WorldWideScience

Sample records for quantitative phase microscopy

  1. Quantitative phase imaging with scanning holographic microscopy: an experimental assesment

    Directory of Open Access Journals (Sweden)

    Tada Yoshitaka

    2006-11-01

    Full Text Available Abstract This paper demonstrates experimentally how quantitative phase information can be obtained in scanning holographic microscopy. Scanning holography can operate in both coherent and incoherent modes, simultaneously if desired, with different detector geometries. A spatially integrating detector provides an incoherent hologram of the object's intensity distribution (absorption and/or fluorescence, for example, while a point detector in a conjugate plane of the pupil provides a coherent hologram of the object's complex amplitude, from which a quantitative measure of its phase distribution can be extracted. The possibility of capturing simultaneously holograms of three-dimensional specimens, leading to three-dimensional reconstructions with absorption contrast, reflectance contrast, fluorescence contrast, as was previously demonstrated, and quantitative phase contrast, as shown here for the first time, opens up new avenues for multimodal imaging in biological studies.

  2. Single beam Fourier transform digital holographic quantitative phase microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  3. Quantitative imaging of complex samples by spiral phase contrast microscopy.

    Science.gov (United States)

    Bernet, Stefan; Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Ritsch-Marte, Monika

    2006-05-01

    Recently a spatial spiral phase filter in a Fourier plane of a microscopic imaging setup has been demonstrated to produce edge enhancement and relief-like shadow formation of amplitude and phase samples. Here we demonstrate that a sequence of at least 3 spatially filtered images, which are recorded with different rotational orientations of the spiral phase plate, can be used to obtain a quantitative reconstruction of both, amplitude and phase information of a complex microscopic sample, i.e. an object consisting of mixed absorptive and refractive components. The method is demonstrated using a calibrated phase sample, and an epithelial cheek cell.

  4. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    Science.gov (United States)

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  5. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    Science.gov (United States)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  6. Single-exposure quantitative phase imaging in color-coded LED microscopy (Conference Presentation)

    Science.gov (United States)

    Lee, Wonchan; Jung, Daeseong; Joo, Chulmin

    2017-02-01

    Quantitative phase-gradient or phase imaging in LED microscopy has been recently demonstrated. The methods enable measurement of phase distribution of transparent specimens in a simple and cost-effective manner, but require multiple image acquisitions with different source or pupil configurations to improve phase accuracy. Here, we demonstrate a strategy for single-shot quantitative phase imaging in color-coded LED microscopy. We employ a circular LED illumination pattern that is trisected into subregions with equal area, assigned to red, green and blue colors, respectively. Additional color filter is also employed to mitigate the color leakage of light into different color channels of the image sensor. Image acquisition with a color image sensor and subsequent computation based on the weak object transfer function allow for quantitative amplitude and phase measurements of a specimen. We describe computational model and single-shot quantitative phase imaging capability of our method by presenting phase images of calibrated phase sample and dynamics of cells. Phase measurement accuracy is validated with pre-characterized phase plate, and single-shot phase imaging capability is demonstrated with time-lapse imaging of cells acquired at 30 Hz.

  7. Quantitative interferometric microscopy with two dimensional Hilbert transform based phase retrieval method

    Science.gov (United States)

    Wang, Shouyu; Yan, Keding; Xue, Liang

    2017-01-01

    In order to obtain high contrast images and detailed descriptions of label free samples, quantitative interferometric microscopy combining with phase retrieval is designed to obtain sample phase distributions from fringes. As accuracy and efficiency of recovered phases are affected by phase retrieval methods, thus approaches owning higher precision and faster processing speed are still in demand. Here, two dimensional Hilbert transform based phase retrieval method is adopted in cellular phase imaging, it not only reserves more sample specifics compared to classical fast Fourier transform based method, but also overcomes disadvantages of traditional algorithm according to Hilbert transform which is a one dimensional processing causing phase ambiguities. Both simulations and experiments are provided, proving the proposed phase retrieval approach can acquire quantitative sample phases with high accuracy and fast speed.

  8. Phase measurements of erythrocytes affected by metal ions with quantitative interferometric microscopy

    Science.gov (United States)

    Wang, Shouyu; Yan, Keding; Shan, Yanke; Xu, Mingfei; Liu, Fei; Xue, Liang

    2015-12-01

    Erythrocyte morphology is an important factor in disease diagnosis, however, traditional setups as microscopes and cytometers cannot provide enough quantitative information of cellular morphology for in-depth statistics and analysis. In order to capture variations of erythrocytes affected by metal ions, quantitative interferometric microscopy (QIM) is applied to monitor their morphology changes. Combined with phase retrieval and cell recognition, erythrocyte phase images, as well as phase area and volume, can be accurately and automatically obtained. The research proves that QIM is an effective tool in cellular observation and measurement.

  9. Improved cancer risk stratification and diagnosis via quantitative phase microscopy (Conference Presentation)

    Science.gov (United States)

    Liu, Yang; Uttam, Shikhar; Pham, Hoa V.; Hartman, Douglas J.

    2017-02-01

    Pathology remains the gold standard for cancer diagnosis and in some cases prognosis, in which trained pathologists examine abnormality in tissue architecture and cell morphology characteristic of cancer cells with a bright-field microscope. The limited resolution of conventional microscope can result in intra-observer variation, missed early-stage cancers, and indeterminate cases that often result in unnecessary invasive procedures in the absence of cancer. Assessment of nanoscale structural characteristics via quantitative phase represents a promising strategy for identifying pre-cancerous or cancerous cells, due to its nanoscale sensitivity to optical path length, simple sample preparation (i.e., label-free) and low cost. I will present the development of quantitative phase microscopy system in transmission and reflection configuration to detect the structural changes in nuclear architecture, not be easily identifiable by conventional pathology. Specifically, we will present the use of transmission-mode quantitative phase imaging to improve diagnostic accuracy of urine cytology and the nuclear dry mass is progressively correlate with negative, atypical, suspicious and positive cytological diagnosis. In a second application, we will present the use of reflection-mode quantitative phase microscopy for depth-resolved nanoscale nuclear architecture mapping (nanoNAM) of clinically prepared formalin-fixed, paraffin-embedded tissue sections. We demonstrated that the quantitative phase microscopy system detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis.

  10. Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy.

    Science.gov (United States)

    Rinehart, Matthew T; Drake, Tyler K; Robles, Francisco E; Rohan, Lisa C; Katz, David; Wax, Adam

    2011-12-01

    Quantitative phase microscopy is applied to image temporal changes in the refractive index (RI) distributions of solutions created by microbicidal films undergoing hydration. We present a novel method of using an engineered polydimethylsiloxane structure as a static phase reference to facilitate calibration of the absolute RI across the entire field. We present a study of dynamic structural changes in microbicidal films during hydration and subsequent dissolution. With assumptions about the smoothness of the phase changes induced by these films, we calculate absolute changes in the percentage of film in regions across the field of view.

  11. Confocal reflectance quantitative phase microscopy system for cell biology studies (Conference Presentation)

    Science.gov (United States)

    Singh, Vijay Raj; So, Peter T. C.

    2016-03-01

    Quantitative phase microscopy (QPM), used to measure the refractive index, provides the optical path delay measurement at each point of the specimen under study and becomes an active field in biological science. In this work we present development of confocal reflection phase microscopy system to provide depth resolved quantitative phase information for investigation of intracellular structures and other biological specimen. The system hardware development is mainly divided into two major parts. First, creates a pinhole array for parallel confocal imaging of specimen at multiple locations simultaneously. Here a digital micro mirror device (DMD) is used to generate pinhole array by turning on a subset micro-mirrors arranged on a grid. Second is the detection of phase information of confocal imaging foci by using a common path interferometer. With this novel approach, it is possible to measure the nuclei membrane fluctuations and distinguish them from the plasma membrane fluctuations. Further, depth resolved quantitative phase can be correlated to the intracellular contents and 3D map of refractive index measurements.

  12. Quantitative phase microscopy using dual-plane in-line digital holography.

    Science.gov (United States)

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, D V G L N

    2012-03-20

    We present detailed theoretical evaluation and thorough experimental investigation of quantitative phase imaging using our previously demonstrated dual-plane in-line digital holographic microscopy technique [Opt. Lett. 35, 3426 (2010)]. This evaluation is based on the recording of two interferograms at slightly different planes and numerically reconstructing the object information. The zero-order diffracted wave is eliminated by using the method of subtraction of average intensity of the entire hologram, and the twin-image diffracted wave is removed by Fourier domain processing of the two recorded holograms. Experiments are performed using controlled amplitude and phase objects and human muscle cells to demonstrate the potential of this technique.

  13. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  14. Dual mode diffraction phase microscopy for quantitative functional assessment of biological cells

    Science.gov (United States)

    Talaikova, N. A.; Popov, A. P.; Kalyanov, A. L.; Ryabukho, V. P.; Meglinski, I. V.

    2017-10-01

    A diffraction phase microscopy approach with a combined use of transmission and reflection imaging modes has been developed and applied for non-invasive quantitative assessment of the refractive index of red blood cells (RBCs). We present the theoretical background of signal formation for both imaging modes, accompanied by the results of experimental studies. We demonstrate that simultaneous use of the two modes has great potential for accurate assessment of the refractive index of biological cells, and we perform a reconstruction of spatial distribution of the refractive index of RBC in 3D.

  15. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy.

    Science.gov (United States)

    Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Engwer, Christian; Greve, Burkhard; Kemper, Björn

    2017-01-15

    We present a simple and fast phase aberration compensation method in digital holographic microscopy (DHM) for quantitative phase imaging of living cells. By analyzing the frequency spectrum of an off-axis hologram, phase aberrations can be compensated for automatically without fitting or pre-knowledge of the setup and/or the object. Simple and effective computation makes the method suitable for quantitative online monitoring with highly variable DHM systems. Results from automated quantitative phase imaging of living NIH-3T3 mouse fibroblasts demonstrate the effectiveness and the feasibility of the method.

  16. Compact diffraction phase microscopy for quantitative visualization of cells in biomedical applications

    Science.gov (United States)

    Talaikova, N. A.; Ryabukho, V. P.

    2016-08-01

    We consider a simplified and compact scheme of interference phase microscopy using a diffraction grating and spatial filtering of the diffracted field, i.e., diffraction phase microscopy. The scheme and the parameters of the device with the possibility of using the optical system of a smartphone and its software are analysed. The results of experimental determination of the spatial structure parameters of erythrocytes are presented.

  17. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    KAUST Repository

    Marquet, P.

    2016-05-03

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  18. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    Science.gov (United States)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  19. Optomechanical properties of cancer cells revealed by light-induced deformation and quantitative phase microscopy

    Science.gov (United States)

    Kastl, Lena; Budde, Björn; Isbach, Michael; Rommel, Christina; Kemper, Björn; Schnekenburger, Jürgen

    2015-05-01

    There is a growing interest in cell biology and clinical diagnostics in label-free, optical techniques as the interaction with the sample is minimized and substances like dyes or fixatives do not affect the investigated cells. Such techniques include digital holographic microscopy (DHM) and the optical stretching by fiber optical two beam traps. DHM enables quantitative phase contrast imaging and thereby the determination of the cellular refractive index, dry mass and the volume, whereas optical cell stretching reveals the deformability of cells. Since optical stretching strongly depends on the optical properties and the shape of the investigated material we combined the usage of fiber optical stretching and DHM for the characterization of pancreatic tumor cells. The risk of tumors is their potential to metastasize, spread through the bloodstream and build distal tumors/metastases. The grade of dedifferentiation in which the cells lose their cell type specific properties is a measure for this metastatic potential. The less differentiated the cells are, the higher is their risk to metastasize. Our results demonstrate that pancreatic tumor cells, which are from the same tumor but vary in their grade of differentiation, show significant differences in their deformability. The retrieved data show that differentiated cells have a higher stiffness than less differentiated cells of the same tumor. Even cells that differ only in the expression of a single tumor suppressor gene which is responsible for cell-cell adhesions can be distinguished by their mechanical properties. Additionally, results from DHM measurements yield that the refractive index shows only few variations, indicating that it does not significantly influence optical cell stretching. The obtained results show a promising new approach for the phenotyping of different cell types, especially in tumor cell characterization and cancer diagnostics.

  20. Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics.

    Science.gov (United States)

    Memmolo, Pasquale; Finizio, Andrea; Paturzo, Melania; Miccio, Lisa; Ferraro, Pietro

    2011-12-05

    We report on a compact twin-beam interferometer that can be adopted as a flexible diagnostic tool in microfluidic platforms with twofold functionality. The novel configuration allows 3D tracking of micro-particles and, at same time, can simultaneously furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. Experimental demonstration is given on for in vitro cells in a microfluidic environment.

  1. Integrated quantitative phase and birefringence microscopy for imaging malaria-infected red blood cells

    Science.gov (United States)

    Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng

    2016-09-01

    A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.

  2. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  3. Using digital inline holographic microscopy and quantitative phase contrast imaging to assess viability of cultured mammalian cells

    Science.gov (United States)

    Missan, Sergey; Hrytsenko, Olga

    2015-03-01

    Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.

  4. Sequential processing of quantitative phase images for the study of cell behaviour in real-time digital holographic microscopy.

    Science.gov (United States)

    Zikmund, T; Kvasnica, L; Týč, M; Křížová, A; Colláková, J; Chmelík, R

    2014-11-01

    Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The study of the cell is based on extraction of the dynamic data on cell behaviour from the time-lapse sequence of the phase images. However, the phase images are affected by the phase aberrations that make the analysis particularly difficult. This is because the phase deformation is prone to change during long-term experiments. Here, we present a novel algorithm for sequential processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least-squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. All these procedures are performed automatically and applied immediately after obtaining every single phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment by playback of the recorded sequence up to actual time. Such operator's intervention is a forerunner of process automation derived from image analysis. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope.

  5. Quantitative deconvolution microscopy.

    Science.gov (United States)

    Goodwin, Paul C

    2014-01-01

    The light microscope is an essential tool for the study of cells, organelles, biomolecules, and subcellular dynamics. A paradox exists in microscopy whereby the higher the needed lateral resolution, the more the image is degraded by out-of-focus information. This creates a significant need to generate axial contrast whenever high lateral resolution is required. One strategy for generating contrast is to measure or model the optical properties of the microscope and to use that model to algorithmically reverse some of the consequences of high-resolution imaging. Deconvolution microscopy implements model-based methods to enable the full diffraction-limited resolution of the microscope to be exploited even in complex and living specimens. © 2014 Elsevier Inc. All rights reserved.

  6. Quantitative pupil analysis in stimulated emission depletion microscopy using phase retrieval

    DEFF Research Database (Denmark)

    Kromann, Emil B; Gould, Travis J; Juette, Manuel F;

    2012-01-01

    no instrument modifications, for obtaining an equivalent to the complex pupil function at the back aperture of the objective and show that it provides quantitative information about aberration sources (including aberrations induced by the objective or sample). We show the accuracy of this field representation...

  7. Metabolic remodeling of the human red blood cell membrane measured by quantitative phase microscopy

    Science.gov (United States)

    Park, YongKeun; Best, Catherine; Auth, Thorsten; Gov, Nir S.; Safran, Samuel; Popescu, Gabriel

    2011-02-01

    We have quantitatively and systemically measured the morphologies and dynamics of fluctuations in human RBC membranes using a full-field laser interferometry technique that accurately measures dynamic membrane fluctuations. We present conclusive evidence that the presence of adenosine 5'-triphosphate (ATP) facilitates nonequilibrium dynamic fluctuations in the RBC membrane and that these fluctuations are highly correlated with specific regions in the biconcave shape of RBCs. Spatial analysis reveals that these nonequilibrium membrane fluctuations are enhanced at the scale of the spectrin mesh size. Our results indicate the presence of dynamic remodeling in the RBC membrane cortex powered by ATP, which results in nonequilibrium membrane fluctuations.

  8. Investigations of the ultrafast laser induced melt dynamics by means of transient quantitative phase microscopy (TQPm)

    Science.gov (United States)

    Mingareev, Ilya; Horn, Alexander

    2008-05-01

    Modifications of bulk aluminum irradiated well above ablation threshold (F 800 ns after the incident pulse. Transient refractive index modifications have been investigated in technical glass (Schott D263) by means of TQPm. By using high-repetition rate ultra-short pulsed laser radiation (tp=400 fs, λ=1045 nm, frep=1 MHz) focused by a microscope objective (w0 ~ 4 μm) heat accumulation and thereby glass melting as well as welding is enabled. Transient optical phase variation has been measured up to τ=2.1 μs after the incident pulse and can be attributed to the generation of free charge carriers and compression forces inside glass.

  9. Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography.

    Science.gov (United States)

    Ferraro, P; Miccio, L; Grilli, S; Paturzo, M; De Nicola, S; Finizio, A; Osellame, R; Laporta, P

    2007-10-29

    Quantitative Phase Microscopy (QPM) by interferometric techniques can require a multiwavelength configuration to remove 2pi ambiguity and improve accuracy. However, severe chromatic aberration can affect the resulting phase-contrast map. By means of classical interference microscope configuration it is quite unpractical to correct such aberration. We propose and demonstrate that by Digital Holography (DH) in a microscope configuration it is possible to clear out the QPM map from the chromatic aberration in a simpler and more effective way with respect to other approaches. The proposed method takes benefit of the unique feature of DH to record in a plane out-of-focus and subsequently reconstruct numerically at the right focal image plane. In fact, the main effect of the chromatic aberration is to shift differently the correct focal image plane at each wavelength and this can be readily compensated by adjusting the corresponding reconstruction distance for each wavelength. A procedure is described in order to determine easily the relative focal shift among different imaging wavelengths by performing a scanning of the numerical reconstruction along the optical axis, to find out the focus and to remove at the same time the chromatic aberration.

  10. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    KAUST Repository

    Marquet, Pierre

    2014-09-22

    Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.

  11. Quantitative phase imaging of biological cells and tissues using singleshot white light interference microscopy and phase subtraction method for extended range of measurement

    Science.gov (United States)

    Mehta, Dalip Singh; Sharma, Anuradha; Dubey, Vishesh; Singh, Veena; Ahmad, Azeem

    2016-03-01

    We present a single-shot white light interference microscopy for the quantitative phase imaging (QPI) of biological cells and tissues. A common path white light interference microscope is developed and colorful white light interferogram is recorded by three-chip color CCD camera. The recorded white light interferogram is decomposed into the red, green and blue color wavelength component interferograms and processed it to find out the RI for different color wavelengths. The decomposed interferograms are analyzed using local model fitting (LMF)" algorithm developed for reconstructing the phase map from single interferogram. LMF is slightly off-axis interferometric QPI method which is a single-shot method that employs only a single image, so it is fast and accurate. The present method is very useful for dynamic process where path-length changes at millisecond level. From the single interferogram a wavelength-dependent quantitative phase imaging of human red blood cells (RBCs) are reconstructed and refractive index is determined. The LMF algorithm is simple to implement and is efficient in computation. The results are compared with the conventional phase shifting interferometry and Hilbert transform techniques.

  12. The study on RBC characteristic in paroxysmal nocturnal hemoglobinuria (PNH) patients using common path interferometric quantitative phase microscopy

    Science.gov (United States)

    Park, Byung Jun; Won, Youngjae; Kim, Byungyeon; Lee, Seungrag

    2016-03-01

    We have studied the RBC membrane properties between a normal RBC and a RBC in Paroxysrnal nocturnal hemoglobinuria (PNH) patient using common path interferometric quantitative phase microscopy (CPIQPM). CPIQPM system has provided the subnanometer optical path length sensitivity on a millisecond. We have measured the dynamic thickness fluctuations of a normal RBC membrane and a RBC membrane in PNH patient over the whole cell surface with CPIQPM. PNH is a rare and serious disease of blood featured by destruction of red blood cells (RBCs). This destruction happens since RBCs show the defect of protein which protects RBCs from the immune system. We have applied CPIQPM to study the characteristic of RBC membrane in PNH patient. We have shown the morphological shape, volume, and projected surface for both different RBC types. The results have showed both RBCs had the similar shape with donut, but membrane fluctuations in PNH patient was shown to reveal the difference of temporal properties compared with a normal RBC. In order to demonstrate the practical tool of the CPIQPM technique, we have also obtained the time series thickness fluctuation outside a cell.

  13. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  14. Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: A quantitative fluorescence microscopy imaging approach

    DEFF Research Database (Denmark)

    Fidorra, Matthias; Garcia, Alejandra; Ipsen, John Hjort

    2009-01-01

    and reconstruction of 3D domain morphology using active surface models. This method permits the reconstruction of the spherical surface of GUVs and determination of the area fractions of coexisting lipid domains at the level of single vesicles. Obtaining area fractions enables the scrutiny of the lever rule along...... lipid phase diagram's tie lines and to test whether or not the coexistence of lipid domains in GUVs correspond to equilibrium thermodynamic phases. The analysis was applied to DLPC/DPPC GUVs displaying coexistence of lipid domains. Our results confirm the lever rule, demonstrating that the observed......We report a novel analytical procedure to measure the surface areas of coexisting lipid domains in giant unilamellar vesicles (GUVs) based on image processing of 3D fluorescence microscopy data. The procedure involves the segmentation of lipid domains from fluorescent image stacks...

  15. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.

    Science.gov (United States)

    Pandiyan, Vimal Prabhu; John, Renu

    2016-01-20

    We propose a versatile 3D phase-imaging microscope platform for real-time imaging of optomicrofluidic devices based on the principle of digital holographic microscopy (DHM). Lab-on-chip microfluidic devices fabricated on transparent polydimethylsiloxane (PDMS) and glass substrates have attained wide popularity in biological sensing applications. However, monitoring, visualization, and characterization of microfluidic devices, microfluidic flows, and the biochemical kinetics happening in these devices is difficult due to the lack of proper techniques for real-time imaging and analysis. The traditional bright-field microscopic techniques fail in imaging applications, as the microfluidic channels and the fluids carrying biological samples are transparent and not visible in bright light. Phase-based microscopy techniques that can image the phase of the microfluidic channel and changes in refractive indices due to the fluids and biological samples present in the channel are ideal for imaging the fluid flow dynamics in a microfluidic channel at high resolutions. This paper demonstrates three-dimensional imaging of a microfluidic device with nanometric depth precisions and high SNR. We demonstrate imaging of microelectrodes of nanometric thickness patterned on glass substrate and the microfluidic channel. Three-dimensional imaging of a transparent PDMS optomicrofluidic channel, fluid flow, and live yeast cell flow in this channel has been demonstrated using DHM. We also quantify the average velocity of fluid flow through the channel. In comparison to any conventional bright-field microscope, the 3D depth information in the images illustrated in this work carry much information about the biological system under observation. The results demonstrated in this paper prove the high potential of DHM in imaging optofluidic devices; detection of pathogens, cells, and bioanalytes on lab-on-chip devices; and in studying microfluidic dynamics in real time based on phase changes.

  16. Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: a quantitative fluorescence microscopy imaging approach.

    Science.gov (United States)

    Fidorra, M; Garcia, A; Ipsen, J H; Härtel, S; Bagatolli, L A

    2009-10-01

    We report a novel analytical procedure to measure the surface areas of coexisting lipid domains in giant unilamellar vesicles (GUVs) based on image processing of 3D fluorescence microscopy data. The procedure involves the segmentation of lipid domains from fluorescent image stacks and reconstruction of 3D domain morphology using active surface models. This method permits the reconstruction of the spherical surface of GUVs and determination of the area fractions of coexisting lipid domains at the level of single vesicles. Obtaining area fractions enables the scrutiny of the lever rule along lipid phase diagram's tie lines and to test whether or not the coexistence of lipid domains in GUVs correspond to equilibrium thermodynamic phases. The analysis was applied to DLPC/DPPC GUVs displaying coexistence of lipid domains. Our results confirm the lever rule, demonstrating that the observed membrane domains correspond to equilibrium thermodynamic phases (i.e., solid ordered and liquid disordered phases). In addition, the fact that the lever rule is validated from 11 to 14 randomly selected GUVs per molar fraction indicates homogeneity in the lipid composition among the explored GUV populations. In conclusion, our study shows that GUVs are reliable model systems to perform equilibrium thermodynamic studies of membranes.

  17. Advances in quantitative Kerr microscopy

    Science.gov (United States)

    Soldatov, I. V.; Schäfer, R.

    2017-01-01

    An advanced wide-field Kerr microscopy approach to the vector imaging of magnetic domains is demonstrated. Utilizing the light from eight monochrome light emitting diodes, guided to the microscope by glass fibers, and being properly switched in synchronization with the camera exposure, domain images with orthogonal in-plane sensitivity are obtained simultaneously at real time. After calibrating the Kerr contrast under the same orthogonal sensitivity conditions, the magnetization vector field of complete magnetization cycles along the hysteresis loop can be calculated and plotted as a coded color or vector image. In the pulsed mode also parasitic, magnetic field-dependent Faraday rotations in the microscope optics are eliminated, thus increasing the accuracy of the measured magnetization angles to better than 5∘. The method is applied to the investigation of the magnetization process in a patterned Permalloy film element. Furthermore it is shown that the effective magnetic anisotropy axes in a GaMnAs semiconducting film can be quantitatively measured by vectorial analysis of the domain structure.

  18. Experimental Study on Quantitative Phase Imaging by Digital Holographic Microscopy%数字全息显微定量相位成像的实验研究

    Institute of Scientific and Technical Information of China (English)

    马利红; 王辉; 金洪震; 李勇

    2012-01-01

    Digital holographic microscopy apparatus with pre-magnification has been set up, which can well acquire the quantitative phase images for living biological specimens. In addition, a series of digital holograms can be automatically recorded and movies of holographic phase images of living biological specimens can be created. The accuracy of quantitative imaging is verified by a self-produced stepped transparent sample with known height and refraction. Onion epidermal cells and red blood cells are measured and quantitative high-quality phase images are obtained. The movies of phase images for paramecium are achieved. Experimental results demonstrate that the established system can achieve real-time quantitative high-resolution holographic phase image and can be effectively applied to living biological specimens phase imaging.%建立了一套预放大式数字全息显微成像系统,通过对样品进行显微放大,实现了高分辨率的定量相位成像;并通过计算机控制相机自动曝光记录序列的数字全息图实现了动态相位成像.用标准样品验证了系统测量的准确性;以活体洋葱表皮细胞和血红细胞为样品,获得了清晰的定量相位像;以置于水环境的草履虫为样品,实现了动态成像.实验结果表明建立的系统可以实现高分辨率的动态定量相位成像,可以应用于生物活体样品的显微研究.

  19. Quantitative phase imaging of cell division in yeast cells and E.coli using digital holographic microscopy

    Science.gov (United States)

    Pandiyan, Vimal Prabhu; John, Renu

    2015-12-01

    Digital holographic microscope (DHM) is an emerging quantitative phase imaging technique with unique imaging scales and resolutions leading to multitude of applications. DHM is promising as a novel investigational and applied tool for cell imaging, studying the morphology and real time dynamics of cells and a number of related applications. The use of numerical propagation and computational digital optics offer unique flexibility to tune the depth of focus, and compensate for image aberrations. In this work, we report imaging the dynamics of cell division in E.coli and yeast cells using a DHM platform. We demonstrate 3-D and depth imaging as well as reconstruction of phase profiles of E.coli and yeast cells using the system. We record a digital hologram of E.coli and yeast cells and reconstruct the image using Fresnel propagation algorithm. We also use aberration compensation algorithms for correcting the aberrations that are introduced by the microscope objective in the object path using linear least square fitting techniques. This work demonstrates the strong potential of a DHM platform in 3-D live cell imaging, fast clinical quantifications and pathological applications.

  20. Quantitative super-resolution microscopy

    NARCIS (Netherlands)

    Harkes, Rolf

    2016-01-01

    Super-Resolution Microscopy is an optical fluorescence technique. In this thesis we focus on single molecule super-resolution, where the position of single molecules is determined. Typically these molecules can be localized with a 10 to 30nm precision. This technique is applied in four different s

  1. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  2. Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: A quantitative fluorescence microscopy imaging approach

    DEFF Research Database (Denmark)

    Fidorra, Matthias; Garcia, Alejandra; Ipsen, John Hjort

    2009-01-01

    membrane domains correspond to equilibrium thermodynamic phases (i.e., solid ordered and liquid disordered phases). In addition, the fact that the lever rule is validated from 11 to 14 randomly selected GUVs per molar fraction indicates homogeneity in the lipid composition among the explored GUV...... lipid phase diagram's tie lines and to test whether or not the coexistence of lipid domains in GUVs correspond to equilibrium thermodynamic phases. The analysis was applied to DLPC/DPPC GUVs displaying coexistence of lipid domains. Our results confirm the lever rule, demonstrating that the observed...... populations. In conclusion, our study shows that GUVs are reliable model systems to perform equilibrium thermodynamic studies of membranes....

  3. Quantitative interferometric microscopy cytometer based on regularized optical flow algorithm

    Science.gov (United States)

    Xue, Liang; Vargas, Javier; Wang, Shouyu; Li, Zhenhua; Liu, Fei

    2015-09-01

    Cell detections and analysis are important in various fields, such as medical observations and disease diagnoses. In order to analyze the cell parameters as well as observe the samples directly, in this paper, we present an improved quantitative interferometric microscopy cytometer, which can monitor the quantitative phase distributions of bio-samples and realize cellular parameter statistics. The proposed system is able to recover the phase imaging of biological samples in the expanded field of view via a regularized optical flow demodulation algorithm. This algorithm reconstructs the phase distribution with high accuracy with only two interferograms acquired at different time points simplifying the scanning system. Additionally, the method is totally automatic, and therefore it is convenient for establishing a quantitative phase cytometer. Moreover, the phase retrieval approach is robust against noise and background. Excitingly, red blood cells are readily investigated with the quantitative interferometric microscopy cytometer system.

  4. GPC and quantitative phase imaging

    Science.gov (United States)

    Palima, Darwin; Bañas, Andrew Rafael; Villangca, Mark Jayson; Glückstad, Jesper

    2016-03-01

    Generalized Phase Contrast (GPC) is a light efficient method for generating speckle-free contiguous optical distributions using binary-only or analog phase levels. It has been used in applications such as optical trapping and manipulation, active microscopy, structured illumination, optical security, parallel laser marking and labelling and recently in contemporary biophotonics applications such as for adaptive and parallel two-photon optogenetics and neurophotonics. We will present our most recent GPC developments geared towards these applications. We first show a very compact static light shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging (QPI).

  5. Quantitative imaging of bilirubin by photoacoustic microscopy

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  6. Phase Aberrations in Diffraction Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Marchesini, S; Chapman, H N; Barty, A; Howells, M R; Spence, J H; Cui, C; Weierstall, U; Minor, A M

    2005-09-29

    In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm's ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions.

  7. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    Science.gov (United States)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become

  8. Surface plasmon resonance microscopy: Achieving a quantitative optical response

    Science.gov (United States)

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-09-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based figuration. We carry out SPR imaging on a microscope by launching light into a sample and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy.

  9. Magnetic force microscopy: Quantitative issues in biomaterials

    NARCIS (Netherlands)

    Passeri, D.; Dong, C.; Reggente, M.; Angeloni, L.; Barteri, M.; Scaramuzzo, F.A.; De Angelis, F.; Marinelli, F.; Antonelli, F.; Rinaldi, F.; Marianecci, C.; Carafa, M.; Sorbo, A.; Sordi, D.; Arends, I.W.C.E.; Rossi, M.

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples

  10. GPC and quantitative phase imaging

    DEFF Research Database (Denmark)

    Palima, Darwin; Banas, Andrew Rafael; Villangca, Mark Jayson

    2016-01-01

    shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging...

  11. Spiral phase contrast imaging in microscopy.

    Science.gov (United States)

    Fürhapter, Severin; Jesacher, Alexander; Bernet, Stefan; Ritsch-Marte, Monika

    2005-02-07

    We demonstrate an optical method for edge contrast enhancement in light microscopy. The method is based on holographic Fourier plane filtering of the microscopic image with a spiral phase element (also called vortex phase or helical phase filter) displayed as an off-axis hologram at a computer controlled high resolution spatial light modulator (SLM) in the optical imaging pathway. The phase hologram imprints a helical phase term of the form exp(i phi) on the diffracted light field in its Fourier plane. In the image plane, this results in a strong and isotropic edge contrast enhancement for both amplitude and phase objects.

  12. Phase-Modulation Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.

    2008-01-01

    We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...

  13. Quantitative Microscopy to Measure the Nuclear Architecture

    NARCIS (Netherlands)

    Righolt, C.H.

    2014-01-01

    Advances in light microscopy lead to breakthroughs in biology. To further unravel the mysteries of life and the mechanisms behind diseases, better microscope techniques are needed to validate biological hypotheses. This thesis presents how integration of optics and computing leads to better images f

  14. Practical aspects of quantitative confocal microscopy.

    Science.gov (United States)

    Murray, John M

    2013-01-01

    Confocal microscopes are in principle well suited for quantitative imaging. The 3D fluorophore distribution in a specimen is transformed by the microscope optics and detector into the 2D intensity distribution of a digital image by a linear operation, a convolution. If multiple 2D images of the specimen at different focal planes are obtained, then the original 3D distribution in the specimen can be reconstructed. This reconstruction is a low-pass spatially filtered representation of the original, but quantitatively preserves relative fluorophore concentrations, with of course some limitations on accuracy and precision due to aberrations and noise. Given appropriate calibration, absolute fluorophore concentrations are accessible. A few simple guidelines are given for setting up confocal microscopes and checking their performance. With a little care, the images collected should be suitable for most types of quantitative analysis.

  15. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  16. Photorefractive phase-conjugation digital holographic microscopy

    Science.gov (United States)

    Chang, Chi-Ching; Chan, Huang-Tian; Shiu, Min-Tzung; Chew, Yang-Kun

    2015-05-01

    In this work, we propose an innovative method for digital holographic microscopy named as photorefractive phaseconjugation digital holographic microscopy (PPCDHM) technique based on the phase conjugation dynamic holographic process in photorefractive BaTiO3 crystal and the retrieval of phase and amplitude of the object wave were performed by a reflection-type digital holographic method. Both amplitude and phase reconstruction benefit from the prior amplification by self-pumped conjugation (SPPC) as they have an increased SNR. The interest of the PPCDHM is great, because its hologram is created by interfered the amplified phase-conjugate wave field generated from a photorefractive phase conjugator (PPC) correcting the phase aberration of the imaging system and the reference wave onto the digital CCD camera. Therefore, a precise three-dimensional description of the object with high SNR can be obtained digitally with only one hologram acquisition. The method requires the acquisition of a single hologram from which the phase distribution can be obtained simultaneously with distribution of intensity at the surface of the object.

  17. Quantitative ultrasonic phased array imaging

    Science.gov (United States)

    Engle, Brady J.; Schmerr, Lester W., Jr.; Sedov, Alexander

    2014-02-01

    When imaging with ultrasonic phased arrays, what do we actually image? What quantitative information is contained in the image? Ad-hoc delay-and-sum methods such as the synthetic aperture focusing technique (SAFT) and the total focusing method (TFM) fail to answer these questions. We have shown that a new quantitative approach allows the formation of flaw images by explicitly inverting the Thompson-Gray measurement model. To examine the above questions, we have set up a software simulation test bed that considers a 2-D scalar scattering problem of a cylindrical inclusion with the method of separation of variables. It is shown that in SAFT types of imaging the only part of the flaw properly imaged is the front surface specular response of the flaw. Other responses (back surface reflections, creeping waves, etc.) are improperly imaged and form artifacts in the image. In the case of TFM-like imaging the quantity being properly imaged is an angular integration of the front surface reflectivity. The other, improperly imaged responses are also averaged, leading to a reduction in some of the artifacts present. Our results have strong implications for flaw sizing and flaw characterization with delay-and-sum images.

  18. Statistiscal Experimental Design for Quantitative Atomic Resolution Transmission Electron Microscopy

    NARCIS (Netherlands)

    Van Aert, S.

    2003-01-01

    Statistical experimental design is applied to set up quantitative atomic resolution transmission electron microscopy experiments. In such experiments, observations of the atomic structure of the object under study are always subject to spontaneous fluctuations. As a result of these fluctuations, the

  19. Local tomographic phase microscopy from differential projections

    Science.gov (United States)

    Vishnyakov, G. N.; Levin, G. G.; Minaev, V. L.; Nekrasov, N. A.

    2016-12-01

    It is proposed to use local tomography for optical studies of the internal structure of transparent phase microscopic objects, for example, living cells. From among the many local tomography methods that exist, the algorithms of back projection summation (in which partial derivatives of projections are used as projection data) are chosen. The application of local tomography to living cells is reasonable because, using optical phase microscopy, one can easily obtain projection data in the form of first-order derivatives of projections applying the methods of differential interference contrast and shear interferometry. The mathematical fundamentals of local tomography in differential projections are considered, and a computer simulation of different local tomography methods is performed. A tomographic phase microscope and the results of reconstructing a local tomogram of an erythrocyte from a set of experimental differential projections are described.

  20. Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy.

    Science.gov (United States)

    Day, James P R; Domke, Katrin F; Rago, Gianluca; Kano, Hideaki; Hamaguchi, Hiro-o; Vartiainen, Erik M; Bonn, Mischa

    2011-06-23

    The ability to observe samples qualitatively at the microscopic scale has greatly enhanced our understanding of the physical and biological world throughout the 400 year history of microscopic imaging, but there are relatively few techniques that can truly claim the ability to quantify the local concentration and composition of a sample. We review coherent anti-Stokes Raman scattering (CARS) as a quantitative, chemically specific, and label-free microscopy. We discuss the complicating influence of the nonresonant response on the CARS signal and the various experimental and mathematical approaches that can be adopted to extract quantitative information from CARS. We also review the uses to which CARS has been employed as a quantitative microscopy to solve challenges in material and biological science.

  1. Modeling quantitative phase image formation under tilted illuminations.

    Science.gov (United States)

    Bon, Pierre; Wattellier, Benoit; Monneret, Serge

    2012-05-15

    A generalized product-of-convolution model for simulation of quantitative phase microscopy of thick heterogeneous specimen under tilted plane-wave illumination is presented. Actual simulations are checked against a much more time-consuming commercial finite-difference time-domain method. Then modeled data are compared with experimental measurements that were made with a quadriwave lateral shearing interferometer.

  2. microlith : Image Simulation for Biological Phase Microscopy

    CERN Document Server

    Mehta, Shalin B

    2013-01-01

    Accurate simulation of image formation remains under-exploited for biological phase microscopy methods that employ partially coherent illumination, despite being important for the design of imaging systems and the reconstruction algorithms. We present an open-source MATLAB toolbox, microlith (https://code.google.com/p/microlith), that provides accurate simulation of the 3D image of a thin specimen under any partially coherent imaging system, including coherent or incoherent systems. We demonstrate the accuracy of the microlith toolbox by comparing simulated images and experimental images of a phase-only Siemens star test target using dark field and differential interference contrast microscopes. The comparison leads to intriguing insights about the sensitivity of the dark-field microscope to sub-resolution features and effects of specimen birefringence on differential interference contrast.

  3. Spectral-domain interferometry for quantitative DIC microscopy

    Science.gov (United States)

    Li, Chengshuai; Zhu, Yizheng

    2014-03-01

    A spectral-domain differential interference contrast (SD-DIC) microscopy system is presented for quantitative imaging of both reflective and transparent samples. The spectral-domain interferometry, combined with the common-path DIC geometry, provides a shot noise-limited sensitivity of 14.3pm in optical pathlength gradient measurement. The optical resolution of the system was characterized using images of a USAF resolution target. Fused silica microspheres were imaged to demonstrate the reconstruction of two-dimensional optical pathlength topography from measured gradient fields. The exquisite sensitivity of the system showed potential in quantitative imaging of sub-diffraction limit objects such as gold nanoparticles.

  4. Quantitative Risk - Phases 1 & 2

    Science.gov (United States)

    2013-11-12

    quantitative risk characterization”, " Risk characterization of microbiological hazards in food ", Chapter 4, 2009 314...State University, July 9, 2013 213. Albert I, Grenier E, Denis JB, Rousseau J., “ Quantitative Risk Assessment from Farm to Fork and Beyond: a...MELHEM, G., “Conduct Effective Quantitative Risk Assessment (QRA) Studies”, ioMosaic Corporation, 2006 233. Anderson, J., Brown, R., “ Risk

  5. Tissue refractometry using Hilbert phase microscopy.

    Science.gov (United States)

    Lue, Niyom; Bewersdorf, Joerg; Lessard, Mark D; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S; Popescu, Gabriel

    2007-12-15

    We present, for the first time to our knowledge, quantitative phase images associated with unstained 5 mum thick tissue slices of mouse brain, spleen, and liver. The refractive properties of the tissue are retrieved in terms of the average refractive index and its spatial variation. We find that the average refractive index varies significantly with tissue type, such that the brain is characterized by the lowest value and the liver by the highest. The spatial power spectra of the phase images reveal power law behavior with different exponents for each tissue type. This approach opens a new possibility for stain-free characterization of tissues, where the diagnostic power is provided by the intrinsic refractive properties of the biological structure. We present results obtained for liver tissue affected by a lysosomal storage disease and show that our technique can quantify structural changes during this disease development.

  6. Quantitative phase imaging through scattering media

    Science.gov (United States)

    Kollárová, Vera; Colláková, Jana; Dostál, Zbynek; Slabý, Tomas; Veselý, Pavel; Chmelík, Radim

    2015-03-01

    Coherence-controlled holographic microscope (CCHM) is an off-axis holographic system. It enables observation of a sample and its quantitative phase imaging with coherent as well as with incoherent illumination. The spatial and temporal coherence can be modified and thus also the quality and type of the image information. The coherent illumination provides numerical refocusing in wide depth range similarly to a classic coherent-light digital holographic microscopy (HM). Incoherent-light HM is characterized by a high quality, coherence-noise-free imaging with up to twice higher resolution compared to coherent illumination. Owing to an independent, free of sample reference arm of the CCHM the low spatial light coherence induces coherence-gating effect. This makes possible to observe specimen also through scattering media. We have described theoretically and simulated numerically imaging of a two dimensional object through a scattering layer by CCHM using the linear systems theory. We have investigated both strongly and weakly scattering media characterized by different amount of ballistic and diffuse light. The influence of a scattering layer on the quality of a phase signal is discussed for both types of the scattering media. A strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with model samples, as well as real biologic objects particularly then by time-lapse observations of live cells reactions to substances producing optically turbid emulsion.

  7. Quantitative analysis of sideband coupling in photoinduced force microscopy

    Science.gov (United States)

    Jahng, Junghoon; Kim, Bongsu; Lee, Eun Seong; Potma, Eric Olaf

    2016-11-01

    We present a theoretical and experimental analysis of the cantilever motions detected in photoinduced force microscopy (PiFM) using the sideband coupling detection scheme. In sideband coupling, the cantilever dynamics are probed at a combination frequency of a fundamental mechanical eigenmode and the modulation frequency of the laser beam. Using this detection mode, we develop a method for reconstructing the modulated photoinduced force gradient from experimental parameters in a quantitative manner. We show evidence, both theoretically and experimentally, that the sideband coupling detection mode provides PiFM images with superior contrast compared to images obtained when detecting the cantilever motions directly at the laser modulation frequency.

  8. Quantitative Topographical Characterization of Thermally Sprayed Coatings by Optical Microscopy

    Science.gov (United States)

    Schwaller, P.; Züst, R.; Michler, J.

    2009-03-01

    Topography measurements and roughness calculations for different rough surfaces (Rugotest surface comparator and thermally sprayed coatings) are presented. The surfaces are measured with a novel quantitative topography measurement technique based on optical stereomicroscopy and a comparison is made with established scanning stylus and optical profilometers. The results show that for most cases the different methods yield similar results. Stereomicroscopy is therefore a valuable method for topographical investigations in both quality control and research. On the other hand, the method based on optical microscopy demands a careful optimization of the experimental settings like the magnification and the illumination to achieve satisfactory results.

  9. Quantitative analysis of myocardial tissue with digital autofluorescence microscopy

    DEFF Research Database (Denmark)

    Jensen, Thomas; Holten-Rossing, Henrik; Svendsen, Ida M H;

    2016-01-01

    BACKGROUND: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar...... to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including...... staining may benefit. METHODS: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm...

  10. White-light Quantitative Phase Imaging Unit

    CERN Document Server

    Baek, YoonSeok; Yoon, Jonghee; Kim, Kyoohyun; Park, YongKeun

    2016-01-01

    We introduce the white light quantitative phase imaging unit (WQPIU) as a practical realization of quantitative phase imaging (QPI) on standard microscope platforms. The WQPIU is a compact stand-alone unit which measures sample induced phase delay under white-light illumination. It does not require any modification of the microscope or additional accessories for its use. The principle of the WQPIU based on lateral shearing interferometry and phase shifting interferometry provides a cost-effective and user-friendly use of QPI. The validity and capacity of the presented method are demonstrated by measuring quantitative phase images of polystyrene beads, human red blood cells, HeLa cells and mouse white blood cells. With speckle-free imaging capability due to the use of white-light illumination, the WQPIU is expected to expand the scope of QPI in biological sciences as a powerful but simple imaging tool.

  11. Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy.

    Science.gov (United States)

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2009-11-26

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ.

  12. Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [invited].

    Science.gov (United States)

    Edwards, Chris; Zhou, Renjie; Hwang, Suk-Won; McKeown, Steven J; Wang, Kaiyuan; Bhaduri, Basanta; Ganti, Raman; Yunker, Peter J; Yodh, Arjun G; Rogers, John A; Goddard, Lynford L; Popescu, Gabriel

    2014-09-20

    Quantitative phase imaging (QPI) utilizes the fact that the phase of an imaging field is much more sensitive than its amplitude. As fields from the source interact with the specimen, local variations in the phase front are produced, which provide structural information about the sample and can be used to reconstruct its topography with nanometer accuracy. QPI techniques do not require staining or coating of the specimen and are therefore nondestructive. Diffraction phase microscopy (DPM) combines many of the best attributes of current QPI methods; its compact configuration uses a common-path off-axis geometry which realizes the benefits of both low noise and single-shot imaging. This unique collection of features enables the DPM system to monitor, at the nanoscale, a wide variety of phenomena in their natural environments. Over the past decade, QPI techniques have become ubiquitous in biological studies and a recent effort has been made to extend QPI to materials science applications. We briefly review several recent studies which include real-time monitoring of wet etching, photochemical etching, surface wetting and evaporation, dissolution of biodegradable electronic materials, and the expansion and deformation of thin-films. We also discuss recent advances in semiconductor wafer defect detection using QPI.

  13. Advance in orientation microscopy: quantitative analysis of nanocrystalline structures.

    Science.gov (United States)

    Seyring, Martin; Song, Xiaoyan; Rettenmayr, Markus

    2011-04-26

    The special properties of nanocrystalline materials are generally accepted to be a consequence of the high density of planar defects (grain and twin boundaries) and their characteristics. However, until now, nanograin structures have not been characterized with similar detail and statistical relevance as coarse-grained materials, due to the lack of an appropriate method. In the present paper, a novel method based on quantitative nanobeam diffraction in transmission electron microscopy (TEM) is presented to determine the misorientation of adjacent nanograins and subgrains. Spatial resolution of twin boundaries is substantially higher than that observed in bright-field images in the TEM; small angle grain boundaries are prominent; there is an obvious dependence of the grain boundary characteristics on grain size distribution and mean grain size.

  14. Fluorescent microscopy approaches of quantitative soil microbial analysis

    Science.gov (United States)

    Ivanov, Konstantin; Polyanskaya, Lubov

    2015-04-01

    Classical fluorescent microscopy method was used during the last decades in various microbiological studies of terrestrial ecosystems. The method provides representative results and simple application which is allow to use it both as routine part of amplitudinous research and in small-scaled laboratories. Furthermore, depending on research targets a lot of modifications of fluorescent microscopy method were established. Combination and comparison of several approaches is an opportunity of quantitative estimation of microbial community in soil. The first analytical part of the study was dedicated to soil bacterial density estimation by fluorescent microscopy in dynamic of several 30-days experiments. The purpose of research was estimation of changes in soil bacterial community on the different soil horizons under aerobic and anaerobic conditions with adding nutrients in two experimental sets: cellulose and chitin. Was modified the nalidixic acid method for inhibition of DNA division of gram-negative bacteria, and the method provides the quantification of this bacterial group by fluorescent microscopy. Established approach allowed to estimate 3-4 times more cells of gram-negative bacteria in soil. The functions of actinomyces in soil polymer destruction are traditionally considered as dominant in comparison to gram-negative bacterial group. However, quantification of gram-negative bacteria in chernozem and peatland provides underestimation of classical notion for this bacterial group. Chitin introduction had no positive effect to gram-negative bacterial population density changes in chernozem but concurrently this nutrient provided the fast growing dynamics at the first 3 days of experiment both under aerobic and anaerobic conditions. This is confirming chitinolytic activity of gram-negative bacteria in soil organic matter decomposition. At the next part of research modified method for soil gram-negative bacteria quantification was compared to fluorescent in situ

  15. High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale.

    Science.gov (United States)

    Chen, Qian Nataly; Ma, Feiyue; Xie, Shuhong; Liu, Yuanming; Proksch, Roger; Li, Jiangyu

    2013-07-01

    Accurate scanning probing of magnetic materials at the nanoscale is essential for developing and characterizing magnetic nanostructures, yet quantitative analysis is difficult using the state of the art magnetic force microscopy, and has limited spatial resolution and sensitivity. In this communication, we develop a novel piezomagnetic force microscopy (PmFM) technique, with the imaging principle based on the detection of magnetostrictive response excited by an external magnetic field. In combination with the dual AC resonance tracking (DART) technique, the contact stiffness and energy dissipation of the samples can be simultaneously mapped along with the PmFM phase and amplitude, enabling quantitative probing of magnetic materials and structures at the nanoscale with high sensitivity and spatial resolution. PmFM has been applied to probe magnetic soft discs and cobalt ferrite thin films, demonstrating it as a powerful tool for a wide range of magnetic materials.

  16. Quantitative Morphological and Biochemical Studies on Human Downy Hairs using 3-D Quantitative Phase Imaging

    CERN Document Server

    Lee, SangYun; Lee, Yuhyun; Park, Sungjin; Shin, Heejae; Yang, Jongwon; Ko, Kwanhong; Park, HyunJoo; Park, YongKeun

    2015-01-01

    This study presents the morphological and biochemical findings on human downy arm hairs using 3-D quantitative phase imaging techniques. 3-D refractive index tomograms and high-resolution 2-D synthetic aperture images of individual downy arm hairs were measured using a Mach-Zehnder laser interferometric microscopy equipped with a two-axis galvanometer mirror. From the measured quantitative images, the biochemical and morphological parameters of downy hairs were non-invasively quantified including the mean refractive index, volume, cylinder, and effective radius of individual hairs. In addition, the effects of hydrogen peroxide on individual downy hairs were investigated.

  17. Quantitative analysis of in vivo confocal microscopy images: a review.

    Science.gov (United States)

    Patel, Dipika V; McGhee, Charles N

    2013-01-01

    In vivo confocal microscopy (IVCM) is a non-invasive method of examining the living human cornea. The recent trend towards quantitative studies using IVCM has led to the development of a variety of methods for quantifying image parameters. When selecting IVCM images for quantitative analysis, it is important to be consistent regarding the location, depth, and quality of images. All images should be de-identified, randomized, and calibrated prior to analysis. Numerous image analysis software are available, each with their own advantages and disadvantages. Criteria for analyzing corneal epithelium, sub-basal nerves, keratocytes, endothelium, and immune/inflammatory cells have been developed, although there is inconsistency among research groups regarding parameter definition. The quantification of stromal nerve parameters, however, remains a challenge. Most studies report lower inter-observer repeatability compared with intra-observer repeatability, and observer experience is known to be an important factor. Standardization of IVCM image analysis through the use of a reading center would be crucial for any future large, multi-centre clinical trials using IVCM.

  18. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, Nathan Muruganathan [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  19. Generalised phase contrast: microscopy, manipulation and more

    DEFF Research Database (Denmark)

    Palima, Darwin; Glückstad, Jesper

    2010-01-01

    Generalised phase contrast (GPC) not only leads to more accurate phase imaging beyond thin biological samples, but serves as an enabling framework in developing tools over a wide spectrum of contemporary applications in optics and photonics, including optical trapping and micromanipulation, optic...... phase cryptography, light-efficient image projection and parallel laser beam shaping for optical landscapes. In this review, we discuss the fundamental ideas behind generalised phase contrast and present a survey of its exciting applications.......Generalised phase contrast (GPC) not only leads to more accurate phase imaging beyond thin biological samples, but serves as an enabling framework in developing tools over a wide spectrum of contemporary applications in optics and photonics, including optical trapping and micromanipulation, optical...

  20. Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Daniela P. [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Amaral, A. Luís [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra (Portugal); Ferreira, Eugénio C., E-mail: ecferreira@deb.uminho.pt [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-11-13

    Graphical abstract: -- Highlights: •Quantitative image analysis shows potential to monitor activated sludge systems. •Staining techniques increase the potential for detection of operational problems. •Chemometrics combined with quantitative image analysis is valuable for process monitoring. -- Abstract: In wastewater treatment processes, and particularly in activated sludge systems, efficiency is quite dependent on the operating conditions, and a number of problems may arise due to sludge structure and proliferation of specific microorganisms. In fact, bacterial communities and protozoa identification by microscopy inspection is already routinely employed in a considerable number of cases. Furthermore, quantitative image analysis techniques have been increasingly used throughout the years for the assessment of aggregates and filamentous bacteria properties. These procedures are able to provide an ever growing amount of data for wastewater treatment processes in which chemometric techniques can be a valuable tool. However, the determination of microbial communities’ properties remains a current challenge in spite of the great diversity of microscopy techniques applied. In this review, activated sludge characterization is discussed highlighting the aggregates structure and filamentous bacteria determination by image analysis on bright-field, phase-contrast, and fluorescence microscopy. An in-depth analysis is performed to summarize the many new findings that have been obtained, and future developments for these biological processes are further discussed.

  1. Quantitative analysis of autophagy using advanced 3D fluorescence microscopy.

    Science.gov (United States)

    Changou, Chun A; Wolfson, Deanna L; Ahluwalia, Balpreet Singh; Bold, Richard J; Kung, Hsing-Jien; Chuang, Frank Y S

    2013-05-03

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early

  2. Making microscopy count: quantitative light microscopy of dynamic processes in living plants.

    Science.gov (United States)

    Fricker, Mark D; Moger, Julian; Littlejohn, George R; Deeks, Michael J

    2016-08-01

    Cell theory has officially reached 350 years of age as the first use of the word 'cell' in a biological context can be traced to a description of plant material by Robert Hooke in his historic publication 'Micrographia: or some physiological definitions of minute bodies'. The 2015 Royal Microscopical Society Botanical Microscopy meeting was a celebration of the streams of investigation initiated by Hooke to understand at the subcellular scale how plant cell function and form arises. Much of the work presented, and Honorary Fellowships awarded, reflected the advanced application of bioimaging informatics to extract quantitative data from micrographs that reveal dynamic molecular processes driving cell growth and physiology. The field has progressed from collecting many pixels in multiple modes to associating these measurements with objects or features that are meaningful biologically. The additional complexity involves object identification that draws on a different type of expertise from computer science and statistics that is often impenetrable to biologists. There are many useful tools and approaches being developed, but we now need more interdisciplinary exchange to use them effectively. In this review we show how this quiet revolution has provided tools available to any personal computer user. We also discuss the oft-neglected issue of quantifying algorithm robustness and the exciting possibilities offered through the integration of physiological information generated by biosensors with object detection and tracking. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  3. Quantitative photothermal phase imaging of red blood cells using digital holographic photothermal microscope.

    Science.gov (United States)

    Vasudevan, Srivathsan; Chen, George C K; Lin, Zhiping; Ng, Beng Koon

    2015-05-10

    Photothermal microscopy (PTM), a noninvasive pump-probe high-resolution microscopy, has been applied as a bioimaging tool in many biomedical studies. PTM utilizes a conventional phase contrast microscope to obtain highly resolved photothermal images. However, phase information cannot be extracted from these photothermal images, as they are not quantitative. Moreover, the problem of halos inherent in conventional phase contrast microscopy needs to be tackled. Hence, a digital holographic photothermal microscopy technique is proposed as a solution to obtain quantitative phase images. The proposed technique is demonstrated by extracting phase values of red blood cells from their photothermal images. These phase values can potentially be used to determine the temperature distribution of the photothermal images, which is an important study in live cell monitoring applications.

  4. Quantitative polarized light microscopy of unstained mammalian cochlear sections

    Science.gov (United States)

    Kalwani, Neil M.; Ong, Cheng Ai; Lysaght, Andrew C.; Haward, Simon J.; McKinley, Gareth H.; Stankovic, Konstantina M.

    2013-02-01

    Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo.

  5. Quantitative high dynamic range beam profiling for fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D. [Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  6. Quantitative microwave impedance microscopy with effective medium approximations

    Science.gov (United States)

    Jones, T. S.; Pérez, C. R.; Santiago-Avilés, J. J.

    2017-02-01

    Microwave impedance microscopy (MIM) is a scanning probe technique to measure local changes in tip-sample admittance. The imaginary part of the reported change is calibrated with finite element simulations and physical measurements of a standard capacitive sample, and thereafter the output Δ Y is given a reference value in siemens. Simulations also provide a means of extracting sample conductivity and permittivity from admittance, a procedure verified by comparing the estimated permittivity of polytetrafluoroethlyene (PTFE) to the accepted value. Simulations published by others have investigated the tip-sample system for permittivity at a given conductivity, or conversely conductivity and a given permittivity; here we supply the full behavior for multiple values of both parameters. Finally, the well-known effective medium approximation of Bruggeman is considered as a means of estimating the volume fractions of the constituents in inhomogeneous two-phase systems. Specifically, we consider the estimation of porosity in carbide-derived carbon, a nanostructured material known for its use in energy storage devices.

  7. Quantitative microwave impedance microscopy with effective medium approximations

    Directory of Open Access Journals (Sweden)

    T. S. Jones

    2017-02-01

    Full Text Available Microwave impedance microscopy (MIM is a scanning probe technique to measure local changes in tip-sample admittance. The imaginary part of the reported change is calibrated with finite element simulations and physical measurements of a standard capacitive sample, and thereafter the output ΔY is given a reference value in siemens. Simulations also provide a means of extracting sample conductivity and permittivity from admittance, a procedure verified by comparing the estimated permittivity of polytetrafluoroethlyene (PTFE to the accepted value. Simulations published by others have investigated the tip-sample system for permittivity at a given conductivity, or conversely conductivity and a given permittivity; here we supply the full behavior for multiple values of both parameters. Finally, the well-known effective medium approximation of Bruggeman is considered as a means of estimating the volume fractions of the constituents in inhomogeneous two-phase systems. Specifically, we consider the estimation of porosity in carbide-derived carbon, a nanostructured material known for its use in energy storage devices.

  8. Quantitative flaw characterization with ultrasonic phased arrays

    Science.gov (United States)

    Engle, Brady John

    Ultrasonic nondestructive evaluation (NDE) is a critical diagnostic tool in many industries. It is used to characterize potentially dangerous flaws in critical components for aerospace, automotive, and energy applications. The use of phased array transducers allows for the extension of traditional techniques and the introduction of new methods for quantitative flaw characterization. An equivalent flaw sizing technique for use in time-of-flight diffraction setups is presented that provides an estimate of the size and orientation of isolated cracks, surface-breaking cracks, and volumetric flaws such as voids and inclusions. Experimental validation is provided for the isolated crack case. A quantitative imaging algorithm is developed that corrects for system effects and wave propagation, making the images formed directly related to the properties of the scatterer present. Simulated data is used to form images of cylindrical and spherical inclusions. The contributions of different signals to the image formation process are discussed and examples of the quantitative nature of the images are shown.

  9. A novel random phase-shifting digital holographic microscopy method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper proposes a new method that reconstructs the information of specimen by using random phase shift step in digital holographic microscopy (DHM). The principles of the method are described and discussed in detail. In practical experiment, because the phase shifter is neither perfectly linear nor calibrated, digital holograms with inaccurate phase shift step are recorded by the charge-coupled device (CCD). The phase could be accurately reconstructed from the recorded digital holograms by using the random phase-shifting algorithm, which makes up for reconstructed phase error caused by ordinary phase-shifting algorithm. The phase aberration compensation is also discussed. In order to verify the flexibility of the proposed method, numerical simulation of random phase-shifting DHM was carried out. The simulation results illustrated that the presented method is effective when the phase shift step is unknown or random in DHM.

  10. DNA origami-based standards for quantitative fluorescence microscopy.

    Science.gov (United States)

    Schmied, Jürgen J; Raab, Mario; Forthmann, Carsten; Pibiri, Enrico; Wünsch, Bettina; Dammeyer, Thorben; Tinnefeld, Philip

    2014-01-01

    Validating and testing a fluorescence microscope or a microscopy method requires defined samples that can be used as standards. DNA origami is a new tool that provides a framework to place defined numbers of small molecules such as fluorescent dyes or proteins in a programmed geometry with nanometer precision. The flexibility and versatility in the design of DNA origami microscopy standards makes them ideally suited for the broad variety of emerging super-resolution microscopy methods. As DNA origami structures are durable and portable, they can become a universally available specimen to check the everyday functionality of a microscope. The standards are immobilized on a glass slide, and they can be imaged without further preparation and can be stored for up to 6 months. We describe a detailed protocol for the design, production and use of DNA origami microscopy standards, and we introduce a DNA origami rectangle, bundles and a nanopillar as fluorescent nanoscopic rulers. The protocol provides procedures for the design and realization of fluorescent marks on DNA origami structures, their production and purification, quality control, handling, immobilization, measurement and data analysis. The procedure can be completed in 1-2 d.

  11. Quantitative Localization Microscopy: Effects of Photophysics and Labeling Stoichiometry

    NARCIS (Netherlands)

    Nieuwenhuizen, R.P.J.; Bates, M.; Szymborska, A.; Lidke, K.A.; Rieger, B.; Stallinga, S.

    2015-01-01

    Quantification in localization microscopy with reversibly switchable fluorophores is severely hampered by the unknown number of switching cycles a fluorophore undergoes and the unknown stoichiometry of fluorophores on a marker such as an antibody. We overcome this problem by measuring the average nu

  12. Quantitative Atomic Force Microscopy with Carbon Monoxide Terminated Tips

    NARCIS (Netherlands)

    Sun, Zhixiang; Boneschanscher, Mark P.; Swart, Ingmar; Vanmaekelbergh, Daniel; Liljeroth, Peter

    2011-01-01

    Noncontact atomic force microscopy (AFM) has recently progressed tremendously in achieving atomic resolution imaging through the use of small oscillation amplitudes and well-defined modification of the tip apex. In particular, it has been shown that picking up simple inorganic molecules (such as CO)

  13. Quantitative Localization Microscopy: Effects of Photophysics and Labeling Stoichiometry

    NARCIS (Netherlands)

    Nieuwenhuizen, R.P.J.; Bates, M.; Szymborska, A.; Lidke, K.A.; Rieger, B.; Stallinga, S.

    2015-01-01

    Quantification in localization microscopy with reversibly switchable fluorophores is severely hampered by the unknown number of switching cycles a fluorophore undergoes and the unknown stoichiometry of fluorophores on a marker such as an antibody. We overcome this problem by measuring the average nu

  14. Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer

    OpenAIRE

    Zheng, Fan; Zhang, Xiangyang; Chiu, Chi Tat; Zhou, Bill L.; Shung, K. Kirk; Zhang, Hao F.; Jiao, Shuliang

    2012-01-01

    In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experimen...

  15. Molecular and Cellular Quantitative Microscopy: theoretical investigations, technological developments and applications to neurobiology

    NARCIS (Netherlands)

    Esposito, Alessandro

    2006-01-01

    This PhD project aims at the development and evaluation of microscopy techniques for the quantitative detection of molecular interactions and cellular features. The primarily investigated techniques are Fαrster Resonance Energy Transfer imaging and Fluorescence Lifetime Imaging Microscopy. These tec

  16. Quantitative high resolution electron microscopy of grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, G.H., King, W.E., Cohen, D., Carter, C.B.

    1996-12-12

    The {Sigma}11 (113)/[1{bar 1}0] symmetric tilt grain boundary has been characterized by high resolution transmission electron microscopy. The method by which the images are prepared for analysis is described. The statistics of the image data have been found to follow a normal distribution. The electron-optical imaging parameters used to acquire the image have been determined by nonlinear least-square image simulation optimization within the perfect crystal region of the micrograph. A similar image simulation optimization procedure is used to determine the atom positions which provide the best match between the experimental image and the image simulation.

  17. Segmentation and learning in the quantitative analysis of microscopy images

    Science.gov (United States)

    Ruggiero, Christy; Ross, Amy; Porter, Reid

    2015-02-01

    In material science and bio-medical domains the quantity and quality of microscopy images is rapidly increasing and there is a great need to automatically detect, delineate and quantify particles, grains, cells, neurons and other functional "objects" within these images. These are challenging problems for image processing because of the variability in object appearance that inevitably arises in real world image acquisition and analysis. One of the most promising (and practical) ways to address these challenges is interactive image segmentation. These algorithms are designed to incorporate input from a human operator to tailor the segmentation method to the image at hand. Interactive image segmentation is now a key tool in a wide range of applications in microscopy and elsewhere. Historically, interactive image segmentation algorithms have tailored segmentation on an image-by-image basis, and information derived from operator input is not transferred between images. But recently there has been increasing interest to use machine learning in segmentation to provide interactive tools that accumulate and learn from the operator input over longer periods of time. These new learning algorithms reduce the need for operator input over time, and can potentially provide a more dynamic balance between customization and automation for different applications. This paper reviews the state of the art in this area, provides a unified view of these algorithms, and compares the segmentation performance of various design choices.

  18. Toward quantitative fluorescence microscopy with DNA origami nanorulers.

    Science.gov (United States)

    Beater, Susanne; Raab, Mario; Tinnefeld, Philip

    2014-01-01

    The dynamic development of fluorescence microscopy has created a large number of new techniques, many of which are able to overcome the diffraction limit. This chapter describes the use of DNA origami nanostructures as scaffold for quantifying microscope properties such as sensitivity and resolution. The DNA origami technique enables placing of a defined number of fluorescent dyes in programmed geometries. We present a variety of DNA origami nanorulers that include nanorulers with defined labeling density and defined distances between marks. The chapter summarizes the advantages such as practically free choice of dyes and labeling density and presents examples of nanorulers in use. New triangular DNA origami nanorulers that do not require photoinduced switching by imaging transient binding to DNA nanostructures are also reported. Finally, we simulate fluorescence images of DNA origami nanorulers and reveal that the optimal DNA nanoruler for a specific application has an intermark distance that is roughly 1.3-fold the expected optical resolution.

  19. Quantitative localization microscopy: effects of photophysics and labeling stoichiometry.

    Directory of Open Access Journals (Sweden)

    Robert P J Nieuwenhuizen

    Full Text Available Quantification in localization microscopy with reversibly switchable fluorophores is severely hampered by the unknown number of switching cycles a fluorophore undergoes and the unknown stoichiometry of fluorophores on a marker such as an antibody. We overcome this problem by measuring the average number of localizations per fluorophore, or generally per fluorescently labeled site from the build-up of spatial image correlation during acquisition. To this end we employ a model for the interplay between the statistics of activation, bleaching, and labeling stoichiometry. We validated our method using single fluorophore labeled DNA oligomers and multiple-labeled neutravidin tetramers where we find a counting error of less than 17% without any calibration of transition rates. Furthermore, we demonstrated our quantification method on nanobody- and antibody-labeled biological specimens.

  20. Prospects and challenges of quantitative phase imaging in tumor cell biology

    Science.gov (United States)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  1. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    Science.gov (United States)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  2. Observation of multilayer graphene sheets using terahertz phase contrast microscopy

    Indian Academy of Sciences (India)

    ZHIKUN LIU; YANAN XIE; LI GENG; DENGKE PAN; PAN SONG

    2017-01-01

    Although it is important for the study of graphene, identifying and characterizing the number of graphene layers is challenging. In this paper, we calculate graphene’s transmission.The result shows that the phase change is more sensitive than the intensity change when light passes through graphene in some THz frequencies. Based on this fact, a simple route is presented for identifying the single or few layers of graphene sheets by using terahertz phase contrast microscopy (TPCM). The route is fast, and easy to be carried out.

  3. Phase modulation mode of scanning ion conductance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  4. Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer.

    Science.gov (United States)

    Zheng, Fan; Zhang, Xiangyang; Chiu, Chi Tat; Zhou, Bill L; Shung, K Kirk; Zhang, Hao F; Jiao, Shuliang

    2012-11-01

    In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experiments showed a 15 dB increase of the signal-to-noise ratio (SNR) when beamforming was employed compared to the images acquired with each single element. The experimental results demonstrated that ultrasonic phased array can be a better candidate for LS-PAM in high sensitivity applications like ophthalmic imaging.

  5. Quantitative annular dark field electron microscopy using single electron signals.

    Science.gov (United States)

    Ishikawa, Ryo; Lupini, Andrew R; Findlay, Scott D; Pennycook, Stephen J

    2014-02-01

    One of the difficulties in analyzing atomic resolution electron microscope images is that the sample thickness is usually unknown or has to be fitted from parameters that are not precisely known. An accurate measure of thickness, ideally on a column-by-column basis, parameter free, and with single atom accuracy, would be of great value for many applications, such as matching to simulations. Here we propose such a quantification method for annular dark field scanning transmission electron microscopy by using the single electron intensity level of the detector. This method has the advantage that we can routinely quantify annular dark field images operating at both low and high beam currents, and under high dynamic range conditions, which is useful for the quantification of ultra-thin or light-element materials. To facilitate atom counting at the atomic scale we use the mean intensity in an annular dark field image averaged over a primitive cell, with no free parameters to be fitted. To illustrate the potential of our method, we demonstrate counting the number of Al (or N) atoms in a wurtzite-type aluminum nitride single crystal at each primitive cell over the range of 3-99 atoms.

  6. Quantitative characterization of electron detectors for transmission electron microscopy.

    Science.gov (United States)

    Ruskin, Rachel S; Yu, Zhiheng; Grigorieff, Nikolaus

    2013-12-01

    A new generation of direct electron detectors for transmission electron microscopy (TEM) promises significant improvement over previous detectors in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE). However, the performance of these new detectors needs to be carefully monitored in order to optimize imaging conditions and check for degradation over time. We have developed an easy-to-use software tool, FindDQE, to measure MTF and DQE of electron detectors using images of a microscope's built-in beam stop. Using this software, we have determined the DQE curves of four direct electron detectors currently available: the Gatan K2 Summit, the FEI Falcon I and II, and the Direct Electron DE-12, under a variety of total dose and dose rate conditions. We have additionally measured the curves for the Gatan US4000 and TVIPS TemCam-F416 scintillator-based cameras. We compare the results from our new method with published curves. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Light-sheet microscopy for quantitative ovarian folliculometry

    Science.gov (United States)

    Lin, Hsiao-Chun Amy; Dutta, Rahul; Mandal, Subhamoy; Kind, Alexander; Schnieke, Angelika; Razansky, Daniel

    2017-02-01

    Determination of ovarian status and follicle monitoring are common methods of diagnosing female infertility. We evaluated the suitability of selective plane illumination microscopy (SPIM) for the study of ovarian follicles. Owing to the large field of view and fast acquisition speed of our newly developed SPIM system, volumetric image stacks from entire intact samples of pig ovaries have been rendered demonstrating clearly discernible follicular features like follicle diameters (70 μm - 2.5 mm), size of developing Cumulus oophorus complexes (COC ) (40 μm - 110 μm), and follicular wall thicknesses (90 μm-120 μm). The observation of clearly distinguishable COCs protruding into the follicular antrum was also shown possible, and correlation with the developmental stage of the follicles was determined. Follicles of all developmental stages were identified, and even the small primordial follicle clusters forming the egg nest could be observed. The ability of the system to non-destructively generate sub-cellular resolution 3D images of developing follicles, with excellent image contrast and high throughput capacity compared to conventional histology, suggests that it can be used to monitor follicular development and identify structural abnormalities indicative of ovarian ailments. Accurate folliculometric measurements provided by SPIM images can immensely help the understanding of ovarian physiology and provide important information for the proper management of ovarian diseases.

  8. Subventricular zone cell migration: lessons from quantitative 2-photon microscopy

    Directory of Open Access Journals (Sweden)

    Rachel eJames

    2011-03-01

    Full Text Available Neuroblasts born in the adult subventricular zone (SVZ migrate long distances in the rostral migratory stream (RMS to the olfactory bulbs where they integrate into circuitry as functional interneurons. As very little was known about the dynamic parameters of SVZ neuroblast migration, we used two-photon time-lapse microscopy to analyze migration in acute slices. This involved analyzing 3-dimensional stacks of images over time and uncovered several novel aspects of SVZ migration: chains remain stable, cells can be immotile for extensive periods, morphology does not necessarily correlate with motility, neuroblasts exhibit local exploratory motility, dorsoventral migration occurs throughout the striatal SVZ and neuroblasts turn at distinctive angles. We investigated these novel findings in the SVZ and RMS from the population to the single cell level. In this review we also discuss some technical considerations when setting up a two-photon microscopic imaging system. Throughout the review we identify several unsolved questions about SVZ neuroblast migration that might be addressed with current or emerging techniques.

  9. Quantitative second-harmonic generation microscopy in collagen

    Science.gov (United States)

    Stoller, Patrick; Celliers, Peter M.; Reiser, Karen M.; Rubenchik, Alexander M.

    2003-09-01

    The second-harmonic signal in collagen, even in highly organized samples such as rat tail tendon fascicles, varies significantly with position. Previous studies suggest that this variability may be due to the parallel and antiparallel orientation of neighboring collagen fibrils. We applied high-resolution second-harmonic generation microscopy to confirm this hypothesis. Studies in which the focal spot diameter was varied from ~1 to ~6 μm strongly suggest that regions in which collagen fibrils have the same orientation in rat tail tendon are likely to be less than ~1 μm in diameter. These measurements required accurate determination of the focal spot size achieved by use of different microscope objectives; we developed a technique that uses second-harmonic generation in a quartz reference to measure the focal spot diameter directly. We also used the quartz reference to determine a lower limit (dXXX > 0.4 pm/V) for the magnitude of the second-order nonlinear susceptibility in collagen.

  10. Improved Zernike-type phase contrast for transmission electron microscopy.

    Science.gov (United States)

    Koeck, P J B

    2015-07-01

    Zernike phase contrast has been recognized as a means of recording high-resolution images with high contrast using a transmission electron microscope. This imaging mode can be used to image typical phase objects such as unstained biological molecules or cryosections of biological tissue. According to the original proposal discussed in Danev and Nagayama (2001) and references therein, the Zernike phase plate applies a phase shift of π/2 to all scattered electron beams outside a given scattering angle and an image is recorded at Gaussian focus or slight underfocus (below Scherzer defocus). Alternatively, a phase shift of -π/2 is applied to the central beam using the Boersch phase plate. The resulting image will have an almost perfect contrast transfer function (close to 1) from a given lowest spatial frequency up to a maximum resolution determined by the wave length, the amount of defocus and the spherical aberration of the microscope. In this paper, I present theory and simulations showing that this maximum spatial frequency can be increased considerably without loss of contrast by using a Zernike or Boersch phase plate that leads to a phase shift between scattered and unscattered electrons of only π /4, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  11. Image edge-enhancement in optical microscopy with a phase mismatched spiral phase plate

    Institute of Scientific and Technical Information of China (English)

    Shibiao Wei; Jing Bu; Siwei Zhu; Xiaocong Yuan

    2011-01-01

    @@ We present a spiral phase filtering system with a large tolerance for edge enhancement of both phase and amplitude objects in optical microscopy.The method is based on a Fourier 4-f spatial filtering system.A phase mismatched spiral phase plate (SPP) fabricated by electron beam lithography is employed as the radial Hilbert transform for image edge enhancement.Compared with holography, SPP is simple,economical, reliable, and easy to integrate.%We present a spiral phase filtering system with a large tolerance for edge enhancement of both phase and amplitude objects in optical microscopy. The method is based on a Fourier 4-f spatial filtering system.A phase mismatched spiral phase plate (SPP) fabricated by electron beam lithography is employed as the radial Hilbert transform for image edge enhancement. Compared with holography, SPP is simple,economical, reliable, and easy to integrate.

  12. Quantitating morphological changes in biological samples during scanning electron microscopy sample preparation with correlative super-resolution microscopy.

    Science.gov (United States)

    Zhang, Ying; Huang, Tao; Jorgens, Danielle M; Nickerson, Andrew; Lin, Li-Jung; Pelz, Joshua; Gray, Joe W; López, Claudia S; Nan, Xiaolin

    2017-01-01

    Sample preparation is critical to biological electron microscopy (EM), and there have been continuous efforts on optimizing the procedures to best preserve structures of interest in the sample. However, a quantitative characterization of the morphological changes associated with each step in EM sample preparation is currently lacking. Using correlative EM and superresolution microscopy (SRM), we have examined the effects of different drying methods as well as osmium tetroxide (OsO4) post-fixation on cell morphology during scanning electron microscopy (SEM) sample preparation. Here, SRM images of the sample acquired under hydrated conditions were used as a baseline for evaluating morphological changes as the sample went through SEM sample processing. We found that both chemical drying and critical point drying lead to a mild cellular boundary retraction of ~60 nm. Post-fixation by OsO4 causes at least 40 nm additional boundary retraction. We also found that coating coverslips with adhesion molecules such as fibronectin prior to cell plating helps reduce cell distortion from OsO4 post-fixation. These quantitative measurements offer useful information for identifying causes of cell distortions in SEM sample preparation and improving current procedures.

  13. Phase microscopy of technical and biological samples through random phase modulation with a difuser

    DEFF Research Database (Denmark)

    Almoro, Percival; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2010-01-01

    A technique for phase microscopy using a phase diffuser and a reconstruction algorithm is proposed. A magnified specimen wavefront is projected on the diffuser plane that modulates the wavefront into a speckle field. The speckle patterns at axially displaced planes are sampled and used in an iter...

  14. Quantitative imaging of collective cell migration during Drosophila gastrulation: multiphoton microscopy and computational analysis

    OpenAIRE

    Supatto, Willy; McMahon, Amy; Fraser, Scott E.; Stathopoulos, Angelike

    2009-01-01

    This protocol describes imaging and computational tools to collect and analyze live imaging data of embryonic cell migration. Our five-step protocol requires a few weeks to move through embryo preparation and four-dimensional (4D) live imaging using multiphoton microscopy, to 3D cell tracking using image processing, registration of tracking data and their quantitative analysis using computational tools. It uses commercially available equipment and requires expertise in microscopy and progr...

  15. Interferometric phase microscopy using slightly-off-axis reflective point diffraction interferometer

    Science.gov (United States)

    Bai, Hongyi; Zhong, Zhi; Shan, Mingguang; Liu, Lei; Guo, Lili; Zhang, Yabin

    2017-03-01

    An interferometric phase microscopy (IPM) is proposed using slightly-off-axis reflective point diffraction interferometry for quantitative phase imaging. A retro-reflector consisting two mirrors is used to generate an angle between the object beam and reference beam, and a 45° tilted polarizing beam splitter is used to split the horizontal and vertical components of the both beams. Two carrier interferograms with π/2 phase-shift can be acquired in one shot, and the phase distribution of a thin specimen can be retrieved using a fast reconstruction method. The new IPM without loss in the utilization of the input-plane field of view combines the real time and optimizing detector bandwidth measurement benefit associated with slightly-off-axis method, high stability associated with common path geometry, and simplicity in terms of procedure and setup. Experiments are carried out on both static and dynamic specimens to demonstrate the validity and stability of the proposed method.

  16. Quantitative phase imaging using hard x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.A.; Paganin, D.; Barnea, Z. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Cookson, D. F. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Gureyev, T.E. [Melbourne Univ., Parkville, VIC (Australia). School of Physics]|[CSIRO, Clayton, VIC (Australia). Div. of Forestry and Forest Products

    1997-06-01

    The quantitative imaging of a phase object using 16 keV x-rays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. It is found that the phase image is in quantitative agreement with independent measurements of the object. 13 refs., 5 figs.

  17. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy.

    Science.gov (United States)

    Jiang, Huaidong; Song, Changyong; Chen, Chien-Chun; Xu, Rui; Raines, Kevin S; Fahimian, Benjamin P; Lu, Chien-Hung; Lee, Ting-Kuo; Nakashima, Akio; Urano, Jun; Ishikawa, Tetsuya; Tamanoi, Fuyuhiko; Miao, Jianwei

    2010-06-22

    Microscopy has greatly advanced our understanding of biology. Although significant progress has recently been made in optical microscopy to break the diffraction-limit barrier, reliance of such techniques on fluorescent labeling technologies prohibits quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image pleomorphic structures at a resolution of 3-5 nm, but is only applicable to thin or sectioned specimens. Here, we report quantitative 3D imaging of a whole, unstained cell at a resolution of 50-60 nm by X-ray diffraction microscopy. We identified the 3D morphology and structure of cellular organelles including cell wall, vacuole, endoplasmic reticulum, mitochondria, granules, nucleus, and nucleolus inside a yeast spore cell. Furthermore, we observed a 3D structure protruding from the reconstructed yeast spore, suggesting the spore germination process. Using cryogenic technologies, a 3D resolution of 5-10 nm should be achievable by X-ray diffraction microscopy. This work hence paves a way for quantitative 3D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy.

  18. Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals

    CERN Document Server

    Parra-Vasquez, A Nicholas G; Cognet, Laurent; Lounis, Brahim; 10.1021/jz300369d

    2012-01-01

    The photothermal heterodyne imaging technique enabled studies of individual weakly absorbing nano-objects in various environments. It uses a photo-induced change in the refractive index of the environment. Taking advantage of the dramatic index of refraction change occurring around a thermotropic liquid crystalline phase transition, we demonstrate a 40-fold signal-to-noise ratio enhancement for gold nanoparticles imaged in 4-Cyano-4'-pentylbiphenyl (5CB) liquid crystals over those in a water environment. We studied the photothermal signal as a function of probe laser polarization, heating power, and sample temperature quantifying the optimal enhancement. This study established photothermal microscopy as a valuable technique for inducing and/or detecting local phase transitions at the nanometer scales.

  19. Efficient Phase Unwrapping Architecture for Digital Holographic Microscopy

    Directory of Open Access Journals (Sweden)

    Wen-Jyi Hwang

    2011-09-01

    Full Text Available This paper presents a novel phase unwrapping architecture for accelerating the computational speed of digital holographic microscopy (DHM. A fast Fourier transform (FFT based phase unwrapping algorithm providing a minimum squared error solution is adopted for hardware implementation because of its simplicity and robustness to noise. The proposed architecture is realized in a pipeline fashion to maximize through put of thecomputation. Moreover, the number of hardware multipliers and dividers are minimized to reduce the hardware costs. The proposed architecture is used as a custom user logic in a system on programmable chip (SOPC for physical performance measurement. Experimental results reveal that the proposed architecture is effective for expediting the computational speed while consuming low hardware resources for designing an embedded DHM system.

  20. Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy

    NARCIS (Netherlands)

    Turnhout, van M.C.; Kranenbarg, S.; Leeuwen, van J.L.

    2009-01-01

    Quantitative polarized light microscopy (qPLM) is a popular tool for the investigation of birefringent architectures in biological tissues. Collagen, the most abundant protein in mammals, is such a birefringent material. Interpretation of results of qPLM in terms of collagen network architecture and

  1. Phase-shifting Real-time Holographic Microscopy applied in micro-structures surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brito, I V; Gesualdi, M R R [Universidade Federal do ABC, R. Santa Adelia 166, Bangu, Santo Andre, 09210-170, SP (Brazil); Muramatsu, M [Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, Travessa R 186, Cidade Universitaria, 05508-090, Sao Paulo, SP (Brazil); Ricardo, J, E-mail: isis.brito@ufabc.edu.br [Universidad de Oriente, Ave. Patricio Lumumba s/n, Santiago de Cuba (Cuba)

    2011-01-01

    The microscopic real-time analysis of micro structured materials is of great importance in various domains of science and technology. For other hand, the holographic interferometry comprises a group of powerful optical methods for non-destructive testing in surface analysis. The holographic microscopy uses the holographic interferometric techniques to obtain quantitative intensity and phase information of the optical waves by microscopic systems. With the development of CCD cameras, computers (hardware and software), and new materials for holographic recording, these techniques can be used to replace the classical form of registration and became promising tools in surface analysis. In this work, we developed a prototype of Photorefractive and Digital Holographic Microscope for real-time analysis of micro-structured systems based on the phase-shifting real-time holographic interferometry techniques. Using this apparatus, we are made analysis of shapes and surfaces to obtain the phase maps and the 3D profiles of some samples.

  2. Molecular and Cellular Quantitative Microscopy: theoretical investigations, technological developments and applications to neurobiology

    Science.gov (United States)

    Esposito, Alessandro

    2006-05-01

    This PhD project aims at the development and evaluation of microscopy techniques for the quantitative detection of molecular interactions and cellular features. The primarily investigated techniques are Fαrster Resonance Energy Transfer imaging and Fluorescence Lifetime Imaging Microscopy. These techniques have the capability to quantitatively probe the biochemical environment of fluorophores. An automated microscope capable of unsupervised operation has been developed that enables the investigation of molecular and cellular properties at high throughput levels and the analysis of cellular heterogeneity. State-of-the-art Förster Resonance Energy Transfer imaging, Fluorescence Lifetime Imaging Microscopy, Confocal Laser Scanning Microscopy and the newly developed tools have been combined with cellular and molecular biology techniques for the investigation of protein-protein interactions, oligomerization and post-translational modifications of α-Synuclein and Tau, two proteins involved in Parkinson’s and Alzheimer’s disease, respectively. The high inter-disciplinarity of this project required the merging of the expertise of both the Molecular Biophysics Group at the Debye Institute - Utrecht University and the Cell Biophysics Group at the European Neuroscience Institute - Gαttingen University. This project was conducted also with the support and the collaboration of the Center for the Molecular Physiology of the Brain (Göttingen), particularly with the groups associated with the Molecular Quantitative Microscopy and Parkinson’s Disease and Aggregopathies areas. This work demonstrates that molecular and cellular quantitative microscopy can be used in combination with high-throughput screening as a powerful tool for the investigation of the molecular mechanisms of complex biological phenomena like those occurring in neurodegenerative diseases.

  3. Application study of transport intensity equation in quantitative phase reconstruction

    Science.gov (United States)

    Song, Xiaojun; Cheng, Wei; Wei, Chunjuan; Xue, Liang; Liu, Weijing; Bai, Baodan; Chu, Fenghong

    2016-10-01

    In order to improve detection speed and accuracy of biological cells, a quantitative non-interference optical phase recovery method is proposed in commercial microscope, taking the red blood cells as the classical phase objects. Three bright field micrographs were collected in the experiment. Utilizing the transport intensity equation (TIE), the quantitative phase distributions of red blood cell are gained and agree well with the previous optical phase models. Analysis shows that the resolution of introduced system reaches sub-micron. This method not only quickly gives quantitative phase distribution of cells, but also measures a large number of cells simultaneously. So it is potential in the use of real-time observing and quantitative analyzing of cells in vivo.

  4. Phase microscopy of technical and biological samples through random phase modulation with a difuser

    DEFF Research Database (Denmark)

    Almoro, Percival; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2010-01-01

    A technique for phase microscopy using a phase diffuser and a reconstruction algorithm is proposed. A magnified specimen wavefront is projected on the diffuser plane that modulates the wavefront into a speckle field. The speckle patterns at axially displaced planes are sampled and used...... in an iterative phase retrieval algorithm based on a wave-propagation equation. The technique offers a whole-field and high-resolution wavefront reconstruction of unstained microstructures. Phase maps of photoresist targets and human cheek cells are obtained to demonstrate the effectiveness of our method. (C......) 2010 Optical Society of America...

  5. Use of Fluorescence Lifetime Imaging Microscopy (FLIM) as a Timer of Cell Cycle S Phase.

    Science.gov (United States)

    Okkelman, Irina A; Dmitriev, Ruslan I; Foley, Tara; Papkovsky, Dmitri B

    2016-01-01

    Incorporation of thymidine analogues in replicating DNA, coupled with antibody and fluorophore staining, allows analysis of cell proliferation, but is currently limited to monolayer cultures, fixed cells and end-point assays. We describe a simple microscopy imaging method for live real-time analysis of cell proliferation, S phase progression over several division cycles, effects of anti-proliferative drugs and other applications. It is based on the prominent (~ 1.7-fold) quenching of fluorescence lifetime of a common cell-permeable nuclear stain, Hoechst 33342 upon the incorporation of 5-bromo-2'-deoxyuridine (BrdU) in genomic DNA and detection by fluorescence lifetime imaging microscopy (FLIM). We show that quantitative and accurate FLIM technique allows high-content, multi-parametric dynamic analyses, far superior to the intensity-based imaging. We demonstrate its uses with monolayer cell cultures, complex 3D tissue models of tumor cell spheroids and intestinal organoids, and in physiological study with metformin treatment.

  6. Image Restoration Phase-Filtering Lateral Superresolution Confocal Microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-Qian; QIU Li-Rong; CHEN Shan-Shan; FENG Zheng-De

    2006-01-01

    @@ Image restoration phase-filtering lateral superresolution confocal microscopy, a new approach, is proposed to achieve lateral superresolution using a confocal microscope. This approach uses a lateral superresolution pupil filter to preliminarily improve its lateral resolution and uses a single-image superresolution restoration technique based on a maximum likelihood estimate to further improve its lateral resolution. The new approach has the advantages of a low cost and the remarkable superresolution effect without excessive system complexity. Experiments indicate that the proposed approach can improve the lateral resolution of a confocal microscope from 0.3μm to less than 0.1 μm when λ = 632.8 nm and NA =0.85.

  7. Quantitative phase imaging for cell culture quality control.

    Science.gov (United States)

    Kastl, Lena; Isbach, Michael; Dirksen, Dieter; Schnekenburger, Jürgen; Kemper, Björn

    2017-05-01

    The potential of quantitative phase imaging (QPI) with digital holographic microscopy (DHM) for quantification of cell culture quality was explored. Label-free QPI of detached single cells in suspension was performed by Michelson interferometer-based self-interference DHM. Two pancreatic tumor cell lines were chosen as cellular model and analyzed for refractive index, volume, and dry mass under varying culture conditions. Firstly, adequate cell numbers for reliable statistics were identified. Then, to characterize the performance and reproducibility of the method, we compared results from independently repeated measurements and quantified the cellular response to osmolality changes of the cell culture medium. Finally, it was demonstrated that the evaluation of QPI images allows the extraction of absolute cell parameters which are related to cell layer confluence states. In summary, the results show that QPI enables label-free imaging cytometry, which provides novel complementary integral biophysical data sets for sophisticated quantification of cell culture quality with minimized sample preparation. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  8. 3D quantitative phase imaging of neural networks using WDT

    Science.gov (United States)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  9. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

    Science.gov (United States)

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun

    2013-11-05

    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  10. Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase.

    Science.gov (United States)

    Gennaro, Sylvain D; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V; Maier, Stefan A; Oulton, Rupert F

    2014-04-30

    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode's scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences.

  11. Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy

    Science.gov (United States)

    Wolny, F.; Mühl, T.; Weissker, U.; Lipert, K.; Schumann, J.; Leonhardt, A.; Büchner, B.

    2010-10-01

    We present a novel ultrahigh stability sensor for quantitative magnetic force microscopy (MFM) based on an iron filled carbon nanotube. In contrast to the complex magnetic structure of conventional MFM probes, this sensor constitutes a nanomagnet with defined properties. The long iron nanowire can be regarded as an extended dipole of which only the monopole close to the sample surface is involved in the imaging process. We demonstrate its potential for high resolution imaging. Moreover, we present an easy routine to determine its monopole moment and prove that this calibration, unlike other approaches, is universally applicable. For the first time this enables straightforward quantitative MFM measurements.

  12. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography.

  13. High resolution quantitative phase imaging of live cells with constrained optimization approach

    Science.gov (United States)

    Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu

    2016-03-01

    Quantitative phase imaging (QPI) aims at studying weakly scattering and absorbing biological specimens with subwavelength accuracy without any external staining mechanisms. Use of a reference beam at an angle is one of the necessary criteria for recording of high resolution holograms in most of the interferometric methods used for quantitative phase imaging. The spatial separation of the dc and twin images is decided by the reference beam angle and Fourier-filtered reconstructed image will have a very poor resolution if hologram is recorded below a minimum reference angle condition. However, it is always inconvenient to have a large reference beam angle while performing high resolution microscopy of live cells and biological specimens with nanometric features. In this paper, we treat reconstruction of digital holographic microscopy images as a constrained optimization problem with smoothness constraint in order to recover only complex object field in hologram plane even with overlapping dc and twin image terms. We solve this optimization problem by gradient descent approach iteratively and the smoothness constraint is implemented by spatial averaging with appropriate size. This approach will give excellent high resolution image recovery compared to Fourier filtering while keeping a very small reference angle. We demonstrate this approach on digital holographic microscopy of live cells by recovering the quantitative phase of live cells from a hologram recorded with nearly zero reference angle.

  14. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    Science.gov (United States)

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Lung cancer diagnosis with quantitative DIC microscopy and support vector machine

    Science.gov (United States)

    Zheng, Longfei; Cai, Shuangshuang; Zeng, Bixin; Xu, Min

    2017-01-01

    We report the study of lung squamous cell carcinoma diagnosis using the TI-DIC microscopy and the scattering-phase theorem. The spatially resolved optical properties of tissue are computed from the 2D phase map via the scattering-phase theorem. The scattering coefficient, the reduced scattering coefficient, and the anisotropy factor are all found to increase with the grade of lung cancer. The retrieved optical parameters are shown to distinguish cancer cases from the normal cases with high accuracy. This label-free microscopic approach applicable to fresh tissues may be promising for in situ rapid cancer diagnosis.

  16. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    Science.gov (United States)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  17. Experimental evaluation of the ‘transport-of-intensity’ equation for magnetic phase reconstruction in Lorentz transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, Amit, E-mail: akohn@post.tau.ac.il [Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Habibi, Avihay; Mayo, Martin [Department of Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva (Israel)

    2016-01-15

    The ‘transport-of-intensity’ equation (TIE) is a general phase reconstruction methodology that can be applied to Lorentz transmission electron microscopy (TEM) through the use of Fresnel-contrast (defocused) images. We present an experimental study to test the application of the TIE for quantitative magnetic mapping in Lorentz TEM without aberration correction by examining sub-micrometer sized Ni{sub 80}Fe{sub 20} (Permalloy) elements. For a JEOL JEM 2100F adapted for Lorentz microscopy, we find that quantitative magnetic phase reconstructions are possible for defoci distances ranging between approximately 200 μm and 800 μm. The lower limit originates from competing sources of image intensity variations in Fresnel-contrast images, namely structural defects and diffraction contrast. The upper defocus limit is due to a numerical error in the estimation of the intensity derivative based on three images. For magnetic domains, we show quantitative reconstructions of the product of the magnetic induction vector and thickness in element sizes down to approximately 100 nm in lateral size and 5 nm thick resulting in a minimal detection of 5 T nm. Three types of magnetic structures are tested in terms of phase reconstruction: vortex cores, domain walls, and element edges. We quantify vortex core structures at a diameter of 12 nm while the structures of domain walls and element edges are characterized qualitatively. Finally, we show by image simulations that the conclusions of this experimental study are relevant to other Lorentz TEM in which spherical aberration and defocus are dominant aberrations. - Highlights: • Testing TIE for quantitative magnetic phase reconstruction in Lorentz TEM. • Quantitative magnetic phase reconstructions for defoci distances in 200–800 μm range. • Minimal detection of the product of the magnetic induction and thickness is 5 T nm. • Quantitative phase reconstruction for vortex core structures at 12 nm diameter. • Observations

  18. Graphene Near-Degenerate Four-Wave Mixing for Phase Characterization of Broadband Pulses in Ultrafast Microscopy.

    Science.gov (United States)

    Ciesielski, Richard; Comin, Alberto; Handloser, Matthias; Donkers, Kevin; Piredda, Giovanni; Lombardo, Antonio; Ferrari, Andrea C; Hartschuh, Achim

    2015-08-12

    We investigate near-degenerate four-wave mixing in graphene using femtosecond laser pulse shaping microscopy. Intense near-degenerate four-wave mixing signals on either side of the exciting laser spectrum are controlled by amplitude and phase shaping. Quantitative signal modeling for the input pulse parameters shows a spectrally flat phase response of the near-degenerate four-wave mixing due to the linear dispersion of the massless Dirac Fermions in graphene. Exploiting these properties we demonstrate that graphene is uniquely suited for the intrafocus phase characterization and compression of broadband laser pulses, circumventing disadvantages of common methods utilizing second or third harmonic light.

  19. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  20. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    Science.gov (United States)

    Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2010-01-01

    We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464

  1. Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, L.A. [Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS-Universidad de Zaragoza, Toulouse (France); CEMES-CNRS 29, rue Jeanne Marvig, B.P. 94347, F-31055 Toulouse Cedex (France); Magén, C., E-mail: cmagend@unizar.es [Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS-Universidad de Zaragoza, Toulouse (France); Fundación ARAID, 50018 Zaragoza (Spain); Snoeck, E.; Gatel, C. [Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS-Universidad de Zaragoza, Toulouse (France); CEMES-CNRS 29, rue Jeanne Marvig, B.P. 94347, F-31055 Toulouse Cedex (France); Marín, L. [Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza (Spain); Serrano-Ramón, L. [Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza (Spain); and others

    2013-11-15

    A generalized procedure for the in situ application of magnetic fields by means of the excitation of the objective lens for magnetic imaging experiments in Lorentz microscopy and electron holography is quantitatively described. A protocol for applying magnetic fields with arbitrary in-plane magnitude and orientation is presented, and a freeware script for Digital Micrograph{sup ™} is provided to assist the operation of the microscope. Moreover, a method to accurately reconstruct hysteresis loops is detailed. We show that the out-of-plane component of the magnetic field cannot be always neglected when performing quantitative measurements of the local magnetization. Several examples are shown to demonstrate the accuracy and functionality of the methods. - Highlights: • Generalized procedure for application of magnetic fields with the TEM objective lens. • Arbitrary in-plane magnetic field magnitude and orientation can be applied. • Method to accurately reconstruct hysteresis loops by electron holography. • Out-of-plane field component should be considered in quantitative measurements. • Examples to illustrate the method in Lorentz microscopy and electron holography.

  2. A method for improved clustering and classification of microscopy images using quantitative co-localization coefficients

    LENUS (Irish Health Repository)

    Singan, Vasanth R

    2012-06-08

    AbstractBackgroundThe localization of proteins to specific subcellular structures in eukaryotic cells provides important information with respect to their function. Fluorescence microscopy approaches to determine localization distribution have proved to be an essential tool in the characterization of unknown proteins, and are now particularly pertinent as a result of the wide availability of fluorescently-tagged constructs and antibodies. However, there are currently very few image analysis options able to effectively discriminate proteins with apparently similar distributions in cells, despite this information being important for protein characterization.FindingsWe have developed a novel method for combining two existing image analysis approaches, which results in highly efficient and accurate discrimination of proteins with seemingly similar distributions. We have combined image texture-based analysis with quantitative co-localization coefficients, a method that has traditionally only been used to study the spatial overlap between two populations of molecules. Here we describe and present a novel application for quantitative co-localization, as applied to the study of Rab family small GTP binding proteins localizing to the endomembrane system of cultured cells.ConclusionsWe show how quantitative co-localization can be used alongside texture feature analysis, resulting in improved clustering of microscopy images. The use of co-localization as an additional clustering parameter is non-biased and highly applicable to high-throughput image data sets.

  3. Quantitative imaging of collective cell migration during Drosophila gastrulation: multiphoton microscopy and computational analysis.

    Science.gov (United States)

    Supatto, Willy; McMahon, Amy; Fraser, Scott E; Stathopoulos, Angelike

    2009-01-01

    This protocol describes imaging and computational tools to collect and analyze live imaging data of embryonic cell migration. Our five-step protocol requires a few weeks to move through embryo preparation and four-dimensional (4D) live imaging using multi-photon microscopy, to 3D cell tracking using image processing, registration of tracking data and their quantitative analysis using computational tools. It uses commercially available equipment and requires expertise in microscopy and programming that is appropriate for a biology laboratory. Custom-made scripts are provided, as well as sample datasets to permit readers without experimental data to carry out the analysis. The protocol has offered new insights into the genetic control of cell migration during Drosophila gastrulation. With simple modifications, this systematic analysis could be applied to any developing system to define cell positions in accordance with the body plan, to decompose complex 3D movements and to quantify the collective nature of cell migration.

  4. Quantitative isothermal phase-field simulations of peritectic phase transformation in FeMn system

    Directory of Open Access Journals (Sweden)

    Celso Luiz Moraes Alves

    2016-01-01

    Full Text Available The present investigation shows quantitative results for the peritectic phase transformation of FeMn alloys utilizing phase-field simulations in 1-D and 2-D. The phase-field method used was based on an adaptation of the proposal of Folch and Plapp [Phys. Rev. E, 2005, 72, 011602] for the eutectic reaction. The two stages of peritectic phase transformation, the peritectic reaction and the peritectic transformation, were investigated numerically utilizing this phase-field approach. The evolution of the phases was quantitatively analyzed during the peritectic transformation and the fractions of the phases at the end of the solidification were compared with the thermodynamic equilibrium, defined by the phase diagram, for the case of 1-D simulation with peritectic concentration. An assessment of the behavior of the concentration gradient in the γ-phase (the peritectic phase through time was also carried out and a mathematical function which describes the γ-phase thickness evolution was defined. Finally, 2-D simulations were performed to clearly identify the two stages of the peritectic phase transformation. The obtained results show two main facts: (1 the numerical model is able to simulate quantitatively this phase transformation; and, (2 this numerical tool can be utilized for investigating quantitatively some aspects (normally determined indirectly that are difficult to be determined by direct measurements in experimental works.

  5. Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy†

    Science.gov (United States)

    Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ. PMID:19803506

  6. Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy

    Science.gov (United States)

    Wu, Shulian; Li, Hui; Yang, Hongqin; Zhang, Xiaoman; Li, Zhifang; Xu, Shufei

    2011-04-01

    Multiphoton microscopy was employed for monitoring the structure changes of mouse dermis collagen in the intrinsic- or the extrinsic-age-related processes in vivo. The characteristics of textures in different aging skins were uncovered by fast Fourier transform in which the orientation index and bundle packing of collagen were quantitatively analyzed. Some significant differences in collagen-related changes are found in different aging skins, which can be good indicators for the statuses of aging skins. The results are valuable to the study of aging skin and also of interest to biomedical photonics.

  7. Quantitative optical coherence microscopy for the in situ investigation of the biofilm

    Science.gov (United States)

    Meleppat, Ratheesh Kumar; Shearwood, Christopher; Keey, Seah Leong; Matham, Murukeshan Vadakke

    2016-12-01

    This paper explores the potential of optical coherence microscopy (OCM) for the in situ monitoring of biofilm growth. The quantitative imaging of the early developmental biology of a representative biofilm, Klebsiella pneumonia (KP-1), was performed using a swept source-based Fourier domain OCM system. The growth dynamics of the KP-1 biofilms and their transient response under perturbation was investigated using the enface visualization of microcolonies and their spatial localization. Furthermore, the optical density (OD) and planar density of the biofilms are calculated using an OCM technique and compared with OD and colony forming units measured using standard procedures via the sampling of the flow-cell effluent.

  8. Compositional analysis of GaAs/AlGaAs heterostructures using quantitative scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kauko, H.; Helvoort, A. T. J. van [Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Zheng, C. L.; Glanvill, S. [Monash Centre for Electron Microscopy, Monash University, VIC 3800 (Australia); Zhu, Y.; Etheridge, J., E-mail: joanne.etheridge@monash.edu [Monash Centre for Electron Microscopy, Monash University, VIC 3800 (Australia); Department of Materials Engineering, Monash University, VIC 3800 (Australia); Dwyer, C. [Monash Centre for Electron Microscopy, Monash University, VIC 3800 (Australia); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Munshi, A. M.; Fimland, B. O. [Department of Electronics and Telecommunications, Norwegian University of Science and Technology (NTNU), Trondheim (Norway)

    2013-12-02

    We demonstrate a method for compositional mapping of Al{sub x}Ga{sub 1–x}As heterostructures with high accuracy and unit cell spatial resolution using quantitative high angle annular dark field scanning transmission electron microscopy. The method is low dose relative to spectroscopic methods and insensitive to the effective source size and higher order lens aberrations. We apply the method to study the spatial variation in Al concentration in cross-sectioned GaAs/AlGaAs core-shell nanowires and quantify the concentration in the Al-rich radial band and the AlGaAs shell segments.

  9. Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography.

    Science.gov (United States)

    Rodríguez, L A; Magén, C; Snoeck, E; Gatel, C; Marín, L; Serrano-Ramón, L; Prieto, J L; Muñoz, M; Algarabel, P A; Morellon, L; De Teresa, J M; Ibarra, M R

    2013-11-01

    A generalized procedure for the in situ application of magnetic fields by means of the excitation of the objective lens for magnetic imaging experiments in Lorentz microscopy and electron holography is quantitatively described. A protocol for applying magnetic fields with arbitrary in-plane magnitude and orientation is presented, and a freeware script for Digital Micrograph(™) is provided to assist the operation of the microscope. Moreover, a method to accurately reconstruct hysteresis loops is detailed. We show that the out-of-plane component of the magnetic field cannot be always neglected when performing quantitative measurements of the local magnetization. Several examples are shown to demonstrate the accuracy and functionality of the methods. © 2013 Elsevier B.V. All rights reserved.

  10. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    Science.gov (United States)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  11. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    DEFF Research Database (Denmark)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far...... approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity...... been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new...

  12. Quantitative Infrared Spectra of Vapor Phase Chemical Agents

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Steven W.; Johnson, Timothy J.; Chu, P M.; Kleimeyer, J; Rowland, Brad; Gardner, Patrick J.

    2003-04-21

    Quantitative high resolution (0.1 cm -1) infrared spectra have been acquired for a number of pressure broadened (101.3 KPa N2), vapor phase chemicals including: Sarin (GB), Soman (GD), Tabun (GA), Cyclosarin (GF), VX, nitrogen mustard (HN3), sulfur mustard (HD) and Lewisite (L).

  13. Quantitative dopant profiling in semiconductors. A new approach to Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, Christine

    2012-07-01

    Failure analysis and optimization of semiconducting devices request knowledge of their electrical properties. To meet the demands of today's semiconductor industry, an electrical nanometrology technique is required which provides quantitative information about the doping profile and which enables scans with a lateral resolution in the sub-10 nm range. In the presented work it is shown that Kelvin probe force microscopy (KPFM) is a very promising electrical nanometrology technique to face this challenge. The technical and physical aspects of KPFM measurements on semiconductors required for the correct interpretation of the detected KPFM bias are discussed. A new KPFM model is developed which enables the quantitative correlation between the probed KPFM bias and the dopant concentration in the investigated semiconducting sample. Quantitative dopant profiling by means of the new KPFM model is demonstrated by the example of differently structured, n- and p-type doped silicon. Additionally, the transport of charge carriers during KPFM measurements, in particular in the presence of intrinsic electric fields due to vertical and horizontal pn junctions as well as due to surface space charge regions, is discussed. Detailed investigations show that transport of charge carriers in the semiconducting sample is a crucial aspect and has to be taken into account when aiming for a quantitative evaluation of the probed KPFM bias.

  14. Imaging with low-voltage scanning transmission electron microscopy: A quantitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Felisari, L. [TASC, INFM-CNR, S.S. 14, km 163.5, 34149 Trieste (Italy); Grillo, V., E-mail: vincenzo.grillo@unimore.it [Istituto Nanoscienze-S3 CNR, via Campi 213/A, 41125 Modena (Italy); IMEM-CNR Parco Area delle Scienze 37/A, 43124 Parma (Italy); Jabeen, F.; Rubini, S. [TASC, INFM-CNR, S.S. 14, km 163.5, 34149 Trieste (Italy); Menozzi, C. [Istituto Nanoscienze-S3 CNR, via Campi 213/A, 41125 Modena (Italy); Dipartimento di Fisica, Universita di Modena e Reggio Emilia Via G. Campi 213/A, 41100 Modena (Italy); Rossi, F. [IMEM-CNR Parco Area delle Scienze 37/A, 43124 Parma (Italy); Martelli, F. [TASC, INFM-CNR, S.S. 14, km 163.5, 34149 Trieste (Italy); IMM-CNR, via del Fosso del Cavaliere 100, 00133 Roma (Italy)

    2011-07-15

    A dedicated specimen holder has been designed to perform low-voltage scanning transmission electron microscopy in dark field mode. Different test samples, namely InGaAs/GaAs quantum wells, InGaAs nanowires and thick InGaAs layers, have been analysed to test the reliability of the model based on the proportionality to the specimen mass-thickness, generally used for image intensity interpretation of scattering contrast processes. We found that size of the probe, absorption and channelling must be taken into account to give a quantitative interpretation of image intensity. We develop a simple procedure to evaluate the probe-size effect and to obtain a quantitative indication of the absorption coefficient. Possible artefacts induced by channelling are pointed out. With the developed procedure, the low voltage approach can be successfully applied for quantitative compositional analysis. The method is then applied to the estimation of the In content in the core of InGaAs/GaAs core-shell nanowires. -- Highlights: {yields} Quantitative analysis of the composition by low-voltage STEM annular dark field. {yields} First evidence of channelling effects in low-voltage STEM in SEM. {yields} Comparison between low-voltage and high-voltage STEM. {yields} Evaluation of the absorption effects on the STEM intensity.

  15. Transmission electron microscopy of the preclinical phase of experimental phytophotodermatitis

    Directory of Open Access Journals (Sweden)

    Hiram Larangeira de Almeida Jr

    2008-01-01

    Full Text Available OBJECTIVE: To examine the epidermis in induced phytophotodermatitis using transmission electron microscopy in order to detect histologic changes even before lesions are visible by light microscopy. INTRODUCTION: In the first six hours after the experimental induction of phytophotodermatitis, no changes are detectable by light microscopy. Only after 24 hours can keratinocyte necrosis and epidermal vacuolization be detected histologically, and blisters form by 48 hours. METHODS: The dorsum of four adult rats (Rattus norvegicus was manually epilated. After painting the right half of the rat with the peel juice of Tahiti lemon, they were exposed to sunlight for eight minutes under general anesthesia. The left side was used as the control and exposed to sunlight only. Biopsies were performed immediately after photoinduction and one and two hours later, and the tissue was analyzed by transmission electron microscopy. RESULTS: No histological changes were seen on the control side. Immediately after induction, vacuolization in keratinocytes was observed. After one hour, desmosomal changes were also observed in addition to vacuolization. Keratin filaments were not attached to the desmosomal plaque. Free desmosomes and membrane ruptures were also seen. At two hours after induction, similar changes were found, and granular degeneration of keratin was also observed. DISCUSSION: The interaction of sunlight and psoralens generates a photoproduct that damages keratinocyte proteins, leading to keratinocyte necrosis and blister formation. CONCLUSIONS: Transmission electron microscopy can detect vacuolization, lesions of the membrane, and desmosomes in the first two hours after experimental induction of phytophotodermatitis.

  16. Quantitative assessment of spinal cord injury using circularly polarized coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Bae, Kideog; Zheng, Wei; Huang, Zhiwei

    2017-08-01

    We report the quantitative assessment of spinal cord injury using the circularly polarized coherent anti-Stokes Raman scattering (CP-CARS) technique together with Stokes parameters in the Poincaré sphere. The pump and Stokes excitation beams are circularly polarized to suppress both the linear polarization-dependent artifacts and the nonresonant background of tissue CARS imaging, enabling quantitative CP-CARS image analysis. This study shows that CP-CARS imaging uncovers significantly increased phase retardance of injured spinal cord tissue as compared to normal tissue, suggesting that CP-CARS is an appealing label-free imaging tool for determining the degree of tissue phase retardance, which could serve as a unique diagnostic parameter associated with nervous tissue injury.

  17. Massively parallel data processing for quantitative total flow imaging with optical coherence microscopy and tomography

    Science.gov (United States)

    Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo

    2017-08-01

    We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU

  18. Zebrafish Caudal Fin Angiogenesis Assay-Advanced Quantitative Assessment Including 3-Way Correlative Microscopy.

    Directory of Open Access Journals (Sweden)

    Ruslan Hlushchuk

    Full Text Available Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics.To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way.Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including "graph energy" and "distance to farthest node". The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level.The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations.

  19. Quantitative fractography under light microscopy: A digital image processing approach; Quantitative Fraktographie mittels Lichtmikroskopie: Naeherung durch digitale Bildverarbeitung

    Energy Technology Data Exchange (ETDEWEB)

    Horovistiz, A.L.; Ribeiro, L.M.F.; Campos, K.A.; Jesuino, G.A.; Guimaraes, V.A.; Hein, L.R.O. [UNESP, Guaratingueta, SP (Brazil)

    2003-02-01

    This work is an example of the improvement on quantitative fractography by means of digital image processing and light microscopy. Two techniques are presented to investigate the quantitative fracture behavior of Ti-4Al-4V heat-treated alloy specimens, under Charpy impact testing. The first technique is the Minkowski method for fractal dimension measurement from surface profiles, revealing the multifractal character of Ti-4Al-4V fracture. It was not observed a clear positive correlation of fractal values against Charpy energies for Ti-4Al-4V alloy specimens, due to their ductility, microstructural heterogeneities and the dynamic loading characteristics at region near the V-notch. The second technique provides an entire elevation map of fracture surface by extracting in-focus regions for each picture from a stack of images acquired at successive focus positions, then computing the surface roughness. Extended-focus reconstruction has been used to explain the behavior along fracture surface. Since these techniques are based on light microscopy, their inherent low cost is very interesting for failure investigations. (orig.) [German] Diese Arbeit ist ein Beispiel fuer die Verbesserung der quantitativen Fraktographie mittels digitaler Bildverarbeitung und Lichtmikroskopie. Zur Untersuchung des quantitativen Bruchverhaltens von waermebehandelten Ti-4Al-4V-Proben im Charpy-Kerbschlagversuch werden zwei Techniken vorgestellt. Die erste Technik ist die Minkowski-Methode zur Messung der fraktalen Dimensionen aus Oberflaechenprofilen, welche den multifraktalen Charakter des Bruches von Ti-4Al-4V ergibt. Es wurde keine eindeutige positive Korrelation zwischen den fraktalen Werten und den Charpyenergien der Ti-4Al-4V-Proben aufgrund deren Duktilitaet, Gefuegeheterogenitaeten und dynamischen Belastungscharakteristiken im Bereich um den V-Kerb beobachtet. Die zweite Methode bietet eine vollstaendige Erhoehungsabbildung der Bruchoberflaeche durch Extraktion der Fokusierungsbereiche

  20. In-focus quantitative intensity and phase imaging with the numerical focusing transport of intensity equation method

    Science.gov (United States)

    Tian, Xiaolin; Meng, Xin; Yu, Wei; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-10-01

    Microscopy combined with the transport of intensity equation is capable of retrieving both intensity and phase distributions of samples from both in-focus and defocus intensities. However, during measurements, the focal plane is often decided artificially and the improper choice may induce errors in quantitative intensity and phase retrieval. In order to obtain accurate in-focus information, quantitative intensity and phase imaging with the numerical focusing transport of intensity equation method combined with cellular duty ratio criterion and numerical wavefront propagation is introduced in this paper. Both numerical simulations and experimental measurements are provided proving this designed method can increase both retrieved in-focus intensity and phase accuracy and reduce dependence of focal plane determination in transport of intensity equation measurements. It is believed that the proposed method can be potentially applied in various fields as in-focus compensation for quantitative phase imaging and automatic focal plane determination, etc.

  1. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis

    Directory of Open Access Journals (Sweden)

    Ludovico eSilvestri

    2015-05-01

    Full Text Available Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all Purkinje cells are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent Purkinje cells. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of Purkinje cells, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of Purkinje cells with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments.

  2. Phase gradient microscopy in thick tissue with oblique back-illumination

    CERN Document Server

    Ford, Tim N; Mertz, Jerome

    2015-01-01

    Phase contrast techniques, such as differential interference contrast (DIC) microscopy, are widely used to provide morphological images of unstained biological samples. The trans-illumination geometry required for these techniques has restricted their application to thin samples. We introduce oblique back-illumination microscopy (OBM), a method of collecting en face phase gradient images of thick scattering samples, enabling near video-rate in vivo phase imaging with a miniaturized probe suitable for endoscopy.

  3. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy

    Science.gov (United States)

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan

    2016-02-01

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

  4. Quantitative lateral force microscopy study of the dolomite (104)-water interface.

    Science.gov (United States)

    Higgins, Steven R; Hu, Xiaoming; Fenter, Paul

    2007-08-14

    The friction and lateral stiffness of the contact between an atomic force microscopy (AFM) probe tip and an atomically flat dolomite (104) surface were investigated in contact with two aqueous solutions that were in equilibrium and supersaturated with respect to dolomite, respectively. The two aqueous solutions yielded negligible differences in friction at the native dolomite-water interface. However, the growth of a Ca-rich film from the supersaturated solution, revealed by X-ray reflectivity measurements, altered the probe-dolomite contact region sufficiently to observe distinct friction forces on the native dolomite and the film-covered surface regions. Quantitative friction-load relationships demonstrated three physically distinct load regimes for applied loads up to 200 nN. Similar friction forces were observed on both surfaces below 50 nN load and above 100 nN load. The friction forces on the two surfaces diverged at intermediate loads. Quantitative measurements of dynamic friction forces at low load were consistent with the estimated energy necessary to dehydrate the surface ions, whereas differences in mechanical properties of the Ca-rich film and dolomite surfaces were evidently important above 50 nN load. Attempts to fit the quantitative stiffness-load data using a Hertzian contact mechanical model based on bulk material properties yielded physically unrealistic fitting coefficients, suggesting that the interfacial contact region must be explicitly considered in describing the static and dynamic contact mechanics of this and similar systems.

  5. Scanning probe microscopy beyond imaging: a general tool for quantitative analysis.

    Science.gov (United States)

    Liscio, Andrea

    2013-04-15

    A simple, fast and general approach for quantitative analysis of scanning probe microscopy (SPM) images is reported. As a proof of concept it is used to determine with a high degree of precision the value of observables such as 1) the height, 2) the flowing current and 3) the corresponding surface potential (SP) of flat nanostructures such as gold electrodes, organic semiconductor architectures and graphenic sheets. Despite histogram analysis, or frequency count (Fc), being the most common mathematical tool used to analyse SPM images, the analytical approach is still lacking. By using the mathematical relationship between Fc and the collected data, the proposed method allows quantitative information on observable values close to the noise level to be gained. For instance, the thickness of nanostructures deposited on very rough substrates can be quantified, and this makes it possible to distinguish the contribution of an adsorbed nanostructure from that of the underlying substrate. Being non-numerical, this versatile analytical approach is a useful and general tool for quantitative analysis of the Fc that enables all signals acquired and recorded by an SPM data array to be studied with high precision.

  6. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.

    Science.gov (United States)

    Jaferzadeh, Keyvan; Moon, Inkyu

    2015-11-01

    Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs.

  7. Quantitative analysis with advanced compensated polarized light microscopy on wavelength dependence of linear birefringence of single crystals causing arthritis

    Science.gov (United States)

    Takanabe, Akifumi; Tanaka, Masahito; Taniguchi, Atsuo; Yamanaka, Hisashi; Asahi, Toru

    2014-07-01

    To improve our ability to identify single crystals causing arthritis, we have developed a practical measurement system of polarized light microscopy called advanced compensated polarized light microscopy (A-CPLM). The A-CPLM system is constructed by employing a conventional phase retardation plate, an optical fibre and a charge-coupled device spectrometer in a polarized light microscope. We applied the A-CPLM system to measure linear birefringence (LB) in the visible region, which is an optical anisotropic property, for tiny single crystals causing arthritis, i.e. monosodium urate monohydrate (MSUM) and calcium pyrophosphate dihydrate (CPPD). The A-CPLM system performance was evaluated by comparing the obtained experimental data using the A-CPLM system with (i) literature data for a standard sample, MgF2, and (ii) experimental data obtained using an established optical method, high-accuracy universal polarimeter, for the MSUM. The A-CPLM system was found to be applicable for measuring the LB spectra of the single crystals of MSUM and CPPD, which cause arthritis, in the visible regions. We quantitatively reveal the large difference in LB between MSUM and CPPD crystals. These results demonstrate the usefulness of the A-CPLM system for distinguishing the crystals causing arthritis.

  8. Improved Hilbert phase contrast for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koeck, Philip J.B.

    2015-07-15

    Hilbert phase contrast has been recognized as a means of recording high resolution images with high contrast using a transmission electron microscope. This imaging mode could be used to image typical phase objects such as unstained biological molecules or cryo sections of biological tissue. According to the original proposal by (Danev et al., 2002) the Hilbert phase plate applies a phase shift of π to approximately half the focal plane (for example the right half excluding the central beam) and an image is recorded at Gaussian focus. After correction for the inbuilt asymmetry of differential phase contrast this image will have an almost perfect contrast transfer function (close to 1) from the lowest spatial frequency up to a maximum resolution determined by the wave length and spherical aberration of the microscope. In this paper I present theory and simulations showing that this maximum spatial frequency can be increased considerably almost without loss of contrast by using a Hilbert phase plate of half the thickness, leading to a phase shift of π/2, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. - Highlights: • In this paper I present theory and simulations for a Hilbert phase plate that phase shifts the electron wave by π/2 instead of π while images are recorded close to Scherzer defocus instead of Gaussian focus. • I show that the point resolution for this new imaging mode is considerably higher without loss of contrast. • An additional advantage lies in the reduced thickness of the phase plate which leads to reduced inelastic scattering in the phase plate and less noise.

  9. Semiconductor defect metrology using laser-based quantitative phase imaging

    Science.gov (United States)

    Zhou, Renjie; Edwards, Chris; Popescu, Gabriel; Goddard, Lynford

    2015-03-01

    A highly sensitive laser-based quantitative phase imaging tool, using an epi-illumination diffraction phase microscope, has been developed for silicon wafer defect inspection. The first system used a 532 nm solid-state laser and detected 20 nm by 100 nm by 110 nm defects in a 22 nm node patterned silicon wafer. The second system, using a 405 nm diode laser, is more sensitive and has enabled detection of 15 nm by 90 nm by 35 nm defects in a 9 nm node densely patterned silicon wafer. In addition to imaging, wafer scanning and image-post processing are also crucial for defect detection.

  10. Quantitative appraisal for noise reduction in digital holographic phase imaging.

    Science.gov (United States)

    Montresor, Silvio; Picart, Pascal

    2016-06-27

    This paper discusses on a quantitative comparison of the performances of different advanced algorithms for phase data de-noising. In order to quantify the performances, several criteria are proposed: the gain in the signal-to-noise ratio, the Q index, the standard deviation of the phase error, and the signal to distortion ratio. The proposed methodology to investigate de-noising algorithms is based on the use of a realistic simulation of noise-corrupted phase data. A database including 25 fringe patterns divided into 5 patterns and 5 different signal-to-noise ratios was generated to evaluate the selected de-noising algorithms. A total of 34 algorithms divided into different families were evaluated. Quantitative appraisal leads to ranking within the considered criteria. A fairly good correlation between the signal-to-noise ratio gain and the quality index has been observed. There exists an anti-correlation between the phase error and the quality index which indicates that the phase errors are mainly structural distortions in the fringe pattern. Experimental results are thoroughly discussed in the paper.

  11. Quantitative phase determination by using a Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Pomarico, Juan A; Molina, Pablo F; Angelo, Cristian D' [IFAS-Universidad Nacional del Centro de la Pcia. de Buenos Aires, Pinto 399, B7000GHG Tandil, Buenos Aires (Argentina)

    2007-09-15

    The Michelson interferometer is one of the best established tools for quantitative interferometric measurements. It has been, and is still successfully used, not only for scientific purposes, but it is also introduced in undergraduate courses for qualitative demonstrations as well as for quantitative determination of several properties such as refractive index, wavelength, optical thickness, etc. Generally speaking, most of the measurements are carried out by determining phase distortions through the changes in the location and/or shape of the interference fringes. However, the extreme sensitivity of this tool, for which minimum deviations of the conditions of its branches can cause very large modifications in the fringe pattern, makes phase changes difficult to follow and measure. The purpose of this communication is to show that, under certain conditions, the sensitivity of the Michelson interferometer can be 'turned down' allowing the quantitative measurement of phase changes with relative ease. As an example we present how the angle (or, optionally, the refractive index) of a transparent standard optical wedge can be determined. Experimental results are shown and compared with the data provided by the manufacturer showing very good agreement.

  12. Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy.

    Science.gov (United States)

    Yang, Yong; Wang, Hong; Erie, Dorothy A

    2003-02-01

    Atomic force microscopy (AFM) has been applied in many biological investigations in the past 15 years. This review focuses on the application of AFM for quantitatively characterizing the structural and thermodynamic properties of protein-protein and protein-nucleic acid complexes. AFM can be used to determine the stoichiometries and association constants of multiprotein assemblies and to quantify changes in conformations of proteins and protein-nucleic acid complexes. In addition, AFM in solution permits the observation of the dynamic properties of biomolecular complexes and the measurement of intermolecular forces between biomolecules. Recent advances in cryogenic AFM, AFM on two-dimensional crystals, carbon nanotube probes, solution imaging, high-speed AFM, and manipulation capabilities enhance these applications by improving AFM resolution and the dynamic and operative capabilities of the AFM. These developments make AFM a powerful tool for investigating the biomolecular assemblies and interactions that govern gene regulation.

  13. Quantitative index imaging of coculture cells by scanning focused refractive index microscopy

    Science.gov (United States)

    Sun, Teng-Qian; Ye, Qing; Hu, Fen; Liu, Shi-ke; Wang, Xiao-Wan; Wang, Jin; Deng, Zhi-Chao; Mei, Jian-Chun; Zhou, Wen-Yuan; Zhang, Chun-Ping; Wang, Xin-Yu; Pan, Lei-Ting; Tian, Jian-Guo

    2016-08-01

    We report the quantitative refractive index (RI) imaging of cocultured cells in their living environment by scanning focused refractive index microscopy (SFRIM). Mouse microglial cells and synovial cells are cocultured on the top surface of a trapezoid prism. The RI imaging of living cells is obtained in a reflection-type method. The RI information is deduced with the simple derivative total internal reflection method, where a complex retrieval algorithm or reconstruction process is unnecessary. The outline of each cell is determined according to the RI value compared with that of the immersion liquid. The cocultured cells can be discriminated in the RI image. The measurement is nondestructive and label-free. The experimental results prove that SFRIM is a promising tool in the field of biological optics.

  14. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry

    Science.gov (United States)

    Shaked, Natan T.; Satterwhite, Lisa L.; Telen, Marilyn J.; Truskey, George A.; Wax, Adam

    2011-03-01

    We have applied wide-field digital interferometry (WFDI) to examine the morphology and dynamics of live red blood cells (RBCs) from individuals who suffer from sickle cell anemia (SCA), a genetic disorder that affects the structure and mechanical properties of RBCs. WFDI is a noncontact, label-free optical microscopy approach that can yield quantitative thickness profiles of RBCs and measurements of their membrane fluctuations at the nanometer scale reflecting their stiffness. We find that RBCs from individuals with SCA are significantly stiffer than those from a healthy control. Moreover, we show that the technique is sensitive enough to distinguish classes of RBCs in SCA, including sickle RBCs with apparently normal morphology, compared to the stiffer crescent-shaped sickle RBCs. We expect that this approach will be useful for diagnosis of SCA and for determining efficacy of therapeutic agents.

  15. Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Gehr Peter

    2007-11-01

    Full Text Available Abstract Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions. This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene and technologically relevant nanoparticles (e.g. titanium dioxide. Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological

  16. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    DEFF Research Database (Denmark)

    Phatak, C.; Petford-Long, A. K.; Beleggia, Marco

    2014-01-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present...... a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift...

  17. Virtual unfolding of light sheet fluorescence microscopy dataset for quantitative analysis of the mouse intestine

    Science.gov (United States)

    Candeo, Alessia; Sana, Ilenia; Ferrari, Eleonora; Maiuri, Luigi; D'Andrea, Cosimo; Valentini, Gianluca; Bassi, Andrea

    2016-05-01

    Light sheet fluorescence microscopy has proven to be a powerful tool to image fixed and chemically cleared samples, providing in depth and high resolution reconstructions of intact mouse organs. We applied light sheet microscopy to image the mouse intestine. We found that large portions of the sample can be readily visualized, assessing the organ status and highlighting the presence of regions with impaired morphology. Yet, three-dimensional (3-D) sectioning of the intestine leads to a large dataset that produces unnecessary storage and processing overload. We developed a routine that extracts the relevant information from a large image stack and provides quantitative analysis of the intestine morphology. This result was achieved by a three step procedure consisting of: (1) virtually unfold the 3-D reconstruction of the intestine; (2) observe it layer-by-layer; and (3) identify distinct villi and statistically analyze multiple samples belonging to different intestinal regions. Even if the procedure has been developed for the murine intestine, most of the underlying concepts have a general applicability.

  18. Quantitative local photosynthetic flux measurements at isolated chloroplasts and thylakoid membranes using scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    McKelvey, Kim; Martin, Sophie; Robinson, Colin; Unwin, Patrick R

    2013-07-01

    Scanning electrochemical microscopy (SECM) offers a fast and quantitative method to measure local fluxes within photosynthesis. In particular, we have measured the flux of oxygen and ferrocyanide (Fe(CN)6(4-)), from the artificial electron acceptor ferricyanide (Fe(CN)6(3-)), using a stationary ultramicroelectrode at chloroplasts and thylakoid membranes (sourced from chloroplasts). Oxygen generation at films of chloroplasts and thylakoid membranes was detected directly during photosynthesis, but in the case of thylakoid membranes, this switched to sustained oxygen consumption at longer illumination times. An initial oxygen concentration spike was detected over both chloroplast and thylakoid membrane films, and the kinetics of the oxygen generation were extracted by fitting the experimental data to a finite element method (FEM) simulation. In contrast to previous work, the oxygen generation spike was attributed to the limited size of the plastoquinone pool, a key component in the linear electron transport pathway and a contributing factor in photoinhibition. Finally, the mobile nature of the SECM probe, and its high spatial resolution, also allowed us to detect ferrocyanide produced from a single thylakoid membrane. These results further demonstrate the power of SECM for localized flux measurements in biological processes, in this case photosynthesis, and that the high time resolution, combined with FEM simulations, allows the elucidation of quantitative kinetic information.

  19. Quantitative Conductive Atomic Force Microscopy on Single-Walled Carbon Nanotube-Based Polymer Composites.

    Science.gov (United States)

    Bârsan, Oana A; Hoffmann, Günter G; van der Ven, Leendert G J; de With, Gijsbertus

    2016-08-03

    Conductive atomic force microscopy (C-AFM) is a valuable technique for correlating the electrical properties of a material with its topographic features and for identifying and characterizing conductive pathways in polymer composites. However, aspects such as compatibility between tip material and sample, contact force and area between the tip and the sample, tip degradation and environmental conditions render quantifying the results quite challenging. This study aims at finding the suitable conditions for C-AFM to generate reliable, reproducible, and quantitative current maps that can be used to calculate the resistance in each point of a single-walled carbon nanotube (SWCNT) network, nonimpregnated as well as impregnated with a polymer. The results obtained emphasize the technique's limitation at the macroscale as the resistance of these highly conductive samples cannot be distinguished from the tip-sample contact resistance. Quantitative C-AFM measurements on thin composite sections of 150-350 nm enable the separation of sample and tip-sample contact resistance, but also indicate that these sections are not representative for the overall SWCNT network. Nevertheless, the technique was successfully used to characterize the local electrical properties of the composite material, such as sample homogeneity and resistance range of individual SWCNT clusters, at the nano- and microscale.

  20. Quantitative comparison of preparation methodologies for X-ray fluorescence microscopy of brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    James, Simon A.; Sexton, Brett A.; Hoobin, Pamela; Mayo, Sheridan C. [CSIRO, Materials Science and Engineering and the Preventative Health Flagship, Clayton, VIC (Australia); Myers, Damian E. [St. Vincent s Hospital, Department of Surgery/Orthopaedics, Fitzroy, VIC (Australia); University of Melbourne, Department of Surgery, Parkville, VIC (Australia); Jonge, Martin D. de; Paterson, David; Howard, Daryl L. [Australian Synchrotron, Clayton, VIC (Australia); Vogt, Stefan [Argonne National Laboratory, X-ray Science Division, Argonne, IL (United States); Ryan, Chris G. [CSIRO, Earth Science and Resources Engineering, Clayton, VIC (Australia); University of Melbourne, School of Physics, Parkville, VIC (Australia); University of Tasmania, CODES Centre of Excellence, Hobart, TAS (Australia); Altissimo, Matteo [Melbourne Centre for Nanofabrication, Clayton, VIC (Australia); Moorhead, Gareth F. [CSIRO, Materials Science and Engineering and the Preventative Health Flagship, Clayton, VIC (Australia); University of Melbourne, School of Physics, Parkville, VIC (Australia); Wilkins, Stephen W. [CSIRO, Materials Science and Engineering and the Preventative Health Flagship, Clayton, VIC (Australia); Monash University, School of Physics, Clayton, VIC (Australia)

    2011-08-15

    X-ray fluorescence microscopy (XFM) facilitates high-sensitivity quantitative imaging of trace metals at high spatial resolution over large sample areas and can be applied to a diverse range of biological samples. Accurate determination of elemental content from recorded spectra requires proper calibration of the XFM instrument under the relevant operating conditions. Here, we describe the manufacture, characterization, and utilization of multi-element thin-film reference foils for use in calibration of XFM measurements of biological and other specimens. We have used these internal standards to assess the two-dimensional distribution of trace metals in a thin tissue section of a rat hippocampus. The data used in this study was acquired at the XFM beamline of the Australian Synchrotron using a new 384-element array detector (Maia) and at beamline 2-ID-E at the Advanced Photon Source. Post-processing of samples by different fixation techniques was investigated, with the conclusion that differences in solvent type and sample handling can significantly alter elemental content. The present study highlights the quantitative capability, high statistical power, and versatility of the XFM technique for mapping trace metals in biological samples, e.g., brain tissue samples in order to help understand neurological processes, especially when implemented in conjunction with a high-performance detector such as Maia. (orig.)

  1. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons

    Energy Technology Data Exchange (ETDEWEB)

    Close, R.; Chen, Z. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2015-12-15

    Differential phase contrast images in scanning transmission electron microscopy can be directly and quantitatively related to the gradient of the projected specimen potential provided that (a) the specimen can be treated as a phase object and (b) full 2D diffraction patterns as a function of probe position can be obtained. Both are challenging to achieve in atomic resolution imaging. The former is fundamentally limited by probe spreading and dynamical electron scattering, and we explore its validity domain in the context of atomic resolution differential phase contrast imaging. The latter, for which proof-of-principle experimental data sets exist, is not yet routine. We explore the extent to which more established segmented detector geometries can instead be used to reconstruct a quantitatively good approximation to the projected specimen potential. - Highlights: • Atomic-resolution differential phase contrast (DPC) imaging explored via simulation. • Phase-object approximation limits quantification to specimens a few nanometers thick. • Segmented detectors give good estimates of the diffraction pattern's first moment.

  2. Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP.

    Directory of Open Access Journals (Sweden)

    Femke L Groeneweg

    Full Text Available Recent advances in live cell imaging have provided a wealth of data on the dynamics of transcription factors. However, a consistent quantitative description of these dynamics, explaining how transcription factors find their target sequences in the vast amount of DNA inside the nucleus, is still lacking. In the present study, we have combined two quantitative imaging methods, single-molecule microscopy and fluorescence recovery after photobleaching, to determine the mobility pattern of the glucocorticoid receptor (GR and the mineralocorticoid receptor (MR, two ligand-activated transcription factors. For dexamethasone-activated GR, both techniques showed that approximately half of the population is freely diffusing, while the remaining population is bound to DNA. Of this DNA-bound population about half the GRs appeared to be bound for short periods of time (∼ 0.7 s and the other half for longer time periods (∼ 2.3 s. A similar pattern of mobility was seen for the MR activated by aldosterone. Inactive receptors (mutant or antagonist-bound receptors show a decreased DNA binding frequency and duration, but also a higher mobility for the diffusing population. Likely, very brief (≤ 1 ms interactions with DNA induced by the agonists underlie this difference in diffusion behavior. Surprisingly, different agonists also induce different mobilities of both receptors, presumably due to differences in ligand-induced conformational changes and receptor complex formation. In summary, our data provide a consistent quantitative model of the dynamics of GR and MR, indicating three types of interactions with DNA, which fit into a model in which frequent low-affinity DNA binding facilitates the search for high-affinity target sequences.

  3. Compact, common path quantitative phase microscopic techniques for imaging cell dynamics

    Indian Academy of Sciences (India)

    A Anand; P Vora; S Mahajan; V Trivedi; V Chhaniwal; A Singh; R Leitgeb; B Javidi

    2014-01-01

    Microscopy using visible electromagnetic radiation can be used to investigate living cells in various environments. But bright field microscopy only provides two-dimensional (2D) intensity distribution at a single object plane. One of the ways to retrieve object height/thickness information is to employ quantitative phase microscopic (QPM) techniques. Interferometric QPM techniques are widely used for this. Digital holographic microscopy (DHM) is one of the stateof-the-art methods for quantitative three-dimensional (3D) imaging. Usually it is implemented in two-beam geometry, which is prone to mechanical vibrations. But to study dynamics of objects like red blood cells, one needs temporal stability much better than the fluctuations of the object, which the two-beam geometry fails to deliver. One way to overcome this hurdle is to use selfreferencing techniques, in which a portion of the object beam will act as the reference beam. Here the development of self-referencing QPM techniques is described along with the results.

  4. Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications.

    Science.gov (United States)

    Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek

    2017-05-01

    We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications.

  5. Quantitative Infrared Spectra of Vapor Phase Chemical Agents

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Steven W.; Johnson, Timothy J.; Chu, P. M.; Kleimeyer, J.; Rowland, Brad

    2003-08-01

    Quantitative, moderately high resolution (0.1 cm-1) infrared spectra have been acquired for a number of nitrogen broadened (1 atm N2) vapor phase chemicals including: Sarin (GB), Soman (GD), Tabun (GA), Cyclosarin (GF), VX, Nitrogen Mustard (HN3), Sulfur Mustard (HD), and Lewisite (L). The spectra are acquired using a heated, flow-through White Cell1 of 5.6 meter optical path length. Each reported spectrum represents a statistical fit to Beer’s law, which allows for a rigorous calculation of uncertainty in the absorption coefficients. As part of an ongoing collaboration with the National Institute of Standards and Technology (NIST), cross-laboratory validation is a critical aspect of this work. In order to identify possible errors in the Dugway flow-through system, quantitative spectra of isopropyl alcohol from both NIST and Pacific Northwest National Laboratory (PNNL) are compared to similar data taken at Dugway proving Grounds (DPG).

  6. Quantitative 7T phase imaging in premanifest Huntington disease.

    Science.gov (United States)

    Apple, A C; Possin, K L; Satris, G; Johnson, E; Lupo, J M; Jakary, A; Wong, K; Kelley, D A C; Kang, G A; Sha, S J; Kramer, J H; Geschwind, M D; Nelson, S J; Hess, C P

    2014-09-01

    In vivo MR imaging and postmortem neuropathologic studies have demonstrated elevated iron concentration and atrophy within the striatum of patients with Huntington disease, implicating neuronal loss and iron accumulation in the pathogenesis of this neurodegenerative disorder. We used 7T MR imaging to determine whether quantitative phase, a measurement that reflects both iron content and tissue microstructure, is altered in subjects with premanifest Huntington disease. Local field shift, calculated from 7T MR phase images, was quantified in 13 subjects with premanifest Huntington disease and 13 age- and sex-matched controls. All participants underwent 3T and 7T MR imaging, including volumetric T1 and 7T gradient recalled-echo sequences. Local field shift maps were created from 7T phase data and registered to caudate ROIs automatically parcellated from the 3T T1 images. Huntington disease-specific disease burden and neurocognitive and motor evaluations were also performed and compared with local field shift. Subjects with premanifest Huntington disease had smaller caudate volume and higher local field shift than controls. A significant correlation between these measurements was not detected, and prediction accuracy for disease state improved with inclusion of both variables. A positive correlation between local field shift and genetic disease burden was also found, and there was a trend toward significant correlations between local field shift and neurocognitive tests of working memory and executive function. Subjects with premanifest Huntington disease exhibit differences in 7T MR imaging phase within the caudate nuclei that correlate with genetic disease burden and trend with neurocognitive assessments. Ultra-high-field MR imaging of quantitative phase may be a useful approach for monitoring neurodegeneration in premanifest Huntington disease. © 2014 by American Journal of Neuroradiology.

  7. Quantitative mapping of aqueous microfluidic temperature with sub-degree resolution using fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Graham, Emmelyn M; Iwai, Kaoru; Uchiyama, Seiichi; de Silva, A Prasanna; Magennis, Steven W; Jones, Anita C

    2010-05-21

    The use of a water-soluble, thermo-responsive polymer as a highly sensitive fluorescence-lifetime probe of microfluidic temperature is demonstrated. The fluorescence lifetime of poly(N-isopropylacrylamide) labelled with a benzofurazan fluorophore is shown to have a steep dependence on temperature around the polymer phase transition and the photophysical origin of this response is established. The use of this unusual fluorescent probe in conjunction with fluorescence lifetime imaging microscopy (FLIM) enables the spatial variation of temperature in a microfluidic device to be mapped, on the micron scale, with a resolution of less than 0.1 degrees C. This represents an increase in temperature resolution of an order of magnitude over that achieved previously by FLIM of temperature-sensitive dyes.

  8. Visualization of phase evolution in model organic photovoltaic structures via energy-filtered transmission electron microscopy.

    Science.gov (United States)

    Herzing, Andrew A; Ro, Hyun Wook; Soles, Christopher L; DeLongchamp, Dean M

    2013-09-24

    The morphology of the active layer in an organic photovoltaic bulk-heterojunction device is controlled by the extent and nature of phase separation during processing. We have studied the effects of fullerene crystallinity during heat treatment in model structures consisting of a layer of poly(3-hexylthiophene) (P3HT) sandwiched between two layers of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Utilizing a combination of focused ion-beam milling and energy-filtered transmission electron microscopy, we monitored the local changes in phase distribution as a function of annealing time at 140 °C. In both cases, dissolution of PCBM within the surrounding P3HT was directly visualized and quantitatively described. In the absence of crystalline PCBM, the overall phase distribution remained stable after intermediate annealing times up to 60 s, whereas microscale PCBM aggregates were observed after annealing for 300 s. Aggregate growth proceeded vertically from the substrate interface via uptake of PCBM from the surrounding region, resulting in a large PCBM-depleted region in their vicinity. When precrystallized PCBM was present, amorphous PCBM was observed to segregate from the intermediate P3HT layer and ripen the crystalline PCBM underneath, owing to the far lower solubility of crystalline PCBM within P3HT. This process occurred rapidly, with segregation already evident after annealing for 10 s and with uptake of nearly all of the amorphous PCBM by the crystalline layer after 60 s. No microscale aggregates were observed in the precrystallized system, even after annealing for 300 s.

  9. Comparison of photothermal and piezoacoustic excitation methods for frequency and phase modulation atomic force microscopy in liquid environments

    Directory of Open Access Journals (Sweden)

    A. Labuda

    2011-06-01

    Full Text Available In attempting to perform frequency modulation atomic force microscopy (FM-AFM in liquids, a non-flat phase transfer function in the self-excitation system prevents proper tracking of the cantilever natural frequency. This results in frequency-and-phase modulation atomic force microscopy (FPM-AFM which lies in between phase modulation atomic force microscopy (PM-AFM and FM-AFM. We derive the theory necessary to recover the conservative force and damping in such a situation, where standard FM-AFM theory no longer applies. Although our recovery procedure applies to all cantilever excitation methods in principle, its practical implementation may be difficult, or even impossible, if the cantilever is driven piezoacoustically. Specifically, we contrast the piezoacoustic excitation method to the photothermal method in the context of force spectroscopy of hydration structures at the mica-water interface. The results clearly demonstrate that photothermal excitation is superior to piezoacoustic excitation, as it allows for accurate quantitative interpretation of the acquired data.

  10. Quantitative Phase Analysis by the Rietveld Method for Forensic Science.

    Science.gov (United States)

    Deng, Fei; Lin, Xiaodong; He, Yonghong; Li, Shu; Zi, Run; Lai, Shijun

    2015-07-01

    Quantitative phase analysis (QPA) is helpful to determine the type attribute of the object because it could present the content of the constituents. QPA by Rietveld method requires neither measurement of calibration data nor the use of an internal standard; however, the approximate crystal structure of each phase in a mixture is necessary. In this study, 8 synthetic mixtures composed of potassium nitrate and sulfur were analyzed by Rietveld QPA method. The Rietveld refinement was accomplished with a material analysis using diffraction program and evaluated by three agreement indices. Results showed that Rietveld QPA yielded precise results, with errors generally less than 2.0% absolute. In addition, a criminal case which was broken successfully with the help of Rietveld QPA method was also introduced. This method will allow forensic investigators to acquire detailed information of the material evidence, which could point out the direction for case detection and court proceedings.

  11. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy.

    Science.gov (United States)

    Tran Khac, Bien Cuong; Chung, Koo-Hyun

    2016-02-01

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8-29% smaller than those obtained from the other two methods. This discrepancy decreased to 3-19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method.

  12. Real-time in vitro Fourier ptychographic microscopy for high resolution wide field of view phase imaging

    CERN Document Server

    Tian, Lei; Yeh, Li-Hao; Chen, Michael; Waller, Laura

    2015-01-01

    For centuries, microscopes have had to trade field of view (FOV) for resolution. Recently, a new computational imaging technique, termed Fourier ptychographic microscopy (FPM), circumvents this limit in order to capture gigapixel-scale images having both wide FOV and high resolution. FPM has enormous potential for revolutionizing biomedical microscopy; however, it has until now been limited to fixed samples, since acquisition time is on the order of minutes. Live biological samples are continuously evolving on multiple spatial and temporal scales, which can cause motion blur. Here, we present a Fast FPM method to achieve sub-second capture times for FPM results with 0.8 NA resolution across a 4x objective's FOV. We demonstrate the first FPM quantitative phase results for both growing and confluent in vitro cell cultures. Experiments capture real-time videos of HeLa and human mammary epithelial (MCF10A) cell division and migration and subcellular dynamical phenomena in adult rat neural stem cells.

  13. Full quantitative phase analysis of hydrated lime using the Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Romagnoli, Marcello; Miselli, Paola; Cannio, Maria [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Gualtieri, Alessandro F. [Dipartimento di Scienze della Terra, Universita Degli Studi di Modena e Reggio Emilia, I-41100 Modena (Italy)

    2012-09-15

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2-15 wt.%.

  14. Quantitative analysis of scanning tunneling microscopy images of mixed-ligand-functionalized nanoparticles.

    Science.gov (United States)

    Biscarini, Fabio; Ong, Quy Khac; Albonetti, Cristiano; Liscio, Fabiola; Longobardi, Maria; Mali, Kunal S; Ciesielski, Artur; Reguera, Javier; Renner, Christoph; De Feyter, Steven; Samorì, Paolo; Stellacci, Francesco

    2013-11-12

    Ligand-protected gold nanoparticles exhibit large local curvatures, features rapidly varying over small scales, and chemical heterogeneity. Their imaging by scanning tunneling microscopy (STM) can, in principle, provide direct information on the architecture of their ligand shell, yet STM images require laborious analysis and are challenging to interpret. Here, we report a straightforward, robust, and rigorous method for the quantitative analysis of the multiscale features contained in STM images of samples consisting of functionalized Au nanoparticles deposited onto Au/mica. The method relies on the analysis of the topographical power spectral density (PSD) and allows us to extract the characteristic length scales of the features exhibited by nanoparticles in STM images. For the mixed-ligand-protected Au nanoparticles analyzed here, the characteristic length scale is 1.2 ± 0.1 nm, whereas for the homoligand Au NPs this scale is 0.75 ± 0.05 nm. These length scales represent spatial correlations independent of scanning parameters, and hence the features in the PSD can be ascribed to a fingerprint of the STM contrast of ligand-protected nanoparticles. PSD spectra from images recorded at different laboratories using different microscopes and operators can be overlapped across most of the frequency range, proving that the features in the STM images of nanoparticles can be compared and reproduced.

  15. Polarization second harmonic generation microscopy provides quantitative enhanced molecular specificity for tissue diagnostics.

    Science.gov (United States)

    Kumar, Rajesh; Grønhaug, Kirsten M; Romijn, Elisabeth I; Finnøy, Andreas; Davies, Catharina L; Drogset, Jon O; Lilledahl, Magnus B

    2015-09-01

    Due to specific structural organization at the molecular level, several biomolecules (e.g., collagen, myosin etc.) which are strong generators of second harmonic generation (SHG) signals, exhibit unique responses depending on the polarization of the excitation light. By using the polarization second harmonic generation (p-SHG) technique, the values of the second order susceptibility components can be used to differentiate the types of molecule, which cannot be done by the use of a standard SHG intensity image. In this report we discuss how to implement p-SHG on a commercial multiphoton microscope and overcome potential artifacts in susceptibility (χ) image. Furthermore we explore the potential of p-SHG microscopy by applying the technique to different types of tissue in order to determine corresponding reference values of the ratio of second-order χ tensor elements. These values may be used as a bio-marker to detect any structural alterations in pathological tissue for diagnostic purposes. The SHG intensity image (red) in (a) shows the distribution of collagen fibers in ovary tissue but cannot determine the type of collagen fiber. However, the histogram distribution (b) for the values of the χ tensor element ratio can be used to quantitatively identify the types of collagen fibers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Microscopy, culture, and quantitative real-time PCR examination confirm internalization of mycobacteria in plants.

    Science.gov (United States)

    Kaevska, M; Lvoncik, S; Slana, I; Kulich, P; Kralik, P

    2014-07-01

    The environment is a reservoir of nontuberculous mycobacteria and is considered a source of infection for animals and humans. Mycobacteria can persist in different types of environments for a relatively long time. We have studied their possible internalization into plant tissue through intact, as well as damaged, root systems of different types of plants grown in vitro and under field conditions. The substrate into which plants were seeded was previously contaminated with different strains of Mycobacterium avium (10(8) to 10(10) cells/g of soil) and feces from animals with paratuberculosis. We detected M. avium subsp. avium, hominissuis, and paratuberculosis in the stems and leaves of the plants by both culture and real-time quantitative PCR. The presence of mycobacteria in the plant tissues was confirmed by microscopy. The concentration of mycobacteria found inside plant tissue was several orders of magnitude lower (up to 10(4) cells/g of tissue) than the initial concentration of mycobacteria present in the culture medium or substrate. These findings led us to the hypothesis that plants may play a role in the spread and transmission of mycobacteria to other organisms in the environment.

  17. Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects

    Directory of Open Access Journals (Sweden)

    Li Shang

    2014-12-01

    Full Text Available Engineered nanomaterials are known to enter human cells, often via active endocytosis. Mechanistic details of the interactions between nanoparticles (NPs with cells are still not well enough understood. NP size is a key parameter that controls the endocytic mechanism and affects the cellular uptake yield. Therefore, we have systematically analyzed the cellular uptake of fluorescent NPs in the size range of 3.3–100 nm (diameter by live cells. By using spinning disk confocal microscopy in combination with quantitative image analysis, we studied the time courses of NP association with the cell membrane and subsequent internalization. NPs with diameters of less than 10 nm were observed to accumulate at the plasma membrane before being internalized by the cells. In contrast, larger NPs (100 nm were directly internalized without prior accumulation at the plasma membrane, regardless of their surface charges. We attribute this distinct size dependence to the requirement of a sufficiently strong local interaction of the NPs with the endocytic machinery in order to trigger the subsequent internalization.

  18. Quantitative transmission electron microscopy analysis of the nanocrystallization kinetics of soft magnetic alloys

    Science.gov (United States)

    Ramanujan, R. V.; Zhang, Y. R.

    2006-12-01

    Transmission electron microscopy was used for the first time to obtain quantitative values of the diffusional crystallization kinetics of initially amorphous Fe74.5Si13.5B9Nb3 , Fe76.5Si13.5B9Cu1 and Fe73.5Si13.5B9Nb3Cu1 and Fe77.5Si13.5Nb3Cu1 (Finemet) alloys. The role of Cu and Nb alloying additions was elucidated. Contrary to some models of the crystallization process, it is demonstrated that both Nb and Cu alloying additions can influence the nucleation and growth processes. Combined additions of both Cu and Nb induce drastic reduction in crystal size to about 10nm and 1000 times higher crystal number density. The high nucleation rate observed in the Fe-Si-B-Nb-Cu alloy was attributed to the formation of both Cu and Nb rich regions which provide a high number of heterogeneous nucleation sites, consistent with the Hampel and Pradell models, the low growth rate was consistent with the Hunziker model.

  19. Quantitative nanohistological investigation of scleroderma: an atomic force microscopy-based approach to disease characterization

    Science.gov (United States)

    Strange, Adam P; Aguayo, Sebastian; Ahmed, Tarek; Mordan, Nicola; Stratton, Richard; Porter, Stephen R; Parekh, Susan; Bozec, Laurent

    2017-01-01

    Scleroderma (or systemic sclerosis, SSc) is a disease caused by excess crosslinking of collagen. The skin stiffens and becomes painful, while internally, organ function can be compromised by the less elastic collagen. Diagnosis of SSc is often only possible in advanced cases by which treatment time is limited. A more detailed analysis of SSc may provide better future treatment options and information of disease progression. Recently, the histological stain picrosirius red showing collagen register has been combined with atomic force microscopy (AFM) to study SSc. Skin from healthy individuals and SSc patients was biopsied, stained and studied using AFM. By investigating the crosslinking of collagen at a smaller hierarchical stage, the effects of SSc were more pronounced. Changes in morphology and Young’s elastic modulus were observed and quantified; giving rise to a novel technique, we have termed “quantitative nanohistology”. An increase in nanoscale stiffness in the collagen for SSc compared with healthy individuals was seen by a significant increase in the Young’s modulus profile for the collagen. These markers of stiffer collagen in SSc are similar to the symptoms experienced by patients, giving additional hope that in the future, nanohistology using AFM can be readily applied as a clinical tool, providing detailed information of the state of collagen. PMID:28138238

  20. Unstained viable cell recognition in phase-contrast microscopy

    Science.gov (United States)

    Skoczylas, M.; Rakowski, W.; Cherubini, R.; Gerardi, S.

    2011-09-01

    Individual cell recognition is a relevant task to be accomplished when single-ion microbeam irradiations are performed. At INFN-LNL facility cell visualization system is based on a phase-contrast optical microscope, without the use of any cell dye. Unstained cells are seeded in the special designed Petri dish, between two mylar foils, and at present the cell recognition is achieved manually by an expert operator. Nevertheless, this procedure is time consuming and sometimes it could be not practical if the amount of living cells to be irradiated is large. To reduce the time needed to recognize unstained cells on the Petri dish, it has been designed and implemented an automated, parallel algorithm. Overlapping ROIs sliding in steps over the captured grayscale image are firstly pre-classified and potential cell markers for the segmentation are obtained. Segmented objects are additionally classified to categorize cell bodies from other structures considered as sample dirt or background. As a result, cell coordinates are passed to the dedicated CELLView program that controls all the LNL single-ion microbeam irradiation protocol, including the positioning of individual cells in front of the ion beam. Unstained cell recognition system was successfully tested in experimental conditions with two different mylar surfaces. The recognition time and accuracy was acceptable, however, improvements in speed would be useful.

  1. Quantitative ultrasonic computed tomography using phase-insensitive pyroelectric detectors.

    Science.gov (United States)

    Zeqiri, Bajram; Baker, Christian; Alosa, Giuseppe; Wells, Peter N T; Liang, Hai-Dong

    2013-08-07

    The principle of using ultrasonic computed tomography (UCT) clinically for mapping tissue acoustic properties was suggested almost 40 years ago. Despite strong research activity, UCT been unable to rival its x-ray counterpart in terms of the ability to distinguish tissue pathologies. Conventional piezoelectric detectors deployed in UCT are termed phase-sensitive (PS) and it is well established that this property can lead to artefacts related to refraction and phase-cancellation that mask true tissue structure, particularly for reconstructions involving attenuation. Equally, it has long been known that phase-insensitive (PI) detectors are more immune to this effect, although sufficiently sensitive devices for clinical use have not been available. This paper explores the application of novel PI detectors to UCT. Their operating principle is based on exploiting the pyroelectric properties of the piezoelectric polymer polyvinylidene difluoride. An important detector performance characteristic which makes it particularly suited to UCT, is the lack of directionality of the PI response, relative to the PS detector mode of operation. The performance of the detectors is compared to conventional PS detection methods, for quantitatively assessing the attenuation distribution within various test objects, including a two-phase polyurethane phantom. UCT images are presented for a range of single detector apertures; tomographic reconstruction images being compared with the known structure of phantoms containing inserts as small as 3 mm, which were readily imaged. For larger diameter inserts (>10 mm), the transmitter-detector combination was able to establish the attenuation coefficient of the insert to within ±10% of values determined separately from plane-wave measurements on representative material plaques. The research has demonstrated that the new PI detectors are significantly less susceptible to refraction and phase-cancellation artefacts, generating realistic images in

  2. Dynamic phase microscopy: measurements of translational displacements at sub-nanometer scale

    OpenAIRE

    Tichinsky, V. P.; Kretushev, A. V.; Luskinovich, P. N.

    2006-01-01

    Dynamic phase microscopy has been applied for measurements of nanometer-scale displacements of a piezoelectric scanner. This scanner, which was designed for calibration purposes for scanning probe microscopy and TEM, exhibited a linear and hysteresis-free translation in the 0.05-20 nm range. The voltage-activated motion is described by a coefficient of 0.03 \\pm 0.005 nm/V.

  3. Analyzing the texture changes in the quantitative phase maps of adipocytes

    Science.gov (United States)

    Roitshtain, Darina; Sharabani-Yosef, Orna; Gefen, Amit; Shaked, Natan T.

    2016-03-01

    We present a new analysis tool for studying texture changes in the quantitative phase maps of live cells acquired by wide-field interferometry. The sensitivity of wide-field interferometry systems to small changes in refractive index enables visualizing cells and inner cell organelles without the using fluorescent dyes or other cell-invasive approaches, which may affect the measurement and require external labeling. Our label-free texture-analysis tool is based directly on the optical path delay profile of the sample and does not necessitate decoupling refractive index and thickness in the cell quantitative phase profile; thus, relevant parameters can be calculated using a single-frame acquisition. Our experimental system includes low-coherence wide-field interferometer, combined with simultaneous florescence microscopy system for validation. We used this system and analysis tool for studying lipid droplets formation in adipocytes. The latter demonstration is relevant for various cellular functions such as lipid metabolism, protein storage and degradation to viral replication. These processes are functionally linked to several physiological and pathological conditions, including obesity and metabolic diseases. Quantification of these biological phenomena based on the texture changes in the cell phase map has a potential as a new cellular diagnosis tool.

  4. Coherence-controlled holographic microscopy principle embodiment into Q-PHASE microscope: story of a successful technology transfer

    Science.gov (United States)

    Lostak, M.; Chmelik, R.

    2016-03-01

    Curiously, the coherence-controlled holographic microscopy (CCHM) was brought into the world owing to the endeavor of Chmelik's team at Brno University of Technology (BUT) to avoid scanning in confocal microscopy. As coherence gating seemed to be the way, the Leith & Upatnieks proposal of incoherent holography had been considered attractive. Their method made interference system free from strict dependence on both spatial and temporal coherence. Off axis holographic system proposed on such basis has been proved capable of coherence based depth discrimination in single wide-field shot in reflected-light arrangement. Consequently, extremely low-coherence holographic imaging had been found highly contributive also to the image quality depriving it from coherence artefacts and improving its transversal resolution. This is why CCHM promised high precision of quantitative phase imaging (QPI) in transmitted light set up that was realized for cell biology. However the cost of necessarily complicated optical design and need of very precise mechanics forced the team of prof Chmelik at BUT to search for a company capable of mastering the instrument. It was TESCAN ORSAY the highly successful scanning electron microscopes producer that finally took charge of the commercial design. Long-term collaboration of the company with BUT made possible both the CCHM technology successful transfer up to Q-PHASE microscope production as well as the company Light microscopy division reinforcement. This contribution merges views of CCHM technology author and the TESCAN development team.

  5. Wideband phase-locked loop circuit with real-time phase correction for frequency modulation atomic force microscopy

    OpenAIRE

    Fukuma, Takeshi; Yoshioka, Shunsuke; Asakawa, Hitoshi

    2011-01-01

    We have developed a wideband phase-locked loop (PLL) circuit with real-time phase correction for high-speed and accurate force measurements by frequency modulation atomic force microscopy (FM-AFM) in liquid. A high-speed operation of FM-AFM requires the use of a high frequency cantilever which, however, increases frequency-dependent phase delay caused by the signal delay within the cantilever excitation loop. Such phase delay leads to an error in the force measurements by FM-AFM especially wi...

  6. Quantitative differentiation of normal and scarred tissues using second-harmonic generation microscopy.

    Science.gov (United States)

    Yildirim, Murat; Quinn, Kyle P; Kobler, James B; Zeitels, Steven M; Georgakoudi, Irene; Ben-Yakar, Adela

    2016-11-01

    The aim of this study was to differentiate normal and scarred hamster cheek pouch samples by applying a quantitative image analysis technique for determining collagen fiber direction and density in second-harmonic generation microscopy images. This paper presents a collagen tissue analysis of scarred cheek pouches of four adult male Golden Syrian hamsters as an animal model for vocal fold scarring. One cheek pouch was scarred using an electrocautery unit and the other cheek was used as a control for each hamster. A home-built upright microscope and a compact ultrafast fiber laser were used to acquire depth resolved epi-collected second-harmonic generation images of collagen fibers. To quantify the average fiber direction and fiber density in each image, we applied two-dimensional Fourier analysis and intensity thresholding at five different locations for each control and scarred tissue sample, respectively. The resultant depth-resolved average fiber direction variance for scarred hamster cheek pouches (0.61 ± 0.03) was significantly lower (p tissue (0.73 ± 0.04), indicating increased fiber alignment within the scar. Depth-resolved average voxel density measurements indicated scarred tissues contained greater (p image analysis of both fiber alignment and density from depth-resolved second-harmonic generation images in epi-detection mode enabled the quantification of the increased collagen fiber deposition and alignment typically observed in fibrosis. The epi-detection geometry is the only viable method for in vivo imaging as well as imaging thick turbid tissues. These quantitative endpoints, clearly differentiating between control and scarred hamster cheek pouches, provide an objective means to characterize the extent of vocal fold scarring in vivo in preclinical and clinical research. In particular, this non-invasive method offers advantages for monitoring scar treatments in live animals and following the effects of scarring-related treatments such as

  7. Direct imaging of phase objects enables conventional deconvolution in bright field light microscopy.

    Directory of Open Access Journals (Sweden)

    Carmen Noemí Hernández Candia

    Full Text Available In transmitted optical microscopy, absorption structure and phase structure of the specimen determine the three-dimensional intensity distribution of the image. The elementary impulse responses of the bright field microscope therefore consist of separate absorptive and phase components, precluding general application of linear, conventional deconvolution processing methods to improve image contrast and resolution. However, conventional deconvolution can be applied in the case of pure phase (or pure absorptive objects if the corresponding phase (or absorptive impulse responses of the microscope are known. In this work, we present direct measurements of the phase point- and line-spread functions of a high-aperture microscope operating in transmitted bright field. Polystyrene nanoparticles and microtubules (biological polymer filaments serve as the pure phase point and line objects, respectively, that are imaged with high contrast and low noise using standard microscopy plus digital image processing. Our experimental results agree with a proposed model for the response functions, and confirm previous theoretical predictions. Finally, we use the measured phase point-spread function to apply conventional deconvolution on the bright field images of living, unstained bacteria, resulting in improved definition of cell boundaries and sub-cellular features. These developments demonstrate practical application of standard restoration methods to improve imaging of phase objects such as cells in transmitted light microscopy.

  8. Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available BACKGROUND: The engineering of functional tissues is a complex multi-stage process, the success of which depends on the careful control of culture conditions and ultimately tissue maturation. To enable the efficient optimization of tissue development protocols, techniques suitable for monitoring the effects of added stimuli and induced tissue changes are needed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present the quantitative use of two-photon excited fluorescence (TPEF and second harmonic generation (SHG as a noninvasive means to monitor the differentiation of human mesenchymal stem cells (hMSCs using entirely endogenous sources of contrast. We demonstrate that the individual fluorescence contribution from the intrinsic cellular fluorophores NAD(PH, flavoproteins and lipofuscin can be extracted from TPEF images and monitored dynamically from the same cell population over time. Using the redox ratio, calculated from the contributions of NAD(PH and flavoproteins, we identify distinct patterns in the evolution of the metabolic activity of hMSCs maintained in either propagation, osteogenic or adipogenic differentiation media. The differentiation of these cells is mirrored by changes in cell morphology apparent in high resolution TPEF images and by the detection of collagen production via SHG imaging. Finally, we find dramatic increases in lipofuscin levels in hMSCs maintained at 20% oxygen vs. those in 5% oxygen, establishing the use of this chromophore as a potential biomarker for oxidative stress. CONCLUSIONS/SIGNIFICANCE: In this study we demonstrate that it is possible to monitor the metabolic activity, morphology, ECM production and oxidative stress of hMSCs in a non-invasive manner. This is accomplished using generally available multiphoton microscopy equipment and simple data analysis techniques, such that the method can widely adopted by laboratories with a diversity of comparable equipment. This method therefore represents a powerful tool

  9. Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy

    KAUST Repository

    Göröcs, Zoltán

    2016-09-13

    Compact and cost-effective systems for in vivo fluorescence and near-infrared imaging in combination with activatable reporters embedded inside the skin to sample interstitial fluid or blood can enable a variety of biomedical applications. However, the strong autofluorescence of human skin creates an obstacle for fluorescence-based sensing. Here we introduce a method for quantitative fluorescence sensing through highly autofluorescent, scattering, and absorbing media. For this, we created a compact and cost-effective fluorescence microscope weighing <40 g and used it to measure various concentrations of a fluorescent dye embedded inside a tissue phantom, which was designed to mimic the optical characteristics of human skin. We used an elliptical Gaussian beam excitation to digitally separate tissue autofluorescence from target fluorescence, although they severely overlap in both space and optical spectrum. Using ∼10-fold less excitation intensity than the safety limit for skin radiation exposure, we successfully quantified the density of the embedded fluorophores by imaging the skin phantom surface and achieved a detection limit of ∼5 × 105 and ∼2.5 × 107 fluorophores within ∼0.01 μL sample volume that is positioned 0.5 and 2 mm below the phantom surface, corresponding to a concentration of 105.9 pg/mL and 5.3 ng/mL, respectively. We also confirmed that this approach can track the spatial misalignments of the mobile microscope with respect to the embedded target fluorescent volume. This wearable microscopy platform might be useful for designing implantable biochemical sensors with the capability of spatial multiplexing to continuously monitor a panel of biomarkers and chronic conditions even at patients’ home.

  10. Quantitative nanohistological investigation of scleroderma: an atomic force microscopy-based approach to disease characterization

    Directory of Open Access Journals (Sweden)

    Strange AP

    2017-01-01

    Full Text Available Adam P Strange,1 Sebastian Aguayo,1 Tarek Ahmed,1 Nicola Mordan,1 Richard Stratton,2 Stephen R Porter,3 Susan Parekh,4 Laurent Bozec1 1Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 2Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, UCL Medical School, 3UCL Eastman Dental Institute, 4Department of Pediatrics, UCL Eastman Dental Institute, London, UK Abstract: Scleroderma (or systemic sclerosis, SSc is a disease caused by excess crosslinking of collagen. The skin stiffens and becomes painful, while internally, organ function can be compromised by the less elastic collagen. Diagnosis of SSc is often only possible in advanced cases by which treatment time is limited. A more detailed analysis of SSc may provide better future treatment options and information of disease progression. Recently, the histological stain picrosirius red showing collagen register has been combined with atomic force microscopy (AFM to study SSc. Skin from healthy individuals and SSc patients was biopsied, stained and studied using AFM. By investigating the crosslinking of collagen at a smaller hierarchical stage, the effects of SSc were more pronounced. Changes in morphology and Young’s elastic modulus were observed and quantified; giving rise to a novel technique, we have termed “quantitative nanohistology”. An increase in nanoscale stiffness in the collagen for SSc compared with healthy individuals was seen by a significant increase in the Young’s modulus profile for the collagen. These markers of stiffer collagen in SSc are similar to the symptoms experienced by patients, giving additional hope that in the future, nanohistology using AFM can be readily applied as a clinical tool, providing detailed information of the state of collagen. Keywords: rheumatology, adjunct diagnosis, picrosirius red, collagen, nanohistology

  11. Atomic Force Microscopy of Red-Light Photoreceptors Using PeakForce Quantitative Nanomechanical Property Mapping

    Science.gov (United States)

    Kroeger, Marie E.; Sorenson, Blaire A.; Thomas, J. Santoro; Stojković, Emina A.; Tsonchev, Stefan; Nicholson, Kenneth T.

    2014-01-01

    Atomic force microscopy (AFM) uses a pyramidal tip attached to a cantilever to probe the force response of a surface. The deflections of the tip can be measured to ~10 pN by a laser and sectored detector, which can be converted to image topography. Amplitude modulation or “tapping mode” AFM involves the probe making intermittent contact with the surface while oscillating at its resonant frequency to produce an image. Used in conjunction with a fluid cell, tapping-mode AFM enables the imaging of biological macromolecules such as proteins in physiologically relevant conditions. Tapping-mode AFM requires manual tuning of the probe and frequent adjustments of a multitude of scanning parameters which can be challenging for inexperienced users. To obtain high-quality images, these adjustments are the most time consuming. PeakForce Quantitative Nanomechanical Property Mapping (PF-QNM) produces an image by measuring a force response curve for every point of contact with the sample. With ScanAsyst software, PF-QNM can be automated. This software adjusts the set-point, drive frequency, scan rate, gains, and other important scanning parameters automatically for a given sample. Not only does this process protect both fragile probes and samples, it significantly reduces the time required to obtain high resolution images. PF-QNM is compatible for AFM imaging in fluid; therefore, it has extensive application for imaging biologically relevant materials. The method presented in this paper describes the application of PF-QNM to obtain images of a bacterial red-light photoreceptor, RpBphP3 (P3), from photosynthetic R. palustris in its light-adapted state. Using this method, individual protein dimers of P3 and aggregates of dimers have been observed on a mica surface in the presence of an imaging buffer. With appropriate adjustments to surface and/or solution concentration, this method may be generally applied to other biologically relevant macromolecules and soft materials. PMID

  12. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix.

    Science.gov (United States)

    Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian

    2015-06-01

    We demonstrate lensless quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED matrix. Based on the multi-wavelength phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of 3.72μm and an axial resolution of 5μm, across a wide field-of-view of 24mm2. We experimentally demonstrate the success of our method by imaging cheek cells, micro-beads, and fertilized eggs of Parascaris equorum. Such high-throughput and miniaturized imaging device can provide a cost-effective tool for telemedicine applications and point-of-care diagnostics in resource-limited environments.

  13. Quantitative EEG Signatures through Amplitude and Phase Modulation Patterns.

    Science.gov (United States)

    Myers, Mark H; Padmanabha, Akaash

    2017-01-01

    Cortical spatiotemporal signal patterns based on object recognition can be discerned from visual stimulation. These are in the form of amplitude modulation (AM) and phase modulation (PM) patterns, which contain perceptual information gathered from sensory input. A high-density Electroencephalograph (EEG) device consisting of 48 electrodes with a spacing of 5 mm was utilized to measure frontal lobe activity in order to capture event-related potentials from visual stimuli. Four randomized stimuli representing different levels of salient responsiveness were measured to determine if mild stimuli can be discerned from more extreme stimuli. AM/PM response patterns were detected between mild and more salient stimuli across participants. AM patterns presented distinct signatures for each stimulus. AM patterns had the highest number of incidents detected in the middle of the frontal lobe. Through this work, we can expand our encyclopedia of neural signatures to object recognition, and provide a broader understanding of quantitative neural responses to external stimuli. The results provide a quantitative approach utilizing spatiotemporal patterns to analyze where distinct AM patterns can be linked to object perception.

  14. Rapid simultaneous identification and quantitation of Staphylococcus aureus and Pseudomonas aeruginosa directly from bronchoalveolar lavage specimens using automated microscopy.

    Science.gov (United States)

    Metzger, Steven; Frobel, Rachel A; Dunne, W Michael

    2014-06-01

    Diagnosis of ventilator-assisted pneumonia (VAP) requires pathogen quantitation of respiratory samples. Current quantitative culture methods require overnight growth, and pathogen identification requires an additional step. Automated microscopy can perform rapid simultaneous identification and quantitation of live, surface-immobilized bacteria extracted directly from patient specimens using image data collected over 3 h. Automated microscopy was compared to 1 μL loop culture and standard identification methods for Staphylococcus aureus and Pseudomonas spp. in 53 remnant bronchoalveolar lavage specimens. Microscopy identified 9/9 S. aureus and 7/7 P. aeruginosa in all specimens with content above the VAP diagnostic threshold. Concordance for specimens containing targets above the diagnostic threshold was 13/16, with concordance for sub-diagnostic content of 86/90. Results demonstrated that automated microscopy had higher precision than 1 μL loop culture (range ~0.55 log versus ≥1 log), with a dynamic range of ~4 logs (~10(3) to 10(6) CFU/mL).

  15. Wideband phase-locked loop circuit with real-time phase correction for frequency modulation atomic force microscopy

    Science.gov (United States)

    Fukuma, Takeshi; Yoshioka, Shunsuke; Asakawa, Hitoshi

    2011-07-01

    We have developed a wideband phase-locked loop (PLL) circuit with real-time phase correction for high-speed and accurate force measurements by frequency modulation atomic force microscopy (FM-AFM) in liquid. A high-speed operation of FM-AFM requires the use of a high frequency cantilever which, however, increases frequency-dependent phase delay caused by the signal delay within the cantilever excitation loop. Such phase delay leads to an error in the force measurements by FM-AFM especially with a low Q factor. Here, we present a method to compensate this phase delay in real time. Combined with a wideband PLL using a subtraction-based phase comparator, the method allows to perform an accurate and high-speed force measurement by FM-AFM. We demonstrate the improved performance by applying the developed PLL to three-dimensional force measurements at a mica/water interface.

  16. Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter.

    Science.gov (United States)

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, Dvgln

    2012-11-01

    We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography.

  17. Fluorescence microscopy beyond the ballistic regime by ultrasound pulse guided digital phase conjugation

    CERN Document Server

    Cui, Meng; Fiolka, Reto

    2012-01-01

    Fluorescence microscopy has revolutionized biomedical research over the past three decades. Its high molecular specificity and unrivaled single molecule level sensitivity have enabled breakthroughs in a variety of research fields. For in vivo applications, its major limitation is the superficial imaging depth as random scattering in biological tissues causes exponential attenuation of the ballistic component of a light wave. Here we present fluorescence microscopy beyond the ballistic regime by combining single cycle pulsed ultrasound modulation and digital optical phase conjugation. We demonstrate near isotropic 3D localized sound-light interaction with an imaging depth as high as thirteen scattering path lengths. With the exceptionally high optical gain provided by the digital optical phase conjugation system, we can deliver sufficient optical power to a focus inside highly scattering media for not only fluorescence microscopy but also a variety of linear and nonlinear spectroscopy measurements. This techno...

  18. Scanning electron microscopy and X-ray spectroscopy applied to mycelial phase of sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1975-04-01

    Full Text Available Scanning electron microscopy applied to the mycelial phase of Sporothrix schenckii shows a matted mycelium with conidia of a regular pattern. X-Ray microanalysis applied in energy dispersive spectroscopy and also in wavelength dispersive spectroscopy reveals the presence of several elements of Mendeleef's classification.

  19. Quantitative scanning thermal microscopy of graphene devices on flexible polyimide substrates

    Science.gov (United States)

    Sadeghi, Mir Mohammad; Park, Saungeun; Huang, Yu; Akinwande, Deji; Yao, Zhen; Murthy, Jayathi; Shi, Li

    2016-06-01

    A triple-scan scanning thermal microscopy (SThM) method and a zero-heat flux laser-heated SThM technique are investigated for quantitative thermal imaging of flexible graphene devices. A similar local tip-sample thermal resistance is observed on both the graphene and metal areas of the sample, and is attributed to the presence of a polymer residue layer on the sample surface and a liquid meniscus at the tip-sample junction. In addition, it is found that the tip-sample thermal resistance is insensitive to the temperature until it begins to increase as the temperature increases to 80 °C and exhibits an abrupt increase at 110 °C because of evaporation of the liquid meniscus at the tip-sample junction. Moreover, the variation in the tip-sample thermal resistance due to surface roughness is within the experimental tolerance except at areas with roughness height exceeding tens of nanometers. Because of the low thermal conductivity of the flexible polyimide substrate, the SThM measurements have found that the temperature rise in flexible graphene devices is more than one order of magnitude higher than those reported for graphene devices fabricated on a silicon substrate with comparable dimensions and power density. Unlike a graphene device on a silicon substrate where the majority of the electrical heating in the graphene device is conducted vertically through the thin silicon dioxide dielectric layer to the high-thermal conductivity silicon substrate, lateral heat spreading is important in the flexible graphene devices, as shown by the observed decrease in the average temperature rise normalized by the power density with decreasing graphene channel length from about 30 μm to 10 μm. However, it is shown by numerical heat transfer analysis that this trend is mainly caused by the size scaling of the thermal spreading resistance of the polymer substrate instead of lateral heat spreading by the graphene. In addition, thermoelectric effects are found to be negligible

  20. The impact of the detection angle on the quantitative measurement of hemoglobin oxygen saturation in optical-resolution photoacoustic microscopy

    Science.gov (United States)

    Wu, Ning; Li, Changhui

    2016-10-01

    Optical-resolution photoacoustic microscopy (OR-PAM) plays an important role in the quantitative measurement of hemoglobin oxygen saturation (SO2) at a single vessel level. In this study, we reported that the relative angle between light illumination and ultrasonic detection could have a significant impact on the SO2 measurement. Both simulation and phantom studies were provided, and this result will help the system design and result interpretation of the functional OR-PAM.

  1. Quantitative evaluation of atherosclerotic plaques using cross-polarization optical coherence tomography, nonlinear, and atomic force microscopy

    Science.gov (United States)

    Gubarkova, Ekaterina V.; Kirillin, Mikhail Yu.; Dudenkova, Varvara V.; Timashev, Peter S.; Kotova, Svetlana L.; Kiseleva, Elena B.; Timofeeva, Lidia B.; Belkova, Galina V.; Solovieva, Anna B.; Moiseev, Alexander A.; Gelikonov, Gregory V.; Fiks, Ilya I.; Feldchtein, Felix I.; Gladkova, Natalia D.

    2016-12-01

    A combination of approaches to the image analysis in cross-polarization optical coherence tomography (CP OCT) and high-resolution imaging by nonlinear microscopy and atomic force microscopy (AFM) at the different stages of atherosclerotic plaque development is studied. This combination allowed us to qualitatively and quantitatively assess the disorganization of collagen in the atherosclerotic arterial tissue (reduction and increase of CP backscatter), at the fiber (change of the geometric distribution of fibers in the second-harmonic generation microscopy images) and fibrillar (violation of packing and different nature of a basket-weave network of fibrils in the AFM images) organization levels. The calculated CP channel-related parameters are shown to have a statistically significant difference between stable and unstable (also called vulnerable) plaques, and hence, CP OCT could be a potentially powerful, minimally invasive method for vulnerable plaques detection.

  2. Phase contrast soft x-ray microscopy using Zernike zone plates.

    Science.gov (United States)

    Sakdinawat, Anne; Liu, Yanwei

    2008-02-04

    Soft x-ray Zernike phase contrast microscopy was implemented using a "Zernike zone plate" (ZZP) without the use of a separate phase filter in the back focal plane. The ZZP is a single optic that integrates the appropriate +/-pi/2 radians phase shift through selective zone placement shifts in a Fresnel zone plate. Imaging using a regular zone plate, positive ZZP, and negative ZZP was performed at a wavelength of lambda = 2.163 nm. Contrast enhancement with the positive ZZP and contrast reversal with the negative ZZP were observed.

  3. 22 nm node wafer inspection using diffraction phase microscopy and image post-processing

    Science.gov (United States)

    Zhou, Renjie; Popescu, Gabriel; Goddard, Lynford L.

    2013-04-01

    We applied epi-illumination diffraction phase microscopy to measure the amplitude and phase of the scattered field from a SEMATECH 22 nm node intentional defect array (IDA) wafer. We used several imaging processing techniques to remove the wafer's underlying structure and reduce both the spatial and temporal noise and eliminate the system calibration error to produce stretched panoramic amplitude and phase images. From the stretched images, we detected defects down to 20 nm × 160 nm for a parallel bridge, 20 nm × 100 nm for perpendicular bridge, and 35 nm × 70 nm for an isolated dot.

  4. Real time blood testing using quantitative phase imaging.

    Directory of Open Access Journals (Sweden)

    Hoa V Pham

    Full Text Available We demonstrate a real-time blood testing system that can provide remote diagnosis with minimal human intervention in economically challenged areas. Our instrument combines novel advances in label-free optical imaging with parallel computing. Specifically, we use quantitative phase imaging for extracting red blood cell morphology with nanoscale sensitivity and NVIDIA's CUDA programming language to perform real time cellular-level analysis. While the blood smear is translated through focus, our system is able to segment and analyze all the cells in the one megapixel field of view, at a rate of 40 frames/s. The variety of diagnostic parameters measured from each cell (e.g., surface area, sphericity, and minimum cylindrical diameter are currently not available with current state of the art clinical instruments. In addition, we show that our instrument correctly recovers the red blood cell volume distribution, as evidenced by the excellent agreement with the cell counter results obtained on normal patients and those with microcytic and macrocytic anemia. The final data outputted by our instrument represent arrays of numbers associated with these morphological parameters and not images. Thus, the memory necessary to store these data is of the order of kilobytes, which allows for their remote transmission via, for example, the cellular network. We envision that such a system will dramatically increase access for blood testing and furthermore, may pave the way to digital hematology.

  5. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy

    NARCIS (Netherlands)

    Hartsuiker, L.; Es, van P.; Petersen, W.; Leeuwen, van T.G.; Terstappen, L.W.M.M.; Otto, C.

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  6. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by Scanning Electron Microscopy

    NARCIS (Netherlands)

    Hartsuiker, Liesbeth; van Es, Peter; Petersen, Wilhelmina; van Leeuwen, Ton; Terstappen, Leonardus Wendelinus Mathias Marie; Otto, Cornelis

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  7. Quantitative characterization of the mesothelioma-inducing erionite series minerals by transmission electron microscopy and energy dispersive spectroscopy.

    Science.gov (United States)

    Dogan, Meral

    2012-01-01

    Air-collected erionite series minerals from Cappadocia region of Turkey were characterized quantitatively by using transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS). Field emission scanning electron microscopy aided identification of fibrous minerals. Quantitative characterization guidelines for positive identification of erionites proposed by Dogan and Dogan (2008) was applied and the modified balance error formula (E%mineral is erionite-K and a mean chemical formula is proposed based upon the TEM-EDS results. Among the 60 analyses, 11 passed E% test (18.3%), 33 passed Mg-content test (55.0%), and only 3 passed both E% and Mg-content tests (5.0%). This shows difficulty of quantitative characterization of the erionite series minerals. However, as erionite is the most carcinogenic mineral known and is classified by IARC as a Group-I (human) carcinogen, it requires special attention from the mineralogical community to help establish its true mineralogical properties. Quantitatively characterized erionite data are very scarce in literature. Correctly identified erionite mineral types will be useful to medical researchers in their search to find a possible cure for the deadly disease of mesothelioma. © Wiley Periodicals, Inc.

  8. Real-time and non-invasive measurements of cell mechanical behaviour with optical coherence phase microscopy

    Science.gov (United States)

    Gillies, D.; Gamal, W.; Downes, A.; Reinwald, Y.; Yang, Y.; El Haj, A.; Bagnaninchi, P. O.

    2017-02-01

    There is an unmet need in tissue engineering for non-invasive, label-free monitoring of cell mechanical behaviour in their physiological environment. Here, we describe a novel optical coherence phase microscopy (OCPM) set-up which can map relative cell mechanical behaviour in monolayers and 3D systems non-invasively, and in real-time. 3T3 and MCF-7 cells were investigated, with MCF-7 demonstrating an increased response to hydrostatic stimulus indicating MCF-7 being softer than 3T3. Thus, OCPM shows the ability to provide qualitative data on cell mechanical behaviour. Quantitative measurements of 6% agarose beads have been taken with commercial Cell Scale Microsquisher system demonstrating that their mechanical properties are in the same order of magnitude of cells, indicating that this is an appropriate test sample for the novel method described.

  9. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images.

    Science.gov (United States)

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-03-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (Source-code for MATLAB and ImageJ is freely available under a permissive open-source license.

  10. Quantifying collagen fiber orientation in breast cancer using quantitative phase imaging

    Science.gov (United States)

    Majeed, Hassaan; Okoro, Chukwuemeka; Kajdacsy-Balla, André; Toussaint, Kimani C., Jr.; Popescu, Gabriel

    2017-04-01

    Tumor progression in breast cancer is significantly influenced by its interaction with the surrounding stromal tissue. Specifically, the composition, orientation, and alignment of collagen fibers in tumor-adjacent stroma affect tumor growth and metastasis. Most of the work done on measuring this prognostic marker has involved imaging of collagen fibers using second-harmonic generation microscopy (SHGM), which provides label-free specificity. Here, we show that spatial light interference microscopy (SLIM), a label-free quantitative phase imaging technique, is able to provide information on collagen-fiber orientation that is comparable to that provided by SHGM. Due to its wide-field geometry, the throughput of the SLIM system is much higher than that of SHGM and, because of the linear imaging, the equipment is simpler and significantly less expensive. Our results indicate that SLIM images can be used to extract important prognostic information from collagen fibers in breast tissue, potentially providing a convenient high throughput clinical tool for assessing patient prognosis.

  11. Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers.

    Science.gov (United States)

    Kong, Lingbo; Zhang, Pengfei; Setlow, Peter; Li, Yong-Qing

    2010-05-01

    We present a methodology that combines external phase contrast microscopy, Raman spectroscopy, and optical tweezers to monitor a variety of changes during the germination of single Bacillus cereus spores in both nutrient (l-alanine) and non-nutrient (Ca-dipicolinic acid (DPA)) germinants with a temporal resolution of approximately 2 s. Phase contrast microscopy assesses changes in refractility of individual spores during germination, while Raman spectroscopy gives information on changes in spore-specific molecules. The results obtained include (1) the brightness of the phase contrast image of an individual dormant spore is proportional to the level of CaDPA in that spore; (2) the end of the first Stage of germination, revealed as the end of the rapid drop in spore refractility by phase contrast microscopy, precisely corresponds to the completion of the release of CaDPA as revealed by Raman spectroscopy; and (3) the correspondence between the rapid drop in spore refractility and complete CaDPA release was observed not only for spores germinating in the well-controlled environment of an optical trap but also for spores germinating when adhered on a microscope coverslip. Using this latter method, we also simultaneously characterized the distribution of the time-to-complete-CaDPA release (T(release)) of hundreds of individual B. cereus spores germinating with both saturating and subsaturating concentrations of l-alanine and with CaDPA.

  12. Europium doping of superparamagnetic iron oxide nanoparticles enables their detection by fluorescence microscopy and for quantitative analytics.

    Science.gov (United States)

    Kobayashi, Yuske; Hauptmann, Ralf; Kratz, Harald; Ebert, Monika; Wagner, Susanne; Taupitz, Matthias

    2017-01-01

    Pharmacokinetic studies and histological detection of superparamagnetic iron oxide nanoparticles (SPIO) in biomedical research are limited due to a high iron background especially in pathological tissues. The suitability of doping the iron oxide cores of SPIO with europium (Eu) was tested for improved histologic detection and for quantitative analysis without changing their properties as probes for magnetic resonance imaging (MRI). A special variant of SPIO, so called very small superparamagnetic iron oxide nanoparticles (VSOP), was used for this approach. VSOP, stabilized by a citrate coating, were synthesized with and without addition of Eu (Eu-VSOP and VSOP, respectively). MR signal enhancing effects of Eu-VSOP and VSOP were studied in vitro. Cellular uptake of Eu-VSOP and VSOP was examined in RAW264.7 cells. For Eu-VSOP, fluorescence microscopy and spectrophotometry were used. Eu fluorescence was enhanced by means of an antenna system. For VSOP, Prussian blue staining and photometry using the phenanthroline method were applied. Results for both VSOP variants were compared. Eu-VSOP and VSOP did not differ with respect to MR signal enhancing effects nor to uptake characteristics in the RAW264.7 cell experiments. Fluorescence microscopy detects Eu-VSOP with higher sensitivity compared to light microscopy using Prussian blue staining. In microscopy as well as in the analytical quantification using fluorescence, detection of Eu-VSOP is not contaminated by Fe background. Doping the VSOP with Eu allows for their improved detection by fluorescence microscopy and quantitative analysis without changing their cellular uptake characteristics or their MR signal enhancing effects and thus would allow for a multimodal approach for studying their pharmacokinetics and biodistribution in experimental research.

  13. Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy

    Science.gov (United States)

    Ellingsen, Pa˚L. Gunnar; Lilledahl, Magnus Borstad; Aas, Lars Martin Sandvik; Davies, Catharina De Lange; Kildemo, Morten

    2011-11-01

    The collagen meshwork in articular cartilage of chicken knee is characterized using Mueller matrix imaging and multiphoton microscopy. Direction and degree of dispersion of the collagen fibers in the superficial layer are found using a Fourier transform image-analysis technique of the second-harmonic generated image. Mueller matrix images are used to acquire structural data from the intermediate layer of articular cartilage where the collagen fibers are too small to be resolved by optical microscopy, providing a powerful multimodal measurement technique. Furthermore, we show that Mueller matrix imaging provides more information about the tissue compared to standard polarization microscopy. The combination of these techniques can find use in improved diagnosis of diseases in articular cartilage, improved histopathology, and additional information for accurate biomechanical modeling of cartilage.

  14. Quantitative optical microscopy and micromanipulation studies on the lipid bilayer membranes of giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Bagatolli, Luis; Needham, David

    2014-01-01

    some of their most important contributions to our understanding of lipid bilayer membranes; and (iii) outline studies that would utilize both techniques simultaneously on the same vesicle thus bringing the ability to characterize structure and strain responses together with the direct application......This manuscript discusses basic methodological aspects of optical microscopy and micromanipulation methods to study membranes and reviews methods to generate giant unilamellar vesicles (GUVs). In particular, we focus on the use of fluorescence microscopy and micropipette manipulation techniques...... to study composition-structure-property materials relationships of free-standing lipid bilayer membranes. Because their size (~5 to 100 m diameter) that is well above the resolution limit of regular light microscopes, GUVs are suitable membrane models for optical microscopy and micromanipulation...

  15. Virtual-'light-sheet' single-molecule localisation microscopy enables quantitative optical sectioning for super-resolution imaging.

    Science.gov (United States)

    Palayret, Matthieu; Armes, Helen; Basu, Srinjan; Watson, Adam T; Herbert, Alex; Lando, David; Etheridge, Thomas J; Endesfelder, Ulrike; Heilemann, Mike; Laue, Ernest; Carr, Antony M; Klenerman, David; Lee, Steven F

    2015-01-01

    Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-'light-sheet', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in) to quickly analyse a calibration sample to define and use such a virtual light-sheet. In addition, the plug-in is easily usable on almost any existing 2D super-resolution instrumentation. This optical sectioning of super-resolution images is achieved by applying well-characterised width and amplitude thresholds to diffraction-limited spots that can be used to tune the thickness of the virtual light-sheet. This allows qualitative and quantitative imaging improvements: by rejecting out-of-focus fluorophores, the super-resolution image gains contrast and local features may be revealed; by retaining only fluorophores close to the focal plane, virtual-'light-sheet' single-molecule localisation microscopy improves the probability that all emitting fluorophores will be detected, fitted and quantitatively evaluated.

  16. Virtual-'light-sheet' single-molecule localisation microscopy enables quantitative optical sectioning for super-resolution imaging.

    Directory of Open Access Journals (Sweden)

    Matthieu Palayret

    Full Text Available Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-'light-sheet', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in to quickly analyse a calibration sample to define and use such a virtual light-sheet. In addition, the plug-in is easily usable on almost any existing 2D super-resolution instrumentation. This optical sectioning of super-resolution images is achieved by applying well-characterised width and amplitude thresholds to diffraction-limited spots that can be used to tune the thickness of the virtual light-sheet. This allows qualitative and quantitative imaging improvements: by rejecting out-of-focus fluorophores, the super-resolution image gains contrast and local features may be revealed; by retaining only fluorophores close to the focal plane, virtual-'light-sheet' single-molecule localisation microscopy improves the probability that all emitting fluorophores will be detected, fitted and quantitatively evaluated.

  17. Tunable PIE and synchronized gating detections by FastFLIM for quantitative microscopy measurements of fast dynamics of single molecules

    Science.gov (United States)

    Sun, Yuansheng; Coskun, Ulas; Ferreon, Allan Chris; Barbieri, Beniamino; Liao, Shih-Chu Jeff

    2016-03-01

    The crosstalk between two fluorescent species causes problems in fluorescence microscopy imaging, especially for quantitative measurements such as co-localization, Förster resonance energy transfer (FRET), fluorescence cross correlation spectroscopy (FCCS). In laser scanning confocal microscopy, the lasers can be switched on and off by acousto-optic tunable filters (AOTF) in the microsecond scale for alternative line scanning in order to avoid the crosstalk while minimizing the time delay between two lasers on the same pixel location. In contrast, the pulsed interleaved excitation (PIE) technique synchronizes two pulsed lasers of different wavelengths in the nanosecond scale to enable measuring superfast dynamics of two fluorescent species simultaneously and yet quantitatively without the crosstalk contamination. This feature is critical for many cell biology applications, e.g. accurate determination of stoichiometry in FRET measurements for studying protein-protein interactions or cell signal events, detection of weaker bindings in FCCS by eliminating the false cross correlation due to the crosstalk. The PIE has been used with the time correlated single photon counting (TCSPC) electronics. Here, we describe a novel PIE development using the digital frequency domain (DFD) technique -- FastFLIM, which provides tunable PIE setups and synchronized gating detections, tailored and optimized to specific applications. A few PIE setups by FastFLIM and measurement examples are described. Combined with the sensitivity of Alba and Q2 systems, the PIE allowed us to quantitatively measure the fast dynamics of single molecules.

  18. Stochastic optical reconstruction microscopy-based relative localization analysis (STORM-RLA) for quantitative nanoscale assessment of spatial protein organization.

    Science.gov (United States)

    Veeraraghavan, Rengasayee; Gourdie, Robert G

    2016-11-07

    The spatial association between proteins is crucial to understanding how they function in biological systems. Colocalization analysis of fluorescence microscopy images is widely used to assess this. However, colocalization analysis performed on two-dimensional images with diffraction-limited resolution merely indicates that the proteins are within 200-300 nm of each other in the xy-plane and within 500-700 nm of each other along the z-axis. Here we demonstrate a novel three-dimensional quantitative analysis applicable to single-molecule positional data: stochastic optical reconstruction microscopy-based relative localization analysis (STORM-RLA). This method offers significant advantages: 1) STORM imaging affords 20-nm resolution in the xy-plane and quantitative assessment of the frequency and degree of overlap between clusters of colabeled proteins; and 3) STORM-RLA also calculates the precise distances between both overlapping and nonoverlapping clusters in three dimensions. Thus STORM-RLA represents a significant advance in the high-throughput quantitative assessment of the spatial organization of proteins. © 2016 Veeraraghavan and Gourdie. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. TV-regularized phase reconstruction in differential-interference-contrast (DIC) microscopy

    Science.gov (United States)

    Rebegoldi, Simone; Bautista, Lola; Blanc-Féraud, Laure; Prato, Marco; Zanni, Luca; Plata, Arturo

    2016-10-01

    In this paper we address the problem of reconstructing the phase from color images acquired with differential-interference-contrast (DIC) microscopy. In particular, we reformulate the problem as the minimization of a least-squares fidelity function regularized with a total variation term, and we address the solution by exploiting a recently proposed inexact forward-backward approach. The effectiveness of this method is assessed on a realistic synthetic test.

  20. Quantitative Phase Determination by Using a Michelson Interferometer

    Science.gov (United States)

    Pomarico, Juan A.; Molina, Pablo F.; D'Angelo, Cristian

    2007-01-01

    The Michelson interferometer is one of the best established tools for quantitative interferometric measurements. It has been, and is still successfully used, not only for scientific purposes, but it is also introduced in undergraduate courses for qualitative demonstrations as well as for quantitative determination of several properties such as…

  1. Calibration-free quantitative surface topography reconstruction in scanning electron microscopy

    NARCIS (Netherlands)

    Faber, E.T.; Martinez-Martinez, D.; Mansilla, C.; Ocelik, V.; De Hosson, J. Th. M.

    2015-01-01

    This work presents a new approach to obtain reliable surface topography reconstructions from 2D Scanning Electron Microscopy (SEM) images. In this method a set of images taken at different tilt angles are compared by means of digital image correlation (DlC). It is argued that the strength of the met

  2. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime

    OpenAIRE

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Lihong V. Wang

    2012-01-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method...

  3. On the role of inelastic scattering in phase-plate transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hettler, Simon, E-mail: simon.hettler@kit.edu [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe (Germany); Wagner, Jochen; Dries, Manuel [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe (Germany); Oster, Marco; Wacker, Christian; Schröder, Rasmus R. [CellNetworks, BioQuant, Universität Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg (Germany); Gerthsen, Dagmar [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe (Germany)

    2015-08-15

    The phase contrast of Au nanoparticles on amorphous-carbon films with different thicknesses is analyzed using an electrostatic Zach phase plate in a Zeiss 912 Ω transmission electron microscope with in-column energy filter. Specifically, unfiltered and plasmon-filtered phase-plate transmission electron microscopy (PP TEM) images are compared to gain insight in the role of coherence after inelastic scattering processes. A considerable phase-contrast contribution resulting from a combined elastic–inelastic scattering process is found in plasmon-filtered PP TEM images. The contrast reduction compared to unfiltered images mainly originates from zero-order beam broadening caused by the inelastic scattering process. The effect of the sequence of the elastic and inelastic scattering processes is studied by varying the position of the nanoparticles, which can be either located on top or at the bottom of the amorphous-carbon film with respect to the incident electron beam direction. - Highlights: • Combined application of electrostatic Zach phase plate and energy filter in a TEM. • Contrast analysis of Au nanoparticles on amorphous carbon films. • Phase contrast inversion in unfiltered images by Zach phase plate. • Phase contrast in plasmon-filtered images by inelastic–elastic scattering process. • Analysis of different effects on nanoparticle contrast.

  4. Quantitative X-Ray Phase-Contrast Microtomography from a Compact Laser Driven Betatron Source

    CERN Document Server

    Wenz, J; Khrennikov, K; Bech, M; Thibault, P; Heigoldt, M; Pfeiffer, F; Karsch, S

    2014-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to brilliant keV X-ray emission. This so-called Betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present the first phase-contrast micro-tomogram revealing quantitative electron density values of a biological sample using betatron X-rays, and a comprehensive source characterization. Our results suggest that laser-based X-ray technology offers the potential fo...

  5. Practical aspects of Boersch phase contrast electron microscopy of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Andreas [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Muzik, Heiko; Vieker, Henning; Turchanin, Andrey; Beyer, Andre; Goelzhaeuser, Armin [University of Bielefeld, Physics of Supramolecular Systems and Surfaces, Universitaetsstr. 25, D-33615 Bielefeld (Germany); Lacher, Manfred; Steltenkamp, Siegfried; Schmitz, Sam; Holik, Peter [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Kuehlbrandt, Werner [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany); Rhinow, Daniel, E-mail: daniel.rhinow@biophys.mpg.de [Max-Planck-Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Str. 3, D-60439 Frankfurt (Germany)

    2012-05-15

    Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90 Degree-Sign achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen-hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP. -- Highlights: Black-Right-Pointing-Pointer Various obstacles need to be overcome before Boersch phase plates can be used routinely. Black-Right-Pointing-Pointer Technical problems include

  6. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Shuangmu, E-mail: shuangmuzhuo@gmail.com, E-mail: hanry-yu@nuhs.edu.sg [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Laser and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007 (China); Yan, Jie [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, MD 11 #04-01A, 117599 Singapore (Singapore); Kang, Yuzhan [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Xu, Shuoyu [Biosystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #04-13/14 Enterprise Wing, 138602 Singapore (Singapore); Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Computation and System Biology Program, Singapore-MIT Alliance, 4 Engineering Drive 3, E4-04-10, 117576 Singapore (Singapore); Peng, Qiwen [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #04-01, 138669 Singapore (Singapore); Computation and System Biology Program, Singapore-MIT Alliance, 4 Engineering Drive 3, E4-04-10, 117576 Singapore (Singapore); Mechanobiology Institute, 5A Engineering Drive 1, T-Lab #05-01, 117411 Singapore (Singapore); and others

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  7. Quantitative analysis of monocyte subpopulations in murine atherosclerotic plaques by multiphoton microscopy.

    Directory of Open Access Journals (Sweden)

    Abigail S Haka

    Full Text Available The progressive accumulation of monocyte-derived cells in the atherosclerotic plaque is a hallmark of atherosclerosis. However, it is now appreciated that monocytes represent a heterogeneous circulating population of cells that differ in functionality. New approaches are needed to investigate the role of monocyte subpopulations in atherosclerosis since a detailed understanding of their differential mobilization, recruitment, survival and emigration during atherogenesis is of particular importance for development of successful therapeutic strategies. We present a novel methodology for the in vivo examination of monocyte subpopulations in mouse models of atherosclerosis. This approach combines cellular labeling by fluorescent beads with multiphoton microscopy to visualize and monitor monocyte subpopulations in living animals. First, we show that multiphoton microscopy is an accurate and timesaving technique to analyze monocyte subpopulation trafficking and localization in plaques in excised tissues. Next, we demonstrate that multiphoton microscopy can be used to monitor monocyte subpopulation trafficking in atherosclerotic plaques in living animals. This novel methodology should have broad applications and facilitate new insights into the pathogenesis of atherosclerosis and other inflammatory diseases.

  8. A simple optical fiber device for quantitative fluorescence microscopy of single living cells

    NARCIS (Netherlands)

    Graft, van Marja; Oosterhuis, Bernard; Werf, van der Kees O.; Grooth, de Bart G.; Greve, Jan

    1993-01-01

    simple and relatively inexpensive system is described for obtaining quantitative fluorescence measurements on single living cells loaded with a fluorescent probe to study cell physiological processes. The light emitted from the fluorescent cells is captured by and transported through an optical fibe

  9. Dual-wavelength in-line phase-shifting interferometry based on two dc-term-suppressed intensities with a special phase shift for quantitative phase extraction.

    Science.gov (United States)

    Xu, Xiaoqing; Wang, Yawei; Xu, Yuanyuan; Jin, Weifeng

    2016-06-01

    To efficiently promote the phase retrieval in quantitative phase imaging, a new approach of quantitative phase extraction is proposed based on two intensities with dual wavelength after filtering the corresponding dc terms for each wavelength, in which a special phase shift is used. In this approach, only the combination of the phase-shifting technique and subtraction procedures is needed, and no additional algorithms are required. The thickness of the phase object can be achieved from the phase image, which is related to the synthetic beat wavelength. The feasibility of this method is verified by the simulated experiments of the optically transparent objects.

  10. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    Science.gov (United States)

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  11. Investigation into spiral phase plate contrast in optical and electron microscopy

    CERN Document Server

    Juchtmans, Roeland; Lubk, Axel; Verbeeck, Jo

    2016-01-01

    The use of phase plates in the back focal plane of a microscope is a well established technique in optical microscopy to increase the contrast of weakly interacting samples and is gaining interest in electron microscopy as well. In this paper we study the spiral phase plate (SPP), also called helical, vortex, or two-dimensional Hilbert phase plate, that adds an angularly dependent phase of the form $e^{i\\ell\\phi}$ to the exit wave in Fourier space. In the limit of large collection angles, we analytically calculate that the average of a pair of $\\ell=\\pm1$ SPP images is directly proportional to the gradient squared of the exit wave, explaining the edge contrast previously seen in optical SPP work. The difference between a clockwise-anticlockwise pair of SPP images and conditions where this difference vanishes and the gradient of the exit wave can be seen from one single SPP image, are discussed. Finally, we demonstrate how with three images, one without and one with each of an $\\ell=\\pm1$ SPP, may give enough ...

  12. An analysis-synthesis approach for neurosphere modelisation under phase-contrast microscopy.

    Science.gov (United States)

    Rigaud, Stéphane; Huang, Chao-Hui; Ahmed, Sohail; Lim, Joo-Hwee; Racoceanu, Daniel

    2013-01-01

    The study of stem cells is one of the most important biomedical research. Understanding their development could allow multiple applications in regenerative medicine. For this purpose, automated solutions for the observation of stem cell development process are needed. This study introduces an on-line analysis method for the modelling of neurosphere evolution during the early time of their development under phase contrast microscopy. From the corresponding phase contrast time-lapse sequences, we extract information from the neurosphere using a combination of phase contrast physics deconvolution and curve detection for locate the cells inside the neurosphere. Then, based on prior biological knowledge, we generate possible and optimal 3-dimensional configuration using 2D to 3D registration methods and evolutionary optimisation algorithm.

  13. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    Science.gov (United States)

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  14. Compensation of phase aberration by using a virtual confocal scheme in digital holographic microscopy.

    Science.gov (United States)

    Chew, Yang-Kun; Shiu, Min-Tzung; Wang, Je-Chung; Chang, Chi-Ching

    2014-09-20

    This work presents cost-effective, simple arbitrary phase-step digital holographic microscopy to suppress both zero-order and twin-image terms. A virtual confocal offset lens under in-line configuration is also used to compensate for the introduced quadratic phase by using a microscope objective lens. In addition to reducing the difficulties of physical confocal configurations, the proposed method significantly increases the magnification power, ultimately achieving the purposes of an optical zoom. An attempt is also made to reduce the noise interference of a high magnification system by developing a long focal lens to reduce light detection size, subsequently gaining an approximately plane wave light source to illuminate the object within the effective depth of focus. Experimental results indicate that the proposed high magnification system can be elevated with low noise interference, and image reconstruction without quadratic phase terms.

  15. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    Science.gov (United States)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  16. Sub-0.1 nm-resolution quantitative scanning transmission electron microscopy without adjustable parameters

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, C. [Monash Centre for Electron Microscopy, Monash University, Victoria 3800 (Australia); Department of Materials Engineering, Monash University, Victoria 3800 (Australia); ARC Centre of Excellence for Design in Light Metals, Monash University, Victoria 3800 (Australia); Maunders, C. [Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Zheng, C. L. [Monash Centre for Electron Microscopy, Monash University, Victoria 3800 (Australia); Weyland, M.; Etheridge, J. [Monash Centre for Electron Microscopy, Monash University, Victoria 3800 (Australia); Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Tiemeijer, P. C. [FEI Electron Optics, P.O. Box 80066, 5600 KA Eindhoven (Netherlands)

    2012-05-07

    Atomic-resolution imaging in the scanning transmission electron microscope (STEM) constitutes a powerful tool for nanostructure characterization. Here, we demonstrate the quantitative interpretation of atomic-resolution high-angle annular dark-field (ADF) STEM images using an approach that does not rely on adjustable parameters. We measure independently the instrumental parameters that affect sub-0.1 nm-resolution ADF images, quantify their individual and collective contributions to the image intensity, and show that knowledge of these parameters enables a quantitative interpretation of the absolute intensity and contrast across all accessible spatial frequencies. The analysis also provides a method for the in-situ measurement of the STEM's effective source distribution.

  17. Dynamic quantitative microscopy and nanoscopy of red blood cells in sickle cell disease

    Science.gov (United States)

    Shaked, Natan T.; Satterwhite, Lisa L.; Telen, Marilyn J.; Truskey, George A.; Wax, Adam

    2012-03-01

    We have applied wide-field digital interferometric techniques to quantitatively image sickle red blood cells (RBCs) [1] in a noncontact label-free manner, and measure the nanometer-scale fluctuations in their thickness as an indication of their stiffness. The technique can simultaneously measure the fluctuations for multiple spatial points on the RBC and thus yields a map describing the stiffness of each RBC in the field of view. Using this map, the local rigidity regions of the RBC are evaluated quantitatively. Since wide-field digital interferometry is a quantitative holographic imaging technique rather than one-point measurement, it can be used to simultaneously evaluate cell transverse morphology plus thickness in addition to its stiffness profile. Using this technique, we examine the morphology and dynamics of RBCs from individuals who suffer from sickle cell disease, and find that the sickle RBCs are significantly stiffer than healthy RBCs. Furthermore, we show that the technique is sensitive enough to distinguish various classes of sickle RBCs, including sickle RBCs with visibly-normal morphology, compared to the stiffer crescent-shaped sickle RBCs.

  18. A quantitative process for enhancing end of phase 2 decisions

    OpenAIRE

    Sabin, T.; Matcham, J.; Bray, S; Copas, A; Parmar, M. K.

    2014-01-01

    The objectives of the phase 2 stage in a drug development program are to evaluate the safety and tolerability of different doses, select a promising dose range, and look for early signs of activity. At the end of phase 2, a decision to initiate phase 3 studies is made that involves the commitment of considerable resources. This multifactorial decision, generally made by balancing the current condition of a development organization's portfolio, the future cost of development, the competitive l...

  19. Total 3D imaging of phase objects using defocusing microscopy: application to red blood cells

    CERN Document Server

    Roma, P M S; Amaral, F T; Agero, U; Mesquita, O N

    2014-01-01

    We present Defocusing Microscopy (DM), a bright-field optical microscopy technique able to perform total 3D imaging of transparent objects. By total 3D imaging we mean the determination of the actual shapes of the upper and lower surfaces of a phase object. We propose a new methodology using DM and apply it to red blood cells subject to different osmolality conditions: hypotonic, isotonic and hypertonic solutions. For each situation the shape of the upper and lower cell surface-membranes (lipid bilayer/cytoskeleton) are completely recovered, displaying the deformation of RBCs surfaces due to adhesion on the glass-substrate. The axial resolution of our technique allowed us to image surface-membranes separated by distances as small as 300 nm. Finally, we determine volume, superficial area, sphericity index and RBCs refractive index for each osmotic condition.

  20. Quantitative Super-Resolution Microscopy of Nanopipette-Deposited Fluorescent Patterns.

    Science.gov (United States)

    Hennig, Simon; van de Linde, Sebastian; Bergmann, Stephan; Huser, Thomas; Sauer, Markus

    2015-08-25

    We describe a method for the deposition of minute amounts of fluorophore-labeled oligonucleotides with high local precision in conductive and transparent solid layers of poly(vinyl alcohol) (PVA) doped with glycerin and cysteamine (PVA-G-C layers). Deposition of negatively charged fluorescent molecules was accomplished with a setup based on a scanning ion conductance microscope (SICM) using nanopipettes with tip diameters of ∼100 nm by using the ion flux flowing between two electrodes through the nanopipette. To investigate the precision of the local deposition process, we performed in situ super-resolution microscopy by direct stochastic optical reconstruction microscopy (dSTORM). Exploiting the single-molecule sensitivity and reliability of dSTORM, we determine the number of fluorescent molecules deposited in single spots. The correlation of applied charge and number of deposited molecules enables the quantification of delivered molecules by measuring the charge during the delivery process. We demonstrate the reproducible deposition of 3-168 fluorescent molecules in single spots and the creation of fluorescent structures. The fluorescent structures are highly stable and can be reused several times.

  1. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy

    Science.gov (United States)

    Adur, Javier; Pelegati, Vitor B.; de Thomaz, Andre A.; D'Souza-Li, Lilia; Assunção, Maria do Carmo; Bottcher-Luiz, Fátima; Andrade, Liliana A. L. A.; Cesar, Carlos L.

    2012-08-01

    We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.

  2. Axial Phase-Darkfield-Contrast (APDC), a new technique for variable optical contrasting in light microscopy.

    Science.gov (United States)

    Piper, T; Piper, J

    2012-09-01

    Axial phase-darkfield-contrast (APDC) has been developed as an illumination technique in light microscopy which promises significant improvements and a higher variability in imaging of several transparent 'problem specimens'. With this method, a phase contrast image is optically superimposed on an axial darkfield image so that a partial image based on the principal zeroth order maximum (phase contrast) interferes with an image, which is based on the secondary maxima (axial darkfield). The background brightness and character of the resulting image can be continuously modulated from a phase contrast-dominated to a darkfield-dominated character. In order to achieve this illumination mode, normal objectives for phase contrast have to be fitted with an additional central light stopper needed for axial (central) darkfield illumination. In corresponding condenser light masks, a small perforation has to be added in the centre of the phase contrast providing light annulus. These light modulating elements are properly aligned when the central perforation is congruent with the objective's light stop and the light annulus is conjugate with the phase ring. The breadth of the condenser light annulus and thus the intensity of the phase contrast partial image can be regulated with the aperture diaphragm. Additional contrast effects can be achieved when both illuminating light components are filtered at different colours. In this technique, the axial resolution (depth of field) is significantly enhanced and the specimen's three-dimensional appearance is accentuated with improved clarity as well as fine details at the given resolution limit. Typical artefacts associated with phase contrast and darkfield illumination are reduced in our methods.

  3. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    Science.gov (United States)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke's tabulated data.

  4. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao [Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573 (Japan)

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  5. Application of quantitative second-harmonic generation microscopy to dynamic conditions.

    Science.gov (United States)

    Kabir, Mohammad M; Inavalli, V V G Krishna; Lau, Tung-Yuen; Toussaint, Kimani C

    2013-01-01

    We present a quantitative second-harmonic generation (SHG) imaging technique that quantifies the 2D spatial organization of collagen fiber samples under dynamic conditions, as an image is acquired. The technique is demonstrated for both a well-aligned tendon sample and a randomly aligned, sparsely distributed collagen scaffold sample. For a fixed signal-to-noise ratio, we confirm the applicability of this method for various window sizes (pixel areas) as well as with using a gridded overlay map that allows for correlations of fiber orientations within a given image. This work has direct impact to in vivo biological studies by incorporating simultaneous SHG image acquisition and analysis.

  6. Scanning transmission ion microscopy mass measurements for quantitative trace element analysis within biological samples and validation using atomic force microscopy thickness measurements

    Science.gov (United States)

    Devès, Guillaume; Cohen-Bouhacina, Touria; Ortega, Richard

    2004-10-01

    We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm).

  7. Scanning transmission ion microscopy mass measurements for quantitative trace element analysis within biological samples and validation using atomic force microscopy thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Deves, Guillaume [Laboratoire de chimie nucleaire analytique et bioenvironnementale, UMR 5084, CNRS-Universite de Bordeaux 1, BP 120 Chemin du solarium, F33175 Gradignan cedex (France)]. E-mail: deves@cenbg.in2p3.fr; Cohen-Bouhacina, Touria [Centre de Physique Moleculaire Optique et Hertzienne, Universite de Bordeaux 1, 351, cours de la Liberation, F33405 Talence cedex (France); Ortega, Richard [Laboratoire de chimie nucleaire analytique et bioenvironnementale, UMR 5084, CNRS-Universite de Bordeaux 1, BP 120 Chemin du solarium, F33175 Gradignan cedex (France)

    2004-10-08

    We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm)

  8. Quantitative mapping of collagen fiber alignment in thick tissue samples using transmission polarized-light microscopy.

    Science.gov (United States)

    Yakovlev, Dmitry D; Shvachkina, Marina E; Sherman, Maria M; Spivak, Andrey V; Pravdin, Alexander B; Yakovlev, Dmitry A

    2016-07-01

    Immersion optical clearing makes it possible to use transmission polarized-light microscopy for characterization of thick (200 to 2000  μm) layers of biological tissues. We discuss polarization properties of thick samples in the context of the problem of characterization of collagen fiber alignment in connective tissues such as sclera and dermis. Optical chirality caused by azimuthal variations of the macroscopic (effective) optic axis of the medium across the sample thickness should be considered in polarization mapping of thick samples of these tissues. We experimentally evaluate to what extent the optical chirality affects the measurement results in typical situations and show under what conditions it can be easily taken into account and does not hinder, but rather helps, in characterization of collagen fiber alignment.

  9. Quantitative measurement of indentation hardness and modulus of compliant materials by atomic force microscopy

    Science.gov (United States)

    Passeri, D.; Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A.; Lucci, M.; Davoli, I.; Berezina, S.

    2008-06-01

    An atomic force microscopy (AFM) based technique is proposed for the characterization of both indentation modulus and hardness of compliant materials. A standard AFM tip is used as an indenter to record force versus indentation curves analogous to those obtained in standard indentation tests. In order to overcome the lack of information about the apex geometry, the proposed technique requires calibration using a set of reference samples whose mechanical properties have been previously characterized by means of an independent technique, such as standard indentation. Due to the selected reference samples, the technique has been demonstrated to allow reliable measurements of indentation modulus and hardness in the range of 0.3-4.0GPa and 15-250MPa, respectively.

  10. Deformation mechanisms of human amnion: Quantitative studies based on second harmonic generation microscopy.

    Science.gov (United States)

    Mauri, Arabella; Ehret, Alexander E; Perrini, Michela; Maake, Caroline; Ochsenbein-Kölble, Nicole; Ehrbar, Martin; Oyen, Michelle L; Mazza, Edoardo

    2015-06-25

    Multiphoton microscopy has proven to be a versatile tool to analyze the three-dimensional microstructure of the fetal membrane and the mechanisms of deformation on the length scale of cells and the collagen network. In the present contribution, dedicated microscopic tools for in situ mechanical characterization of tissue under applied mechanical loads and the related methods for data interpretation are presented with emphasis on new stepwise monotonic uniaxial experiments. The resulting microscopic parameters are consistent with previous ones quantified for cyclic and relaxation tests, underlining the reliability of these techniques. The thickness reduction and the substantial alignment of collagen fiber bundles in the compact and fibroblast layer starting at very small loads are highlighted, which challenges the definition of a reference configuration in terms of a force threshold. The findings presented in this paper intend to inform the development of models towards a better understanding of fetal membrane deformation and failure, and thus of related problems in obstetrics and other clinical conditions.

  11. Methodology for Quantitative Characterization of Fluorophore Photoswitching to Predict Superresolution Microscopy Image Quality

    Science.gov (United States)

    Bittel, Amy M.; Nickerson, Andrew; Saldivar, Isaac S.; Dolman, Nick J.; Nan, Xiaolin; Gibbs, Summer L.

    2016-07-01

    Single-molecule localization microscopy (SMLM) image quality and resolution strongly depend on the photoswitching properties of fluorophores used for sample labeling. Development of fluorophores with optimized photoswitching will considerably improve SMLM spatial and spectral resolution. Currently, evaluating fluorophore photoswitching requires protein-conjugation before assessment mandating specific fluorophore functionality, which is a major hurdle for systematic characterization. Herein, we validated polyvinyl alcohol (PVA) as a single-molecule environment to efficiently quantify the photoswitching properties of fluorophores and identified photoswitching properties predictive of quality SMLM images. We demonstrated that the same fluorophore photoswitching properties measured in PVA films and using antibody adsorption, a protein-conjugation environment analogous to labeled cells, were significantly correlated to microtubule width and continuity, surrogate measures of SMLM image quality. Defining PVA as a fluorophore photoswitching screening platform will facilitate SMLM fluorophore development and optimal image buffer assessment through facile and accurate photoswitching property characterization, which translates to SMLM fluorophore imaging performance.

  12. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy.

    Science.gov (United States)

    Hartsuiker, L; VAN Es, P; Petersen, W; VAN Leeuwen, T G; Terstappen, L W M M; Otto, C

    2011-11-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample preparation protocol was developed to enable imaging of cells and gold nanoparticles with a conventional below lens scanning electron microscopes. The negative influence of 'charging' on the quality of scanning electron microscopes' images could be limited by deposition of biological cells on a conductive (gold) surface. The novel protocol enabled high-resolution scanning electron microscopes' imaging of small clusters and individual gold nanoparticles on uncoated cell surfaces. Gold nanoparticles could be counted on cancer cells with automated routines.

  13. Scanning electron microscopy and X-ray spectroscopy applied to mycelial phase of sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    M. Thibaut

    1975-04-01

    Full Text Available Scanning electron microscopy applied to the mycelial phase of Sporothrix schenckii shows a matted mycelium with conidia of a regular pattern. X-Ray microanalysis applied in energy dispersive spectroscopy and also in wavelength dispersive spectroscopy reveals the presence of several elements of Mendeleef's classification.Sporothrix schenckii foi estudado em microscopia eletrônica. Foram observados caracteres das hífas e dos esporos, vários elementos da classificação periódica foram postos em evidência graças à micro-análise a raios X.

  14. Determination of electrostatic force and its characteristics based on phase difference by amplitude modulation atomic force microscopy

    Science.gov (United States)

    Wang, Kesheng; Cheng, Jia; Yao, Shiji; Lu, Yijia; Ji, Linhong; Xu, Dengfeng

    2016-12-01

    Electrostatic force measurement at the micro/nano scale is of great significance in science and engineering. In this paper, a reasonable way of applying voltage is put forward by taking an electrostatic chuck in a real integrated circuit manufacturing process as a sample, applying voltage in the probe and the sample electrode, respectively, and comparing the measurement effect of the probe oscillation phase difference by amplitude modulation atomic force microscopy. Based on the phase difference obtained from the experiment, the quantitative dependence of the absolute magnitude of the electrostatic force on the tip-sample distance and applied voltage is established by means of theoretical analysis and numerical simulation. The results show that the varying characteristics of the electrostatic force with the distance and voltage at the micro/nano scale are similar to those at the macroscopic scale. Electrostatic force gradually decays with increasing distance. Electrostatic force is basically proportional to the square of applied voltage. Meanwhile, the applicable conditions of the above laws are discussed. In addition, a comparison of the results in this paper with the results of the energy dissipation method shows the two are consistent in general. The error decreases with increasing distance, and the effect of voltage on the error is small.

  15. GPU-based rapid reconstruction of cellular 3D refractive index maps from tomographic phase microscopy (Conference Presentation)

    Science.gov (United States)

    Dardikman, Gili; Shaked, Natan T.

    2016-03-01

    We present highly parallel and efficient algorithms for real-time reconstruction of the quantitative three-dimensional (3-D) refractive-index maps of biological cells without labeling, as obtained from the interferometric projections acquired by tomographic phase microscopy (TPM). The new algorithms are implemented on the graphic processing unit (GPU) of the computer using CUDA programming environment. The reconstruction process includes two main parts. First, we used parallel complex wave-front reconstruction of the TPM-based interferometric projections acquired at various angles. The complex wave front reconstructions are done on the GPU in parallel, while minimizing the calculation time of the Fourier transforms and phase unwrapping needed. Next, we implemented on the GPU in parallel the 3-D refractive index map retrieval using the TPM filtered-back projection algorithm. The incorporation of algorithms that are inherently parallel with a programming environment such as Nvidia's CUDA makes it possible to obtain real-time processing rate, and enables high-throughput platform for label-free, 3-D cell visualization and diagnosis.

  16. Eddy current pulsed phase thermography for subsurface defect quantitatively evaluation

    Science.gov (United States)

    He, Yunze; Pan, Mengchun; Tian, GuiYun; Chen, Dixiang; Tang, Ying; Zhang, Hong

    2013-09-01

    This Letter verified eddy current pulse phase thermography through numerical and experimental studies. During the numerical studies, two characteristic features, blind frequency and min phase, were extracted from differential phase spectra, and their monotonic relationships with defects' depth under different heating time were compared. According to the numerical studies, 100 ms was employed as heating time during the improved experimental studies. The experimental results agreed with the numerical results. Based on their linear relationship with defects' depths, both features can be used to measure the defect's depth.

  17. Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    De Temmerman Pieter-Jan

    2012-06-01

    Full Text Available Abstract Background The interaction of a nanomaterial (NM with a biological system depends not only on the size of its primary particles but also on the size, shape and surface topology of its aggregates and agglomerates. A method based on transmission electron microscopy (TEM, to visualize the NM and on image analysis, to measure detected features quantitatively, was assessed for its capacity to characterize the aggregates and agglomerates of precipitated and pyrogenic synthetic amorphous silicon dioxide (SAS, or silica, NM. Results Bright field (BF TEM combined with systematic random imaging and semi-automatic image analysis allows measuring the properties of SAS NM quantitatively. Automation allows measuring multiple and arithmetically complex parameters simultaneously on high numbers of detected particles. This reduces operator-induced bias and assures a statistically relevant number of measurements, avoiding the tedious repetitive task of manual measurements. Access to multiple parameters further allows selecting the optimal parameter in function of a specific purpose. Using principle component analysis (PCA, twenty-three measured parameters were classified into three classes containing measures for size, shape and surface topology of the NM. Conclusion The presented method allows a detailed quantitative characterization of NM, like dispersions of precipitated and pyrogenic SAS based on the number-based distributions of their mean diameter, sphericity and shape factor.

  18. Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting

    Energy Technology Data Exchange (ETDEWEB)

    De Backer, A.; Martinez, G.T. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); MacArthur, K.E.; Jones, L. [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Béché, A. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Nellist, P.D. [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Van Aert, S., E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2015-04-15

    Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. - Highlights: • Limited size and beam sensitivity of nano-particles challenge their quantification. • Keeping the electron dose to a minimum is therefore important. • Reliability of quantitative ADF STEM for atom-counting is demonstrated. • Limits for single atom sensitivity are discussed. • Limits are diagnosed by combining simulations and a statistical method.

  19. Microscopic identification of Chinese medicinal materials based on X-ray phase contrast imaging: from qualitative to quantitative

    Science.gov (United States)

    Xue, Y.; Liang, Z.; Tan, H.; Ni, L.; Zhao, Z.; Xiao, T.; Xu, H.

    2016-07-01

    Although a variety of methods, ranging from simple morphological examination to physical and chemical analysis, and DNA molecular biology, exist for authenticating Chinese medicinal materials(CMMs), no methods can achieve both the source species identification and quality evaluation of CMMs simultaneously. Furthermore, the methods that are currently available for the identification of CMMs, including both optical and electronic microscopy, usually entail strict requirements for sample preparation or testing environment, such as the slicing of super-thin sections, or processing with specific chemical reagents. These treatments not only damage the CMMs but may also cause some of the original microstructures to be missed. Additionally, they may even yield false results. Owing to the unique penetrating character of X-rays, X-ray phase contrast imaging(XPCI) can be used to realize the inner microstructures of CMMs through nondestructive imaging. With the higher flux and luminance of the third generation of synchrotron radiation facility, XPCI can provides clearer and finer microstructures of CMMs, which are mainly composed of C, H, O, and N elements, with better spatial and density resolutions. For more than ten years, the X-ray imaging group at the Shanghai Institute of Applied Physics has investigated the microstructures of CMMs by XPCI and they have established and developed a quantitative X-ray phase contrast micro-CT for investigating the characteristic microstructures of CMMs. During this period, a variety of typical CMMs have been investigated, from two-dimensional (2D) radiography to three-dimensional (3D) micro-CT, from qualitative to quantitative. Taken together, these results verify that quantitative X-ray phase contrast micro-CT is a practical tool for the microscopic investigation of CMMs. Additionally, further efforts are being made to find the relationship between the microstructures' quantitative factors and active chemical components. At present

  20. Dual channel rank-based intensity weighting for quantitative co-localization of microscopy images

    LENUS (Irish Health Repository)

    Singan, Vasanth R

    2011-10-21

    Abstract Background Accurate quantitative co-localization is a key parameter in the context of understanding the spatial co-ordination of molecules and therefore their function in cells. Existing co-localization algorithms consider either the presence of co-occurring pixels or correlations of intensity in regions of interest. Depending on the image source, and the algorithm selected, the co-localization coefficients determined can be highly variable, and often inaccurate. Furthermore, this choice of whether co-occurrence or correlation is the best approach for quantifying co-localization remains controversial. Results We have developed a novel algorithm to quantify co-localization that improves on and addresses the major shortcomings of existing co-localization measures. This algorithm uses a non-parametric ranking of pixel intensities in each channel, and the difference in ranks of co-localizing pixel positions in the two channels is used to weight the coefficient. This weighting is applied to co-occurring pixels thereby efficiently combining both co-occurrence and correlation. Tests with synthetic data sets show that the algorithm is sensitive to both co-occurrence and correlation at varying levels of intensity. Analysis of biological data sets demonstrate that this new algorithm offers high sensitivity, and that it is capable of detecting subtle changes in co-localization, exemplified by studies on a well characterized cargo protein that moves through the secretory pathway of cells. Conclusions This algorithm provides a novel way to efficiently combine co-occurrence and correlation components in biological images, thereby generating an accurate measure of co-localization. This approach of rank weighting of intensities also eliminates the need for manual thresholding of the image, which is often a cause of error in co-localization quantification. We envisage that this tool will facilitate the quantitative analysis of a wide range of biological data sets

  1. In situ high temperature microscopy study of the surface oxidation and phase transformations in titanium alloys.

    Science.gov (United States)

    Malinov, S; Sha, W; Voon, C S

    2002-09-01

    Two popular commercial titanium alloys, Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si, were used for in situ high temperature microscopy study. The experiments were performed on an optical microscope equipped with high temperature stage using both normal and florescence lights. Two kinds of experiments were performed, at continuous heating/cooling with different rates and in isothermal conditions at different temperatures. The changes taking place on the sample surface during the experiments were monitored. The morphology of the alpha ==> beta ==> alpha phase transformation was recorded at different heat treatment conditions using the effect of thermal etching. An effect of sample surface oxidation and deoxidation was observed during continuous heating. The appearance and disappearance of ordered titanium oxides Ti3O and Ti2O are discussed based on the phase equilibrium diagram. The kinetics of the surface oxidation was monitored in both isothermal and continuous cooling conditions.

  2. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

    Science.gov (United States)

    Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.

    2016-03-01

    A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.

  3. Feedback phase correction of Bessel beams in confocal line light-sheet microscopy: a simulation study.

    Science.gov (United States)

    Moosavi, S Hoda; Gohn-Kreuz, Cristian; Rohrbach, Alexander

    2013-08-10

    Confocal line detection has been shown to improve contrast in light-sheet-based microscopy especially when illuminating the sample by Bessel beams. Besides their self-reconstructing capability, the stability in propagation direction of Bessel beams allows to block the unwanted emission light from the Bessel beam's ring system. However, due to phase aberrations induced especially at the border of the specimen, Bessel beams may not propagate along lines parallel to the slit detector. Here we present a concept of how to correct the phase of each incident Bessel beam such that the efficiency of confocal line detection is improved by up to 200%-300%. The applicability of the method is verified by the results obtained from numerical simulations based on the beam propagation method.

  4. Surface diffusion of Sb on Ge(111) monitored quantitatively with optical second harmonic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, K.A.; Seebauer, E.G. (Department of Chemical Engineering, University of Illinois, Urbana, Illinois 61801 (United States))

    1992-11-01

    Surface diffusion of Sb on Ge(111) has been measured with the newly developed technique of optical second harmonic microscopy. In this method, concentration profiles at submonolayer coverage are imaged directly by surface second harmonic generation with 5 {mu} spatial resolution. A Boltzmann--Matano analysis yields the coverage dependence of the diffusivity {ital D} without parametrization. Experiments were performed at roughly 70% of the bulk melting temperature {ital T}{sub {ital m}}. In the coverage range 0{le}{theta}{le}0.6, the activation energy {ital E}{sub diff} remains constant at 47.5{plus minus}1.5 kcal/mol, but the pre-exponential factor {ital D}{sub 0} decreases from 8.7{times}10{sup 3{plus minus}0.4} to 1.6{times}10{sup 2{plus minus}0.4} cm{sup 2}/s. Both {ital E}{sub diff} and {ital D}{sub 0} are quite large, which is consistent with high-temperature measurements in other systems. The inadequacies of current theories for high-temperature surface diffusion are outlined, and a new vacancy model is proposed for low-coverage diffusion. The model accounts semiquantitatively for the large values of {ital E}{sub diff} and {ital D}{sub 0}, and suggests that these quantities may be manipulated using doping levels and photon illumination. An islanding mechanism is proposed to explain the decrease in {ital D}{sub 0} with {theta}.

  5. Near-infrared microscopy imaging for quantitative analysis of active component in counterfeit imidacloprid

    Science.gov (United States)

    Huang, Yue; Cao, Jinli; Ye, Shengfeng; Duan, Jia; Wu, Lijun; Li, Qianqian; Min, Shungeng

    2012-01-01

    Near-infrared (NIR) imaging systems simultaneously record spectral and spatial information. Near-infrared imaging was applied to the identification of imidacloprid in both artificially mixed samples and commercial formulation in this study. The distributions of technical imidacloprid and additive in the heterogeneous counterfeit were obtained by the relationship imaging (RI) mode. Furthermore a series of samples which consisted of different contents of uniformly distributed imidacloprid were prepared and three data cubes were generated at each content. Extracted spectra from those images were imported to establish the partial least squares model. The model's results were: R2 99.21%, RMSEC 0.0306, RMSECV 0.0183, RMSECV/mean value 0.0348 and RSEP 0.0784. The prediction relative error of commercial formulation is 0.0680, indicating the predicted value was correlated to the real content. Lastly the chemical value reconstruction image of imidacloprid formulation products was calculated by MATLAB program. NIR microscopy imaging manifests herein its potential in qualitatively identifying the active component in counterfeit pesticide and quantifying the active component in scanned image.

  6. Validities of three multislice algorithms for quantitative low-energy transmission electron microscopy.

    Science.gov (United States)

    Ming, W Q; Chen, J H

    2013-11-01

    Three different types of multislice algorithms, namely the conventional multislice (CMS) algorithm, the propagator-corrected multislice (PCMS) algorithm and the fully-corrected multislice (FCMS) algorithm, have been evaluated in comparison with respect to the accelerating voltages in transmission electron microscopy. Detailed numerical calculations have been performed to test their validities. The results show that the three algorithms are equivalent for accelerating voltage above 100kV. However, below 100 kV, the CMS algorithm will introduce significant errors, not only for higher-order Laue zone (HOLZ) reflections but also for zero-order Laue zone (ZOLZ) reflections. The differences between the PCMS and FCMS algorithms are negligible and mainly appear in HOLZ reflections. Nonetheless, when the accelerating voltage is further lowered to 20 kV or below, the PCMS algorithm will also yield results deviating from the FCMS results. The present study demonstrates that the propagation of the electron wave from one slice to the next slice is actually cross-correlated with the crystal potential in a complex manner, such that when the accelerating voltage is lowered to 10 kV, the accuracy of the algorithms is dependent of the scattering power of the specimen. © 2013 Elsevier B.V. All rights reserved.

  7. Quantitative characterization of the fracture surface of Si single crystals by confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Y.B.; Hsia, K.J.; Lange, D.A. [Univ. of Illinois, Urbana, IL (United States)

    1995-12-01

    Experiments are conducted to study the dislocation nucleation conditions at the crack tip in {l_brace}110{r_brace}<110> oriented Si single crystals. Specimens with surface cracks are first statically loaded at elevated temperatures for a prolonged period of time to initiate and move dislocations away from the crack tip, then cooled down to room temperature and loaded to fracture to measure the fracture toughness. Fractographic analysis of the fracture surfaces is performed. Distinct wavy patterns on the fracture surface at the initial cleavage crack front are observed, which is attributed to the existence of local mixed mode 1/mode 3 stresses resulting from the inhomogeneous dislocation activity. Confocal microscopy is employed to quantify the fracture surface roughness. The results show that the increase of fracture toughness is directly associated with the increased area of the rough surface, which is characterized by the roughness number or the fractal dimension increment. The results also demonstrate that dislocation nucleation can occur only at discrete sites. The spacing between these dislocation nucleation sources is of the order of 1 {micro}m. A simple model is developed for the relationship between the fracture toughness and the surface roughness parameters, which is in good agreement with the experimental results.

  8. Quantitative Imaging of Microwave Electric Fields through Near-Field Scanning Microwave Microscopy

    Science.gov (United States)

    Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Thanawalla, A.; Feenstra, B. J.; Wellstood, F. C.; Anlage, Steven M.; Newman, H. S.

    1998-03-01

    The ability to non-destructively image electric field patterns generated by operating microwave devices (e.g. filters, antennas, circulators, etc.) would greatly aid in the design and testing of these structures. Such detailed information can be used to reconcile discrepancies between simulated behavior and experimental data (such as scattering parameters). The near-field scanning microwave microscope we present uses a coaxial probe to provide a simple, broadband method of imaging electric fields.(S. M. Anlage, et al.) IEEE Trans. Appl. Supercond. 7, 3686 (1997).^,(See http://www.csr.umd.edu/research/hifreq/micr_microscopy.html) The signal that is measured is related to the incident electric flux normal to the face of the center conductor of the probe, allowing different components of the field to be measured by orienting the probe appropriately. By using a simple model of the system, we can also convert raw data to absolute electric field. Detailed images of standing waves on copper microstrip will be shown and compared to theory.

  9. Quantitative force and dissipation measurements in liquids using piezo-excited atomic force microscopy: a unifying theory.

    Science.gov (United States)

    Kiracofe, Daniel; Raman, Arvind

    2011-12-02

    The use of a piezoelectric element (acoustic excitation) to vibrate the base of microcantilevers is a popular method for dynamic atomic force microscopy. In air or vacuum, the base motion is so small (relative to tip motion) that it can be neglected. However, in liquid environments the base motion can be large and cannot be neglected. Yet it cannot be directly observed in most AFMs. Therefore, in liquids, quantitative force and energy dissipation spectroscopy with acoustic AFM relies on theoretical formulae and models to estimate the magnitude of the base motion. However, such formulae can be inaccurate due to several effects. For example, a significant component of the piezo excitation does not mechanically excite the cantilever but rather transmits acoustic waves through the surrounding liquid, which in turn indirectly excites the cantilever. Moreover, resonances of the piezo, chip and holder can obscure the true cantilever dynamics even in well-designed liquid cells. Although some groups have tried to overcome these limitations (either by theory modification or better design of piezos and liquid cells), it is generally accepted that acoustic excitation is unsuitable for quantitative force and dissipation spectroscopy in liquids. In this paper the authors present a careful study of the base motion and excitation forces and propose a method by which quantitative analysis is in fact possible, thus opening this popular method for quantitative force and dissipation spectroscopy using dynamic AFM in liquids. This method is validated by experiments in water on mica using a scanning laser Doppler vibrometer, which can measure the actual base motion. Finally, the method is demonstrated by using small-amplitude dynamic AFM to extract the force gradients and dissipation on solvation shells of octamethylcyclotetrasiloxane (OMCTS) molecules on mica.

  10. Quantitative Analysis of Depth, Distribution, and Density of Cysts in Acanthamoeba Keratitis Using Confocal Microscopy.

    Science.gov (United States)

    Huang, Ping; Tepelus, Tudor; Vickers, Laura A; Baghdasaryan, Elmira; Huang, Jianyan; Irvine, John A; Hsu, Hugo Y; Sadda, Srinivas; Lee, Olivia L

    2017-08-01

    To quantify the density, distribution, and depth of invasion of cysts in the corneas of eyes with acanthamoeba keratitis (AK) by in vivo confocal microscopy (IVCM) with a novel scanning pattern. The medical records of patients with AK evaluated at the Doheny Eye Center UCLA between September 2014 and July 2016 were reviewed retrospectively. Patients with clinically diagnosed AK underwent IVCM at various time points during their clinical course. Five corneal locations were scanned at each time point: the central area and 4 standard points on the peripheral cornea corresponding to temporal, nasal, inferior, and superior locations. The IVCM scans were manually graded to quantify the maximum depth of invasion and density of cysts. Twenty-one eyes of 18 patients with visible cysts on IVCM were included. Mean cyst density at presentation was 214.1 ± 120.2/mm (range: 64-484 cells/mm), and the average cyst depth was 164.3 ± 81.2 μm (range: 17-290 μm). In 17 eyes, the average cyst depth was 139.4 ± 68.6 μm (range: 17-245 μm), mean cyst density was 177.9 ± 99.6/mm, and an average of 1.4 ± 1.3 quadrants was infiltrated at presentation, and reached clinical resolution with medical treatment without surgical intervention. Four eyes that ultimately underwent therapeutic penetrating keratoplasty had cysts in all 4 quadrants and deeper cyst infiltration; the average cyst depth in these corneas was 270.5 ± 17.5 μm (range: 252-290). Eyes with AK requiring therapeutic keratoplasty were more likely to have a deeper and more diffuse penetration of cysts in the cornea compared with those resolving with medical treatment.

  11. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe

    Directory of Open Access Journals (Sweden)

    Dominika Żurek-Biesiada

    2016-06-01

    Full Text Available Single Molecule Localization Microscopy (SMLM is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015 [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei.

  12. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe.

    Science.gov (United States)

    Żurek-Biesiada, Dominika; Szczurek, Aleksander T; Prakash, Kirti; Best, Gerrit; Mohana, Giriram K; Lee, Hyun-Keun; Roignant, Jean-Yves; Dobrucki, Jurek W; Cremer, Christoph; Birk, Udo

    2016-06-01

    Single Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015) [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei.

  13. Trace element mapping in Parkinsonian brain by quantitative ion beam microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barapatre, Nirav, E-mail: barapatre@physik.uni-leipzig.d [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Morawski, Markus [Paul-Flechsig-Institut fuer Hirnforschung, Universitaet Leipzig, Jahnalle 59, 04109 Leipzig (Germany); Butz, Tilman; Reinert, Tilo [Nukleare Festkoerperphysik, Universitaet Leipzig, Linnestr. 5, 04103 Leipzig (Germany)

    2010-06-15

    The role of iron in the pathogenesis of the Parkinson's disease (PD) is a current subject of research in Neurochemistry, since an abnormal increase in iron is reported in the substantia nigra (SN) of Parkinsonian patients. A severe loss of the cells containing dopamine in the SN in the PD has also drawn attention towards the function of a browny-black pigment called neuromelanin, which accumulates predominantly in these dopaminergic neurons. The neuromelanin has an ability to chelate metal ions, which, in free state, may cause considerable damage to cells by reacting with their lipid-rich membranes. However, it could also potentiate free radical production if it releases the bound metal ions. The highly sensitive and non-destructive micro-PIXE method suits best to quantify and map the trace elements in the SN. The accuracy in charge measurement for such microanalysis studies is of utmost importance for quantitative analysis. Since a Faraday cup is usually placed behind the thin biological sample to measure the charge, the primary and the secondary electrons, knocked out from the sample by traversing ion beam, hamper an exact charge determination. Hence, a new non-interceptive technique was developed for precise charge measurement and for continuous monitoring of beam current.

  14. Trace element mapping in Parkinsonian brain by quantitative ion beam microscopy

    Science.gov (United States)

    Barapatre, Nirav; Morawski, Markus; Butz, Tilman; Reinert, Tilo

    2010-06-01

    The role of iron in the pathogenesis of the Parkinson's disease (PD) is a current subject of research in Neurochemistry, since an abnormal increase in iron is reported in the substantia nigra (SN) of Parkinsonian patients. A severe loss of the cells containing dopamine in the SN in the PD has also drawn attention towards the function of a browny-black pigment called neuromelanin, which accumulates predominantly in these dopaminergic neurons. The neuromelanin has an ability to chelate metal ions, which, in free state, may cause considerable damage to cells by reacting with their lipid-rich membranes. However, it could also potentiate free radical production if it releases the bound metal ions. The highly sensitive and non-destructive micro-PIXE method suits best to quantify and map the trace elements in the SN. The accuracy in charge measurement for such microanalysis studies is of utmost importance for quantitative analysis. Since a Faraday cup is usually placed behind the thin biological sample to measure the charge, the primary and the secondary electrons, knocked out from the sample by traversing ion beam, hamper an exact charge determination. Hence, a new non-interceptive technique was developed for precise charge measurement and for continuous monitoring of beam current.

  15. Discrepancies in quantitative assessment of normal and regenerated peripheral nerve fibers between light and electron microscopy.

    Science.gov (United States)

    Ronchi, Giulia; Jager, Sara Buskbjerg; Vaegter, Christian Bjerggaard; Raimondo, Stefania; Giacobini-Robecchi, Maria Giuseppina; Geuna, Stefano

    2014-09-01

    Quantitative estimation of myelinated nerve fiber number, together with fiber size parameters, is one of the most important tools for nerve regeneration research. In this study we used a design-based stereological method to evaluate the regenerative process in two experimental paradigms: crush injury and autograft repair. Samples were embedded in resin and morphometric counting and measurements were performed using both light and electron microscopes. Results show a significant difference in myelinated fiber number estimation between light and electron microscopes, especially after autograft repair; light microscope significantly underestimates the number of fibers because of the large number of very small axons that can be detected only in electron microscope. The analysis of the size parameters also shows a higher number of small fibers in electron microscopic analysis, especially in regenerated nerves. This comparative study shows that the integration of data obtained in light microscope with those obtained in electron microscope is necessary in revealing very small myelinated fibers that cannot be detected otherwise. Moreover, the difference in the estimation of total number of myelinated fibers between light and electron microscopes must be considered in data analysis to ensure accurate interpretation of the results. © 2014 Peripheral Nerve Society.

  16. Quantitative characterization of the surface topography of rolled sheets by laser scanning microscopy and fourier transformation

    Science.gov (United States)

    Gjønnes, Liv

    1996-08-01

    The surface of twin-roll cast aluminum sheets undergoes dramatic changes during cold rolling. This is mainly due to variables in the roll gap, topography of the rolls, lubrication, material properties, and in particular the initial structure and topography of the cast sheet. Therefore, it is important to have means to quantitatively describe the changes in the surface structure of each pass and from pass to pass in order to optimize the desired final surface structure. To achieve this, the laser scanning microscope (LSM) with its confocal technique has been employed to image the three-dimensional (3-D) topography and to digitize the image for further computer analysis. The digitization of the image is primarily motivated by the need to introduce a Fourier transformation of the surface topography. The method is effective in describing qualitative periodic trends in the surface features. Information is gained on the shape and periodicities as well as roughness directionality. For instance, grooves and cross hatches and their remnants can be followed from one pass to the other. Important characteristics of the surface topography such as rolling ridges and shingles can also easily be characterized.

  17. A Quantitative Nanodiffraction System for Ultrahigh Vacuum Scanning Transmission Electron Microscopy

    Science.gov (United States)

    Hembree, Gary G.; Koch, Christoph; Spence, John C. H.

    2003-10-01

    Of all the long-lived particles available as probes of condensed matter, and of all the signals available on a modern electron microscope, electron nanodiffraction patterns provide the strongest signal from the smallest volume. The technique is therefore perfectly suited to nanostructural investigations in inorganic chemistry and materials science. The Vacuum Generators HB501S, an ultrahigh vacuum (UHV) variant of the HB501 scanning transmission electron microscope (STEM), with side-entry double-tilt stage, specimen preparation and analysis chamber, three postspecimen lenses, and cold field-emission tip with integral magnetic gun lens, has therefore been modified to optimize nanodiffraction and quantitative convergent beam electron diffraction (QCBED) performance. A one-micrometer grain-size phosphor screen lying on a fiber-optic faceplate atop the instrument is fiber-optically coupled to a 2048 × 2048 charge-coupled device (CCD), 16-bit camera. This arrangement promises to provide much greater sensitivity, larger dynamic range, and a better modulation transfer function (MTF) than conventional single crystal scintillator (YAG) CCD systems, with noticeable absence of cross talk between pixels. The design of the nanodiffraction detector system is discussed, the gain of the detector is measured, the spherical aberration constant of the objective lens is measured by the Ronchigram method, and preliminary results from the modified instrument are shown.

  18. Identification of novel pro-migratory, cancer-associated genes using quantitative, microscopy-based screening.

    Directory of Open Access Journals (Sweden)

    Suha Naffar-Abu-Amara

    Full Text Available BACKGROUND: Cell migration is a highly complex process, regulated by multiple genes, signaling pathways and external stimuli. To discover genes or pharmacological agents that can modulate the migratory activity of cells, screening strategies that enable the monitoring of diverse migratory parameters in a large number of samples are necessary. METHODOLOGY: In the present study, we describe the development of a quantitative, high-throughput cell migration assay, based on a modified phagokinetic tracks (PKT procedure, and apply it for identifying novel pro-migratory genes in a cancer-related gene library. In brief, cells are seeded on fibronectin-coated 96-well plates, covered with a monolayer of carboxylated latex beads. Motile cells clear the beads, located along their migratory paths, forming tracks that are visualized using an automated, transmitted-light screening microscope. The tracks are then segmented and characterized by multi-parametric, morphometric analysis, resolving a variety of morphological and kinetic features. CONCLUSIONS: In this screen we identified 4 novel genes derived from breast carcinoma related cDNA library, whose over-expression induces major alteration in the migration of the stationary MCF7 cells. This approach can serve for high throughput screening for novel ways to modulate cellular migration in pathological states such as tumor metastasis and invasion.

  19. A new non-iterative self-referencing interferometer in optical phase imaging and holographic microscopy, HOLOCAM

    CERN Document Server

    Berz, Martin

    2016-01-01

    Phase retrieval and imaging phase measurements are fields of intense research. It has recently been shown that phase retrieval from self-referencing interferograms (SRI) can be reformulated leading to a stable, linear equation provided the amplitude of the field is known from prior measurement steps (HOLOCAM). Consequently, the numerical solution thereof is straightforward. This is a big achievement since convergence is otherwise not always guaranteed. Applications are expected in X-ray microscopy, general phase retrieval, holography, tomography and optical imaging.

  20. Quantitative trait loci and the relevance of phased haplotypes

    DEFF Research Database (Denmark)

    Gregersen, Vivi Raundahl

    underlying gentic control both as traditional linkage studies relying on genetic maps and as GWAS where an approach of phasing haplotypes within the QTL have been conducted to validate the regions. Overall, regions of interest have been identified for chronic pleuritis and osteochondrosis in addition to meat...

  1. Quantitative analysis of individual hepatocyte growth factor receptor clusters in influenza A virus infected human epithelial cells using localization microscopy.

    Science.gov (United States)

    Wang, Qiaoyun; Dierkes, Rüdiger; Kaufmann, Rainer; Cremer, Christoph

    2014-04-01

    In this report, we applied a special localization microscopy technique (Spectral Precision Distance/Spatial Position Determination Microscopy/SPDM) to quantitatively analyze the effect of influenza A virus (IAV) infection on the spatial distribution of individual HGFR (Hepatocyte Growth Factor Receptor) proteins on the membrane of human epithelial cells at the single molecule resolution level. We applied this SPDM method to Alexa 488 labeled HGFR proteins with two different ligands. The ligands were either HGF (Hepatocyte Growth Factor), or IAV. In addition, the HGFR distribution in a control group of mock-incubated cells without any ligands was investigated. The spatial distribution of 1×10(6) individual HGFR proteins localized in large regions of interest on membranes of 240 cells was quantitatively analyzed and found to be highly non-random. Between 21% and 24% of the HGFR molecules were located in 44,304 small clusters with an average diameter of 54nm. The mean density of HGFR molecule signals per individual cluster was very similar in control cells, in cells with ligand only, and in IAV infected cells, independent of the incubation time. From the density of HGFR molecule signals in the clusters and the diameter of the clusters, the number of HGFR molecule signals per cluster was estimated to be in the range between 4 and 11 (means 5-6). This suggests that the membrane bound HGFR clusters form small molecular complexes with a maximum diameter of few tens of nm, composed of a relatively low number of HGFR molecules. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Sparsity-based multi-height phase recovery in holographic microscopy

    Science.gov (United States)

    Rivenson, Yair; Wu, Yichen; Wang, Hongda; Zhang, Yibo; Feizi, Alborz; Ozcan, Aydogan

    2016-11-01

    High-resolution imaging of densely connected samples such as pathology slides using digital in-line holographic microscopy requires the acquisition of several holograms, e.g., at >6-8 different sample-to-sensor distances, to achieve robust phase recovery and coherent imaging of specimen. Reducing the number of these holographic measurements would normally result in reconstruction artifacts and loss of image quality, which would be detrimental especially for biomedical and diagnostics-related applications. Inspired by the fact that most natural images are sparse in some domain, here we introduce a sparsity-based phase reconstruction technique implemented in wavelet domain to achieve at least 2-fold reduction in the number of holographic measurements for coherent imaging of densely connected samples with minimal impact on the reconstructed image quality, quantified using a structural similarity index. We demonstrated the success of this approach by imaging Papanicolaou smears and breast cancer tissue slides over a large field-of-view of ~20 mm2 using 2 in-line holograms that are acquired at different sample-to-sensor distances and processed using sparsity-based multi-height phase recovery. This new phase recovery approach that makes use of sparsity can also be extended to other coherent imaging schemes, involving e.g., multiple illumination angles or wavelengths to increase the throughput and speed of coherent imaging.

  3. Sparsity-based multi-height phase recovery in holographic microscopy

    KAUST Repository

    Rivenson, Yair

    2016-11-30

    High-resolution imaging of densely connected samples such as pathology slides using digital in-line holographic microscopy requires the acquisition of several holograms, e.g., at >6–8 different sample-to-sensor distances, to achieve robust phase recovery and coherent imaging of specimen. Reducing the number of these holographic measurements would normally result in reconstruction artifacts and loss of image quality, which would be detrimental especially for biomedical and diagnostics-related applications. Inspired by the fact that most natural images are sparse in some domain, here we introduce a sparsity-based phase reconstruction technique implemented in wavelet domain to achieve at least 2-fold reduction in the number of holographic measurements for coherent imaging of densely connected samples with minimal impact on the reconstructed image quality, quantified using a structural similarity index. We demonstrated the success of this approach by imaging Papanicolaou smears and breast cancer tissue slides over a large field-of-view of ~20 mm2 using 2 in-line holograms that are acquired at different sample-to-sensor distances and processed using sparsity-based multi-height phase recovery. This new phase recovery approach that makes use of sparsity can also be extended to other coherent imaging schemes, involving e.g., multiple illumination angles or wavelengths to increase the throughput and speed of coherent imaging.

  4. Atomic force microscopy reveals two phases in single stranded DNA self-assembled monolayers

    Science.gov (United States)

    Kosaka, Priscila M.; González, Sheila; Domínguez, Carmen M.; Cebollada, Alfonso; San Paulo, Alvaro; Calleja, Montserrat; Tamayo, Javier

    2013-07-01

    We have investigated the structure of single-stranded (ss) DNA self-assembled monolayers (SAMs) on gold by combining peak force tapping, Kelvin probe and phase contrast atomic force microscopy (AFM) techniques. The adhesion, surface potential and phase shift signals show heterogeneities in the DNA film structure at two levels: microscale and nanoscale; which cannot be clearly discerned in the topography. Firstly, there is multilayer aggregation covering less than 5% of the surface. The DNA multilayers seem to be ordered phases and their existence suggests that DNA end-to-end interaction can play a role in the self-assembly process. Secondly, we find the formation of two phases in the DNA monolayer, which differ both in surface energy and surface potential. We relate the two domains to differences in the packing density and in the ssDNA conformation. The discovered heterogeneities in ssDNA SAMs provide a new scenario in our vision of these relevant films that have direct consequences on their biological, chemical and physical properties.

  5. Quantitative phase-field modeling for wetting phenomena.

    Science.gov (United States)

    Badillo, Arnoldo

    2015-03-01

    A new phase-field model is developed for studying partial wetting. The introduction of a third phase representing a solid wall allows for the derivation of a new surface tension force that accounts for energy changes at the contact line. In contrast to other multi-phase-field formulations, the present model does not need the introduction of surface energies for the fluid-wall interactions. Instead, all wetting properties are included in a unique parameter known as the equilibrium contact angle θeq. The model requires the solution of a single elliptic phase-field equation, which, coupled to conservation laws for mass and linear momentum, admits the existence of steady and unsteady compact solutions (compactons). The representation of the wall by an additional phase field allows for the study of wetting phenomena on flat, rough, or patterned surfaces in a straightforward manner. The model contains only two free parameters, a measure of interface thickness W and β, which is used in the definition of the mixture viscosity μ=μlϕl+μvϕv+βμlϕw. The former controls the convergence towards the sharp interface limit and the latter the energy dissipation at the contact line. Simulations on rough surfaces show that by taking values for β higher than 1, the model can reproduce, on average, the effects of pinning events of the contact line during its dynamic motion. The model is able to capture, in good agreement with experimental observations, many physical phenomena fundamental to wetting science, such as the wetting transition on micro-structured surfaces and droplet dynamics on solid substrates.

  6. Single and two-shot quantitative phase imaging using Hilbert-Huang Transform based fringe pattern analysis

    Science.gov (United States)

    Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos

    2016-08-01

    In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.

  7. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging

    Science.gov (United States)

    Zuo, Chao; Sun, Jiasong; Feng, Shijie; Zhang, Minliang; Chen, Qian

    2016-05-01

    We demonstrate a simple and cost-effective programmable aperture microscope to realize multi-modal computational imaging by integrating a programmable liquid crystal display (LCD) into a conventional wide-field microscope. The LCD selectively modulates the light distribution at the rear aperture of the microscope objective, allowing numerous imaging modalities, such as bright field, dark field, differential phase contrast, quantitative phase imaging, multi-perspective imaging, and full resolution light field imaging to be achieved and switched rapidly in the same setup, without requiring specialized hardwares and any moving parts. We experimentally demonstrate the success of our method by imaging unstained cheek cells, profiling microlens array, and changing perspective views of thick biological specimens. The post-exposure refocusing of a butterfly mouthpart and RFP-labeled dicot stem cross-section is also presented to demonstrate the full resolution light field imaging capability of our system for both translucent and fluorescent specimens.

  8. Concentration dependence of alpha-synuclein fibril length assessed by quantitative atomic force microscopy and statistical-mechanical theory.

    Science.gov (United States)

    van Raaij, Martijn E; van Gestel, Jeroen; Segers-Nolten, Ine M J; de Leeuw, Simon W; Subramaniam, Vinod

    2008-11-15

    The initial concentration of monomeric amyloidogenic proteins is a crucial factor in the in vitro formation of amyloid fibrils. We use quantitative atomic force microscopy to study the effect of the initial concentration of human alpha-synuclein on the mean length of mature alpha-synuclein fibrils, which are associated with Parkinson's disease. We determine that the critical initial concentration, below which low-molecular-weight species dominate and above which fibrils are the dominant species, lies at approximately 15 muM, in good agreement with earlier measurements using biochemical methods. In the concentration regime where fibrils dominate, we find that their mean length increases with initial concentration. These results correspond well to the qualitative predictions of a recent statistical-mechanical model of amyloid fibril formation. In addition, good quantitative agreement of the statistical-mechanical model with the measured mean fibril length as a function of initial protein concentration, as well as with the fibril length distributions for several protein concentrations, is found for reasonable values of the relevant model parameters. The comparison between theory and experiment yields, for the first time to our knowledge, an estimate of the magnitude of the free energies associated with the intermolecular interactions that govern alpha-synuclein fibril formation.

  9. Faults and foibles of quantitative scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS)

    Science.gov (United States)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2012-06-01

    Scanning electron microscopy with energy dispersive x-ray spectrometry (SEM/EDS) is a powerful and flexible elemental analysis method that can identify and quantify elements with atomic numbers > 4 (Be) present as major constituents (where the concentration C > 0.1 mass fraction, or 10 weight percent), minor (0.01history of more than 40 years, and the sophistication of modern analytical software, the method is vulnerable to serious shortcomings that can lead to incorrect elemental identifications and quantification errors that significantly exceed reasonable expectations. This paper will describe shortcomings in peak identification procedures, limitations on the accuracy of quantitative analysis due to specimen topography or failures in physical models for matrix corrections, and quantitative artifacts encountered in xray elemental mapping. Effective solutions to these problems are based on understanding the causes and then establishing appropriate measurement science protocols. NIST DTSA II and Lispix are open source analytical software available free at www.nist.gov that can aid the analyst in overcoming significant limitations to SEM/EDS.

  10. Depth-Encoded Spectral Domain Phase Microscopy for Simultaneous Multi-Site Nanoscale Optical Measurements.

    Science.gov (United States)

    Hendargo, Hansford C; Bower, Bradley A; Reinstein, Alex S; Shepherd, Neal; Tao, Yuankai K; Izatt, Joseph A

    2011-09-01

    Spectral domain phase microscopy (SDPM) is an extension of spectral domain optical coherence tomography (SDOCT) that exploits the extraordinary phase stability of spectrometer-based systems with common-path geometry to resolve sub-wavelength displacements within a sample volume. This technique has been implemented for high resolution axial displacement and velocity measurements in biological samples, but since axial displacement information is acquired serially along the lateral dimension, it has been unable to measure fast temporal dynamics in extended samples. Depth-Encoded SDPM (DESDPM) uses multiple sample arms with unevenly spaced common path reference reflectors to multiplex independent SDPM signals from separate lateral positions on a sample simultaneously using a single interferometer, thereby reducing the time required to detect unique optical events to the integration period of the detector. Here, we introduce DESDPM and demonstrate the ability to acquire useful phase data concurrently at two laterally separated locations in a phantom sample as well as a biological preparation of spontaneously beating chick cardiomyocytes. DESDPM may be a useful tool for imaging fast cellular phenomena such as nervous conduction velocity or contractile motion.

  11. Real-space phase-field simulation of piezoresponse force microscopy accounting for stray electric fields

    Science.gov (United States)

    Yang, Lun; Dayal, Kaushik

    2012-04-01

    Piezoresponse force microscopy (PFM) is a powerful scanning-probe technique used to characterize important aspects of the microstructure in ferroelectrics. It has been widely applied to understand domain patterns, domain nucleation and the structure of domain walls. In this paper, we apply a real-space phase-field model to consistently simulate various PFM configurations. We model the PFM tip as a charged region that is external to the ferroelectric, and implement a boundary element method to efficiently and accurately account for the external stray fields that mediate the interactions between the tip and the ferroelectric. Our phase-field model and the solution method together are able to account for the electrical fields both within the specimen as well as those outside, and also consistently solve for the resulting electromechanical response with the same phase-field model. We apply this to various problems: first, the effect of crystal lattice orientation on the induced tip displacement and rotation; second, PFM scanning of a 90° domain wall that emerges at a free surface; third, the effect of closure domain microstructure on PFM response; fourth, the effect of surface modulations on PFM response; and fifth, the effect of surface charge compensation on PFM response.

  12. Video-rate processing in tomographic phase microscopy of biological cells using CUDA.

    Science.gov (United States)

    Dardikman, Gili; Habaza, Mor; Waller, Laura; Shaked, Natan T

    2016-05-30

    We suggest a new implementation for rapid reconstruction of three-dimensional (3-D) refractive index (RI) maps of biological cells acquired by tomographic phase microscopy (TPM). The TPM computational reconstruction process is extremely time consuming, making the analysis of large data sets unreasonably slow and the real-time 3-D visualization of the results impossible. Our implementation uses new phase extraction, phase unwrapping and Fourier slice algorithms, suitable for efficient CPU or GPU implementations. The experimental setup includes an external off-axis interferometric module connected to an inverted microscope illuminated coherently. We used single cell rotation by micro-manipulation to obtain interferometric projections from 73 viewing angles over a 180° angular range. Our parallel algorithms were implemented using Nvidia's CUDA C platform, running on Nvidia's Tesla K20c GPU. This implementation yields, for the first time to our knowledge, a 3-D reconstruction rate higher than video rate of 25 frames per second for 256 × 256-pixel interferograms with 73 different projection angles (64 × 64 × 64 output). This allows us to calculate additional cellular parameters, while still processing faster than video rate. This technique is expected to find uses for real-time 3-D cell visualization and processing, while yielding fast feedback for medical diagnosis and cell sorting.

  13. Evaluation of Chemical Interactions between Small Molecules in the Gas Phase Using Chemical Force Microscopy.

    Science.gov (United States)

    Lee, Jieun; Ju, Soomi; Kim, In Tae; Jung, Sun-Hwa; Min, Sun-Joon; Kim, Chulki; Sim, Sang Jun; Kim, Sang Kyung

    2015-12-04

    Chemical force microscopy analyzes the interactions between various chemical/biochemical moieties in situ. In this work we examined force-distance curves and lateral force to measure the interaction between modified AFM tips and differently functionalized molecular monolayers. Especially for the measurements in gas phase, we investigated the effect of humidity on the analysis of force-distance curves and the images in lateral force mode. Flat chemical patterns composed of different functional groups were made through micro-contact printing and lateral force mode provided more resolved analysis of the chemical patterns. From the images of 1-octadecanethiol/11-mercapto-1-undecanoic acid patterns, the amine group functionalized tip brought out higher contrast of the patterns than an intact silicon nitride tip owing to the additional chemical interaction between carboxyl and amine groups. For more complex chemical interactions, relative chemical affinities toward specific peptides were assessed on the pattern of 1-octadecanethiol/phenyl-terminated alkanethiol. The lateral image of chemical force microscopy reflected specific preference of a peptide to phenyl group as well as the hydrophobic interaction.

  14. In Situ Transmission Electron Microscopy Observation of Nanostructural Changes in Phase-Change Memory

    KAUST Repository

    Meister, Stefan

    2011-04-26

    Phase-change memory (PCM) has been researched extensively as a promising alternative to flash memory. Important studies have focused on its scalability, switching speed, endurance, and new materials. Still, reliability issues and inconsistent switching in PCM devices motivate the need to further study its fundamental properties. However, many investigations treat PCM cells as black boxes; nanostructural changes inside the devices remain hidden. Here, using in situ transmission electron microscopy, we observe real-time nanostructural changes in lateral Ge2Sb2Te5 (GST) PCM bridges during switching. We find that PCM devices with similar resistances can exhibit distinct threshold switching behaviors due to the different initial distribution of nanocrystalline and amorphous domains, explaining variability of switching behaviors of PCM cells in the literature. Our findings show a direct correlation between nanostructure and switching behavior, providing important guidelines in the design and operation of future PCM devices with improved endurance and lower variability. © 2011 American Chemical Society.

  15. Phase analysis in duplex stainless steel: comparison of EBSD and quantitative metallography methods

    Science.gov (United States)

    Michalska, J.; Chmiela, B.

    2014-03-01

    The purpose of the research was to work out the qualitative and quantitative analysis of phases in DSS in as-received state and after thermal aging. For quantitative purposes, SEM observations, EDS analyses and electron backscattered diffraction (EBSD) methods were employed. Qualitative analysis of phases was performed by two methods: EBSD and classical quantitative metallography. A juxtaposition of different etchants for the revealing of microstructure and brief review of sample preparation methods for EBSD studies were presented. Different ways of sample preparation were tested and based on these results a detailed methodology of DSS phase analysis was developed including: surface finishing, selective etching methods and image acquisition. The advantages and disadvantages of applied methods were pointed out and compared the accuracy of the analysis phase performed by both methods.

  16. QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS

    Directory of Open Access Journals (Sweden)

    Benoit Krebs

    2011-05-01

    Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.

  17. High-response piezoelectricity modeled quantitatively near a phase boundary

    Science.gov (United States)

    Newns, Dennis M.; Kuroda, Marcelo A.; Cipcigan, Flaviu S.; Crain, Jason; Martyna, Glenn J.

    2017-01-01

    Interconversion of mechanical and electrical energy via the piezoelectric effect is fundamental to a wide range of technologies. The discovery in the 1990s of giant piezoelectric responses in certain materials has therefore opened new application spaces, but the origin of these properties remains a challenge to our understanding. A key role is played by the presence of a structural instability in these materials at compositions near the "morphotropic phase boundary" (MPB) where the crystal structure changes abruptly and the electromechanical responses are maximal. Here we formulate a simple, unified theoretical description which accounts for extreme piezoelectric response, its observation at compositions near the MPB, accompanied by ultrahigh dielectric constant and mechanical compliances with rather large anisotropies. The resulting model, based upon a Landau free energy expression, is capable of treating the important domain engineered materials and is found to be predictive while maintaining simplicity. It therefore offers a general and powerful means of accounting for the full set of signature characteristics in these functional materials including volume conserving sum rules and strong substrate clamping effects.

  18. Local orbital angular momentum revealed by spiral phase plate imaging in transmission electron microscopy

    CERN Document Server

    Juchtmans, Roeland

    2015-01-01

    The orbital angular momentum (OAM) of light and matter waves is a parameter that is getting increasingly more attention over the past couple of years. Beams with a well defined OAM, the so-called vortex beams, are applied already in e.g. telecommunication, astrophysics, nanomanipulation and chiral measurements in optics and electron microscopy. Also the OAM of a wave induced by the interaction with a sample, shows great potential of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and sho...

  19. Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography.

    Science.gov (United States)

    Boitor, Radu; Sinjab, Faris; Strohbuecker, Stephanie; Sottile, Virginie; Notingher, Ioan

    2016-06-23

    Raman micro-spectroscopy (RMS) is a non-invasive technique for imaging live cells in vitro. However, obtaining quantitative molecular information from Raman spectra is difficult because the intensity of a Raman band is proportional to the number of molecules in the sampled volume, which depends on the local molecular concentration and the thickness of the cell. In order to understand these effects, we combined RMS with atomic force microscopy (AFM), a technique that can measure accurately the thickness profile of the cells. Solution-based calibration models for RNA and albumin were developed to create quantitative maps of RNA and proteins in individual fixed cells. The maps were built by applying the solution-based calibration models, based on partial least squares fitting (PLS), on raster-scan Raman maps, after accounting for the local cell height obtained from the AFM. We found that concentrations of RNA in the cytoplasm of mouse neuroprogenitor stem cells (NSCs) were as high as 25 ± 6 mg ml(-1), while proteins were distributed more uniformly and reached concentrations as high as ∼50 ± 12 mg ml(-1). The combined AFM-Raman datasets from fixed cells were also used to investigate potential improvements for normalization of Raman spectral maps. For all Raman maps of fixed cells (n = 10), we found a linear relationship between the scores corresponding to the first component (PC1) and the cell height profile obtained by AFM. We used PC1 scores to reconstruct the relative height profiles of independent cells (n = 10), and obtained correlation coefficients with AFM maps higher than 0.99. Using this normalization method, qualitative maps of RNA and protein were used to obtain concentrations for live NSCs. While this study demonstrates the potential of using AFM and RMS for measuring concentration maps for individual NSCs in vitro, further studies are required to establish the robustness of the normalization method based on principal component analysis when comparing

  20. MULTI-PEAK MATCH INTENSITY RATIO METHOD OF QUANTITATIVE X-RAY DIFFRACTION PHASE ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    G. Chu; Y.F. Cong; H.J. You

    2003-01-01

    A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.

  1. Estimation of age based on tooth cementum annulations: A comparative study using light, polarized, and phase contrast microscopy.

    Science.gov (United States)

    Kaur, Prabhpreet; Astekar, Madhusudan; Singh, Jappreet; Arora, Karandeep Singh; Bhalla, Gagandeep

    2015-01-01

    The identification of living or deceased persons using unique traits and characteristics of the teeth and jaws is a cornerstone of forensic science. Teeth have been used to estimate age both in the young and old, as well as in the living and dead. Gradual structural changes in teeth throughout life are the basis for age estimation. Tooth cementum annulation (TCA) is a microscopic method for the determination of an individual's age based on the analysis of incremental lines of cementum. To compare ages estimated using incremental lines of cementum as visualized by bright field microscopy, polarized microscopy, and phase contrast microscopy with the actual age of subject and to determine accuracy and feasibility of the method used. Cementum annulations of 60 permanent teeth were analyzed after longitudinal ground sections were made in the mesiodistal plane. The incremental lines were counted manually using a light, polarized and phase contrast microscopy. Ages were estimated and then compared with the actual age of individual. Analysis of variance (ANOVA), Student's t-test, the Pearson product-moment corre (PPMCC) and regression analysis were performed. PPMCC value r = 0.347, 0.542 and 0.989 were obtained using light, polarized and phase contrast microscopy methods respectively. It was concluded that incremental lines of cementum were most clearly visible under a phase contrast microscope, followed by a polarized microscope, and then a light microscope when used for age estimation.

  2. Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy.

    Science.gov (United States)

    Einen, Jørn; Thorseth, Ingunn H; Ovreås, Lise

    2008-05-01

    A SYBR Green real-time quantitative PCR (Q-PCR) assay for the detection and quantification of Bacteria and Archaea present in the glassy rind of seafloor basalts of different ages and water depths is presented. Two sets of domain-specific primers were designed and validated for specific detection and quantification of bacterial and archaeal 16S rRNA genes in DNA extracted from basaltic glass. Total cell numbers were also estimated by fluorescence microscopy analysis of SYBR Gold-stained samples. The results from the two different approaches were concurrent, and Q-PCR results showed that the total number of cells present in basalts was in the range from 6 x 10(5) to 4 x 10(6) cells g(-1) basaltic glass. Further, it was demonstrated that these cells were almost exclusively from the domain Bacteria. When applying the same methods on samples of different ages (22 years-0.1 Ma) and water depths (139-3390 mbsl), no significant differences in cell concentrations or in the relative abundance of Archaea and Bacteria were detected.

  3. Quantitative Contact Resonance Force Microscopy for Viscoelastic Measurement of Soft Materials at the Solid-Liquid Interface.

    Science.gov (United States)

    Churnside, Allison B; Tung, Ryan C; Killgore, Jason P

    2015-10-13

    Viscoelastic property measurements made at the solid-liquid interface are key to characterizing materials for a variety of biological and industrial applications. Further, nanostructured materials require nanoscale measurements. Here, material loss tangents (tan δ) were extracted from confounding liquid effects in nanoscale contact resonance force microscopy (CR-FM), an atomic force microscope based technique for observing mechanical properties of surfaces. Obtaining reliable CR-FM viscoelastic measurements in liquid is complicated by two effects. First, in liquid, spurious signals arise during cantilever excitation. Second, it is challenging to separate changes to cantilever behavior due to the sample from changes due to environmental damping and added mass effects. We overcame these challenges by applying photothermal cantilever excitation in multiple resonance modes and a predictive model for the hydrodynamic effects. We demonstrated quantitative, nanoscale viscoelastic CR-FM measurements of polymers at the solid-liquid interface. The technique is demonstrated on a point-by-point basis on polymer samples and while imaging in contact mode on a fixed plant cell wall. Values of tan δ for measurements made in water agreed with the values for measurements in air for some experimental conditions on polystyrene and for all examined conditions on polypropylene.

  4. Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study.

    Science.gov (United States)

    Picard, Martin; White, Kathryn; Turnbull, Douglass M

    2013-01-15

    Dynamic remodeling of mitochondrial morphology through membrane dynamics are linked to changes in mitochondrial and cellular function. Although mitochondrial membrane fusion/fission events are frequent in cell culture models, whether mitochondrial membranes dynamically interact in postmitotic muscle fibers in vivo remains unclear. Furthermore, a quantitative assessment of mitochondrial morphology in intact muscle is lacking. Here, using electron microscopy (EM), we provide evidence of interacting membranes from adjacent mitochondria in intact mouse skeletal muscle. Electron-dense mitochondrial contact sites consistent with events of outer mitochondrial membrane tethering are also described. These data suggest that mitochondrial membranes interact in vivo among mitochondria, possibly to induce morphology transitions, for kiss-and-run behavior, or other processes involving contact between mitochondrial membranes. Furthermore, a combination of freeze-fracture scanning EM and transmission EM in orthogonal planes was used to characterize and quantify mitochondrial morphology. Two subpopulations of mitochondria were studied: subsarcolemmal (SS) and intermyofibrillar (IMF), which exhibited significant differences in morphological descriptors, including form factor (means ± SD for SS: 1.41 ± 0.45 vs. IMF: 2.89 ± 1.76, P mitochondrial size and morphological parameters were highly skewed, suggesting the presence of mechanisms to influence mitochondrial size and shape. In addition, physical continuities between SS and IMF mitochondria indicated mixing of both subpopulations. These data provide evidence that mitochondrial membranes interact in vivo in mouse skeletal muscle and that factors may be involved in regulating skeletal muscle mitochondrial morphology.

  5. Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles of Condensin Complexes

    Directory of Open Access Journals (Sweden)

    David Llères

    2017-02-01

    Full Text Available How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer-based fluorescence lifetime imaging microscopy (FLIM approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1 and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.

  6. Micro-anatomical and functional assessment of ciliated epithelium in mouse trachea using optical coherence phase microscopy.

    Science.gov (United States)

    Ansari, Rehman; Buj, Christian; Pieper, Mario; König, Peter; Schweikard, Achim; Hüttmann, Gereon

    2015-09-07

    Motile cilia perform a range of important mechanosensory and chemosensory functions, along with expulsion of mucus and inhaled pathogens from the lungs. Here we demonstrate that spectral domain optical coherence phase microscopy (SD-OCPM), which combines the principles of optical coherence tomography (OCT) and confocal microscopy, is particularly well-suited for characterization of both morphology and the ciliary dynamics of mouse trachea. We present micro-anatomical images of mouse trachea, where different cell types can be clearly visualized. The phase contrast, which measures the sub-nanometer changes in axial optical pathlength is used to determine the frequency and direction of cilia beatings.

  7. Context based mixture model for cell phase identification in automated fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Zhou Xiaobo

    2007-01-01

    Full Text Available Abstract Background Automated identification of cell cycle phases of individual live cells in a large population captured via automated fluorescence microscopy technique is important for cancer drug discovery and cell cycle studies. Time-lapse fluorescence microscopy images provide an important method to study the cell cycle process under different conditions of perturbation. Existing methods are limited in dealing with such time-lapse data sets while manual analysis is not feasible. This paper presents statistical data analysis and statistical pattern recognition to perform this task. Results The data is generated from Hela H2B GFP cells imaged during a 2-day period with images acquired 15 minutes apart using an automated time-lapse fluorescence microscopy. The patterns are described with four kinds of features, including twelve general features, Haralick texture features, Zernike moment features, and wavelet features. To generate a new set of features with more discriminate power, the commonly used feature reduction techniques are used, which include Principle Component Analysis (PCA, Linear Discriminant Analysis (LDA, Maximum Margin Criterion (MMC, Stepwise Discriminate Analysis based Feature Selection (SDAFS, and Genetic Algorithm based Feature Selection (GAFS. Then, we propose a Context Based Mixture Model (CBMM for dealing with the time-series cell sequence information and compare it to other traditional classifiers: Support Vector Machine (SVM, Neural Network (NN, and K-Nearest Neighbor (KNN. Being a standard practice in machine learning, we systematically compare the performance of a number of common feature reduction techniques and classifiers to select an optimal combination of a feature reduction technique and a classifier. A cellular database containing 100 manually labelled subsequence is built for evaluating the performance of the classifiers. The generalization error is estimated using the cross validation technique. The

  8. Off-axis quantitative phase imaging processing using CUDA: toward real-time applications.

    Science.gov (United States)

    Pham, Hoa; Ding, Huafeng; Sobh, Nahil; Do, Minh; Patel, Sanjay; Popescu, Gabriel

    2011-07-01

    We demonstrate real time off-axis Quantitative Phase Imaging (QPI) using a phase reconstruction algorithm based on NVIDIA's CUDA programming model. The phase unwrapping component is based on Goldstein's algorithm. By mapping the process of extracting phase information and unwrapping to GPU, we are able to speed up the whole procedure by more than 18.8× with respect to CPU processing and ultimately achieve video rate for mega-pixel images. Our CUDA implementation also supports processing of multiple images simultaneously. This enables our imaging system to support high speed, high throughput, and real-time image acquisition and visualization.

  9. Quantitative x-ray diffraction phase analysis of coarse airborne particulate collected by cascade impactor sampling

    Science.gov (United States)

    Esteve, V.; Rius, J.; Ochando, L. E.; Amigó, J. M.

    Mineralogical composition of Castellon (Spanish Mediterranean coast) atmospheric aerosol was studied by X-ray diffraction by sampling with a cascade impactor without filters. Quantitative phase analysis of natural phases present in the atmospheric coarse aerosol was performed using a modified version of the computer program MENGE, that uses the standardless X-ray method developed by Rius for the quantitative analysis of multiphase mixtures, adapted for PC running. Presence of quartz, calcite and gypsum was identified in the atmospheric aerosol and we have quantified their amounts using the standardless method.

  10. Segmentation and Tracking of Lymphocytes Based on Modified Active Contour Models in Phase Contrast Microscopy Images

    Directory of Open Access Journals (Sweden)

    Yali Huang

    2015-01-01

    Full Text Available The paper proposes an improved active contour model for segmenting and tracking accurate boundaries of the single lymphocyte in phase-contrast microscopic images. Active contour models have been widely used in object segmentation and tracking. However, current external-force-inspired methods are weak at handling low-contrast edges and suffer from initialization sensitivity. In order to segment low-contrast boundaries, we combine the region information of the object, extracted by morphology gray-scale reconstruction, and the edge information, extracted by the Laplacian of Gaussian filter, to obtain an improved feature map to compute the external force field for the evolution of active contours. To alleviate initial location sensitivity, we set the initial contour close to the real boundaries by performing morphological image processing. The proposed method was tested on live lymphocyte images acquired through the phase-contrast microscope from the blood samples of mice, and comparative experimental results showed the advantages of the proposed method in terms of the accuracy and the speed. Tracking experiments showed that the proposed method can accurately segment and track lymphocyte boundaries in microscopic images over time even in the presence of low-contrast edges, which will provide a good prerequisite for the quantitative analysis of lymphocyte morphology and motility.

  11. Spatial light interference microscopy (SLIM).

    Science.gov (United States)

    Wang, Zhuo; Millet, Larry; Mir, Mustafa; Ding, Huafeng; Unarunotai, Sakulsuk; Rogers, John; Gillette, Martha U; Popescu, Gabriel

    2011-01-17

    We present spatial light interference microscopy (SLIM) as a new optical microscopy technique, capable of measuring nanoscale structures and dynamics in live cells via interferometry. SLIM combines two classic ideas in light imaging: Zernike's phase contrast microscopy, which renders high contrast intensity images of transparent specimens, and Gabor's holography, where the phase information from the object is recorded. Thus, SLIM reveals the intrinsic contrast of cell structures and, in addition, renders quantitative optical path-length maps across the sample. The resulting topographic accuracy is comparable to that of atomic force microscopy, while the acquisition speed is 1,000 times higher. We illustrate the novel insight into cell dynamics via SLIM by experiments on primary cell cultures from the rat brain. SLIM is implemented as an add-on module to an existing phase contrast microscope, which may prove instrumental in impacting the light microscopy field at a large scale.

  12. Quantitative differences in sputum smear microscopy results for acid-fast bacilli by age and sex in four countries

    DEFF Research Database (Denmark)

    Rieder, H L; Lauritsen, Jens; Naranbat, N

    2009-01-01

    To examine the influence of age and sex on the grading of tuberculosis (TB) sputum smear microscopy results.......To examine the influence of age and sex on the grading of tuberculosis (TB) sputum smear microscopy results....

  13. Quantitative Phase-Change Thermodynamics and Metastability of Perovskite-Phase Cesium Lead Iodide.

    Science.gov (United States)

    Dastidar, Subham; Hawley, Christopher J; Dillon, Andrew D; Gutierrez-Perez, Alejandro D; Spanier, Jonathan E; Fafarman, Aaron T

    2017-03-16

    The perovskite phase of cesium lead iodide (α-CsPbI3 or "black" phase) possesses favorable optoelectronic properties for photovoltaic applications. However, the stable phase at room temperature is a nonfunctional "yellow" phase (δ-CsPbI3). Black-phase polycrystalline thin films are synthesized above 330 °C and rapidly quenched to room temperature, retaining their phase in a metastable state. Using differential scanning calorimetry, it is shown herein that the metastable state is maintained in the absence of moisture, up to a temperature of 100 °C, and a reversible phase-change enthalpy of 14.2 (±0.5) kJ/mol is observed. The presence of atmospheric moisture hastens the black-to-yellow conversion kinetics without significantly changing the enthalpy of the transition, indicating a catalytic effect, rather than a change in equilibrium due to water adduct formation. These results delineate the conditions for trapping the desired phase and highlight the significant magnitude of the entropic stabilization of this phase.

  14. Food Consumption and Handling Survey for Quantitative Microbiological Consumer Phase Risk Assessments.

    Science.gov (United States)

    Chardon, Jurgen; Swart, Arno

    2016-07-01

    In the consumer phase of a typical quantitative microbiological risk assessment (QMRA), mathematical equations identify data gaps. To acquire useful data we designed a food consumption and food handling survey (2,226 respondents) for QMRA applications that is especially aimed at obtaining quantitative data. For a broad spectrum of food products, the survey covered the following topics: processing status at retail, consumer storage, preparation, and consumption. Questions were designed to facilitate distribution fitting. In the statistical analysis, special attention was given to the selection of the most adequate distribution to describe the data. Bootstrap procedures were used to describe uncertainty. The final result was a coherent quantitative consumer phase food survey and parameter estimates for food handling and consumption practices in The Netherlands, including variation over individuals and uncertainty estimates.

  15. High field magnetic resonance microscopy of the human hippocampus in Alzheimer's disease: quantitative imaging and correlation with iron.

    Science.gov (United States)

    Antharam, Vijay; Collingwood, Joanna F; Bullivant, John-Paul; Davidson, Mark R; Chandra, Saurav; Mikhaylova, Albina; Finnegan, Mary E; Batich, Christopher; Forder, John R; Dobson, Jon

    2012-01-16

    We report R(2) and R(2) in human hippocampus from five unfixed post-mortem Alzheimer's disease (AD) and three age-matched control cases. Formalin-fixed tissues from opposing hemispheres in a matched AD and control were included for comparison. Imaging was performed in a 600MHz (14T) vertical bore magnet at MR microscopy resolution to obtain R(2) and R(2) (62 μm×62 μm in-plane, 80 μm slice thickness), and R(1) at 250 μm isotropic resolution. R(1), R(2) and R(2) maps were computed for individual slices in each case, and used to compare subfields between AD and controls. The magnitudes of R(2) and R(2) changed very little between AD and control, but their variances in the Cornu Ammonis and dentate gyrus were significantly higher in AD compared for controls (piron and MRI parameters, each tissue block was cryosectioned at 30 μm in the imaging plane, and iron distribution was mapped using synchrotron microfocus X-ray fluorescence spectroscopy. A positive correlation of R(2) and R(2)* with iron was demonstrated. While studies with fixed tissues are more straightforward to conduct, fixation can alter iron status in tissues, making measurement of unfixed tissue relevant. To our knowledge, these data represent an advance in quantitative imaging of hippocampal subfields in unfixed tissue, and the methods facilitate direct analysis of the relationship between MRI parameters and iron. The significantly increased variance in AD compared for controls warrants investigation at lower fields and in-vivo, to determine if this parameter is clinically relevant.

  16. Quantitative Evaluation Methods of In-Line X-Ray Phase Contrast Techniques

    Institute of Scientific and Technical Information of China (English)

    LI Zheng; LI Cheng-Quan; YU Ai-Min

    2007-01-01

    By revealing the relationship between edge visibility and imaging parameters in in-line phase contrast imaging (PCI), we propose a method to quantitatively measure the contribution of absorption and phase shift from acquired images. We also prove that edge visibility will grow with the increasing source-object distance and object-detector distance. The result is validated by relative phase factor and by experiments conducted on a microfocus x-ray source. This method provides a new approach to evaluate in-line PCI images and is helpful for deciding imaging parameters.

  17. Quantitative Superresolution Microscopy Reveals Differences in Nuclear DNA Organization of Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance

    OpenAIRE

    Sathitruangsak, C.; Righolt, C.H.; Klewes, L.; Tammur, P.; Ilus, T.; Tamm, A; Punab, M.; Olujohungbe, A; Mai, S.

    2015-01-01

    ABSTRACT The mammalian nucleus has a distinct substructure that cannot be visualized directly by conventional microscopy. In this study, the organization of the DNA within the nucleus of multiple myeloma (MM) cells, their precursor cells (monoclonal gammopathy of undetermined significance; MGUS) and control lymphocytes of the representative patients is visualized and quantified by superresolution microscopy. Three‐dimensional structured illumination microscopy (3D‐SIM) increases the spatial r...

  18. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao [National Synchrotron Radiation Laboratory (China); Liu Yijin [School of Physics (China); Yue Zhengbo; Yu Hanqing [Laboratory of Environmental Engineering, School of Chemistry, University of Science and Technology of China, Hefei Anhui 230029 (China); Wang Chunru, E-mail: ychtian@ustc.edu.c [Institute of Chemistry, Chinese Academy of Sciences, Beijing 10060 (China)

    2009-09-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 {mu}m thickness and 4 {mu}m width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  19. Development of a compact gantry for quantitative phase-contrast CT applications

    Energy Technology Data Exchange (ETDEWEB)

    Tapfer, Arne; Bech, Martin; Pfeiffer, Franz [Department of Physics (E17) and Institute of Medical Engineering (IMETUM), Technische Universitaet Muenchen (Germany); Pauwels, Bart; Bruyndonckx, Peter; Liu, Xuan; Sasov, Alexander [Skyscan, Kontich (Belgium); Kenntner, Johannes [Karlsruhe Institute of Technology, Karlsruhe (Germany); Walter, Marco; Schulz, Joachim [Microworks, Karlsruhe (Germany)

    2011-07-01

    Here we present experimental X-ray cone-beam phase-contrast imaging results of a phantom study obtained with a highly compact grating-based gantry setup. The aim of this study is to investigate the performance, quantitativeness and accuracy of phase-contrast and absorption-based computed tomography scans which yield the three dimensional distribution of attenuation coefficient {mu} and refractive index decrement {delta} of different liquids contained in the phantom. Furthermore two different methods of color coding are explored to display both absorption and phase data in a single image. Experimental results for {mu} and {delta} match accurately with tabulated data meaning that the gantry setup performs well in both absorption and phase contrast. The substances contained in the phantom can be considerably better distinguished as the grating-based approach - which combines absorption and phase contrast - provides significantly more information than conventional absorption contrast alone.

  20. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  1. Nanoparticle flow velocimetry with image phase correlation for confocal laser scanning microscopy

    Science.gov (United States)

    Jun, Brian H.; Giarra, Matthew; Yang, Haisheng; Main, Russell; Vlachos, Pavlos P.

    2016-10-01

    We present a new particle image correlation technique for resolving nanoparticle flow velocity using confocal laser scanning microscopy (CLSM). The two primary issues that complicate nanoparticle scanning laser image correlation (SLIC)-based velocimetry are (1) the use of diffusion-dominated nanoparticles as flow tracers, which introduce a random decorrelating error into the velocity estimate, and (2) the effects of the scanning laser image acquisition, which introduces a bias error. To date, no study has quantified these errors or demonstrated a means to deal with them in SLIC velocimetry. In this work, we build upon the robust phase correlation (RPC) and existing methods of SLIC to quantify and mitigate these errors. First, we implement an ensemble RPC instead of using an ensemble standard cross-correlation, and develop a SLIC optimal filter that maximizes the correlation strength in order to reliably and accurately detect the correlation peak representing the most probable average displacement of the nanoparticles. Secondly, we developed an analytical model of the SLIC measurement bias error due to image scanning of diffusion-dominated tracer particles. We show that the bias error depends only on the ratio of the mean velocity of the tracer particles to that of the laser scanner and we use this model to correct the induced errors. We validated our technique using synthetic images and experimentally obtained SLIC images of nanoparticle flow through a micro-channel. Our technique reduced the error by up to a factor of ten compared to other SLIC algorithms for the images tested in this study. Moreover, our optimized RPC filter reduces the number of image pairs required for the convergence of the ensemble correlation by two orders of magnitude compared to the standard cross correlation. This feature has broader implications to ensemble correlation methods and should be further explored in depth in the future.

  2. Object-wave reconstruction by carbon film-based Zernike- and Hilbert-phase plate microscopy: A theoretical study not restricted to weak-phase objects

    Energy Technology Data Exchange (ETDEWEB)

    Dries, M., E-mail: manuel.dries@kit.edu [Laboratorium fuer Elektronenmikroskopie, Karlsruher Institut fuer Technologie (KIT), D-76128 Karlsruhe (Germany); Schultheiss, K.; Gamm, B. [Laboratorium fuer Elektronenmikroskopie, Karlsruher Institut fuer Technologie (KIT), D-76128 Karlsruhe (Germany); Rosenauer, A. [Institut fuer Festkoerperphysik, Universitaet Bremen, D-28359 Bremen (Germany); Schroeder, R.R. [BioQuant CellNetworks, Universitaet Heidelberg, D-69120 Heidelberg (Germany); Gerthsen, D. [Laboratorium fuer Elektronenmikroskopie, Karlsruher Institut fuer Technologie (KIT), D-76128 Karlsruhe (Germany)

    2011-01-15

    Transmission electron microscopy phase-contrast images taken by amorphous carbon film-based phase plates are affected by the scattering of electrons within the carbon film causing a modification of the image-wave function. Moreover, image artefacts are produced by non-centrosymmetric phase plate designs such as the Hilbert-phase plate. Various methods are presented to correct phase-contrast images with respect to the scattering of electrons and image artefacts induced by phase plates. The proposed techniques are not restricted to weak-phase objects and linear image formation. Phase-contrast images corrected by the presented methods correspond to those taken by an ideal centrosymmetric, matter-free phase plate and are suitable for object-wave reconstruction. -- Research Highlights: {yields} Object-wave reconstruction by phase plates considering nonlinear image formation. {yields} Requirement of three (five) images in case of Zernike- (Hilbert-) phase plates. {yields} Analytical correction of damping and/or image artefacts induced by phase plates.{yields} Validation by simulation of crystalline silicon.

  3. Mineralogical composition and phase-to-phase relationships in natural hydraulic lime and/or natural cement - raw materials and burnt products revealed by scanning electron microscopy

    Science.gov (United States)

    Kozlovcev, Petr; Přikryl, Richard; Racek, Martin; Přikrylová, Jiřina

    2016-04-01

    In contrast to modern process of production of cement clinker, traditional burning of natural hydraulic lime below sintering temperature relied on the formation of new phases from ion migration between neighbouring mineral grains composing raw material. The importance of the mineralogical composition and spatial distribution of rock-forming minerals in impure limestones used as a raw material for natural hydraulic lime presents not well explored issue in the scientific literature. To fill this gap, the recent study focuses in detailed analysis of experimentally burnt impure limestones (mostly from Barrandian area, Bohemian Massif). The phase changes were documented by optical microscopy, X-ray diffraction, and scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS) coupled with x-ray elemental mapping. The latest allowed for visualization of distribution of elements within raw materials and burnt products. SEM/EDS study brought valuable data on the presence of transitional and/or minor phases, which were poorly detectable by other methods.

  4. Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method.

    Science.gov (United States)

    Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-12-20

    In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.

  5. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  6. Natural enamel caries in polarized light microscopy: differences in histopathological features derived from a qualitative versus a quantitative approach to interpret enamel birefringence.

    Science.gov (United States)

    De Medeiros, R C G; Soares, J D; De Sousa, F B

    2012-05-01

    Lesion area measurement of enamel caries using polarized light microscopy (PLM) is currently performed in a large number of studies, but measurements are based mainly on a mislead qualitative interpretation of enamel birefringence in a single immersion medium. Here, five natural enamel caries lesions are analysed by microradiography and in PLM, and the differences in their histopathological features derived from a qualitative versus a quantitative interpretation of enamel birefringence are described. Enamel birefringence in different immersion media (air, water and quinoline) is interpreted by both qualitative and quantitative approaches, the former leading to an underestimation of the depth of enamel caries mainly when the criterion of validating sound enamel as a negatively birefringent area in immersion in water is used (a current common practice in dental research). Procedures to avoid the shortcomings of a qualitative interpretation of enamel birefringence are presented and discussed. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  7. QEMSCAN° (Quantitative Evaluation of Minerals by Scanning Electron Microscopy): capability and application to fracture characterization in geothermal systems

    Science.gov (United States)

    Ayling, B.; Rose, P. E.; Zemach, E.; Drakos, P. S.; Petty, S.

    2011-12-01

    Fractures are important conduits for fluids in geothermal systems, and the creation and maintenance of fracture permeability is a fundamental aspect of EGS (Engineered Geothermal System) development. Hydraulic or chemical stimulation techniques are often employed to achieve this. In the case of chemical stimulation, an understanding of the minerals present in the fractures themselves is desirable to better design a stimulation effort (i.e. which chemical to use and how much). Borehole televiewer surveys provide important information about regional and local stress regimes and fracture characteristics (e.g. fracture aperture), and XRD is useful for examining bulk rock mineralogy, but neither technique is able to quantify the distribution of these minerals in fractures. QEMSCAN° is a fully-automated micro-analysis system that enables quantitative chemical analysis of materials and generation of high-resolution mineral maps and images as well as porosity structure. It uses a scanning electron microscopy platform (SEM) with an electron beam source in combination with four energy-dispersive X-ray spectrometers (EDS). The measured backscattered electron and electron-induced secondary X-ray emission spectra are used to classify sample mineralogy. Initial applications of QEMSCAN° technology were predominantly in the minerals industry and application to geothermal problems has remained limited to date. In this pilot study, the potential application of QEMSCAN° technology to fracture characterization was evaluated using samples of representative mineralized fractures in two geothermal systems (Newberry Volcano, Oregon and Brady's geothermal field, Nevada). QEMSCAN° results were compared with XRD and petrographic techniques. Nine samples were analyzed from each field, collected from the drill core in the 1000-1500 m depth range in two shallow wells (GEO-N2 at Newberry Volcano and BCH-3 at Brady's). The samples were prepared as polished thin sections for QEMSCAN° analysis

  8. Versatile quantitative phase imaging system applied to high-speed, low noise and multimodal imaging (Conference Presentation)

    Science.gov (United States)

    Federici, Antoine; Aknoun, Sherazade; Savatier, Julien; Wattellier, Benoit F.

    2017-02-01

    Quadriwave lateral shearing interferometry (QWLSI) is a well-established quantitative phase imaging (QPI) technique based on the analysis of interference patterns of four diffraction orders by an optical grating set in front of an array detector [1]. As a QPI modality, this is a non-invasive imaging technique which allow to measure the optical path difference (OPD) of semi-transparent samples. We present a system enabling QWLSI with high-performance sCMOS cameras [2] and apply it to perform high-speed imaging, low noise as well as multimodal imaging. This modified QWLSI system contains a versatile optomechanical device which images the optical grating near the detector plane. Such a device is coupled with any kind of camera by varying its magnification. In this paper, we study the use of a sCMOS Zyla5.5 camera from Andor along with our modified QWLSI system. We will present high-speed live cell imaging, up to 200Hz frame rate, in order to follow intracellular fast motions while measuring the quantitative phase information. The structural and density information extracted from the OPD signal is complementary to the specific and localized fluorescence signal [2]. In addition, QPI detects cells even when the fluorophore is not expressed. This is very useful to follow a protein expression with time. The 10 µm spatial pixel resolution of our modified QWLSI associated to the high sensitivity of the Zyla5.5 enabling to perform high quality fluorescence imaging, we have carried out multimodal imaging revealing fine structures cells, like actin filaments, merged with the morphological information of the phase. References [1]. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express, vol. 17, pp. 13080-13094, 2009. [2] P. Bon, S. Lécart, E. Fort and S. Lévêque-Fort, "Fast label-free cytoskeletal network imaging in living mammalian cells," Biophysical journal, 106

  9. Differences in estimates of size distribution of beryllium powder materials using phase contrast microscopy, scanning electron microscopy, and liquid suspension counter techniques

    Directory of Open Access Journals (Sweden)

    Day Gregory A

    2007-02-01

    Full Text Available Abstract Accurate characterization of the physicochemical properties of aerosols generated for inhalation toxicology studies is essential for obtaining meaningful results. Great emphasis must also be placed on characterizing particle properties of materials as administered in inhalation studies. Thus, research is needed to identify a suite of techniques capable of characterizing the multiple particle properties (i.e., size, mass, surface area, number of a material that may influence toxicity. The purpose of this study was to characterize the morphology and investigate the size distribution of a model toxicant, beryllium. Beryllium metal, oxides, and alloy particles were aerodynamically size-separated using an aerosol cyclone, imaged dry using scanning electron microscopy (SEM, then characterized using phase contrast microscopy (PCM, a liquid suspension particle counter (LPC, and computer-controlled SEM (CCSEM. Beryllium metal powder was compact with smaller sub-micrometer size particles attached to the surface of larger particles, whereas the beryllium oxides and alloy particles were clusters of primary particles. As expected, the geometric mean (GM diameter of metal powder determined using PCM decreased with aerodynamic size, but when suspended in liquid for LPC or CCSEM analysis, the GM diameter decreased by a factor of two (p

  10. Quantitative evaluation of regularized phase retrieval algorithms on bone scaffolds seeded with bone cells

    Science.gov (United States)

    Weber, L.; Langer, M.; Tavella, S.; Ruggiu, A.; Peyrin, F.

    2016-05-01

    In the field of regenerative medicine, there has been a growing interest in studying the combination of bone scaffolds and cells that can maximize newly formed bone. In-line phase-contrast x-ray tomography was used to image porous bone scaffolds (Skelite©), seeded with bone forming cells. This technique allows the quantification of both mineralized and soft tissue, unlike with classical x-ray micro-computed tomography. Phase contrast images were acquired at four distances. The reconstruction is typically performed in two successive steps: phase retrieval and tomographic reconstruction. In this work, different regularization methods were applied to the phase retrieval process. The application of a priori terms for heterogeneous objects enables quantitative 3D imaging of not only bone morphology, mineralization, and soft tissue formation, but also cells trapped in the pre-bone matrix. A statistical study was performed to derive statistically significant information on the different culture conditions.

  11. Lossless and lossy compression of quantitative phase images of red blood cells obtained by digital holographic imaging.

    Science.gov (United States)

    Jaferzadeh, Keyvan; Gholami, Samaneh; Moon, Inkyu

    2016-12-20

    In this paper, we evaluate lossless and lossy compression techniques to compress quantitative phase images of red blood cells (RBCs) obtained by an off-axis digital holographic microscopy (DHM). The RBC phase images are numerically reconstructed from their digital holograms and are stored in 16-bit unsigned integer format. In the case of lossless compression, predictive coding of JPEG lossless (JPEG-LS), JPEG2000, and JP3D are evaluated, and compression ratio (CR) and complexity (compression time) are compared against each other. It turns out that JP2k can outperform other methods by having the best CR. In the lossy case, JP2k and JP3D with different CRs are examined. Because some data is lost in a lossy way, the degradation level is measured by comparing different morphological and biochemical parameters of RBC before and after compression. Morphological parameters are volume, surface area, RBC diameter, sphericity index, and the biochemical cell parameter is mean corpuscular hemoglobin (MCH). Experimental results show that JP2k outperforms JP3D not only in terms of mean square error (MSE) when CR increases, but also in compression time in the lossy compression way. In addition, our compression results with both algorithms demonstrate that with high CR values the three-dimensional profile of RBC can be preserved and morphological and biochemical parameters can still be within the range of reported values.

  12. Review on modelling aspects in reversed-phase liquid chromatographic quantitative structure-retention relationships

    Energy Technology Data Exchange (ETDEWEB)

    Put, R. [FABI, Department of Analytical Chemistry and Pharmaceutical Technology, Pharmaceutical Institute, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels (Belgium); Vander Heyden, Y. [FABI, Department of Analytical Chemistry and Pharmaceutical Technology, Pharmaceutical Institute, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels (Belgium)], E-mail: yvanvdh@vub.ac.be

    2007-10-29

    In the literature an increasing interest in quantitative structure-retention relationships (QSRR) can be observed. After a short introduction on QSRR and other strategies proposed to deal with the starting point selection problem prior to method development in reversed-phase liquid chromatography, a number of interesting papers is reviewed, dealing with QSRR models for reversed-phase liquid chromatography. The main focus in this review paper is put on the different modelling methodologies applied and the molecular descriptors used in the QSRR approaches. Besides two semi-quantitative approaches (i.e. principal component analysis, and decision trees), these methodologies include artificial neural networks, partial least squares, uninformative variable elimination partial least squares, stochastic gradient boosting for tree-based models, random forests, genetic algorithms, multivariate adaptive regression splines, and two-step multivariate adaptive regression splines.

  13. Quantitative and dynamic measurements of biological fresh samples with X-ray phase contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Masato, E-mail: hoshino@spring8.or.jp; Uesugi, Kentaro [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tsukube, Takuro [Japanese Red Cross Kobe Hospital, 1-3-1 Wakinohamakaigandori, Chuo-ku, Kobe, Hyogo 651-0073 (Japan); Yagi, Naoto [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2014-10-08

    Quantitative measurements of biological fresh samples based on three-dimensional densitometry using X-ray phase contrast tomography are presented. X-ray phase contrast tomography using a Talbot grating interferometer was applied to biological fresh samples which were not fixed by any fixatives. To achieve a high-throughput measurement for the fresh samples the X-ray phase contrast tomography measurement procedure was improved. The three-dimensional structure of a fresh mouse fetus was clearly depicted as a mass density map using X-ray phase contrast tomography. The mouse fetus measured in the fresh state was then fixed by formalin and measured in the fixed state. The influence of the formalin fixation on soft tissue was quantitatively evaluated by comparing the fresh and fixed samples. X-ray phase contrast tomography was also applied to the dynamic measurement of a biological fresh sample. Morphological changes of a ring-shaped fresh pig aorta were measured tomographically under different degrees of stretching.

  14. Quantitative analysis of non-equilibrium phase transition process by the catastrophe theory

    Science.gov (United States)

    Liang, Xiao; Wu, Jiu Hui; Zhong, H. B.

    2017-08-01

    Catastrophe theory is a highly generalized mathematical theory that summarizes the rules of non-equilibrium phase transition by several catastrophe models. This paper investigates the general non-equilibrium phase transition process quantitatively using catastrophe theory for the first time, to our knowledge. First, a new approach is proposed by combining the catastrophe theory with dimensionless analysis. Second, the new approach is applied to two classic examples: one is the turbulent phase transition and the other is the bottleneck effect of particle flow. For the turbulence phase transition process, the quantitative relationships are obtained. Comparing with Kolmogorov's turbulent theory, the new method proposed in this paper is able to evaluate not only the complete turbulence condition but also the development of turbulence, and Kolmogorov's turbulent theory is only a special case of our results by this new approach. For the particle flow bottleneck effect, the results obtained by this new method correspond with the empirical formulated results. Therefore, the proposed method can solve non-equilibrium phase transition process problems and has the potential to extend to fluid, aerodynamics, and so forth.

  15. Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications

    Directory of Open Access Journals (Sweden)

    Hyunjoo Park

    2013-03-01

    Full Text Available A cellular-level study of the pathophysiology is crucial for understanding the mechanisms behind human diseases. Recent advances in quantitative phase imaging (QPI techniques show promises for the cellular-level understanding of the pathophysiology of diseases. To provide important insight on how the QPI techniques potentially improve the study of cell pathophysiology, here we present the principles of QPI and highlight some of the recent applications of QPI ranging from cell homeostasis to infectious diseases and cancer.

  16. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    Science.gov (United States)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  17. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41100 Modena (Italy); Bondioli, Federica [Department of Industrial Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma (Italy); INSTM Consortium, Via G. Giusti 9, 51121 Firenze (Italy); Manfredini, Tiziano [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41100 Modena (Italy); INSTM Consortium, Via G. Giusti 9, 51121 Firenze (Italy); Gualtieri, Alessandro [Department of Chemical and Geological Science, University of Modena and Reggio Emilia, Via S. Eufemia 19, 41121 Modena Italy (Italy)

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals was followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.

  18. Monitoring Rates and Heterogeneity of High-Pressure Germination of Bacillus Spores by Phase-Contrast Microscopy of Individual Spores

    Science.gov (United States)

    2014-01-01

    SECURITY CLASSIFICATION OF: The germination of multiple individual Bacillus subtilis spores by a high pressure (HP) of 140-150 (unless noted...otherwise) megaPascals (MPa) that activates spore germinant receptors (GRs) was monitored by phase contrast microscopy in a diamond anvil cell. Major...conclusions were that: i) >95% of spores germinated in 40 min; ii) individual spore’s HP germination kinetics were very similar to those for nutrient

  19. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells

    Science.gov (United States)

    Park, Han Sang; Rinehart, Matthew T.; Walzer, Katelyn A.; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-01-01

    Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection

  20. Influence of product phase separation on phospholipase A(2) hydrolysis of supported phospholipid bilayers studied by force microscopy

    DEFF Research Database (Denmark)

    Nielsen, Lars Kildemark; Balashev, K.; Callisen, Thomas Hønger

    2002-01-01

    concentrations, made by Langmuir-Blodgett deposition, we show that small depressions enriched in products are efficiently promoting enzyme degradation of the bilayer. These small depressions, which are indicative of phase separation, are initially present in samples with 75% products. The kinetics...... of phospholipase A(2) exhibit under certain conditions an initial phase of slow hydrolysis, termed the latency phase, followed by a marked increase in the hydrolysis rate. The appearance of the phase-separated bilayer is strikingly similar to that of bilayers; at the end of the latency phase. By analysis...... of individual nano-scale defects we illustrate a quantitative difference in the growth rates of defects caused by product aggregation and other structural defects. This difference shows for the first time how the enzyme prefers one type of defect to another....

  1. Exploring Neural Cell Dynamics with Digital Holographic Microscopy

    KAUST Repository

    Marquet, Pierre

    2013-04-21

    In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.

  2. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis

    Science.gov (United States)

    Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd

    2013-01-01

    Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger

  3. In-focus electron microscopy of frozen-hydrated biological samples with a Boersch phase plate

    Energy Technology Data Exchange (ETDEWEB)

    Barton, B.; Rhinow, D.; Walter, A.; Schroeder, R. [Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main (Germany); Benner, G.; Majorovits, E.; Matijevic, M.; Niebel, H. [Carl Zeiss NTS GmbH, D-73447 Oberkochen (Germany); Mueller, H.; Haider, M. [CEOS GmbH, Englerstr. 26, 69126 Heidleberg (Germany); Lacher, M.; Schmitz, S.; Holik, P. [Caesar Research Center, Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Kuehlbrandt, W., E-mail: werner.kuehlbrandt@mpibp-frankfurt.mpg.de [Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main (Germany)

    2011-12-15

    We report the implementation of an electrostatic Einzel lens (Boersch) phase plate in a prototype transmission electron microscope dedicated to aberration-corrected cryo-EM. The combination of phase plate, C{sub s} corrector and Diffraction Magnification Unit (DMU) as a new electron-optical element ensures minimal information loss due to obstruction by the phase plate and enables in-focus phase contrast imaging of large macromolecular assemblies. As no defocussing is necessary and the spherical aberration is corrected, maximal, non-oscillating phase contrast transfer can be achieved up to the information limit of the instrument. A microchip produced by a scalable micro-fabrication process has 10 phase plates, which are positioned in a conjugate, magnified diffraction plane generated by the DMU. Phase plates remained fully functional for weeks or months. The large distance between phase plate and the cryo sample permits the use of an effective anti-contaminator, resulting in ice contamination rates of <0.6 nm/h at the specimen. Maximal in-focus phase contrast was obtained by applying voltages between 80 and 700 mV to the phase plate electrode. The phase plate allows for in-focus imaging of biological objects with a signal-to-noise of 5-10 at a resolution of 2-3 nm, as demonstrated for frozen-hydrated virus particles and purple membrane at liquid-nitrogen temperature. -- Highlights: Black-Right-Pointing-Pointer We implement an electrostatic Boersch phase plate into a dedicated prototypical TEM. Black-Right-Pointing-Pointer Phase contrast aberration-corrected electron microscope (PACEM) includes a diffraction magnification unit (DMU). Black-Right-Pointing-Pointer DMU minimizes obstruction of low spatial frequencies by the phase plate. Black-Right-Pointing-Pointer In-focus phase contrast generation is demonstrated for frozen-hydrated biological specimens.

  4. Fast processing of quantitative phase profiles from off-axis interferograms for real-time applications

    Science.gov (United States)

    Girshovitz, Pinhas; Shaked, Natan T.

    2015-03-01

    We review new and efficient algorithms, lately presented by us, for rapid reconstruction of quantitative phase maps from off-axis digital interferograms. These algorithms improve the conventional Fourier-based algorithm by using the Fourier transforms and the phase unwrapping process more efficiently, and thus decrease the calculation complexity required for extracting the sample phase map from the recorded interferograms. Using the new algorithms, on a standard personal computer without using the graphic processing-unit programming or parallel computing, we were able to speed up the processing and reach frame rates of up to 45 frames per second for one megapixel off-axis interferograms. These capabilities allow real-time visualization, calculation and data extraction for dynamic samples and processes, inspected by off-axis digital holography. Specific applications include biological cell imaging without labeling and real-time nondestructive testing.

  5. Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM)

    Energy Technology Data Exchange (ETDEWEB)

    Schweser, Ferdinand [New York State Univ., Buffalo, NY (United States). Buffalo Neuroimaging Analysis Center; New York State Univ., Buffalo, NY (United States). MRI Clinical and Translational Research Center; Deistung, Andreas [Jena Univ. (Germany). Medical Physics Group; Reichenbach, Juergen R. [Jena Univ. (Germany). Medical Physics Group; Jena Univ. (Germany). Michael Stifel Center for Data-driven and Simulation Science Jena

    2016-05-01

    Quantitative Susceptibility Mapping (QSM) is a novel MRI based technique that relies on estimates of the magnetic field distribution in the tissue under examination. Several sophisticated data processing steps are required to extract the magnetic field distribution from raw MRI phase measurements. The objective of this review article is to provide a general overview and to discuss several underlying assumptions and limitations of the pre-processing steps that need to be applied to MRI phase data before the final field-to-source inversion can be performed. Beginning with the fundamental relation between MRI signal and tissue magnetic susceptibility this review covers the reconstruction of magnetic field maps from multi-channel phase images, background field correction, and provides an overview of state of the art QSM solution strategies.

  6. X-ray Phase Imaging Microscopy with Two-Dimensional Knife-Edge Filters

    Science.gov (United States)

    Choi, Jaeho; Park, Yong-Sung

    2012-04-01

    A novel scheme of X-ray differential phase imaging was implemented with an array source and a two-dimensional Foucault knife-edge (2DFK). A pinhole array lens was employed to manipulate the X-ray beam on the Fourier space. An emerging biaxial scanning procedure was also demonstrated with the periodic 2DFK. The differential phase images (DPIs) of the midrib in a leaf of a rose bush were visualized to verify the phase imaging of biological specimens by the proposed method. It also has features of depicting multiple-stack phase images, and rendering morphological DPIs, because it acquires pure phase information.

  7. Structural dynamics of gas-phase molybdenum nanoclusters : A transmission electron microscopy study

    NARCIS (Netherlands)

    Vystavel, T; Koch, SA; Palasantzas, G; De Hosson, JTM

    2005-01-01

    In this paper we study structural aspects of molybdenum clusters by transmission electron microscopy. The deposited clusters with sizes 4 nm or larger show a body-centered crystal (bcc) structure. The clusters are self-assembled from smaller structural units and form cuboids with a typical size of 4

  8. Transmission electron microscopy analysis of phase separation in GaInAsSb films grown on GaSb substrate.

    Science.gov (United States)

    Szczeszek, P; Amariei, A; Schöne, J; Zoulis, G; Vouroutzis, N; Polychroniadis, E K; Stróz, D

    2006-10-01

    The GaSb-based quaternary alloys are a good choice for thermophotovoltaic applications. The thermophotovoltaic cell converts infrared radiation to electricity, using the same principles as photovoltaic devices. The aim of the present work was the microstructural study of such an alloy, namely Ga(0.84)In(0.16)As(0.12)Sb(0.88). A thin film of the material was grown by metal organic vapour phase epitaxy on a (100)alpha-->[111]B (alpha = 2 degrees, 4 degrees, 6 degrees) GaSb substrate. The GaInAsSb alloy has an appropriate band gap, but suffers from a phase separation consisting of GaAs-rich and InSb-rich regions that is disadvantageous for cell efficiency. In this work, we employed a morphological approach to phase separation, with the use of conventional transmission electron microscopy and atomic force microscopy. The phase separation occurs in two different orientations: parallel to the growth direction (vertical) and inclined (lateral). After application of fast Fourier transformation filtering, the vertical periodicity was found to be lambda = 5 nm for the pair (black and white) of layers independently of the cut-off angle, whereas the lateral periodicity was related to it.

  9. Quantitative imaging of electron density and effective atomic number using phase contrast CT

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen Guanghong, E-mail: gchen7@wisc.ed [Department of Medical Physics, University of Wisconsin-Madison, WI 53705 (United States)

    2010-05-07

    Compared to single energy CT, which only provides information for x-ray linear attenuation coefficients, dual-energy CT is able to obtain both the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual-energy CT, a novel quantitative imaging method based on phase contrast CT is presented. Rather than requiring two projection data sets with different x-ray energy spectra, diffraction-grating-based phase contrast CT is capable of reconstructing images of both linear attenuation and refractive index decrement from the same projection data using a single x-ray energy spectra. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Two physical phantoms were constructed and used to validate the presented method. Experimental results demonstrate that (1) electron density can be accurately determined from refractive index decrement through a linear relationship, and (2) the effective atomic number can be explicitly derived from the ratio of the linear attenuation to refractive index decrement using a power function plus a constant. The presented method will provide insight into the technique of material separation and find its use in medical and industrial applications.

  10. Quantitative imaging of electron density and effective atomic number using phase contrast CT

    Science.gov (United States)

    Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2010-05-01

    Compared to single energy CT, which only provides information for x-ray linear attenuation coefficients, dual-energy CT is able to obtain both the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual-energy CT, a novel quantitative imaging method based on phase contrast CT is presented. Rather than requiring two projection data sets with different x-ray energy spectra, diffraction-grating-based phase contrast CT is capable of reconstructing images of both linear attenuation and refractive index decrement from the same projection data using a single x-ray energy spectra. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Two physical phantoms were constructed and used to validate the presented method. Experimental results demonstrate that (1) electron density can be accurately determined from refractive index decrement through a linear relationship, and (2) the effective atomic number can be explicitly derived from the ratio of the linear attenuation to refractive index decrement using a power function plus a constant. The presented method will provide insight into the technique of material separation and find its use in medical and industrial applications.

  11. A novel quantitative imaging technique for material differentiation based on differential phase contrast CT

    Science.gov (United States)

    Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2010-04-01

    Compared to single energy CT, which provides information only about the x-ray linear attenuation coefficients, dual energy CT is able to obtain the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual energy CT, a novel quantitative imaging method based on phase contrast CT is described. Rather than requiring two scans with different x-ray photon energies, diffraction grating-based phase contrast CT is capable of reconstructing images of both the linear attenuation and refractive index decrement from a single scan. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Experimental results demonstrate that: (1) electron density can be accurately determined from refractive index decrement through a linear relationship; and (2) effective atomic number can be explicitly derived from the ratio of linear attenuation to refractive index decrement, using a simple function, i.e., a power function plus a constant. The presented method will shed insight into the field of material separation and find its use in medical and non-medical applications.

  12. Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of Plasmodium spp: performance, limit of detection analysis and quality assurance

    Directory of Open Access Journals (Sweden)

    Ralevski Filip

    2009-12-01

    Full Text Available Abstract Background Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease. Materials and methods A total of 466 blood specimens from returning travelers to Africa, Asia, and South/Central America with suspected malaria infection were collected between 2007 and 2009 at the reference public health laboratory. These specimens were assessed by reference microscopy, multipex real-time quantitative polymerase chain reaction (QPCR, and two rapid diagnostic immuno-chromatographic tests (ICT in a blinded manner. Key clinical laboratory parameters such as limit of detection (LOD analysis on clinical specimens by parasite stage, inter-reader variability of ICTs, staffing implications, quality assurance and cost analysis were evaluated. Results QPCR is the most analytically sensitive method (sensitivity 99.41%, followed by CARESTART (sensitivity 88.24%, and BINAXNOW (sensitivity 86.47% for the diagnosis of malaria in returning travelers when compared to reference microscopy. However, microscopy was unable to specifically identify Plasmodia spp. in 18 out of 170 positive samples by QPCR. Moreover, the 17 samples that were negative by microscopy and positive by QPCR were also positive by ICTs. Quality assurance was achieved for QPCR by exchanging a blinded proficiency panel with another reference laboratory. The Kappa value of inter-reader variability among three readers for BINAXNOW and CARESTART was calculated to be 0.872 and 0.898 respectively. Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R2 = 0.9746 in a clinically relevant dynamic range and retains a LOD of 11 rDNA copies/μl for P. falciparum, which was several log lower than reference microscopy and ICTs. LOD for QPCR is affected not only by parasitemia but the parasite stage distribution of each clinical specimen. QPCR was approximately 6-fold more

  13. Role of Quantitative CSF Microscopy to Predict Culture Status and Outcome in HIV-Associated Cryptococcal Meningitis in a Brazilian Cohort

    Science.gov (United States)

    Vidal, José E.; Gerhardt, Juliana; Peixoto de Miranda, Érique J.; Dauar, Rafi F.; Oliveira Filho, Gilberto S.; Penalva de Oliveira, Augusto C.; Boulware, David R.

    2012-01-01

    Objectives To evaluate clinical, laboratory, and quantitative cerebrospinal fluid (CSF) cryptococcal cell counts for associations with in-hospital outcomes of HIV-infected patients with cryptococcal meningitis. Design Retrospective study. Methods 98 HIV-infected adult patients with CSF culture-proven cryptococcal meningitis admitted between January 2006 and June 2008 at a referral center in Sao Paulo, Brazil. Results Cryptococcal meningitis was the first AIDS-defining illness in 69% of whom 97% (95/98) had known prior HIV-infection. The median CD4+ T cell count was 39 cells/mcL (IQR: 17–87 cells/mcL). Prior antiretroviral therapy (ART) was reported in 50%. Failure to sterilize the CSF by 7–14 days was associated with baseline fungal burden of ≥10 yeasts/mcL by quantitative CSF microscopy (OR=15.3, 95% CI: 4.1–56.7;P14 days, altered mental status (P50,000 copies/mL (P=.036), ≥10 yeasts/mcL CSF at 7–14 days (P=.038), and intracranial pressure >50 cmH20 at 7–14 days (P=.007). Conclusion Most patients were aware of their HIV-status. Fungal burden of ≥10 yeasts/mcL by quantitative CSF microscopy predicted current CSF culture status and may be useful to customize the induction therapy. High uncontrolled intracranial pressure was associated with mortality. PMID:22578940

  14. Quantitative and Qualitative Changes in Teaching Histology by Means of Virtual Microscopy in an Introductory Course in Human Anatomy

    Science.gov (United States)

    Husmann, Polly R.; O'Loughlin, Valerie Dean; Braun, Mark W.

    2009-01-01

    This study compares overall laboratory averages and individual test scores along with a student survey to determine the effects of using virtual microscopy in place of optical microscopes in a large undergraduate human anatomy course. T-tests revealed that the first two laboratory examinations (of four) and the overall laboratory averages were…

  15. Fluorescence microscopy techniques for quantitative evaluation of organic biocide distribution in antifouling paint coatings: Application to model antifouling coatings

    NARCIS (Netherlands)

    Goodes, L.R.; Dennington, S.P.; Schuppe, H.; Wharton, J.A.; Bakker, M.; Klijnstra, J.W.; Stokes, K.R.

    2012-01-01

    A test matrix of antifouling (AF) coatings including pMMA, an erodible binder and a novel trityl copolymer incorporating Cu 2O and a furan derivative (FD) natural product, were subjected to pontoon immersion and accelerated rotor tests. Fluorescence and optical microscopy techniques were applied to

  16. Quantitative Superresolution Microscopy Reveals Differences in Nuclear DNA Organization of Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance

    NARCIS (Netherlands)

    Sathitruangsak, C.; Righolt, C.H.; Klewes, L.; Tammur, P.; Ilus, T.; Tamm, A.; Punab, M.; Olujohungbe, A.; Mai, S.

    2015-01-01

    The mammalian nucleus has a distinct substructure that cannot be visualized directly by conventional microscopy. In this study, the organization of the DNA within the nucleus of multiple myeloma (MM) cells, their precursor cells (monoclonal gammopathy of undetermined significance; MGUS) and control

  17. Quantitative superresolution microscopy reveals differences in nuclear DNA organization of multiple myeloma and monoclonal gammopathy of undetermined significance.

    Science.gov (United States)

    Sathitruangsak, Chirawadee; Righolt, Christiaan H; Klewes, Ludger; Tammur, Pille; Ilus, Tiiu; Tamm, Anu; Punab, Mari; Olujohungbe, Adebayo; Mai, Sabine

    2015-05-01

    The mammalian nucleus has a distinct substructure that cannot be visualized directly by conventional microscopy. In this study, the organization of the DNA within the nucleus of multiple myeloma (MM) cells, their precursor cells (monoclonal gammopathy of undetermined significance; MGUS) and control lymphocytes of the representative patients is visualized and quantified by superresolution microscopy. Three-dimensional structured illumination microscopy (3D-SIM) increases the spatial resolution beyond the limits of conventional widefield fluorescence microscopy. 3D-SIM reveals new insights into the nuclear architecture of cancer as we show for the first time that it resolves organizational differences in intranuclear DNA organization of myeloma cells in MGUS and in MM patients. In addition, we report a significant increase in nuclear submicron DNA structure and structure of the DNA-free space in myeloma nuclei compared to normal lymphocyte nuclei. Our study provides previously unknown details of the nanoscopic DNA architecture of interphase nuclei of the normal lymphocytes, MGUS and MM cells. This study opens new avenues to understanding the disease progression from MGUS to MM. © 2014 Wiley Periodicals, Inc.

  18. Quantitative and Qualitative Changes in Teaching Histology by Means of Virtual Microscopy in an Introductory Course in Human Anatomy

    Science.gov (United States)

    Husmann, Polly R.; O'Loughlin, Valerie Dean; Braun, Mark W.

    2009-01-01

    This study compares overall laboratory averages and individual test scores along with a student survey to determine the effects of using virtual microscopy in place of optical microscopes in a large undergraduate human anatomy course. T-tests revealed that the first two laboratory examinations (of four) and the overall laboratory averages were…

  19. Characterization by Confocal Laser Scanning Microscopy of the Phase Composition at Interfaces in Thick Films of Polymer Blends

    Directory of Open Access Journals (Sweden)

    Sandro Lattante

    2014-01-01

    Full Text Available Confocal Laser Scanning Microscopy (CLSM has been used as a fast, user-friendly, and noninvasive tool for characterizing the phase composition differences at the substrate and air interfaces in thick films of polymer blends. A clearly different phase composition at the blend/glass interface and at the blend/air interface has been detected. We show that PCBM preferentially accumulates at the glass/blend interface, while P3HT preferentially accumulates at the blend/air interface, by comparing the integrated signal intensity of the luminescence coming from both interfaces. Our results demonstrate that CLSM can be used conveniently for the fast identification of a preferential phase segregation at interfaces in polymer blends. This is useful in the research field on devices (like sensors or planar waveguides that are based on very thick layers (thickness higher than 1 μm.

  20. Superconducting scanning tunneling microscopy tips in a magnetic field: Geometry-controlled order of the phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Matthias, E-mail: m.eltschka@fkf.mpg.de; Jäck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart (Germany); Kondrashov, Oleg V. [Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation); Skvortsov, Mikhail A. [Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation); Skolkovo Institute of Science and Technology, 143026 Moscow (Russian Federation); L. D. Landau Institute for Theoretical Physics, 142432 Chernogolovka (Russian Federation); Kern, Klaus [Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart (Germany); Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2015-09-21

    The properties of geometrically confined superconductors significantly differ from their bulk counterparts. Here, we demonstrate the geometrical impact for superconducting scanning tunneling microscopy (STM) tips, where the confinement ranges from the atomic to the mesoscopic scale. To this end, we compare the experimentally determined magnetic field dependence for several vanadium tips to microscopic calculations based on the Usadel equation. For our theoretical model of a superconducting cone, we find a direct correlation between the geometry and the order of the superconducting phase transition. Increasing the opening angle of the cone changes the phase transition from first to second order. Comparing our experimental findings to the theory reveals first and second order quantum phase transitions in the vanadium STM tips. In addition, the theory also explains experimentally observed broadening effects by the specific tip geometry.

  1. A Method for Quantitative Phase Analysis of Nanocrystalline Zirconium Dioxide Polymorphs.

    Science.gov (United States)

    Zhou, Zhiqiang; Guo, Li

    2015-04-01

    A method based on X-ray diffractometry was developed for quantitative phase analysis of nanocrystalline zirconium dioxide polymorphs. Corresponding formulas were derived. The key factors therein were evaluated by rigorous theoretical calculation and fully verified by experimentation. A process of iteration was raised to make the experimental verification proceed in the case of lack of pure ZrO2 crystal polymorphs. By this method, the weight ratios of tetragonal ZrO2 (t-ZrO2) to monoclinic ZrO2 (m-ZrO2) in any a mixture that contains nanocrystalline t-ZrO2 and m-ZrO2 or their weight fractions in a mixture that is composed of nanocrystalline t-ZrO2 and m-ZrO2 can be determined only upon an XRD test. It is proved by both theoretical calculation and experimental test that mutual substitutions of t-ZrO2 and cubic ZrO2 (c-ZrO2) in a wide range show almost no impact on the XRD patterns of their mixtures. And plus the similarity in property of t-ZrO2 and c-ZrO2, they can be treated as one whole phase. The high agreement of the theoretical and experimental results in this work also proves the validity and reliability of the theoretical calculation based on X-ray diffractometry theory for such quantitative phase analysis. This method has the potential to be popularized to other materials.

  2. Measuring the Nonuniform Evaporation Dynamics of Sprayed Sessile Microdroplets with Quantitative Phase Imaging.

    Science.gov (United States)

    Edwards, Chris; Arbabi, Amir; Bhaduri, Basanta; Wang, Xiaozhen; Ganti, Raman; Yunker, Peter J; Yodh, Arjun G; Popescu, Gabriel; Goddard, Lynford L

    2015-10-13

    We demonstrate real-time quantitative phase imaging as a new optical approach for measuring the evaporation dynamics of sessile microdroplets. Quantitative phase images of various droplets were captured during evaporation. The images enabled us to generate time-resolved three-dimensional topographic profiles of droplet shape with nanometer accuracy and, without any assumptions about droplet geometry, to directly measure important physical parameters that characterize surface wetting processes. Specifically, the time-dependent variation of the droplet height, volume, contact radius, contact angle distribution along the droplet's perimeter, and mass flux density for two different surface preparations are reported. The studies clearly demonstrate three phases of evaporation reported previously: pinned, depinned, and drying modes; the studies also reveal instances of partial pinning. Finally, the apparatus is employed to investigate the cooperative evaporation of the sprayed droplets. We observe and explain the neighbor-induced reduction in evaporation rate, that is, as compared to predictions for isolated droplets. In the future, the new experimental methods should stimulate the exploration of colloidal particle dynamics on the gas-liquid-solid interface.

  3. Quantitative x-ray magnetic circular dichroism mapping with high spatial resolution full-field magnetic transmission soft x-ray spectro-microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, MacCallum J. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, University of California, Berkeley, California 94720 (United States); Agostino, Christopher J. [Physics Department, University of California, Berkeley, California 94720 (United States); National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); N' Diaye, Alpha T. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Chen, Gong [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Im, Mi-Young [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873 (Korea, Republic of); Fischer, Peter, E-mail: PJFischer@lbl.gov [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, University of California, Santa Cruz, California 94056 (United States)

    2015-05-07

    The spectroscopic analysis of X-ray magnetic circular dichroism (XMCD), which serves as strong and element-specific magnetic contrast in full-field magnetic transmission soft x-ray microscopy, is shown to provide information on the local distribution of spin (S) and orbital (L) magnetic moments down to a spatial resolution of 25 nm limited by the x-ray optics used in the x-ray microscope. The spatially resolved L/S ratio observed in a multilayered (Co 0.3 nm/Pt 0.5 nm) × 30 thin film exhibiting a strong perpendicular magnetic anisotropy decreases significantly in the vicinity of domain walls, indicating a non-uniform spin configuration in the vertical profile of a domain wall across the thin film. Quantitative XMCD mapping with x-ray spectro-microscopy will become an important characterization tool for systems with topological or engineered magnetization inhomogeneities.

  4. Super resolution microscopy of lipid bilayer phases and single molecule kinetic studies on merocyanine 540 bound lipid vesicles

    Science.gov (United States)

    Kuo, Chin-Kuei

    Recently, observing biological process and structural details in live cell became feasible after the introduction of super-resolution microscopy. Super-resolution microscopy by single molecule localization is the method that has commonly been used for such purpose. There are mainly three approaches to it: stochastic optical reconstruction microscopy (STORM), photoactivated localization microscopy (PALM), and point accumulation in nanoscale topology (PAINT). STORM and PALM rely on external laser control and use of photoactivable fluorescent protein or photoswitchable dyes and are technically challenging. The PAINT method relies on the control of thermal reaction rates to enable the switching between bright and dark states. Therefore, many conventional fluorescent probes can be applied in PAINT method and the images denote different information composed of interactions between the probe and its immediate environment by variations of probe parameters. The existence of lipid rafts has been under debates for decades due to the lack of a tool to directly visualize them in live cells. In the thesis, we combine PAINT with a phase sensitive dye, Merocyanine 540, to enable nanoscale observation of phase separation on supported lipid bilayers of mixed liquid/gel phases. The imaging results are presented in the chapter 3. Given that this is the first example of visualization of nanoscale phase separation of lipid bilayers using an optical microscope, we further looked into the kinetics of MC540 monomer dimer equilibrium in lipid bilayers using single molecule intensity time trajectory analysis and polarization dependent imaging. Our finding confirms that perpendicular monomeric MC540 (to the membrance surface) is the emitting speices in our system and it stays fluorescent for roughly 3 ms before it switches off to dark states. This part of analysis is presented in the chapter 4. All the materials, procedures to carry out experiments and data analysis, methods involved in our

  5. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    Science.gov (United States)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  6. Quantitative investigation of cellular growth in directional solidification by phase-field simulation.

    Science.gov (United States)

    Wang, Zhijun; Wang, Jincheng; Li, Junjie; Yang, Gencang; Zhou, Yaohe

    2011-10-01

    Using a quantitative phase-field model, a systematic investigation of cellular growth in directional solidification is carried out with emphasis on the selection of cellular tip undercooling, tip radius, and cellular spacing. Previous analytical models of cellular growth are evaluated according to the phase-field simulation results. The results show that cellular tip undercooling and tip radius not only depend on the pulling velocity and thermal gradient, but also depend on the cellular interaction related to the cellular spacing. The cellular interaction results in a finite stable range of cellular spacing. The lower limit is determined by the submerging mechanism while the upper limit comes from the tip splitting instability corresponding to the absence of the cellular growth solution, both of which can be obtained from phase-field simulation. Further discussions on the phase-field results also present an analytical method to predict the lower limit. Phase-field simulations on cell elimination between cells with equal spacing validate the finite range of cellular spacing and give deep insight into the cellular doublon and oscillatory instability between cell elimination and tip splitting.

  7. Quantitative stability analyses of multiwall carbon nanotube nanofluids following water/ice phase change cycling

    Science.gov (United States)

    Ivall, Jason; Langlois-Rahme, Gabriel; Coulombe, Sylvain; Servio, Phillip

    2017-02-01

    Multiwall carbon nanotube nanofluids are regularly investigated for phase change enhancement between liquid and solid states owing to their improved heat transfer properties. The potential applications are numerous, the most notable being latent heat thermal energy storage, but the success of all nanofluid-assisted technologies hinges greatly on the ability of nanoparticles to remain stably dispersed after repeated phase change cycles. In this report, the stability of aqueous nanofluids made from oxygen-functionalized multiwall carbon nanotubes (f-MWCNTs) was profiled over the course of 20 freeze/thaw cycles. Sonication was used after each cycle to re-disperse clusters formed from the crystallization process. This study offers a quantitative evaluation of f-MWCNT-nanofluid stability as a result of phase change through optical characterization of concentration and particle size. It also provides insight into the integrity of the surface functionalities through zeta potential and XPS analyses. Concentration and particle size measurements showed moderate and consistent recoverability of f-MWCNT dispersion following ultrasonication. XPS measurements of solid-state MWCNTs exposed to freeze/thaw cycling in water, and zeta potential analyses of the nanofluids indicate that the surface oxygen content is preserved throughout phase change and over repeated cycles. These results suggest a resilience of oxygen-functionalized MWCNTs to the freezing and thawing of water, which is ideal for their utilization as phase change enhancers.

  8. Lens-free and portable quantitative phase microscope using a dual-pinhole aperture

    OpenAIRE

    Lu Yujie; Liu Yunhui; Wang Zerui; Zheng Fan

    2015-01-01

    This paper presents a lens-free and portable quantitative phase microscope. This microscope employs a concise off-axis set-up where a dual-pinhole aperture is utilized to generate the reference wave and the object wave. As no lenses or beamsplitters are used in this microscope, the total size of this microscope is only slightly larger than a smart phone, and the cost of this microscope except for the digital camera is about 3000 RMB. Even with such small size and low cost, this microscope pos...

  9. Lens-free and portable quantitative phase microscope using a dual-pinhole aperture

    Directory of Open Access Journals (Sweden)

    Lu Yujie

    2015-01-01

    Full Text Available This paper presents a lens-free and portable quantitative phase microscope. This microscope employs a concise off-axis set-up where a dual-pinhole aperture is utilized to generate the reference wave and the object wave. As no lenses or beamsplitters are used in this microscope, the total size of this microscope is only slightly larger than a smart phone, and the cost of this microscope except for the digital camera is about 3000 RMB. Even with such small size and low cost, this microscope possesses a lateral resolution of ~ 1:7μm and an axial accuracy of tens of nanometers.

  10. Quantitative analysis of forskolin in Coleus forskohlii (Lamiaceae) by reversed-phase liquid chromatography.

    Science.gov (United States)

    Schaneberg, Brian T; Khan, Ikhlas A

    2003-01-01

    A rapid method was developed for the evaluation of forskolin in Coleus forskohlii Briq. (Lamiaceae). Forskolin was quantitated in the root and stem of dried C. forskohlii and in 17 market products by reversed-phase liquid chromatography (LC) with a photodiode array detector at 210 nm. The temperature was held constant at 30 degrees C, and the retention time of forskolin was approximately 6.8 min. The samples were extracted with acetonitrile by sonication. The precision of the method was confirmed by a standard deviation forskohlii plant material and in market products claiming to contain C. forskohlii.

  11. Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities.

    Science.gov (United States)

    Ohno, Munekazu

    2012-11-01

    A quantitative phase-field model is developed for simulating microstructural pattern formation in nonisothermal solidification in dilute multicomponent alloys with arbitrary thermal and solutal diffusivities. By performing the matched asymptotic analysis, it is shown that the present model with antitrapping current terms reproduces the free-boundary problem of interest in the thin-interface limit. Convergence of the simulation outcome with decreasing the interface thickness is demonstrated for nonisothermal free dendritic growth in binary alloys and isothermal and nonisothermal free dendritic growth in a ternary alloy.

  12. Microstructural investigation of Nd-rich phase in sintered Nd-Fe-B magnets through electron microscopy

    Institute of Scientific and Technical Information of China (English)

    付新; 韩小磊; 杜志伟; 冯海波; 李岩峰

    2013-01-01

    The distribution, morphologies and structures of intergranular Nd-rich phase in sintered Nd-Fe-B magnets were studied through electron microscopy. Backscattered electron (BSE) imaging revealed that Nd-rich particles with various morphologies and sizes were randomly distributed at the grain boundaries and the triple junctions of the tetragonal Nd2Fe14B matrix. Through selected area electron diffraction (SAED) analysis under a systematic tilting condition, most intergranular Nd-rich phase particles, with sizes ranging from hundreds of nanometres to several micrometres, were identified as face-centred cubic (FCC) structure. Such particles possessed several approximate orientation relationships with their adjacent Nd2Fe14B matrix grains, such as (002)Nd2Fe14B//(200)FCC_Nd-rich [120] Nd2Fe14B//[001]FCC_Nd-rich, (002)Nd2Fe14B//( 220 )FCC_Nd-rich [110] Nd2Fe14B//[112]FCC_Nd-rich, as well as (011)Nd2Fe14B//(131)FCC_Nd-rich [111] Nd2Fe14B//[114]FCC_Nd-rich, which could be attributed to minimising interfacial energy. The combination of high-resolution electron microscopy with energy-dispersive X-ray spectroscopy revealed the internal inhomogeneous nature of Nd-rich phases. The large lattice distortion and nanoscale-ordered structures within a single Nd-rich grain were observed.

  13. Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers.

    Science.gov (United States)

    Kong, Lingbo; Zhang, Pengfei; Wang, Guiwen; Yu, Jing; Setlow, Peter; Li, Yong-qing

    2011-05-01

    This protocol describes a method combining phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers to characterize the germination of single bacterial spores. The characterization consists of the following steps: (i) loading heat-activated dormant spores into a temperature-controlled microscope sample holder containing a germinant solution plus a nucleic acid stain; (ii) capturing a single spore with optical tweezers; (iii) simultaneously measuring phase-contrast images, Raman spectra and fluorescence images of the optically captured spore at 2- to 10-s intervals; and (iv) analyzing the acquired data for the loss of spore refractility, changes in spore-specific molecules (in particular, dipicolinic acid) and uptake of the nucleic acid stain. This information leads to precise correlations between various germination events, and takes 1-2 h to complete. The method can also be adapted to use multi-trap Raman spectroscopy or phase-contrast microscopy of spores adhered on a cover slip to simultaneously obtain germination parameters for multiple individual spores.

  14. On detector linearity and precision of beam shift detection for quantitative differential phase contrast applications.

    Science.gov (United States)

    Zweck, Josef; Schwarzhuber, Felix; Wild, Johannes; Galioit, Vincent

    2016-09-01

    Differential phase contrast is a STEM imaging mode where minute sideways deflections of the electron probe are monitored, usually by using a position sensitive device (Chapman, 1984 [1]; Lohr et al., 2012 [2]) or, alternatively in some cases, a fast camera (Müller et al., 2012 [3,4]; Yang et al., 2015 [5]; Pennycook et al., 2015 [6]) as a pixelated detector. While traditionally differential phase contrast electron microscopy was mainly focused on investigations of micro-magnetic domain structures and their specific features, such as domain wall widths, etc. (Chapman, 1984 [1]; Chapman et al., 1978, 1981, 1985 [7-9]; Sannomiya et al., 2004 [10]), its usage has recently been extended to mesoscopic (Lohr et al., 2012, 2016 [2,12]; Bauer et al., 2014 [11]; Shibata et al., 2015 [13]) and nano-scale electric fields (Shibata et al., 2012 [14]; Mueller et al., 2014 [15]). In this paper, the various interactions which can cause a beam deflection are reviewed and expanded by two so far undiscussed mechanisms which may be important for biological applications. As differential phase contrast microscopy strongly depends on the ability to detect minute beam deflections we first treat the linearity problem for an annular four quadrant detector and then determine the factors which limit the minimum measurable deflection angle, such as S/N ratio, current density, dwell time and detector geometry. Knowing these factors enables the experimenter to optimize the set-up for optimum performance of the microscope and to get a clear figure for the achievable field resolution error margins.

  15. Direct observation of mesoscopic phase separation in KxFeySe2 by scanning microwave microscopy

    Science.gov (United States)

    Maeda, Atsutaka; Takahashi, Hideyuki; Imai, Yoshinori

    2015-03-01

    KxFeySe2 is isostructural to 122-FeAs compounds. However, its electronic structure is unique among Fe-based superconductors in the sense that hole Fermi pocket is absent at the center of the Brillouin zone. Therefore, it is important to study this compounds in terms of the mechanism of superconductivity since some pairing (for example, s +/- -wave) needs the interaction between hole and electron Fermi pockets. However, the phase separation in this material makes studies using conventional macroscopic measurement techniques very difficult. Scanning near-field microwave microscope (SMM), which can measure local electric property of inhomogeneous conducting samples, should be a powerful tool. Recently we developed the combined instrument of STM and SMM with high sensitivity, and investigated the local electric property of KxFeySe2 (x = 0.8, y = 1.6 ~2, Tc = 31 K) using this scanning tunneling/microwave microscope. The characteristic pattern of mesoscopic phase separation of the metallic and the semiconducting phase was observed. From the comparison with previously reported SEM/EDS result we identified the metallic phase and the semiconducting phase as the minor Fe-rich phase and the major K2Fe4Se5 phase, respectively.

  16. Nanoscale Phase-Separated Structure in Core-Shell Nanoparticles of SiO2-Si1-xGexO2 Glass Revealed by Electron Microscopy.

    Science.gov (United States)

    Kubo, Yugo; Yonezawa, Kazuhiro

    2017-09-05

    SiO2-based optical fibers are indispensable components of modern information communication technologies. It has recently become increasingly important to establish a technique for visualizing the nanoscale phase-separated structure inside SiO2-GeO2 glass nanoparticles during the manufacturing of SiO2-GeO2 fibers. This is because the rapidly increasing price of Ge has made it necessary to improve the Ge yield by clarifying the detailed mechanism of Ge diffusion into SiO2. However, direct observation of the internal nanostructure of glass particles has been extremely difficult, mainly due to electrostatic charging and the damage induced by electron and X-ray irradiation. In the present study, we used state-of-the-art scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDX) to examine cross-sectional samples of SiO2-GeO2 particles embedded in an epoxy resin, which were fabricated using a broad Ar ion beam and a focused Ga ion beam. These advanced techniques enabled us to observe the internal phase-separated structure of the nanoparticles. We have for the first time clearly determined the SiO2-Si1-xGexO2 core-shell structure of such particles, the element distribution, the degree of crystallinity, and the quantitative chemical composition of microscopic regions, and we discuss the formation mechanism for the observed structure. The proposed imaging protocol is highly promising for studying the internal structure of various core-shell nanoparticles, which affects their catalytic, optical, and electronic properties.

  17. Parallel preparation of plan-view transmission electron microscopy specimens by vapor-phase etching with integrated etch stops

    Energy Technology Data Exchange (ETDEWEB)

    English, Timothy S., E-mail: englisht@stanford.edu [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Provine, J [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Marshall, Ann F.; Koh, Ai Leen [Stanford Nano Shared Facilities, Stanford University, Stanford, CA 94305 (United States); Kenny, Thomas W. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2016-07-15

    Specimen preparation remains a practical challenge in transmission electron microscopy and frequently limits the quality of structural and chemical characterization data obtained. Prevailing methods for thinning of specimens to electron transparency are serial in nature, time consuming, and prone to producing artifacts and specimen failure. This work presents an alternative method for the preparation of plan-view specimens using isotropic vapor-phase etching with integrated etch stops. An ultrathin amorphous etch-stop layer simultaneously serves as an electron transparent support membrane whose thickness is defined by a controlled growth process such as atomic layer deposition with sub-nanometer precision. This approach eliminates the need for mechanical polishing or ion milling to achieve electron transparency, and reduces the occurrence of preparation induced artifacts. Furthermore, multiple specimens from a plurality of samples can be thinned in parallel due to high selectivity of the vapor-phase etching process. These features enable dramatic reductions in preparation time and cost without sacrificing specimen quality and provide advantages over wet etching techniques. Finally, we demonstrate a platform for high-throughput transmission electron microscopy of plan-view specimens by combining the parallel preparation capabilities of vapor-phase etching with wafer-scale micro- and nanofabrication. - Highlights: • Parallel thinning of plan-view specimens enables high-throughput microscopy studies. • The support membrane thickness is controlled with sub-nanometer precision. • No physical etching (polishing, dimpling, or ion milling) is required. • Large area and uniformly thin specimens are suitable for Cs-corrected HRTEM. • Wafer-scale integration enables custom specimens for in situ experiments.

  18. Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase

    Energy Technology Data Exchange (ETDEWEB)

    Taoufyq, A. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Département d‘Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache (France); Société CESIGMA—Signals and Systems, 1576 Chemin de La Planquette, F 83 130 LA GARDE (France); Ait Ahsaine, H. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Patout, L. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Benlhachemi, A.; Ezahri, M. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); and others

    2013-07-15

    The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification.

  19. Quantitative, Comparable Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy: Correcting Errors in Phase Retrieval

    CERN Document Server

    Camp, Charles H; Cicerone, Marcus T

    2015-01-01

    Coherent anti-Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample-to-sample comparability. The primary limitation stems from the need to accurately measure the so-called nonresonant background (NRB) that is used to extract the chemically-sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel-by-pixel basis is a nontrivial task; thus, reference NRB from glass or water are typically utilized, resulting in error between the actual and estimated amplitude and phase. In this manuscript, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending ...

  20. Active illumination using a digital micromirror device for quantitative phase imaging

    CERN Document Server

    Shin, Seungwoo; Yoon, Jonghee; Park, YongKeun

    2015-01-01

    We present a powerful and cost-effective method for active illumination using a digital micromirror device (DMD) for quantitative phase imaging techniques. Displaying binary illumination patterns on a DMD with appropriate spatial filtering, plane waves with various illumination angles are generated and impinged onto a sample. Complex optical fields of the sample obtained with various incident angles are then measured via Mach-Zehnder interferometry, from which a high-resolution two-dimensional synthetic aperture phase image and a three-dimensional refractive index tomogram of the sample are reconstructed. We demonstrate the fast and stable illumination control capability of the proposed method by imaging colloidal spheres and biological cells, including a human red blood cell and a HeLa cell.

  1. Interface morphology studies of liquid phase epitaxy grown HgCdTe films by atomic force microscopy

    Science.gov (United States)

    Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-04-01

    In this paper we report an investigation of the morphology of the interfaces of liquid phase epitaxy (LPE) grown HgCdTe thin films on CdTe and CdZnTe substrates by atomic force microscopy (AFM) on freshly cleaved (110) crystallographic planes. An empirical observation which may be linked to lattice mismatch was indicated by an angle between the cleavage steps of the substrate to those of the film. The precipitates with size ranging from 5 nm to 20 nm were found to be most apparent near the interface.

  2. Differences in estimates of size distribution of beryllium powder materials using phase contrast microscopy, scanning electron microscopy, and liquid suspension counter techniques.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Hoover, Mark D; Dickerson, Robert M; Day, Gregory A; Breysse, Patrick N; Scripsick, Ronald C

    2007-02-28

    Accurate characterization of the physicochemical properties of aerosols generated for inhalation toxicology studies is essential for obtaining meaningful results. Great emphasis must also be placed on characterizing particle properties of materials as administered in inhalation studies. Thus, research is needed to identify a suite of techniques capable of characterizing the multiple particle properties (i.e., size, mass, surface area, number) of a material that may influence toxicity. The purpose of this study was to characterize the morphology and investigate the size distribution of a model toxicant, beryllium. Beryllium metal, oxides, and alloy particles were aerodynamically size-separated using an aerosol cyclone, imaged dry using scanning electron microscopy (SEM), then characterized using phase contrast microscopy (PCM), a liquid suspension particle counter (LPC), and computer-controlled SEM (CCSEM). Beryllium metal powder was compact with smaller sub-micrometer size particles attached to the surface of larger particles, whereas the beryllium oxides and alloy particles were clusters of primary particles. As expected, the geometric mean (GM) diameter of metal powder determined using PCM decreased with aerodynamic size, but when suspended in liquid for LPC or CCSEM analysis, the GM diameter decreased by a factor of two (p particles attached to the surface of larger particles and/or particle agglomerates detach in liquid, thereby shifting the particle size distribution downward. The GM diameters of the oxide materials were similar regardless of sizing technique, but observed differences were generally significant (p aerodynamic cluster size will dictate deposition in the lung, but primary particle size may influence biological activity. The GM diameter of alloy particles determined using PCM became smaller with decreasing aerodynamic size fraction; however, when suspended in liquid for CCSEM and LPC analyses, GM particle size decreased by a factor of two (p

  3. Analysis of nuclear organization with TANGO, software for high-throughput quantitative analysis of 3D fluorescence microscopy images.

    Science.gov (United States)

    Ollion, Jean; Cochennec, Julien; Loll, François; Escudé, Christophe; Boudier, Thomas

    2015-01-01

    The cell nucleus is a highly organized cellular organelle that contains the genome. An important step to understand the relationships between genome positioning and genome functions is to extract quantitative data from three-dimensional (3D) fluorescence imaging. However, such approaches are limited by the requirement for processing and analyzing large sets of images. Here we present a practical approach using TANGO (Tools for Analysis of Nuclear Genome Organization), an image analysis tool dedicated to the study of nuclear architecture. TANGO is a generic tool able to process large sets of images, allowing quantitative study of nuclear organization. In this chapter a practical description of the software is drawn in order to give an overview of its different concepts and functionalities. This description is illustrated with a precise example that can be performed step-by-step on experimental data provided on the website http://biophysique.mnhn.fr/tango/HomePage.

  4. Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction.

    Science.gov (United States)

    Robert, Donatien; Douillard, Thierry; Boulineau, Adrien; Brunetti, Guillaume; Nowakowski, Pawel; Venet, Denis; Bayle-Guillemaud, Pascale; Cayron, Cyril

    2013-12-23

    LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 μm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.

  5. Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos

    Science.gov (United States)

    Chen, Yu; Trinh, Le A.; Fingler, Jeff; Fraser, Scott E.

    2016-12-01

    A phase variance optical coherence microscope (pvOCM) has been created to image blood flow in the microvasculature of zebrafish embryos, without the use of exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2.8 μm in tissue and imaging depth of more than 100 μm. Images of 2 to 5 days postfertilization zebrafish embryos identified the detailed anatomical structure based on OCM intensity contrast. Phase variance contrast offered visualization of blood flow in the arteries, veins, and capillaries. The pvOCM images of the vasculature were confirmed by direct comparisons with fluorescence microscopy images of transgenic embryos in which the vascular endothelium is labeled with green fluorescent protein. The ability of pvOCM to capture activities of regional blood flow permits it to reveal functional information that is of great utility for the study of vascular development.

  6. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  7. Statistical parametric mapping of stimuli-evoked changes in quantitative blood flow using extended-focus optical coherence microscopy (Conference Presentation)

    Science.gov (United States)

    Marchand, Paul J.; Bouwens, Arno; Shamaei, Vincent; Nguyen, David; Extermann, Jerome; Bolmont, Tristan; Lasser, Theo

    2016-03-01

    Magnetic Resonance Imaging has revolutionised our understanding of brain function through its ability to image human cerebral structures non-invasively over the entire brain. By exploiting the different magnetic properties of oxygenated and deoxygenated blood, functional MRI can indirectly map areas undergoing neural activation. Alongside the development of fMRI, powerful statistical tools have been developed in an effort to shed light on the neural pathways involved in processing of sensory and cognitive information. In spite of the major improvements made in fMRI technology, the obtained spatial resolution of hundreds of microns prevents MRI in resolving and monitoring processes occurring at the cellular level. In this regard, Optical Coherence Microscopy is an ideal instrumentation as it can image at high spatio-temporal resolution. Moreover, by measuring the mean and the width of the Doppler spectra of light scattered by moving particles, OCM allows extracting the axial and lateral velocity components of red blood cells. The ability to assess quantitatively total blood velocity, as opposed to classical axial velocity Doppler OCM, is of paramount importance in brain imaging as a large proportion of cortical vascular is oriented perpendicularly to the optical axis. We combine here quantitative blood flow imaging with extended-focus Optical Coherence Microscopy and Statistical Parametric Mapping tools to generate maps of stimuli-evoked cortical hemodynamics at the capillary level.

  8. Inter- and intragranular delta phase quantitative characterization in Inconel 718 by means of image analysis.

    Science.gov (United States)

    Vanderesse, N; Anderson, M; Bridier, F; Bocher, P

    2015-01-01

    This paper describes an image processing method for discriminating the inter- and intragranular delta phase precipitates in Inconel 718 (IN 718). The successive practical operations and the motivations of their choices are presented in detail. The method was applied to IN 718 specimens heat treated with different parameters to produce microstructures containing various amounts of both types of precipitates. They were characterized by electron microscopy in backscattered electron imaging. The main difficulty arose from the fact that the brightness distributions of inter- and intragranular precipitates partially overlap. Additional information on their morphology and their spatial distribution had to be exploited in order to differentiate them. The shape and the orientation of the precipitates were evaluated using the structure tensor, an operator that quantifies the directionality of the intensity distribution in an image. The distance between parallel precipitates was also used as an additional property to identify clusters of intragranular precipitates.

  9. LA-ICP-MS Allows Quantitative Microscopy of Europium-Doped Iron Oxide Nanoparticles and is a Possible Alternative to Ambiguous Prussian Blue Iron Staining.

    Science.gov (United States)

    Scharlach, Constantin; Müller, Larissa; Wagner, Susanne; Kobayashi, Yuske; Kratz, Harald; Ebert, Monika; Jakubowski, Norbert; Schellenberger, Eyk

    2016-05-01

    The development of iron oxide nanoparticles for biomedical applications requires accurate histological evaluation. Prussian blue iron staining is widely used but may be unspecific when tissues contain substantial endogenous iron. Here we tested whether microscopy by laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) is sensitive enough to analyze accumulation of very small iron oxide particles (VSOP) doped with europium in tissue sections. For synthesis of VSOP, a fraction of Fe3+ (5 wt%) was replaced by Eu3+, resulting in particles with 0.66 mol% europium relative to iron (Eu-VSOP) but with otherwise similar properties as VSOP. Eu-VSOP or VSOP was intravenously injected into ApoE-/- mice on Western cholesterol diet and accumulated in atherosclerotic plaques of these animals. Prussian blue staining was positive for ApoE-/- mice with particle injection but also for controls. LA-ICP-MS microscopy resulted in sensitive and specific detection of the europium of Eu-VSOP in liver and atherosclerotic plaques. Furthermore, calibration with Eu-VSOP allowed calculation of iron and particle concentrations in tissue sections. The combination of europium-doped iron oxide particles and LA-ICP-MS microscopy provides a new tool for specific and quantitative analysis of particle distribution at the tissue level and allows correlation with other elements such as endogenous iron.

  10. Gel-gel phase separation within milk sphingomyelin domains revealed at the nanoscale using atomic force microscopy.

    Science.gov (United States)

    Guyomarc'h, Fanny; Chen, Maohui; Et-Thakafy, Oumaima; Zou, Shan; Lopez, Christelle

    2017-05-01

    The milk sphingomyelin (MSM) is involved in the formation of ordered lipid domains in the biological milk fat globule membrane (MFGM), where it accounts for about 30%wt of the polar lipids. Moreover, MSM exhibits a large variety in saturated acyl chain lengths (from C16:0 to C24:0-SM) compared to other natural sphingomyelins, which may impact the packing of MSM molecular species in the gel phase domains and the topography of the MFGM. To investigate this, supported lipid bilayers of synthetic sphingomyelins or of MSM-containing mixtures, including a MFGM polar lipid extract, were imaged at temperatures below the Tm of MSM (i.e. gel phase) in hydrated conditions using atomic force microscopy. In all compositions containing MSM, the MSM-rich gel phase domains exhibited lower and upper height levels H, interpreted as two distinct gel phases with ∆H~0.5-1.1nm. Two (lower and upper) gel phases were also found for pure C24:0-SM bilayers or for bilayers of a C16:0-SM/C24:0-SM equimolar mixture, while C16:0-SM bilayers were uniformly flat and less thick than C24:0-SM bilayers. The upper gel phase of MSM-containing bilayers was interpreted as mixed interdigitated C24:0-SM molecules, while the lower gel phase was attributed both to fully interdigitated C24:0-SM molecules and non-interdigitated C16:0-SM molecules. These results show that the composition of natural sphingomyelins, inducing a mismatch between the d18:1 sphingosine and the acyl chains, is important in both the internal organization and the topography of biological membranes, especially that of the MFGM. This organization could be involved in specific biological functions, e.g. the insertion of proteins.

  11. Electronic phase diagram of NaFe1-xCoxAs investigated by scanning tunneling microscopy

    Institute of Scientific and Technical Information of China (English)

    Zhou Xiao-Dong; Cai Peng; Wang Ya-Yu

    2013-01-01

    Our recent scanning tunneling microscopy (STM) studies of the NaFe1-xCoxAs phase diagram over a wide range of dopings and temperatures are reviewed.Similar to the high-Tc cuprates,the iron-based superconductors lie in close proximity to a magnetically ordered phase.Therefore,it is widely believed that magnetic interactions or fluctuations play an important role in triggering their Cooper pairings.Among the key issues regarding the electronic phase diagram are the properties of the parent spin density wave (SDW) phase and the superconducting (SC) phase,as well as the interplay between them.The NaFe1-xCoxAs is an ideal system for resolving these issues due to its rich electronic phases and the charge-neutral cleaved surface.In our recent work,we directly observed the SDW gap in the parent state,and it exhibits unconventional features that are incompatible with the simple Fermi surface nesting picture.The optimally doped sample has a single SC gap,but in the underdoped regime we directly viewed the microscopic coexistence of the SDW and SC orders,which compete with each other.In the overdoped regime we observed a novel pseudogap-like feature that coexists with superconductivity in the ground state,persists well into the normal state,and shows great spatial variations.The rich electronic structures across the phase diagram of NaFel-xCoxAs revealed here shed important new light for defining microscopic models of the iron-based superconductors.In particular,we argue that both the itinerant electrons and local moments should be considered on an equal footing in a realistic model.

  12. Advanced tip design for liquid phase vibration mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Hiroshi; Yamamoto, Yuji [School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982 (Japan); Shigeno, Masatsugu; Shirakawabe, Yoshiharu; Inoue, Akira [Technology Center, Seiko Instruments Inc., 563 Takatsukashinden, Matsudo, Chiba 271-2222 (Japan); Kim, Woo-Sik [Department of Chemical Engineering, Kyunghee University, Kyungki-Do 449-701 (Korea, Republic of); Kim, Seung Jin; Chang, Sang-Mok [Department of Chemical Engineering, Hadan 840, Saha-Gu, Busan 604-714 (Korea, Republic of); Kim, Jong Min [Department of Chemical Engineering, Hadan 840, Saha-Gu, Busan 604-714 (Korea, Republic of)], E-mail: jmkim3@dau.ac.kr

    2008-03-24

    We have fabricated polymer tips for atomic force microscopy in order to elucidate the effects of tip length and shape on cantilever vibration damping in liquids. The vibration damping is investigated by measuring the vibration amplitude of cantilevers as a function of tip-sample distance. The cantilever with a short tip provides a higher damping effect over long tip-sample distances. When the vibration amplitude was rescaled to show the effect of the cantilever width on oscillation damping, the vibration amplitude of cantilevers with various tip lengths was similarly obtained in a long distance range over 50 {mu}m. This similarity is explained by an acoustic damping model in which an acoustic wave is generated by the cantilever. Finally, the results indicate a cantilever with a sufficiently long tip compared to the cantilever width can dramatically reduce the long-range damping effect in a liquid environment.

  13. Complete staining of human spermatozoa and immature germ cells combined with phase contrast microscopy

    DEFF Research Database (Denmark)

    Michael, A Y; Drejer, J O; Bagger, P V

    1987-01-01

    A method combining Janus green B and Thymol blue stains the anterior part of the head, the nuclear membrane, middle piece, and tail of spermatozoa light green and the nucleus deep purple. The method provides excellent stained preparations for the evaluation of sperm morphology by phase contrast...

  14. Synthesis and purification of iodoaziridines involving quantitative selection of the optimal stationary phase for chromatography.

    Science.gov (United States)

    Boultwood, Tom; Affron, Dominic P; Bull, James A

    2014-05-16

    The highly diastereoselective preparation of cis-N-Ts-iodoaziridines through reaction of diiodomethyllithium with N-Ts aldimines is described. Diiodomethyllithium is prepared by the deprotonation of diiodomethane with LiHMDS, in a THF/diethyl ether mixture, at -78 °C in the dark. These conditions are essential for the stability of the LiCHI2 reagent generated. The subsequent dropwise addition of N-Ts aldimines to the preformed diiodomethyllithium solution affords an amino-diiodide intermediate, which is not isolated. Rapid warming of the reaction mixture to 0 °C promotes cyclization to afford iodoaziridines with exclusive cis-diastereoselectivity. The addition and cyclization stages of the reaction are mediated in one reaction flask by careful temperature control. Due to the sensitivity of the iodoaziridines to purification, assessment of suitable methods of purification is required. A protocol to assess the stability of sensitive compounds to stationary phases for column chromatography is described. This method is suitable to apply to new iodoaziridines, or other potentially sensitive novel compounds. Consequently this method may find application in range of synthetic projects. The procedure involves firstly the assessment of the reaction yield, prior to purification, by (1)H NMR spectroscopy with comparison to an internal standard. Portions of impure product mixture are then exposed to slurries of various stationary phases appropriate for chromatography, in a solvent system suitable as the eluent in flash chromatography. After stirring for 30 min to mimic chromatography, followed by filtering, the samples are analyzed by (1)H NMR spectroscopy. Calculated yields for each stationary phase are then compared to that initially obtained from the crude reaction mixture. The results obtained provide a quantitative assessment of the stability of the compound to the different stationary phases; hence the optimal can be selected. The choice of basic alumina, modified to

  15. Full-field quantitative phase imaging by white-light interferometry with active phase stabilization and its application to biological samples

    Science.gov (United States)

    Li, Xinhong; Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka; Zhang, Haijun; Hiruma, Teruo

    2006-06-01

    We report a Koehler-illumination-based full-field, actively stabilized, low-coherence phase-shifting interferometer, which is built on a white-light Michelson interferometer. By using a phase-stepping technique we can obtain full-field phase images of the sample. An actively stabilized phase-lock circuit is employed in the system to reduce phase noise. An application to human epithelial cells (HeLa cells) is achieved in our experiment. The advancement of this technique rests in its ability to take images of unstained biological samples quantitatively and on a nanometer scale.

  16. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Aschi, Massimiliano [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); D' Archivio, Angelo Antonio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)]. E-mail: darchivi@univaq.it; Maggi, Maria Anna [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Mazzeo, Pietro [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)

    2007-01-23

    In this paper, a quantitative structure-retention relationships (QSRR) method is employed to predict the retention behaviour of pesticides in reversed-phase high-performance liquid chromatography (HPLC). A six-parameter nonlinear model is developed by means of a feed-forward artificial neural network (ANN) with back-propagation learning rule. Accurate description of the retention factors of 26 compounds including commonly used insecticides, herbicides and fungicides and some metabolites is successfully achieved. In addition to the acetonitrile content, included to describe composition of the water-acetonitrile mobile phase, the octanol-water partition coefficient (from literature) and four quantum chemical descriptors are considered to account for the effect of solute structure on the retention. These are: the total dipole moment, the mean polarizability, the anisotropy of polarizability and a descriptor of hydrogen bonding ability based on the atomic charges on hydrogen bond donor and acceptor chemical functionalities. The proposed nonlinear QSRR model exhibits a high degree of correlation between observed and computed retention factors and a good predictive performance in wide range of mobile phase composition (40-65%, v/v acetonitrile) that supports its application for the prediction of the chromatographic behaviour of unknown pesticides. A multilinear regression model based on the same six descriptors shows a significantly worse predictive capability.

  17. The binding of cellulase variants to dislocations: a semi-quantitative analysis based on CLSM (confocal laser scanning microscopy) images

    DEFF Research Database (Denmark)

    Hidayat, Budi J.; Weisskopf, Carmen; Felby, Claus

    2015-01-01

    for any of the other cellulose variants included in the study (H. insolens EGV variants, Trichoderma reesei CBHI, CBHII and EGII). This result favours the hypothesis that fibers break at dislocations during the initial phase of hydrolysis mostly due to mechanical failure rather than as a result of faster...

  18. Nonlinear dynamics of tapping mode atomic force microscopy in the bistable phase

    Science.gov (United States)

    Bahrami, Arash; Nayfeh, Ali H.

    2013-03-01

    Nonlinear dynamics of amplitude modulation atomic force microscopy (AFM) is studied employing a reduced-order model based on a differential quadrature method (DQM). The AFM microcantilever is assumed to be operating in the dynamic contact or tapping mode while the microcantilever tip being initially located in the bistable region. We have found that the DQM is capable of precise prediction of the static bifurcation diagram and natural frequencies of the microcantilever. We have used the DQM to discretize the partial-differential equation governing the microcantilever motion and a finite difference method (FDM) to calculate limit-cycle responses of the AFM tip. It is shown that a combination of the DQM and FDM applied, respectively, to discretize the spatial and temporal derivatives provides an efficient, accurate procedure to address the complicated dynamic behavior exhibited by the AFM probe. The procedure was, therefore, utilized to study the response of the microcantilever to a base harmonic excitation through several numerical examples. We found that the dynamics of the AFM probe in the bistable region is totally different from those in the monostable region.

  19. Solid-phase extraction and liquid chromatographic quantitation of quinfamide in biological samples.

    Science.gov (United States)

    Morales, J M; Jung, C H; Alarcón, A; Barreda, A

    2000-09-15

    This paper describes a high-performance liquid chromatographic method for the assay of quinfamide and its main metabolite, 1-(dichloroacetyl)-1,2,3,4,-tetrahydro-6-quinolinol, in plasma, urine and feces. It requires 1 ml of biological fluid, an extraction using Sep-Pack cartridges and acetonitrile for drug elution. Analysis was performed on a CN column (5 microm) using water-acetonitrile-methanol (40:50:10) as a mobile phase at 269 nm. Results showed that the assay was linear in the range between 0.08 and 2.0 microg/ml. The limit of quantitation was 0.08 microg/ml. Maximum assay coefficient of variation was 14%. Recovery obtained in plasma, urine and feces ranged from 82% to 98%.

  20. Single-Shot Smartphone-Based Quantitative Phase Imaging Using a Distorted Grating.

    Science.gov (United States)

    Yang, Zhenyu; Zhan, Qiwen

    2016-01-01

    Blood testing has been used as an essential tool to diagnose diseases for decades. Recently, there has been a rapid developing trend in using Quantitative Phase Imaging (QPI) methods for blood cell screening. Compared to traditional blood testing techniques, QPI has the advantage of avoiding dyeing or staining the specimen, which may cause damage to the cells. However, most existing systems are bulky and costly, requiring experienced personnel to operate. This work demonstrates the integration of one QPI method onto a smartphone platform and the application of imaging red blood cells. The adopted QPI method is based on solving the Intensity Transport Equation (ITE) from two de-focused pupil images taken in one shot by the smartphone camera. The device demonstrates a system resolution of about 1 μm, and is ready to be used for 3D morphological study of red blood cells.

  1. Reverse Phase Protein Arrays—Quantitative Assessment of Multiple Biomarkers in Biopsies for Clinical Use

    Directory of Open Access Journals (Sweden)

    Stefanie Boellner

    2015-03-01

    Full Text Available Reverse Phase Protein Arrays (RPPA represent a very promising sensitive and precise high-throughput technology for the quantitative measurement of hundreds of signaling proteins in biological and clinical samples. This array format allows quantification of one protein or phosphoprotein in multiple samples under the same experimental conditions at the same time. Moreover, it is suited for signal transduction profiling of small numbers of cultured cells or cells isolated from human biopsies, including formalin fixed and paraffin embedded (FFPE tissues. Owing to the much easier sample preparation, as compared to mass spectrometry based technologies, and the extraordinary sensitivity for the detection of low-abundance signaling proteins over a large linear range, RPPA have the potential for characterization of deregulated interconnecting protein pathways and networks in limited amounts of sample material in clinical routine settings. Current aspects of RPPA technology, including dilution curves, spotting, controls, signal detection, antibody validation, and calculation of protein levels are addressed.

  2. Zernike phase contrast cryo-electron microscopy reveals 100 kDa component in a protein complex

    Science.gov (United States)

    Wu, Yi-Min; Wang, Chun-Hsiung; Chang, Jen-wei; Chen, Yi-yun; Miyazaki, Naoyuki; Murata, Kazuyoshi; Nagayama, Kuniaki; Chang, Wei-Hau

    2013-12-01

    Cryo-electron microscopy (cryo-EM) has become a powerful technique for obtaining near atomic structures for large protein assemblies or large virus particles, but the application to protein particles smaller than 200-300 kDa has been hampered by the feeble phase contrast obtained for such small samples and the limited number of electrons tolerated by them without incurring excessive radiation damage. By implementing a thin-film quarter-wave phase plate to a cryo-EM, Nagayama, one of the present authors, has recently restored the long-lost very low spatial frequencies, generating in-focus phase contrast superior to that of conventional defocusing phase contrast, and successfully applied the so-called Zernike phase-plate cryo-EM to target various biological samples in native state. Nevertheless, the sought-after goal of using enhanced phase contrast to reveal a native protein as small as 100 kDa waits to be realized. Here, we report a study in which 200 kV Zernike phase-plate cryo-EM with a plate cut-on periodicity of 36 nm was applied to visualize 100 kDa components of various protein complexes, including the small domains on the surface of an icosahedral particle of ˜38 nm derived from the dragon grouper nervous necrosis virus (DGNNV) and the labile sub-complex dissociated from yeast RNA polymerase III of 17 nm. In the former case, we observed a phase contrast reversal phenomenon at the centre of the icosahedral particle and traced its root cause to the near matching of the cut-on size and the particle size. In summary, our work has demonstrated that Zernike phase-plate implementation can indeed expand the size range of proteins that can be successfully investigated by cryo-EM, opening the door for countless proteins. Finally, we briefly discuss the possibility of using a transfer lens system to enlarge the cut-on periodicity without further miniaturizing the plate pinhole.

  3. Geometric phase low-coherence interference microscopy at high numerical apertures

    Science.gov (United States)

    Roy, Maitreyee; Svahn, Peter; Sheppard, Colin J. R.

    2001-09-01

    A low-coherence Linnik interference microscope using high numerical aperture optics has been constructed. The system uses a tungsten halogen lamp and a Koehler illumination, with separate control over field and aperture stops, so that experiments can be conducted with a range of different geometric phase which is achieved by using a polarizing beam splitter, a quarter wave plate and a rotating polarizer. Image information is extracted from the visibility of the fringes, and the position of the visibility peak along the scanning axis, yielding the height of the test surface at the corresponding points.

  4. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging

    Science.gov (United States)

    Sahay, Peeyush; Shukla, Pradeep K.; Ghimire, Hemendra M.; Almabadi, Huda M.; Tripathi, Vibha; Mohanty, Samarendra K.; Rao, Radhakrishna; Pradhan, Prabhakar

    2017-04-01

    Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10–12 week-old mice fed a Lieber–DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.

  5. High-resolution 3D reconstruction of microtubule structures by quantitative multi-angle total internal reflection fluorescence microscopy

    Science.gov (United States)

    Jin, Luhong; Wu, Jian; Xiu, Peng; Fan, Jiannan; Hu, Miao; Kuang, Cuifang; Xu, Yingke; Zheng, Xiaoxiang; Liu, Xu

    2017-07-01

    Total internal reflection fluorescence microscopy (TIRFM) has been widely used in biomedical research to visualize cellular processes near the cell surface. In this study, a novel multi-angle ring-illuminated TIRFM system, equipped with two galvo mirrors that are on conjugate plan of a 4f optical system was developed. Multi-angle TIRFM generates images with different penetration depths through the controlled variation of the incident angle of illuminating laser. We presented a method to perform three-dimensional (3-D) reconstruction of microtubules from multi-angle TIRFM images. The performance of our method was validated in simulated microtubules with variable signal-to-noise ratios (SNR) and the axial resolution and accuracy of reconstruction were evaluated in selecting different numbers of illumination angles or in different SNR conditions. In U373 cells, we reconstructed the 3-D localization of microtubules near the cell surface with high resolution using over a hundred different angles. Theoretically, the presented TIRFM setup and 3-D reconstruction method can achieve 40 nm axial resolution in experimental conditions where SNR is as low as 2, with 35 different illumination angles. Moreover, our system and reconstruction method have the potential to be used in live cells to track membrane dynamics in 3-D.

  6. Quantitative visualization of molecular transport through porous membranes: enhanced resolution and contrast using intermittent contact-scanning electrochemical microscopy.

    Science.gov (United States)

    McKelvey, Kim; Snowden, Michael E; Peruffo, Massimo; Unwin, Patrick R

    2011-09-01

    The use of intermittent contact-scanning electrochemical microscopy (IC-SECM) in diffusion-limited amperometric mode to visualize and quantify mass transport through multiporous membranes is described using dentin as a model example. The IC mode of SECM employs the damping of a vertically modulated ultramicroelectrode (UME) to achieve positioning close to the receptor side of a membrane. In this way the UME can detect electroactive species close to the pore exit. A key aspect of IC-SECM is that in addition to the direct current (dc) from the diffusion-limited detection of the analyte, an alternating current (ac) also develops due to the motion of the probe. It demonstrates that this ac signal enhances the spatial resolution of SECM detection and allows the hydrodynamic flow of species to be detected from individual closely spaced pores. The experimental deductions are supported by three-dimensional finite element modeling which allows IC-SECM current maps to be analyzed to reveal transport rates through individual pores. The method described should be widely applicable to multiporous membrane transport.

  7. Fluorescence microscopy techniques for quantitative evaluation of organic biocide distribution in antifouling paint coatings: application to model antifouling coatings.

    Science.gov (United States)

    Goodes, L R; Dennington, S P; Schuppe, H; Wharton, J A; Bakker, M; Klijnstra, J W; Stokes, K R

    2012-01-01

    A test matrix of antifouling (AF) coatings including pMMA, an erodible binder and a novel trityl copolymer incorporating Cu₂O and a furan derivative (FD) natural product, were subjected to pontoon immersion and accelerated rotor tests. Fluorescence and optical microscopy techniques were applied to these coatings for quantification of organic biocide and pigment distribution. Total leaching of the biocide from the novel copolymer binder was observed within 6 months of rotor immersion, compared to 35% from the pMMA coating. In pontoon immersions, 61% of the additive was lost from the pMMA coating, and 53% from the erodible binder. Profiles of FD content in the binders revealed an accelerated loss of additive from the surface of the CDP resulting from rosin degradation, compared to even depletion from pMMA. In all samples, release of the biocide was inhibited beyond the Cu₂O front, corresponding to the leached layer in samples where Cu₂O release occurred.

  8. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    Science.gov (United States)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  9. Quantitative immunofluorescence microscopy of subcellular GLUT4 distribution in human skeletal muscle: effects of endurance and sprint interval training.

    Science.gov (United States)

    Bradley, Helen; Shaw, Christopher S; Worthington, Philip L; Shepherd, Sam O; Cocks, Matthew; Wagenmakers, Anton J M

    2014-07-01

    Increases in insulin-mediated glucose uptake following endurance training (ET) and sprint interval training (SIT) have in part been attributed to concomitant increases in glucose transporter 4 (GLUT4) protein content in skeletal muscle. This study used an immunofluorescence microscopy method to investigate changes in subcellular GLUT4 distribution and content following ET and SIT. Percutaneous muscle biopsy samples were taken from the m. vastus lateralis of 16 sedentary males in the overnight fasted state before and after 6 weeks of ET and SIT. An antibody was fully validated and used to show large (> 1 μm) and smaller (GLUT4-containing clusters. The large clusters likely represent trans-Golgi network stores and the smaller clusters endosomal stores and GLUT4 storage vesicles (GSVs). Density of GLUT4 clusters was higher at the fibre periphery especially in perinuclear regions. A less dense punctate distribution was seen in the rest of the muscle fibre. Total GLUT4 fluorescence intensity increased in type I and type II fibres following both ET and SIT. Large GLUT4 clusters increased in number and size in both type I and type II fibres, while the smaller clusters increased in size. The greatest increases in GLUT4 fluorescence intensity occurred within the 1 μm layer immediately adjacent to the PM. The increase in peripheral localisation and protein content of GLUT4 following ET and SIT is likely to contribute to the improvements in glucose homeostasis observed after both training modes.

  10. Quantitative Imaging of Surface Resistance and Electric Fields by Scanning Near-Field Microwave Microscopy (SNFiMM)^1

    Science.gov (United States)

    Feenstra, B. J.

    1998-03-01

    After a brief survey and an introduction to the field of microwave microscopy, our novel scanning near-field microwave microscope (SNFiMM) based on a resonant coaxial cable will be described. Using this system we have imaged dielectric and conducting properties and electromagnetic fields on length scales far smaller than the free space wavelength of the radiation.(C. P. Vlahacos, R. C. Black, S. M. Anlage, A. Amar, and F. C. Wellstood, Appl. Phys. Lett. 69), 3272 (1996). Some of the merits of SNFiMM are the simplicity of its construction, the broad frequency coverage, ranging from 0.15 to 50 GHz, and the ability to alternate easily between different modes (reflection, receiving, frequency following etc.). The versatility of the system will be illustrated through images of the absolute sheet resistance and absolute electric fields, measured on a μm length scale.(D. E. Steinhauer, C. P. Vlahacos, S. K. Dutta, F. C. Wellstood, and Steven M. Anlage, Appl. Phys. Lett 71), 1736 (1997). In addition, potential applications will be discussed, including the use of SNFiMM for the diagnostics of active microwave circuits, both at room and cryogenic temperatures.

  11. Study of NaCl:Mn{sup 2+} nanostructures in the Suzuki phase by optical spectroscopy and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mejía-Uriarte, E.V., E-mail: elsi.mejia@ccadet.unam.mx [Laboratorio de Fotónica de Microondas, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, AP 70-186, C.P. 04510, D.F. México (Mexico); Kolokoltsev, O. [Laboratorio de Fotónica de Microondas, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, AP 70-186, C.P. 04510, D.F. México (Mexico); Navarrete Montesinos, M. [Instituto de Ingeniería, Universidad Nacional Autónoma de México, D.F. México (Mexico); Camarillo, E.; Hernández A, J.; Murrieta S, H. [Instituto de Física, Universidad Nacional Autónoma de México, AP 20-364, C.P. 01000, D.F. México (Mexico)

    2015-04-15

    NaCl:Mn{sup 2+} nanostructures in the Suzuki phase have been studied by fluorescence (emission and excitation) spectroscopy and atomic force microscopy (AFM) as a function of temperature. The “as-grown” samples give rise to two broad emission bands that peak at 508 (green emission) and 610 nm (red emission). The excitation spectrum shows peaks at 227 nm and 232 nm for emission wavelengths at 508 nm and 610 nm, respectively. When the samples are heated continuously from room temperature up to 220 °C, the green emission (associated to the excitation peak at 227 nm) disappears at a temperature close to 120 °C, whilst only the red emission remains, which is characteristic of manganese ions. AFM images on the (0 0 1) surface (freshly cleaved) show several conformations of nanostructures, such as disks of 20–50 nm in diameter. Particularly, the images also reveal nanostructures with rectangular shape of ~280×160 nm{sup 2} and ~6 nm height; these are present only in samples with green emission associated to the Suzuki phase. Then, the evidence suggests that this topographic configuration might be related to the interaction with the first neighbors and the next neighbors, according to the configuration that has been suggested for the Suzuki phase. - Highlights: • NaCl:Mn{sup 2+} single crystals in the Suzuki phase contain rectangular nanostructures. • Double emission of manganese ions: green (508 nm) and red (610 nm) bands. • The excitation peak at 227 nm is attributed to rectangular nanostructures. • The green emission band associated to Suzuki phase is extinguished at 120 °C.

  12. Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dyba, M; Keller, J; Hell, S W [Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, D-37070 Goettingen (Germany)

    2005-05-01

    We study the point-spread and optical transfer-function (OTF) of a stimulated emission depletion (STED)-4Pi fluorescence microscope that provides diffraction unlimited resolution along the optic axis. Our calculations take into account the orientation of the linear transition dipole moment of the fluorescent molecules with respect to that of the focal field. We demonstrate a subdiffraction axial resolution of 44-48 nm for water-immersion lenses, corresponding to a 7-8-fold expansion of the OTF beyond the diffraction barrier of a single lens confocal microscope, which is in excellent agreement with theoretical predictions for the conditions applied. Furthermore, we study phase modifications of the wavefront of the stimulating beam that strengthen weakly transferred frequencies within the OTF support. The enlarged bandwidth enables the separation of objects at 76 nm axial distance.

  13. Aberration-corrected transmission electron microscopy of the intergranular phase in magnetic recording media.

    Science.gov (United States)

    Hossein-Babaei, Faraz; Koh, Ai Leen; Srinivasan, Kumar; Bertero, Gerardo A; Sinclair, Robert

    2012-05-09

    In perpendicular hard disk memory media, nanometric magnetic Co-rich grains are separated by a ∼1 nm thick nonmagnetic and preferably amorphous intergranular phase (IP). Attempts at observing the IP structure at high resolution using TEM have been obstructed by the superposition of lattice fringes from the crystalline grains extending into the IP region in images. Here we present the first images of a magnetic recording medium produced using a spherical aberration-corrected TEM showing the true amorphous IP structure in contrast to the crystalline grains, allowing the accurate determination of the grain-IP interface and the grain and IP dimensions. It is shown that these aberration-corrected TEM images are functionally superior for analyzing certain features of the ultrahigh capacity data recording media.

  14. Morphometric image analysis of giant vesicles: a new tool for quantitative thermodynamics studies of phase-separation in lipid membranes

    DEFF Research Database (Denmark)

    Husen, Peter Rasmussen; Arriaga, Laura; Monroy, Francisco;

    2012-01-01

    We have developed a strategy to determine lengths and orientations of tie lines in the coexistence region of liquid-ordered and liquid-disordered phases of cholesterol containing ternary lipid mixtures. The method combines confocal-fluorescence-microscopy image stacks of giant unilamellar vesicle...

  15. Quantitative Subsurface Atomic Structure Fingerprint for 2D Materials and Heterostructures by First-Principles-Calibrated Contact-Resonance Atomic Force Microscopy.

    Science.gov (United States)

    Tu, Qing; Lange, Björn; Parlak, Zehra; Lopes, Joao Marcelo J; Blum, Volker; Zauscher, Stefan

    2016-07-26

    Interfaces and subsurface layers are critical for the performance of devices made of 2D materials and heterostructures. Facile, nondestructive, and quantitative ways to characterize the structure of atomically thin, layered materials are thus essential to ensure control of the resultant properties. Here, we show that contact-resonance atomic force microscopy-which is exquisitely sensitive to stiffness changes that arise from even a single atomic layer of a van der Waals-adhered material-is a powerful experimental tool to address this challenge. A combined density functional theory and continuum modeling approach is introduced that yields sub-surface-sensitive, nanomechanical fingerprints associated with specific, well-defined structure models of individual surface domains. Where such models are known, this information can be correlated with experimentally obtained contact-resonance frequency maps to reveal the (sub)surface structure of different domains on the sample.

  16. Droplet-based light-sheet fluorescence microscopy for high-throughput sample preparation, 3-D imaging and quantitative analysis on a chip.

    Science.gov (United States)

    Jiang, Hao; Zhu, Tingting; Zhang, Hao; Nie, Jun; Guan, Zeyi; Ho, Chi-Ming; Liu, Sheng; Fei, Peng

    2017-06-27

    We report a novel fusion of droplet microfluidics and light-sheet microscopy, to achieve high-throughput sample compartmentalization, manipulation and three-dimensional imaging on a chip. This optofluidic device characterized by orthogonal plane illumination and rapid liquid handling is compact and cost-effective, and capable of preparing sample droplets with tunable size, frequency and ingredient. Each droplet flowing through the device's imaging region is self-scanned by a laser-sheet, three-dimensionally reconstructed and quantitatively analysed. This simple-and-robust platform combines fast 3-D imaging with efficient sample preparation and eliminates the need of a complicated mechanical scan at the same time. Achieving 500 measurements per second and screening over 30 samples per minute, it shows great potential for various lab-on-a-chip biological studies, such as embryo sorting and cell growth assays.

  17. Insights into the nanoscale lateral and vertical phase separation in organic bulk heterojunctions via scanning probe microscopy

    Science.gov (United States)

    Chintala, R.; Tait, J. G.; Eyben, P.; Voroshazi, E.; Surana, S.; Fleischmann, C.; Conard, T.; Vandervorst, W.

    2016-02-01

    Solution processed polymer (donor) and fullerene (acceptor) bulk heterojunctions are widely used as the photo active layer in organic solar cells. Intimate mixing of these two materials is essential for efficient charge separation and transport. Identifying relative positions of acceptor and donor rich regions in the bulk heterojunction with nanometer scale precision is crucial in understanding intricate details of operation. In this work, a combination of Ar+2000 gas cluster ion beam and scanning probe microscopy is used to examine the lateral and vertical phase separation within regio-regular poly(3-hexylthiophene)(P3HT):phenyl-C60-butyric acid methyl ester (PCBM) bulk heterojunction. While the Ar+2000 gas cluster ion beam is used as a sputter tool to expose the underneath layers, scanning probe microscopy techniques are used to obtain two-dimensional (2D) electrical maps (with sub-2 nm lateral resolution). The electrical mapping is decoded to chemical composition, essentially producing lateral and vertical maps of phase separation. Thermal stress causes large PCBM-rich hillocks to form, and consequently affecting the balance of P3HT:PCBM heterojunctions, hence a negative impact on the efficiency of the solar cell. We further developed a method to analyze the efficiency of exciton dissociation based on the current maps and a loss of 20% in efficiency is observed for thermally degraded samples compared to fresh un-annealed samples.Solution processed polymer (donor) and fullerene (acceptor) bulk heterojunctions are widely used as the photo active layer in organic solar cells. Intimate mixing of these two materials is essential for efficient charge separation and transport. Identifying relative positions of acceptor and donor rich regions in the bulk heterojunction with nanometer scale precision is crucial in understanding intricate details of operation. In this work, a combination of Ar+2000 gas cluster ion beam and scanning probe microscopy is used to examine the

  18. Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy.

    Science.gov (United States)

    Weng, Jiawen; Zhong, Jiangang; Hu, Cuiying

    2008-12-22

    A numerical reconstruction technique of digital holography based on angular spectrum diffraction by means of the ridge of Gabor wavelet transform (GWT) is presented. Appling the GWT, the object wave can be reconstructed by calculating the wavelet coefficients of the hologram at the ridge of the GWT automatically even if the spectrum of the virtual image is disturbed by the other spectrum. It provides a way to eliminate the effect of the zero-order and the twin-image terms without the spatial filtering. In particular, based on the angular spectrum theory, GWT is applied to the digital holographic phase-contrast microscopy on biological specimens. The theory, the results of a simulation and an experiment of an onion specimen are shown.

  19. Quantitative full-colour transmitted light microscopy and dyes for concentration mapping and measurement of diffusion coefficients in microfluidic architectures.

    Science.gov (United States)

    Werts, Martinus H V; Raimbault, Vincent; Texier-Picard, Rozenn; Poizat, Rémi; Français, Olivier; Griscom, Laurent; Navarro, Julien R G

    2012-02-21

    A simple and versatile methodology has been developed for the simultaneous measurement of multiple concentration profiles of colourants in transparent microfluidic systems, using a conventional transmitted light microscope, a digital colour (RGB) camera and numerical image processing combined with multicomponent analysis. Rigorous application of the Beer-Lambert law would require monochromatic probe conditions, but in spite of the broad spectral bandwidths of the three colour channels of the camera, a linear relation between the measured optical density and dye concentration is established under certain conditions. An optimised collection of dye solutions for the quantitative optical microscopic characterisation of microfluidic devices is proposed. Using the methodology for optical concentration measurement we then implement and validate a simplified and robust method for the microfluidic measurement of diffusion coefficients using an H-filter architecture. It consists of measuring the ratio of the concentrations of the two output channels of the H-filter. It enables facile determination of the diffusion coefficient, even for non-fluorescent molecules and nanoparticles, and is compatible with non-optical detection of the analyte.

  20. Optical-sectioning microscopy of protoporphyrin IX fluorescence in human gliomas: standardization and quantitative comparison with histology

    Science.gov (United States)

    Wei, Linpeng; Chen, Ye; Yin, Chengbo; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T. C.

    2017-04-01

    Systemic delivery of 5-aminolevulinic acid leads to enhanced fluorescence image contrast in many tumors due to the increased accumulation of protoporphyrin IX (PpIX), a fluorescent porphyrin that is associated with tumor burden and proliferation. The value of PpIX-guided resection of malignant gliomas has been demonstrated in prospective randomized clinical studies in which a twofold greater extent of resection and improved progression-free survival have been observed. In low-grade gliomas and at the diffuse infiltrative margins of all gliomas, PpIX fluorescence is often too weak to be detected with current low-resolution surgical microscopes that are used in operating rooms. However, it has been demonstrated that high-resolution optical-sectioning microscopes are capable of detecting the sparse and punctate accumulations of PpIX that are undetectable via conventional low-power surgical fluorescence microscopes. To standardize the performance of high-resolution optical-sectioning devices for future clinical use, we have developed an imaging phantom and methods to ensure that the imaging of PpIX-expressing brain tissues can be performed reproducibly. Ex vivo imaging studies with a dual-axis confocal microscope demonstrate that these methods enable the acquisition of images from unsectioned human brain tissues that quantitatively and consistently correlate with images of histologically processed tissue sections.

  1. Laser-scanning velocimetry: A confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae

    Directory of Open Access Journals (Sweden)

    Linney Elwood

    2007-07-01

    Full Text Available Abstract Background The zebrafish Danio rerio is an important model system for drug discovery and to study cardiovascular development. Using a laser-scanning confocal microscope, we have developed a non-invasive method of measuring cardiac performance in zebrafish embryos and larvae that obtains cardiovascular parameters similar to those obtained using Doppler echocardiography in mammals. A laser scan line placed parallel to the path of blood in the dorsal aorta measures blood cell velocity, from which cardiac output and indices of vascular resistance and contractility are calculated. Results This technique, called laser-scanning velocimetry, was used to quantify the effects of pharmacological, developmental, and genetic modifiers of cardiac function. Laser-scanning velocimetry was applied to analyze the cardiovascular effects of morpholino knockdown of osmosensing scaffold for MEKK3 (OSM, which when mutated causes the human vascular disease cerebral cavernous malformations. OSM-deficient embryos had a constricted aortic arch and markedly increased peak cell velocity, a characteristic indicator of aortic stenosis. Conclusion These data validate laser-scanning velocimetry as a quantitative tool to measure cardiovascular performance for pharmacological and genetic analysis in zebrafish, which requires no specialized equipment other than a laser-scanning confocal microscope.

  2. Measuring dynamic membrane fluctuations in cell membrane using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, SangYun; Kim, Kyoohyun; Park, YongKeun

    2017-02-01

    There is a strong correlation between the dynamic membrane fluctuations and the biomechanical properties of living cells. The dynamic membrane fluctuation consists of submicron displacements, and can be altered by changing the cells' pathophysiological conditions. These results have significant relevance to the understanding of RBC biophysics and pathology, as follows. RBCs must withstand large mechanical deformations during repeated passages through the microvasculature and the fenestrated walls of the splenic sinusoids. This essential ability is diminished with senescence, resulting in physiological destruction of the aging RBCs. Pathological destruction of the red cells, however, occurs in cells affected by a host of diseases such as spherocytosis, malaria, and Sickle cell disease, as RBCs depart from their normal discoid shape and lose their deformability. Therefore, quantifying the RBC deformability insight into a variety of problems regarding the interplay of cell structure, dynamics, and function. Furthermore, the ability to monitor mechanical properties of RBCs is of vital interest in monitoring disease progression or response to treatment as molecular and pharmaceutical approaches for treatment of chronic diseases. Here, we present the measurements of dynamic membrane fluctuations in live cells using quantitative phase imaging techniques. Measuring both the 3-D refractive index maps and the dynamic phase images of live cells are simultaneously measured, from which dynamic membrane fluctuation and deformability of cells are precisely calculated. We also present its applications to various diseases ranging from sickle cell diseases, babesiosis, and to diabetes.

  3. Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy

    Science.gov (United States)

    Rinehart, Matthew T.; Park, Han Sang; Walzer, Katelyn A.; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-04-01

    Plasmodium falciparum infection causes structural and biochemical changes in red blood cells (RBCs). To quantify these changes, we apply a novel optical technique, quantitative phase spectroscopy (QPS) to characterize individual red blood cells (RBCs) during the intraerythrocytic life cycle of P. falciparum. QPS captures hyperspectral holograms of individual RBCs to measure spectroscopic changes across the visible wavelength range (475-700 nm), providing complex information, i.e. amplitude and phase, about the light field which has interacted with the cell. The complex field provides complimentary information on hemoglobin content and cell mass, which are both found to dramatically change upon infection by P. falciparum. Hb content progressively decreases with parasite life cycle, with an average 72.2% reduction observed for RBCs infected by schizont-stage P. falciparum compared to uninfected cells. Infection also resulted in a 33.1% reduction in RBC’s optical volume, a measure of the cells’ non-aqueous components. Notably, optical volume is only partially correlated with hemoglobin content, suggesting that changes in other dry mass components such as parasite mass may also be assessed using this technique. The unique ability of QPS to discriminate individual healthy and infected cells using spectroscopic changes indicates that the approach can be used to detect disease.

  4. Label-free imaging of intracellular motility by low-coherent quantitative phase microscope in reflection geometry

    Science.gov (United States)

    Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka

    2011-11-01

    We demonstrate tomographic imaging of intracellular activity of living cells by a low-coherent quantitative phase microscope. The intracellular organelles, such as the nucleus, nucleolus, and mitochondria, are moving around inside living cells, driven by the cellular physiological activity. In order to visualize the intracellular motility in a label-free manner we have developed a reflection-type quantitative phase microscope which employs the phase shifting interferometric technique with a low-coherent light source. The phase shifting interferometry enables us to quantitatively measure the intensity and phase of the optical field, and the low-coherence interferometry makes it possible to selectively probe a specific sectioning plane in the cell volume. The results quantitatively revealed the depth-resolved fluctuations of intracellular surfaces so that the plasma membrane and the membranes of intracellular organelles were independently measured. The transversal and the vertical spatial resolutions were 0.56 μm and 0.93 μm, respectively, and the mechanical sensitivity of the phase measurement was 1.2 nanometers. The mean-squared displacement was applied as a statistical tool to analyze the temporal fluctuation of the intracellular organelles. To the best of our knowledge, our system visualized depth-resolved intracellular organelles motion for the first time in sub-micrometer resolution without contrast agents.

  5. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement

    Science.gov (United States)

    Hwang, Gwangseok; Chung, Jaehun; Kwon, Ohmyoung

    2014-11-01

    The application of conventional scanning thermal microscopy (SThM) is severely limited by three major problems: (i) distortion of the measured signal due to heat transfer through the air, (ii) the unknown and variable value of the tip-sample thermal contact resistance, and (iii) perturbation of the sample temperature due to the heat flux through the tip-sample thermal contact. Recently, we proposed null-point scanning thermal microscopy (NP SThM) as a way of overcoming these problems in principle by tracking the thermal equilibrium between the end of the SThM tip and the sample surface. However, in order to obtain high spatial resolution, which is the primary motivation for SThM, NP SThM requires an extremely sensitive SThM probe that can trace the vanishingly small heat flux through the tip-sample nano-thermal contact. Herein, we derive a relation between the spatial resolution and the design parameters of a SThM probe, optimize the thermal and electrical design, and develop a batch-fabrication process. We also quantitatively demonstrate significantly improved sensitivity, lower measurement noise, and higher spatial resolution of the fabricated SThM probes. By utilizing the exceptional performance of these fabricated probes, we show that NP SThM can be used to obtain a quantitative temperature profile with nanoscale resolution independent of the changing tip-sample thermal contact resistance and without perturbation of the sample temperature or distortion due to the heat transfer through the air.

  6. Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy.

    Science.gov (United States)

    Silva, D F C; Azevedo, A M; Fernandes, P; Chu, V; Conde, J P; Aires-Barros, M R

    2017-03-03

    Aqueous two phase systems (ATPS) offer great potential for selective separation of a wide range of biomolecules by exploring differences in molecular solubility in each of the two immiscible phases. However, ATPS use has been limited due to the difficulty in predicting the behavior of a given biomolecule in the partition environment together with the empirical and time-consuming techniques that are used for the determination of partition and extraction parameters. In this work, a fast and novel technique based on a microfluidic platform and using fluorescence microscopy was developed to determine the partition coefficients of biomolecules in different ATPS. This method consists of using a microfluidic device with a single microchannel and three inlets. In two of the inlets, solutions containing the ATPS forming components were loaded while the third inlet was fed with the FITC tagged biomolecule of interest prepared in milli-Q water. Using fluorescence microscopy, it was possible to follow the location of the FITC-tagged biomolecule and, by simply varying the pumping rates of the solutions, to quickly test a wide variety of ATPS compositions. The ATPS system is allowed 4min for stabilization and fluorescence micrographs are used to determine the partition coefficient.The partition coefficients obtained were shown to be consistent with results from macroscale ATPS partition. This process allows for faster screening of partition coefficients using only a few microliters of material for each ATPS composition and is amenable to automation. The partitioning behavior of several biomolecules with molecular weights (MW) ranging from 5.8 to 150kDa, and isoelectric points (pI) ranging from 4.7 to 6.4 was investigated, as well as the effect of the molecular weight of the polymer ATPS component. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A phase-contrast microscopy-based method for modeling the mechanical behavior of mesenchymal stem cells.

    Science.gov (United States)

    Saeed, Mayssam; Sharabani-Yosef, Orna; Weihs, Daphne; Gefen, Amit

    2016-10-01

    We present three-dimensional (3D) finite element (FE) models of single, mesenchymal stem cells (MSCs), generated from images obtained by optical phase-contrast microscopy and used to quantify the structural responses of the studied cells to externally applied mechanical loads. Mechanical loading has been shown to affect cell morphology and structure, phenotype, motility and other biological functions. Cells experience mechanical loads naturally, yet under prolonged or sizable loading, damage and cell death may occur, which motivates research regarding the structural behavior of loaded cells. For example, near the weight-bearing boney prominences of the buttocks of immobile persons, tissues may become highly loaded, eventually leading to massive cell death that manifests as pressure ulcers. Cell-specific computational models have previously been developed by our group, allowing simulations of cell deformations under compressive or stretching loads. These models were obtained by reconstructing specific cell structures from series of 2D fluorescence, confocal image-slices, requiring cell-specific fluorescent-staining protocols and costly (confocal) microscopy equipment. Alternative modeling approaches represent cells simply as half-spheres or half-ellipsoids (i.e. idealized geometries), which neglects the curvature details of the cell surfaces associated with changes in concentrations of strains and stresses. Thus, we introduce here for the first time an optical image-based FE modeling, where loads are simulated on reconstructed 3D geometrical cell models from a single 2D, phase-contrast image. Our novel modeling method eliminates the need for confocal imaging and fluorescent staining preparations (both expensive), and makes cell-specific FE modeling affordable and accessible to the biomechanics community. We demonstrate the utility of this cost-effective modeling method by performing simulations of compression of MSCs embedded in a gel.

  8. Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging

    Science.gov (United States)

    Jung, Jaehwang; Matemba, Lucas E.; Lee, Kyeoreh; Kazyoba, Paul E.; Yoon, Jonghee; Massaga, Julius J.; Kim, Kyoohyun; Kim, Dong-Jin; Park, Yongkeun

    2016-08-01

    Sickle cell disease (SCD) is common across Sub-Saharan Africa. However, the investigation of SCD in this area has been significantly limited mainly due to the lack of research facilities and skilled personnel. Here, we present optical measurements of individual red blood cells from healthy individuals and individuals with SCD and sickle cell trait in Tanzania using the quantitative phase imaging technique. By employing a quantitative phase imaging unit, an existing microscope in a clinic is transformed into a powerful quantitative phase microscope providing measurements on the morphological, biochemical, and biomechanical properties of individual cells. The present approach will open up new opportunities for cost-effective investigation and diagnosis of several diseases in low resource environments.

  9. Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging

    CERN Document Server

    Jung, JaeHwang; Lee, KyeoReh; Kazyoba, Paul E; Yoon, Jonghee; Massaga, Julius J; Kim, Kyoohyun; Kim, Dong-Jin; Park, YongKeun

    2016-01-01

    Sickle cell disease (SCD) is common across Sub-Saharan Africa. However, the investigation of SCD in this area has been significantly limited mainly due to the lack of research facilities and skilled personnel. Here, we present optical measurements of individual red blood cells (RBCs) from healthy individuals and individuals with SCD and sickle cell trait in Tanzania using the quantitative phase imaging technique. By employing a quantitative phase imaging unit (QPIU), an existing microscope in a clinic is transformed into a powerful quantitative phase microscope providing measurements on the morphological, biochemical, and biomechanical properties of individual cells. The present approach will open up new opportunities for cost-effective investigation and diagnosis of several diseases in low resource environments.

  10. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Loo Jr., Billy W.

    2000-06-09

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  11. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Jr., Billy W. [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  12. Quantitative structural markers of colorectal dysplasia in a cross sectional study of ex vivo murine tissue using label-free multiphoton microscopy

    Science.gov (United States)

    Prieto, Sandra P.; Greening, Gage J.; Lai, Keith K.; Muldoon, Timothy J.

    2016-03-01

    Two-photon excitation of label-free tissue is of increasing interest, as advances have been made in endoscopic clinical application of multiphoton microscopy, such as second harmonic generation (SHG) scanning endoscopy used to monitor cervical collagen in mice1. We used C57BL mice as a model to investigate the progression of gastrointestinal structures, specifically glandular area and circularity. We used multiphoton microscopy to image ex-vivo label-free murine colon, focusing on the collagen structure changes over time, in mice ranging from 10 to 20 weeks of age. Series of images were acquired within the colonic and intestinal tissue at depth intervals of 20 microns from muscularis to the epithelium, up to a maximum depth of 180 microns. The imaging system comprised a two-photon laser tuned to 800nm wavelength excitation, and the SHG emission was filtered with a 400/40 bandpass filter before reaching the photomultiplier tube. Images were acquired at 15 frames per second, for 200 to 300 cumulative frames, with a field of view of 261um by 261um, and 40mW at sample. Image series were compared to histopathology H&E slides taken from adjacent locations. Quantitative metrics for determining differences between murine glandular structures were applied, specifically glandular area and circularity.

  13. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merson, E. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Kudrya, A.V.; Trachenko, V.A. [Department of Physical Metallurgy and the Physics of Strength, NUST MISiS, Moscow 119490 (Russian Federation); Merson, D. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Laboratory for Advanced Materials, Kazan Federal University, Naberezhnye Chelny 423812, Republic of Tatarstan (Russian Federation); Danilov, V. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Vinogradov, A. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Department of Engineering Design and Materials, Norwegian University of Science and Technology – NTNU, N-7491 Trondheim (Norway)

    2016-05-17

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  14. The use of epifluorescent microscopy and quantitative polymerase chain reaction to determine the presence/absence and identification of microorganisms associated with domestic and foreign wallboard samples

    Science.gov (United States)

    Griffin, Dale W.

    2011-01-01

    Epifluorescent microscopy and quantitative polymerase chain reaction (qPCR) were utilized to determine the presence, concentration and identification of bacteria, and more specifically sulfate reducing bacteria (SRB) in subsamples of Chinese and North American wallboard, and wallboard-mine rock. Bacteria were visible in most subsamples, which included wallboard-lining paper from each side of the wallboard, wallboard filler, wallboard tape and fragments of mined wallboard rock via microscopy. Observed bacteria occurred as single or small clusters of cells and no mass aggregates indicating colonization were noted. Universal 16S qPCR was utilized to directly examine samples and detected bacteria at concentrations ranging from 1.4 x 103 to 6.4 x 104 genomic equivalents per mm2 of paper or per gram of wallboard filler or mined rock, in 12 of 41 subsamples. Subsamples were incubated in sulfate reducing broth for ~30 to 60 days (enrichment assay) and then analyzed by universal 16S and SRB qPCR. Enrichment universal 16S qPCR detected bacteria in 32 of 41 subsamples at concentrations ranging from 1.5 x 104 to 4.2 x 107 genomic equivalents per ml of culture broth. Evaluation of enriched subsamples by SRB qPCR demonstrated that SRB were not detectable in most of the samples and if they were detected, detection was not reproducible (an indication of low concentrations, if present). Enrichment universal 16S and SRB qPCR demonstrated that viable bacteria were present in subsamples (as expected given exposure of the samples following manufacture, transport and use) but that SRB were either not present or present at very low numbers. Further, no differences in trends were noted between the various Chinese and North American wallboard samples. In all, the microscopy and qPCR data indicated that the suspected ‘sulfur emissions’ emanating from suspect wallboard samples is not due to microbial activity.

  15. MR microscopy of human skin using phased-array of microcoils at 9.4 T

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Katharina; Leupold, Jochen; LeVan, Pierre; Hennig, Juergen; Elverfeldt, Dominik von [Dept. of Radiology, Medical Physics, University Medical Center Freiburg (Germany); Gruschke, Oliver G. [Lab. of Simulation, University of Freiburg - IMTEK (Germany); Kern, Johannes S. [Dept. of Dermatology, University Medical Center Freiburg (Germany); Korvink, Jan G. [Lab. of Simulation, University of Freiburg - IMTEK (Germany); Freiburg Institute for Advanced Studies, University of Freiburg (Germany); Baxan, Nicoleta [Dept. of Radiology, Medical Physics, University Medical Center Freiburg (Germany); Bruker BioSpin MRI GmbH, Ettlingen (Germany)

    2013-07-01

    MRI of the skin as non-invasive alternative to histopathology requires dedicated approaches to overcome both the low sensitivity and low contrast of standard MR investigations applied at microscale. The geometry of the skin with layers of large lateral dimensions and a few μm thickness demands exceptionally high resolution combined with large imaging matrix size. A home-made microcoil-based MR detector in planar phased-array geometry (diameter=5.5 mm) was developed to alleviate such limitations by combining the advantages of a large field-of-view and high signal-to-noise ratio. The detector was first characterized in terms of influence on B{sub 0} homogeneity and SNR. Trials on healthy and Acne inversa diseased human skin biopsies allowed the acquisition of high resolution images (30 x 30 x 100 μm{sup 3}) in reasonable scan time. Histology was subsequently performed to validate the MRI results, demonstrating the suitability of this methodological approach for the characterization and early detection of structural skin changes.

  16. Toward quantitative STM: Scanning tunneling microscopy study of structure and dynamics of adsorbates on transition metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dunphy, J.C.

    1995-05-01

    STM was applied to chemisorbed S layers on Re(000l) and Mo(100) surfaces. As function of coverage on both these surfaces, S orders into several different overlayer structures, which have been studied by dynamic LEED. STM images of all these structures were obtained. Approximate location of S atoms in the structures was determined by inspecting the images, especially the regions containing defects. Results are in agreement with LEED except for the p(2{times}l) overlayer of sulfur on Mo(100). The STM images were compared to calculations made with Electron Scattering Quantum Chemistry (ESQC) theory. Variation of contrast in experimental images is explained as a result of changes in STM tip termination structure. STM image contrast is a result of changes in the interference between different paths for the tunneling electrons. The simplest structure on the Mo(100) surface was used as a model for developing and testing a method of quantitative structure determination with the STM. Experimental STM images acquired under a range of tunneling conditions were compared to theoretical calculations of the images as a function of surface structure to determine the structure which best fit. Results matched within approximately 0.1 Angstroms a LEED structural determination. At lower S coverage, diffusion of S atoms over the Re(0001) surface and the lateral interaction between these atoms were investigated by application of a new image analysis technique. The interaction between the S and a coadsorbed CO layer was also studied, and CO was found to induce compression of the S overlayer. A similar result was found for Au deposited on the sulfur covered Mo(100) surface. The interaction between steps on the Mo surface was found to be influenced by S adsorption and this observation was interpreted with the theory of equilibrium crystal shape. Design of an STM instrument which operates at cryogenic and variable sample temperatures, and its future applications, are described.

  17. Toward quantitative STM: Scanning tunneling microscopy study of structure and dynamics of adsorbates on transition metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dunphy, James Christopher [Univ. of California, Berkeley, CA (United States)

    1995-05-01

    STM was applied to chemisorbed S layers on Re(000l) and Mo(100) surfaces. As function of coverage on both these surfaces, S orders into several different overlayer structures, which have been studied by dynamic LEED. STM images of all these structures were obtained. Approximate location of S atoms in the structures was determined by inspecting the images, especially the regions containing defects. Results are in agreement with LEED except for the p(2xl) overlayer of sulfur on Mo(100). The STM images were compared to calculations made with Electron Scattering Quantum Chemistry (ESQC) theory. Variation of contrast in experimental images is explained as a result of changes in STM tip termination structure. STM image contrast is a result of changes in the interference between different paths for the tunneling electrons. The simplest structure on the Mo(100) surface was used as a model for developing and testing a method of quantitative structure determination with the STM. Experimental STM images acquired under a range of tunneling conditions were compared to theoretical calculations of the images as a function of surface structure to determine the structure which best fit. Results matched within approximately 0.1 Angstroms a LEED structural determination. At lower S coverage, diffusion of S atoms over the Re(0001) surface and the lateral interaction between these atoms were investigated by application of a new image analysis technique. The interaction between the S and a coadsorbed CO layer was also studied, and CO was found to induce compression of the S overlayer. A similar result was found for Au deposited on the sulfur covered Mo(100) surface. The interaction between steps on the Mo surface was found to be influenced by S adsorption and this observation was interpreted with the theory of equilibrium crystal shape. Design of an STM instrument which operates at cryogenic and variable sample temperatures, and its future applications, are described.

  18. Quantitative Segmentation of Fluorescence Microscopy Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins.

    Directory of Open Access Journals (Sweden)

    Jenna L Mueller

    Full Text Available To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features.TISSUE EXCISED FROM A GENETICALLY ENGINEERED MOUSE MODEL OF SARCOMA WAS IMAGED USING A SUBCELLULAR RESOLUTION MICROENDOSCOPE AFTER TOPICAL APPLICATION OF A FLUORESCENT ANATOMICAL CONTRAST AGENT: acriflavine. An algorithm based on sparse component analysis (SCA and the circle transform (CT was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma.Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity. For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach.The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.

  19. Dynamics of Vibrio cholerae abundance in Austrian saline lakes, assessed with quantitative solid-phase cytometry.

    Science.gov (United States)

    Schauer, Sonja; Jakwerth, Stefan; Bliem, Rupert; Baudart, Julia; Lebaron, Philippe; Huhulescu, Steliana; Kundi, Michael; Herzig, Alois; Farnleitner, Andreas H; Sommer, Regina; Kirschner, Alexander

    2015-11-01

    In order to elucidate the main predictors of Vibrio cholerae dynamics and to estimate the risk of Vibrio cholera-related diseases, a recently developed direct detection approach based on fluorescence in situ hybridization and solid-phase cytometry (CARD-FISH/SPC) was applied in comparison to cultivation for water samples from the lake Neusiedler See, Austria and three shallow alkaline lakes over a period of 20 months. Vibrio cholerae attached to crustacean zooplankton was quantified via FISH and epifluorescence microscopy. Concentrations obtained by CARD-FISH/SPC were significantly higher than those obtained by culture in 2011, but were mostly of similar magnitude in 2012. Maximum cell numbers were 1.26 × 10(6) V. cholerae per L in Neusiedler See and 7.59 × 10(7) V. cholerae per L in the shallow alkaline lakes. Only on a few occasions during summer was the crustacean zooplankton the preferred habitat for V. cholerae. In winter, V. cholerae was not culturable but could be quantified at all sites with CARD-FISH/SPC. Beside temperature, suspended solids, zooplankton and ammonium were the main predictors of V. cholerae abundance in Neusiedler See, while in the shallow alkaline lakes it was organic carbon, conductivity and phosphorus. Based on the obtained concentrations a first estimation of the health risk for visitors of the lake could be performed. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Rigorous quantitative elemental microanalysis by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) with spectrum processing by NIST DTSA-II

    Science.gov (United States)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2014-09-01

    Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  1. Improving fundamental abilities of atomic force microscopy for investigating quantitative nanoscale physical properties of complex biological systems

    Science.gov (United States)

    Cartagena-Rivera, Alexander X.

    Measurements of local material properties of complex biological systems (e.g. live cells and viruses) in their respective physiological conditions are extremely important in the fields of biophysics, nanotechnology, material science, and nanomedicine. Yet, little is known about the structure-function-property relationship of live cells and viruses. In the case of live cells, the measurements of progressive variations in viscoelastic properties in vitro can provide insight to the mechanistic processes underpinning morphogenesis, mechano-transduction, motility, metastasis, and many more fundamental cellular processes. In the case of living viruses, the relationship between capsid structural framework and the role of the DNA molecule interaction within viruses influencing their stiffness, damping and electrostatic properties can shed light in virological processes like protein subunits assembly/dissassembly, maturation, and infection. The study of mechanics of live cells and viruses has been limited in part due to the lack of technology capable of acquiring high-resolution (nanoscale, subcellular) images of its heterogeneous material properties which vary widely depending on origin and physical interaction. The capabilities of the atomic force microscope (AFM) for measuring forces and topography with sub-nm precision have greatly contributed to research related to biophysics and biomechanics during the past two decades. AFM based biomechanical studies have the unique advantage of resolving/mapping spatially the local material properties over living cells and viruses. However, conventional AFM techniques such as force-volume and quasi-static force-distance curves are too low resolution and low speed to resolve interesting biophysical processes such as cytoskeletal dynamics for cells or assembly/dissasembly of viruses. To overcome this bottleneck, a novel atomic force microscopy mode is developed, that leads to sub-10-nm resolution and sub-15-minutes mapping of local

  2. Evaluation of the dark-medium objective lens in counting asbestos fibers by phase-contrast microscopy.

    Science.gov (United States)

    Lee, Eun Gyung; Nelson, John H; Kashon, Michael L; Harper, Martin

    2015-06-01

    samples indicates that there is a fraction of fibers in the PAT samples approaching the theoretical limit of visibility of the phase-contrast microscope with 3-degree phase-shift. These fibers become more clearly visible through the greater contrast from the phase plate absorption of the DM objective. However, as such fibers are not present in field samples, no difference in counts between the two objectives was observed in this study. The DM objective, therefore, could be allowed for routine fiber counting as it will maintain continuity with risk assessments based on earlier phase-contrast microscopy fiber counts from field samples. Published standard methods would need to be modified to allow a higher aperture specification for the objective.

  3. Evaluation of the lymphocyte interphase nuclei phenotype by quantitative phase imaging (QPI in patients with endometrial ovarian cysts

    Directory of Open Access Journals (Sweden)

    S. A. Gasparyan

    2017-01-01

    Full Text Available Rationale: Ovarian endometriosis is a progressive disease with growing prevalence and severity. Therefore, the development of robust non-invasive laboratory screening methods for early diagnosis on the out-patient basis seems quite relevant. Aim: To assess a potential of the quantitative phase imaging technique for early diagnosis of ovarian endometrial cysts and post-operative relapses of the disease. Materials and methods: We analyzed 1578 nuclei of the peripheral blood lymphocytes from 82 patients with ovarian endometrial cysts, aged 21 to 37 years (mean age 26.4 ± 3.6 years. The patients were follow-up in a gynecology out-patient clinic (the town of Yessentuki, Russia. Assessments were made longitudinally, i.e., before a laparoscopic cystectomy, at 6 and 12 months in the post-operative period with or without treatment with dienogest-containing agents. Morphological and functional status of the nuclei from the peripheral blood lymphocytes was assessed in the real-time mode by quantitative phase imaging (QPI with the phase-interference microscopy module of the Bioni hardware and software complex (Westgrade Ltd., Moscow for clinical and laboratory diagnostics, and the morphodensitometric segmentation technology. Results: The comparative analysis of morphometric parameters of CD3+ cells taken from peripheral blood of healthy non-pregnant women and patients with ovarian endometrial cysts before surgery showed a significant increase of the calculated functional activities of the lymphocyte nuclei (0.898 vs 0.783, p < 0.05. Assessment of changes overt time in the differential diagnostic criteria of the nuclear response in the peripheral blood lymphocytes from patients with endometrial ovarian cysts showed the following. Compared to the parameters obtained before treatment, at 6 and 12 months of the post-operative period the relative intensity of nuclear segments (ΔI decreased by 10.3 and 14.7, 10.6 and 12.9% in the group treated with and without

  4. ViriChip: a solid phase assay for detection and identification of viruses by atomic force microscopy

    Science.gov (United States)

    Nettikadan, Saju R.; Johnson, James C.; Vengasandra, Srikanth G.; Muys, James; Henderson, Eric

    2004-03-01

    Bionanotechnology can be viewed as the integration of tools and concepts in nanotechnology with the attributes of biomolecules. We report here on an atomic force microscopy-immunosensor assay (AFMIA) that couples AFM with solid phase affinity capture of biological entities for the rapid detection and identification of group B coxsackievirus particles. Virus identification is based on type-specific immunocapture and the morphological properties of the captured viruses as obtained by the AFM. Representatives of the six group B coxsackieviruses have been specifically captured from 1 µl volumes of clarified cell lysates, body fluids and environmental samples. Concentration and kinetic profiles for capture indicate that detection is possible at 103 TCID50 µl-1 and the dynamic range of the assay spans three logs. The results demonstrate that the melding of a nanotechnological tool (AFM) with biotechnology (solid phase immunocapture of virus particles) can create a clinically relevant platform, useful for the detection and identification of enterovirus particles in a variety of samples.

  5. Phase Separation in Ti-6Al-4V Alloys with Boron Additions for Biomedical Applications: Scanning Kelvin Probe Force Microscopy Investigation of Microgalvanic Couples and Corrosion Initiation

    Science.gov (United States)

    Davis, P. H.; Robles, K.; Livingston, K.; Johns, S.; Ravi, V. A.; Graugnard, E.; Hurley, M. F.

    2017-08-01

    To investigate the effect of boron additions on the corrosion behavior of Ti-6Al-4V for potential use in biomedical implants and devices, cast samples of Ti-6Al-4V were alloyed with 0.01% to 1.09% boron by weight and subjected to hot isostatic pressing. Subsequent analysis via scanning Kelvin probe force microscopy and scanning electron microscopy/energy-dispersive spectroscopy revealed the presence of both alpha ( α) and beta ( β) phase titanium, enriched in aluminum and vanadium, respectively. At all concentrations, boron additions affected the grain structure and were dispersed throughout both phases, but above the solubility limit, needle-like TiB structures also formed. The TiB needles and β phase exhibited similar surface potentials, whereas that of the α phase was found to be significantly lower. Nevertheless, when subjected to high applied electrochemical potentials in saline solutions, corrosion initiation was observed exclusively within the more noble β phase.

  6. Prediction of prostate cancer recurrence using quantitative phase imaging: Validation on a general population

    Science.gov (United States)

    Sridharan, Shamira; Macias, Virgilia; Tangella, Krishnarao; Melamed, Jonathan; Dube, Emily; Kong, Max Xiangtian; Kajdacsy-Balla, André; Popescu, Gabriel

    2016-09-01

    Prediction of biochemical recurrence risk of prostate cancer following radical prostatectomy is critical for determining whether the patient would benefit from adjuvant treatments. Various nomograms exist today for identifying individuals at higher risk for recurrence; however, an optimistic under-estimation of recurrence risk is a common problem associated with these methods. We previously showed that anisotropy of light scattering measured using quantitative phase imaging, in the stromal layer adjacent to cancerous glands, is predictive of recurrence. That nested-case controlled study consisted of specimens specifically chosen such that the current prognostic methods fail. Here we report on validating the utility of optical anisotropy for prediction of prostate cancer recurrence in a general population of 192 patients, with 17% probability of recurrence. Our results show that our method can identify recurrent cases with 73% sensitivity and 72% specificity, which is comparable to that of CAPRA-S, a current state of the art method, in the same population. However, our results show that optical anisotropy outperforms CAPRA-S for patients with Gleason grades 7–10. In essence, we demonstrate that anisotropy is a better biomarker for identifying high-risk cases, while Gleason grade is better suited for selecting non-recurrence. Therefore, we propose that anisotropy and current techniques be used together to maximize prediction accuracy.

  7. Quantitative Analysis of Fundus-Image Sequences Reveals Phase of Spontaneous Venous Pulsations

    Science.gov (United States)

    Moret, Fabrice; Reiff, Charlotte M.; Lagrèze, Wolf A.; Bach, Michael

    2015-01-01

    Purpose Spontaneous venous pulsation correlates negatively with elevated intracranial pressure and papilledema, and it relates to glaucoma. Yet, its etiology remains unclear. A key element to elucidate its underlying mechanism is the time at which collapse occurs with respect to the heart cycle, but previous reports are contradictory. We assessed this question in healthy subjects using quantitative measurements of both vein diameters and artery lateral displacements; the latter being used as the marker of the ocular systole time. Methods We recorded 5-second fundus sequences with a near-infrared scanning laser ophthalmoscope in 12 young healthy subjects. The image sequences were coregistered, cleaned from microsaccades, and filtered via a principal component analysis to remove nonpulsatile dynamic features. Time courses of arterial lateral displacement and of diameter at sites of spontaneous venous pulsation or proximal to the disk were retrieved from those image sequences and compared. Results Four subjects displayed both arterial and venous pulsatile waveforms. On those, we observed venous diameter waveforms differing markedly among the subjects, ranging from a waveform matching the typical intraocular pressure waveform to a close replica of the arterial waveform. Conclusions The heterogeneity in waveforms and arteriovenous phases suggests that the mechanism governing the venous outflow resistance differs among healthy subjects. Translational relevance Further characterizations are necessary to understand the heterogeneous mechanisms governing the venous outflow resistance as this resistance is altered in glaucoma and is instrumental when monitoring intracranial hypertension based on fundus observations. PMID:26396929

  8. Quantitative study on experimentally observed poroelastic behavior of Berea sandstone in two-phase fluid system

    Science.gov (United States)

    Goto, Hiroki; Aichi, Masaatsu; Tokunaga, Tomochika; Yamamoto, Hajime; Ogawa, Toyokazu; Aoki, Tomoyuki

    2014-08-01

    Coupled two-phase fluid flow and poroelastic deformation of Berea sandstone is studied through laboratory experiment and numerical simulation. In the experiment, compressed air was infiltrated from the bottom of a water-saturated cylindrical Berea sandstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample showed sudden extension and monotonic and gradual extension afterward. Numerical simulation based on thermodynamically consistent constitutive equations was conducted in order to quantitatively analyze the experimental results. In a simulation assuming isotropy of material properties, the volumetric discharge rate of water at the outlet and one of the axial, circumferential, and volumetric strains at half the height of the sample were reproduced well by each parameter set, while the other two strains were not. When introducing transverse isotropy, all the experimental data were reproduced well. In addition, the effect of saturation dependency of Bishop's effective stress coefficient on the deformation behavior of porous media was discussed, and it was found that strains, both axial and circumferential, are sensitive to the coefficient.

  9. In vivo organization of the FtsZ-ring by ZapA and ZapB revealed by quantitative super-resolution microscopy.

    Science.gov (United States)

    Buss, Jackson; Coltharp, Carla; Huang, Tao; Pohlmeyer, Chris; Wang, Shih-Chin; Hatem, Christine; Xiao, Jie

    2013-09-01

    In most bacterial cells, cell division is dependent on the polymerization of the FtsZ protein to form a ring-like structure (Z-ring) at the midcell. Despite its essential role, the molecular architecture of the Z-ring remains elusive. In this work we examine the roles of two FtsZ-associated proteins, ZapA and ZapB, in the assembly dynamics and structure of the Z-ring in Escherichia coli cells. In cells deleted of zapA or zapB, we observed abnormal septa and highly dynamic FtsZ structures. While details of these FtsZ structures are difficult to discern under conventional fluorescence microscopy, single-molecule-based super-resolution imaging method Photoactivated Localization Microscopy (PALM) reveals that these FtsZ structures arise from disordered arrangements of FtsZ clusters. Quantitative analysis finds these clusters are larger and comprise more molecules than a single FtsZ protofilament, and likely represent a distinct polymeric species that is inherent to the assembly pathway of the Z-ring. Furthermore, we find these clusters are not due to the loss of ZapB-MatP interaction in ΔzapA and ΔzapB cells. Our results suggest that the main function of ZapA and ZapB in vivo may not be to promote the association of individual protofilaments but to align FtsZ clusters that consist of multiple FtsZ protofilaments. © 2013 John Wiley & Sons Ltd.

  10. Quantitative studies on inner interfaces in conical metal joints using hard x-ray inline phase contrast radiography

    Science.gov (United States)

    Zabler, S.; Rack, T.; Rack, A.; Nelson, K.

    2010-10-01

    Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1 μm are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system being 4 μm in absorption mode and ˜14 μm in phase contrast mode (z2=0.74 m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.

  11. Identifying the crystallinity, phase, and arsenic uptake of the nanomineral schwertmannite using analytical high resolution transmission electron microscopy

    Science.gov (United States)

    French, R. A.; Kim, B.; Murayama, M.; Hochella, M. F.

    2010-12-01

    Schwertmannite, an iron oxyhydroxide sulfate nanomineral, plays a significant role in the geochemistry of acid mine drainage (AMD) as a metastable phase with respect to goethite and by retaining toxic metals, e.g. arsenic [1]. Schwertmannite’s characteristic morphology is needles 100-300 nm long and only 5-10 nm in diameter extending from a dense aggregate. The poorly-and nano-crystalline nature of this mineral requires using high resolution electron microscopy (HRTEM) to be fully characterized. We used HRTEM to identify the polyphasic nature of natural samples of schwertmannite collected from the Iberian Pyrite Belt in Spain. In order to analyze the dense core, samples were prepared in thin section using an ultramicrotome. Data on a sample identified as pure schwertmannite through powder XRD shows the presence of 5-10 nm goethite nanocrystals making up a significant portion of one of the nanoneedle tips (Figure 1). These nanocrystals exhibit lattice fringes and faceted surfaces, both of which match that expected for goethite. The great majority of the nanoneedles are poorly-crystalline (no lattice fringes) with atomically rough surfaces which may be highly active in the uptake of As. The presence of a range of phases and crystallinities in this sample demonstrate incipient stages of the mechanism that results in transformation of schwertmannite to goethite. Further analytical TEM analyses will help us track sorption/desorption, as well as the specific locations of As within these materials upon initial formation, as well as during transformation. [1] Acero et al. (2006) GCA 70, 4130-4139. Figure 1. HRTEM image of 'schwertmannite' nanoneedle with FFT data (inset).

  12. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    Energy Technology Data Exchange (ETDEWEB)

    Oosthoek, J. L. M.; Kooi, B. J., E-mail: B.J.Kooi@rug.nl [Zernike Institute for Advanced Materials and Materials innovation institute M2i, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Voogt, F. C.; Attenborough, K. [NXP, Gerstweg 2, 6534 AE Nijmegen (Netherlands); Verheijen, M. A. [Department of Applied Physics, Eindhoven University of Technology, NL-5600 MB Eindhoven (Netherlands); Philips Innovation Services Eindhoven, High Tech Campus 11, NL-5656 AE Eindhoven (Netherlands); Hurkx, G. A. M. [NXP Semiconductors, High Tech Campus 60, 5656 AE Eindhoven (Netherlands); Gravesteijn, D. J. [NXP Semiconductors, Kapeldreef 75, B 3001 Leuven (Belgium)

    2015-02-14

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament is formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.

  13. Effective segmentation of fresh post-mortem murine lung parenchyma in phase contrast X-ray tomographic microscopy images

    Science.gov (United States)

    Vogiatzis Oikonomidis, Ioannis; Cremona, Tiziana P.; Lovric, Goran; Arcadu, Filippo; Stampanoni, Marco; Schittny, Johannes C.

    2017-06-01

    The acinus represents the functional unit of the mammalian lung. It is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Different hypotheses exist on how the fine structure of the acinus changes during ventilation and development. Since in classical 2-dimensional (2D) sections of the lung the borders of the acini are not detectable, every study of acini requires 3-dimensional (3D) datasets. As a basis for further studies of pulmonary acini we imaged rodent lungs as close to life as possible using phase contrast synchrotron radiation-based X-ray tomographic microscopy (SRXTM), and developed a protocol for the segmentation of the alveolar septa. The method is based on a combined multilevel filtering approach. Seeds are automatically defined for separate regions of tissue and airspace during each 2D filtering level and then given as input to a 3D random walk segmentation. Thus, the different types of artifacts present in the images are treated separately, taking into account the sample’s structural complexity. The proposed procedure yields high-quality 3D segmentations of acinar microstructure that can be used for a reliable morphological analysis.

  14. Diffraction phase microscopy imaging and multi-physics modeling of the nanoscale thermal expansion of a suspended resistor.

    Science.gov (United States)

    Wang, Xiaozhen; Lu, Tianjian; Yu, Xin; Jin, Jian-Ming; Goddard, Lynford L

    2017-07-04

    We studied the nanoscale thermal expansion of a suspended resistor both theoretically and experimentally and obtained consistent results. In the theoretical analysis, we used a three-dimensional coupled electrical-thermal-mechanical simulation and obtained the temperature and displacement field of the suspended resistor under a direct current (DC) input voltage. In the experiment, we recorded a sequence of images of the axial thermal expansion of the central bridge region of the suspended resistor at a rate of 1.8 frames/s by using epi-illumination diffraction phase microscopy (epi-DPM). This method accurately measured nanometer level relative height changes of the resistor in a temporally and spatially resolved manner. Upon application of a 2 V step in voltage, the resistor exhibited a steady-state increase in resistance of 1.14 Ω and in relative height of 3.5 nm, which agreed reasonably well with the predicted values of 1.08 Ω and 4.4 nm, respectively.

  15. Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging

    Science.gov (United States)

    Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro

    2015-05-01

    Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we

  16. Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Sara, E-mail: sara.mohammadi@elettra.trieste.it [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Synchrotron Light Source ‘Elettra’ Trieste, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149 (Italy); Larsson, Emanuel [Synchrotron Light Source ‘Elettra’ Trieste, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149 (Italy); Linköping University, SE-581 83 (Sweden); University of Trieste, Trieste (Italy); Alves, Frauke [University Hospital Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Dal Monego, Simeone [Cluster in Biomedicine s.c.r.l., AREA Science Park, Strada Statale 14, km 163.5, Basovizza, 34149 Trieste (Italy); Biffi, Stefania; Garrovo, Chiara [IRCCS Burlo Garofolo, via dell’Istria 65/1, 34137 Trieste (Italy); Lorenzon, Andrea [Cluster in Biomedicine s.c.r.l., AREA Science Park, Strada Statale 14, km 163.5, Basovizza, 34149 Trieste (Italy); Tromba, Giuliana [Synchrotron Light Source ‘Elettra’ Trieste, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149 (Italy); Dullin, Christian, E-mail: sara.mohammadi@elettra.trieste.it [University Hospital Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany)

    2014-05-16

    Quantitative analysis concerning the application of a single-distance phase-retrieval algorithm on in-line phase-contrast images of a mouse lung at different sample-to-detector distances is presented. Propagation-based X-ray phase-contrast computed tomography (PBI) has already proven its potential in a great variety of soft-tissue-related applications including lung imaging. However, the strong edge enhancement, caused by the phase effects, often hampers image segmentation and therefore the quantitative analysis of data sets. Here, the benefits of applying single-distance phase retrieval prior to the three-dimensional reconstruction (PhR) are discussed and quantified compared with three-dimensional reconstructions of conventional PBI data sets in terms of contrast-to-noise ratio (CNR) and preservation of image features. The PhR data sets show more than a tenfold higher CNR and only minor blurring of the edges when compared with PBI in a predominately absorption-based set-up. Accordingly, phase retrieval increases the sensitivity and provides more functionality in computed tomography imaging.

  17. On the theory of the reconstruction of a weak phase-amplitude object from its images, especially in electron microscopy. I. Isoplanatic imaging

    NARCIS (Netherlands)

    Ferwerda, H.A.; Hoenders, B.J.

    1975-01-01

    In this paper we discuss the reconstruction of a weak phase-amplitude object from its intensity image. This problem occurs in electron microscopy where the weak object approximation holds for not too low accelerating voltages (E>~100 keV). Isoplanatic imaging is assumed. The illumination is supposed

  18. Qualitative and Quantitative Analysis of ROS-Mediated Oridonin-Induced Oesophageal Cancer KYSE-150 Cell Apoptosis by Atomic Force Microscopy.

    Directory of Open Access Journals (Sweden)

    Jiang Pi

    Full Text Available High levels of intracellular reactive oxygen species (ROS in cells is recognized as one of the major causes of cancer cell apoptosis and has been developed into a promising therapeutic strategy for cancer therapy. However, whether apoptosis associated biophysical properties of cancer cells are related to intracellular ROS functions is still unclear. Here, for the first time, we determined the changes of biophysical properties associated with the ROS-mediated oesophageal cancer KYSE-150 cell apoptosis using high resolution atomic force microscopy (AFM. Oridonin was proved to induce ROS-mediated KYSE-150 cell apoptosis in a dose dependent manner, which could be reversed by N-acetylcysteine (NAC pretreatment. Based on AFM imaging, the morphological damage and ultrastructural changes of KYSE-150 cells were found to be closely associated with ROS-mediated oridonin-induced KYSE-150 cell apoptosis. The changes of cell stiffness determined by AFM force measurement also demonstrated ROS-dependent changes in oridonin induced KYSE-150 cell apoptosis. Our findings not only provided new insights into the anticancer effects of oridonin, but also highlighted the use of AFM as a qualitative and quantitative nanotool to detect ROS-mediated cancer cell apoptosis based on cell biophysical properties, providing novel information of the roles of ROS in cancer cell apoptosis at nanoscale.

  19. Fundamentals of fluorescence and fluorescence microscopy.

    Science.gov (United States)

    Wolf, David E

    2013-01-01

    This chapter discusses the fundamental physics of fluorescence. The application of fluorescence to microscopy represents an important transition in the development of microscopy, particularly as it applies to biology. It enables quantitating the amounts of specific molecules within a cell, determining whether molecules are complexing on a molecular level, measuring changes in ionic concentrations within cells and organelles, and measuring molecular dynamics. This chapter also discusses the issues important to quantitative measurement of fluorescence and focuses on four of quantitative measurements of fluorescence--boxcar-gated detection, streak cameras, photon correlation, and phase modulation. Although quantitative measurement presents many pitfalls to the beginner, it also presents significant opportunities to one skilled in the art. This chapter also examines how fluorescence is measured in the steady state and time domain and how fluorescence is applied in the modern epifluorescence microscope.

  20. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    Science.gov (United States)

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. A comparison of phase imaging and quantitative susceptibility mapping in the imaging of multiple sclerosis lesions at ultrahigh field

    OpenAIRE

    Cronin, Matthew John; Wharton, Samuel; Al-Radaideh, Ali; Constantinescu, Chris; Evangelou, Nikos; Bowtell, Richard W.; Gowland, Penny A.

    2016-01-01

    Objective\\ud \\ud The aim of this study was to compare the use of high-resolution phase and QSM images acquired at ultra-high field in the investigation of multiple sclerosis (MS) lesions with peripheral rings, and to discuss their usefulness for drawing inferences about underlying tissue composition.\\ud \\ud Materials and methods\\ud \\ud Thirty-nine Subjects were scanned at 7 T, using 3D T2*-weighted and T1-weighted sequences. Phase images were then unwrapped and filtered, and quantitative susc...

  2. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.

    Science.gov (United States)

    Dovlo, Edem; Lashkari, Bahman; Soo Sean Choi, Sung; Mandelis, Andreas; Shi, Wei; Liu, Fei-Fei

    2016-10-19

    Overcoming the limitations of conventional linear spectroscopy used in multispectral photoacoustic imaging, wherein a linear relationship is assumed between the absorbed optical energy and the absorption spectra of the chromophore at a specific location, is crucial for obtaining accurate spatially-resolved quantitative functional information by exploiting known chromophore-specific spectral characteristics. This study introduces a non-invasive phase-filtered differential photoacoustic technique, wavelength-modulated differential photoacoustic radar (WM-DPAR) imaging that addresses this issue by eliminating the effect of the unknown wavelength-dependent fluence. It employs two laser wavelengths modulated out-of-phase to significantly suppress background absorption while amplifying the difference between the two photoacoustic signals. This facilitates pre-malignant tumor identification and hypoxia monitoring, as minute changes in total hemoglobin concentration and hemoglobin oxygenation are detectable. The system can be tuned for specific applications such as cancer screening and SO2 quantification by regulating the amplitude ratio and phase shift of the signal. The WM-DPAR imaging of a head and neck carcinoma tumor grown in the thigh of a nude rat demonstrates the functional PA imaging of small animals in vivo. The PA appearance of the tumor in relation to tumor vascularity is investigated by immunohistochemistry. Phase-filtered WM-DPAR imaging is also illustrated, maximizing quantitative SO2 imaging fidelity of tissues. Oxygenation levels within a tumor grown in the thigh of a nude rat using the two-wavelength phase-filtered differential PAR method.

  3. Novel X-ray phase-contrast tomography method for quantitative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, Rikke; Nielsen, Mikkel Schou; Einarsdottir, Hildur;

    2014-01-01

    The objective of this study was to evaluate the use of X-ray phase-contrast tomography combined with 3D image segmentation to investigate the heat induced structural changes in meat. The measurements were performed at the Swiss synchrotron radiation light source using a grating interferometric se...... in a qualitative and quantitative manner without prior sample preparation as isolation of single muscle components, calibration or histology....

  4. Reverse-phase high pressure liquid chromatographic analysis of harpagoside, scorodioside and verbascoside from Scrophularia scorodonia: quantitative determination of harpagoside.

    Science.gov (United States)

    Díaz, A; Fernández, L; Ollivier, E; Martín, T; Villaescusa, L; Balansard, G

    1998-02-01

    A reversed-phase high performance liquid chromatographic method has been developed for the determination of the main compounds (harpagoside, scorodioside, and verbascoside) from different samples of Scrophularia scorodonia. The chromatographic method has been validated and applied for quantitative determination of harpagoside. The results show the highest levels of harpagoside in the leaf extract. The purity and identity of peaks were controlled by diode-array detection and comparison with standards.

  5. Quantitation of drugs via molecularly imprinted polymer solid phase extraction and electrospray ionization mass spectrometry: benzodiazepines in human plasma

    OpenAIRE

    2011-01-01

    The association of solid phase extraction with molecularly imprinted polymers (MIP) and electrospray ionization mass spectrometry (ESI-MS) is applied to the direct extraction and quantitation of benzodiazepines in human plasma. The target analytes are sequestered by MIP and directly analyzed by ESI-MS. Due to the MIP highly selective extraction, ionic suppression during ESI is minimized; hence no separation is necessary prior to ESI-MS, which greatly increases analytical speed. Benzodiazepine...

  6. Temperature-pressure phase diagram of a heterogeneous anionic model biomembrane system: results from a combined calorimetry, spectroscopy and microscopy study.

    Science.gov (United States)

    Kapoor, Shobhna; Werkmüller, Alexander; Denter, Christian; Zhai, Yong; Markgraf, Jonas; Weise, Katrin; Opitz, Norbert; Winter, Roland

    2011-04-01

    By using Fourier transform infrared (FT-IR) spectroscopy in combination with differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), ultrasound velocimetry, Laurdan fluorescence spectroscopy, fluorescence microscopy and atomic force microscopy (AFM), the temperature and pressure dependent phase behavior of the five-component anionic model raft lipid mixture DOPC/DOPG/DPPC/DPPG/cholesterol (20:5:45:5:25 mol%) was investigated. A temperature range from 5 to 65 °C and a pressure range up to 16 kbar were covered to establish the temperature-pressure phase diagram of this heterogeneous model biomembrane system. Incorporation of 10-20 mol% PG still leads to liquid-ordered (l(o))-liquid-disordered (l(d)) phase coexistence regions over a wide range of temperatures and pressures. Compared to the corresponding neutral model raft mixture (DOPC/DPPC/Chol 25:50:25 mol%), the p,T-phase diagram is - as expected and in accordance with the Gibbs phase rule - more complex, the phase sequence as a function of temperature and pressure is largely similar, however. This anionic heterogeneous model membrane system will serve as a more realistic model biomembrane system to study protein interactions with anionic lipid bilayers displaying liquid-disordered/liquid-ordered domain coexistence over a wide range of the temperature-pressure plane, thus allowing also studies of biologically relevant systems encountered under extreme environmental conditions.

  7. Water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) amorphous solid dispersions: Insights with confocal fluorescence microscopy.

    Science.gov (United States)

    Saboo, Sugandha; Taylor, Lynne S

    2017-08-30

    The aim of this study was to evaluate the utility of confocal fluorescence microscopy (CFM) to study the water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) (mico-PVPVA) amorphous solid dispersions (ASDs), induced during preparation, upon storage at high relative humidity (RH) and during dissolution. Different fluorescent dyes were added to drug-polymer films and the location of the dyes was evaluated using CFM. Orthogonal techniques, in particular atomic force microscopy (AFM) coupled with nanoscale infrared spectroscopy (AFM-nanoIR), were used to provide additional analysis of the drug-polymer blends. The initial miscibility of mico-PVPVA ASDs prepared under low humidity conditions was confirmed by AFM-nanoIR. CFM enabled rapid identification of drug-rich and polymer-rich phases in phase separated films prepared under high humidity conditions. The identity of drug- and polymer-rich domains was confirmed using AFM-nanoIR imaging and localized IR spectroscopy, together with Lorentz contact resonance (LCR) measurements. The CFM technique was then utilized successfully to further investigate phase separation in mico-PVPVA films exposed to high RH storage and to visualize phase separation dynamics following film immersion in buffer. CFM is thus a promising new approach to study the phase behavior of ASDs, utilizing drug and polymer specific dyes to visualize the evolution of heterogeneity in films exposed to water. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Quantification of inflammation in colonic tissue sections and wound healing in-vitro with digital holographic microscopy

    Science.gov (United States)

    Bettenworth, Dominik; Lenz, Philipp; Krausewitz, Philipp; Brückner, Markus; Ketelhut, Steffi; von Bally, Gert; Domagk, Dirk; Kemper, Björn

    2013-06-01

    We show that the tissue refractive index, obtained from quantitative digital holographic microscopy (DHM) phase contrast images of unstained histological colonic sections, is directly related to the degree of inflammation in experimental colitis. In addition, it is demonstrated that quantitative DHM phase contrast is capable to quantify in-vitro wound healing assays.

  9. Three-dimensional observation of the phase structure of high density polyethylene (HDPE)/poly(ethylene-co-butene) (PEB) blend by laser scanning confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG ChengGui; DONG Xia; WANG DuJin; HAN Charles C

    2007-01-01

    In this paper, high density polyethylene (HDPE)/poly(ethylene-co-butene) (PEB) blend (50/50 wt%) was prepared through solution blending and then compression molding, and subsequently examined by laser scanning confocal microscopy (LSCM). The PEB used in this experiment was labeled with a small quantity of a fluorescein derivative to render fluorescence. The initial films showed uniform dye distribution and no indication of phase separation within the resolution of optical microscopy. Sample films annealing at 140℃ followed by rapid cooling to room temperature showed obvious phase separation and bicontinuous structure. The present work indicates that by labeling one component with fluorescein derivative, LSCM can efficiently perform in situ depth profiling of polymer blends.

  10. Corrosion of non-irradiated UAl{sub x}-Al fuel in the presence of clay pore solution. A quantitative XRD secondary phase analysis applying the DDM method

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Andreas [Halle-Wittenberg Univ. (Germany). Dept. of Mineralogy and Geochemistry; RWTH Aachen Univ. (Germany). Inst. of Crystallography; Klinkenberg, Martina; Curtius, Hildegard [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research, IEK-6 Nuclear Waste Management

    2017-04-01

    Corrosion experiments with non-irradiated metallic UAl{sub x}-Al research reactor fuel elements were carried out in autoclaves to identify and quantify the corrosion products. Such compounds, considering the long-term safety assessment of final repositories, can interact with the released inventory and this constitutes a sink for radionuclide migration in formation waters. Therefore, the metallic fuel sample was subjected to clay pore solution to investigate its process of disintegration by analyzing the resulting products and the remnants, i.e. the secondary phases. Due to the fast corrosion rate a full sample disintegration was observed within the experimental period of 1 year at 90 C. The obtained solids were subdivided into different grain size fractions and prepared for analysis. The elemental analysis of the suspension showed that, uranium and aluminum are concentrated in the solids, whereas iron was mainly dissolved. Non-ambient X-ray diffraction (XRD) combined with the derivative difference minimization (DDM) method was applied for the qualitative and quantitative phase analysis (QPA) of the secondary phases. Gypsum and hemihydrate (bassanite), residues of non-corroded nuclear fuel, hematite, and goethite were identified. The quantitative phase analysis showed that goethite is the major crystalline phase. The amorphous content exceeded 80 wt% and hosted the uranium. All other compounds were present to a minor content. The obtained results by XRD were well supported by complementary scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis.

  11. Quantitative Phase Development of crystalline, nano-crystalline and amorphous phases during hydration of OPC blended with siliceous fly ash

    OpenAIRE

    Dittrich, Sebastian

    2015-01-01

    Ambitious efforts driven by political and environmental considerations to reduce carbon dioxide emission are currently present, amongst other branches in the construction material industry as well. One possible solution concentrates on the replacement of cement by supplementary cementitious materials like fly ash or granulated blast furnace slag. Due to its high amorphous phase content and the related reactivity potential fly ash seems well suited for being used in cement or concrete. Unfortu...

  12. Quantitative Susceptibility Mapping-Based Microscopy of Magnetic Resonance Venography (QSM-mMRV for In Vivo Morphologically and Functionally Assessing Cerebromicrovasculature in Rat Stroke Model.

    Directory of Open Access Journals (Sweden)

    Meng-Chi Hsieh

    Full Text Available Abnormal cerebral oxygenation and vessel structure is a crucial feature of stroke. An imaging method with structural and functional information is necessary for diagnosis of stroke. This study applies QSM-mMRV (quantitative susceptibility mapping-based microscopic magnetic resonance venography for noninvasively detecting small cerebral venous vessels in rat stroke model. First, susceptibility mapping is optimized and calculated from magnetic resonance (MR phase images of a rat brain. Subsequently, QSM-mMRV is used to simultaneously provide information on microvascular architecture and venous oxygen saturation (SvO2, both of which can be used to evaluate the physiological and functional characteristics of microvascular changes for longitudinally monitoring and therapeutically evaluating a disease model. Morphologically, the quantification of vessel sizes using QSM-mMRV was 30% smaller than that of susceptibility-weighted imaging (SWI, which eliminated the overestimation of conventional SWI. Functionally, QSM-mMRV estimated an average SvO2 ranging from 73% to 85% for healthy rats. Finally, we also applied QSM to monitor the revascularization of post-stroke vessels from 3 to 10 days after reperfusion. QSM estimations of SvO2 were comparable to those calculated using the pulse oximeter standard metric. We conclude that QSM-mMRV is useful for longitudinally monitoring blood oxygen and might become clinically useful for assessing cerebrovascular diseases.

  13. Quantitative Susceptibility Mapping-Based Microscopy of Magnetic Resonance Venography (QSM-mMRV) for In Vivo Morphologically and Functionally Assessing Cerebromicrovasculature in Rat Stroke Model.

    Science.gov (United States)

    Hsieh, Meng-Chi; Tsai, Ching-Yi; Liao, Min-Chiao; Yang, Jenq-Lin; Su, Chia-Hao; Chen, Jyh-Horng

    2016-01-01

    Abnormal cerebral oxygenation and vessel structure is a crucial feature of stroke. An imaging method with structural and functional information is necessary for diagnosis of stroke. This study applies QSM-mMRV (quantitative susceptibility mapping-based microscopic magnetic resonance venography) for noninvasively detecting small cerebral venous vessels in rat stroke model. First, susceptibility mapping is optimized and calculated from magnetic resonance (MR) phase images of a rat brain. Subsequently, QSM-mMRV is used to simultaneously provide information on microvascular architecture and venous oxygen saturation (SvO2), both of which can be used to evaluate the physiological and functional characteristics of microvascular changes for longitudinally monitoring and therapeutically evaluating a disease model. Morphologically, the quantification of vessel sizes using QSM-mMRV was 30% smaller than that of susceptibility-weighted imaging (SWI), which eliminated the overestimation of conventional SWI. Functionally, QSM-mMRV estimated an average SvO2 ranging from 73% to 85% for healthy rats. Finally, we also applied QSM to monitor the revascularization of post-stroke vessels from 3 to 10 days after reperfusion. QSM estimations of SvO2 were comparable to those calculated using the pulse oximeter standard metric. We conclude that QSM-mMRV is useful for longitudinally monitoring blood oxygen and might become clinically useful for assessing cerebrovascular diseases.

  14. A method for the quantitative determination of crystalline phases by X-ray

    Science.gov (United States)

    Petzenhauser, I.; Jaeger, P.

    1988-01-01

    A mineral analysis method is described for rapid quantitative determination of crystalline substances in those cases in which the sample is present in pure form or in a mixture of known composition. With this method there is no need for prior chemical analysis.

  15. Ultrarapid quantitation of maize proteins by perfusion and monolithic reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Rodríguez-Nogales, J M; del Alamo, M; García, M C; Cifuentes, A; Marina, M L

    2009-04-22

    The main objective of this study was to develop a new methodology alternative to the classical Kjeldahl analysis for determining maize proteins in maize products and seeds. For that purpose, two different chromatographic methodologies using perfusion and monolithic stationary phases, both enabling rapid separations of maize proteins, were investigated. Due to the difficulty to find suitable standards for this type of analysis, three different maize products were initially tested as proteins standards: zein F4000, corn gluten meal, and maize flour. Different figures of merit (i.e., linearity, correlation coefficient, precision, limits of detection and quantitation), as well as the presence of matrix inferences, were investigated. The results obtained for the different chromatographic stationary phases and protein standards were compared in order to select the most suitable analytical conditions. Despite both perfusion and monolithic methodologies resulting, in general, as appropriate for the quantitation of maize proteins, the highest reduction of analysis time and lowest detection and determination limits provided by perfusion methodology enabled to select this one as the method of choice for the quantitation of maize proteins. Regarding the different protein standards studied in this work, in general the best results were obtained using the zein standard. Compared to Kjeldahl methodology, perfusion chromatography yields total protein contents in shorter analysis time while enabling the separation of the different kinds of proteins. Due to the high diversity and complexity of industrial maize products, the proposed chromatographic method could be a very useful tool for their routine analysis.

  16. Variations in elemental compositions of rat hippocampal formation between acute and latent phases of pilocarpine-induced epilepsy: an X-ray fluorescence microscopy study.

    Science.gov (United States)

    Chwiej, J; Dulinska, J; Janeczko, K; Appel, K; Setkowicz, Z

    2012-06-01

    There is growing experimental evidence that tracing the elements involved in brain hyperexcitability, excitotoxicity, and/or subsequent neurodegeneration could be a valuable source of data on the molecular mechanisms triggering or promoting further development of epilepsy. The most frequently used experimental model of the temporal lobe epilepsy observed in clinical practice is the one based on pilocarpine-induced seizures. In the frame of this study, the elemental anomalies occurring for the rat hippocampal tissue in acute and silent periods after injection of pilocarpine in rats were compared. X-ray fluorescence microscopy was applied for the topographic and quantitative elemental analysis. The differences in the levels of elements such as P, S, K, Ca, Fe, Cu, and Zn between the rats 3 days (SE72) and 6 h (SE6) after pilocarpine injection as well as naive controls were examined. Comparison of SE72 and control groups showed, for specific areas of the hippocampal formation, lower levels of P, K, Cu, and Zn, and an increase in Ca accumulation. These results as well as further analysis of the differences between the SE72 and SE6 groups confirmed that seizure-induced excitotoxicity as well as mossy fiber sprouting are the mechanisms involved in the neurodegenerative processes which may finally lead to spontaneous seizures in the chronic period of the pilocarpine model. Moreover, in the light of the results obtained, Cu seems to play a very important role in the pathogenesis of epilepsy in this animal model. For all areas analyzed, the levels of this element recorded in the latent period were not only lower than those for controls but were even lower than the levels found in the acute period. The decreased hippocampal accumulation of Cu in the phase of behavior and EEG stabilization, a possible inhibitory effect of this element on excitatory amino acid receptors, and enhanced seizure susceptibility in Menkes disease (an inherited Cu transport disorder leading to Cu

  17. Quantitative Assessment of the Condensed Phase Heats of Reaction in a Double Base Propellant

    Directory of Open Access Journals (Sweden)

    K. Kishore

    1985-01-01

    Full Text Available Heat of decomposition of the double base propellant has been calculated from the knowledge of the composition and decomposition enthalpy of the ingredients. This was compared with the experimentally observed value of the propellant decomposition which suggested that condensed phase contribution is very marginal (one twentieth of the total calorimetric value in double base propellants unlike composite solid propellants where condensed phase contribution is as high as one third. The condensed-phase in double base propellant was attributed to the nitration of the 2n-diphenylamine stabilizer in the propellant matrix.

  18. Prebeta-migrating high density lipoprotein: quantitation in normal and hyperlipidemic plasma by solid phase radioimmunoassay following electrophoretic transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, B.Y.; Frolich, J.; Fielding, C.J.

    1987-07-01

    A quantitative solid phase immunoassay has been developed for the determination of the mass of electrophoretically separated prebeta apolipoprotein A-I (apoA-I) in human plasma. Conditions have been identified for the quantitative transfer and immunoblotting of the apolipoprotein in the absence of organic solvents or detergents. In normolipidemic plasma, the prebeta-migrating fraction of apoA-I represented 4.2 +/- 1.8% of total apoA-I (61 +/- 26 micrograms of apoA-I per ml of plasma). Significantly higher levels were found in hypercholesterolemia of genetic origin, in primary and secondary hypertriglyceridemia, and in congenital lecithin:cholesterol acyltransferase deficiency. In all cases prebeta-migrating apoA-I consisted in large part of low molecular weight lipoprotein species, compared to the size of the major, alpha-migrating apoA-I fraction.

  19. Quantitative studies on inner interfaces in conical metal joints using hard x-ray inline phase contrast radiography

    Energy Technology Data Exchange (ETDEWEB)

    Zabler, S. [Institute for Materials Science, Technical University of Berlin, EB 13, Strasse des 17, Juni 135, D-10623 Berlin (Germany); Rack, T.; Nelson, K. [Clinic for Oral and Maxifacial Surgery, Charite University Medicine, Augustenburger Platz 1, D-13353 Berlin (Germany); Rack, A. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble (France)

    2010-10-15

    Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1 {mu}m are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system being 4 {mu}m in absorption mode and {approx}14 {mu}m in phase contrast mode (z{sub 2}=0.74 m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.

  20. Quantitative Characterization of Inertial Confinement Fusion Capsules Using Phase Contrast Enhanced X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kozioziemski, B J; Koch, J A; Barty, A; Martz, H E; Lee, W; Fezzaa, K

    2004-05-07

    Current designs for inertial confinement fusion capsules for the National Ignition Facility (NIF) consist of a solid deuterium-tritium (D-T) fuel layer inside of a copper doped beryllium capsule. Phase contrast enhanced x-ray imaging is shown to render the D-T layer visible inside the Be(Cu) capsule. Phase contrast imaging is experimentally demonstrated for several surrogate capsules and validates computational models. Polyimide and low density divinyl benzene foam capsules were imaged at the Advanced Photon Source synchrotron. The surrogates demonstrate that phase contrast enhanced imaging provides a method to characterize surfaces when absorption imaging cannot be used. Our computational models demonstrate that a rough surface can be accurately reproduced in phase contrast enhanced x-ray images.