)

    2001-12-01

    To compare of quantitative measurement of the total cerebral blood flow using two-dimensional phase-contrast MR imaging and Doppler ultrasound. In 16 volunteers (mean age, 26 years; mean body weight, 66 kg) without abnormal medical histories, two-dimensional phase-contrast MR imaging was performed at the level of the C2-3 inter vertebral disc for flow measurement of the internal carotid arteries and the vertebral arteries. Volume flow measurements using Doppler ultrasound were also performed at the internal carotid arteries 2cm above the carotid bifurcation, and at the vertebral arteries at the level of the upper pole of the thyroid gland. Flows in the four vessels measured by the two methods were compared using Wilcoxon's correlation analysis and the median score. Total cerebral blood flows were calculated by summing these four vessel flows, and mean values for the 16 volunteers were calculated. Cerebral blood flows measured by 2-D phase-contrast MR imaging and Doppler ultrasounds were 233 and 239 ml/min in the right internal carotid artery, 250 and 248 ml/min in the left internal carotid artery, 62 and 56 ml/min in the right vertebral artery, and 83 and 68 ml/min in the left vertebral artery. Correlation coefficients of the blood flows determined by the two methods were 0.48, 0.54, 0.49, and 0.62 in each vessel, while total cerebral blood flows were 628{+-}68 (range, 517 to 779) ml/min and 612{+-}79 (range, 482 to 804)ml/min, respectively. Total cerebral blood flow was easily measured using 2-D phase-contrast MR imaging and Doppler ultrasound, and the two noninvasive methods can therefore be used clinically for the measurement of total cerebral blood flow.

  16. Quantitative assessment of the effectiveness of phase 1 orthodontic treatment using the American Board of Orthodontics Discrepancy Index.

    Science.gov (United States)

    Vasilakou, Nefeli; Araujo, Eustaquio A; Kim, Ki Beom; Oliver, Donald R

    2016-12-01

    This retrospective study included a sample of 300 randomly selected patients from the archived records of Saint Louis University's graduate orthodontic clinic, St. Louis, Mo, from 1990 to 2012. The objective of this study was to quantify the changes obtained in phase 1 of orthodontic treatment and determine how much improvement, if any, has occurred before the initiation of the second phase. For the purpose of this study, prephase 1 and prephase 2 records of 300 subjects were gathered. All were measured using the American Board of Ortodontics Discrepancy Index (DI), and a score was given for each phase. The difference of the 2 scores indicated the quantitative change of the complexity of the treatment. Paired t tests were used to compare the scores. Additionally, the sample was categorized into 3 groups according to the Angle classifications, and the same statistics were used to identify significant changes between the 2 scores. Analysis of variance was applied to compare the 3 groups and determine which had the most change. Percentages of change were calculated for the significant scores. The total DI score overall and the scores of all 3 groups were significantly reduced from before to after phase 1. Overall, 42% improvement was observed. The Class I group showed 49.3% improvement, the Class II group 34.5% and the Class III group 58.5%. Most components of the DI improved significantly, but a few showed negative changes. Significant reductions of DI scores were observed in the total sample and in all Angle classification groups. This indicates that early treatment reduces the complexity of the malocclusions. Only 2 components of the DI showed statistically significant negative changes. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  17. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, Dustin Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollis, Kendall Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffraction data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to

  18. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    International Nuclear Information System (INIS)

    Cummins, Dustin Ray; Vogel, Sven C.; Hollis, Kendall Jon; Brown, Donald William; Dombrowski, David E.

    2016-01-01

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffraction data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to

  19. Quantitative determination of 1,4-dioxane and tetrahydrofuran in groundwater by solid phase extraction GC/MS/MS.

    Science.gov (United States)

    Isaacson, Carl; Mohr, Thomas K G; Field, Jennifer A

    2006-12-01

    Groundwater contamination by cyclic ethers, 1,4-dioxane (dioxane), a probable human carcinogen, and tetrahydrofuran (THF), a co-contaminant at many chlorinated solvent release sites, are a growing concern. Cyclic ethers are readily transported in groundwater, yet little is known about their fate in environmental systems. High water solubility coupled with low Henry's law constants and octanol-water partition coefficients make their removal from groundwater problematic for both remedial and analytical purposes. A solid-phase extraction (SPE) method based on activated carbon disks was developed for the quantitative determination of dioxane and THF. The method requires 80 mL samples and a total of 1.2 mL of solvent (acetone). The number of steps is minimized due to the "in-vial" elution of the disks. Average recoveries for dioxane and THF were 98% and 95%, respectively, with precision, as indicated by the relative standard deviation of <2% to 6%. The method quantitation limits are 0.31 microg/L for dioxane and 3.1 microg/L for THF. The method was demonstrated by analyzing groundwater samples for dioxane and THF collected during a single sampling campaign at a TCA-impacted site. Dioxane concentrations and areal extent of dioxane in groundwater were greater than those of either TCA or THF.

  20. Quantitative infrared and near-infrared gas-phase spectra for pyridine: Absolute intensities and vibrational assignments

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J.; Aker, P. M.; Scharko, N. K.; Williams, S. D.

    2018-02-01

    Using vetted methods for generating quantitative absorption reference data, broadband infrared and near-infrared spectra (total range 11,000 – 600 cm-1) of pyridine vapor were recorded at 0.1 cm-1 spectral resolution, with the analyte thermostatted at 298 K and pressure-broadened to 1 atmosphere using N2 ballast gas. The quantitative spectrum is reported for the first time, and we have re-assigned some of the 27 fundamental modes. Fundamental assignments were confirmed by IR vapor phase band shapes, FT-Raman measurements and comparison with previous analyses. For the 760-Torr vapor-phase IR data several bands show resolved peaks (Q-branches). We have also assigned for the first time hundreds of combination and overtone bands in the mid- and near-IR. All assignments were made via comparison to theoretically calculated frequencies and intensities: The frequencies were computed with Gaussian03 with the anharmonic option, using MP2 and the ccpvtz basis set. The intensities were taken from a VSCF calculation in GAMESS using Hartree-Fock (for overtones and combination bands) or from the harmonic MP2 for fundamentals. Overtone and combination band harmonic and anharmonic frequencies, as well as intensities were also calculated using the CFOUR program. It is seen in the NIR spectrum near 6000 cm-1 that the very strong bands arise from the C-H first overtones, whereas only much weaker bands are observed for combination bands of C-H stretching modes. Certain features are discussed for their potential utility for atmospheric monitoring.

  1. Quantitative early phase scintigraphy in the prediction of healing of tibial fractures

    International Nuclear Information System (INIS)

    Wallace, A.L.; Strachan, R.K.; Hughes, S.P.F.

    1992-01-01

    Imaging with technetium-99m methylene diphsophonate ( 99m Tc-MDP) is established in the diagnosis of infection, neoplasia and ischaemic necrosis in orthopaedic practice, but its role in fracture healing is less well-defined. Previous studies have shown a relationship between fracture site activity (region A), activity in adjacent normal bone (region C) and time to union. The predictive value of the A/C ratio of the image obtained 300-800 s after injection was assessed in a prospective study of 50 patients with closed tibial fractures managed with plaster casts, external fixators and intramedullary nails. There were significant differences in absolute uptake and A/C ratio between the three groups (P 99m -Tc-MDP uptake so as to reduce the A/C ratio (1.10±0.20), but there is a promissing role for early phase bone scanning in non-operative (A/C=1.40±0.21) or externally fixed (A/C=1.26±0.22) fractures in conjunction with other non-invasive methods of monitoring the biomechanical environment. (orig.)

  2. Liquid-phase sample preparation method for real-time monitoring of airborne asbestos fibers by dual-mode high-throughput microscopy.

    Science.gov (United States)

    Cho, Myoung-Ock; Kim, Jung Kyung; Han, Hwataik; Lee, Jeonghoon

    2013-01-01

    Asbestos that had been used widely as a construction material is a first-level carcinogen recognized by the World Health Organization. It can be accumulated in body by inhalation causing virulent respiratory diseases including lung cancer. In our previous study, we developed a high-throughput microscopy (HTM) system that can minimize human intervention accompanied by the conventional phase contrast microscopy (PCM) through automated counting of fibrous materials and thus significantly reduce analysis time and labor. Also, we attempted selective detection of chrysotile using DksA protein extracted from Escherichia coli through a recombinant protein production technique, and developed a dual-mode HTM (DM-HTM) by upgrading the HTM device. We demonstrated that fluorescently-labeled chrysotile asbestos fibers can be identified and enumerated automatically among other types of asbestos fibers or non-asbestos particles in a high-throughput manner through a newly modified HTM system for both reflection and fluorescence imaging. However there is a limitation to apply DM-HTM to airborne sample with current air collecting method due to the difficulty of applying the protein to dried asbestos sample. Here, we developed a technique for preparing liquid-phase asbestos sample using an impinger normally used to collect odor molecules in the air. It would be possible to improve the feasibility of the dual-mode HTM by integrating a sample preparation unit for making collected asbestos sample dispersed in a solution. The new technique developed for highly sensitive and automated asbestos detection can be a potential alternative to the conventional manual counting method, and it may be applied on site as a fast and reliable environmental monitoring tool.

  3. Qualitative and Quantitative Characterization of Porosity in a Low Porous and Low Permeable Organic Rich Shale by Combining Broad Ion Beam and Scanning Electron Microscopy (BIB-SEM)

    International Nuclear Information System (INIS)

    Klaver, Jop; Desbois, Guillaume; Urai, Janos L.

    2013-01-01

    This contribution focuses on the characterization of porosity in low porous shale using a broad ion beam (BIB) polishing technique combined with a conventional scanning electron microscopy (SEM). Porosity was traced in certain representative elementary areas (REA) and pores detected are segmented from mosaics of secondary electron (SE) images. Traced pores could be classified into two major pore-size classes. Relative large pores (> 0.5 μm 2 ) were found in the organic matter and matrix. They contribute strongly to the overall porosity con-tent of the shale. Nevertheless the far majority of the pores traced have equivalent radius less than 400 nm. Including the latter pore class, the imaged porosity from both samples gives similar results in the order of < 1 %. (authors)

  4. Quantitative MR thermometry based on phase-drift correction PRF shift method at 0.35 T.

    Science.gov (United States)

    Chen, Yuping; Ge, Mengke; Ali, Rizwan; Jiang, Hejun; Huang, Xiaoyan; Qiu, Bensheng

    2018-04-10

    Noninvasive magnetic resonance thermometry (MRT) at low-field using proton resonance frequency shift (PRFS) is a promising technique for monitoring ablation temperature, since low-field MR scanners with open-configuration are more suitable for interventional procedures than closed systems. In this study, phase-drift correction PRFS with first-order polynomial fitting method was proposed to investigate the feasibility and accuracy of quantitative MR thermography during hyperthermia procedures in a 0.35 T open MR scanner. Unheated phantom and ex vivo porcine liver experiments were performed to evaluate the optimal polynomial order for phase-drift correction PRFS. The temperature estimation approach was tested in brain temperature experiments of three healthy volunteers at room temperature, and in ex vivo porcine liver microwave ablation experiments. The output power of the microwave generator was set at 40 W for 330 s. In the unheated experiments, the temperature root mean square error (RMSE) in the inner region of interest was calculated to assess the best-fitting order for polynomial fit. For ablation experiments, relative temperature difference profile measured by the phase-drift correction PRFS was compared with the temperature changes recorded by fiber optic temperature probe around the microwave ablation antenna within the target thermal region. The phase-drift correction PRFS using first-order polynomial fitting could achieve the smallest temperature RMSE in unheated phantom, ex vivo porcine liver and in vivo human brain experiments. In the ex vivo porcine liver microwave ablation procedure, the temperature error between MRT and fiber optic probe of all but six temperature points were less than 2 °C. Overall, the RMSE of all temperature points was 1.49 °C. Both in vivo and ex vivo experiments showed that MR thermometry based on the phase-drift correction PRFS with first-order polynomial fitting could be applied to monitor temperature changes during

  5. Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo

    Science.gov (United States)

    Zhao, Huangxuan; Wang, Guangsong; Lin, Riqiang; Gong, Xiaojing; Song, Liang; Li, Tan; Wang, Wenjia; Zhang, Kunya; Qian, Xiuqing; Zhang, Haixia; Li, Lin; Liu, Zhicheng; Liu, Chengbo

    2018-04-01

    For the diagnosis and evaluation of ophthalmic diseases, imaging and quantitative characterization of vasculature in the iris are very important. The recently developed photoacoustic imaging, which is ultrasensitive in imaging endogenous hemoglobin molecules, provides a highly efficient label-free method for imaging blood vasculature in the iris. However, the development of advanced vascular quantification algorithms is still needed to enable accurate characterization of the underlying vasculature. We have developed a vascular information quantification algorithm by adopting a three-dimensional (3-D) Hessian matrix and applied for processing iris vasculature images obtained with a custom-built optical-resolution photoacoustic imaging system (OR-PAM). For the first time, we demonstrate in vivo 3-D vascular structures of a rat iris with a the label-free imaging method and also accurately extract quantitative vascular information, such as vessel diameter, vascular density, and vascular tortuosity. Our results indicate that the developed algorithm is capable of quantifying the vasculature in the 3-D photoacoustic images of the iris in-vivo, thus enhancing the diagnostic capability of the OR-PAM system for vascular-related ophthalmic diseases in vivo.

  6. Creation of a bovine herpes virus 1 (BoHV-1) quantitative particle standard by transmission electron microscopy and comparison with established standards for use in real-time PCR.

    Science.gov (United States)

    Hoferer, Marc; Braun, Anne; Sting, Reinhard

    2017-07-01

    Standards are pivotal for pathogen quantification by real-time PCR (qPCR); however, the creation of a complete and universally applicable virus particle standard is challenging. In the present study a procedure based on purification of bovine herpes virus type 1 (BoHV-1) and subsequent quantification by transmission electron microscopy (TEM) is described. Accompanying quantitative quality controls of the TEM preparation procedure using qPCR yielded recovery rates of more than 95% of the BoHV-1 virus particles on the grid used for virus counting, which was attributed to pre-treatment of the grid with 5% bovine albumin. To compare the value of the new virus particle standard for use in qPCR, virus counter based quantification and established pure DNA standards represented by a plasmid and an oligonucleotide were included. It could be shown that the numbers of virus particles, plasmid and oligonucleotide equivalents were within one log10 range determined on the basis of standard curves indicating that different approaches provide comparable quantitative values. However, only virus particles represent a complete, universally applicable quantitative virus standard that meets the high requirements of an RNA and DNA virus gold standard. In contrast, standards based on pure DNA have to be considered as sub-standard due to limited applications. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  7. Three-dimensional motion-picture imaging of dynamic object by parallel-phase-shifting digital holographic microscopy using an inverted magnification optical system

    Science.gov (United States)

    Fukuda, Takahito; Shinomura, Masato; Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Matoba, Osamu

    2017-04-01

    We constructed a parallel-phase-shifting digital holographic microscopy (PPSDHM) system using an inverted magnification optical system, and succeeded in three-dimensional (3D) motion-picture imaging for 3D displacement of a microscopic object. In the PPSDHM system, the inverted and afocal magnification optical system consisted of a microscope objective (16.56 mm focal length and 0.25 numerical aperture) and a convex lens (300 mm focal length and 82 mm aperture diameter). A polarization-imaging camera was used to record multiple phase-shifted holograms with a single-shot exposure. We recorded an alum crystal, sinking down in aqueous solution of alum, by the constructed PPSDHM system at 60 frames/s for about 20 s and reconstructed high-quality 3D motion-picture image of the crystal. Then, we calculated amounts of displacement of the crystal from the amounts in the focus plane and the magnifications of the magnification optical system, and obtained the 3D trajectory of the crystal by that amounts.

  8. Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Martinez, G.T.; Rosenauer, A.; De Backer, A.; Verbeeck, J.; Van Aert, S.

    2014-01-01

    High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed. - Highlights: • A model-based method is extended from a relative toward an absolute quantification of chemical composition of single atomic columns from HAADF HRSTEM images. • The methodology combines statistical parameter estimation theory with frozen lattice multislice simulations to quantify chemical composition atomic column by atomic column. • Validity and limitations of this model-based method are explored and discussed. • Quantification results obtained for a complex structure show agreement with EDX refinement

  9. Quantitative transmission electron microscopy analysis of multi-variant grains in present L10-FePt based heat assisted magnetic recording media

    International Nuclear Information System (INIS)

    Ho, Hoan; Zhu, Jingxi; Kulovits, Andreas; Laughlin, David E.; Zhu, Jian-Gang

    2014-01-01

    We present a study on atomic ordering within individual grains in granular L1 0 -FePt thin films using transmission electron microscopy techniques. The film, used as a medium for heat assisted magnetic recording, consists of a single layer of FePt grains separated by non-magnetic grain boundaries and is grown on an MgO underlayer. Using convergent-beam techniques, diffraction patterns of individual grains are obtained for a large number of crystallites. The study found that although the majority of grains are ordered in the perpendicular direction, more than 15% of them are multi-variant, or of in-plane c-axis orientation, or disordered fcc. It was also found that these multi-variant and in-plane grains have always grown across MgO grain boundaries separating two or more MgO grains of the underlayer. The in-plane ordered portion within a multi-variant L1 0 -FePt grain always lacks atomic coherence with the MgO directly underneath it, whereas, the perpendicularly ordered portion is always coherent with the underlying MgO grain. Since the existence of multi-variant and in-plane ordered grains are severely detrimental to high density data storage capability, the understanding of their formation mechanism obtained here should make a significant impact on the future development of hard disk drive technology

  10. Lock-in thermography, penetrant inspection, and scanning electron microscopy for quantitative evaluation of open micro-cracks at the tooth-restoration interface

    Science.gov (United States)

    Streza, M.; Hodisan, I.; Prejmerean, C.; Boue, C.; Tessier, Gilles

    2015-03-01

    The evaluation of a dental restoration in a non-invasive way is of paramount importance in clinical practice. The aim of this study was to assess the minimum detectable open crack at the cavity-restorative material interface by the lock-in thermography technique, at laser intensities which are safe for living teeth. For the analysis of the interface, 18 box-type class V standardized cavities were prepared on the facial and oral surfaces of each tooth, with coronal margins in enamel and apical margins in dentine. The preparations were restored with the Giomer Beautifil (Shofu) in combination with three different adhesive systems. Three specimens were randomly selected from each experimental group and each slice has been analysed by visible, infrared (IR), and scanning electron microscopy (SEM). Lock-in thermography showed the most promising results in detecting both marginal and internal defects. The proposed procedure leads to a diagnosis of micro-leakages having openings of 1 µm, which is close to the diffraction limit of the IR camera. Clinical use of a thermographic camera in assessing the marginal integrity of a restoration becomes possible. The method overcomes some drawbacks of standard SEM or dye penetration testing. The results support the use of an IR camera in dentistry, for the diagnosis of micro-gaps at bio-interfaces.

  11. Three-color confocal Förster (or fluorescence) resonance energy transfer microscopy: Quantitative analysis of protein interactions in the nucleation of actin filaments in live cells.

    Science.gov (United States)

    Wallrabe, Horst; Sun, Yuansheng; Fang, Xiaolan; Periasamy, Ammasi; Bloom, George S

    2015-06-01

    Experiments using live cell 3-color Förster (or fluorescence) resonance energy transfer (FRET) microscopy and corresponding in vitro biochemical reconstitution of the same proteins were conducted to evaluate actin filament nucleation. A novel application of 3-color FRET data is demonstrated, extending the analysis beyond the customary energy-transfer efficiency (E%) calculations. MDCK cells were transfected for coexpression of Teal-N-WASP/Venus-IQGAP1/mRFP1-Rac1, Teal-N-WASP/Venus-IQGAP1/mRFP1-Cdc42, CFP-Rac1/Venus-IQGAP1/mCherry-actin, or CFP-Cdc42/Venus-IQGAP1/mCherry-actin, and with single-label equivalents for spectral bleedthrough correction. Using confirmed E% as an entry point, fluorescence levels and related ratios were correlated at discrete accumulating levels at cell peripheries. Rising ratios of CFP-Rac1:Venus-IQGAP1 were correlated with lower overall actin fluorescence, whereas the CFP-Cdc42:Venus-IQGAP1 ratio correlated with increased actin fluorescence at low ratios, but was neutral at higher ratios. The new FRET analyses also indicated that rising levels of mRFP1-Cdc42 or mRFP1-Rac1, respectively, promoted or suppressed the association of Teal-N-WASP with Venus-IQGAP1. These 3-color FRET assays further support our in vitro results about the role of IQGAP1, Rac1, and Cdc42 in actin nucleation, and the differential impact of Rac1 and Cdc42 on the association of N-WASP with IQGAP1. In addition, this study emphasizes the power of 3-color FRET as a systems biology strategy for simultaneous evaluation of multiple interacting proteins in individual live cells. © 2015 International Society for Advancement of Cytometry.

  12. Quantitative Risk - Phase 1

    Science.gov (United States)

    2013-09-03

    November 2002 29. Ward, D., “The Comic Guide To Improving Defense Acquisitions”, Department of Defense, 2012 30. Nilsson, P.,Ohlsson, E...Professional Education Program, 2002 UNCLASSIFIED Contract Number: H98230-08-D-0171 TO 0030, RT 040 Report No. SERC-2013-TR-040-2 Revised

  13. Using Light Microscopy and Liquid Chromatography Tandem Mass Spectrometry for Qualitative and Quantitative Control of a Combined Three-Herb Formulation in Different Preparations

    Directory of Open Access Journals (Sweden)

    Tun-Pin Hsueh

    2016-12-01

    Full Text Available Artemisia capillaries Thunb, Gardenia jasminoides Ellis, and Rheum officinale Baill have been combined to treat jaundice for thousands of years. Studies have revealed that these herbs induce anti-hepatic fibrosis and anti-hepatic apoptosis and alleviate hepatic oxidative stress. This study aims to determine the quality and quantity of an herbal formulation (Chinese name: Yin-Chen-Hao-Tang using physical and chemical examinations. Physical examination of Yin-Chen-Hao-Tang in pharmaceutical herbal products, raw fiber powders, and decoction preparations was performed using Congo red and iodine-potassium staining. A sensitive and validated method employing ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS was developed to simultaneously quantify the bioactive compounds scoparone, geniposide, and rhein in the Yin-Chen-Hao-Tang formulation in different preparations. Physical examination indicated that cellulose fibers with irregular round shapes were present in the pharmaceutical herbal products. The developed UHPLC-MS/MS method showed good linearity and was well validated. The quantification results revealed that the decoction preparations had the highest amounts of geniposide and rhein. Scoparone appeared in pharmaceutical herbal products from two manufacturers. This experiment provides a qualitative and quantitative method using physical and chemical examinations to test different preparations of herbal products. The results provide a reference for clinical herbal product preparations and further pharmacokinetic research.

  14. Visualization and quantitative research of stress corrosion cracking using the three-dimensional phased array ultrasonic technique

    International Nuclear Information System (INIS)

    Kitazawa, So; Kono, Naoyuki; Kudo, Takeshi; Isaka, Katsumi

    2013-01-01

    The three-dimensional phased-array (3D-PA) ultrasonic technique has been applied to a stress corrosion cracking (SCC) in base metal, and its results for sizing have been quantitatively evaluated. The 3D-PA allows operators to scan objects volumetrically and to display results as 3D images facilitating evaluation processes considerably. The scanning pattern used is called the moving rotational sectorial-scan (MRS-scan) and it is composed of many sectors of different azimuth angles as moving the probe linearly. The MRS-scan significantly improves the inspection of flaws without skillful searching motion of the probe, because the flaws are stereoscopically insonified by a number of ultrasonic beams coming from various directions. The SCC was evaluated by the MRS-scan with a matrix array probe. Not only the deepest tip but also all parts of the crack were able to be successfully visualized and sized with an accuracy of the root mean square error of 0.9 mm. (author)

  15. Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization.

    Science.gov (United States)

    Kim, Kwang Ho; Bai, Xianglan; Cady, Sarah; Gable, Preston; Brown, Robert C

    2015-03-01

    We report on the quantitative analysis of free radicals in bio-oils produced from pyrolysis of cellulose, organosolv lignin, and corn stover by EPR spectroscopy. Also, we investigated their potential role in condensed-phase polymerization. Bio-oils produced from lignin and cellulose show clear evidence of homolytic cleavage reactions during pyrolysis that produce free radicals. The concentration of free radicals in lignin bio-oil was 7.5×10(20)  spin g(-1), which was 375 and 138 times higher than free-radical concentrations in bio-oil from cellulose and corn stover. Pyrolytic lignin had the highest concentration in free radicals, which could be a combination of carbon-centered (benzyl radicals) and oxygen-centered (phenoxy radicals) organic species because they are delocalized in a π system. Free-radical concentrations did not change during accelerated aging tests despite increases in molecular weight of bio-oils, suggesting that free radicals in condensed bio-oils are stable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Quantitative analysis of kinetics of dropping phase separation according to sodiumborosilicate glass with ZrO2 addition and without it

    International Nuclear Information System (INIS)

    Morozova, Eh.V.; Kalinina, A.M.; Filipovich, V.N.

    1986-01-01

    A method to calculate the distribution function of dropping phase particles according to their sizes is suggested. The method is used for quantitative description of the recondensation stage of liquation phase decomposition in sodiumborosilicate glass with ZrO 2 impurity and without it. Recondensation kinetics is shown to be similar to the kinetics resulting from the Lifshits-Slezov theory for considerably simpler systems. ZrO 2 impurity decreases the toughness, increases the production rate at T=685-700 deg C, decreases the growth rate of phase particles during their recondensation, increases the volume of the liquation phase. According to experimental data an estimated calculation activation parameters of recondensation and tough flow in the matrix phase, pointing to the possibility of considerable difference in the mechanisms of diffusion and tough flow in the matrix phase, is made

  17. QUANTITATIVE ION-PAIR EXTRACTION OF 4(5)-METHYLIMIDAZOLE FROM CARAMEL COLOR AND ITS DETERMINATION BY REVERSED-PHASE ION-PAIR LIQUID-CHROMATOGRAPHY

    DEFF Research Database (Denmark)

    Thomsen, Mohens; Willumsen, Dorthe

    1981-01-01

    A procedure for quantitative ion-pair extraction of 4(5)-methylimidazole from caramel colour using bis(2-ethylhexyl)phosphoric acid as ion-pairing agent has been developed. Furthermore, a reversed-phase ion-pair liquid chromatographic separation method has been established to analyse the content...

  18. Quantitative Visualization of Salt Concentration Distributions in Lithium-Ion Battery Electrolytes during Battery Operation Using X-ray Phase Imaging.

    Science.gov (United States)

    Takamatsu, Daiko; Yoneyama, Akio; Asari, Yusuke; Hirano, Tatsumi

    2018-02-07

    A fundamental understanding of concentrations of salts in lithium-ion battery electrolytes during battery operation is important for optimal operation and design of lithium-ion batteries. However, there are few techniques that can be used to quantitatively characterize salt concentration distributions in the electrolytes during battery operation. In this paper, we demonstrate that in operando X-ray phase imaging can quantitatively visualize the salt concentration distributions that arise in electrolytes during battery operation. From quantitative evaluation of the concentration distributions at steady states, we obtained the salt diffusivities in electrolytes with different initial salt concentrations. Because of no restriction on samples and high temporal and spatial resolutions, X-ray phase imaging will be a versatile technique for evaluating electrolytes, both aqueous and nonaqueous, of many electrochemical systems.

  19. Spectroscopic Imaging Scanning Tunneling Microscopy Studies of Electronic Structure in the Superconducting and Pseudogap Phases of Cuprate High-Tc Superconductors

    Science.gov (United States)

    Fujita, Kazuhiro; Schmidt, Andrew R.; Kim, Eun-Ah; Lawler, Michael J.; Lee, Dung Hai; Davis, J. C.; Eisaki, Hiroshi; Uchida, Shin-ichi

    2012-01-01

    One of the key motivations for the development of atomically resolved spectroscopic imaging scanning tunneling microscopy (SI-STM) has been to probe the electronic structure of cuprate high temperature superconductors. In both the d-wave superconducting (dSC) and the pseudogap (PG) phases of underdoped cuprates, two distinct classes of electronic states are observed using SI-STM. The first class consists of the dispersive Bogoliubov quasiparticles of a homogeneous d-wave superconductor. These are detected below a lower energy scale |E|=Δ0 and only upon a momentum space (k-space) arc which terminates near the lines connecting k=±(π/a0,0) to k=±(0,π/a0). Below optimal doping, this ``nodal'' arc shrinks continuously with decreasing hole density. In both the dSC and PG phases, the only broken symmetries detected in the |E|≤Δ0 states are those of a d-wave superconductor. The second class of states occurs at energies near the pseudogap energy scale |E|˜ Δ1 which is associated conventionally with the ``antinodal'' states near k=±(π/a0,0) and k=±(0,π/a0). We find that these states break the expected 90°-rotational (C4) symmetry of electronic structure within CuO2 unit cells, at least down to 180°-rotational (C2) symmetry (nematic) but in a spatially disordered fashion. This intra-unit-cell C4 symmetry breaking coexists at |E|˜Δ1 with incommensurate conductance modulations locally breaking both rotational and translational symmetries (smectic). The characteristic wavevector Q of the latter is determined, empirically, by the k-space points where Bogoliubov quasiparticle interference terminates, and therefore evolves continuously with doping. The properties of these two classes of |E|˜Δ1 states are indistinguishable in the dSC and PG phases. To explain this segregation of k-space into the two regimes distinguished by the symmetries of their electronic states and their energy scales |E|˜Δ1 and |E|≤Δ0, and to understand how this impacts the electronic

  20. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy.

    Science.gov (United States)

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre

    2009-01-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  1. In-situ transmission electron microscopy of the solid-phase epitaxial growth of GaAs: sample preparation and artifact characterization

    International Nuclear Information System (INIS)

    Llewellyn, D.J.; Llewellyn, D.J.; Belay, K.B.; Ridgway, M.C.

    1998-01-01

    In-situ transmission electron microscopy (TEM) has been used to characterize the solid phase epitaxial growth of amorphized GaAs at a temperature of 260 deg C. To maximize heat transfer from the heated holder to the sample and minimize electron-irradiation induced artifacts, non-conventional methodologies were utilized for the preparation of cross-sectional samples. GaAs 3x1 mm rectangular wafers were cleaved then glued face-to-face to form a wafer stack size of 3x3 mm while maintaining the TEM region at the center. This stack was subsequently polished on the cross-section to a thickness of ∼ 200 μm. A 3 mm disc was then cut perpendicular to the cross-section using a Gatan ultrasonic cutter. The disc was polished then dimpled on both sides to a thickness of ∼ 15 μm. This was ion-beam milled at liquid nitrogen temperature to an electron-transparent layer. From a comparison of in-situ and ex-situ measurements of the recrystallization rate, the actual sample temperature during in-situ characterization was estimated to deviate by ≤ 20 deg C from that of the heated holder. The influence of electron-irradiation was found to be negligible by comparing the recrystallization rate and microstructure of irradiated and unirradiated regions of comparable thickness. Similarly, the influence of the 'thin-foil effect' was found to be negligible by comparing the recrystallization rate and microstructure of thick and thin regions, the former determined after the removal of the sample from the microscope and further ion-beam milling of tens of microns of material. In conclusion, the potential influence of artifacts during in-situ TEM can be minimized by the appropriate choice of sample preparation procedures. (authors)

  2. Leakage radiation interference microscopy.

    Science.gov (United States)

    Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter

    2013-09-01

    We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

  3. Quantitative investigation of the edge enhancement in in-line phase contrast projections and tomosynthesis provided by distributing microbubbles on the interface between two tissues: a phantom study

    Science.gov (United States)

    Wu, Di; Donovan Wong, Molly; Li, Yuhua; Fajardo, Laurie; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2017-12-01

    The objective of this study was to quantitatively investigate the ability to distribute microbubbles along the interface between two tissues, in an effort to improve the edge and/or boundary features in phase contrast imaging. The experiments were conducted by employing a custom designed tissue simulating phantom, which also simulated a clinical condition where the ligand-targeted microbubbles are self-aggregated on the endothelium of blood vessels surrounding malignant cells. Four different concentrations of microbubble suspensions were injected into the phantom: 0%, 0.1%, 0.2%, and 0.4%. A time delay of 5 min was implemented before image acquisition to allow the microbubbles to become distributed at the interface between the acrylic and the cavity simulating a blood vessel segment. For comparison purposes, images were acquired using three system configurations for both projection and tomosynthesis imaging with a fixed radiation dose delivery: conventional low-energy contact mode, low-energy in-line phase contrast and high-energy in-line phase contrast. The resultant images illustrate the edge feature enhancements in the in-line phase contrast imaging mode when the microbubble concentration is extremely low. The quantitative edge-enhancement-to-noise ratio calculations not only agree with the direct image observations, but also indicate that the edge feature enhancement can be improved by increasing the microbubble concentration. In addition, high-energy in-line phase contrast imaging provided better performance in detecting low-concentration microbubble distributions.

  4. Quantitative Analysis of Piroxicam Using Temperature-Controlled Ionic Liquid Dispersive Liquid Phase Microextraction Followed By Stopped-Flow Injection Spectrofluorimetry

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ganjali

    2013-07-01

    Full Text Available Background:Piroxicam (PXM belongs to the wide class of non-steroidal anti-inflammatory drugs (NSAIDs. PXM has been widely applied in the treatment of rheumatoid arthritis, gonarthrosis, osteoarthritis, backaches, neuralgia, mialgia. In the presented work, a green and benign sample pretreatment method called temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME was followed with stopped-flow injection spectrofluorimetry (SFIS for quantitation of PXM in pharmaceutical formulations and biological samples.Methods:Temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME was applied as an environmentally friendly sample enrichment method to extract and isolate PXM prior to quantitation. Dispersion of 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF6] ionic liquid (IL through the sample aqueous solution was performed by applying a relatively high temperature. PXM was extracted into the extractor, and after phase separation, PXM in the final solution was determined by stopped-flow injection spectrofluorimetry (SFIS.Results and Major Conclusion:Different factors affecting the designed method such as IL amount, diluting agent, pH and temperature were investigated in details and optimized. The method provided a linear dynamic range of 0.2-150 μg l-1, a limit of detection (LOD of 0.046 μg l-1 and a relative standard deviation (RSD of 3.1%. Furthermore, in order to demonstrate the analytical applicability of the recommended method, it was applied for quantitation of PXM in real samples.

  5. French Society of Microscopy, 10. conference

    International Nuclear Information System (INIS)

    Thibault-Penisson, J.; Cremer, Ch.; Susini, J.; Kirklanda, A.I.; Rigneault, H.; Renault, O.; Bailly, A.; Zagonel, L.F.; Barrett, N.; Bogner, A.; Gauthier, C.; Jouneau, P.H.; Thollet, G.; Fuchs, G.; Basset, D.; Deconihout, B.; Vurpillot, F.; Vella, A.; Matthieu, G.; Cadel, E.; Bostel, A.; Blavette, D.; Baumeister, W.; Usson, Y.; Zaefferer, St.; Laffont, L.; Weyland, M.; Thomas, J.M.; Midgley, P.; Benlekbir, S.; Epicier, Th.; Diop, B.N.; Roux, St.; Ou, M.; Perriat, P.; Bausach, M.; Aouine, M.; Berhault, G.; Idrissi, H.; Cottevieille, M.; Jonic, S.; Larquet, E.; Svergun, D.; Vannoni, M.A.; Boisset, N.; Ersena, O.; Werckmann, J.; Ulhaq, C.; Hirlimann, Ch.; Tihay, F.; Cuong, Pham-Huu; Crucifix, C.; Schultz, P.; Jornsanoha, P.; Thollet, G.; Masenelli-Varlot, K.; Gauthier, C.; Ludwig, W.; King, A.; Johnson, G.; Gonzalves-Hoennicke, M.; Reischig, P.; Messaoudi, C.; Ibrahim, R.; Marco, S.; Klie, R.F.; Zhao, Y.; Yang, G.; Zhu, Y.; Hue, F.; Hytch, M.; Hartmann, J.M.; Bogumilowicz, Y.; Claverie, A.; Klein, H.; Alloyeau, D.; Ricolleau, C.; Langlois, C.; Le Bouar, Y.; Loiseau, A.; Colliex, C.; Stephan, O.; Kociak, M.; Tence, M.; Gloter, A.; Imhoff, D.; Walls, M.; Nelayah, J.; March, K.; Couillard, M.; Ailliot, C.; Bertin, F.; Cooper, D.; Rivallin, P.; Dumelie, N.; Benhayoune, H.; Balossier, G.; Cheynet, M.; Pokrant, S.; Tichelaar, F.; Rouviere, J.L.; Cooper, D.; Truche, R.; Chabli, A.; Debili, M.Y.; Houdellier, F.; Warot-Fonrose, B.; Hytch, M.J.; Snoeck, E.; Calmels, L.; Serin, V.; Schattschneider, P.; Jacob, D.; Cordier, P.

    2007-01-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals

  6. Novel X-ray phase-contrast tomography method for quantitative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, Rikke; Nielsen, Mikkel Schou; Einarsdottir, Hildur

    2014-01-01

    The objective of this study was to evaluate the use of X-ray phase-contrast tomography combined with 3D image segmentation to investigate the heat induced structural changes in meat. The measurements were performed at the Swiss synchrotron radiation light source using a grating interferometric...... and separated into a water phase and a gel phase formed by the sarcoplasmic proteins in the exudate. The results show that X-ray phase contrast tomography offers unique possibilities in studies both the meat structure and the different meat component such as water, fat, connective tissue and myofibrils...

  7. Automated classification of cell morphology by coherence-controlled holographic microscopy.

    Science.gov (United States)

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  8. Automated classification of cell morphology by coherence-controlled holographic microscopy

    Science.gov (United States)

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.

  9. Speckle-free and halo-free low coherent Mach-Zehnder quantitative-phase-imaging module as a replacement of objective lens in conventional inverted microscopes

    Science.gov (United States)

    Yamauchi, Toyohiko; Yamada, Hidenao; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio

    2018-02-01

    We developed a compact Mach-Zehnder interferometer module to be used as a replacement of the objective lens in a conventional inverted microscope (Nikon, TS100-F) in order to make them quantitative phase microscopes. The module has a 90-degree-flipped U-shape; the dimensions of the module are 160 mm by 120 mm by 40 mm and the weight is 380 grams. The Mach-Zehnder interferometer equipped with the separate reference and sample arms was implemented in this U-shaped housing and the path-length difference between the two arms was manually adjustable. The sample under test was put on the stage of the microscope and a sample light went through it. Both arms had identical achromatic lenses for image formation and the lateral positions of them were also manually adjustable. Therefore, temporally and spatially low coherent illumination was applicable because the users were able to balance precisely the path length of the two arms and to overlap the two wavefronts. In the experiment, spectrally filtered LED light for illumination (wavelength = 633 nm and bandwidth = 3 nm) was input to the interferometer module via a 50 micrometer core optical fiber. We have successfully captured full-field interference images by a camera put on the trinocular tube of the microscope and constructed quantitative phase images of the cultured cells by means of the quarter-wavelength phase shifting algorithm. The resultant quantitative phase images were speckle-free and halo-free due to spectrally and spatially low coherent illumination.

  10. Comparison of electron microscopy, enzyme-linked immunosorbent assay, solid-phase radioimmunoassay, and indirect immunofluorescence for detection of human rotavirus antigen in faeces

    Energy Technology Data Exchange (ETDEWEB)

    Birch, C J; Lehmann, N I; Hawker, A J; Marshall, J A; Gust, I D [Fairfield Hospital for Communicable Diseases, Victoria (Australia). Virology Dept.

    1979-07-01

    Four techniques were compared for their practicability, speed, and sensitivity for the detection of human rotavirus. Radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) were found to be the most sensitive means of identifying rotavirus and, once processed, up to 40 specimens could be examined daily. Electron microscopy, although less sensitive than these techniques, had the advantage of being able to detect other viral agents present in faecal extracts. Indirect immunofluorescence failed to detect rotavirus as often as the other three methods. In laboratories where routine examination of faecal specimens from patients with gastroenteritis is required, ELISA and RIA are useful alternatives to electron microscopy.

  11. Comparison of electron microscopy, enzyme-linked immunosorbent assay, solid-phase radioimmunoassay, and indirect immunofluorescence for detection of human rotavirus antigen in faeces

    International Nuclear Information System (INIS)

    Birch, C.J.; Lehmann, N.I.; Hawker, A.J.; Marshall, J.A.; Gust, I.D.

    1979-01-01

    Four techniques were compared for their practicability, speed, and sensitivity for the detection of human rotavirus. Radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) were found to be the most sensitive means of identifying rotavirus and, once processed, up to 40 specimens could be examined daily. Electron microscopy, although less sensitive than these techniques, had the advantage of being able to detect other viral agents present in faecal extracts. Indirect immunofluorescence failed to detect rotavirus as often as the other three methods. In laboratories where routine examination of faecal specimens from patients with gastroenteritis is required, ELISA and RIA are useful alternatives to electron microscopy. (author)

  12. Quantitative kHz to MHz Frame Rate Flow Diagnostics for Aerodynamic Ground Test Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I SBIR program will study the feasibility of building next-generation burst-mode laser diagnostics that will enable unparalleled planar imaging...

  13. Optimal visualization of focal nodular hyperplasia: quantitative and qualitative evaluation of single and multiphasic arterial phase acquisition at 1.5 T MR imaging.

    Science.gov (United States)

    Rousseau, Caroline; Ronot, Maxime; Vilgrain, Valérie; Zins, Marc

    2016-05-01

    To evaluate the qualitative and quantitative benefit of multiple arterial phase acquisitions for the depiction of hypervascularity in FNH explored MR imaging using an extracellular contrast agent. Between 2007 and 2014, all patients who underwent MR imaging for the exploration of FNH were included. The protocol included a single or a triple arterial phase ("single" and "triple" group, respectively). Arterial phases were visually divided into four types: (1) angiographic, (2) early, (3) late, and (4) portal. Signal intensity on arterial phase images was visually recorded as intense, moderate, or low for each lesion. Lesion-to-liver contrast (LLC) and relative lesion enhancement (RE) were calculated and compared between the two groups using the Mann-Whitney