WorldWideScience

Sample records for quantitative phase analysis

  1. Quantitative Phase Analysis by the Rietveld Method for Forensic Science.

    Science.gov (United States)

    Deng, Fei; Lin, Xiaodong; He, Yonghong; Li, Shu; Zi, Run; Lai, Shijun

    2015-07-01

    Quantitative phase analysis (QPA) is helpful to determine the type attribute of the object because it could present the content of the constituents. QPA by Rietveld method requires neither measurement of calibration data nor the use of an internal standard; however, the approximate crystal structure of each phase in a mixture is necessary. In this study, 8 synthetic mixtures composed of potassium nitrate and sulfur were analyzed by Rietveld QPA method. The Rietveld refinement was accomplished with a material analysis using diffraction program and evaluated by three agreement indices. Results showed that Rietveld QPA yielded precise results, with errors generally less than 2.0% absolute. In addition, a criminal case which was broken successfully with the help of Rietveld QPA method was also introduced. This method will allow forensic investigators to acquire detailed information of the material evidence, which could point out the direction for case detection and court proceedings.

  2. QUANTITATIVE ANALYSIS OF BANDED STRUCTURES IN DUAL-PHASE STEELS

    Directory of Open Access Journals (Sweden)

    Benoit Krebs

    2011-05-01

    Full Text Available Dual-Phase (DP steels are composed of martensite islands dispersed in a ductile ferrite matrix, which provides a good balance between strength and ductility. Current processing conditions (continuous casting followed by hot and cold rolling generate 'banded structures' i.e., irregular, parallel and alternating bands of ferrite and martensite, which are detrimental to mechanical properties and especially for in-use properties. We present an original and simple method to quantify the intensity and wavelength of these bands. This method, based on the analysis of covariance function of binary images, is firstly tested on model images. It is compared with ASTM E-1268 standard and appears to be more robust. Then it is applied on real DP steel microstructures and proves to be sufficiently sensitive to discriminate samples resulting from different thermo-mechanical routes.

  3. Phase analysis in duplex stainless steel: comparison of EBSD and quantitative metallography methods

    Science.gov (United States)

    Michalska, J.; Chmiela, B.

    2014-03-01

    The purpose of the research was to work out the qualitative and quantitative analysis of phases in DSS in as-received state and after thermal aging. For quantitative purposes, SEM observations, EDS analyses and electron backscattered diffraction (EBSD) methods were employed. Qualitative analysis of phases was performed by two methods: EBSD and classical quantitative metallography. A juxtaposition of different etchants for the revealing of microstructure and brief review of sample preparation methods for EBSD studies were presented. Different ways of sample preparation were tested and based on these results a detailed methodology of DSS phase analysis was developed including: surface finishing, selective etching methods and image acquisition. The advantages and disadvantages of applied methods were pointed out and compared the accuracy of the analysis phase performed by both methods.

  4. MULTI-PEAK MATCH INTENSITY RATIO METHOD OF QUANTITATIVE X-RAY DIFFRACTION PHASE ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    G. Chu; Y.F. Cong; H.J. You

    2003-01-01

    A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.

  5. Quantitative x-ray diffraction phase analysis of coarse airborne particulate collected by cascade impactor sampling

    Science.gov (United States)

    Esteve, V.; Rius, J.; Ochando, L. E.; Amigó, J. M.

    Mineralogical composition of Castellon (Spanish Mediterranean coast) atmospheric aerosol was studied by X-ray diffraction by sampling with a cascade impactor without filters. Quantitative phase analysis of natural phases present in the atmospheric coarse aerosol was performed using a modified version of the computer program MENGE, that uses the standardless X-ray method developed by Rius for the quantitative analysis of multiphase mixtures, adapted for PC running. Presence of quartz, calcite and gypsum was identified in the atmospheric aerosol and we have quantified their amounts using the standardless method.

  6. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  7. Quantitative analysis of non-equilibrium phase transition process by the catastrophe theory

    Science.gov (United States)

    Liang, Xiao; Wu, Jiu Hui; Zhong, H. B.

    2017-08-01

    Catastrophe theory is a highly generalized mathematical theory that summarizes the rules of non-equilibrium phase transition by several catastrophe models. This paper investigates the general non-equilibrium phase transition process quantitatively using catastrophe theory for the first time, to our knowledge. First, a new approach is proposed by combining the catastrophe theory with dimensionless analysis. Second, the new approach is applied to two classic examples: one is the turbulent phase transition and the other is the bottleneck effect of particle flow. For the turbulence phase transition process, the quantitative relationships are obtained. Comparing with Kolmogorov's turbulent theory, the new method proposed in this paper is able to evaluate not only the complete turbulence condition but also the development of turbulence, and Kolmogorov's turbulent theory is only a special case of our results by this new approach. For the particle flow bottleneck effect, the results obtained by this new method correspond with the empirical formulated results. Therefore, the proposed method can solve non-equilibrium phase transition process problems and has the potential to extend to fluid, aerodynamics, and so forth.

  8. A Method for Quantitative Phase Analysis of Nanocrystalline Zirconium Dioxide Polymorphs.

    Science.gov (United States)

    Zhou, Zhiqiang; Guo, Li

    2015-04-01

    A method based on X-ray diffractometry was developed for quantitative phase analysis of nanocrystalline zirconium dioxide polymorphs. Corresponding formulas were derived. The key factors therein were evaluated by rigorous theoretical calculation and fully verified by experimentation. A process of iteration was raised to make the experimental verification proceed in the case of lack of pure ZrO2 crystal polymorphs. By this method, the weight ratios of tetragonal ZrO2 (t-ZrO2) to monoclinic ZrO2 (m-ZrO2) in any a mixture that contains nanocrystalline t-ZrO2 and m-ZrO2 or their weight fractions in a mixture that is composed of nanocrystalline t-ZrO2 and m-ZrO2 can be determined only upon an XRD test. It is proved by both theoretical calculation and experimental test that mutual substitutions of t-ZrO2 and cubic ZrO2 (c-ZrO2) in a wide range show almost no impact on the XRD patterns of their mixtures. And plus the similarity in property of t-ZrO2 and c-ZrO2, they can be treated as one whole phase. The high agreement of the theoretical and experimental results in this work also proves the validity and reliability of the theoretical calculation based on X-ray diffractometry theory for such quantitative phase analysis. This method has the potential to be popularized to other materials.

  9. Full quantitative phase analysis of hydrated lime using the Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Romagnoli, Marcello; Miselli, Paola; Cannio, Maria [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Gualtieri, Alessandro F. [Dipartimento di Scienze della Terra, Universita Degli Studi di Modena e Reggio Emilia, I-41100 Modena (Italy)

    2012-09-15

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2-15 wt.%.

  10. Quantitative Analysis of Fundus-Image Sequences Reveals Phase of Spontaneous Venous Pulsations

    Science.gov (United States)

    Moret, Fabrice; Reiff, Charlotte M.; Lagrèze, Wolf A.; Bach, Michael

    2015-01-01

    Purpose Spontaneous venous pulsation correlates negatively with elevated intracranial pressure and papilledema, and it relates to glaucoma. Yet, its etiology remains unclear. A key element to elucidate its underlying mechanism is the time at which collapse occurs with respect to the heart cycle, but previous reports are contradictory. We assessed this question in healthy subjects using quantitative measurements of both vein diameters and artery lateral displacements; the latter being used as the marker of the ocular systole time. Methods We recorded 5-second fundus sequences with a near-infrared scanning laser ophthalmoscope in 12 young healthy subjects. The image sequences were coregistered, cleaned from microsaccades, and filtered via a principal component analysis to remove nonpulsatile dynamic features. Time courses of arterial lateral displacement and of diameter at sites of spontaneous venous pulsation or proximal to the disk were retrieved from those image sequences and compared. Results Four subjects displayed both arterial and venous pulsatile waveforms. On those, we observed venous diameter waveforms differing markedly among the subjects, ranging from a waveform matching the typical intraocular pressure waveform to a close replica of the arterial waveform. Conclusions The heterogeneity in waveforms and arteriovenous phases suggests that the mechanism governing the venous outflow resistance differs among healthy subjects. Translational relevance Further characterizations are necessary to understand the heterogeneous mechanisms governing the venous outflow resistance as this resistance is altered in glaucoma and is instrumental when monitoring intracranial hypertension based on fundus observations. PMID:26396929

  11. Quantitative analysis of forskolin in Coleus forskohlii (Lamiaceae) by reversed-phase liquid chromatography.

    Science.gov (United States)

    Schaneberg, Brian T; Khan, Ikhlas A

    2003-01-01

    A rapid method was developed for the evaluation of forskolin in Coleus forskohlii Briq. (Lamiaceae). Forskolin was quantitated in the root and stem of dried C. forskohlii and in 17 market products by reversed-phase liquid chromatography (LC) with a photodiode array detector at 210 nm. The temperature was held constant at 30 degrees C, and the retention time of forskolin was approximately 6.8 min. The samples were extracted with acetonitrile by sonication. The precision of the method was confirmed by a standard deviation forskohlii plant material and in market products claiming to contain C. forskohlii.

  12. GPC and quantitative phase imaging

    DEFF Research Database (Denmark)

    Palima, Darwin; Banas, Andrew Rafael; Villangca, Mark Jayson

    2016-01-01

    shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging...

  13. Validation of the method of quantitative phase analysis by X-ray diffraction in API: case of Tibolone

    Science.gov (United States)

    Silva, R. P.; Ambrósio, M. F. S.; Epprecht, E. K.; Avillez, R. R.; Achete, C. A.; Kuznetsov, A.; Visentin, L. C.

    2016-07-01

    In this study, different structural and microstructural models applied to X-ray analysis of powder diffraction data of polymorphic mixtures of known concentrations of Tibolone were investigated. The X-ray data obtained in different diffraction instruments were analysed via Rietveld method using the same analytical models. The results of quantitative phase analysis show that regardless of the instrument used, the values of the calculated concentrations follow the same systematics with respect to the final errors. The strategy to select a specific analytical model that leads to lower measurement errors is here presented.

  14. Single and two-shot quantitative phase imaging using Hilbert-Huang Transform based fringe pattern analysis

    Science.gov (United States)

    Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos

    2016-08-01

    In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.

  15. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  16. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H. J.; Lee, H. S.; Kim, K. R.; Cheong, H. S.; Ahn, D. H.; Lee, S. H.; Paek, S. W.; Kang, H. S.; Kim, J. G

    2001-01-01

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip.

  17. GPC and quantitative phase imaging

    Science.gov (United States)

    Palima, Darwin; Bañas, Andrew Rafael; Villangca, Mark Jayson; Glückstad, Jesper

    2016-03-01

    Generalized Phase Contrast (GPC) is a light efficient method for generating speckle-free contiguous optical distributions using binary-only or analog phase levels. It has been used in applications such as optical trapping and manipulation, active microscopy, structured illumination, optical security, parallel laser marking and labelling and recently in contemporary biophotonics applications such as for adaptive and parallel two-photon optogenetics and neurophotonics. We will present our most recent GPC developments geared towards these applications. We first show a very compact static light shaper followed by the potential of GPC for biomedical and multispectral applications where we experimentally demonstrate the active light shaping of a supercontinuum laser over most of the visible wavelength range. Finally, we discuss how GPC can be advantageously applied for Quantitative Phase Imaging (QPI).

  18. Quantitative investment analysis

    CERN Document Server

    DeFusco, Richard

    2007-01-01

    In the "Second Edition" of "Quantitative Investment Analysis," financial experts Richard DeFusco, Dennis McLeavey, Jerald Pinto, and David Runkle outline the tools and techniques needed to understand and apply quantitative methods to today's investment process.

  19. Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41100 Modena (Italy); Bondioli, Federica [Department of Industrial Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma (Italy); INSTM Consortium, Via G. Giusti 9, 51121 Firenze (Italy); Manfredini, Tiziano [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41100 Modena (Italy); INSTM Consortium, Via G. Giusti 9, 51121 Firenze (Italy); Gualtieri, Alessandro [Department of Chemical and Geological Science, University of Modena and Reggio Emilia, Via S. Eufemia 19, 41121 Modena Italy (Italy)

    2015-02-15

    An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals was followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.

  20. Quantitative pupil analysis in stimulated emission depletion microscopy using phase retrieval

    DEFF Research Database (Denmark)

    Kromann, Emil B; Gould, Travis J; Juette, Manuel F;

    2012-01-01

    no instrument modifications, for obtaining an equivalent to the complex pupil function at the back aperture of the objective and show that it provides quantitative information about aberration sources (including aberrations induced by the objective or sample). We show the accuracy of this field representation...

  1. Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction.

    Science.gov (United States)

    Langenfeld, J J; Hawthorne, S B; Miller, D J

    1996-01-01

    Solid-phase microextraction (SPME) parameters were examined on water contaminated with hydrocarbons including benzene and alkylbenzenes, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs). Absorption equilibration times ranged from several minutes for low molecular weight compounds such as benzene to 5 h for high molecular weight compounds such as benzo[a]pyrene. Under equilibrium conditions, SPME analysis with GC/FID was linear over 3-6 orders of magnitude, with linear correlation coefficients (r(2)) greater than 0.96. Experimentally determined FID detection limits ranged from ∼30 ppt (w/w hydrocarbon/sample water) for high molecular weight PAHs (e.g., MW > 202) to ∼1 ppb for low molecular weight aromatic hydrocarbons. Experimental distribution constants (K) were different with 100- and 7-μm poly(dimethylsiloxane) fibers, and poor correlations with previously published values suggest that K depends on the fiber coating thickness and the sorbent preparation method. The sensitivity of SPME analysis is not significantly enhanced by larger sample volumes, since increasing the water volume (e.g., from 1 to 100 mL) has little effect on the number of analyte molecules absorbed by the fiber, especially for compounds with K solids. Quantitative determinations of aromatic and aliphatic hydrocarbons (e.g., in gasoline-contaminated water) can be performed using GC/MS with deuterated internal standard or standard addition calibration as long as the target components or standards had unique ions for quantitation or sufficient chromatographic resolution from interferences. SPME analysis gave good quantitative performance with surface waters having high suspended sediment contents, as well as with coal gasification wastewater which contained matrix organics at 10(6)-fold higher concentrations than the target aromatic hydrocarbons. Good agreement was obtained between a 45-min SPME and methylene chloride extraction for the determination of PAH concentrations in creosote

  2. Quantitative ultrasonic phased array imaging

    Science.gov (United States)

    Engle, Brady J.; Schmerr, Lester W., Jr.; Sedov, Alexander

    2014-02-01

    When imaging with ultrasonic phased arrays, what do we actually image? What quantitative information is contained in the image? Ad-hoc delay-and-sum methods such as the synthetic aperture focusing technique (SAFT) and the total focusing method (TFM) fail to answer these questions. We have shown that a new quantitative approach allows the formation of flaw images by explicitly inverting the Thompson-Gray measurement model. To examine the above questions, we have set up a software simulation test bed that considers a 2-D scalar scattering problem of a cylindrical inclusion with the method of separation of variables. It is shown that in SAFT types of imaging the only part of the flaw properly imaged is the front surface specular response of the flaw. Other responses (back surface reflections, creeping waves, etc.) are improperly imaged and form artifacts in the image. In the case of TFM-like imaging the quantity being properly imaged is an angular integration of the front surface reflectivity. The other, improperly imaged responses are also averaged, leading to a reduction in some of the artifacts present. Our results have strong implications for flaw sizing and flaw characterization with delay-and-sum images.

  3. Chromatographic analysis of some drugs employed in erectile dysfunction therapy: qualitative and quantitative studies using calixarene stationary phase.

    Science.gov (United States)

    Hashem, Hisham; Ibrahim, Adel Ehab; Elhenawee, Magda

    2014-10-01

    In this study, the effect of change in chromatographic process variables on the retention behavior of four drugs employed in erectile dysfunction therapy on a calixarene stationary phase is described. Three of these drugs are known to treat erectile dysfunction, namely, sildenafil citrate, tadalafil, and apomorphine hydrochloride, and one drug that is used as opioid analgesic, tramadol hydrochloride, which is quiet widely misused to treat premature ejaculation. The results indicate the importance of considering the structure and pKa values of drugs to be separated along with mobile phase composition. A new optimized, rapid, and accurate liquid chromatography method is also established for simultaneous determination of sildenafil citrate, tadalafil, and apomorphine hydrochloride in pharmaceutical preparations and bulk powders. The chromatographic separation of the three pharmaceuticals was achieved on a calixarene column in less than 10 min using a binary mobile phase of 35% acetonitrile and 65% 50 mM sodium perchlorate pH2.5 at 1 mL/min flow rate. The method was validated for system efficiency, linearity, accuracy, precision, limits of detection and quantitation, specificity, stability, and robustness. Statistical analysis proved that the method enabled reproducible and selective quantification of all three analytes in bulk drugs and in pharmaceutical preparations.

  4. Inter- and intragranular delta phase quantitative characterization in Inconel 718 by means of image analysis.

    Science.gov (United States)

    Vanderesse, N; Anderson, M; Bridier, F; Bocher, P

    2015-01-01

    This paper describes an image processing method for discriminating the inter- and intragranular delta phase precipitates in Inconel 718 (IN 718). The successive practical operations and the motivations of their choices are presented in detail. The method was applied to IN 718 specimens heat treated with different parameters to produce microstructures containing various amounts of both types of precipitates. They were characterized by electron microscopy in backscattered electron imaging. The main difficulty arose from the fact that the brightness distributions of inter- and intragranular precipitates partially overlap. Additional information on their morphology and their spatial distribution had to be exploited in order to differentiate them. The shape and the orientation of the precipitates were evaluated using the structure tensor, an operator that quantifies the directionality of the intensity distribution in an image. The distance between parallel precipitates was also used as an additional property to identify clusters of intragranular precipitates.

  5. Quantitative Risk - Phases 1 & 2

    Science.gov (United States)

    2013-11-12

    quantitative risk characterization”, " Risk characterization of microbiological hazards in food ", Chapter 4, 2009 314...State University, July 9, 2013 213. Albert I, Grenier E, Denis JB, Rousseau J., “ Quantitative Risk Assessment from Farm to Fork and Beyond: a...MELHEM, G., “Conduct Effective Quantitative Risk Assessment (QRA) Studies”, ioMosaic Corporation, 2006 233. Anderson, J., Brown, R., “ Risk

  6. Multivariate Quantitative Chemical Analysis

    Science.gov (United States)

    Kinchen, David G.; Capezza, Mary

    1995-01-01

    Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.

  7. Multivariate Quantitative Chemical Analysis

    Science.gov (United States)

    Kinchen, David G.; Capezza, Mary

    1995-01-01

    Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.

  8. Effect of mobile phase additives on qualitative and quantitative analysis of ginsenosides by liquid chromatography hybrid quadrupole-time of flight mass spectrometry.

    Science.gov (United States)

    Liang, Yan; Guan, Tianye; Zhou, Yuanyuan; Liu, Yanna; Xing, Lu; Zheng, Xiao; Dai, Chen; Du, Ping; Rao, Tai; Zhou, Lijun; Yu, Xiaoyi; Hao, Kun; Xie, Lin; Wang, Guangji

    2013-07-05

    This study was to systematically investigate the effect of mobile phase additives, including ammonia water, formic acid, acetic acid, ammonium chloride and water (as a control), on qualitative and quantitative analysis of fifteen representative ginsenosides based on liquid chromatography hybrid quadrupole-time of flight mass spectrometry (LC-Q-TOF/MS). To evaluate the influence of mobile phase additives on qualitative performance, the quality of the negative mode MS/MS spectra of ginsenosides produced by online LC-Q-TOF/MS analyses, particularly the numbers and intensities of fragment ions, were compared under different adduct ion states, and found to be strongly affected by the mobile phase additives. When 0.02% acetic acid was added in the mobile phase, the deprotonated ginsenosides ions produced the most abundant product ions, while almost no product ion was observed for the chlorinated ginsenoside ions when 0.1mM ammonium chloride was used as the mobile phase additive. On the other hand, sensitivity, linear range and precision were adopted to investigate the quantitative performance affected by different mobile phase additives. Validation results of the LC-Q-TOF/MS-based quantitative performance for ginsenosides showed that ammonium chloride not only provided the highest sensitivity for all the target analytes, but also dramatically improved the linear ranges, the intra-day and inter-day precisions comparing to the results obtained using other mobile phase additives. Importantly, the validated method, using 0.1mM ammonium chloride as the mobile phase additive, was successfully applied to the quantitative analysis of ginsenosides in rat plasma after intragastric administration of Ginsenoside Extract at 200mg/kg. In conclusion, 0.02% acetic acid was deemed to be the most suitable mobile phase additive for qualitative analysis of ginsenosides, and 0.1mM ammonium chloride in mobile phase could lead to the best quantitative performance. Our results reveal that

  9. Reverse-phase high pressure liquid chromatographic analysis of harpagoside, scorodioside and verbascoside from Scrophularia scorodonia: quantitative determination of harpagoside.

    Science.gov (United States)

    Díaz, A; Fernández, L; Ollivier, E; Martín, T; Villaescusa, L; Balansard, G

    1998-02-01

    A reversed-phase high performance liquid chromatographic method has been developed for the determination of the main compounds (harpagoside, scorodioside, and verbascoside) from different samples of Scrophularia scorodonia. The chromatographic method has been validated and applied for quantitative determination of harpagoside. The results show the highest levels of harpagoside in the leaf extract. The purity and identity of peaks were controlled by diode-array detection and comparison with standards.

  10. Quantitative Hydrocarbon Surface Analysis

    Science.gov (United States)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  11. White-light Quantitative Phase Imaging Unit

    CERN Document Server

    Baek, YoonSeok; Yoon, Jonghee; Kim, Kyoohyun; Park, YongKeun

    2016-01-01

    We introduce the white light quantitative phase imaging unit (WQPIU) as a practical realization of quantitative phase imaging (QPI) on standard microscope platforms. The WQPIU is a compact stand-alone unit which measures sample induced phase delay under white-light illumination. It does not require any modification of the microscope or additional accessories for its use. The principle of the WQPIU based on lateral shearing interferometry and phase shifting interferometry provides a cost-effective and user-friendly use of QPI. The validity and capacity of the presented method are demonstrated by measuring quantitative phase images of polystyrene beads, human red blood cells, HeLa cells and mouse white blood cells. With speckle-free imaging capability due to the use of white-light illumination, the WQPIU is expected to expand the scope of QPI in biological sciences as a powerful but simple imaging tool.

  12. Application study of transport intensity equation in quantitative phase reconstruction

    Science.gov (United States)

    Song, Xiaojun; Cheng, Wei; Wei, Chunjuan; Xue, Liang; Liu, Weijing; Bai, Baodan; Chu, Fenghong

    2016-10-01

    In order to improve detection speed and accuracy of biological cells, a quantitative non-interference optical phase recovery method is proposed in commercial microscope, taking the red blood cells as the classical phase objects. Three bright field micrographs were collected in the experiment. Utilizing the transport intensity equation (TIE), the quantitative phase distributions of red blood cell are gained and agree well with the previous optical phase models. Analysis shows that the resolution of introduced system reaches sub-micron. This method not only quickly gives quantitative phase distribution of cells, but also measures a large number of cells simultaneously. So it is potential in the use of real-time observing and quantitative analyzing of cells in vivo.

  13. Application of lock-in thermography for failure analysis in integrated circuits using quantitative phase shift analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Ch., E-mail: christian.schmidt@iwmh.fhg.de [Fraunhofer-Institute for Mechanics of Materials IWM, Walter-Huelse-Str. 1, D-06120 Halle (Germany); Altmann, F. [Fraunhofer-Institute for Mechanics of Materials IWM, Walter-Huelse-Str. 1, D-06120 Halle (Germany); Breitenstein, O., E-mail: breiten@mpi-halle.mpg.de [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany)

    2012-09-01

    Lock-in thermography (LIT), which is a well established technique for non-destructive evaluation, can also be used to identify and locate thermal active electrically defects like shorts and resistive opens in microelectronic devices. Defect localization on the level of the integrated circuits (IC) requires a {mu}m resolution. But LIT can also be applied to locate buried thermal active defects within fully packaged microelectronic devices by analysing the thermal signal detected at the surface of the device. In addition to the lateral localization of the hot spot, its depth can also be determined by analysing the phase shift of the thermal signal. This is especially valued for non destructive defect localization in complex 3D integrated system in package devices (3D SiP). In comparison to competitive thermal imaging techniques, like liquid crystal imaging or fluorescent micro thermal imaging, LIT is easier to apply since it does not need any foreign thermal sensitive layer at the surface of the device. Also, the sensitivity limit of this technique within {mu}K range is significantly better. In addition the dynamic character of LIT reduces thermal blurring, and the problem of inhomogeneous IR emissivity can be overcome by using the phase image or the 0 Degree-Sign /-90 Degree-Sign image. The spatial resolution limit of the used microscopic thermal imaging setup performed in the mid-wavelength range is about 5 {mu}m, but can be improved to 1.5 {mu}m by applying solid immersion lenses. Within the paper, the principle theory of LIT and the practical use for both, single and multiple IC devices is presented.

  14. Quantitative phase analysis from powder diffraction using de Rietveld method in hydrogen storage alloys based on TiCr

    Science.gov (United States)

    Martinez, A.; Bellon, D.; Reina, L.

    2016-08-01

    Hydrogen storage is one of the important steps in the implementation of the hydrogen economy; metal hydrides are a promising way to achieve this goal. We present in this work the use of Rietveld analysis to characterize structurally TiCr-based alloys that are able to store hydrogen. TiCruV09, TiCrL1V0.45Nb0.45, TiCr1.1V0.2 Nb0.8, TiCr1.1Nb0.9 alloys were synthesized in an arc furnace under argon atmosphere. The analysis of phases was developed by X-Ray Diffraction (XRD) for further refinement of both the two lattice parameters and the percentage of the phases. Our results confirmed that a structure bcc, mostly combined with a small percentage of Laves phases, leads to obtain important properties in this area. Rietveld analysis was performed by the Fullprof program and this program allows us to obtain the different structural parameters.

  15. Evaluation via multivariate techniques of scale factor variability in the rietveld method applied to quantitative phase analysis with X ray powder diffraction

    Directory of Open Access Journals (Sweden)

    Terezinha Ferreira de Oliveira

    2006-12-01

    Full Text Available The present work uses multivariate statistical analysis as a form of establishing the main sources of error in the Quantitative Phase Analysis (QPA using the Rietveld method. The quantitative determination of crystalline phases using x ray powder diffraction is a complex measurement process whose results are influenced by several factors. Ternary mixtures of Al2O3, MgO and NiO were prepared under controlled conditions and the diffractions were obtained using the Bragg-Brentano geometric arrangement. It was possible to establish four sources of critical variations: the experimental absorption and the scale factor of NiO, which is the phase with the greatest linear absorption coefficient of the ternary mixture; the instrumental characteristics represented by mechanical errors of the goniometer and sample displacement; the other two phases (Al2O3 and MgO; and the temperature and relative humidity of the air in the laboratory. The error sources excessively impair the QPA with the Rietveld method. Therefore it becomes necessary to control them during the measurement procedure.

  16. [Quantitative Analysis of Wall Shear Stress for Human Carotid Bifurcation at Cardiac Phases by the Use of Phase Contrast Cine Magnetic Resonance Imaging: Computational Fluid Dynamics Study].

    Science.gov (United States)

    Saho, Tatsunori; Onishi, Hideo

    2015-12-01

    Detailed strategy for regional hemodynamics is significant for knowledge of plaque development on vascular diseases such as atherosclerosis. The aim of this study was to derive relation between atherosclerosis and hemodynamics at human carotid bifurcation by the use of computational fluid dynamics (CFD), and to provide more accurate hemodynamic information. Blood velocity datasets at common carotid artery were obtained by phase-contrast cine magnetic resonance imaging (PC cine MRI). Carotid bifurcation model was computed for systolic, mid-diastolic, and end-diastolic phase. Comparison of wall shear stress (WSS) was performed for each cardiac phase. PC cine MRI provided velocity measurement for common carotid artery with various cardiac phases. The blood velocity had acute variation from 0.21 m/s to 1.07 m/s at systolic phase. The variation of WSS during cardiac phase was presented at carotid bifurcation model. High shear stress area was observed at dividing wall for all cardiac phases. The systole-diastole WSS ratio was 10.15 at internal carotid side of bifurcation. And low shear stress (cine MRI was allowed to determine an accurate analysis condition. This led to the representation of hemodynamics in vivo.

  17. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, Dustin Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollis, Kendall Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffraction data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to

  18. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, Dustin Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollis, Kendall Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project and determines the effect on alpha uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffraction data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to

  19. PETROGRAPHY AND APPLICATION OF THE RIETVELD METHOD TO THE QUANTITATIVE ANALYSIS OF PHASES OF NATURAL CLINKER GENERATED BY COAL SPONTANEOUS COMBUSTION

    Directory of Open Access Journals (Sweden)

    Pinilla A. Jesús Andelfo

    2010-06-01

    Full Text Available

    Fine-grained and mainly reddish color, compact and slightly breccious and vesicular pyrometamorphic rocks (natural clinker are associated to the spontaneous combustion of coal seams of the Cerrejón Formation exploited by Carbones del Cerrejón Limited in La Guajira Peninsula (Caribbean Region of Colombia. These rocks constitute remaining inorganic materials derived from claystones, mudstones and sandstones originally associated with the coal and are essentially a complex mixture of various amorphous and crystalline inorganic constituents. In this paper, a petrographic characterization of natural clinker, aswell as the application of the X-ray diffraction (Rietveld method by mean of quantitative analysis of its mineral phases were carried out. The RIQAS program was used for the refinement of X ray powder diffraction profiles, analyzing the importance of using the correct isostructural models for each of the existing phases, which were obtained from the Inorganic Crystal Structure Database (ICSD. The results obtained in this investigation show that the Rietveld method can be used as a powerful tool in the quantitative analysis of phases in polycrystalline samples, which has been a traditional problem in geology.

  20. Quantitative flaw characterization with ultrasonic phased arrays

    Science.gov (United States)

    Engle, Brady John

    Ultrasonic nondestructive evaluation (NDE) is a critical diagnostic tool in many industries. It is used to characterize potentially dangerous flaws in critical components for aerospace, automotive, and energy applications. The use of phased array transducers allows for the extension of traditional techniques and the introduction of new methods for quantitative flaw characterization. An equivalent flaw sizing technique for use in time-of-flight diffraction setups is presented that provides an estimate of the size and orientation of isolated cracks, surface-breaking cracks, and volumetric flaws such as voids and inclusions. Experimental validation is provided for the isolated crack case. A quantitative imaging algorithm is developed that corrects for system effects and wave propagation, making the images formed directly related to the properties of the scatterer present. Simulated data is used to form images of cylindrical and spherical inclusions. The contributions of different signals to the image formation process are discussed and examples of the quantitative nature of the images are shown.

  1. Quantitative study of liver magnetic resonance spectroscopy quality at 3T using body and phased array coils with physical analysis and clinical evaluation.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available This study aims to investigate the quality difference of short echo time (TE breathhold 1H magnetic resonance spectroscopy (MRS of the liver at 3.0T using the body and phased array coils, respectively. In total, 20 pairs of single-voxel proton spectra of the liver were acquired at 3.0T using the phased array and body coils as receivers. Consecutive stacks of breathhold spectra were acquired using the point resolved spectroscopy (PRESS technique at a short TE of 30 ms and a repetition time (TR of 1500 ms. The first spectroscopy sequence was "copied" for the second acquisition to ensure identical voxel positioning. The MRS prescan adjustments of shimming and water suppression, signal-to noise ratio (SNR, and major liver quantitative information were compared between paired spectra. Theoretical calculation of the SNR and homogeneity of the region of interest (ROI, 2 cm×2 cm×2 cm using different coils loaded with 3D liver electromagnetic model of real human body was implemented in the theoretical analysis. The theoretical analysis showed that, inside the ROI, the SNR of the phase array coil was 2.8387 times larger than that of body coil and the homogeneity of the phase array coil and body coil was 80.10% and 93.86%, respectively. The experimental results showed excellent correlations between the paired data (all r > 0.86. Compared with the body coil group, the phased array group had slightly worse shimming effect and better SNR (all P values 0.05. The theoretical analysis and clinical experiment showed that the phased array coil was superior to the body coil with respect to 3.0T breathhold hepatic proton MRS.

  2. Quantitative Techniques in Volumetric Analysis

    Science.gov (United States)

    Zimmerman, John; Jacobsen, Jerrold J.

    1996-12-01

    Quantitative Techniques in Volumetric Analysis is a visual library of techniques used in making volumetric measurements. This 40-minute VHS videotape is designed as a resource for introducing students to proper volumetric methods and procedures. The entire tape, or relevant segments of the tape, can also be used to review procedures used in subsequent experiments that rely on the traditional art of quantitative analysis laboratory practice. The techniques included are: Quantitative transfer of a solid with a weighing spoon Quantitative transfer of a solid with a finger held weighing bottle Quantitative transfer of a solid with a paper strap held bottle Quantitative transfer of a solid with a spatula Examples of common quantitative weighing errors Quantitative transfer of a solid from dish to beaker to volumetric flask Quantitative transfer of a solid from dish to volumetric flask Volumetric transfer pipet A complete acid-base titration Hand technique variations The conventional view of contemporary quantitative chemical measurement tends to focus on instrumental systems, computers, and robotics. In this view, the analyst is relegated to placing standards and samples on a tray. A robotic arm delivers a sample to the analysis center, while a computer controls the analysis conditions and records the results. In spite of this, it is rare to find an analysis process that does not rely on some aspect of more traditional quantitative analysis techniques, such as careful dilution to the mark of a volumetric flask. Figure 2. Transfer of a solid with a spatula. Clearly, errors in a classical step will affect the quality of the final analysis. Because of this, it is still important for students to master the key elements of the traditional art of quantitative chemical analysis laboratory practice. Some aspects of chemical analysis, like careful rinsing to insure quantitative transfer, are often an automated part of an instrumental process that must be understood by the

  3. Fourier transform infrared analysis of ceramic powders: Quantitative determination of alpha, beta, and amorphous phases of silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Trout, T.K.; Bellama, J.M.; Brinckman, F.E.; Faltynek, R.A.

    1989-03-01

    Fourier transform infrared spectroscopy (FT-IR) forms the basis for determining the morphological composition of mixtures containing alpha, beta, and amorphous phases of silicon nitride. The analytical technique, involving multiple linear regression treatment of Kubelka-Munk absorbance values from diffuse reflectance measurements, yields specific percent composition data for the amorphous phase as well as the crystalline phases in ternary mixtures of 0--1% by weight Si/sub 3/N/sub 4/ in potassium bromide.

  4. Densitometric HPTLC method for qualitative, quantitative analysis and stability study of Coenzyme Q10 in pharmaceutical formulations utilizing normal and reversed-phase silica gel plates.

    Science.gov (United States)

    Abdel-Kader, Maged Saad; Alam, Prawez; Alqasoumi, Saleh Ibrahim

    2016-03-01

    Two simple, precise and stability-indicating densitometric HPTLC method were developed and validated for qualitative and quantitative analysis of Coenzyme Q10 in pharmaceutical formulations using normal-phase (Method I) and reversed phase (Method II) silica gel TLC plates. Both methods were developed and validated with 10×20 cm glass-backed plates coated with 0.2 mm layers of either silica gel 60 F254 (E-Merck, Germany) using hexane-ethyl acetate (8.5:1.5 v/v) as developing system (Method I) or RP-18 silica gel 60 F254 (E-Merck, Germany) using methanol-acetone (4:6 v/v) as mobile phase (Method II). Both analyses were scanned with a densitometer at 282 nm. Linearity was found in the ranges 50-800 ng/spot (r(2)=0.9989) and 50-800 ng/spot (r(2)=0.9987) for Method I and Method II respectively. Stability of Coenzyme Q10 was explored by the two methods using acid, base, hydrogen peroxide, temperature and different solvents. Due to the efficiency of the method in separating Coenzyme Q10 from other ingredients including its degradation products, it can be applied for quality control, standardization of different pharmaceutical formulations and stability study.

  5. Morphometric image analysis of giant vesicles: a new tool for quantitative thermodynamics studies of phase-separation in lipid membranes

    DEFF Research Database (Denmark)

    Husen, Peter Rasmussen; Arriaga, Laura; Monroy, Francisco;

    2012-01-01

    We have developed a strategy to determine lengths and orientations of tie lines in the coexistence region of liquid-ordered and liquid-disordered phases of cholesterol containing ternary lipid mixtures. The method combines confocal-fluorescence-microscopy image stacks of giant unilamellar vesicle...

  6. Quantitative X-ray diffraction analysis of development of Z phase in 12%Cr–Nb–V–N steel

    DEFF Research Database (Denmark)

    Di Nunzio, P. E.; Cipolla, L.; Vipraio, S. Tiberi

    2010-01-01

    To study the evolution of nitrides (Nb,V)N, (V,Nb)N and Cr2N, and in particular the formation of the Z phase Cr(V,Nb)N, a model alloy with composition similar to that of 12%Cr steels for high temperature applications, microalloyed with Nb and V but with a very low carbon content, has been designed......–Mehl–Avrami–Kolmogorov kinetics at 650 and 700uC revealed that, as the kinetic exponent is very close to unity, the formation mechanism of this phase is not associated with a conventional process of nucleation but hints at a gradual diffusion controlled transformation of the pre-existing V and Nb nitrides....

  7. Quantitative Risk Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Helms, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-10

    The US energy sector is vulnerable to multiple hazards including both natural disasters and malicious attacks from an intelligent adversary. The question that utility owners, operators and regulators face is how to prioritize their investments to mitigate the risks from a hazard that can have the most impact on the asset of interest. In order to be able to understand their risk landscape and develop a prioritized mitigation strategy, they must quantify risk in a consistent way across all hazards their asset is facing. Without being able to quantitatively measure risk, it is not possible to defensibly prioritize security investments or evaluate trade-offs between security and functionality. Development of a methodology that will consistently measure and quantify risk across different hazards is needed.

  8. Monotowns: A Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Shastitko Andrei

    2016-06-01

    Full Text Available The authors propose an empirical analysis of the current situation in monotowns. The study questions the perceived seriousness of the ‘monotown problem’ as well as the actual challenges it presents. The authors use a cluster analysis to divide monotowns into groups for further structural comparison. The structural differences in the available databases limit the possibilities of empirical analysis. Hence, alternative approaches are required. The authors consider possible reasons for the limitations identified. Special attention is paid to the monotowns that were granted the status of advanced development territories. A comparative analysis makes it possible to study their general characteristics and socioeconomic indicators. The authors apply the theory of opportunistic behaviour to describe potential problems caused by the lack of unified criteria for granting monotowns the status of advanced development territories. The article identifies the main stakeholders and the character of their interaction; it desc ribes a conceptual model built on the principal/agent interactions, and identifies the parametric space of mutually beneficial cooperation. The solution to the principal/agent problem suggested in the article contributes to the development of an alternative approach to the current situation and a rational approach to overcoming the ‘monotown problem’.

  9. Investigation of the mineral components of porcelain raw material and their phase evolution during a firing process by using a Rietveld quantitative analysis

    Science.gov (United States)

    Kim, Jaegyeom; Heo, Eunae; Kim, Seung-Joo; Kim, Jong-Young

    2016-01-01

    A ceramic raw material for white porcelain and its phase evolution during a firing process were investigated by using Rietveld method based on powder X-ray diffraction data. The raw material was mainly composed of five mineral phases: quartz (SiO2), microcline (KAlSi3O8), albite (NaAlSi3O8), muscovite (KAl2(AlSi3O10)(OH)2), and kaolinite (Al2Si2O5(OH)4). The amount of each mineral phase could be determined by using Rietveld quantitative phase analyses. During the firing process, the microcline, albite, muscovite and kaolinite phases started to react with each other to produce the mullite phase embedded in an amorphous matrix. The amount of quartz remained nearly unchanged until a temperature above 1200 °C; then, it converted to an amorphous phase at higher temperatures.

  10. Micro-matrix solid-phase dispersion coupled with MEEKC for quantitative analysis of lignans in Schisandrae Chinensis Fructus using molecular sieve TS-1 as a sorbent.

    Science.gov (United States)

    Chu, Chu; Wei, Mengmeng; Wang, Shan; Zheng, Liqiong; He, Zheng; Cao, Jun; Yan, Jizhong

    2017-08-24

    A simple and effective method was developed for determining lignans in Schisandrae Chinensis Fructus by using a micro-matrix solid phase dispersion (MSPD) technique coupled with microemulsion electrokinetic chromatography (MEEKC). Molecular sieve, TS-1, was applied as a solid supporting material in micro MSPD extraction for the first time. Parameters that affect extraction efficiency, such as type of dispersant, mass ratio of the sample to the dispersant, grinding time, elution solvent and volume were optimized. The optimal extraction conditions involve dispersing 25mg of powdered Schisandrae samples with 50mg of TS-1 by a mortar and pestle. A grinding time of 150s was adopted. The blend was then transferred to a solid-phase extraction cartridge and the target analytes were eluted with 500μL of methanol. Moreover, several parameters affecting MEEKC separation were studied, including the type of oil, SDS concentration, type and concentration of cosurfactant, and concentration of organic modifier. A satisfactory linearity (R>0.9998) was obtained, and the calculated limits of quantitation were less than 2.77μg/mL. Finally, the micro MSPD-MEEKC method was successfully applied to the analysis of lignans in complex Schisandrae fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Quantitative phase imaging through scattering media

    Science.gov (United States)

    Kollárová, Vera; Colláková, Jana; Dostál, Zbynek; Slabý, Tomas; Veselý, Pavel; Chmelík, Radim

    2015-03-01

    Coherence-controlled holographic microscope (CCHM) is an off-axis holographic system. It enables observation of a sample and its quantitative phase imaging with coherent as well as with incoherent illumination. The spatial and temporal coherence can be modified and thus also the quality and type of the image information. The coherent illumination provides numerical refocusing in wide depth range similarly to a classic coherent-light digital holographic microscopy (HM). Incoherent-light HM is characterized by a high quality, coherence-noise-free imaging with up to twice higher resolution compared to coherent illumination. Owing to an independent, free of sample reference arm of the CCHM the low spatial light coherence induces coherence-gating effect. This makes possible to observe specimen also through scattering media. We have described theoretically and simulated numerically imaging of a two dimensional object through a scattering layer by CCHM using the linear systems theory. We have investigated both strongly and weakly scattering media characterized by different amount of ballistic and diffuse light. The influence of a scattering layer on the quality of a phase signal is discussed for both types of the scattering media. A strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data gained with model samples, as well as real biologic objects particularly then by time-lapse observations of live cells reactions to substances producing optically turbid emulsion.

  12. Influence of diopside: feldspar ratio in ceramic reactions assessed by quantitative phase analysis (X-ray diffraction - Rietveld method)

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmickas, L.; Andrade, F.R.D.; Szabo, G.A.J. [Universidade de Sao Paulo (IGc/USP), SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotecnia; Motta, J.F.M.; Cabral Junior, M., E-mail: lukuzmickas@gmail.com, E-mail: dias@usp.br, E-mail: gajszabo@usp.b, E-mail: motta.jf@gmail.com, E-mail: marsis@ipt.br [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil). Secao de Recursos Minerais e Tecnologia Ceramica

    2013-04-15

    White ceramics were produced with raw mixtures prepared with varying proportions of diopside-rich rock (0 to 20 wt.%) and potassic feldspar (40 to 20 wt.%), and fixed proportions of kaolinite (40 wt.%) and quartz (20 wt.%), fired in a temperature range from 1170 to 1210 deg C. The phases identified in the experimental ceramics were quartz, anorthite, mullite and glass, and their relative mass proportions were determined by X-ray diffraction (Rietveld method). The addition of diopside as a partial substitute for potassic feldspar causes the formation of a calcium silicate, analogous of the natural anorthite (CaSi{sub 2}Al{sub 2}O{sub 8}) in the ceramics, with proportional reduction in its glass and mullite contents. Water absorption and porosity of the ceramic bodies clearly decrease with increasing firing temperature, while the effect of the raw mixture composition on the physical and mechanical properties of the ceramics is less evident. Diopside-rich rock has low iron content (1.5 wt.% Fe{sub 2}O{sub 3}) and, therefore, promotes white burning. (author)

  13. Quantitative solid phase microextraction--gas chromatography mass spectrometry analysis of five megastigmatrienone isomers in aged wine.

    Science.gov (United States)

    Slaghenaufi, Davide; Perello, Marie-Claire; Marchand-Marion, Stéphanie; Tempere, Sophie; de Revel, Gilles

    2014-02-27

    Megastigmatrienone is a key flavor compound in tobacco. It has also been detected in wine, where it may contribute to a tobacco/incense aroma, but its importance and concentration in wines had never previously been evaluated. A method was developed and validated for quantifying the five megastigmatrienone isomers in red and white wines. Megastigmatrienone isomers were extracted by headspace solid-phase microextraction (HS-SPME), with a 65 μm film thickness polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber and analyzed using gas chromatography-mass spectrometry (GC/MS) in selected ion monitoring mode (SIM). Several parameters affecting the length of the adsorption process (i.e., adding salt, extraction time and extraction temperature) were tested. The optimum analytical conditions were established. The LOQ were between 0.06 μg L(-1) and 0.49 μg L(-1) for white wine and 0.11 μg L(-1) and 0.98 μg L(-1) for red wine, repeatability in both types of wine was less than 10% and recovery ranged from 96% for white wine to 94% for red wine. The five isomers of megastigmatrienone were quantified in red and white wines for the first time. Concentrations ranged from 2 μg L(-1) to 41 μg L(-1) in both red and white wines. Initial results revealed a link between wine aging and megastigmatrienone levels, indicating that megastigmatrienone may be a component in wine "bouquet". Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Quantitative chiral analysis of amino acids in solution using enantiomer-selective photodissociation of cold gas-phase tryptophan via chiral recognition.

    Science.gov (United States)

    Fujihara, Akimasa; Maeda, Naoto

    2017-08-01

    To explore the origin of biomolecule homochirality in interstellar molecular clouds, enantiomer-selective photodissociation via chiral recognition between amino acids in the gas phase was examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of sodiated l-tryptophan ion, Na(+)(l-Trp), with an amino acid such as serine (Ser), threonine (Thr), or alanine (Ala) were obtained by the photo-excitation of l-Trp in the noncovalent complexes. Dissociation of l-Trp via CO2 loss occurred when it was noncovalently complexed with d-Ser or d-Thr in the presence of Na(+). For the l-enantiomers, the energy absorbed by l-Trp was released through evaporation of l-Ser or l-Thr, and dissociation of the amino acids was suppressed. In contrast, the enantiomer-selective phenomenon was not observed in the noncovalent complex with Ala, suggesting that a side-chain OH group plays an important role in chiral recognition and enantiomer-selective photodissociation. The enantiomer-selective photodissociation was applied to the quantitative chiral analysis of amino acids. The enantiomeric excess of Ser and Thr in solution could be determined by measuring the relative abundance ratio of the enantiomer-selective photodissociation of Trp to amino acid evaporation in a single photodissociation mass spectrum obtained by photo-excitation of l-Trp used as a chiral probe in cold gas-phase noncovalent complexes with the analyte amino acids, and by referring to the linear relationships established in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A quantitative study of CSF pulsatile flow in normal pressure hydrocephalus; An analysis of flow patterns before and after a shunting procedure using cine MR phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Shinji; Makabe, Tetsuo; Itoh, Takahiko (Okayama Univ. (Japan). School of Medicine) (and others)

    1992-06-01

    In the previous report, we described the visualization and quantitative analysis of a normal CSF pulsatile flow using cine MR phase imaging. In the present study, CSF flow velocities were measured in patients with normal pressure hydrocephalus (NPH) before and after a shunting procedure. All of the healthy subjects showed a similar flow pattern in the time-velocity flow profiles (TVFP). However, patients with NPH showed a variable pattern of TVFP and could be divided into the following four types: Type 0: the CSF flow pattern was similar to that of the healthy subjects. Type I: the caudal peak flow was delayed more than 190 msec on TVFP. Type II: the caudal peak flow was not apparent, but the CSF flow through the aqueduct was remarkable on phase images. Type III: the amplitude of TVFP was very small, and no CSF flow through the aqueduct was identified. The patients with Type III TVFP showed significantly lower NPH scores. The lumbar CSF pressures tended to be high in the patients with Type III TVFP, but nevertheless failed to reach a statistically significant level. The amplitude of TVFP increased in the patients who improved clinically after the shunting procedure. Some of the Type III patients changed into Type II, I, and 0; also, one of the Type II patients changed into a Type I patients after the shunting procedure. We conclude that cine MR phase imaging is useful for analyzing the CSF flow of the patients with NPH before and after the shunting procedure as well as for evaluating shunt patency. (author).

  16. Qualitative and quantitative reversed-phase high performance liquid chromatographic analysis of glycoprotein hormones in the presence of a large excess of human serum albumin.

    Science.gov (United States)

    Almeida, B E; Oliveira, J E; Damiani, R; Dalmora, S L; Bartolini, P; Ribela, M T C P

    2012-04-07

    The present work describes reversed-phase high performance liquid chromatographic methodologies (RP-HPLC) for the qualitative and quantitative analysis of the human glycoprotein hormones thyrotropin (hTSH), follitropin (hFSH), choriogonadotropin (hCG) and lutropin (hLH) in the presence of a large excess (up to 250:1) of human serum albumin (HSA). Chromatographic profiles with a good separation between the hormone and HSA were obtained by using a C4 column and specific gradient elution conditions for each hormone. Parameters such as resolution factor, tailing factor and relative retention time, were determined, and are useful for the evaluation of the quality of the separation obtained between the active pharmaceutical ingredient and the excipient present in the final formulation. The potential of each method for quantification of both HSA and the hormone was also demonstrated. Besides furnishing chromatographic quantifications that can substitute for in vivo bioassays and animal use, the chromatograms also provide a direct panorama of the quality and heterogeneity of the protein of interest.

  17. Quantitative analysis of metabolites in complex biological samples using ion-pair reversed-phase liquid chromatography-isotope dilution tandem mass spectrometry.

    Science.gov (United States)

    Seifar, Reza M; Zhao, Zheng; van Dam, Jan; van Winden, Wouter; van Gulik, Walter; Heijnen, Joseph J

    2008-04-11

    A rapid, sensitive and selective ion-pair reversed-phase liquid chromatography-electrospray ionization isotope dilution tandem mass spectrometry (IP-LC-ESI-ID-MS/MS) was developed for quantitative analysis of free intracellular metabolites in cell cultures. As an application a group of compounds involved in penicillin biosynthesis pathway of Penicillium chrysogenum cells, such as penicillin G (PenG), 6-aminopenicillanic acid (6-APA), benzylpenicilloic acid (PIO), ortho-hydroxyphenyl acetic acid (o-OH-PAA), phenylacetic acid (PAA), 6-oxopipeidine-2-carboxylic acid (OPC), 8-hydroxypenicillic acid (8-HPA), L-alpha-(delta-aminoadipyl)-L-alpha-cystenyl-D-alpha-valine (ACV) and isopenicillin N (IPN) were chosen. (13)C-labeled analogs of the metabolites were added to the sample solutions as internal standards (I.S.). Sample mixtures were analyzed without any sample pretreatment. No extraction recovery check was needed because I.S. was added to the cell samples before extraction process. The method showed excellent precision (relative standard deviation (RSD)

  18. Quantitative Analysis of Piroxicam Using Temperature-Controlled Ionic Liquid Dispersive Liquid Phase Microextraction Followed By Stopped-Flow Injection Spectrofluorimetry

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ganjali

    2013-07-01

    Full Text Available Background:Piroxicam (PXM belongs to the wide class of non-steroidal anti-inflammatory drugs (NSAIDs. PXM has been widely applied in the treatment of rheumatoid arthritis, gonarthrosis, osteoarthritis, backaches, neuralgia, mialgia. In the presented work, a green and benign sample pretreatment method called temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME was followed with stopped-flow injection spectrofluorimetry (SFIS for quantitation of PXM in pharmaceutical formulations and biological samples.Methods:Temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME was applied as an environmentally friendly sample enrichment method to extract and isolate PXM prior to quantitation. Dispersion of 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF6] ionic liquid (IL through the sample aqueous solution was performed by applying a relatively high temperature. PXM was extracted into the extractor, and after phase separation, PXM in the final solution was determined by stopped-flow injection spectrofluorimetry (SFIS.Results and Major Conclusion:Different factors affecting the designed method such as IL amount, diluting agent, pH and temperature were investigated in details and optimized. The method provided a linear dynamic range of 0.2-150 μg l-1, a limit of detection (LOD of 0.046 μg l-1 and a relative standard deviation (RSD of 3.1%. Furthermore, in order to demonstrate the analytical applicability of the recommended method, it was applied for quantitation of PXM in real samples.

  19. Quantitative phase imaging using hard x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, K.A.; Paganin, D.; Barnea, Z. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Cookson, D. F. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Gureyev, T.E. [Melbourne Univ., Parkville, VIC (Australia). School of Physics]|[CSIRO, Clayton, VIC (Australia). Div. of Forestry and Forest Products

    1997-06-01

    The quantitative imaging of a phase object using 16 keV x-rays is reported. The theoretical basis of the techniques is presented along with its implementation using a synchrotron x-ray source. It is found that the phase image is in quantitative agreement with independent measurements of the object. 13 refs., 5 figs.

  20. Quantitative analysis of glycated proteins.

    Science.gov (United States)

    Priego-Capote, Feliciano; Ramírez-Boo, María; Finamore, Francesco; Gluck, Florent; Sanchez, Jean-Charles

    2014-02-07

    The proposed protocol presents a comprehensive approach for large-scale qualitative and quantitative analysis of glycated proteins (GP) in complex biological samples including biological fluids and cell lysates such as plasma and red blood cells. The method, named glycation isotopic labeling (GIL), is based on the differential labeling of proteins with isotopic [(13)C6]-glucose, which supports quantitation of the resulting glycated peptides after enzymatic digestion with endoproteinase Glu-C. The key principle of the GIL approach is the detection of doublet signals for each glycated peptide in MS precursor scanning (glycated peptide with in vivo [(12)C6]- and in vitro [(13)C6]-glucose). The mass shift of the doublet signals is +6, +3 or +2 Da depending on the peptide charge state and the number of glycation sites. The intensity ratio between doublet signals generates quantitative information of glycated proteins that can be related to the glycemic state of the studied samples. Tandem mass spectrometry with high-energy collisional dissociation (HCD-MS2) and data-dependent methods with collision-induced dissociation (CID-MS3 neutral loss scan) are used for qualitative analysis.

  1. Corrosion of non-irradiated UAl{sub x}-Al fuel in the presence of clay pore solution. A quantitative XRD secondary phase analysis applying the DDM method

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Andreas [Halle-Wittenberg Univ. (Germany). Dept. of Mineralogy and Geochemistry; RWTH Aachen Univ. (Germany). Inst. of Crystallography; Klinkenberg, Martina; Curtius, Hildegard [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research, IEK-6 Nuclear Waste Management

    2017-04-01

    Corrosion experiments with non-irradiated metallic UAl{sub x}-Al research reactor fuel elements were carried out in autoclaves to identify and quantify the corrosion products. Such compounds, considering the long-term safety assessment of final repositories, can interact with the released inventory and this constitutes a sink for radionuclide migration in formation waters. Therefore, the metallic fuel sample was subjected to clay pore solution to investigate its process of disintegration by analyzing the resulting products and the remnants, i.e. the secondary phases. Due to the fast corrosion rate a full sample disintegration was observed within the experimental period of 1 year at 90 C. The obtained solids were subdivided into different grain size fractions and prepared for analysis. The elemental analysis of the suspension showed that, uranium and aluminum are concentrated in the solids, whereas iron was mainly dissolved. Non-ambient X-ray diffraction (XRD) combined with the derivative difference minimization (DDM) method was applied for the qualitative and quantitative phase analysis (QPA) of the secondary phases. Gypsum and hemihydrate (bassanite), residues of non-corroded nuclear fuel, hematite, and goethite were identified. The quantitative phase analysis showed that goethite is the major crystalline phase. The amorphous content exceeded 80 wt% and hosted the uranium. All other compounds were present to a minor content. The obtained results by XRD were well supported by complementary scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis.

  2. Quantitative Determination of ABT-925 in Human Plasma by On-Line SPE and LC-MS/MS: Validation and Sample Analysis in Phase II Studies

    Directory of Open Access Journals (Sweden)

    Katty Wan

    2010-05-01

    Full Text Available A fully automated 96-well On-Line Solid Phase Extraction (SPE followed by High Performance Liquid Chromatography (HPLC-Tandem Mass Spectrometric (MS/MS method for the determination of ABT-925 (2-{3-[4-(2-tert-Butyl-6-trifluoromethyl-pyrimidin-4-yl-piperazin-1-yl-propyl-sulfanyl}-3H-pyrimidin-4-one fumarate in human plasma was developed, validated and utilized in Phase II clinical studies. 50 µL of plasma sample was fortified with internal standard (IS, d8-ABT-925 and extracted on-line with Cohesive Turbo Flow Cyclone P HTLC column. The chromatographic separation was performed on Aquasil C18 (3 μm 50 × 3 mm HPLC column with a mobile phase consisting of 50/50/0.1 (v/v/v ACN/H2O/formic acid. The mass spectrometric measurement was conducted under positive ion mode using multiple reaction monitoring (MRM of m/z 457.4 → 329.4 for analyte and m/z 465.5 → 337.5 for IS.The peak area ratio (analyte/IS was used to quantitate ABT-925. A dynamic range of 0.0102 μg/mL to 5.24 μg/mL was established after the validation. The validated method was then used for two Phase II studies. To demonstrate the method reproducibility, approximately 10% of the incurred samples from one study were repeated in singlet. The repeated values were compared to the initial values. All repeated values agreed within ±15% of the mean values.

  3. Quantitative Determination of ABT-925 in Human Plasma by On-Line SPE and LC-MS/MS: Validation and Sample Analysis in Phase II Studies.

    Science.gov (United States)

    Wan, Katty; Rieser, Matthew; El-Shourbagy, Tawakol

    2010-05-04

    A fully automated 96-well On-Line Solid Phase Extraction (SPE) followed by High Performance Liquid Chromatography (HPLC)-Tandem Mass Spectrometric (MS/MS) method for the determination of ABT-925 (2-{3-[4-(2-tert-Butyl-6-trifluoromethyl-pyrimidin-4-yl)-piperazin-1-yl)-propyl-sulfanyl}-3H-pyrimidin-4-one fumarate) in human plasma was developed, validated and utilized in Phase II clinical studies. 50 µL of plasma sample was fortified with internal standard (IS, d8-ABT-925) and extracted on-line with Cohesive Turbo Flow Cyclone P HTLC column. The chromatographic separation was performed on Aquasil C18 (3 μm 50 × 3 mm) HPLC column with a mobile phase consisting of 50/50/0.1 (v/v/v) ACN/H₂O/formic acid. The mass spectrometric measurement was conducted under positive ion mode using multiple reaction monitoring (MRM) of m/z 457.4 → 329.4 for analyte and m/z 465.5 → 337.5 for IS.The peak area ratio (analyte/IS) was used to quantitate ABT-925. A dynamic range of 0.0102 μg/mL to 5.24 μg/mL was established after the validation. The validated method was then used for two Phase II studies. To demonstrate the method reproducibility, approximately 10% of the incurred samples from one study were repeated in singlet. The repeated values were compared to the initial values. All repeated values agreed within ±15% of the mean values.

  4. Quantitative imaging of complex samples by spiral phase contrast microscopy.

    Science.gov (United States)

    Bernet, Stefan; Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Ritsch-Marte, Monika

    2006-05-01

    Recently a spatial spiral phase filter in a Fourier plane of a microscopic imaging setup has been demonstrated to produce edge enhancement and relief-like shadow formation of amplitude and phase samples. Here we demonstrate that a sequence of at least 3 spatially filtered images, which are recorded with different rotational orientations of the spiral phase plate, can be used to obtain a quantitative reconstruction of both, amplitude and phase information of a complex microscopic sample, i.e. an object consisting of mixed absorptive and refractive components. The method is demonstrated using a calibrated phase sample, and an epithelial cheek cell.

  5. Submarine Pipeline Routing Risk Quantitative Analysis

    Institute of Scientific and Technical Information of China (English)

    徐慧; 于莉; 胡云昌; 王金英

    2004-01-01

    A new method for submarine pipeline routing risk quantitative analysis was provided, and the study was developed from qualitative analysis to quantitative analysis.The characteristics of the potential risk of the submarine pipeline system were considered, and grey-mode identification theory was used. The study process was composed of three parts: establishing the indexes system of routing risk quantitative analysis, establishing the model of grey-mode identification for routing risk quantitative analysis, and establishing the standard of mode identification result. It is shown that this model can directly and concisely reflect the hazard degree of the routing through computing example, and prepares the routing selection for the future.

  6. Using design of experiments to optimize derivatization with methyl chloroformate for quantitative analysis of the aqueous phase from hydrothermal liquefaction of biomass.

    Science.gov (United States)

    Madsen, René Bjerregaard; Jensen, Mads Mørk; Mørup, Anders Juul; Houlberg, Kasper; Christensen, Per Sigaard; Klemmer, Maika; Becker, Jacob; Iversen, Bo Brummerstedt; Glasius, Marianne

    2016-03-01

    Hydrothermal liquefaction is a promising technique for the production of bio-oil. The process produces an oil phase, a gas phase, a solid residue, and an aqueous phase. Gas chromatography coupled with mass spectrometry is used to analyze the complex aqueous phase. Especially small organic acids and nitrogen-containing compounds are of interest. The efficient derivatization reagent methyl chloroformate was used to make analysis of the complex aqueous phase from hydrothermal liquefaction of dried distillers grains with solubles possible. A circumscribed central composite design was used to optimize the responses of both derivatized and nonderivatized analytes, which included small organic acids, pyrazines, phenol, and cyclic ketones. Response surface methodology was used to visualize significant factors and identify optimized derivatization conditions (volumes of methyl chloroformate, NaOH solution, methanol, and pyridine). Twenty-nine analytes of small organic acids, pyrazines, phenol, and cyclic ketones were quantified. An additional three analytes were pseudoquantified with use of standards with similar mass spectra. Calibration curves with high correlation coefficients were obtained, in most cases R (2)  > 0.991. Method validation was evaluated with repeatability, and spike recoveries of all 29 analytes were obtained. The 32 analytes were quantified in samples from the commissioning of a continuous flow reactor and in samples from recirculation experiments involving the aqueous phase. The results indicated when the steady-state condition of the flow reactor was obtained and the effects of recirculation. The validated method will be especially useful for investigations of the effect of small organic acids on the hydrothermal liquefaction process.

  7. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification

    Directory of Open Access Journals (Sweden)

    Pauline Marie

    2015-09-01

    Full Text Available Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1 widespread deposition of amorphous calcium carbonate (ACC, (2 ACC transformation into crystalline calcite aggregates, (3 formation of larger calcite crystal units and (4 rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed.

  8. Quantitative phase imaging with scanning holographic microscopy: an experimental assesment

    Directory of Open Access Journals (Sweden)

    Tada Yoshitaka

    2006-11-01

    Full Text Available Abstract This paper demonstrates experimentally how quantitative phase information can be obtained in scanning holographic microscopy. Scanning holography can operate in both coherent and incoherent modes, simultaneously if desired, with different detector geometries. A spatially integrating detector provides an incoherent hologram of the object's intensity distribution (absorption and/or fluorescence, for example, while a point detector in a conjugate plane of the pupil provides a coherent hologram of the object's complex amplitude, from which a quantitative measure of its phase distribution can be extracted. The possibility of capturing simultaneously holograms of three-dimensional specimens, leading to three-dimensional reconstructions with absorption contrast, reflectance contrast, fluorescence contrast, as was previously demonstrated, and quantitative phase contrast, as shown here for the first time, opens up new avenues for multimodal imaging in biological studies.

  9. 3D-Quantitative Phase Analysis and Strain Mapping of Nanostructured Coatings by Synchrotron Energy Dispersive X-ray Diffraction: A New Approach to Materials Characterization

    Science.gov (United States)

    2009-06-12

    Rutile & Anatase in Precursor Powder & TSC Comparison with X-ray Absorption Data Variation of strain in the...Phase Analysis Results: TiO2 Precursor vs. TSC (εappl = 0) ( ) ( ) ( ) ( ) ( ) ( )( ) 1Rutile 110 1 1Rutile Anatase 110 101 I % Rutile = 100; I +I Rutile ... Rutile Anatase RIR RIR RIR − − −    ×      RIR: Reference Intensity Ratio NSMG 2 powder Rutile (110) 3.2276 11854 11.9 Anatase (101)

  10. Quantitative isothermal phase-field simulations of peritectic phase transformation in FeMn system

    Directory of Open Access Journals (Sweden)

    Celso Luiz Moraes Alves

    2016-01-01

    Full Text Available The present investigation shows quantitative results for the peritectic phase transformation of FeMn alloys utilizing phase-field simulations in 1-D and 2-D. The phase-field method used was based on an adaptation of the proposal of Folch and Plapp [Phys. Rev. E, 2005, 72, 011602] for the eutectic reaction. The two stages of peritectic phase transformation, the peritectic reaction and the peritectic transformation, were investigated numerically utilizing this phase-field approach. The evolution of the phases was quantitatively analyzed during the peritectic transformation and the fractions of the phases at the end of the solidification were compared with the thermodynamic equilibrium, defined by the phase diagram, for the case of 1-D simulation with peritectic concentration. An assessment of the behavior of the concentration gradient in the γ-phase (the peritectic phase through time was also carried out and a mathematical function which describes the γ-phase thickness evolution was defined. Finally, 2-D simulations were performed to clearly identify the two stages of the peritectic phase transformation. The obtained results show two main facts: (1 the numerical model is able to simulate quantitatively this phase transformation; and, (2 this numerical tool can be utilized for investigating quantitatively some aspects (normally determined indirectly that are difficult to be determined by direct measurements in experimental works.

  11. Quantitative Infrared Spectra of Vapor Phase Chemical Agents

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Steven W.; Johnson, Timothy J.; Chu, P M.; Kleimeyer, J; Rowland, Brad; Gardner, Patrick J.

    2003-04-21

    Quantitative high resolution (0.1 cm -1) infrared spectra have been acquired for a number of pressure broadened (101.3 KPa N2), vapor phase chemicals including: Sarin (GB), Soman (GD), Tabun (GA), Cyclosarin (GF), VX, nitrogen mustard (HN3), sulfur mustard (HD) and Lewisite (L).

  12. Modeling quantitative phase image formation under tilted illuminations.

    Science.gov (United States)

    Bon, Pierre; Wattellier, Benoit; Monneret, Serge

    2012-05-15

    A generalized product-of-convolution model for simulation of quantitative phase microscopy of thick heterogeneous specimen under tilted plane-wave illumination is presented. Actual simulations are checked against a much more time-consuming commercial finite-difference time-domain method. Then modeled data are compared with experimental measurements that were made with a quadriwave lateral shearing interferometer.

  13. Phase measurements of erythrocytes affected by metal ions with quantitative interferometric microscopy

    Science.gov (United States)

    Wang, Shouyu; Yan, Keding; Shan, Yanke; Xu, Mingfei; Liu, Fei; Xue, Liang

    2015-12-01

    Erythrocyte morphology is an important factor in disease diagnosis, however, traditional setups as microscopes and cytometers cannot provide enough quantitative information of cellular morphology for in-depth statistics and analysis. In order to capture variations of erythrocytes affected by metal ions, quantitative interferometric microscopy (QIM) is applied to monitor their morphology changes. Combined with phase retrieval and cell recognition, erythrocyte phase images, as well as phase area and volume, can be accurately and automatically obtained. The research proves that QIM is an effective tool in cellular observation and measurement.

  14. Real time blood testing using quantitative phase imaging.

    Directory of Open Access Journals (Sweden)

    Hoa V Pham

    Full Text Available We demonstrate a real-time blood testing system that can provide remote diagnosis with minimal human intervention in economically challenged areas. Our instrument combines novel advances in label-free optical imaging with parallel computing. Specifically, we use quantitative phase imaging for extracting red blood cell morphology with nanoscale sensitivity and NVIDIA's CUDA programming language to perform real time cellular-level analysis. While the blood smear is translated through focus, our system is able to segment and analyze all the cells in the one megapixel field of view, at a rate of 40 frames/s. The variety of diagnostic parameters measured from each cell (e.g., surface area, sphericity, and minimum cylindrical diameter are currently not available with current state of the art clinical instruments. In addition, we show that our instrument correctly recovers the red blood cell volume distribution, as evidenced by the excellent agreement with the cell counter results obtained on normal patients and those with microcytic and macrocytic anemia. The final data outputted by our instrument represent arrays of numbers associated with these morphological parameters and not images. Thus, the memory necessary to store these data is of the order of kilobytes, which allows for their remote transmission via, for example, the cellular network. We envision that such a system will dramatically increase access for blood testing and furthermore, may pave the way to digital hematology.

  15. Quantitative analysis of saccadic search strategy

    NARCIS (Netherlands)

    Over, E.A.B.

    2007-01-01

    This thesis deals with the quantitative analysis of saccadic search strategy. The goal of the research presented was twofold: 1) to quantify overall characteristics of fixation location and saccade direction, and 2) to identify search strategies, with the use of a quantitative description of eye mov

  16. Quantitative analysis of saccadic search strategy

    NARCIS (Netherlands)

    Over, E.A.B.

    2007-01-01

    This thesis deals with the quantitative analysis of saccadic search strategy. The goal of the research presented was twofold: 1) to quantify overall characteristics of fixation location and saccade direction, and 2) to identify search strategies, with the use of a quantitative description of eye

  17. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    Science.gov (United States)

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  18. Quantitative Morphological and Biochemical Studies on Human Downy Hairs using 3-D Quantitative Phase Imaging

    CERN Document Server

    Lee, SangYun; Lee, Yuhyun; Park, Sungjin; Shin, Heejae; Yang, Jongwon; Ko, Kwanhong; Park, HyunJoo; Park, YongKeun

    2015-01-01

    This study presents the morphological and biochemical findings on human downy arm hairs using 3-D quantitative phase imaging techniques. 3-D refractive index tomograms and high-resolution 2-D synthetic aperture images of individual downy arm hairs were measured using a Mach-Zehnder laser interferometric microscopy equipped with a two-axis galvanometer mirror. From the measured quantitative images, the biochemical and morphological parameters of downy hairs were non-invasively quantified including the mean refractive index, volume, cylinder, and effective radius of individual hairs. In addition, the effects of hydrogen peroxide on individual downy hairs were investigated.

  19. Semiconductor defect metrology using laser-based quantitative phase imaging

    Science.gov (United States)

    Zhou, Renjie; Edwards, Chris; Popescu, Gabriel; Goddard, Lynford

    2015-03-01

    A highly sensitive laser-based quantitative phase imaging tool, using an epi-illumination diffraction phase microscope, has been developed for silicon wafer defect inspection. The first system used a 532 nm solid-state laser and detected 20 nm by 100 nm by 110 nm defects in a 22 nm node patterned silicon wafer. The second system, using a 405 nm diode laser, is more sensitive and has enabled detection of 15 nm by 90 nm by 35 nm defects in a 9 nm node densely patterned silicon wafer. In addition to imaging, wafer scanning and image-post processing are also crucial for defect detection.

  20. Quantitative appraisal for noise reduction in digital holographic phase imaging.

    Science.gov (United States)

    Montresor, Silvio; Picart, Pascal

    2016-06-27

    This paper discusses on a quantitative comparison of the performances of different advanced algorithms for phase data de-noising. In order to quantify the performances, several criteria are proposed: the gain in the signal-to-noise ratio, the Q index, the standard deviation of the phase error, and the signal to distortion ratio. The proposed methodology to investigate de-noising algorithms is based on the use of a realistic simulation of noise-corrupted phase data. A database including 25 fringe patterns divided into 5 patterns and 5 different signal-to-noise ratios was generated to evaluate the selected de-noising algorithms. A total of 34 algorithms divided into different families were evaluated. Quantitative appraisal leads to ranking within the considered criteria. A fairly good correlation between the signal-to-noise ratio gain and the quality index has been observed. There exists an anti-correlation between the phase error and the quality index which indicates that the phase errors are mainly structural distortions in the fringe pattern. Experimental results are thoroughly discussed in the paper.

  1. Quantitative Analysis of Face Symmetry.

    Science.gov (United States)

    Tamir, Abraham

    2015-06-01

    The major objective of this article was to report quantitatively the degree of human face symmetry for reported images taken from the Internet. From the original image of a certain person that appears in the center of each triplet, 2 symmetric combinations were constructed that are based on the left part of the image and its mirror image (left-left) and on the right part of the image and its mirror image (right-right). By applying a computer software that enables to determine length, surface area, and perimeter of any geometric shape, the following measurements were obtained for each triplet: face perimeter and area; distance between the pupils; mouth length; its perimeter and area; nose length and face length, usually below the ears; as well as the area and perimeter of the pupils. Then, for each of the above measurements, the value C, which characterizes the degree of symmetry of the real image with respect to the combinations right-right and left-left, was calculated. C appears on the right-hand side below each image. A high value of C indicates a low symmetry, and as the value is decreasing, the symmetry is increasing. The magnitude on the left relates to the pupils and compares the difference between the area and perimeter of the 2 pupils. The major conclusion arrived at here is that the human face is asymmetric to some degree; the degree of asymmetry is reported quantitatively under each portrait.

  2. Quantitative phase determination by using a Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Pomarico, Juan A; Molina, Pablo F; Angelo, Cristian D' [IFAS-Universidad Nacional del Centro de la Pcia. de Buenos Aires, Pinto 399, B7000GHG Tandil, Buenos Aires (Argentina)

    2007-09-15

    The Michelson interferometer is one of the best established tools for quantitative interferometric measurements. It has been, and is still successfully used, not only for scientific purposes, but it is also introduced in undergraduate courses for qualitative demonstrations as well as for quantitative determination of several properties such as refractive index, wavelength, optical thickness, etc. Generally speaking, most of the measurements are carried out by determining phase distortions through the changes in the location and/or shape of the interference fringes. However, the extreme sensitivity of this tool, for which minimum deviations of the conditions of its branches can cause very large modifications in the fringe pattern, makes phase changes difficult to follow and measure. The purpose of this communication is to show that, under certain conditions, the sensitivity of the Michelson interferometer can be 'turned down' allowing the quantitative measurement of phase changes with relative ease. As an example we present how the angle (or, optionally, the refractive index) of a transparent standard optical wedge can be determined. Experimental results are shown and compared with the data provided by the manufacturer showing very good agreement.

  3. Quantitative analysis of Boehm's GC

    Institute of Scientific and Technical Information of China (English)

    GUAN Xue-tao; ZHANG Yuan-rui; GOU Xiao-gang; CHENG Xu

    2003-01-01

    The term garbage collection describes the automated process of finding previously allocated memorythatis no longer in use in order to make the memory available to satisfy subsequent allocation requests. Wehave reviewed existing papers and implementations of GC, and especially analyzed Boehm' s C codes, which isa real-time mark-sweep GC running under Linux and ANSI C standard. In this paper, we will quantitatively an-alyze the performance of different configurations of Boehm' s collector subjected to different workloads. Reportedmeasurements demonstrate that a refined garbage collector is a viable alternative to traditional explicit memorymanagement techniques, even for low-level languages. It is more a trade-off for certain system than an all-or-nothing proposition.

  4. Quantitative analysis of qualitative images

    Science.gov (United States)

    Hockney, David; Falco, Charles M.

    2005-03-01

    We show optical evidence that demonstrates artists as early as Jan van Eyck and Robert Campin (c1425) used optical projections as aids for producing their paintings. We also have found optical evidence within works by later artists, including Bermejo (c1475), Lotto (c1525), Caravaggio (c1600), de la Tour (c1650), Chardin (c1750) and Ingres (c1825), demonstrating a continuum in the use of optical projections by artists, along with an evolution in the sophistication of that use. However, even for paintings where we have been able to extract unambiguous, quantitative evidence of the direct use of optical projections for producing certain of the features, this does not mean that paintings are effectively photographs. Because the hand and mind of the artist are intimately involved in the creation process, understanding these complex images requires more than can be obtained from only applying the equations of geometrical optics.

  5. Quantitative analysis of cerebrospinal fluid dynamics at phase contrast cine-MRI: predictivity of neurosurgical "Shunt" responsiveness in patients with idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Stecco, Alessandro; Cassarà, Alessia; Zuccalà, Alberto; Anoaica, Mihaela B; Genovese, Egidio; Car, Pier G; Panzarasa, Gabriele P; Guzzardi, Giuseppe; Carriero, Alessandro

    2017-09-04

    Aqueductal stroke volume (ACSV) measured by phase-contrast cine (PCC)-MRI has been proposed with controversy as a tool for the selection of patients with normal pressure hydrocephalus (NPH) as candidates for shunt-surgery. The aim of this study was to assess if PCC-MRI scan measurements of ACSV could select properly these patients. We retrospectively reviewed charts and MRI of 38 shunted patients (72,16 ±6,16 years). ACSV measurements were performed 7-30 days before shunt and at the first and sixth months after surgery. Normally distributed variables were compared in the two groups (improved/unimproved) by T-test for baseline values and with repeated measures analysis of variance. 26 patients (68,4 %) improved after VPS (mean time of symptom onset was 8,15 ±7,19 months). Mean preoperative ACSV value was 271,85 ± 143,03, which decreased by 21,6 % (mean 213 ± 125,14 ) at the first month and 40,3% sixth months after VPS (mean 162,15 ± 91,5). 12 patients (31,6 %) did not improve (mean time of symptom onset was 29 ± 5,62 months). Mean preoperative ACSV value was 79,83 ± 31,24, decreased to 8,7 % (mean 72,83 ±28,66 ) at first month after VPS, 21,2% (mean 62,83 ± 31,12 ) after six months. We found statistical difference between preoperative ACSV of improved and unimproved patients (p<0,01), onset time of symptoms (p<0,01) and the changes in ACSV after one and six months in both groups (p<0,001). ACSV is useful to stratify patients with NPH after surgery (improved /not improved) suggesting to proceed with serial ACSV measurements before deciding treatment.

  6. Cancer detection by quantitative fluorescence image analysis.

    Science.gov (United States)

    Parry, W L; Hemstreet, G P

    1988-02-01

    Quantitative fluorescence image analysis is a rapidly evolving biophysical cytochemical technology with the potential for multiple clinical and basic research applications. We report the application of this technique for bladder cancer detection and discuss its potential usefulness as an adjunct to methods used currently by urologists for the diagnosis and management of bladder cancer. Quantitative fluorescence image analysis is a cytological method that incorporates 2 diagnostic techniques, quantitation of nuclear deoxyribonucleic acid and morphometric analysis, in a single semiautomated system to facilitate the identification of rare events, that is individual cancer cells. When compared to routine cytopathology for detection of bladder cancer in symptomatic patients, quantitative fluorescence image analysis demonstrated greater sensitivity (76 versus 33 per cent) for the detection of low grade transitional cell carcinoma. The specificity of quantitative fluorescence image analysis in a small control group was 94 per cent and with the manual method for quantitation of absolute nuclear fluorescence intensity in the screening of high risk asymptomatic subjects the specificity was 96.7 per cent. The more familiar flow cytometry is another fluorescence technique for measurement of nuclear deoxyribonucleic acid. However, rather than identifying individual cancer cells, flow cytometry identifies cellular pattern distributions, that is the ratio of normal to abnormal cells. Numerous studies by others have shown that flow cytometry is a sensitive method to monitor patients with diagnosed urological disease. Based upon results in separate quantitative fluorescence image analysis and flow cytometry studies, it appears that these 2 fluorescence techniques may be complementary tools for urological screening, diagnosis and management, and that they also may be useful separately or in combination to elucidate the oncogenic process, determine the biological potential of tumors

  7. Quantitative Risk Analysis: Method And Process

    Directory of Open Access Journals (Sweden)

    Anass BAYAGA

    2010-03-01

    Full Text Available Recent and past studies (King III report, 2009: 73-75; Stoney 2007;Committee of Sponsoring Organisation-COSO, 2004, Bartell, 2003; Liebenberg and Hoyt, 2003; Reason, 2000; Markowitz 1957 lament that although, the introduction of quantifying risk to enhance degree of objectivity in finance for instance was quite parallel to its development in the manufacturing industry, it is not the same in Higher Education Institution (HEI. In this regard, the objective of the paper was to demonstrate the methods and process of Quantitative Risk Analysis (QRA through likelihood of occurrence of risk (phase I. This paper serves as first of a two-phased study, which sampled hundred (100 risk analysts in a University in the greater Eastern Cape Province of South Africa.The analysis of likelihood of occurrence of risk by logistic regression and percentages were conducted to investigate whether there were a significant difference or not between groups (analyst in respect of QRA.The Hosmer and Lemeshow test was non-significant with a chi-square(X2 =8.181; p = 0.300, which indicated that there was a good model fit, since the data did not significantly deviate from the model. The study concluded that to derive an overall likelihood rating that indicated the probability that a potential risk may be exercised within the construct of an associated threat environment, the following governing factors must be considered: (1 threat source motivation and capability (2 nature of the vulnerability (3 existence and effectiveness of current controls (methods and process.

  8. Quantitative Infrared Spectra of Vapor Phase Chemical Agents

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Steven W.; Johnson, Timothy J.; Chu, P. M.; Kleimeyer, J.; Rowland, Brad

    2003-08-01

    Quantitative, moderately high resolution (0.1 cm-1) infrared spectra have been acquired for a number of nitrogen broadened (1 atm N2) vapor phase chemicals including: Sarin (GB), Soman (GD), Tabun (GA), Cyclosarin (GF), VX, Nitrogen Mustard (HN3), Sulfur Mustard (HD), and Lewisite (L). The spectra are acquired using a heated, flow-through White Cell1 of 5.6 meter optical path length. Each reported spectrum represents a statistical fit to Beer’s law, which allows for a rigorous calculation of uncertainty in the absorption coefficients. As part of an ongoing collaboration with the National Institute of Standards and Technology (NIST), cross-laboratory validation is a critical aspect of this work. In order to identify possible errors in the Dugway flow-through system, quantitative spectra of isopropyl alcohol from both NIST and Pacific Northwest National Laboratory (PNNL) are compared to similar data taken at Dugway proving Grounds (DPG).

  9. Single beam Fourier transform digital holographic quantitative phase microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  10. Quantitative 7T phase imaging in premanifest Huntington disease.

    Science.gov (United States)

    Apple, A C; Possin, K L; Satris, G; Johnson, E; Lupo, J M; Jakary, A; Wong, K; Kelley, D A C; Kang, G A; Sha, S J; Kramer, J H; Geschwind, M D; Nelson, S J; Hess, C P

    2014-09-01

    In vivo MR imaging and postmortem neuropathologic studies have demonstrated elevated iron concentration and atrophy within the striatum of patients with Huntington disease, implicating neuronal loss and iron accumulation in the pathogenesis of this neurodegenerative disorder. We used 7T MR imaging to determine whether quantitative phase, a measurement that reflects both iron content and tissue microstructure, is altered in subjects with premanifest Huntington disease. Local field shift, calculated from 7T MR phase images, was quantified in 13 subjects with premanifest Huntington disease and 13 age- and sex-matched controls. All participants underwent 3T and 7T MR imaging, including volumetric T1 and 7T gradient recalled-echo sequences. Local field shift maps were created from 7T phase data and registered to caudate ROIs automatically parcellated from the 3T T1 images. Huntington disease-specific disease burden and neurocognitive and motor evaluations were also performed and compared with local field shift. Subjects with premanifest Huntington disease had smaller caudate volume and higher local field shift than controls. A significant correlation between these measurements was not detected, and prediction accuracy for disease state improved with inclusion of both variables. A positive correlation between local field shift and genetic disease burden was also found, and there was a trend toward significant correlations between local field shift and neurocognitive tests of working memory and executive function. Subjects with premanifest Huntington disease exhibit differences in 7T MR imaging phase within the caudate nuclei that correlate with genetic disease burden and trend with neurocognitive assessments. Ultra-high-field MR imaging of quantitative phase may be a useful approach for monitoring neurodegeneration in premanifest Huntington disease. © 2014 by American Journal of Neuroradiology.

  11. Quantitative histogram analysis of images

    Science.gov (United States)

    Holub, Oliver; Ferreira, Sérgio T.

    2006-11-01

    A routine for histogram analysis of images has been written in the object-oriented, graphical development environment LabVIEW. The program converts an RGB bitmap image into an intensity-linear greyscale image according to selectable conversion coefficients. This greyscale image is subsequently analysed by plots of the intensity histogram and probability distribution of brightness, and by calculation of various parameters, including average brightness, standard deviation, variance, minimal and maximal brightness, mode, skewness and kurtosis of the histogram and the median of the probability distribution. The program allows interactive selection of specific regions of interest (ROI) in the image and definition of lower and upper threshold levels (e.g., to permit the removal of a constant background signal). The results of the analysis of multiple images can be conveniently saved and exported for plotting in other programs, which allows fast analysis of relatively large sets of image data. The program file accompanies this manuscript together with a detailed description of two application examples: The analysis of fluorescence microscopy images, specifically of tau-immunofluorescence in primary cultures of rat cortical and hippocampal neurons, and the quantification of protein bands by Western-blot. The possibilities and limitations of this kind of analysis are discussed. Program summaryTitle of program: HAWGC Catalogue identifier: ADXG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXG_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers: Mobile Intel Pentium III, AMD Duron Installations: No installation necessary—Executable file together with necessary files for LabVIEW Run-time engine Operating systems or monitors under which the program has been tested: WindowsME/2000/XP Programming language used: LabVIEW 7.0 Memory required to execute with typical data:˜16MB for starting and ˜160MB used for

  12. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

    Science.gov (United States)

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha

    2012-01-01

    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  13. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

    Science.gov (United States)

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha

    2012-01-01

    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  14. Determination of the Antibiotic Oxytetracycline in Commercial Milk by Solid-Phase Extraction: A High-Performance Liquid Chromatography (HPLC) Experiment for Quantitative Instrumental Analysis

    Science.gov (United States)

    Mei-Ratliff, Yuan

    2012-01-01

    Trace levels of oxytetracylcine spiked into commercial milk samples are extracted, cleaned up, and preconcentrated using a C[subscript 18] solid-phase extraction column. The extract is then analyzed by a high-performance liquid chromatography (HPLC) instrument equipped with a UV detector and a C[subscript 18] column (150 mm x 4.6 mm x 3.5 [mu]m).…

  15. Determination of the Antibiotic Oxytetracycline in Commercial Milk by Solid-Phase Extraction: A High-Performance Liquid Chromatography (HPLC) Experiment for Quantitative Instrumental Analysis

    Science.gov (United States)

    Mei-Ratliff, Yuan

    2012-01-01

    Trace levels of oxytetracylcine spiked into commercial milk samples are extracted, cleaned up, and preconcentrated using a C[subscript 18] solid-phase extraction column. The extract is then analyzed by a high-performance liquid chromatography (HPLC) instrument equipped with a UV detector and a C[subscript 18] column (150 mm x 4.6 mm x 3.5 [mu]m).…

  16. Simultaneous determination of linagliptin and metformin by reverse phase-high performance liquid chromatography method: An application in quantitative analysis of pharmaceutical dosage forms.

    Science.gov (United States)

    Vemula, Prathyusha; Dodda, Dilip; Balekari, Umamahesh; Panga, Shyam; Veeresham, Ciddi

    2015-01-01

    To enhance patient compliance toward treatment in diseases like diabetes, usually a combination of drugs is prescribed. Therefore, an anti-diabetic fixed-dose combination of 2.5 mg of linagliptin 500 mg of metformin was taken for simultaneous estimation of both the drugs by reverse phase-high performance liquid chromatography (RP-HPLC) method. The present study aimed to develop a simple and sensitive RP-HPLC method for the simultaneous determination of linagliptin and metformin in pharmaceutical dosage forms. The chromatographic separation was designed and evaluated by using linagliptin and metformin working standard and sample solutions in the linearity range. Chromatographic separation was performed on a C18 column using a mobile phase of 70:30 (v/v) mixture of methanol and 0.05 M potassium dihydrogen orthophosphate (pH adjusted to 4.6 with orthophosphoric acid) delivered at a flow rate of 0.6 mL/min and UV detection at 267 nm. Linagliptin and metformin shown linearity in the range of 2-12 μg/mL and 400-2400 μg/mL respectively with correlation co-efficient of 0.9996 and 0.9989. The resultant findings analyzed for standard deviation (SD) and relative standard deviation to validate the developed method. The retention time of linagliptin and metformin was found to be 6.3 and 4.6 min and separation was complete in pharmaceutical dosage forms.

  17. Food Consumption and Handling Survey for Quantitative Microbiological Consumer Phase Risk Assessments.

    Science.gov (United States)

    Chardon, Jurgen; Swart, Arno

    2016-07-01

    In the consumer phase of a typical quantitative microbiological risk assessment (QMRA), mathematical equations identify data gaps. To acquire useful data we designed a food consumption and food handling survey (2,226 respondents) for QMRA applications that is especially aimed at obtaining quantitative data. For a broad spectrum of food products, the survey covered the following topics: processing status at retail, consumer storage, preparation, and consumption. Questions were designed to facilitate distribution fitting. In the statistical analysis, special attention was given to the selection of the most adequate distribution to describe the data. Bootstrap procedures were used to describe uncertainty. The final result was a coherent quantitative consumer phase food survey and parameter estimates for food handling and consumption practices in The Netherlands, including variation over individuals and uncertainty estimates.

  18. Quantitative analysis of unconjugated and total bisphenol A in human urine using solid-phase extraction and UPLC-MS/MS: method implementation, method qualification and troubleshooting.

    Science.gov (United States)

    Buscher, Brigitte; van de Lagemaat, Dick; Gries, Wolfgang; Beyer, Dieter; Markham, Dan A; Budinsky, Robert A; Dimond, Stephen S; Nath, Rajesh V; Snyder, Stephanie A; Hentges, Steven G

    2015-11-15

    The aim of the presented investigation was to document challenges encountered during implementation and qualification of a method for bisphenol A (BPA) analysis and to develop and discuss precautions taken to avoid and to monitor contamination with BPA during sample handling and analysis. Previously developed and published HPLC-MS/MS methods for the determination of unconjugated BPA (Markham et al. Journal of Analytical Toxicology, 34 (2010) 293-303) [17] and total BPA (Markham et al. Journal of Analytical Toxicology, 38 (2014) 194-203) [20] in human urine were combined and transferred into another laboratory. The initial method for unconjugated BPA was developed and evaluated in two independent laboratories simultaneously. The second method for total BPA was developed and evaluated in one of these laboratories to conserve resources. Accurate analysis of BPA at sub-ppb levels is a challenging task as BPA is a widely used material and is ubiquitous in the environment at trace concentrations. Propensity for contamination of biological samples with BPA is reported in the literature during sample collection, storage, and/or analysis. Contamination by trace levels of BPA is so pervasive that even with extraordinary care, it is difficult to completely exclude the introduction of BPA into biological samples and, consequently, contamination might have an impact on BPA biomonitoring data. The applied UPLC-MS/MS method was calibrated from 0.05 to 25ng/ml. The limit of quantification was 0.1ng/ml for unconjugated BPA and 0.2ng/ml for total BPA, respectively, in human urine. Finally, the method was applied to urine samples derived from 20 volunteers. Overall, BPA can be analyzed in human urine with acceptable recovery and repeatability if sufficient measures are taken to avoid contamination throughout the procedure from sample collection until UPLC-MS/MS analysis.

  19. Quantitative ultrasonic computed tomography using phase-insensitive pyroelectric detectors.

    Science.gov (United States)

    Zeqiri, Bajram; Baker, Christian; Alosa, Giuseppe; Wells, Peter N T; Liang, Hai-Dong

    2013-08-07

    The principle of using ultrasonic computed tomography (UCT) clinically for mapping tissue acoustic properties was suggested almost 40 years ago. Despite strong research activity, UCT been unable to rival its x-ray counterpart in terms of the ability to distinguish tissue pathologies. Conventional piezoelectric detectors deployed in UCT are termed phase-sensitive (PS) and it is well established that this property can lead to artefacts related to refraction and phase-cancellation that mask true tissue structure, particularly for reconstructions involving attenuation. Equally, it has long been known that phase-insensitive (PI) detectors are more immune to this effect, although sufficiently sensitive devices for clinical use have not been available. This paper explores the application of novel PI detectors to UCT. Their operating principle is based on exploiting the pyroelectric properties of the piezoelectric polymer polyvinylidene difluoride. An important detector performance characteristic which makes it particularly suited to UCT, is the lack of directionality of the PI response, relative to the PS detector mode of operation. The performance of the detectors is compared to conventional PS detection methods, for quantitatively assessing the attenuation distribution within various test objects, including a two-phase polyurethane phantom. UCT images are presented for a range of single detector apertures; tomographic reconstruction images being compared with the known structure of phantoms containing inserts as small as 3 mm, which were readily imaged. For larger diameter inserts (>10 mm), the transmitter-detector combination was able to establish the attenuation coefficient of the insert to within ±10% of values determined separately from plane-wave measurements on representative material plaques. The research has demonstrated that the new PI detectors are significantly less susceptible to refraction and phase-cancellation artefacts, generating realistic images in

  20. Christhin: Quantitative Analysis of Thin Layer Chromatography

    CERN Document Server

    Barchiesi, Maximiliano; Renaudo, Carlos; Rossi, Pablo; Pramparo, María de Carmen; Nepote, Valeria; Grosso, Nelson Ruben; Gayol, María Fernanda

    2012-01-01

    Manual for Christhin 0.1.36 Christhin (Chromatography Riser Thin) is software developed for the quantitative analysis of data obtained from thin-layer chromatographic techniques (TLC). Once installed on your computer, the program is very easy to use, and provides data quickly and accurately. This manual describes the program, and reading should be enough to use it properly.

  1. Quantitative texture analysis of electrodeposited line patterns

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A.J.

    2005-01-01

    Free-standing line patterns of Cu and Ni were manufactured by electrochemical deposition into lithographically prepared patterns. Electrodeposition was carried out on top of a highly oriented Au-layer physically vapor deposited on glass. Quantitative texture analysis carried out by means of x...

  2. Quantitative texture analysis of electrodeposited line patterns

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A.J.

    2005-01-01

    Free-standing line patterns of Cu and Ni were manufactured by electrochemical deposition into lithographically prepared patterns. Electrodeposition was carried out on top of a highly oriented Au-layer physically vapor deposited on glass. Quantitative texture analysis carried out by means of x...

  3. Quantitative analysis of arm movement smoothness

    Science.gov (United States)

    Szczesna, Agnieszka; Błaszczyszyn, Monika

    2017-07-01

    The paper deals with the problem of motion data quantitative smoothness analysis. We investigated values of movement unit, fluidity and jerk for healthy and paralyzed arm of patients with hemiparesis after stroke. Patients were performing drinking task. To validate the approach, movement of 24 patients were captured using optical motion capture system.

  4. Seniors' Online Communities: A Quantitative Content Analysis

    Science.gov (United States)

    Nimrod, Galit

    2010-01-01

    Purpose: To examine the contents and characteristics of seniors' online communities and to explore their potential benefits to older adults. Design and Methods: Quantitative content analysis of a full year's data from 14 leading online communities using a novel computerized system. The overall database included 686,283 messages. Results: There was…

  5. A quantitative approach to scar analysis.

    Science.gov (United States)

    Khorasani, Hooman; Zheng, Zhong; Nguyen, Calvin; Zara, Janette; Zhang, Xinli; Wang, Joyce; Ting, Kang; Soo, Chia

    2011-02-01

    Analysis of collagen architecture is essential to wound healing research. However, to date no consistent methodologies exist for quantitatively assessing dermal collagen architecture in scars. In this study, we developed a standardized approach for quantitative analysis of scar collagen morphology by confocal microscopy using fractal dimension and lacunarity analysis. Full-thickness wounds were created on adult mice, closed by primary intention, and harvested at 14 days after wounding for morphometrics and standard Fourier transform-based scar analysis as well as fractal dimension and lacunarity analysis. In addition, transmission electron microscopy was used to evaluate collagen ultrastructure. We demonstrated that fractal dimension and lacunarity analysis were superior to Fourier transform analysis in discriminating scar versus unwounded tissue in a wild-type mouse model. To fully test the robustness of this scar analysis approach, a fibromodulin-null mouse model that heals with increased scar was also used. Fractal dimension and lacunarity analysis effectively discriminated unwounded fibromodulin-null versus wild-type skin as well as healing fibromodulin-null versus wild-type wounds, whereas Fourier transform analysis failed to do so. Furthermore, fractal dimension and lacunarity data also correlated well with transmission electron microscopy collagen ultrastructure analysis, adding to their validity. These results demonstrate that fractal dimension and lacunarity are more sensitive than Fourier transform analysis for quantification of scar morphology. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Qualitative and quantitative stability analysis of penta-rhythmic circuits

    Science.gov (United States)

    Schwabedal, Justus T. C.; Knapper, Drake E.; Shilnikov, Andrey L.

    2016-12-01

    Inhibitory circuits of relaxation oscillators are often-used models for dynamics of biological networks. We present a qualitative and quantitative stability analysis of such a circuit constituted by three generic oscillators (of a Fitzhugh-Nagumo type) as its nodes coupled reciprocally. Depending on inhibitory strengths, and parameters of individual oscillators, the circuit exhibits polyrhythmicity of up to five simultaneously stable rhythms. With methods of bifurcation analysis and phase reduction, we investigate qualitative changes in stability of these circuit rhythms for a wide range of parameters. Furthermore, we quantify robustness of the rhythms maintained under random perturbations by monitoring phase diffusion in the circuit. Our findings allow us to describe how circuit dynamics relate to dynamics of individual nodes. We also find that quantitative and qualitative stability properties of polyrhythmicity do not always align.

  7. Quantitative EEG Signatures through Amplitude and Phase Modulation Patterns.

    Science.gov (United States)

    Myers, Mark H; Padmanabha, Akaash

    2017-01-01

    Cortical spatiotemporal signal patterns based on object recognition can be discerned from visual stimulation. These are in the form of amplitude modulation (AM) and phase modulation (PM) patterns, which contain perceptual information gathered from sensory input. A high-density Electroencephalograph (EEG) device consisting of 48 electrodes with a spacing of 5 mm was utilized to measure frontal lobe activity in order to capture event-related potentials from visual stimuli. Four randomized stimuli representing different levels of salient responsiveness were measured to determine if mild stimuli can be discerned from more extreme stimuli. AM/PM response patterns were detected between mild and more salient stimuli across participants. AM patterns presented distinct signatures for each stimulus. AM patterns had the highest number of incidents detected in the middle of the frontal lobe. Through this work, we can expand our encyclopedia of neural signatures to object recognition, and provide a broader understanding of quantitative neural responses to external stimuli. The results provide a quantitative approach utilizing spatiotemporal patterns to analyze where distinct AM patterns can be linked to object perception.

  8. Prediction of Molar Extinction Coefficients of Proteins and Peptides Using UV Absorption of the Constituent Amino Acids at 214 nm To Enable Quantitative Reverse Phase High-Performance Liquid Chromatography-Mass Spectrometry Analysis

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Gruppen, H.

    2007-01-01

    The molar extinction coefficients of 20 amino acids and the peptide bond were measured at 214 nm in the presence of acetonitrile and formic acid to enable quantitative comparison of peptides eluting from reversed-phase high-performance liquid chromatography, once identified with mass spectrometry (R

  9. Prediction of Molar Extinction Coefficients of Proteins and Peptides Using UV Absorption of the Constituent Amino Acids at 214 nm To Enable Quantitative Reverse Phase High-Performance Liquid Chromatography-Mass Spectrometry Analysis

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Gruppen, H.

    2007-01-01

    The molar extinction coefficients of 20 amino acids and the peptide bond were measured at 214 nm in the presence of acetonitrile and formic acid to enable quantitative comparison of peptides eluting from reversed-phase high-performance liquid chromatography, once identified with mass spectrometry

  10. Prediction of Molar Extinction Coefficients of Proteins and Peptides Using UV Absorption of the Constituent Amino Acids at 214 nm To Enable Quantitative Reverse Phase High-Performance Liquid Chromatography-Mass Spectrometry Analysis

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Gruppen, H.

    2007-01-01

    The molar extinction coefficients of 20 amino acids and the peptide bond were measured at 214 nm in the presence of acetonitrile and formic acid to enable quantitative comparison of peptides eluting from reversed-phase high-performance liquid chromatography, once identified with mass spectrometry (R

  11. Quantitative analysis of trace levels ofβ-ionone in water by liquid-liquid- phase extraction-gas chromatography-mass spectrometry (LLE-GC-MS)

    Institute of Scientific and Technical Information of China (English)

    高梦鸿; 高乃云; 谢茴茴; 安娜; 邓扬; 戎文磊

    2015-01-01

    A simple and rapid technique based on liquid−liquid extraction coupled to gas chromatography-mass spectrometric detection (LLE-GC-MS) was developed for analysis of taste and odour compoundβ-ionone in water. Instrument parameters including programmed oven temperature, injection temperature and ion source temperature were evaluated and optimized. Effects of extraction time, ionic strength and pH on the detection efficiency were investigated and optimum conditions were 8 min of extraction time, without NaCl addition at pH=9. Good linearity (R2=0.9997) was obtained when the linear range was 10−500μg/L. The recoveries ofβ-ionone in ultrapure water and tap water samples were 88%−95% and 110%−114%, respectively. The relative standard deviations (RSD) were less than 10%. The method detection limit (MDL) and rejection quality level (RQL) were achieved at 1.98μg/L and 6.53μg/L, respectively. LLE-GC-MS was demonstrated to be a rapid and convenient method for the determination ofβ-ionone in water samples.

  12. Quantitative microstructure analysis of polymer-modified mortars.

    Science.gov (United States)

    Jenni, A; Herwegh, M; Zurbriggen, R; Aberle, T; Holzer, L

    2003-11-01

    Digital light, fluorescence and electron microscopy in combination with wavelength-dispersive spectroscopy were used to visualize individual polymers, air voids, cement phases and filler minerals in a polymer-modified cementitious tile adhesive. In order to investigate the evolution and processes involved in formation of the mortar microstructure, quantifications of the phase distribution in the mortar were performed including phase-specific imaging and digital image analysis. The required sample preparation techniques and imaging related topics are discussed. As a form of case study, the different techniques were applied to obtain a quantitative characterization of a specific mortar mixture. The results indicate that the mortar fractionates during different stages ranging from the early fresh mortar until the final hardened mortar stage. This induces process-dependent enrichments of the phases at specific locations in the mortar. The approach presented provides important information for a comprehensive understanding of the functionality of polymer-modified mortars.

  13. Quantitative image analysis of celiac disease.

    Science.gov (United States)

    Ciaccio, Edward J; Bhagat, Govind; Lewis, Suzanne K; Green, Peter H

    2015-03-07

    We outline the use of quantitative techniques that are currently used for analysis of celiac disease. Image processing techniques can be useful to statistically analyze the pixular data of endoscopic images that is acquired with standard or videocapsule endoscopy. It is shown how current techniques have evolved to become more useful for gastroenterologists who seek to understand celiac disease and to screen for it in suspected patients. New directions for focus in the development of methodology for diagnosis and treatment of this disease are suggested. It is evident that there are yet broad areas where there is potential to expand the use of quantitative techniques for improved analysis in suspected or known celiac disease patients.

  14. Quantitative image analysis of celiac disease

    Science.gov (United States)

    Ciaccio, Edward J; Bhagat, Govind; Lewis, Suzanne K; Green, Peter H

    2015-01-01

    We outline the use of quantitative techniques that are currently used for analysis of celiac disease. Image processing techniques can be useful to statistically analyze the pixular data of endoscopic images that is acquired with standard or videocapsule endoscopy. It is shown how current techniques have evolved to become more useful for gastroenterologists who seek to understand celiac disease and to screen for it in suspected patients. New directions for focus in the development of methodology for diagnosis and treatment of this disease are suggested. It is evident that there are yet broad areas where there is potential to expand the use of quantitative techniques for improved analysis in suspected or known celiac disease patients. PMID:25759524

  15. Using Qualitative Hazard Analysis to Guide Quantitative Safety Analysis

    Science.gov (United States)

    Shortle, J. F.; Allocco, M.

    2005-01-01

    Quantitative methods can be beneficial in many types of safety investigations. However, there are many difficulties in using quantitative m ethods. Far example, there may be little relevant data available. This paper proposes a framework for using quantitative hazard analysis to prioritize hazard scenarios most suitable for quantitative mziysis. The framework first categorizes hazard scenarios by severity and likelihood. We then propose another metric "modeling difficulty" that desc ribes the complexity in modeling a given hazard scenario quantitatively. The combined metrics of severity, likelihood, and modeling difficu lty help to prioritize hazard scenarios for which quantitative analys is should be applied. We have applied this methodology to proposed concepts of operations for reduced wake separation for airplane operatio ns at closely spaced parallel runways.

  16. Influence analysis in quantitative trait loci detection.

    Science.gov (United States)

    Dou, Xiaoling; Kuriki, Satoshi; Maeno, Akiteru; Takada, Toyoyuki; Shiroishi, Toshihiko

    2014-07-01

    This paper presents systematic methods for the detection of influential individuals that affect the log odds (LOD) score curve. We derive general formulas of influence functions for profile likelihoods and introduce them into two standard quantitative trait locus detection methods-the interval mapping method and single marker analysis. Besides influence analysis on specific LOD scores, we also develop influence analysis methods on the shape of the LOD score curves. A simulation-based method is proposed to assess the significance of the influence of the individuals. These methods are shown useful in the influence analysis of a real dataset of an experimental population from an F2 mouse cross. By receiver operating characteristic analysis, we confirm that the proposed methods show better performance than existing diagnostics.

  17. Review on modelling aspects in reversed-phase liquid chromatographic quantitative structure-retention relationships

    Energy Technology Data Exchange (ETDEWEB)

    Put, R. [FABI, Department of Analytical Chemistry and Pharmaceutical Technology, Pharmaceutical Institute, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels (Belgium); Vander Heyden, Y. [FABI, Department of Analytical Chemistry and Pharmaceutical Technology, Pharmaceutical Institute, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels (Belgium)], E-mail: yvanvdh@vub.ac.be

    2007-10-29

    In the literature an increasing interest in quantitative structure-retention relationships (QSRR) can be observed. After a short introduction on QSRR and other strategies proposed to deal with the starting point selection problem prior to method development in reversed-phase liquid chromatography, a number of interesting papers is reviewed, dealing with QSRR models for reversed-phase liquid chromatography. The main focus in this review paper is put on the different modelling methodologies applied and the molecular descriptors used in the QSRR approaches. Besides two semi-quantitative approaches (i.e. principal component analysis, and decision trees), these methodologies include artificial neural networks, partial least squares, uninformative variable elimination partial least squares, stochastic gradient boosting for tree-based models, random forests, genetic algorithms, multivariate adaptive regression splines, and two-step multivariate adaptive regression splines.

  18. Quantitative resilience analysis through control design.

    Energy Technology Data Exchange (ETDEWEB)

    Sunderland, Daniel; Vugrin, Eric D.; Camphouse, Russell Chris (Sandia National Laboratories, Carlsbad, NM)

    2009-09-01

    Critical infrastructure resilience has become a national priority for the U. S. Department of Homeland Security. System resilience has been studied for several decades in many different disciplines, but no standards or unifying methods exist for critical infrastructure resilience analysis. Few quantitative resilience methods exist, and those existing approaches tend to be rather simplistic and, hence, not capable of sufficiently assessing all aspects of critical infrastructure resilience. This report documents the results of a late-start Laboratory Directed Research and Development (LDRD) project that investigated the development of quantitative resilience through application of control design methods. Specifically, we conducted a survey of infrastructure models to assess what types of control design might be applicable for critical infrastructure resilience assessment. As a result of this survey, we developed a decision process that directs the resilience analyst to the control method that is most likely applicable to the system under consideration. Furthermore, we developed optimal control strategies for two sets of representative infrastructure systems to demonstrate how control methods could be used to assess the resilience of the systems to catastrophic disruptions. We present recommendations for future work to continue the development of quantitative resilience analysis methods.

  19. Quantitative phase imaging for cell culture quality control.

    Science.gov (United States)

    Kastl, Lena; Isbach, Michael; Dirksen, Dieter; Schnekenburger, Jürgen; Kemper, Björn

    2017-05-01

    The potential of quantitative phase imaging (QPI) with digital holographic microscopy (DHM) for quantification of cell culture quality was explored. Label-free QPI of detached single cells in suspension was performed by Michelson interferometer-based self-interference DHM. Two pancreatic tumor cell lines were chosen as cellular model and analyzed for refractive index, volume, and dry mass under varying culture conditions. Firstly, adequate cell numbers for reliable statistics were identified. Then, to characterize the performance and reproducibility of the method, we compared results from independently repeated measurements and quantified the cellular response to osmolality changes of the cell culture medium. Finally, it was demonstrated that the evaluation of QPI images allows the extraction of absolute cell parameters which are related to cell layer confluence states. In summary, the results show that QPI enables label-free imaging cytometry, which provides novel complementary integral biophysical data sets for sophisticated quantification of cell culture quality with minimized sample preparation. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  20. 3D quantitative phase imaging of neural networks using WDT

    Science.gov (United States)

    Kim, Taewoo; Liu, S. C.; Iyer, Raj; Gillette, Martha U.; Popescu, Gabriel

    2015-03-01

    White-light diffraction tomography (WDT) is a recently developed 3D imaging technique based on a quantitative phase imaging system called spatial light interference microscopy (SLIM). The technique has achieved a sub-micron resolution in all three directions with high sensitivity granted by the low-coherence of a white-light source. Demonstrations of the technique on single cell imaging have been presented previously; however, imaging on any larger sample, including a cluster of cells, has not been demonstrated using the technique. Neurons in an animal body form a highly complex and spatially organized 3D structure, which can be characterized by neuronal networks or circuits. Currently, the most common method of studying the 3D structure of neuron networks is by using a confocal fluorescence microscope, which requires fluorescence tagging with either transient membrane dyes or after fixation of the cells. Therefore, studies on neurons are often limited to samples that are chemically treated and/or dead. WDT presents a solution for imaging live neuron networks with a high spatial and temporal resolution, because it is a 3D imaging method that is label-free and non-invasive. Using this method, a mouse or rat hippocampal neuron culture and a mouse dorsal root ganglion (DRG) neuron culture have been imaged in order to see the extension of processes between the cells in 3D. Furthermore, the tomogram is compared with a confocal fluorescence image in order to investigate the 3D structure at synapses.

  1. Quantitative interferometric microscopic flow cytometer with expanded principal component analysis method

    Science.gov (United States)

    Wang, Shouyu; Jin, Ying; Yan, Keding; Xue, Liang; Liu, Fei; Li, Zhenhua

    2014-11-01

    Quantitative interferometric microscopy is used in biological and medical fields and a wealth of applications are proposed in order to detect different kinds of biological samples. Here, we develop a phase detecting cytometer based on quantitative interferometric microscopy with expanded principal component analysis phase retrieval method to obtain phase distributions of red blood cells with a spatial resolution ~1.5 μm. Since expanded principal component analysis method is a time-domain phase retrieval algorithm, it could avoid disadvantages of traditional frequency-domain algorithms. Additionally, the phase retrieval method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological cells are scanned in the field of view. We believe this method can be a powerful tool to quantitatively measure the phase distributions of different biological samples in biological and medical fields.

  2. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells

    Science.gov (United States)

    Park, Han Sang; Rinehart, Matthew T.; Walzer, Katelyn A.; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-01-01

    Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection

  3. Inspection, visualisation and analysis of quantitative proteomics data

    OpenAIRE

    Gatto, Laurent

    2016-01-01

    Material Quantitative Proteomics and Data Analysis Course. 4 - 5 April 2016, Queen Hotel, Chester, UK Table D - Inspection, visualisation and analysis of quantitative proteomics data, Laurent Gatto (University of Cambridge)

  4. Analyzing the texture changes in the quantitative phase maps of adipocytes

    Science.gov (United States)

    Roitshtain, Darina; Sharabani-Yosef, Orna; Gefen, Amit; Shaked, Natan T.

    2016-03-01

    We present a new analysis tool for studying texture changes in the quantitative phase maps of live cells acquired by wide-field interferometry. The sensitivity of wide-field interferometry systems to small changes in refractive index enables visualizing cells and inner cell organelles without the using fluorescent dyes or other cell-invasive approaches, which may affect the measurement and require external labeling. Our label-free texture-analysis tool is based directly on the optical path delay profile of the sample and does not necessitate decoupling refractive index and thickness in the cell quantitative phase profile; thus, relevant parameters can be calculated using a single-frame acquisition. Our experimental system includes low-coherence wide-field interferometer, combined with simultaneous florescence microscopy system for validation. We used this system and analysis tool for studying lipid droplets formation in adipocytes. The latter demonstration is relevant for various cellular functions such as lipid metabolism, protein storage and degradation to viral replication. These processes are functionally linked to several physiological and pathological conditions, including obesity and metabolic diseases. Quantification of these biological phenomena based on the texture changes in the cell phase map has a potential as a new cellular diagnosis tool.

  5. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    KAUST Repository

    Marquet, P.

    2016-05-03

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  6. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    Science.gov (United States)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  7. Quantitative analysis of spirality in elliptical galaxies

    CERN Document Server

    Dojcsak, Levente

    2013-01-01

    We use an automated galaxy morphology analysis method to quantitatively measure the spirality of galaxies classified manually as elliptical. The data set used for the analysis consists of 60,518 galaxy images with redshift obtained by the Sloan Digital Sky Survey (SDSS) and classified manually by Galaxy Zoo, as well as the RC3 and NA10 catalogues. We measure the spirality of the galaxies by using the Ganalyzer method, which transforms the galaxy image to its radial intensity plot to detect galaxy spirality that is in many cases difficult to notice by manual observation of the raw galaxy image. Experimental results using manually classified elliptical and S0 galaxies with redshift <0.3 suggest that galaxies classified manually as elliptical and S0 exhibit a nonzero signal for the spirality. These results suggest that the human eye observing the raw galaxy image might not always be the most effective way of detecting spirality and curves in the arms of galaxies.

  8. Quantitative Phase Determination by Using a Michelson Interferometer

    Science.gov (United States)

    Pomarico, Juan A.; Molina, Pablo F.; D'Angelo, Cristian

    2007-01-01

    The Michelson interferometer is one of the best established tools for quantitative interferometric measurements. It has been, and is still successfully used, not only for scientific purposes, but it is also introduced in undergraduate courses for qualitative demonstrations as well as for quantitative determination of several properties such as…

  9. Quantitative laryngeal electromyography: turns and amplitude analysis.

    Science.gov (United States)

    Statham, Melissa McCarty; Rosen, Clark A; Nandedkar, Sanjeev D; Munin, Michael C

    2010-10-01

    Laryngeal electromyography (LEMG) is primarily a qualitative examination, with no standardized approach to interpretation. The objectives of our study were to establish quantitative norms for motor unit recruitment in controls and to compare with interference pattern analysis in patients with unilateral vocal fold paralysis (VFP). Retrospective case-control study We performed LEMG of the thyroarytenoid-lateral cricoarytenoid muscle complex (TA-LCA) in 21 controls and 16 patients with unilateral VFP. Our standardized protocol used a concentric needle electrode with subjects performing variable force TA-LCA contraction. To quantify the interference pattern density, we measured turns and mean amplitude per turn for ≥10 epochs (each 500 milliseconds). Logarithmic regression analysis between amplitude and turns was used to calculate slope and intercept. Standard deviation was calculated to further define the confidence interval, enabling generation of a linear-scale graphical "cloud" of activity containing ≥90% of data points for controls and patients. Median age of controls and patients was similar (50.7 vs. 48.5 years). In controls, TA-LCA amplitude with variable contraction ranged from 145-1112 μV, and regression analysis comparing mean amplitude per turn to root-mean-square amplitude demonstrated high correlation (R = 0.82). In controls performing variable contraction, median turns per second was significantly higher compared to patients (450 vs. 290, P = .002). We first present interference pattern analysis in the TA-LCA in healthy adults and patients with unilateral VFP. Our findings indicate that motor unit recruitment can be quantitatively measured within the TA-LCA. Additionally, patients with unilateral VFP had significantly reduced turns when compared with controls.

  10. QUANTITATIVE METHODOLOGY FOR STABILITY ANALYSIS OF NONLINEAR ROTOR SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hui-ping; XUE Yu-sheng; CHEN Yu-shu

    2005-01-01

    Rotor-bearings systems applied widely in industry are nonlinear dynamic systems of multi-degree-of-freedom. Modem concepts on design and maintenance call for quantitative stability analysis. Using trajectory based stability-preserving and dimensional-reduction, a quanttative stability analysis method for rotor systems is presented. At first, an n-dimensional nonlinear non-autonomous rotor system is decoupled into n subsystems after numerical integration. Each of them has only onedegree-of-freedom and contains time-varying parameters to represent all other state variables. In this way, n-dimensional trajectory is mapped into a set of one-dimensional trajectories. Dynamic central point (DCP) of a subsystem is then defined on the extended phase plane, namely, force-position plane. Characteristics of curves on the extended phase plane and the DCP's kinetic energy difference sequence for general motion in rotor systems are studied. The corresponding stability margins of trajectory are evaluated quantitatively. By means of the margin and its sensitivity analysis, the critical parameters of the period doubling bifurcation and the Hopf bifurcation in a flexible rotor supported by two short journal beatings with nonlinear suspensionare are determined.

  11. Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities.

    Science.gov (United States)

    Ohno, Munekazu

    2012-11-01

    A quantitative phase-field model is developed for simulating microstructural pattern formation in nonisothermal solidification in dilute multicomponent alloys with arbitrary thermal and solutal diffusivities. By performing the matched asymptotic analysis, it is shown that the present model with antitrapping current terms reproduces the free-boundary problem of interest in the thin-interface limit. Convergence of the simulation outcome with decreasing the interface thickness is demonstrated for nonisothermal free dendritic growth in binary alloys and isothermal and nonisothermal free dendritic growth in a ternary alloy.

  12. Phase analysis on dual-phase steel using band slope of electron backscatter diffraction pattern.

    Science.gov (United States)

    Kang, Jun-Yun; Park, Seong-Jun; Moon, Man-Been

    2013-08-01

    A quantitative and automated phase analysis of dual-phase (DP) steel using electron backscatter diffraction (EBSD) was attempted. A ferrite-martensite DP microstructure was produced by intercritical annealing and quenching. An EBSD map of the microstructure was obtained and post-processed for phase discrimination. Band slope (BS), which was a measure of pattern quality, exhibited much stronger phase contrast than another conventional one, band contrast. Owing to high sensitivity to lattice defect and little orientation dependence, BS provided handiness in finding a threshold for phase discrimination. Its grain average gave a superior result on the discrimination and volume fraction measurement of the constituent phases in the DP steel.

  13. Quantitative Analysis in Nuclear Medicine Imaging

    CERN Document Server

    2006-01-01

    This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable increase in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of radionuclides for diagnosis and therapy has origins dating back almost to the discovery of natural radioactivity itself, radionuclide therapy and, in particular, targeted radionuclide therapy has only recently emerged as a promising approach for therapy of cancer and, to a lesser extent, other diseases. As effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. ...

  14. Automatic quantitative morphological analysis of interacting galaxies

    CERN Document Server

    Shamir, Lior; Wallin, John

    2013-01-01

    The large number of galaxies imaged by digital sky surveys reinforces the need for computational methods for analyzing galaxy morphology. While the morphology of most galaxies can be associated with a stage on the Hubble sequence, morphology of galaxy mergers is far more complex due to the combination of two or more galaxies with different morphologies and the interaction between them. Here we propose a computational method based on unsupervised machine learning that can quantitatively analyze morphologies of galaxy mergers and associate galaxies by their morphology. The method works by first generating multiple synthetic galaxy models for each galaxy merger, and then extracting a large set of numerical image content descriptors for each galaxy model. These numbers are weighted using Fisher discriminant scores, and then the similarities between the galaxy mergers are deduced using a variation of Weighted Nearest Neighbor analysis such that the Fisher scores are used as weights. The similarities between the ga...

  15. Dual-wavelength in-line phase-shifting interferometry based on two dc-term-suppressed intensities with a special phase shift for quantitative phase extraction.

    Science.gov (United States)

    Xu, Xiaoqing; Wang, Yawei; Xu, Yuanyuan; Jin, Weifeng

    2016-06-01

    To efficiently promote the phase retrieval in quantitative phase imaging, a new approach of quantitative phase extraction is proposed based on two intensities with dual wavelength after filtering the corresponding dc terms for each wavelength, in which a special phase shift is used. In this approach, only the combination of the phase-shifting technique and subtraction procedures is needed, and no additional algorithms are required. The thickness of the phase object can be achieved from the phase image, which is related to the synthetic beat wavelength. The feasibility of this method is verified by the simulated experiments of the optically transparent objects.

  16. Quantitative XRD Analysis of Cement Clinker by the Multiphase Rietveld Method

    Institute of Scientific and Technical Information of China (English)

    HONG Han-lie; FU Zheng-yi; MIN Xin-min

    2003-01-01

    Quantitative phase analysis of Portland cement clinker samples was performed using an adaptation of the Rietveld method.The Rietveld quantitative analysis program,originally in Fortran 77 code,was significantly modified in visual basic code with windows 9X graph-user interface,which is free from the constraint of direct utilizable memory 640 k,and can be conveniently operated under the windows environment.The Rietveld quantitative method provides numerous advantages over conventional XRD quantitative method,especially in the intensity anomalies and superposition problems.Examples of its use are given with the results from other methods.It is concluded that,at present,the Rietveld method is the most suitable one for quantitative phase analysis of Portland cement clinker.

  17. Nonlinear dynamics and quantitative EEG analysis.

    Science.gov (United States)

    Jansen, B H

    1996-01-01

    Quantitative, computerized electroencephalogram (EEG) analysis appears to be based on a phenomenological approach to EEG interpretation, and is primarily rooted in linear systems theory. A fundamentally different approach to computerized EEG analysis, however, is making its way into the laboratories. The basic idea, inspired by recent advances in the area of nonlinear dynamics and chaos theory, is to view an EEG as the output of a deterministic system of relatively simple complexity, but containing nonlinearities. This suggests that studying the geometrical dynamics of EEGs, and the development of neurophysiologically realistic models of EEG generation may produce more successful automated EEG analysis techniques than the classical, stochastic methods. A review of the fundamentals of chaos theory is provided. Evidence supporting the nonlinear dynamics paradigm to EEG interpretation is presented, and the kind of new information that can be extracted from the EEG is discussed. A case is made that a nonlinear dynamic systems viewpoint to EEG generation will profoundly affect the way EEG interpretation is currently done.

  18. Quantitative multiphase analysis of archaeological bronzes by neutron diffraction

    CERN Document Server

    Siano, S; Celli, M; Pini, R; Salimbeni, R; Zoppi, M; Kockelmann, W A; Iozzo, M; Miccio, M; Moze, O

    2002-01-01

    In this paper, we report the first investigation on the potentials of neutron diffraction to characterize archaeological bronze artifacts. The preliminary feasibility of phase and structural analysis was demonstrated on standardised specimens with a typical bronze alloy composition. These were realised through different hardening and annealing cycles, simulating possible ancient working techniques. The Bragg peak widths that resulted were strictly dependent on the working treatment, thus providing an important analytical element to investigate ancient making techniques. The diagnostic criteria developed on the standardised specimens were then applied to study two Etruscan museum pieces. Quantitative multiphase analysis by Rietveld refinement of the diffraction patterns was successfully demonstrated. Furthermore, the analysis of patterns associated with different artifact elements also yielded evidence for some peculiar perspective of the neutron diffraction diagnostics in archeometric applications. (orig.)

  19. Sequential processing of quantitative phase images for the study of cell behaviour in real-time digital holographic microscopy.

    Science.gov (United States)

    Zikmund, T; Kvasnica, L; Týč, M; Křížová, A; Colláková, J; Chmelík, R

    2014-11-01

    Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The study of the cell is based on extraction of the dynamic data on cell behaviour from the time-lapse sequence of the phase images. However, the phase images are affected by the phase aberrations that make the analysis particularly difficult. This is because the phase deformation is prone to change during long-term experiments. Here, we present a novel algorithm for sequential processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least-squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. All these procedures are performed automatically and applied immediately after obtaining every single phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment by playback of the recorded sequence up to actual time. Such operator's intervention is a forerunner of process automation derived from image analysis. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope.

  20. A quantitative process for enhancing end of phase 2 decisions

    OpenAIRE

    Sabin, T.; Matcham, J.; Bray, S; Copas, A; Parmar, M. K.

    2014-01-01

    The objectives of the phase 2 stage in a drug development program are to evaluate the safety and tolerability of different doses, select a promising dose range, and look for early signs of activity. At the end of phase 2, a decision to initiate phase 3 studies is made that involves the commitment of considerable resources. This multifactorial decision, generally made by balancing the current condition of a development organization's portfolio, the future cost of development, the competitive l...

  1. Quantitative risk analysis preoperational of gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Manfredi, Carlos; Bispo, Gustavo G.; Esteves, Alvaro [Gie S.A., Buenos Aires (Argentina)

    2009-07-01

    The purpose of this analysis is to predict how it can be affected the individual risk and the public's general security due to the operation of a gas pipeline. In case that the single or social risks are considered intolerable, compared with the international standards, to be recommended measures of mitigation of the risk associated to the operation until levels that can be considered compatible with the best practices in the industry. The quantitative risk analysis calculates the probability of occurrence of an event based on the frequency of occurrence of the same one and it requires a complex mathematical treatment. The present work has as objective to develop a calculation methodology based on the previously mentioned publication. This calculation methodology is centered in defining the frequencies of occurrence of events, according to representative database of each case in study. Besides, it settles down the consequences particularly according to the considerations of each area and the different possibilities of interferences with the gas pipeline in study. For each one of the interferences a typical curve of ignition probabilities is developed in function from the distance to the pipe. (author)

  2. Quantitative analysis of protein turnover in plants.

    Science.gov (United States)

    Nelson, Clark J; Li, Lei; Millar, A Harvey

    2014-03-01

    Proteins are constantly being synthesised and degraded as plant cells age and as plants grow, develop and adapt the proteome. Given that plants develop through a series of events from germination to fruiting and even undertake whole organ senescence, an understanding of protein turnover as a fundamental part of this process in plants is essential. Both synthesis and degradation processes are spatially separated in a cell across its compartmented structure. The majority of protein synthesis occurs in the cytosol, while synthesis of specific components occurs inside plastids and mitochondria. Degradation of proteins occurs in both the cytosol, through the action of the plant proteasome, and in organelles and lytic structures through different protease classes. Tracking the specific synthesis and degradation rate of individual proteins can be undertaken using stable isotope feeding and the ability of peptide MS to track labelled peptide fractions over time. Mathematical modelling can be used to follow the isotope signature of newly synthesised protein as it accumulates and natural abundance proteins as they are lost through degradation. Different technical and biological constraints govern the potential for the use of (13)C, (15)N, (2)H and (18)O for these experiments in complete labelling and partial labelling strategies. Future development of quantitative protein turnover analysis will involve analysis of protein populations in complexes and subcellular compartments, assessing the effect of PTMs and integrating turnover studies into wider system biology study of plants.

  3. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    Science.gov (United States)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao

    2016-01-01

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke's tabulated data.

  4. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro; Aoki, Sadao [Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573 (Japan)

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  5. Single-exposure quantitative phase imaging in color-coded LED microscopy (Conference Presentation)

    Science.gov (United States)

    Lee, Wonchan; Jung, Daeseong; Joo, Chulmin

    2017-02-01

    Quantitative phase-gradient or phase imaging in LED microscopy has been recently demonstrated. The methods enable measurement of phase distribution of transparent specimens in a simple and cost-effective manner, but require multiple image acquisitions with different source or pupil configurations to improve phase accuracy. Here, we demonstrate a strategy for single-shot quantitative phase imaging in color-coded LED microscopy. We employ a circular LED illumination pattern that is trisected into subregions with equal area, assigned to red, green and blue colors, respectively. Additional color filter is also employed to mitigate the color leakage of light into different color channels of the image sensor. Image acquisition with a color image sensor and subsequent computation based on the weak object transfer function allow for quantitative amplitude and phase measurements of a specimen. We describe computational model and single-shot quantitative phase imaging capability of our method by presenting phase images of calibrated phase sample and dynamics of cells. Phase measurement accuracy is validated with pre-characterized phase plate, and single-shot phase imaging capability is demonstrated with time-lapse imaging of cells acquired at 30 Hz.

  6. Quantitative interferometric microscopy with two dimensional Hilbert transform based phase retrieval method

    Science.gov (United States)

    Wang, Shouyu; Yan, Keding; Xue, Liang

    2017-01-01

    In order to obtain high contrast images and detailed descriptions of label free samples, quantitative interferometric microscopy combining with phase retrieval is designed to obtain sample phase distributions from fringes. As accuracy and efficiency of recovered phases are affected by phase retrieval methods, thus approaches owning higher precision and faster processing speed are still in demand. Here, two dimensional Hilbert transform based phase retrieval method is adopted in cellular phase imaging, it not only reserves more sample specifics compared to classical fast Fourier transform based method, but also overcomes disadvantages of traditional algorithm according to Hilbert transform which is a one dimensional processing causing phase ambiguities. Both simulations and experiments are provided, proving the proposed phase retrieval approach can acquire quantitative sample phases with high accuracy and fast speed.

  7. Eddy current pulsed phase thermography for subsurface defect quantitatively evaluation

    Science.gov (United States)

    He, Yunze; Pan, Mengchun; Tian, GuiYun; Chen, Dixiang; Tang, Ying; Zhang, Hong

    2013-09-01

    This Letter verified eddy current pulse phase thermography through numerical and experimental studies. During the numerical studies, two characteristic features, blind frequency and min phase, were extracted from differential phase spectra, and their monotonic relationships with defects' depth under different heating time were compared. According to the numerical studies, 100 ms was employed as heating time during the improved experimental studies. The experimental results agreed with the numerical results. Based on their linear relationship with defects' depths, both features can be used to measure the defect's depth.

  8. Applying Knowledge of Quantitative Design and Analysis

    Science.gov (United States)

    Baskas, Richard S.

    2011-01-01

    This study compared and contrasted two quantitative scholarly articles in relation to their research designs. Their designs were analyzed by the comparison of research references and research specific vocabulary to describe how various research methods were used. When researching and analyzing quantitative scholarly articles, it is imperative to…

  9. Quantitative color analysis for capillaroscopy image segmentation.

    Science.gov (United States)

    Goffredo, Michela; Schmid, Maurizio; Conforto, Silvia; Amorosi, Beatrice; D'Alessio, Tommaso; Palma, Claudio

    2012-06-01

    This communication introduces a novel approach for quantitatively evaluating the role of color space decomposition in digital nailfold capillaroscopy analysis. It is clinically recognized that any alterations of the capillary pattern, at the periungual skin region, are directly related to dermatologic and rheumatic diseases. The proposed algorithm for the segmentation of digital capillaroscopy images is optimized with respect to the choice of the color space and the contrast variation. Since the color space is a critical factor for segmenting low-contrast images, an exhaustive comparison between different color channels is conducted and a novel color channel combination is presented. Results from images of 15 healthy subjects are compared with annotated data, i.e. selected images approved by clinicians. By comparison, a set of figures of merit, which highlights the algorithm capability to correctly segment capillaries, their shape and their number, is extracted. Experimental tests depict that the optimized procedure for capillaries segmentation, based on a novel color channel combination, presents values of average accuracy higher than 0.8, and extracts capillaries whose shape and granularity are acceptable. The obtained results are particularly encouraging for future developments on the classification of capillary patterns with respect to dermatologic and rheumatic diseases.

  10. Quantitative gold nanoparticle analysis methods: A review.

    Science.gov (United States)

    Yu, Lei; Andriola, Angelo

    2010-08-15

    Research and development in the area of gold nanoparticles' (AuNPs) preparation, characterization, and applications are burgeoning in recent years. Many of the techniques and protocols are very mature, but two major concerns are with the mass domestic production and the consumption of AuNP based products. First, how many AuNPs exist in a dispersion? Second, where are the AuNPs after digestion by the environment and how many are there? To answer these two questions, reliable and reproducible methods are needed to analyze the existence and the population of AuNP in samples. This review summarized the most recent chemical and particle quantitative analysis methods that have been used to characterize the concentration (in number of moles of gold per liter) or population (in number of particles per mL) of AuNPs. The methods summarized in this review include, mass spectroscopy, electroanalytical methods, spectroscopic methods, and particle counting methods. These methods may count the number of AuNP directly or analyze the total concentration of element gold in an AuNP dispersion.

  11. Quantitative risks analysis of maritime terminal petrochemical

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Leandro Silveira; Leal, Cesar A. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica (PROMEC)]. E-mail: leandro19889900@yahoo.com.br

    2008-07-01

    This work consists of the application of a computer program (RISKAN) developed for studies of quantification of industrial risks and also a revision of the models used in the program. As part the evaluation made, a test was performed with the application of the computer program to estimate the risks for a marine terminal for storage of petrochemical products, in the city of Rio Grande, Brazil. Thus, as part of the work, it was performed a Quantitative Risk Analysis associated to the terminal, both for the workers and for the population nearby, with a verification of acceptability using the tolerability limits established by the State Licensing Agency (FEPAM-RS). In the risk analysis methodology used internationally, the most used way of presenting results of social risks is in the graphical form with the use of the FN curves and for the individual risk it is common the use of the iso-risk curves traced on the map of the area where is the plant. In the beginning of the study, both a historical analysis of accidents and use of the technique of Preliminary Analysis of Risks were made in order to aid in the process of identification of the possible scenarios of accidents related to the activities in the terminal. After identifying the initiating events, their frequencies or probabilities of occurrence were estimated and followed by the calculations of the physical effects and deaths, with the use, inside the computer program, of published models of Prins Mauritz Laboratory and of American Institute of Chemical Engineers. The average social risk obtained for the external populations was of 8.7x10{sup -7} fatality.year{sup -1} and for the internal population (people working inside the terminal), 3.2x10{sup -4} fatality.year-1. The accident scenario that most contributed to the social risk was death due to exposure to the thermal radiation caused by pool fire, with 84.3% of the total estimated for external populations and 82.9% for the people inside the terminal. The

  12. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis

    DEFF Research Database (Denmark)

    Leon, Ileana R; Schwämmle, Veit; Jensen, Ole N;

    2013-01-01

    a combination of qualitative and quantitative LC-MS/MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein...... conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents prior to analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative LC-MS/MS workflow quantified over 3700 distinct peptides with 96% completeness between all...... protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows...

  13. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    Science.gov (United States)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  14. Quantitative trait loci and the relevance of phased haplotypes

    DEFF Research Database (Denmark)

    Gregersen, Vivi Raundahl

    underlying gentic control both as traditional linkage studies relying on genetic maps and as GWAS where an approach of phasing haplotypes within the QTL have been conducted to validate the regions. Overall, regions of interest have been identified for chronic pleuritis and osteochondrosis in addition to meat...

  15. Quantitative phase-field modeling for wetting phenomena.

    Science.gov (United States)

    Badillo, Arnoldo

    2015-03-01

    A new phase-field model is developed for studying partial wetting. The introduction of a third phase representing a solid wall allows for the derivation of a new surface tension force that accounts for energy changes at the contact line. In contrast to other multi-phase-field formulations, the present model does not need the introduction of surface energies for the fluid-wall interactions. Instead, all wetting properties are included in a unique parameter known as the equilibrium contact angle θeq. The model requires the solution of a single elliptic phase-field equation, which, coupled to conservation laws for mass and linear momentum, admits the existence of steady and unsteady compact solutions (compactons). The representation of the wall by an additional phase field allows for the study of wetting phenomena on flat, rough, or patterned surfaces in a straightforward manner. The model contains only two free parameters, a measure of interface thickness W and β, which is used in the definition of the mixture viscosity μ=μlϕl+μvϕv+βμlϕw. The former controls the convergence towards the sharp interface limit and the latter the energy dissipation at the contact line. Simulations on rough surfaces show that by taking values for β higher than 1, the model can reproduce, on average, the effects of pinning events of the contact line during its dynamic motion. The model is able to capture, in good agreement with experimental observations, many physical phenomena fundamental to wetting science, such as the wetting transition on micro-structured surfaces and droplet dynamics on solid substrates.

  16. [Quantitative image analysis in pulmonary pathology - digitalization of preneoplastic lesions in human bronchial epithelium (author's transl)].

    Science.gov (United States)

    Steinbach, T; Müller, K M; Kämper, H

    1979-01-01

    The report concerns the first phase of a quantitative study of normal and abnormal bronchial epithelium with the objective of establishing the digitalization of histologic patterns. Preparative methods, data collecting and handling, and further mathematical analysis are described. In cluster and discriminatory analysis the digitalized histologic features can be used to separate and classify the individual cases into the respective diagnostic groups.

  17. Prospects and challenges of quantitative phase imaging in tumor cell biology

    Science.gov (United States)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  18. Quantitative Data Analysis--In the Graduate Curriculum

    Science.gov (United States)

    Albers, Michael J.

    2017-01-01

    A quantitative research study collects numerical data that must be analyzed to help draw the study's conclusions. Teaching quantitative data analysis is not teaching number crunching, but teaching a way of critical thinking for how to analyze the data. The goal of data analysis is to reveal the underlying patterns, trends, and relationships of a…

  19. The Curriculum in Quantitative Analysis: Results of a Survey.

    Science.gov (United States)

    Locke, David C.; Grossman, William E. L.

    1987-01-01

    Reports on the results of a survey of college level instructors of quantitative analysis courses. Discusses what topics are taught in such courses, how much weight is given to these topics, and which experiments are used in the laboratory. Poses some basic questions about the curriculum in quantitative analysis. (TW)

  20. Combination and Integration of Qualitative and Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Philipp Mayring

    2001-02-01

    Full Text Available In this paper, I am going to outline ways of combining qualitative and quantitative steps of analysis on five levels. On the technical level, programs for the computer-aided analysis of qualitative data offer various combinations. Where the data are concerned, the employment of categories (for instance by using qualitative content analysis allows for combining qualitative and quantitative forms of data analysis. On the individual level, the creation of types and the inductive generalisation of cases allow for proceeding from individual case material to quantitative generalisations. As for research design, different models can be distinguished (preliminary study, generalisation, elaboration, triangulation which combine qualitative and quantitative steps of analysis. Where the logic of research is concerned, it can be shown that an extended process model which combined qualitative and quantitative research can be appropriate and thus lead to an integration of the two approaches. URN: urn:nbn:de:0114-fqs010162

  1. Some Epistemological Considerations Concerning Quantitative Analysis

    Science.gov (United States)

    Dobrescu, Emilian

    2008-01-01

    This article presents the author's address at the 2007 "Journal of Applied Quantitative Methods" ("JAQM") prize awarding festivity. The festivity was included in the opening of the 4th International Conference on Applied Statistics, November 22, 2008, Bucharest, Romania. In the address, the author reflects on three theses that…

  2. Design of online solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) hyphenated systems for quantitative analysis of small organic compounds in biological matrices.

    Science.gov (United States)

    Kuklenyik, Zsuzsanna; Calafat, Antonia M; Barr, John R; Pirkle, James L

    2011-12-01

    Three online solid phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) method examples are presented where two different types of chromatographic columns or solvent systems were coupled to meet specific analytical objectives: (i) SPE of target analytes by restricted access media from high ionic strength urine matrix was coupled with reversed phase LC-MS/MS conditions accommodating high ionization potentials of the analytes (urinary bisphenol A and other phenolic derivatives); (ii) strong cation exchange SPE of analytes of diverse polarity and pK(a) was coupled with reversed phase LC-MS/MS analysis (urinary atrazine metabolites); (iii) pre-concentration of low pg per sample analytes by weak anion exchange SPE was hyphenated with ion pair LC-MS analysis (intracellular nucleotide triphosphate analogs). With these examples we suggest a conductive generic work flow for the development of online SPE-LC-MS methods and show how advanced commercial LC devices and software allow for the design of complex yet highly versatile analytical separation systems suited to the unique physicochemical properties of the target analytes.

  3. Analysis of solid-liquid phase change heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    张寅平; 王馨

    2002-01-01

    Solid-liquid phase change processes have two important features: the process is an approximately isothermal process and the heat of fusion of phase change material tends to be much greater than its specific heat. Therefore, if any phase change material adjacent to a hot or cold surface undergoes phase change, the heat transfer rate on the surface will be noticeably enhanced. This paper presents a novel insight into the mechanisms of heat transfer enhancement induced by solid-liquid phase change based on the analogy analysis for heat conduction with an internal heat source and solid-liquid phase change heat transfer. Three degrees of surface heat transfer enhancement for different conditions are explored, and corresponding formulae are written to describe them. The factors influencing the degrees of heat transfer enhancement are clarified and their effects quantitatively analyzed. Both the novel insight and the analysis contribute to effective application of phase change heat transfer enhancement technique.

  4. Quantitative photothermal phase imaging of red blood cells using digital holographic photothermal microscope.

    Science.gov (United States)

    Vasudevan, Srivathsan; Chen, George C K; Lin, Zhiping; Ng, Beng Koon

    2015-05-10

    Photothermal microscopy (PTM), a noninvasive pump-probe high-resolution microscopy, has been applied as a bioimaging tool in many biomedical studies. PTM utilizes a conventional phase contrast microscope to obtain highly resolved photothermal images. However, phase information cannot be extracted from these photothermal images, as they are not quantitative. Moreover, the problem of halos inherent in conventional phase contrast microscopy needs to be tackled. Hence, a digital holographic photothermal microscopy technique is proposed as a solution to obtain quantitative phase images. The proposed technique is demonstrated by extracting phase values of red blood cells from their photothermal images. These phase values can potentially be used to determine the temperature distribution of the photothermal images, which is an important study in live cell monitoring applications.

  5. Solid-phase extraction and liquid chromatographic quantitation of quinfamide in biological samples.

    Science.gov (United States)

    Morales, J M; Jung, C H; Alarcón, A; Barreda, A

    2000-09-15

    This paper describes a high-performance liquid chromatographic method for the assay of quinfamide and its main metabolite, 1-(dichloroacetyl)-1,2,3,4,-tetrahydro-6-quinolinol, in plasma, urine and feces. It requires 1 ml of biological fluid, an extraction using Sep-Pack cartridges and acetonitrile for drug elution. Analysis was performed on a CN column (5 microm) using water-acetonitrile-methanol (40:50:10) as a mobile phase at 269 nm. Results showed that the assay was linear in the range between 0.08 and 2.0 microg/ml. The limit of quantitation was 0.08 microg/ml. Maximum assay coefficient of variation was 14%. Recovery obtained in plasma, urine and feces ranged from 82% to 98%.

  6. Quantitative evaluation of a single-distance phase-retrieval method applied on in-line phase-contrast images of a mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Sara, E-mail: sara.mohammadi@elettra.trieste.it [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Synchrotron Light Source ‘Elettra’ Trieste, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149 (Italy); Larsson, Emanuel [Synchrotron Light Source ‘Elettra’ Trieste, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149 (Italy); Linköping University, SE-581 83 (Sweden); University of Trieste, Trieste (Italy); Alves, Frauke [University Hospital Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany); Dal Monego, Simeone [Cluster in Biomedicine s.c.r.l., AREA Science Park, Strada Statale 14, km 163.5, Basovizza, 34149 Trieste (Italy); Biffi, Stefania; Garrovo, Chiara [IRCCS Burlo Garofolo, via dell’Istria 65/1, 34137 Trieste (Italy); Lorenzon, Andrea [Cluster in Biomedicine s.c.r.l., AREA Science Park, Strada Statale 14, km 163.5, Basovizza, 34149 Trieste (Italy); Tromba, Giuliana [Synchrotron Light Source ‘Elettra’ Trieste, Strada Statale 14, km 163.5 in AREA Science Park, Basovizza 34149 (Italy); Dullin, Christian, E-mail: sara.mohammadi@elettra.trieste.it [University Hospital Goettingen, Robert Koch Strasse 40, Goettingen, Lower Saxony 37075 (Germany)

    2014-05-16

    Quantitative analysis concerning the application of a single-distance phase-retrieval algorithm on in-line phase-contrast images of a mouse lung at different sample-to-detector distances is presented. Propagation-based X-ray phase-contrast computed tomography (PBI) has already proven its potential in a great variety of soft-tissue-related applications including lung imaging. However, the strong edge enhancement, caused by the phase effects, often hampers image segmentation and therefore the quantitative analysis of data sets. Here, the benefits of applying single-distance phase retrieval prior to the three-dimensional reconstruction (PhR) are discussed and quantified compared with three-dimensional reconstructions of conventional PBI data sets in terms of contrast-to-noise ratio (CNR) and preservation of image features. The PhR data sets show more than a tenfold higher CNR and only minor blurring of the edges when compared with PBI in a predominately absorption-based set-up. Accordingly, phase retrieval increases the sensitivity and provides more functionality in computed tomography imaging.

  7. High-response piezoelectricity modeled quantitatively near a phase boundary

    Science.gov (United States)

    Newns, Dennis M.; Kuroda, Marcelo A.; Cipcigan, Flaviu S.; Crain, Jason; Martyna, Glenn J.

    2017-01-01

    Interconversion of mechanical and electrical energy via the piezoelectric effect is fundamental to a wide range of technologies. The discovery in the 1990s of giant piezoelectric responses in certain materials has therefore opened new application spaces, but the origin of these properties remains a challenge to our understanding. A key role is played by the presence of a structural instability in these materials at compositions near the "morphotropic phase boundary" (MPB) where the crystal structure changes abruptly and the electromechanical responses are maximal. Here we formulate a simple, unified theoretical description which accounts for extreme piezoelectric response, its observation at compositions near the MPB, accompanied by ultrahigh dielectric constant and mechanical compliances with rather large anisotropies. The resulting model, based upon a Landau free energy expression, is capable of treating the important domain engineered materials and is found to be predictive while maintaining simplicity. It therefore offers a general and powerful means of accounting for the full set of signature characteristics in these functional materials including volume conserving sum rules and strong substrate clamping effects.

  8. Use of MRI in Differentiation of Papillary Renal Cell Carcinoma Subtypes: Qualitative and Quantitative Analysis.

    Science.gov (United States)

    Doshi, Ankur M; Ream, Justin M; Kierans, Andrea S; Bilbily, Matthew; Rusinek, Henry; Huang, William C; Chandarana, Hersh

    2016-03-01

    The purpose of this study was to determine whether qualitative and quantitative MRI feature analysis is useful for differentiating type 1 from type 2 papillary renal cell carcinoma (PRCC). This retrospective study included 21 type 1 and 17 type 2 PRCCs evaluated with preoperative MRI. Two radiologists independently evaluated various qualitative features, including signal intensity, heterogeneity, and margin. For the quantitative analysis, a radiology fellow and a medical student independently drew 3D volumes of interest over the entire tumor on T2-weighted HASTE images, apparent diffusion coefficient parametric maps, and nephrographic phase contrast-enhanced MR images to derive first-order texture metrics. Qualitative and quantitative features were compared between the groups. For both readers, qualitative features with greater frequency in type 2 PRCC included heterogeneous enhancement, indistinct margin, and T2 heterogeneity (all, p Quantitative analysis revealed that apparent diffusion coefficient, HASTE, and contrast-enhanced entropy were greater in type 2 PRCC (p quantitative and qualitative model had an AUC of 0.859. Qualitative features within the model had interreader concordance of 84-95%, and the quantitative data had intraclass coefficients of 0.873-0.961. Qualitative and quantitative features can help discriminate between type 1 and type 2 PRCC. Quantitative analysis may capture useful information that complements the qualitative appearance while benefiting from high interobserver agreement.

  9. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

    Science.gov (United States)

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun

    2013-11-05

    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  10. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    Science.gov (United States)

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  11. Ultrarapid quantitation of maize proteins by perfusion and monolithic reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Rodríguez-Nogales, J M; del Alamo, M; García, M C; Cifuentes, A; Marina, M L

    2009-04-22

    The main objective of this study was to develop a new methodology alternative to the classical Kjeldahl analysis for determining maize proteins in maize products and seeds. For that purpose, two different chromatographic methodologies using perfusion and monolithic stationary phases, both enabling rapid separations of maize proteins, were investigated. Due to the difficulty to find suitable standards for this type of analysis, three different maize products were initially tested as proteins standards: zein F4000, corn gluten meal, and maize flour. Different figures of merit (i.e., linearity, correlation coefficient, precision, limits of detection and quantitation), as well as the presence of matrix inferences, were investigated. The results obtained for the different chromatographic stationary phases and protein standards were compared in order to select the most suitable analytical conditions. Despite both perfusion and monolithic methodologies resulting, in general, as appropriate for the quantitation of maize proteins, the highest reduction of analysis time and lowest detection and determination limits provided by perfusion methodology enabled to select this one as the method of choice for the quantitation of maize proteins. Regarding the different protein standards studied in this work, in general the best results were obtained using the zein standard. Compared to Kjeldahl methodology, perfusion chromatography yields total protein contents in shorter analysis time while enabling the separation of the different kinds of proteins. Due to the high diversity and complexity of industrial maize products, the proposed chromatographic method could be a very useful tool for their routine analysis.

  12. Structural and quantitative analysis of Equisetum alkaloids.

    Science.gov (United States)

    Cramer, Luise; Ernst, Ludger; Lubienski, Marcus; Papke, Uli; Schiebel, Hans-Martin; Jerz, Gerold; Beuerle, Till

    2015-08-01

    Equisetum palustre L. is known for its toxicity for livestock. Several studies in the past addressed the isolation and identification of the responsible alkaloids. So far, palustrine (1) and N(5)-formylpalustrine (2) are known alkaloids of E. palustre. A HPLC-ESI-MS/MS method in combination with simple sample work-up was developed to identify and quantitate Equisetum alkaloids. Besides the two known alkaloids six related alkaloids were detected in different Equisetum samples. The structure of the alkaloid palustridiene (3) was derived by comprehensive 1D and 2D NMR experiments. N(5)-Acetylpalustrine (4) was also thoroughly characterized by NMR for the first time. The structure of N(5)-formylpalustridiene (5) is proposed based on mass spectrometry results. Twenty-two E. palustre samples were screened by a HPLC-ESI-MS/MS method after development of a simple sample work-up and in most cases the set of all eight alkaloids were detected in all parts of the plant. A high variability of the alkaloid content and distribution was found depending on plant organ, plant origin and season ranging from 88 to 597mg/kg dried weight. However, palustrine (1) and the alkaloid palustridiene (3) always represented the main alkaloids. For the first time, a comprehensive identification, quantitation and distribution of Equisetum alkaloids was achieved.

  13. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    Science.gov (United States)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  14. A Computer Program for Calculation of Calibration Curves for Quantitative X-Ray Diffraction Analysis.

    Science.gov (United States)

    Blanchard, Frank N.

    1980-01-01

    Describes a FORTRAN IV program written to supplement a laboratory exercise dealing with quantitative x-ray diffraction analysis of mixtures of polycrystalline phases in an introductory course in x-ray diffraction. Gives an example of the use of the program and compares calculated and observed calibration data. (Author/GS)

  15. A Computer Program for Calculation of Calibration Curves for Quantitative X-Ray Diffraction Analysis.

    Science.gov (United States)

    Blanchard, Frank N.

    1980-01-01

    Describes a FORTRAN IV program written to supplement a laboratory exercise dealing with quantitative x-ray diffraction analysis of mixtures of polycrystalline phases in an introductory course in x-ray diffraction. Gives an example of the use of the program and compares calculated and observed calibration data. (Author/GS)

  16. Off-axis quantitative phase imaging processing using CUDA: toward real-time applications.

    Science.gov (United States)

    Pham, Hoa; Ding, Huafeng; Sobh, Nahil; Do, Minh; Patel, Sanjay; Popescu, Gabriel

    2011-07-01

    We demonstrate real time off-axis Quantitative Phase Imaging (QPI) using a phase reconstruction algorithm based on NVIDIA's CUDA programming model. The phase unwrapping component is based on Goldstein's algorithm. By mapping the process of extracting phase information and unwrapping to GPU, we are able to speed up the whole procedure by more than 18.8× with respect to CPU processing and ultimately achieve video rate for mega-pixel images. Our CUDA implementation also supports processing of multiple images simultaneously. This enables our imaging system to support high speed, high throughput, and real-time image acquisition and visualization.

  17. China ASON Network Migration Scenarios and Their Quantitative Analysis

    Institute of Scientific and Technical Information of China (English)

    Soichiro; Araki; Itaru; Nishioka; Yoshihiko; Suemura

    2003-01-01

    This paper proposes two migration scenarios from China ring networks to ASON mesh networks. In our quantitative analysis with ASON/GMPLS simulator, a subnetwork protection scheme achieved best balanced performance in resource utilization and restoration time.

  18. China ASON Network Migration Scenarios and Their Quantitative Analysis

    Institute of Scientific and Technical Information of China (English)

    Guoying Zhang; Soichiro Araki; Itaru Nishioka; Yoshihiko Suemura

    2003-01-01

    This paper proposes two migration scenarios from China rin g networks to ASON mesh networks . In our quantitative analysis with ASON/GMPLS simulator, a subnetwork protection scheme achieved best balanced performance in resource utilization and restoration time.

  19. Quantitative and qualitative analysis of sterols/sterolins and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... Quantitative and qualitative analysis of sterols/sterolins ... method was developed to identify and quantify sterols (especially β-sitosterol) in chloroform extracts of ... Studies with phytosterols, especially β-sitosterol, have.

  20. Quantitative Models and Analysis for Reactive Systems

    DEFF Research Database (Denmark)

    Thrane, Claus

    phones and websites. Acknowledging that now more than ever, systems come in contact with the physical world, we need to revise the way we construct models and verification algorithms, to take into account the behavior of systems in the presence of approximate, or quantitative information, provided...... by the environment in which they are embedded. This thesis studies the semantics and properties of a model-based framework for re- active systems, in which models and specifications are assumed to contain quantifiable information, such as references to time or energy. Our goal is to develop a theory of approximation......, by studying how small changes to our models affect the verification results. A key source of motivation for this work can be found in The Embedded Systems Design Challenge [HS06] posed by Thomas A. Henzinger and Joseph Sifakis. It contains a call for advances in the state-of-the-art of systems verification...

  1. Quantitative Models and Analysis for Reactive Systems

    DEFF Research Database (Denmark)

    Thrane, Claus

    phones and websites. Acknowledging that now more than ever, systems come in contact with the physical world, we need to revise the way we construct models and verification algorithms, to take into account the behavior of systems in the presence of approximate, or quantitative information, provided......, allowing verification procedures to quantify judgements, on how suitable a model is for a given specification — hence mitigating the usual harsh distinction between satisfactory and non-satisfactory system designs. This information, among other things, allows us to evaluate the robustness of our framework......, by studying how small changes to our models affect the verification results. A key source of motivation for this work can be found in The Embedded Systems Design Challenge [HS06] posed by Thomas A. Henzinger and Joseph Sifakis. It contains a call for advances in the state-of-the-art of systems verification...

  2. Towards a quantitative OCT image analysis.

    Directory of Open Access Journals (Sweden)

    Marina Garcia Garrido

    Full Text Available Optical coherence tomography (OCT is an invaluable diagnostic tool for the detection and follow-up of retinal pathology in patients and experimental disease models. However, as morphological structures and layering in health as well as their alterations in disease are complex, segmentation procedures have not yet reached a satisfactory level of performance. Therefore, raw images and qualitative data are commonly used in clinical and scientific reports. Here, we assess the value of OCT reflectivity profiles as a basis for a quantitative characterization of the retinal status in a cross-species comparative study.Spectral-Domain Optical Coherence Tomography (OCT, confocal Scanning-Laser Ophthalmoscopy (SLO, and Fluorescein Angiography (FA were performed in mice (Mus musculus, gerbils (Gerbillus perpadillus, and cynomolgus monkeys (Macaca fascicularis using the Heidelberg Engineering Spectralis system, and additional SLOs and FAs were obtained with the HRA I (same manufacturer. Reflectivity profiles were extracted from 8-bit greyscale OCT images using the ImageJ software package (http://rsb.info.nih.gov/ij/.Reflectivity profiles obtained from OCT scans of all three animal species correlated well with ex vivo histomorphometric data. Each of the retinal layers showed a typical pattern that varied in relative size and degree of reflectivity across species. In general, plexiform layers showed a higher level of reflectivity than nuclear layers. A comparison of reflectivity profiles from specialized retinal regions (e.g. visual streak in gerbils, fovea in non-human primates with respective regions of human retina revealed multiple similarities. In a model of Retinitis Pigmentosa (RP, the value of reflectivity profiles for the follow-up of therapeutic interventions was demonstrated.OCT reflectivity profiles provide a detailed, quantitative description of retinal layers and structures including specialized retinal regions. Our results highlight the

  3. Quantitative data analysis in education a critical introduction using SPSS

    CERN Document Server

    Connolly, Paul

    2007-01-01

    This book provides a refreshing and user-friendly guide to quantitative data analysis in education for students and researchers. It assumes absolutely no prior knowledge of quantitative methods or statistics. Beginning with the very basics, it provides the reader with the knowledge and skills necessary to be able to undertake routine quantitative data analysis to a level expected of published research. Rather than focusing on teaching statistics through mathematical formulae, the book places an emphasis on using SPSS to gain a real feel for the data and an intuitive grasp of t

  4. Joint association analysis of bivariate quantitative and qualitative traits.

    Science.gov (United States)

    Yuan, Mengdie; Diao, Guoqing

    2011-11-29

    Univariate genome-wide association analysis of quantitative and qualitative traits has been investigated extensively in the literature. In the presence of correlated phenotypes, it is more intuitive to analyze all phenotypes simultaneously. We describe an efficient likelihood-based approach for the joint association analysis of quantitative and qualitative traits in unrelated individuals. We assume a probit model for the qualitative trait, under which an unobserved latent variable and a prespecified threshold determine the value of the qualitative trait. To jointly model the quantitative and qualitative traits, we assume that the quantitative trait and the latent variable follow a bivariate normal distribution. The latent variable is allowed to be correlated with the quantitative phenotype. Simultaneous modeling of the quantitative and qualitative traits allows us to make more precise inference on the pleiotropic genetic effects. We derive likelihood ratio tests for the testing of genetic effects. An application to the Genetic Analysis Workshop 17 data is provided. The new method yields reasonable power and meaningful results for the joint association analysis of the quantitative trait Q1 and the qualitative trait disease status at SNPs with not too small MAF.

  5. Quantitative Analysis and Design of a Rudder Roll Damping Controller

    DEFF Research Database (Denmark)

    Hearns, G.; Blanke, M.

    1998-01-01

    A rudder roll damping controller is designed using Quantitative feedback theory to be robust for changes in the ships metacentric height. The analytical constraint due to the non-minimum phase behaviour of the rudder to roll is analysed using the Poisson Integral Formula and it is shown how...

  6. Multiple component quantitative analysis for the pattern recognition and quality evaluation of Kalopanacis Cortex using HPLC.

    Science.gov (United States)

    Men, Chu Van; Jang, Yu Seon; Lee, Kwan Jun; Lee, Jae Hyun; Quang, Tran Hong; Long, Nguyen Van; Luong, Hoang Van; Kim, Young Ho; Kang, Jong Seong

    2011-12-01

    A quantitative and pattern recognition analyses were conducted for quality evaluation of Kalopanacis Cortex (KC) using HPLC. For quantitative analysis, four bioactive compounds, liriodendrin, pinoresinol O-β-D-glucopyranoside, acanthoside B and kalopanaxin B, were determined. The analysis method was optimized and validated using ODS column with mobile phase of methanol and aqueous phosphoric acid. The validation gave acceptable linearities (r > 0.9995), recoveries (98.4% to 101.9%) and precisions (RSD liriodendrin was recommended as a marker compound for the quality control of KC. The pattern analysis was successfully carried out by analyzing thirty two samples from four species, and the authentic KC samples were completely discriminated from other inauthentic species by linear discriminant analysis. The results indicated that the method was suitable for the quantitative analysis of liriodendrin and the quality evaluation of KC.

  7. Quantitative Phase-Change Thermodynamics and Metastability of Perovskite-Phase Cesium Lead Iodide.

    Science.gov (United States)

    Dastidar, Subham; Hawley, Christopher J; Dillon, Andrew D; Gutierrez-Perez, Alejandro D; Spanier, Jonathan E; Fafarman, Aaron T

    2017-03-16

    The perovskite phase of cesium lead iodide (α-CsPbI3 or "black" phase) possesses favorable optoelectronic properties for photovoltaic applications. However, the stable phase at room temperature is a nonfunctional "yellow" phase (δ-CsPbI3). Black-phase polycrystalline thin films are synthesized above 330 °C and rapidly quenched to room temperature, retaining their phase in a metastable state. Using differential scanning calorimetry, it is shown herein that the metastable state is maintained in the absence of moisture, up to a temperature of 100 °C, and a reversible phase-change enthalpy of 14.2 (±0.5) kJ/mol is observed. The presence of atmospheric moisture hastens the black-to-yellow conversion kinetics without significantly changing the enthalpy of the transition, indicating a catalytic effect, rather than a change in equilibrium due to water adduct formation. These results delineate the conditions for trapping the desired phase and highlight the significant magnitude of the entropic stabilization of this phase.

  8. Multiple quantitative trait analysis using bayesian networks.

    Science.gov (United States)

    Scutari, Marco; Howell, Phil; Balding, David J; Mackay, Ian

    2014-09-01

    Models for genome-wide prediction and association studies usually target a single phenotypic trait. However, in animal and plant genetics it is common to record information on multiple phenotypes for each individual that will be genotyped. Modeling traits individually disregards the fact that they are most likely associated due to pleiotropy and shared biological basis, thus providing only a partial, confounded view of genetic effects and phenotypic interactions. In this article we use data from a Multiparent Advanced Generation Inter-Cross (MAGIC) winter wheat population to explore Bayesian networks as a convenient and interpretable framework for the simultaneous modeling of multiple quantitative traits. We show that they are equivalent to multivariate genetic best linear unbiased prediction (GBLUP) and that they are competitive with single-trait elastic net and single-trait GBLUP in predictive performance. Finally, we discuss their relationship with other additive-effects models and their advantages in inference and interpretation. MAGIC populations provide an ideal setting for this kind of investigation because the very low population structure and large sample size result in predictive models with good power and limited confounding due to relatedness.

  9. Applied quantitative analysis in the social sciences

    CERN Document Server

    Petscher, Yaacov; Compton, Donald L

    2013-01-01

    To say that complex data analyses are ubiquitous in the education and social sciences might be an understatement. Funding agencies and peer-review journals alike require that researchers use the most appropriate models and methods for explaining phenomena. Univariate and multivariate data structures often require the application of more rigorous methods than basic correlational or analysis of variance models. Additionally, though a vast set of resources may exist on how to run analysis, difficulties may be encountered when explicit direction is not provided as to how one should run a model

  10. Quantitative analysis of probabilistic BPMN workflows

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Sharp, Robin

    2012-01-01

    We present a framework for modelling and analysis of realworld business workflows. We present a formalised core subset of the Business Process Modelling and Notation (BPMN) and then proceed to extend this language with probabilistic nondeterministic branching and general-purpose reward annotations...... of events, reward-based properties and best- and worst- case scenarios. We develop a simple example of medical workflow and demonstrate the utility of this analysis in accurate provisioning of drug stocks. Finally, we suggest a path to building upon these techniques to cover the entire BPMN language, allow...

  11. The quantitative failure of human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1995-07-01

    This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.

  12. Quantitative terahertz time-domain spectroscopy and analysis in chemistry and biology

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2005-01-01

    crystals and biological material. In order to obtain quantitative results great care in the analysis of the experimental data is required. I will discuss common pitfalls in the analysis of THz-TDS data as well as the influence of electronic and laser noise on the results of a THz-TDS experiment.......I will describe how Terahertz Time-Domain Spectroscopy (THz-TDS) can be used for quantitative, broadband spectroscopy in the far-infrared spectral region. Thz-TDS is sensitive to long-range, non-covalent interactions in the condensed phase, for instance intermolecular hydrogen bonding in molecular...

  13. Quantitative Evaluation Methods of In-Line X-Ray Phase Contrast Techniques

    Institute of Scientific and Technical Information of China (English)

    LI Zheng; LI Cheng-Quan; YU Ai-Min

    2007-01-01

    By revealing the relationship between edge visibility and imaging parameters in in-line phase contrast imaging (PCI), we propose a method to quantitatively measure the contribution of absorption and phase shift from acquired images. We also prove that edge visibility will grow with the increasing source-object distance and object-detector distance. The result is validated by relative phase factor and by experiments conducted on a microfocus x-ray source. This method provides a new approach to evaluate in-line PCI images and is helpful for deciding imaging parameters.

  14. Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy.

    Science.gov (United States)

    Rinehart, Matthew T; Drake, Tyler K; Robles, Francisco E; Rohan, Lisa C; Katz, David; Wax, Adam

    2011-12-01

    Quantitative phase microscopy is applied to image temporal changes in the refractive index (RI) distributions of solutions created by microbicidal films undergoing hydration. We present a novel method of using an engineered polydimethylsiloxane structure as a static phase reference to facilitate calibration of the absolute RI across the entire field. We present a study of dynamic structural changes in microbicidal films during hydration and subsequent dissolution. With assumptions about the smoothness of the phase changes induced by these films, we calculate absolute changes in the percentage of film in regions across the field of view.

  15. Improved cancer risk stratification and diagnosis via quantitative phase microscopy (Conference Presentation)

    Science.gov (United States)

    Liu, Yang; Uttam, Shikhar; Pham, Hoa V.; Hartman, Douglas J.

    2017-02-01

    Pathology remains the gold standard for cancer diagnosis and in some cases prognosis, in which trained pathologists examine abnormality in tissue architecture and cell morphology characteristic of cancer cells with a bright-field microscope. The limited resolution of conventional microscope can result in intra-observer variation, missed early-stage cancers, and indeterminate cases that often result in unnecessary invasive procedures in the absence of cancer. Assessment of nanoscale structural characteristics via quantitative phase represents a promising strategy for identifying pre-cancerous or cancerous cells, due to its nanoscale sensitivity to optical path length, simple sample preparation (i.e., label-free) and low cost. I will present the development of quantitative phase microscopy system in transmission and reflection configuration to detect the structural changes in nuclear architecture, not be easily identifiable by conventional pathology. Specifically, we will present the use of transmission-mode quantitative phase imaging to improve diagnostic accuracy of urine cytology and the nuclear dry mass is progressively correlate with negative, atypical, suspicious and positive cytological diagnosis. In a second application, we will present the use of reflection-mode quantitative phase microscopy for depth-resolved nanoscale nuclear architecture mapping (nanoNAM) of clinically prepared formalin-fixed, paraffin-embedded tissue sections. We demonstrated that the quantitative phase microscopy system detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis.

  16. Confocal reflectance quantitative phase microscopy system for cell biology studies (Conference Presentation)

    Science.gov (United States)

    Singh, Vijay Raj; So, Peter T. C.

    2016-03-01

    Quantitative phase microscopy (QPM), used to measure the refractive index, provides the optical path delay measurement at each point of the specimen under study and becomes an active field in biological science. In this work we present development of confocal reflection phase microscopy system to provide depth resolved quantitative phase information for investigation of intracellular structures and other biological specimen. The system hardware development is mainly divided into two major parts. First, creates a pinhole array for parallel confocal imaging of specimen at multiple locations simultaneously. Here a digital micro mirror device (DMD) is used to generate pinhole array by turning on a subset micro-mirrors arranged on a grid. Second is the detection of phase information of confocal imaging foci by using a common path interferometer. With this novel approach, it is possible to measure the nuclei membrane fluctuations and distinguish them from the plasma membrane fluctuations. Further, depth resolved quantitative phase can be correlated to the intracellular contents and 3D map of refractive index measurements.

  17. Microscopic identification of Chinese medicinal materials based on X-ray phase contrast imaging: from qualitative to quantitative

    Science.gov (United States)

    Xue, Y.; Liang, Z.; Tan, H.; Ni, L.; Zhao, Z.; Xiao, T.; Xu, H.

    2016-07-01

    Although a variety of methods, ranging from simple morphological examination to physical and chemical analysis, and DNA molecular biology, exist for authenticating Chinese medicinal materials(CMMs), no methods can achieve both the source species identification and quality evaluation of CMMs simultaneously. Furthermore, the methods that are currently available for the identification of CMMs, including both optical and electronic microscopy, usually entail strict requirements for sample preparation or testing environment, such as the slicing of super-thin sections, or processing with specific chemical reagents. These treatments not only damage the CMMs but may also cause some of the original microstructures to be missed. Additionally, they may even yield false results. Owing to the unique penetrating character of X-rays, X-ray phase contrast imaging(XPCI) can be used to realize the inner microstructures of CMMs through nondestructive imaging. With the higher flux and luminance of the third generation of synchrotron radiation facility, XPCI can provides clearer and finer microstructures of CMMs, which are mainly composed of C, H, O, and N elements, with better spatial and density resolutions. For more than ten years, the X-ray imaging group at the Shanghai Institute of Applied Physics has investigated the microstructures of CMMs by XPCI and they have established and developed a quantitative X-ray phase contrast micro-CT for investigating the characteristic microstructures of CMMs. During this period, a variety of typical CMMs have been investigated, from two-dimensional (2D) radiography to three-dimensional (3D) micro-CT, from qualitative to quantitative. Taken together, these results verify that quantitative X-ray phase contrast micro-CT is a practical tool for the microscopic investigation of CMMs. Additionally, further efforts are being made to find the relationship between the microstructures' quantitative factors and active chemical components. At present

  18. Quantitative analysis of cascade impactor samples - revisited

    Science.gov (United States)

    Orlić , I.; Chiam, S. Y.; Sanchez, J. L.; Tang, S. M.

    1999-04-01

    Concentrations of aerosols collected in Singapore during the three months long haze period that affected the whole South-East Asian region in 1997 are reported. Aerosol samples were continuously collected by using a fine aerosol sampler (PM2.5) and occasionally with a single orifice cascade impactor (CI) sampler. Our results show that in the fine fraction (<2.5 μm) the concentrations of two well-known biomass burning products, i.e. K and S were generally increased by a factor 2-3 compared to the non-hazy periods. However, a discrepancy was noticed, at least for elements with lower atomic number (Ti and below) between the results obtained by the fine aerosol sampler and the cascade impactor. Careful analysis by means of Nuclear Microscopy, in particular by the Scanning Transmission Ion Microscopy (STIM) technique, revealed that thicknesses of the lower CI stages exceeded thick target limits for 2 MeV protons. Detailed depth profiles of all CI stages were therefore measured using the STIM technique and concentrations corrected for absorption and proton energy loss. After correcting results for the actual sample thickness, concentrations of all major elements (S, Cl, K, Ca) agreed much better with the PM2.5 results. The importance of implementing thick target corrections in analysis of CI samples, especially those collected in the urban environments, is emphasized. Broad beam PIXE analysis approach is certainly not adequate in these cases.

  19. Quantitative analysis of Li by PIGE technique

    Science.gov (United States)

    Fonseca, M.; Mateus, R.; Santos, C.; Cruz, J.; Silva, H.; Luis, H.; Martins, L.; Jesus, A. P.

    2017-09-01

    In this work, the cross section of the reactions 7Li(p,pγ)7Li (γ - 478 keV) at the proton energy range 2.0-4.2 MeV was measured. The measurements were carried out at the 3 MV Tandem Accelerator at the CTN/IST Laboratory in Lisbon. To validate the obtained results, calculated gamma-ray yields were compared, at several proton energy values, with experimental yields for thick samples made of inorganic compounds containing lithium. In order to quantify the light elements present in the samples, we used a standard free method for PIGE in thick samples, based on a code - Emitted Radiation Yield Analysis (ERYA), which integrates the nuclear reaction excitation function along the depth of the sample. We also demonstrated the capacity of the technique for analysis of Li ores, as Spodumene, Lithium Muscovite and Holmquistite, and Li-alloys for plasma facing materials showing that this is a reliable and accurate method for PIGE analysis of Li in thick samples.

  20. Quantitative produced water analysis using mobile 1H NMR

    Science.gov (United States)

    Wagner, Lisabeth; Kalli, Chris; Fridjonsson, Einar O.; May, Eric F.; Stanwix, Paul L.; Graham, Brendan F.; Carroll, Matthew R. J.; Johns, Michael L.

    2016-10-01

    Measurement of oil contamination of produced water is required in the oil and gas industry to the (ppm) level prior to discharge in order to meet typical environmental legislative requirements. Here we present the use of compact, mobile 1H nuclear magnetic resonance (NMR) spectroscopy, in combination with solid phase extraction (SPE), to meet this metrology need. The NMR hardware employed featured a sufficiently homogeneous magnetic field, such that chemical shift differences could be used to unambiguously differentiate, and hence quantitatively detect, the required oil and solvent NMR signals. A solvent system consisting of 1% v/v chloroform in tetrachloroethylene was deployed, this provided a comparable 1H NMR signal intensity for the oil and the solvent (chloroform) and hence an internal reference 1H signal from the chloroform resulting in the measurement being effectively self-calibrating. The measurement process was applied to water contaminated with hexane or crude oil over the range 1-30 ppm. The results were validated against known solubility limits as well as infrared analysis and gas chromatography.

  1. Quantitative analysis of regulatory flexibility under changing environmental conditions

    Science.gov (United States)

    Edwards, Kieron D; Akman, Ozgur E; Knox, Kirsten; Lumsden, Peter J; Thomson, Adrian W; Brown, Paul E; Pokhilko, Alexandra; Kozma-Bognar, Laszlo; Nagy, Ferenc; Rand, David A; Millar, Andrew J

    2010-01-01

    The circadian clock controls 24-h rhythms in many biological processes, allowing appropriate timing of biological rhythms relative to dawn and dusk. Known clock circuits include multiple, interlocked feedback loops. Theory suggested that multiple loops contribute the flexibility for molecular rhythms to track multiple phases of the external cycle. Clear dawn- and dusk-tracking rhythms illustrate the flexibility of timing in Ipomoea nil. Molecular clock components in Arabidopsis thaliana showed complex, photoperiod-dependent regulation, which was analysed by comparison with three contrasting models. A simple, quantitative measure, Dusk Sensitivity, was introduced to compare the behaviour of clock models with varying loop complexity. Evening-expressed clock genes showed photoperiod-dependent dusk sensitivity, as predicted by the three-loop model, whereas the one- and two-loop models tracked dawn and dusk, respectively. Output genes for starch degradation achieved dusk-tracking expression through light regulation, rather than a dusk-tracking rhythm. Model analysis predicted which biochemical processes could be manipulated to extend dusk tracking. Our results reveal how an operating principle of biological regulators applies specifically to the plant circadian clock. PMID:21045818

  2. Quantitative MRI analysis of dynamic enhancement of focal liver lesions

    Directory of Open Access Journals (Sweden)

    S. S. Bagnenko

    2012-01-01

    Full Text Available In our study 45 patients with different focal liver lesions (110 nodules were examined using high field MR-system (1,5 T. During this investigation quantitative MRI analysis of dynamic enhancement of various hepatic lesions and parenchymatous organs of abdomen were performed. It was shown that quantitative evaluation of enhanced MRI improves understanding of vascular transformation processes in pathologic hepatic focuses and in liver itself that is important for differential diagnoses of these diseases.

  3. Analyse quantitative de la fraction PI - C20 de pétrole par couplage d'un chromatographe en phase gazeuse et d'un spectromètre de masse Quantitative Analysis of the Ibp - C20 Fraction of Oil by Gc/Ms Coupling

    Directory of Open Access Journals (Sweden)

    Castex H.

    2006-11-01

    Full Text Available Une méthode d'analyse quantitative par couplage CG/SM sur une colonne remplie a été développée. Elle opère à moyenne résolution, triant ainsi les masses exactes d'hydrocarbures saturés, aromatiques et soufrés. Axée sur l'obtention d'un spectre moyen de fractions bien définies en carbone, elle utilise des matrices de coefficients disponibles dans la littérature et restitue une répartition détaillée en familles d'hydrocarbures dont les applications décrites sont intéressantes. La méthode satisfait à plusieurs objectifs : elle évite une distillation et une séparation par chromatographie liquide et elle permet de travailler sur de très petites quantités de produit avec un coût opératoire réduit. A quantitative analysis method has been developed by coupling GC/MS with a packed column. It operates at medium resolution, sorting out the exact masses of saturated, aromatic and sulfur-containing hydrocarbons. Based on the obtaining of an average spectrum of well-defined carbon fractions, this method uses coefficient matrices available in the literature and plots a detailed hydrocarbon distribution for which the applications described are interesting. The method fulfills several aims. It makes a distillation and separation by liquid chromatography unnecessary. It can be used with very small quantities of product, with a reduced operating cost.

  4. Financial indicators for municipalities: a quantitative analysis

    Directory of Open Access Journals (Sweden)

    Sreĉko Devjak

    2009-12-01

    Full Text Available From the characterization of Local Authority financing models and structures in Portugal and Slovenia, a set of financial and generic budget indicators has been established. These indicators may be used in a comparative analysis considering the Bragança District in Portugal, and municipalities of similar population size in Slovenia. The research identified significant differences, in terms of financing sources due to some discrepancies on financial models and competences of municipalities on each country. The results show that Portuguese and Slovenian municipalities, in 2003, for the economy indicator, had similar ranking behaviour, but in 2004, they changed this behaviour.

  5. QUANTITATIVE ANALYSIS OF DRAWING TUBES MICROSTRUCTURE

    Directory of Open Access Journals (Sweden)

    Maroš Martinkovič

    2009-05-01

    Full Text Available Final properties of forming pieces are affected by production, at first conditions of mechanical working. Application of stereology methods to statistic reconstruction of three-dimensional plastic deformed material structure by bulk forming led to detail analysis of material structure changes. The microstructure of cold drawing tubes from STN 411353 steel was analyzed. Grain boundaries orientation was measured on perpendicular and parallel section of tubes with different degree of deformation. Macroscopic deformation leads to grain boundaries deformation and these ones were compared.

  6. Event History Analysis in Quantitative Genetics

    DEFF Research Database (Denmark)

    Maia, Rafael Pimentel

    Event history analysis is a clas of statistical methods specially designed to analyze time-to-event characteristics, e.g. the time until death. The aim of the thesis was to present adequate multivariate versions of mixed survival models that properly represent the genetic aspects related to a given...... time-to-event characteristic of interest. Real genetic longevity studies based on female animals of different species (sows, dairy cows, and sheep) exemplifies the use of the methods. Moreover these studies allow to understand som genetic mechanisms related to the lenght of the productive life...

  7. Chromatic Image Analysis For Quantitative Thermal Mapping

    Science.gov (United States)

    Buck, Gregory M.

    1995-01-01

    Chromatic image analysis system (CIAS) developed for use in noncontact measurements of temperatures on aerothermodynamic models in hypersonic wind tunnels. Based on concept of temperature coupled to shift in color spectrum for optical measurement. Video camera images fluorescence emitted by phosphor-coated model at two wavelengths. Temperature map of model then computed from relative brightnesses in video images of model at those wavelengths. Eliminates need for intrusive, time-consuming, contact temperature measurements by gauges, making it possible to map temperatures on complex surfaces in timely manner and at reduced cost.

  8. Segmentation and Quantitative Analysis of Epithelial Tissues.

    Science.gov (United States)

    Aigouy, Benoit; Umetsu, Daiki; Eaton, Suzanne

    2016-01-01

    Epithelia are tissues that regulate exchanges with the environment. They are very dynamic and can acquire virtually any shape; at the cellular level, they are composed of cells tightly connected by junctions. Most often epithelia are amenable to live imaging; however, the large number of cells composing an epithelium and the absence of informatics tools dedicated to epithelial analysis largely prevented tissue scale studies. Here we present Tissue Analyzer, a free tool that can be used to segment and analyze epithelial cells and monitor tissue dynamics.

  9. A Comparative Assessment of Greek Universities' Efficiency Using Quantitative Analysis

    Science.gov (United States)

    Katharaki, Maria; Katharakis, George

    2010-01-01

    In part due to the increased demand for higher education, typical evaluation frameworks for universities often address the key issue of available resource utilisation. This study seeks to estimate the efficiency of 20 public universities in Greece through quantitative analysis (including performance indicators, data envelopment analysis (DEA) and…

  10. A Comparative Assessment of Greek Universities' Efficiency Using Quantitative Analysis

    Science.gov (United States)

    Katharaki, Maria; Katharakis, George

    2010-01-01

    In part due to the increased demand for higher education, typical evaluation frameworks for universities often address the key issue of available resource utilisation. This study seeks to estimate the efficiency of 20 public universities in Greece through quantitative analysis (including performance indicators, data envelopment analysis (DEA) and…

  11. Development of a compact gantry for quantitative phase-contrast CT applications

    Energy Technology Data Exchange (ETDEWEB)

    Tapfer, Arne; Bech, Martin; Pfeiffer, Franz [Department of Physics (E17) and Institute of Medical Engineering (IMETUM), Technische Universitaet Muenchen (Germany); Pauwels, Bart; Bruyndonckx, Peter; Liu, Xuan; Sasov, Alexander [Skyscan, Kontich (Belgium); Kenntner, Johannes [Karlsruhe Institute of Technology, Karlsruhe (Germany); Walter, Marco; Schulz, Joachim [Microworks, Karlsruhe (Germany)

    2011-07-01

    Here we present experimental X-ray cone-beam phase-contrast imaging results of a phantom study obtained with a highly compact grating-based gantry setup. The aim of this study is to investigate the performance, quantitativeness and accuracy of phase-contrast and absorption-based computed tomography scans which yield the three dimensional distribution of attenuation coefficient {mu} and refractive index decrement {delta} of different liquids contained in the phantom. Furthermore two different methods of color coding are explored to display both absorption and phase data in a single image. Experimental results for {mu} and {delta} match accurately with tabulated data meaning that the gantry setup performs well in both absorption and phase contrast. The substances contained in the phantom can be considerably better distinguished as the grating-based approach - which combines absorption and phase contrast - provides significantly more information than conventional absorption contrast alone.

  12. Structural model analysis of multiple quantitative traits.

    Directory of Open Access Journals (Sweden)

    Renhua Li

    2006-07-01

    Full Text Available We introduce a method for the analysis of multilocus, multitrait genetic data that provides an intuitive and precise characterization of genetic architecture. We show that it is possible to infer the magnitude and direction of causal relationships among multiple correlated phenotypes and illustrate the technique using body composition and bone density data from mouse intercross populations. Using these techniques we are able to distinguish genetic loci that affect adiposity from those that affect overall body size and thus reveal a shortcoming of standardized measures such as body mass index that are widely used in obesity research. The identification of causal networks sheds light on the nature of genetic heterogeneity and pleiotropy in complex genetic systems.

  13. Quantitative Analysis of Seismicity in Iran

    Science.gov (United States)

    Raeesi, Mohammad; Zarifi, Zoya; Nilfouroushan, Faramarz; Boroujeni, Samar Amini; Tiampo, Kristy

    2017-03-01

    We use historical and recent major earthquakes and GPS geodetic data to compute seismic strain rate, geodetic slip deficit, static stress drop, the parameters of the magnitude-frequency distribution and geodetic strain rate in the Iranian Plateau to identify seismically mature fault segments and regions. Our analysis suggests that 11 fault segments are in the mature stage of the earthquake cycle, with the possibility of generating major earthquakes. These faults primarily are located in the north and the east of Iran. Four seismically mature regions in southern Iran with the potential for damaging strong earthquakes are also identified. We also delineate four additional fault segments in Iran that can generate major earthquakes without robust clues to their maturity.The most important fault segment in this study is the strike-slip system near the capital city of Tehran, with the potential to cause more than one million fatalities.

  14. Quantitative Analysis of Seismicity in Iran

    Science.gov (United States)

    Raeesi, Mohammad; Zarifi, Zoya; Nilfouroushan, Faramarz; Boroujeni, Samar Amini; Tiampo, Kristy

    2016-12-01

    We use historical and recent major earthquakes and GPS geodetic data to compute seismic strain rate, geodetic slip deficit, static stress drop, the parameters of the magnitude-frequency distribution and geodetic strain rate in the Iranian Plateau to identify seismically mature fault segments and regions. Our analysis suggests that 11 fault segments are in the mature stage of the earthquake cycle, with the possibility of generating major earthquakes. These faults primarily are located in the north and the east of Iran. Four seismically mature regions in southern Iran with the potential for damaging strong earthquakes are also identified. We also delineate four additional fault segments in Iran that can generate major earthquakes without robust clues to their maturity.The most important fault segment in this study is the strike-slip system near the capital city of Tehran, with the potential to cause more than one million fatalities.

  15. Quantitative analysis of forest fire extinction efficiency

    Directory of Open Access Journals (Sweden)

    Miguel E. Castillo-Soto

    2015-08-01

    Full Text Available Aim of study: Evaluate the economic extinction efficiency of forest fires, based on the study of fire combat undertaken by aerial and terrestrial means. Area of study, materials and methods: Approximately 112,000 hectares in Chile. Records of 5,876 forest fires that occurred between 1998 and 2009 were analyzed. The area further provides a validation sector for results, by incorporating databases for the years 2010 and 2012. The criteria used for measuring extinction efficiency were economic value of forestry resources, Contraction Factor analysis and definition of the extinction costs function. Main results: It is possible to establish a relationship between burnt area, extinction costs and economic losses. The method proposed may be used and adapted to other fire situations, requiring unit costs for aerial and terrestrial operations, economic value of the property to be protected and speed attributes of fire spread in free advance. Research highlights: The determination of extinction efficiency in containment works of forest fires and potential projection of losses, different types of plant fuel and local conditions favoring the spread of fire broaden the admissible ranges of a, φ and Ce considerably.

  16. Uncertainty of quantitative microbiological methods of pharmaceutical analysis.

    Science.gov (United States)

    Gunar, O V; Sakhno, N G

    2015-12-30

    The total uncertainty of quantitative microbiological methods, used in pharmaceutical analysis, consists of several components. The analysis of the most important sources of the quantitative microbiological methods variability demonstrated no effect of culture media and plate-count techniques in the estimation of microbial count while the highly significant effect of other factors (type of microorganism, pharmaceutical product and individual reading and interpreting errors) was established. The most appropriate method of statistical analysis of such data was ANOVA which enabled not only the effect of individual factors to be estimated but also their interactions. Considering all the elements of uncertainty and combining them mathematically the combined relative uncertainty of the test results was estimated both for method of quantitative examination of non-sterile pharmaceuticals and microbial count technique without any product. These data did not exceed 35%, appropriated for a traditional plate count methods.

  17. Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method.

    Science.gov (United States)

    Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-12-20

    In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.

  18. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  19. A method for the quantitative determination of crystalline phases by X-ray

    Science.gov (United States)

    Petzenhauser, I.; Jaeger, P.

    1988-01-01

    A mineral analysis method is described for rapid quantitative determination of crystalline substances in those cases in which the sample is present in pure form or in a mixture of known composition. With this method there is no need for prior chemical analysis.

  20. Quantitative methods for the analysis of electron microscope images

    DEFF Research Database (Denmark)

    Skands, Peter Ulrik Vallø

    1996-01-01

    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  1. Integrated quantitative phase and birefringence microscopy for imaging malaria-infected red blood cells

    Science.gov (United States)

    Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng

    2016-09-01

    A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.

  2. Quantitative evaluation of regularized phase retrieval algorithms on bone scaffolds seeded with bone cells

    Science.gov (United States)

    Weber, L.; Langer, M.; Tavella, S.; Ruggiu, A.; Peyrin, F.

    2016-05-01

    In the field of regenerative medicine, there has been a growing interest in studying the combination of bone scaffolds and cells that can maximize newly formed bone. In-line phase-contrast x-ray tomography was used to image porous bone scaffolds (Skelite©), seeded with bone forming cells. This technique allows the quantification of both mineralized and soft tissue, unlike with classical x-ray micro-computed tomography. Phase contrast images were acquired at four distances. The reconstruction is typically performed in two successive steps: phase retrieval and tomographic reconstruction. In this work, different regularization methods were applied to the phase retrieval process. The application of a priori terms for heterogeneous objects enables quantitative 3D imaging of not only bone morphology, mineralization, and soft tissue formation, but also cells trapped in the pre-bone matrix. A statistical study was performed to derive statistically significant information on the different culture conditions.

  3. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  4. Quantitative phase microscopy using dual-plane in-line digital holography.

    Science.gov (United States)

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, D V G L N

    2012-03-20

    We present detailed theoretical evaluation and thorough experimental investigation of quantitative phase imaging using our previously demonstrated dual-plane in-line digital holographic microscopy technique [Opt. Lett. 35, 3426 (2010)]. This evaluation is based on the recording of two interferograms at slightly different planes and numerically reconstructing the object information. The zero-order diffracted wave is eliminated by using the method of subtraction of average intensity of the entire hologram, and the twin-image diffracted wave is removed by Fourier domain processing of the two recorded holograms. Experiments are performed using controlled amplitude and phase objects and human muscle cells to demonstrate the potential of this technique.

  5. Quantitative and dynamic measurements of biological fresh samples with X-ray phase contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Masato, E-mail: hoshino@spring8.or.jp; Uesugi, Kentaro [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Tsukube, Takuro [Japanese Red Cross Kobe Hospital, 1-3-1 Wakinohamakaigandori, Chuo-ku, Kobe, Hyogo 651-0073 (Japan); Yagi, Naoto [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2014-10-08

    Quantitative measurements of biological fresh samples based on three-dimensional densitometry using X-ray phase contrast tomography are presented. X-ray phase contrast tomography using a Talbot grating interferometer was applied to biological fresh samples which were not fixed by any fixatives. To achieve a high-throughput measurement for the fresh samples the X-ray phase contrast tomography measurement procedure was improved. The three-dimensional structure of a fresh mouse fetus was clearly depicted as a mass density map using X-ray phase contrast tomography. The mouse fetus measured in the fresh state was then fixed by formalin and measured in the fixed state. The influence of the formalin fixation on soft tissue was quantitatively evaluated by comparing the fresh and fixed samples. X-ray phase contrast tomography was also applied to the dynamic measurement of a biological fresh sample. Morphological changes of a ring-shaped fresh pig aorta were measured tomographically under different degrees of stretching.

  6. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons

    Energy Technology Data Exchange (ETDEWEB)

    Close, R.; Chen, Z. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Shibata, N. [Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2015-12-15

    Differential phase contrast images in scanning transmission electron microscopy can be directly and quantitatively related to the gradient of the projected specimen potential provided that (a) the specimen can be treated as a phase object and (b) full 2D diffraction patterns as a function of probe position can be obtained. Both are challenging to achieve in atomic resolution imaging. The former is fundamentally limited by probe spreading and dynamical electron scattering, and we explore its validity domain in the context of atomic resolution differential phase contrast imaging. The latter, for which proof-of-principle experimental data sets exist, is not yet routine. We explore the extent to which more established segmented detector geometries can instead be used to reconstruct a quantitatively good approximation to the projected specimen potential. - Highlights: • Atomic-resolution differential phase contrast (DPC) imaging explored via simulation. • Phase-object approximation limits quantification to specimens a few nanometers thick. • Segmented detectors give good estimates of the diffraction pattern's first moment.

  7. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    Science.gov (United States)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  8. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    Science.gov (United States)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  9. Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications

    Directory of Open Access Journals (Sweden)

    Hyunjoo Park

    2013-03-01

    Full Text Available A cellular-level study of the pathophysiology is crucial for understanding the mechanisms behind human diseases. Recent advances in quantitative phase imaging (QPI techniques show promises for the cellular-level understanding of the pathophysiology of diseases. To provide important insight on how the QPI techniques potentially improve the study of cell pathophysiology, here we present the principles of QPI and highlight some of the recent applications of QPI ranging from cell homeostasis to infectious diseases and cancer.

  10. Cyclin E-p27 opposition and regulation of the G1 phase of the cell cycle in the murine neocortical PVE: a quantitative analysis of mRNA in situ hybridization

    Science.gov (United States)

    Delalle, I.; Takahashi, T.; Nowakowski, R. S.; Tsai, L. H.; Caviness, V. S. Jr

    1999-01-01

    We have analyzed the expression patterns of mRNAs of five cell cycle related proteins in the ventricular zone of the neocortical cerebral wall over the course of the neuronogenetic interval in the mouse. One set of mRNAs (cyclin E and p21) are initially expressed at high levels but expression then falls to a low asymptote. A second set (p27, cyclin B and cdk2) are initially expressed at low levels but ascend to peak levels only to decline again. These patterns divide the overall neuronogenetic interval into three phases. In phase 1 cyclin E and p21 levels of mRNA expression are high, while those of mRNAs of p27, cdk2 and cyclin B are low. In this phase the fraction of cells leaving the cycle after each mitosis, Q, is low and the duration of the G1 phase, TG1, is short. In phase 2 levels of expression of cyclin E and p21 fall to asymptote while levels of expression of mRNA of the other three proteins reach their peaks. Q increases to approach 0.5 and TG1 increases even more rapidly to approach its maximum length. In phase 3 levels of expression of cyclin E and p21 mRNAs remain low and those of the mRNAs of the other three proteins fall. TG1 becomes maximum and Q rapidly increases to 1.0. The character of these phases can be understood in part as consequences of the reciprocal regulatory influence of p27 and cyclin E and of the rate limiting functions of p27 at the restriction point and of cyclin E at the G1 to S transition.

  11. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy.

    Science.gov (United States)

    Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Engwer, Christian; Greve, Burkhard; Kemper, Björn

    2017-01-15

    We present a simple and fast phase aberration compensation method in digital holographic microscopy (DHM) for quantitative phase imaging of living cells. By analyzing the frequency spectrum of an off-axis hologram, phase aberrations can be compensated for automatically without fitting or pre-knowledge of the setup and/or the object. Simple and effective computation makes the method suitable for quantitative online monitoring with highly variable DHM systems. Results from automated quantitative phase imaging of living NIH-3T3 mouse fibroblasts demonstrate the effectiveness and the feasibility of the method.

  12. Accuracy of Image Analysis in Quantitative Study of Cement Paste

    Directory of Open Access Journals (Sweden)

    Feng Shu-Xia

    2016-01-01

    Full Text Available Quantitative study on cement paste especially blended cement paste has been a hot and difficult issue over the years, and the technique of backscattered electron image analysis showed unique advantages in this field. This paper compared the test results of cement hydration degree, Ca(OH2 content and pore size distribution in pure pastes by image analysis and other methods. Then the accuracy of qualitative study by image analysis was analyzed. The results showed that image analysis technique had displayed higher accuracy in quantifying cement hydration degree and Ca(OH2 content than non-evaporable water test and thermal analysis respectively.

  13. Authentication of pineapple (Ananas comosus [L.] Merr.) fruit maturity stages by quantitative analysis of γ- and δ-lactones using headspace solid-phase microextraction and chirospecific gas chromatography-selected ion monitoring mass spectrometry (HS-SPME-GC-SIM-MS).

    Science.gov (United States)

    Steingass, Christof B; Langen, Johannes; Carle, Reinhold; Schmarr, Hans-Georg

    2015-02-01

    Headspace solid phase microextraction and chirospecific gas chromatography-mass spectrometry in selected ion monitoring mode (HS-SPME-GC-SIM-MS) allowed quantitative determination of δ-lactones (δ-C8, δ-C10) and γ-lactones (γ-C6, γ-C8, γ-C10). A stable isotope dilution assay (SIDA) with d7-γ-decalactone as internal standard was used for quantitative analysis of pineapple lactones that was performed at three progressing post-harvest stages of fully ripe air-freighted and green-ripe sea-freighted fruits, covering the relevant shelf-life of the fruits. Fresh pineapples harvested at full maturity were characterised by γ-C6 of high enantiomeric purity remaining stable during the whole post-harvest period. In contrast, the enantiomeric purity of γ-C6 significantly decreased during post-harvest storage of sea-freighted pineapples. The biogenetical background and the potential of chirospecific analysis of lactones for authentication and quality evaluation of fresh pineapple fruits are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. High resolution quantitative phase imaging of live cells with constrained optimization approach

    Science.gov (United States)

    Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu

    2016-03-01

    Quantitative phase imaging (QPI) aims at studying weakly scattering and absorbing biological specimens with subwavelength accuracy without any external staining mechanisms. Use of a reference beam at an angle is one of the necessary criteria for recording of high resolution holograms in most of the interferometric methods used for quantitative phase imaging. The spatial separation of the dc and twin images is decided by the reference beam angle and Fourier-filtered reconstructed image will have a very poor resolution if hologram is recorded below a minimum reference angle condition. However, it is always inconvenient to have a large reference beam angle while performing high resolution microscopy of live cells and biological specimens with nanometric features. In this paper, we treat reconstruction of digital holographic microscopy images as a constrained optimization problem with smoothness constraint in order to recover only complex object field in hologram plane even with overlapping dc and twin image terms. We solve this optimization problem by gradient descent approach iteratively and the smoothness constraint is implemented by spatial averaging with appropriate size. This approach will give excellent high resolution image recovery compared to Fourier filtering while keeping a very small reference angle. We demonstrate this approach on digital holographic microscopy of live cells by recovering the quantitative phase of live cells from a hologram recorded with nearly zero reference angle.

  15. Quantitative analysis of microtubule transport in growing nerve processes

    DEFF Research Database (Denmark)

    Ma*, Ytao; Shakiryanova*, Dinara; Vardya, Irina;

    2004-01-01

    the translocation of MT plus ends in the axonal shaft by expressing GFP-EB1 in Xenopus embryo neurons in culture. Formal quantitative analysis of MT assembly/disassembly indicated that none of the MTs in the axonal shaft were rapidly transported. Our results suggest that transport of axonal MTs is not required...

  16. Quantitative Analysis of Complex Tropical Forest Stands: A Review ...

    African Journals Online (AJOL)

    FIRST LADY

    The importance of data analysis in quantitative assessment of natural resources ... 350 km long extends from the eastern border of Sierra Leone all the way to. Ghana. .... consider whether data will likely fit the assumptions of a selected model. ... These tests are not alternatives to parametric tests, but rather are a means of.

  17. Analysis of Forecasting Sales By Using Quantitative And Qualitative Methods

    Directory of Open Access Journals (Sweden)

    B. Rama Sanjeeva Sresta,

    2016-09-01

    Full Text Available This paper focuses on analysis of forecasting sales using quantitative and qualitative methods. This forecast should be able to help create a model for measuring a successes and setting goals from financial and operational view points. The resulting model should tell if we have met our goals with respect to measures, targets, initiatives.

  18. Insights Into Quantitative Biology: analysis of cellular adaptation

    OpenAIRE

    Agoni, Valentina

    2013-01-01

    In the last years many powerful techniques have emerged to measure protein interactions as well as gene expression. Many progresses have been done since the introduction of these techniques but not toward quantitative analysis of data. In this paper we show how to study cellular adaptation and how to detect cellular subpopulations. Moreover we go deeper in analyzing signal transduction pathways dynamics.

  19. Quantitating the subtleties of microglial morphology with fractal analysis.

    Science.gov (United States)

    Karperien, Audrey; Ahammer, Helmut; Jelinek, Herbert F

    2013-01-01

    It is well established that microglial form and function are inextricably linked. In recent years, the traditional view that microglial form ranges between "ramified resting" and "activated amoeboid" has been emphasized through advancing imaging techniques that point to microglial form being highly dynamic even within the currently accepted morphological categories. Moreover, microglia adopt meaningful intermediate forms between categories, with considerable crossover in function and varying morphologies as they cycle, migrate, wave, phagocytose, and extend and retract fine and gross processes. From a quantitative perspective, it is problematic to measure such variability using traditional methods, but one way of quantitating such detail is through fractal analysis. The techniques of fractal analysis have been used for quantitating microglial morphology, to categorize gross differences but also to differentiate subtle differences (e.g., amongst ramified cells). Multifractal analysis in particular is one technique of fractal analysis that may be useful for identifying intermediate forms. Here we review current trends and methods of fractal analysis, focusing on box counting analysis, including lacunarity and multifractal analysis, as applied to microglial morphology.

  20. Quantitating the Subtleties of Microglial Morphology with Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Audrey eKarperien

    2013-01-01

    Full Text Available It is well established that microglial form and function are inextricably linked. In recent years, the traditional view that microglial form ranges between "ramified resting" and "activated amoeboid" has been emphasized through advancing imaging techniques that point to microglial form being highly dynamic even within the currently accepted morphological categories. Moreover, microglia adopt meaningful intermediate forms between categories, with considerable crossover in function and varying morphologies as they cycle, migrate, wave, phagocytose, and extend and retract fine and gross processes. From a quantitative perspective, it is problematic to measure such variability using traditional methods, but one way of quantitating such detail is through fractal analysis. The techniques of fractal analysis have been used for quantitating microglial morphology, to categorize gross differences but also to differentiate subtle differences (e.g., amongst ramified cells. Multifractal analysis in particular is one technique of fractal analysis that may be useful for identifying intermediate forms. Here we review current trends and methods of fractal analysis, focusing on box counting analysis, including lacunarity and multifractal analysis, as applied to microglial morphology.

  1. Quantitative transverse flow assessment using OCT speckle decorrelation analysis

    Science.gov (United States)

    Liu, Xuan; Huang, Yong; Ramella-Roman, Jessica C.; Kang, Jin U.

    2013-03-01

    In this study, we demonstrate the use of inter-Ascan speckle decorrelation analysis of optical coherence tomography (OCT) to assess fluid flow. This method allows quantitative measurement of fluid flow in a plane normal to the scanning beam. To validate this method, OCT images were obtained from a micro fluid channel with bovine milk flowing at different speeds. We also imaged a blood vessel from in vivo animal models and performed speckle analysis to asses blood flow.

  2. Quantitative numerical analysis of transient IR-experiments on buildings

    Science.gov (United States)

    Maierhofer, Ch.; Wiggenhauser, H.; Brink, A.; Röllig, M.

    2004-12-01

    Impulse-thermography has been established as a fast and reliable tool in many areas of non-destructive testing. In recent years several investigations have been done to apply active thermography to civil engineering. For quantitative investigations in this area of application, finite difference calculations have been performed for systematic studies on the influence of environmental conditions, heating power and time, defect depth and size and thermal properties of the bulk material (concrete). The comparison of simulated and experimental data enables the quantitative analysis of defects.

  3. Quantitative analysis of culture using millions of digitized books.

    Science.gov (United States)

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva Presser; Veres, Adrian; Gray, Matthew K; Pickett, Joseph P; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A; Aiden, Erez Lieberman

    2011-01-14

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of 'culturomics,' focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. Culturomics extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities.

  4. Quantitative analysis of culture using millions of digitized books

    Science.gov (United States)

    Michel, Jean-Baptiste; Shen, Yuan Kui; Aiden, Aviva P.; Veres, Adrian; Gray, Matthew K.; Pickett, Joseph P.; Hoiberg, Dale; Clancy, Dan; Norvig, Peter; Orwant, Jon; Pinker, Steven; Nowak, Martin A.; Aiden, Erez Lieberman

    2011-01-01

    We constructed a corpus of digitized texts containing about 4% of all books ever printed. Analysis of this corpus enables us to investigate cultural trends quantitatively. We survey the vast terrain of ‘culturomics’, focusing on linguistic and cultural phenomena that were reflected in the English language between 1800 and 2000. We show how this approach can provide insights about fields as diverse as lexicography, the evolution of grammar, collective memory, the adoption of technology, the pursuit of fame, censorship, and historical epidemiology. ‘Culturomics’ extends the boundaries of rigorous quantitative inquiry to a wide array of new phenomena spanning the social sciences and the humanities. PMID:21163965

  5. Fast and environmentally friendly quantitative analysis of active agents in anti-diabetic tablets by an alternative laser-induced breakdown spectroscopy (LIBS) method and comparison to a validated reversed-phase high-performance liquid chromatography (RP-HPLC) method.

    Science.gov (United States)

    Contreras, Victor Ulises; Meneses-Nava, Marco A; Ornelas-Soto, Nancy; Barbosa-García, Oracio; López-de-Alba, Pedro L; Maldonado, José L; Ramos-Ortiz, Gabriel; Acevedo-Aguilar, Francisco J; López-Martínez, Leticia

    2012-11-01

    Laser-induced breakdown spectroscopy (LIBS) is evaluated as a potential analytic technique for rapid screening and quality control of anti-diabetic tablets. This paper proposes a simple LIBS-based method for the quantitative analysis of two active pharmaceutical ingredients (APIs): metformin (Met) and glybenclamide (Gly). In order to quantify both APIs, chlorine (Cl) concentration was estimated by employing the Cl/Br optical emission ratio, where Br was introduced as internal standard. Calibration curves were prepared, achieving linearity higher than 99%. On the other hand, for comparison to the proposed method, an isocratic reversed-phase high-performance liquid chromatography (RP-HPLC) method was also developed for quantitative determination of the same analytes by ultraviolet (UV) detection. The chromatographic separation was achieved on a Phenomenex Hypersil C18, 250 mm × 4.6 mm, 5 μm column. The mobile phase was K(2)HPO(4)/H(3)PO(4)-CH(3)OH and flow rate was 1.0 mL min(-1). The method is linear over a range of 10-60 μg mL(-1) for Gly and 5-30 μg mL(-1) for Met and the correlation coefficients were ≥0.99. Recoveries were found to be in the range of 95-101%. Furthermore, four different commercial brands of each active agent were evaluated by both proposed LIBS and chromatographic methods and results were compared with each other. The comparison was satisfactorily validated by analysis of variance (ANOVA).

  6. Spotsizer: High-throughput quantitative analysis of microbial growth

    Science.gov (United States)

    Jeffares, Daniel C.; Arzhaeva, Yulia; Bähler, Jürg

    2017-01-01

    Microbial colony growth can serve as a useful readout in assays for studying complex genetic interactions or the effects of chemical compounds. Although computational tools for acquiring quantitative measurements of microbial colonies have been developed, their utility can be compromised by inflexible input image requirements, non-trivial installation procedures, or complicated operation. Here, we present the Spotsizer software tool for automated colony size measurements in images of robotically arrayed microbial colonies. Spotsizer features a convenient graphical user interface (GUI), has both single-image and batch-processing capabilities, and works with multiple input image formats and different colony grid types. We demonstrate how Spotsizer can be used for high-throughput quantitative analysis of fission yeast growth. The user-friendly Spotsizer tool provides rapid, accurate, and robust quantitative analyses of microbial growth in a high-throughput format. Spotsizer is freely available at https://data.csiro.au/dap/landingpage?pid=csiro:15330 under a proprietary CSIRO license. PMID:27712582

  7. Application of LC-MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fluids

    Institute of Scientific and Technical Information of China (English)

    Jamshed Haneef; Mohammad Shaharyar; Asif Husaina; Mohd Rashid; Ravinesh Mishra; Shama Parveen; Niyaz Ahmed; Manoj Pal; Deepak Kumar

    2013-01-01

    Liquid chromatography tandem mass chromatography (LC-MS/MS) is an important hyphenated technique for quantitative analysis of drugs in biological fluids. Because of high sensitivity and selectivity, LC-MS/MS has been used for pharmacokinetic studies, metabolites identification in the plasma and urine. This manuscript gives comprehensive analytical review, focusing on chromatographic separation approaches (column packing materials, column length and mobile phase) as well as different acquisition modes (SIM, MRM) for quantitative analysis of glucocorticoids and stimulants. This review is not meant to be exhaustive but rather to provide a general overview for detection and confirmation of target drugs using LC-MS/MS and thus useful in the doping analysis, toxicological studies as well as in pharmaceutical analysis.

  8. Fast processing of quantitative phase profiles from off-axis interferograms for real-time applications

    Science.gov (United States)

    Girshovitz, Pinhas; Shaked, Natan T.

    2015-03-01

    We review new and efficient algorithms, lately presented by us, for rapid reconstruction of quantitative phase maps from off-axis digital interferograms. These algorithms improve the conventional Fourier-based algorithm by using the Fourier transforms and the phase unwrapping process more efficiently, and thus decrease the calculation complexity required for extracting the sample phase map from the recorded interferograms. Using the new algorithms, on a standard personal computer without using the graphic processing-unit programming or parallel computing, we were able to speed up the processing and reach frame rates of up to 45 frames per second for one megapixel off-axis interferograms. These capabilities allow real-time visualization, calculation and data extraction for dynamic samples and processes, inspected by off-axis digital holography. Specific applications include biological cell imaging without labeling and real-time nondestructive testing.

  9. Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM)

    Energy Technology Data Exchange (ETDEWEB)

    Schweser, Ferdinand [New York State Univ., Buffalo, NY (United States). Buffalo Neuroimaging Analysis Center; New York State Univ., Buffalo, NY (United States). MRI Clinical and Translational Research Center; Deistung, Andreas [Jena Univ. (Germany). Medical Physics Group; Reichenbach, Juergen R. [Jena Univ. (Germany). Medical Physics Group; Jena Univ. (Germany). Michael Stifel Center for Data-driven and Simulation Science Jena

    2016-05-01

    Quantitative Susceptibility Mapping (QSM) is a novel MRI based technique that relies on estimates of the magnetic field distribution in the tissue under examination. Several sophisticated data processing steps are required to extract the magnetic field distribution from raw MRI phase measurements. The objective of this review article is to provide a general overview and to discuss several underlying assumptions and limitations of the pre-processing steps that need to be applied to MRI phase data before the final field-to-source inversion can be performed. Beginning with the fundamental relation between MRI signal and tissue magnetic susceptibility this review covers the reconstruction of magnetic field maps from multi-channel phase images, background field correction, and provides an overview of state of the art QSM solution strategies.

  10. A strategy to apply quantitative epistasis analysis on developmental traits.

    Science.gov (United States)

    Labocha, Marta K; Yuan, Wang; Aleman-Meza, Boanerges; Zhong, Weiwei

    2017-05-15

    Genetic interactions are keys to understand complex traits and evolution. Epistasis analysis is an effective method to map genetic interactions. Large-scale quantitative epistasis analysis has been well established for single cells. However, there is a substantial lack of such studies in multicellular organisms and their complex phenotypes such as development. Here we present a method to extend quantitative epistasis analysis to developmental traits. In the nematode Caenorhabditis elegans, we applied RNA interference on mutants to inactivate two genes, used an imaging system to quantitatively measure phenotypes, and developed a set of statistical methods to extract genetic interactions from phenotypic measurement. Using two different C. elegans developmental phenotypes, body length and sex ratio, as examples, we showed that this method could accommodate various metazoan phenotypes with performances comparable to those methods in single cell growth studies. Comparing with qualitative observations, this method of quantitative epistasis enabled detection of new interactions involving subtle phenotypes. For example, several sex-ratio genes were found to interact with brc-1 and brd-1, the orthologs of the human breast cancer genes BRCA1 and BARD1, respectively. We confirmed the brc-1 interactions with the following genes in DNA damage response: C34F6.1, him-3 (ortholog of HORMAD1, HORMAD2), sdc-1, and set-2 (ortholog of SETD1A, SETD1B, KMT2C, KMT2D), validating the effectiveness of our method in detecting genetic interactions. We developed a reliable, high-throughput method for quantitative epistasis analysis of developmental phenotypes.

  11. Quantitative imaging of electron density and effective atomic number using phase contrast CT

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen Guanghong, E-mail: gchen7@wisc.ed [Department of Medical Physics, University of Wisconsin-Madison, WI 53705 (United States)

    2010-05-07

    Compared to single energy CT, which only provides information for x-ray linear attenuation coefficients, dual-energy CT is able to obtain both the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual-energy CT, a novel quantitative imaging method based on phase contrast CT is presented. Rather than requiring two projection data sets with different x-ray energy spectra, diffraction-grating-based phase contrast CT is capable of reconstructing images of both linear attenuation and refractive index decrement from the same projection data using a single x-ray energy spectra. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Two physical phantoms were constructed and used to validate the presented method. Experimental results demonstrate that (1) electron density can be accurately determined from refractive index decrement through a linear relationship, and (2) the effective atomic number can be explicitly derived from the ratio of the linear attenuation to refractive index decrement using a power function plus a constant. The presented method will provide insight into the technique of material separation and find its use in medical and industrial applications.

  12. Quantitative imaging of electron density and effective atomic number using phase contrast CT

    Science.gov (United States)

    Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2010-05-01

    Compared to single energy CT, which only provides information for x-ray linear attenuation coefficients, dual-energy CT is able to obtain both the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual-energy CT, a novel quantitative imaging method based on phase contrast CT is presented. Rather than requiring two projection data sets with different x-ray energy spectra, diffraction-grating-based phase contrast CT is capable of reconstructing images of both linear attenuation and refractive index decrement from the same projection data using a single x-ray energy spectra. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Two physical phantoms were constructed and used to validate the presented method. Experimental results demonstrate that (1) electron density can be accurately determined from refractive index decrement through a linear relationship, and (2) the effective atomic number can be explicitly derived from the ratio of the linear attenuation to refractive index decrement using a power function plus a constant. The presented method will provide insight into the technique of material separation and find its use in medical and industrial applications.

  13. A novel quantitative imaging technique for material differentiation based on differential phase contrast CT

    Science.gov (United States)

    Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong

    2010-04-01

    Compared to single energy CT, which provides information only about the x-ray linear attenuation coefficients, dual energy CT is able to obtain the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual energy CT, a novel quantitative imaging method based on phase contrast CT is described. Rather than requiring two scans with different x-ray photon energies, diffraction grating-based phase contrast CT is capable of reconstructing images of both the linear attenuation and refractive index decrement from a single scan. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Experimental results demonstrate that: (1) electron density can be accurately determined from refractive index decrement through a linear relationship; and (2) effective atomic number can be explicitly derived from the ratio of linear attenuation to refractive index decrement, using a simple function, i.e., a power function plus a constant. The presented method will shed insight into the field of material separation and find its use in medical and non-medical applications.

  14. Quantitative Agreement between Electron-Optical Phase Images of WSe2 and Simulations Based on Electrostatic Potentials that Include Bonding Effects

    Science.gov (United States)

    Borghardt, S.; Winkler, F.; Zanolli, Z.; Verstraete, M. J.; Barthel, J.; Tavabi, A. H.; Dunin-Borkowski, R. E.; Kardynal, B. E.

    2017-02-01

    The quantitative analysis of electron-optical phase images recorded using off-axis electron holography often relies on the use of computer simulations of electron propagation through a sample. However, simulations that make use of the independent atom approximation are known to overestimate experimental phase shifts by approximately 10%, as they neglect bonding effects. Here, we compare experimental and simulated phase images for few-layer WSe2 . We show that a combination of pseudopotentials and all-electron density functional theory calculations can be used to obtain accurate mean electron phases, as well as improved atomic-resolution spatial distribution of the electron phase. The comparison demonstrates a perfect contrast match between experimental and simulated atomic-resolution phase images for a sample of precisely known thickness. The low computational cost of this approach makes it suitable for the analysis of large electronic systems, including defects, substitutional atoms, and material interfaces.

  15. Quantitative nanoscale analysis in 3D using electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuebel, Christian [Karlsruhe Institute of Technology, INT, 76344 Eggenstein-Leopoldshafen (Germany)

    2011-07-01

    State-of-the-art electron tomography has been established as a powerful tool to image complex structures with nanometer resolution in 3D. Especially STEM tomography is used extensively in materials science in such diverse areas as catalysis, semiconductor materials, and polymer composites mainly providing qualitative information on morphology, shape and distribution of materials. However, for an increasing number of studies quantitative information, e.g. surface area, fractal dimensions, particle distribution or porosity are needed. A quantitative analysis is typically performed after segmenting the tomographic data, which is one of the main sources of error for the quantification. In addition to noise, systematic errors due to the missing wedge and due to artifacts from the reconstruction algorithm itself are responsible for these segmentation errors and improved algorithms are needed. This presentation will provide an overview of the possibilities and limitations of quantitative nanoscale analysis by electron tomography. Using catalysts and nano composites as applications examples, intensities and intensity variations observed for the 3D volume reconstructed by WBP and SIRT will be quantitatively compared to alternative reconstruction algorithms; implications for quantification of electron (or X-ray) tomographic data will be discussed and illustrated for quantification of particle size distributions, particle correlations, surface area, and fractal dimensions in 3D.

  16. Some selected quantitative methods of thermal image analysis in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image.

  17. Data from quantitative label free proteomics analysis of rat spleen

    Directory of Open Access Journals (Sweden)

    Khadar Dudekula

    2016-09-01

    Full Text Available The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides. A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  18. Data from quantitative label free proteomics analysis of rat spleen.

    Science.gov (United States)

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  19. An improved quantitative analysis method for plant cortical microtubules.

    Science.gov (United States)

    Lu, Yi; Huang, Chenyang; Wang, Jia; Shang, Peng

    2014-01-01

    The arrangement of plant cortical microtubules can reflect the physiological state of cells. However, little attention has been paid to the image quantitative analysis of plant cortical microtubules so far. In this paper, Bidimensional Empirical Mode Decomposition (BEMD) algorithm was applied in the image preprocessing of the original microtubule image. And then Intrinsic Mode Function 1 (IMF1) image obtained by decomposition was selected to do the texture analysis based on Grey-Level Cooccurrence Matrix (GLCM) algorithm. Meanwhile, in order to further verify its reliability, the proposed texture analysis method was utilized to distinguish different images of Arabidopsis microtubules. The results showed that the effect of BEMD algorithm on edge preserving accompanied with noise reduction was positive, and the geometrical characteristic of the texture was obvious. Four texture parameters extracted by GLCM perfectly reflected the different arrangements between the two images of cortical microtubules. In summary, the results indicate that this method is feasible and effective for the image quantitative analysis of plant cortical microtubules. It not only provides a new quantitative approach for the comprehensive study of the role played by microtubules in cell life activities but also supplies references for other similar studies.

  20. An Improved Quantitative Analysis Method for Plant Cortical Microtubules

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2014-01-01

    Full Text Available The arrangement of plant cortical microtubules can reflect the physiological state of cells. However, little attention has been paid to the image quantitative analysis of plant cortical microtubules so far. In this paper, Bidimensional Empirical Mode Decomposition (BEMD algorithm was applied in the image preprocessing of the original microtubule image. And then Intrinsic Mode Function 1 (IMF1 image obtained by decomposition was selected to do the texture analysis based on Grey-Level Cooccurrence Matrix (GLCM algorithm. Meanwhile, in order to further verify its reliability, the proposed texture analysis method was utilized to distinguish different images of Arabidopsis microtubules. The results showed that the effect of BEMD algorithm on edge preserving accompanied with noise reduction was positive, and the geometrical characteristic of the texture was obvious. Four texture parameters extracted by GLCM perfectly reflected the different arrangements between the two images of cortical microtubules. In summary, the results indicate that this method is feasible and effective for the image quantitative analysis of plant cortical microtubules. It not only provides a new quantitative approach for the comprehensive study of the role played by microtubules in cell life activities but also supplies references for other similar studies.

  1. Quantitative risk analysis of oil storage facilities in seismic areas.

    Science.gov (United States)

    Fabbrocino, Giovanni; Iervolino, Iunio; Orlando, Francesca; Salzano, Ernesto

    2005-08-31

    Quantitative risk analysis (QRA) of industrial facilities has to take into account multiple hazards threatening critical equipment. Nevertheless, engineering procedures able to evaluate quantitatively the effect of seismic action are not well established. Indeed, relevant industrial accidents may be triggered by loss of containment following ground shaking or other relevant natural hazards, either directly or through cascade effects ('domino effects'). The issue of integrating structural seismic risk into quantitative probabilistic seismic risk analysis (QpsRA) is addressed in this paper by a representative study case regarding an oil storage plant with a number of atmospheric steel tanks containing flammable substances. Empirical seismic fragility curves and probit functions, properly defined both for building-like and non building-like industrial components, have been crossed with outcomes of probabilistic seismic hazard analysis (PSHA) for a test site located in south Italy. Once the seismic failure probabilities have been quantified, consequence analysis has been performed for those events which may be triggered by the loss of containment following seismic action. Results are combined by means of a specific developed code in terms of local risk contour plots, i.e. the contour line for the probability of fatal injures at any point (x, y) in the analysed area. Finally, a comparison with QRA obtained by considering only process-related top events is reported for reference.

  2. Quantitative Analysis of Matrine in Liquid Crystalline Nanoparticles by HPLC

    Directory of Open Access Journals (Sweden)

    Xinsheng Peng

    2014-01-01

    Full Text Available A reversed-phase high-performance liquid chromatographic method has been developed to quantitatively determine matrine in liquid crystal nanoparticles. The chromatographic method is carried out using an isocratic system. The mobile phase was composed of methanol-PBS(pH6.8-triethylamine (50 : 50 : 0.1% with a flow rate of 1 mL/min with SPD-20A UV/vis detector and the detection wavelength was at 220 nm. The linearity of matrine is in the range of 1.6 to 200.0 μg/mL. The regression equation is y=10706x-2959 (R2=1.0. The average recovery is 101.7%; RSD=2.22%  (n=9. This method provides a simple and accurate strategy to determine matrine in liquid crystalline nanoparticle.

  3. Measuring the Nonuniform Evaporation Dynamics of Sprayed Sessile Microdroplets with Quantitative Phase Imaging.

    Science.gov (United States)

    Edwards, Chris; Arbabi, Amir; Bhaduri, Basanta; Wang, Xiaozhen; Ganti, Raman; Yunker, Peter J; Yodh, Arjun G; Popescu, Gabriel; Goddard, Lynford L

    2015-10-13

    We demonstrate real-time quantitative phase imaging as a new optical approach for measuring the evaporation dynamics of sessile microdroplets. Quantitative phase images of various droplets were captured during evaporation. The images enabled us to generate time-resolved three-dimensional topographic profiles of droplet shape with nanometer accuracy and, without any assumptions about droplet geometry, to directly measure important physical parameters that characterize surface wetting processes. Specifically, the time-dependent variation of the droplet height, volume, contact radius, contact angle distribution along the droplet's perimeter, and mass flux density for two different surface preparations are reported. The studies clearly demonstrate three phases of evaporation reported previously: pinned, depinned, and drying modes; the studies also reveal instances of partial pinning. Finally, the apparatus is employed to investigate the cooperative evaporation of the sprayed droplets. We observe and explain the neighbor-induced reduction in evaporation rate, that is, as compared to predictions for isolated droplets. In the future, the new experimental methods should stimulate the exploration of colloidal particle dynamics on the gas-liquid-solid interface.

  4. Quantitative analysis of myocardial tissue with digital autofluorescence microscopy

    DEFF Research Database (Denmark)

    Jensen, Thomas; Holten-Rossing, Henrik; Svendsen, Ida M H;

    2016-01-01

    BACKGROUND: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar...... to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including...... staining may benefit. METHODS: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm...

  5. Quantitative and qualitative analysis and interpretation of CT perfusion imaging.

    Science.gov (United States)

    Valdiviezo, Carolina; Ambrose, Marietta; Mehra, Vishal; Lardo, Albert C; Lima, Joao A C; George, Richard T

    2010-12-01

    Coronary artery disease (CAD) remains the leading cause of death in the United States. Rest and stress myocardial perfusion imaging has an important role in the non-invasive risk stratification of patients with CAD. However, diagnostic accuracies have been limited, which has led to the development of several myocardial perfusion imaging techniques. Among them, myocardial computed tomography perfusion imaging (CTP) is especially interesting as it has the unique capability of providing anatomic- as well as coronary stenosis-related functional data when combined with computed tomography angiography (CTA). The primary aim of this article is to review the qualitative, semi-quantitative, and quantitative analysis approaches to CTP imaging. In doing so, we will describe the image data required for each analysis and discuss the advantages and disadvantages of each approach.

  6. QuantUM: Quantitative Safety Analysis of UML Models

    Directory of Open Access Journals (Sweden)

    Florian Leitner-Fischer

    2011-07-01

    Full Text Available When developing a safety-critical system it is essential to obtain an assessment of different design alternatives. In particular, an early safety assessment of the architectural design of a system is desirable. In spite of the plethora of available formal quantitative analysis methods it is still difficult for software and system architects to integrate these techniques into their every day work. This is mainly due to the lack of methods that can be directly applied to architecture level models, for instance given as UML diagrams. Also, it is necessary that the description methods used do not require a profound knowledge of formal methods. Our approach bridges this gap and improves the integration of quantitative safety analysis methods into the development process. All inputs of the analysis are specified at the level of a UML model. This model is then automatically translated into the analysis model, and the results of the analysis are consequently represented on the level of the UML model. Thus the analysis model and the formal methods used during the analysis are hidden from the user. We illustrate the usefulness of our approach using an industrial strength case study.

  7. Phase Spectral Analysis of EEG Signals

    Institute of Scientific and Technical Information of China (English)

    YOURong-yi; CHENZhong

    2004-01-01

    A new method of phase spectral analysis of EEG is proposed for the comparative analysis of phase spectra between normal EEG and epileptic EEG signals based on the wavelet decomposition technique. By using multiscale wavelet decomposition, the original EEGs are mapped to an orthogonal wavelet space, such that the variations of phase can be observed at multiscale. It is found that the phase (and phase difference) spectra of normal EEGs are distinct from that of epileptic EEGs. That is the variations of phase (and phase difference) of normal EEGs have a distinct periodic pattern with the electrical activity proceeds in the brain, but do not the epileptic EEGs. For epileptic EEGs, only at those transient points, the phase variations are obvious. In order to verify these results with the observational data, the phase variations of EEGs in principal component space are observed and found that, the features of phase spectra is in correspondence with that the wavelet space. These results make it possible to view the behavior of EEG rhythms as a dynamic spectrum.

  8. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    Science.gov (United States)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  9. Quantitative investigation of cellular growth in directional solidification by phase-field simulation.

    Science.gov (United States)

    Wang, Zhijun; Wang, Jincheng; Li, Junjie; Yang, Gencang; Zhou, Yaohe

    2011-10-01

    Using a quantitative phase-field model, a systematic investigation of cellular growth in directional solidification is carried out with emphasis on the selection of cellular tip undercooling, tip radius, and cellular spacing. Previous analytical models of cellular growth are evaluated according to the phase-field simulation results. The results show that cellular tip undercooling and tip radius not only depend on the pulling velocity and thermal gradient, but also depend on the cellular interaction related to the cellular spacing. The cellular interaction results in a finite stable range of cellular spacing. The lower limit is determined by the submerging mechanism while the upper limit comes from the tip splitting instability corresponding to the absence of the cellular growth solution, both of which can be obtained from phase-field simulation. Further discussions on the phase-field results also present an analytical method to predict the lower limit. Phase-field simulations on cell elimination between cells with equal spacing validate the finite range of cellular spacing and give deep insight into the cellular doublon and oscillatory instability between cell elimination and tip splitting.

  10. Quantitative stability analyses of multiwall carbon nanotube nanofluids following water/ice phase change cycling

    Science.gov (United States)

    Ivall, Jason; Langlois-Rahme, Gabriel; Coulombe, Sylvain; Servio, Phillip

    2017-02-01

    Multiwall carbon nanotube nanofluids are regularly investigated for phase change enhancement between liquid and solid states owing to their improved heat transfer properties. The potential applications are numerous, the most notable being latent heat thermal energy storage, but the success of all nanofluid-assisted technologies hinges greatly on the ability of nanoparticles to remain stably dispersed after repeated phase change cycles. In this report, the stability of aqueous nanofluids made from oxygen-functionalized multiwall carbon nanotubes (f-MWCNTs) was profiled over the course of 20 freeze/thaw cycles. Sonication was used after each cycle to re-disperse clusters formed from the crystallization process. This study offers a quantitative evaluation of f-MWCNT-nanofluid stability as a result of phase change through optical characterization of concentration and particle size. It also provides insight into the integrity of the surface functionalities through zeta potential and XPS analyses. Concentration and particle size measurements showed moderate and consistent recoverability of f-MWCNT dispersion following ultrasonication. XPS measurements of solid-state MWCNTs exposed to freeze/thaw cycling in water, and zeta potential analyses of the nanofluids indicate that the surface oxygen content is preserved throughout phase change and over repeated cycles. These results suggest a resilience of oxygen-functionalized MWCNTs to the freezing and thawing of water, which is ideal for their utilization as phase change enhancers.

  11. Country Risk Analysis: A Survey of the Quantitative Methods

    OpenAIRE

    Hiranya K Nath

    2008-01-01

    With globalization and financial integration, there has been rapid growth of international lending and foreign direct investment (FDI). In view of this emerging trend, country risk analysis has become extremely important for the international creditors and investors. This paper briefly discusses the concepts and definitions, and presents a survey of the quantitative methods that are used to address various issues related to country risk. It also gives a summary review of selected empirical st...

  12. Automatic quantitative analysis of microstructure of ductile cast iron using digital image processing

    Directory of Open Access Journals (Sweden)

    Abhijit Malage

    2015-09-01

    Full Text Available Ductile cast iron is preferred as nodular iron or spheroidal graphite iron. Ductile cast iron contains graphite in form of discrete nodules and matrix of ferrite and perlite. In order to determine the mechanical properties, one needs to determine volume of phases in matrix and nodularity in the microstructure of metal sample. Manual methods available for this, are time consuming and accuracy depends on expertize. The paper proposes a novel method for automatic quantitative analysis of microstructure of Ferritic Pearlitic Ductile Iron which calculates volume of phases and nodularity of that sample. This gives results within a very short time (approximately 5 sec with 98% accuracy for volume phases of matrices and 90% of accuracy for nodule detection and analysis which are in the range of standard specified for SG 500/7 and validated by metallurgist.

  13. Lens-free and portable quantitative phase microscope using a dual-pinhole aperture

    OpenAIRE

    Lu Yujie; Liu Yunhui; Wang Zerui; Zheng Fan

    2015-01-01

    This paper presents a lens-free and portable quantitative phase microscope. This microscope employs a concise off-axis set-up where a dual-pinhole aperture is utilized to generate the reference wave and the object wave. As no lenses or beamsplitters are used in this microscope, the total size of this microscope is only slightly larger than a smart phone, and the cost of this microscope except for the digital camera is about 3000 RMB. Even with such small size and low cost, this microscope pos...

  14. Lens-free and portable quantitative phase microscope using a dual-pinhole aperture

    Directory of Open Access Journals (Sweden)

    Lu Yujie

    2015-01-01

    Full Text Available This paper presents a lens-free and portable quantitative phase microscope. This microscope employs a concise off-axis set-up where a dual-pinhole aperture is utilized to generate the reference wave and the object wave. As no lenses or beamsplitters are used in this microscope, the total size of this microscope is only slightly larger than a smart phone, and the cost of this microscope except for the digital camera is about 3000 RMB. Even with such small size and low cost, this microscope possesses a lateral resolution of ~ 1:7μm and an axial accuracy of tens of nanometers.

  15. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  16. Dual mode diffraction phase microscopy for quantitative functional assessment of biological cells

    Science.gov (United States)

    Talaikova, N. A.; Popov, A. P.; Kalyanov, A. L.; Ryabukho, V. P.; Meglinski, I. V.

    2017-10-01

    A diffraction phase microscopy approach with a combined use of transmission and reflection imaging modes has been developed and applied for non-invasive quantitative assessment of the refractive index of red blood cells (RBCs). We present the theoretical background of signal formation for both imaging modes, accompanied by the results of experimental studies. We demonstrate that simultaneous use of the two modes has great potential for accurate assessment of the refractive index of biological cells, and we perform a reconstruction of spatial distribution of the refractive index of RBC in 3D.

  17. Quantitative Proteomic Approaches for Analysis of Protein S-Nitrosylation.

    Science.gov (United States)

    Qu, Zhe; Greenlief, C Michael; Gu, Zezong

    2016-01-01

    S-Nitrosylation is a redox-based post-translational modification of a protein in response to nitric oxide (NO) signaling, and it participates in a variety of processes in diverse biological systems. The significance of this type of protein modification in health and diseases is increasingly recognized. In the central nervous system, aberrant S-nitrosylation, due to excessive NO production, is known to cause protein misfolding, mitochondrial dysfunction, transcriptional dysregulation, and neuronal death. This leads to an altered physiological state and consequently contributes to pathogenesis of neurodegenerative disorders. To date, much effort has been made to understand the mechanisms underlying protein S-nitrosylation, and several approaches have been developed to unveil S-nitrosylated proteins from different organisms. Interest in determining the dynamic changes of protein S-nitrosylation under different physiological and pathophysiological conditions has underscored the need for the development of quantitative proteomic approaches. Currently, both gel-based and gel-free mass spectrometry-based quantitative methods are widely used, and they each have advantages and disadvantages but may also be used together to produce complementary data. This review evaluates current available quantitative proteomic techniques for the analysis of protein S-nitrosylation and highlights recent advances, with emphasis on applications in neurodegenerative diseases. An important goal is to provide a comprehensive guide of feasible quantitative proteomic methodologies for examining protein S-nitrosylation in research to yield insights into disease mechanisms, diagnostic biomarkers, and drug discovery.

  18. Comprehensive Quantitative Analysis of SQ Injection Using Multiple Chromatographic Technologies.

    Science.gov (United States)

    Chau, Siu-Leung; Huang, Zhi-Bing; Song, Yan-Gang; Yue, Rui-Qi; Ho, Alan; Lin, Chao-Zhan; Huang, Wen-Hua; Han, Quan-Bin

    2016-08-19

    Quality control of Chinese medicine injections remains a challenge due to our poor knowledge of their complex chemical profile. This study aims to investigate the chemical composition of one of the best-selling injections, Shenqi Fuzheng (SQ) injection (SQI), via a full component quantitative analysis. A total of 15 representative small molecular components of SQI were simultaneously determined using ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole tandem time-of-flight mass spectrometry (Q-TOF-MS); saccharide composition of SQI was also quantitatively determined by high performance liquid chromatography (HPLC) with evaporative light scattering detector (ELSD) on an amino column before and after acid hydrolysis. The existence of polysaccharides was also examined on a gel permeation chromatography column. The method was well validated in terms of linearity, sensitivity, precision, accuracy and stability, and was successfully applied to analyze 13 SQI samples. The results demonstrate that up to 94.69% (w/w) of this injection product are quantitatively determined, in which small molecules and monosaccharide/sucrose account for 0.18%-0.21%, and 53.49%-58.2%, respectively. The quantitative information contributes to accumulating scientific evidence to better understand the therapy efficacy and safety of complex Chinese medicine injections.

  19. Comprehensive Quantitative Analysis of SQ Injection Using Multiple Chromatographic Technologies

    Directory of Open Access Journals (Sweden)

    Siu-Leung Chau

    2016-08-01

    Full Text Available Quality control of Chinese medicine injections remains a challenge due to our poor knowledge of their complex chemical profile. This study aims to investigate the chemical composition of one of the best-selling injections, Shenqi Fuzheng (SQ injection (SQI, via a full component quantitative analysis. A total of 15 representative small molecular components of SQI were simultaneously determined using ultra-high performance liquid chromatography (UHPLC coupled with quadrupole tandem time-of-flight mass spectrometry (Q-TOF-MS; saccharide composition of SQI was also quantitatively determined by high performance liquid chromatography (HPLC with evaporative light scattering detector (ELSD on an amino column before and after acid hydrolysis. The existence of polysaccharides was also examined on a gel permeation chromatography column. The method was well validated in terms of linearity, sensitivity, precision, accuracy and stability, and was successfully applied to analyze 13 SQI samples. The results demonstrate that up to 94.69% (w/w of this injection product are quantitatively determined, in which small molecules and monosaccharide/sucrose account for 0.18%–0.21%, and 53.49%–58.2%, respectively. The quantitative information contributes to accumulating scientific evidence to better understand the therapy efficacy and safety of complex Chinese medicine injections.

  20. Quantitative, Comparable Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy: Correcting Errors in Phase Retrieval

    CERN Document Server

    Camp, Charles H; Cicerone, Marcus T

    2015-01-01

    Coherent anti-Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample-to-sample comparability. The primary limitation stems from the need to accurately measure the so-called nonresonant background (NRB) that is used to extract the chemically-sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel-by-pixel basis is a nontrivial task; thus, reference NRB from glass or water are typically utilized, resulting in error between the actual and estimated amplitude and phase. In this manuscript, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending ...

  1. Active illumination using a digital micromirror device for quantitative phase imaging

    CERN Document Server

    Shin, Seungwoo; Yoon, Jonghee; Park, YongKeun

    2015-01-01

    We present a powerful and cost-effective method for active illumination using a digital micromirror device (DMD) for quantitative phase imaging techniques. Displaying binary illumination patterns on a DMD with appropriate spatial filtering, plane waves with various illumination angles are generated and impinged onto a sample. Complex optical fields of the sample obtained with various incident angles are then measured via Mach-Zehnder interferometry, from which a high-resolution two-dimensional synthetic aperture phase image and a three-dimensional refractive index tomogram of the sample are reconstructed. We demonstrate the fast and stable illumination control capability of the proposed method by imaging colloidal spheres and biological cells, including a human red blood cell and a HeLa cell.

  2. Herbs and spices: characterization and quantitation of biologically-active markers for routine quality control by multiple headspace solid-phase microextraction combined with separative or non-separative analysis.

    Science.gov (United States)

    Sgorbini, Barbara; Bicchi, Carlo; Cagliero, Cecilia; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia

    2015-01-09

    Herbs and spices are used worldwide as food flavoring, thus determination of their identity, origin, and quality is mandatory for safe human consumption. An analysis strategy based on separative (HS-SPME-GC-MS) and non-separative (HS-SPME-MS) approaches is proposed for the volatile fraction of herbs and spices, for quality control and to quantify the aromatic markers with a single analysis directly on the plant material as such. Eight-to-ten lots of each of the following herbs/spices were considered: cloves (Syzygium aromaticum (L.) Merr. & Perry), American peppertree (Schinus molle L.), black pepper and white pepper (Piper nigrum L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.). Homogeneity, origin, and chemotypes of the investigated lots of each herb/spice were defined by fingerprinting, through statistical elaboration with principal component analysis (PCA). Characterizing aromatic markers were directly quantified on the solid matrix through multiple headspace extraction-HS-SPME (MHS-SPME). Reliable results were obtained with both separative and non-separative methods (where the latter were applicable); the two were in full agreement, RSD% ranging from 1.8 to 7.7% for eugenol in cloves, 2.2-18.4% for carvacrol+thymol in thyme, and 3.1-16.8% for thujones in sage.

  3. Quantitative analysis for nonlinear fluorescent spectra based on edges matching

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel spectra-edge-matching approach is proposed for the quantitative analysis of the nonlinear fluorescence spectra of the air impurities excited by a femtosecond laser.The fluorescence spectra are first denoised and compressed,both by wavelet transform,and several peak groups are then picked from each spectrum according to a threshold of intensity and are used to extract the spectral features through principal component analysis.It is indicated that the first two principle components actually cover up to 98% of the total information and are sufficient for the final concentration analysis.The analysis reveals a monotone relationship between the spectra intensity and the concentration of the air impurities,suggesting that the femtosecond laser induced fluorescence spectroscopy along with the proposed spectra analysis method can become a powerful tool for monitoring environmental pollutants.

  4. Quantitative gait analysis following hemispherotomy for Rasmussen′s encephalitis

    Directory of Open Access Journals (Sweden)

    Santhosh George Thomas

    2007-01-01

    Full Text Available Peri-insular hemispherotomy is a form of disconnective hemispherectomy involving complete disconnection of all ascending / descending and commisural connections of one hemisphere. We report a case of a seven and a half year old child with intractable epilepsy due to Rasmussen′s encephalitis who underwent peri-insular hemispherotomy and achieved complete freedom from seizures. Quantitative gait analysis was used to describe the changes in the kinematic and kinetic parameters of gait with surface electromyographs 18 months after surgery. The focus of this paper is to highlight the utility of gait analysis following hemispherotomy with a view to directing postsurgical motor training and rehabilitation.

  5. A Quantitative Method for Microtubule Analysis in Fluorescence Images.

    Science.gov (United States)

    Lan, Xiaodong; Li, Lingfei; Hu, Jiongyu; Zhang, Qiong; Dang, Yongming; Huang, Yuesheng

    2015-12-01

    Microtubule analysis is of significant value for a better understanding of normal and pathological cellular processes. Although immunofluorescence microscopic techniques have proven useful in the study of microtubules, comparative results commonly rely on a descriptive and subjective visual analysis. We developed an objective and quantitative method based on image processing and analysis of fluorescently labeled microtubular patterns in cultured cells. We used a multi-parameter approach by analyzing four quantifiable characteristics to compose our quantitative feature set. Then we interpreted specific changes in the parameters and revealed the contribution of each feature set using principal component analysis. In addition, we verified that different treatment groups could be clearly discriminated using principal components of the multi-parameter model. High predictive accuracy of four commonly used multi-classification methods confirmed our method. These results demonstrated the effectiveness and efficiency of our method in the analysis of microtubules in fluorescence images. Application of the analytical methods presented here provides information concerning the organization and modification of microtubules, and could aid in the further understanding of structural and functional aspects of microtubules under normal and pathological conditions.

  6. Quantitative Phosphoproteomic Analysis of T-Cell Receptor Signaling.

    Science.gov (United States)

    Ahsan, Nagib; Salomon, Arthur R

    2017-01-01

    TCR signaling critically depends on protein phosphorylation across many proteins. Localization of each phosphorylation event relative to the T-cell receptor (TCR) and canonical T-cell signaling proteins will provide clues about the structure of TCR signaling networks. Quantitative phosphoproteomic analysis by mass spectrometry provides a wide-scale view of cellular phosphorylation networks. However, analysis of phosphorylation by mass spectrometry is still challenging due to the relative low abundance of phosphorylated proteins relative to all proteins and the extraordinary diversity of phosphorylation sites across the proteome. Highly selective enrichment of phosphorylated peptides is essential to provide the most comprehensive view of the phosphoproteome. Optimization of phosphopeptide enrichment methods coupled with highly sensitive mass spectrometry workflows significantly improves the sequencing depth of the phosphoproteome to over 10,000 unique phosphorylation sites from complex cell lysates. Here we describe a step-by-step method for phosphoproteomic analysis that has achieved widespread success for identification of serine, threonine, and tyrosine phosphorylation. Reproducible quantification of relative phosphopeptide abundance is provided by intensity-based label-free quantitation. An ideal set of mass spectrometry analysis parameters is also provided that optimize the yield of identified sites. We also provide guidelines for the bioinformatic analysis of this type of data to assess the quality of the data and to comply with proteomic data reporting requirements.

  7. What Really Happens in Quantitative Group Research? Results of a Content Analysis of Recent Quantitative Research in "JSGW"

    Science.gov (United States)

    Boyle, Lauren H.; Whittaker, Tiffany A.; Eyal, Maytal; McCarthy, Christopher J.

    2017-01-01

    The authors conducted a content analysis on quantitative studies published in "The Journal for Specialists in Group Work" ("JSGW") between 2012 and 2015. This brief report provides a general overview of the current practices of quantitative group research in counseling. The following study characteristics are reported and…

  8. Quantitative multivariate analysis of dynamic multicellular morphogenic trajectories.

    Science.gov (United States)

    White, Douglas E; Sylvester, Jonathan B; Levario, Thomas J; Lu, Hang; Streelman, J Todd; McDevitt, Todd C; Kemp, Melissa L

    2015-07-01

    Interrogating fundamental cell biology principles that govern tissue morphogenesis is critical to better understanding of developmental biology and engineering novel multicellular systems. Recently, functional micro-tissues derived from pluripotent embryonic stem cell (ESC) aggregates have provided novel platforms for experimental investigation; however elucidating the factors directing emergent spatial phenotypic patterns remains a significant challenge. Computational modelling techniques offer a unique complementary approach to probe mechanisms regulating morphogenic processes and provide a wealth of spatio-temporal data, but quantitative analysis of simulations and comparison to experimental data is extremely difficult. Quantitative descriptions of spatial phenomena across multiple systems and scales would enable unprecedented comparisons of computational simulations with experimental systems, thereby leveraging the inherent power of computational methods to interrogate the mechanisms governing emergent properties of multicellular biology. To address these challenges, we developed a portable pattern recognition pipeline consisting of: the conversion of cellular images into networks, extraction of novel features via network analysis, and generation of morphogenic trajectories. This novel methodology enabled the quantitative description of morphogenic pattern trajectories that could be compared across diverse systems: computational modelling of multicellular structures, differentiation of stem cell aggregates, and gastrulation of cichlid fish. Moreover, this method identified novel spatio-temporal features associated with different stages of embryo gastrulation, and elucidated a complex paracrine mechanism capable of explaining spatiotemporal pattern kinetic differences in ESC aggregates of different sizes.

  9. Multivariate analysis of quantitative traits can effectively classify rapeseed germplasm

    Directory of Open Access Journals (Sweden)

    Jankulovska Mirjana

    2014-01-01

    Full Text Available In this study, the use of different multivariate approaches to classify rapeseed genotypes based on quantitative traits has been presented. Tree regression analysis, PCA analysis and two-way cluster analysis were applied in order todescribe and understand the extent of genetic variability in spring rapeseed genotype by trait data. The traits which highly influenced seed and oil yield in rapeseed were successfully identified by the tree regression analysis. Principal predictor for both response variables was number of pods per plant (NP. NP and 1000 seed weight could help in the selection of high yielding genotypes. High values for both traits and oil content could lead to high oil yielding genotypes. These traits may serve as indirect selection criteria and can lead to improvement of seed and oil yield in rapeseed. Quantitative traits that explained most of the variability in the studied germplasm were classified using principal component analysis. In this data set, five PCs were identified, out of which the first three PCs explained 63% of the total variance. It helped in facilitating the choice of variables based on which the genotypes’ clustering could be performed. The two-way cluster analysissimultaneously clustered genotypes and quantitative traits. The final number of clusters was determined using bootstrapping technique. This approach provided clear overview on the variability of the analyzed genotypes. The genotypes that have similar performance regarding the traits included in this study can be easily detected on the heatmap. Genotypes grouped in the clusters 1 and 8 had high values for seed and oil yield, and relatively short vegetative growth duration period and those in cluster 9, combined moderate to low values for vegetative growth duration and moderate to high seed and oil yield. These genotypes should be further exploited and implemented in the rapeseed breeding program. The combined application of these multivariate methods

  10. Mini-Column Ion-Exchange Separation and Atomic Absorption Quantitation of Nickel, Cobalt, and Iron: An Undergraduate Quantitative Analysis Experiment.

    Science.gov (United States)

    Anderson, James L.; And Others

    1980-01-01

    Presents an undergraduate quantitative analysis experiment, describing an atomic absorption quantitation scheme that is fast, sensitive and comparatively simple relative to other titration experiments. (CS)

  11. In-focus quantitative intensity and phase imaging with the numerical focusing transport of intensity equation method

    Science.gov (United States)

    Tian, Xiaolin; Meng, Xin; Yu, Wei; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-10-01

    Microscopy combined with the transport of intensity equation is capable of retrieving both intensity and phase distributions of samples from both in-focus and defocus intensities. However, during measurements, the focal plane is often decided artificially and the improper choice may induce errors in quantitative intensity and phase retrieval. In order to obtain accurate in-focus information, quantitative intensity and phase imaging with the numerical focusing transport of intensity equation method combined with cellular duty ratio criterion and numerical wavefront propagation is introduced in this paper. Both numerical simulations and experimental measurements are provided proving this designed method can increase both retrieved in-focus intensity and phase accuracy and reduce dependence of focal plane determination in transport of intensity equation measurements. It is believed that the proposed method can be potentially applied in various fields as in-focus compensation for quantitative phase imaging and automatic focal plane determination, etc.

  12. Segregation Analysis on Genetic System of Quantitative Traits in Plants

    Institute of Scientific and Technical Information of China (English)

    Gai Junyi

    2006-01-01

    Based on the traditional polygene inheritance model of quantitative traits,the author suggests the major gene and polygene mixed inheritance model.The model was considered as a general one,while the pure major gene and pure polygene inheritance model was a specific case of the general model.Based on the proposed theory,the author established the segregation analysis procedure to study the genetic system of quantitative traits of plants.At present,this procedure can be used to evaluate the genetic effect of individual major genes (up to two to three major genes),the collective genetic effect of polygene,and their heritability value.This paper introduces how to establish the procedure,its main achievements,and its applications.An example is given to illustrate the steps,methods,and effectiveness of the procedure.

  13. Analysis of quantitative pore features based on mathematical morphology

    Institute of Scientific and Technical Information of China (English)

    QI Heng-nian; CHEN Feng-nong; WANG Hang-jun

    2008-01-01

    Wood identification is a basic technique of wood science and industry. Pore features are among the most important identification features for hardwoods. We have used a method based on an analysis of quantitative pore feature, which differs from traditional qualitative methods. We applies mathematical morphology methods such as dilation and erosion, open and close transformation of wood cross-sections, image repairing, noise filtering and edge detection to segment the pores from their background. Then the mean square errors (MSE) of pores were computed to describe the distribution of pores. Our experiment shows that it is easy to classift the pore features into three basic types, just as in traditional qualitative methods, but with the use of MSE of pores. This quantitative method improves wood identification considerably.

  14. Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley

    through percolating networks and reaction rates at the triple phase boundaries. Quantitative analysis of microstructure is thus important both in research and development of optimal microstructure design and fabrication. Three dimensional microstructure characterization in particular holds great promise...... for gaining further fundamental understanding of how microstructure affects performance. In this work, methods for automatic 3D characterization of microstructure are studied: from the acquisition of 3D image data by focused ion beam tomography to the extraction of quantitative measures that characterize...... the microstructure. The methods are exemplied by the analysis of Ni-YSZ and LSC-CGO electrode samples. Automatic methods for preprocessing the raw 3D image data are developed. The preprocessing steps correct for errors introduced by the image acquisition by the focused ion beam serial sectioning. Alignment...

  15. Quantitative risk analysis as a basis for emergency planning

    Energy Technology Data Exchange (ETDEWEB)

    Yogui, Regiane Tiemi Teruya [Bureau Veritas do Brasil, Rio de Janeiro, RJ (Brazil); Macedo, Eduardo Soares de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2009-07-01

    Several environmental accidents happened in Brazil and in the world during the 70's and 80's. This strongly motivated the preparation for emergencies in the chemical and petrochemical industries. Environmental accidents affect the environment and the communities that are neighbor to the industrial facilities. The present study aims at subsidizing and providing orientation to develop Emergency Planning from the data obtained on Quantitative Risk Analysis, elaborated according to the Technical Standard P4.261/03 from CETESB (Sao Paulo Environmental Agency). It was observed, during the development of the research, that the data generated on these studies need a complementation and a deeper analysis, so that it is possible to use them on the Emergency Plans. The main issues that were analyzed and discussed on this study were the reevaluation of hazard identification for the emergency plans, the consequences and vulnerability analysis for the response planning, the risk communication, and the preparation to respond to the emergencies of the communities exposed to manageable risks. As a result, the study intends to improve the interpretation and use of the data deriving from the Quantitative Risk Analysis to develop the emergency plans. (author)

  16. Quantitative analysis of in vivo confocal microscopy images: a review.

    Science.gov (United States)

    Patel, Dipika V; McGhee, Charles N

    2013-01-01

    In vivo confocal microscopy (IVCM) is a non-invasive method of examining the living human cornea. The recent trend towards quantitative studies using IVCM has led to the development of a variety of methods for quantifying image parameters. When selecting IVCM images for quantitative analysis, it is important to be consistent regarding the location, depth, and quality of images. All images should be de-identified, randomized, and calibrated prior to analysis. Numerous image analysis software are available, each with their own advantages and disadvantages. Criteria for analyzing corneal epithelium, sub-basal nerves, keratocytes, endothelium, and immune/inflammatory cells have been developed, although there is inconsistency among research groups regarding parameter definition. The quantification of stromal nerve parameters, however, remains a challenge. Most studies report lower inter-observer repeatability compared with intra-observer repeatability, and observer experience is known to be an important factor. Standardization of IVCM image analysis through the use of a reading center would be crucial for any future large, multi-centre clinical trials using IVCM.

  17. Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Daniela P. [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Amaral, A. Luís [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra (Portugal); Ferreira, Eugénio C., E-mail: ecferreira@deb.uminho.pt [IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-11-13

    Graphical abstract: -- Highlights: •Quantitative image analysis shows potential to monitor activated sludge systems. •Staining techniques increase the potential for detection of operational problems. •Chemometrics combined with quantitative image analysis is valuable for process monitoring. -- Abstract: In wastewater treatment processes, and particularly in activated sludge systems, efficiency is quite dependent on the operating conditions, and a number of problems may arise due to sludge structure and proliferation of specific microorganisms. In fact, bacterial communities and protozoa identification by microscopy inspection is already routinely employed in a considerable number of cases. Furthermore, quantitative image analysis techniques have been increasingly used throughout the years for the assessment of aggregates and filamentous bacteria properties. These procedures are able to provide an ever growing amount of data for wastewater treatment processes in which chemometric techniques can be a valuable tool. However, the determination of microbial communities’ properties remains a current challenge in spite of the great diversity of microscopy techniques applied. In this review, activated sludge characterization is discussed highlighting the aggregates structure and filamentous bacteria determination by image analysis on bright-field, phase-contrast, and fluorescence microscopy. An in-depth analysis is performed to summarize the many new findings that have been obtained, and future developments for these biological processes are further discussed.

  18. Software safety analysis practice in installation phase

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. W.; Chen, M. H.; Shyu, S. S., E-mail: hwhwang@iner.gov.t [Institute of Nuclear Energy Research, No. 1000 Wenhua Road, Chiaan Village, Longtan Township, 32546 Taoyuan County, Taiwan (China)

    2010-10-15

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  19. A comparative quantitative structure-retention relationships study for lipophilicity determination of compounds with a phenanthrene skeleton on cyano-, reversed phase-, and normal phase-thin layer chromatography stationary phases.

    Science.gov (United States)

    Ciura, Krzesimir; Nowakowska, Joanna; Pikul, Piotr; Struck-Lewicka, Wiktoria; Markuszewski, Michał J

    2015-01-01

    The phenanthrene skeleton is an important moiety in medical chemistry as it is present in steroidal drugs used as anti-inflammatory and anti-asthmatic agents as well as synthetic hormones or potassium sparing diuretics. Chromatographic properties of 14 derivatives containing the phenanthrene skeleton in their structure with known lipophilicity have been studied. NP, RP, and cyano-bonded silica stationary phases with three binary mobile phases (acetonitrile-water, acetone-water, and acetone-petroleum ether) were tested. Obtained chromatographic data were correlated with the lipophilicity expressed as values of log partition coefficient (P). The presented study was undertaken to find the best TLC system and chromatographic data processing method in order to predict log P values. Correlations between chromatographic data and measurements of lipophilicity of compounds were presented as results of established quantitative structure-retention relationships. Principal component analysis and cluster analysis were used to investigate the similarities among chromatographic systems.

  20. Quantitative phosphoproteomic analysis using iTRAQ method.

    Science.gov (United States)

    Asano, Tomoya; Nishiuchi, Takumi

    2014-01-01

    The MAPK (mitogen-activated kinase) cascade plays important roles in plant perception of and reaction to developmental and environmental cues. Phosphoproteomics are useful to identify target proteins regulated by MAPK-dependent signaling pathway. Here, we introduce the quantitative phosphoproteomic analysis using a chemical labeling method. The isobaric tag for relative and absolute quantitation (iTRAQ) method is a MS-based technique to quantify protein expression among up to eight different samples in one experiment. In this technique, peptides were labeled by some stable isotope-coded covalent tags. We perform quantitative phosphoproteomics comparing Arabidopsis wild type and a stress-responsive mapkk mutant after phytotoxin treatment. To comprehensively identify the downstream phosphoproteins of MAPKK, total proteins were extracted from phytotoxin-treated wild-type and mapkk mutant plants. The phosphoproteins were purified by Pro-Q(®) Diamond Phosphoprotein Enrichment Kit and were digested with trypsin. Resulting peptides were labeled with iTRAQ reagents and were quantified and identified by MALDI TOF/TOF analyzer. We identified many phosphoproteins that were decreased in the mapkk mutant compared with wild type.

  1. A quantitative analysis of IRAS maps of molecular clouds

    Science.gov (United States)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  2. Simulating realistic predator signatures in quantitative fatty acid signature analysis

    Science.gov (United States)

    Bromaghin, Jeffrey F.

    2015-01-01

    Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.

  3. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization

    Directory of Open Access Journals (Sweden)

    Peterhansel Christoph

    2007-09-01

    Full Text Available Abstract Background Chromatin remodeling, histone modifications and other chromatin-related processes play a crucial role in gene regulation. A very useful technique to study these processes is chromatin immunoprecipitation (ChIP. ChIP is widely used for a few model systems, including Arabidopsis, but establishment of the technique for other organisms is still remarkably challenging. Furthermore, quantitative analysis of the precipitated material and normalization of the data is often underestimated, negatively affecting data quality. Results We developed a robust ChIP protocol, using maize (Zea mays as a model system, and present a general strategy to systematically optimize this protocol for any type of tissue. We propose endogenous controls for active and for repressed chromatin, and discuss various other controls that are essential for successful ChIP experiments. We experienced that the use of quantitative PCR (QPCR is crucial for obtaining high quality ChIP data and we explain why. The method of data normalization has a major impact on the quality of ChIP analyses. Therefore, we analyzed different normalization strategies, resulting in a thorough discussion of the advantages and drawbacks of the various approaches. Conclusion Here we provide a robust ChIP protocol and strategy to optimize the protocol for any type of tissue; we argue that quantitative real-time PCR (QPCR is the best method to analyze the precipitates, and present comprehensive insights into data normalization.

  4. Fluorescent foci quantitation for high-throughput analysis

    Science.gov (United States)

    Ledesma-Fernández, Elena; Thorpe, Peter H.

    2015-01-01

    A number of cellular proteins localize to discrete foci within cells, for example DNA repair proteins, microtubule organizing centers, P bodies or kinetochores. It is often possible to measure the fluorescence emission from tagged proteins within these foci as a surrogate for the concentration of that specific protein. We wished to develop tools that would allow quantitation of fluorescence foci intensities in high-throughput studies. As proof of principle we have examined the kinetochore, a large multi-subunit complex that is critical for the accurate segregation of chromosomes during cell division. Kinetochore perturbations lead to aneuploidy, which is a hallmark of cancer cells. Hence, understanding kinetochore homeostasis and regulation are important for a global understanding of cell division and genome integrity. The 16 budding yeast kinetochores colocalize within the nucleus to form a single focus. Here we have created a set of freely-available tools to allow high-throughput quantitation of kinetochore foci fluorescence. We use this ‘FociQuant’ tool to compare methods of kinetochore quantitation and we show proof of principle that FociQuant can be used to identify changes in kinetochore protein levels in a mutant that affects kinetochore function. This analysis can be applied to any protein that forms discrete foci in cells. PMID:26290880

  5. Synthesis and purification of iodoaziridines involving quantitative selection of the optimal stationary phase for chromatography.

    Science.gov (United States)

    Boultwood, Tom; Affron, Dominic P; Bull, James A

    2014-05-16

    The highly diastereoselective preparation of cis-N-Ts-iodoaziridines through reaction of diiodomethyllithium with N-Ts aldimines is described. Diiodomethyllithium is prepared by the deprotonation of diiodomethane with LiHMDS, in a THF/diethyl ether mixture, at -78 °C in the dark. These conditions are essential for the stability of the LiCHI2 reagent generated. The subsequent dropwise addition of N-Ts aldimines to the preformed diiodomethyllithium solution affords an amino-diiodide intermediate, which is not isolated. Rapid warming of the reaction mixture to 0 °C promotes cyclization to afford iodoaziridines with exclusive cis-diastereoselectivity. The addition and cyclization stages of the reaction are mediated in one reaction flask by careful temperature control. Due to the sensitivity of the iodoaziridines to purification, assessment of suitable methods of purification is required. A protocol to assess the stability of sensitive compounds to stationary phases for column chromatography is described. This method is suitable to apply to new iodoaziridines, or other potentially sensitive novel compounds. Consequently this method may find application in range of synthetic projects. The procedure involves firstly the assessment of the reaction yield, prior to purification, by (1)H NMR spectroscopy with comparison to an internal standard. Portions of impure product mixture are then exposed to slurries of various stationary phases appropriate for chromatography, in a solvent system suitable as the eluent in flash chromatography. After stirring for 30 min to mimic chromatography, followed by filtering, the samples are analyzed by (1)H NMR spectroscopy. Calculated yields for each stationary phase are then compared to that initially obtained from the crude reaction mixture. The results obtained provide a quantitative assessment of the stability of the compound to the different stationary phases; hence the optimal can be selected. The choice of basic alumina, modified to

  6. Quantitative spectroscopy for the analysis of GOME data

    Science.gov (United States)

    Chance, K.

    1997-01-01

    Accurate analysis of the global ozone monitoring experiment (GOME) data to obtain atmospheric constituents requires reliable, traceable spectroscopic parameters for atmospheric absorption and scattering. Results are summarized for research that includes: the re-determination of Rayleigh scattering cross sections and phase functions for the 200 nm to 1000 nm range; the analysis of solar spectra to obtain a high-resolution reference spectrum with excellent absolute vacuum wavelength calibration; Ring effect cross sections and phase functions determined directly from accurate molecular parameters of N2 and O2; O2 A band line intensities and pressure broadening coefficients; and the analysis of absolute accuracies for ultraviolet and visible absorption cross sections of O3 and other trace species measurable by GOME.

  7. Quantitative spectroscopy for the analysis of GOME data

    Science.gov (United States)

    Chance, K.

    1997-01-01

    Accurate analysis of the global ozone monitoring experiment (GOME) data to obtain atmospheric constituents requires reliable, traceable spectroscopic parameters for atmospheric absorption and scattering. Results are summarized for research that includes: the re-determination of Rayleigh scattering cross sections and phase functions for the 200 nm to 1000 nm range; the analysis of solar spectra to obtain a high-resolution reference spectrum with excellent absolute vacuum wavelength calibration; Ring effect cross sections and phase functions determined directly from accurate molecular parameters of N2 and O2; O2 A band line intensities and pressure broadening coefficients; and the analysis of absolute accuracies for ultraviolet and visible absorption cross sections of O3 and other trace species measurable by GOME.

  8. Versatile quantitative phase imaging system applied to high-speed, low noise and multimodal imaging (Conference Presentation)

    Science.gov (United States)

    Federici, Antoine; Aknoun, Sherazade; Savatier, Julien; Wattellier, Benoit F.

    2017-02-01

    Quadriwave lateral shearing interferometry (QWLSI) is a well-established quantitative phase imaging (QPI) technique based on the analysis of interference patterns of four diffraction orders by an optical grating set in front of an array detector [1]. As a QPI modality, this is a non-invasive imaging technique which allow to measure the optical path difference (OPD) of semi-transparent samples. We present a system enabling QWLSI with high-performance sCMOS cameras [2] and apply it to perform high-speed imaging, low noise as well as multimodal imaging. This modified QWLSI system contains a versatile optomechanical device which images the optical grating near the detector plane. Such a device is coupled with any kind of camera by varying its magnification. In this paper, we study the use of a sCMOS Zyla5.5 camera from Andor along with our modified QWLSI system. We will present high-speed live cell imaging, up to 200Hz frame rate, in order to follow intracellular fast motions while measuring the quantitative phase information. The structural and density information extracted from the OPD signal is complementary to the specific and localized fluorescence signal [2]. In addition, QPI detects cells even when the fluorophore is not expressed. This is very useful to follow a protein expression with time. The 10 µm spatial pixel resolution of our modified QWLSI associated to the high sensitivity of the Zyla5.5 enabling to perform high quality fluorescence imaging, we have carried out multimodal imaging revealing fine structures cells, like actin filaments, merged with the morphological information of the phase. References [1]. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express, vol. 17, pp. 13080-13094, 2009. [2] P. Bon, S. Lécart, E. Fort and S. Lévêque-Fort, "Fast label-free cytoskeletal network imaging in living mammalian cells," Biophysical journal, 106

  9. Spectral quantitation by principal component analysis using complex singular value decomposition.

    Science.gov (United States)

    Elliott, M A; Walter, G A; Swift, A; Vandenborne, K; Schotland, J C; Leigh, J S

    1999-03-01

    Principal component analysis (PCA) is a powerful method for quantitative analysis of nuclear magnetic resonance spectral data sets. It has the advantage of being model independent, making it well suited for the analysis of spectra with complicated or unknown line shapes. Previous applications of PCA have required that all spectra in a data set be in phase or have implemented iterative methods to analyze spectra that are not perfectly phased. However, improper phasing or imperfect convergence of the iterative methods has resulted in systematic errors in the estimation of peak areas with PCA. Presented here is a modified method of PCA, which utilizes complex singular value decomposition (SVD) to analyze spectral data sets with any amount of variation in spectral phase. The new method is shown to be completely insensitive to spectral phase. In the presence of noise, PCA with complex SVD yields a lower variation in the estimation of peak area than conventional PCA by a factor of approximately 2. The performance of the method is demonstrated with simulated data and in vivo 31P spectra from human skeletal muscle.

  10. Full-field quantitative phase imaging by white-light interferometry with active phase stabilization and its application to biological samples

    Science.gov (United States)

    Li, Xinhong; Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka; Zhang, Haijun; Hiruma, Teruo

    2006-06-01

    We report a Koehler-illumination-based full-field, actively stabilized, low-coherence phase-shifting interferometer, which is built on a white-light Michelson interferometer. By using a phase-stepping technique we can obtain full-field phase images of the sample. An actively stabilized phase-lock circuit is employed in the system to reduce phase noise. An application to human epithelial cells (HeLa cells) is achieved in our experiment. The advancement of this technique rests in its ability to take images of unstained biological samples quantitatively and on a nanometer scale.

  11. Quantitative Analysis of Polarimetric Model-Based Decomposition Methods

    Directory of Open Access Journals (Sweden)

    Qinghua Xie

    2016-11-01

    Full Text Available In this paper, we analyze the robustness of the parameter inversion provided by general polarimetric model-based decomposition methods from the perspective of a quantitative application. The general model and algorithm we have studied is the method proposed recently by Chen et al., which makes use of the complete polarimetric information and outperforms traditional decomposition methods in terms of feature extraction from land covers. Nevertheless, a quantitative analysis on the retrieved parameters from that approach suggests that further investigations are required in order to fully confirm the links between a physically-based model (i.e., approaches derived from the Freeman–Durden concept and its outputs as intermediate products before any biophysical parameter retrieval is addressed. To this aim, we propose some modifications on the optimization algorithm employed for model inversion, including redefined boundary conditions, transformation of variables, and a different strategy for values initialization. A number of Monte Carlo simulation tests for typical scenarios are carried out and show that the parameter estimation accuracy of the proposed method is significantly increased with respect to the original implementation. Fully polarimetric airborne datasets at L-band acquired by German Aerospace Center’s (DLR’s experimental synthetic aperture radar (E-SAR system were also used for testing purposes. The results show different qualitative descriptions of the same cover from six different model-based methods. According to the Bragg coefficient ratio (i.e., β , they are prone to provide wrong numerical inversion results, which could prevent any subsequent quantitative characterization of specific areas in the scene. Besides the particular improvements proposed over an existing polarimetric inversion method, this paper is aimed at pointing out the necessity of checking quantitatively the accuracy of model-based PolSAR techniques for a

  12. Characterization of low molecular weight alkoxylated polymers using long column SFC/MS and an image analysis based quantitation approach.

    Science.gov (United States)

    Pinkston, J David; Marapane, Suresh B; Jordan, Glenn T; Clair, B David

    2002-10-01

    The utility of low viscosity mobile phases and long chromatographic columns for complex polymer analysis is demonstrated. We use long column supercritical fluid chromatography/mass spectrometry (SFC/MS) with electrospray ionization (ESI) to characterize a variety of complex, low molecular weight polymers. When quantitative analysis is desired, the resulting three-dimensional (time, intensity, and mass-to-charge ratio [m/z]) data are converted to images. Custom image analysis software is used to detect and integrate peaks in arbitrarily defined regions of the time-m/z map. These integrated peak volumes can be used to quantitate distinct component classes of the polymer mixtures.

  13. European Identity in Russian Regions Bordering on Finland: Quantitative Analysis

    OpenAIRE

    A. O. Domanov

    2014-01-01

    Th e quantitative analysis of an opinion poll conducted in October 2013 in three Russian cities located near Finnish border (St-Petersburg, Kronstadt and Vyborg) explores European identity of their citizens. Th is area was chosen to illustrate the crucial importance of space interpretation in spatial identity formation by using critical geopolitical approach. Th e study shows how diff erent images of space on the same territory act as intermediate variables between objective territorial chara...

  14. Quantitative analysis of sideband coupling in photoinduced force microscopy

    Science.gov (United States)

    Jahng, Junghoon; Kim, Bongsu; Lee, Eun Seong; Potma, Eric Olaf

    2016-11-01

    We present a theoretical and experimental analysis of the cantilever motions detected in photoinduced force microscopy (PiFM) using the sideband coupling detection scheme. In sideband coupling, the cantilever dynamics are probed at a combination frequency of a fundamental mechanical eigenmode and the modulation frequency of the laser beam. Using this detection mode, we develop a method for reconstructing the modulated photoinduced force gradient from experimental parameters in a quantitative manner. We show evidence, both theoretically and experimentally, that the sideband coupling detection mode provides PiFM images with superior contrast compared to images obtained when detecting the cantilever motions directly at the laser modulation frequency.

  15. Quantitative and comparative analysis of hyperspectral data fusion performance

    Institute of Scientific and Technical Information of China (English)

    王强; 张晔; 李硕; 沈毅

    2002-01-01

    Hyperspectral data fusion technique is the key to hyperspectral data processing in recent years. Manyfusion methods have been proposed, but little research has been done to evaluate the performances of differentdata fusion methods. In order to meet the urgent need, quantitative correlation analysis (QCA) is proposed toanalyse and compare the performances of different fusion methods directly from data before and after fusion. Ex-periment results show that the new method is effective and the results of comparison are in agreement with theresults of application.

  16. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Aschi, Massimiliano [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); D' Archivio, Angelo Antonio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)]. E-mail: darchivi@univaq.it; Maggi, Maria Anna [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Mazzeo, Pietro [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)

    2007-01-23

    In this paper, a quantitative structure-retention relationships (QSRR) method is employed to predict the retention behaviour of pesticides in reversed-phase high-performance liquid chromatography (HPLC). A six-parameter nonlinear model is developed by means of a feed-forward artificial neural network (ANN) with back-propagation learning rule. Accurate description of the retention factors of 26 compounds including commonly used insecticides, herbicides and fungicides and some metabolites is successfully achieved. In addition to the acetonitrile content, included to describe composition of the water-acetonitrile mobile phase, the octanol-water partition coefficient (from literature) and four quantum chemical descriptors are considered to account for the effect of solute structure on the retention. These are: the total dipole moment, the mean polarizability, the anisotropy of polarizability and a descriptor of hydrogen bonding ability based on the atomic charges on hydrogen bond donor and acceptor chemical functionalities. The proposed nonlinear QSRR model exhibits a high degree of correlation between observed and computed retention factors and a good predictive performance in wide range of mobile phase composition (40-65%, v/v acetonitrile) that supports its application for the prediction of the chromatographic behaviour of unknown pesticides. A multilinear regression model based on the same six descriptors shows a significantly worse predictive capability.

  17. Theoretical discussions on the geometrical phase analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rouviere, J.L. [CEA-Grenoble, Departement de Recherche Fondamentale sur la Matiere Condensee, SP2M, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)]. E-mail: rouvierej@cea.fr; Sarigiannidou, E. [CEA-Grenoble, Departement de Recherche Fondamentale sur la Matiere Condensee, SP2M, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2005-12-15

    The Geometrical phase analysis, which is a very efficient method to measure deformation from High resolution transmission electron microscopy images, is studied from a theoretical point of view. We point out that the basic property of this method is its ability to measure local reciprocal lattice parameters with a high level of accuracy. We attempt to provide some insights into (a) different formula used in the geometrical phase analysis such as the well-known relation between phase and displacement: P{sub g}(r)=-2{pi}g.u(r), (b) the two different definitions of strain, each of which corresponding to a different lattice reference and (c) the meaning of a continuous displacement in a dot-like high resolution image. The case of one-dimensional analysis is also presented. Finally, we show that the method is able to give the position of the dot that is nearest to a given pixel in the image.

  18. Phase transition traced by conductivity measurements: quantitative analysis

    DEFF Research Database (Denmark)

    Keding, Ralf; Ruessel, Christian; Tauch, Diana

    2008-01-01

    to the electrodes, all in a cylindrical geometry. The electrical resistivity of a sample in the system BaAl2B2O7 was measured during cooling between liquidus temperature (T-l) and transformation temperature (T-g) using a fixed frequency of 3.7 Hz. The melt crystallised in this temperature range during cooling...

  19. Quantitative chemical analysis of ocular melanosomes in the TEM.

    Science.gov (United States)

    Eibl, O; Schultheiss, S; Blitgen-Heinecke, P; Schraermeyer, U

    2006-01-01

    Melanosomes in retinal tissues of a human, monkey and rat were analyzed by EDX in the TEM. Samples were prepared by ultramicrotomy at different thicknesses. The material was mounted on Al grids and samples were analyzed in a Zeiss 912 TEM equipped with an Omega filter and EDX detector with ultrathin window. Melanosomes consist of C and O as main components, mole fractions are about 90 and 3-10 at.%, respectively, and small mole fraction ratios, between 2 and 0.1 at.%, of Na, Mg, K, Si, P, S, Cl, Ca. All elements were measured quantitatively by standardless EDX with high precision. Mole fractions of transition metals Fe, Cu and Zn were also measured. For Fe a mole fraction ratio of less than 0.1at.% was found and gives the melanin its paramagnetic properties. Its mole fraction is however close to or below the minimum detectable mass fraction of the used equipment. Only in the human eye and only in the retinal pigment epitelium (rpe) the mole fractions of Zn (0.1 at.% or 5000 microg/g) and Cu were clearly beyond the minimum detectable mass fraction. In the rat and monkey eye the mole fraction of Zn was at or below the minimum detectable mass fraction and could not be measured quantitatively. The obtained results yielded the chemical composition of the melanosomes in the choroidal tissue and the retinal pigment epitelium (rpe) of the three different species. The results of the chemical analysis are discussed by mole fraction correlation diagrams. Similarities and differences between the different species are outlined. Correlation behavior was found to hold over species, e.g. the Ca-O correlation. It indicates that Ca is bound to oxygen rich sites in the melanin. These are the first quantitative analyses of melanosomes by EDX reported so far. The quantitative chemical analysis should open a deeper understanding of the metabolic processes in the eye that are of central importance for the understanding of a large number of eye-related diseases. The chemical analysis also

  20. Single-Shot Smartphone-Based Quantitative Phase Imaging Using a Distorted Grating.

    Science.gov (United States)

    Yang, Zhenyu; Zhan, Qiwen

    2016-01-01

    Blood testing has been used as an essential tool to diagnose diseases for decades. Recently, there has been a rapid developing trend in using Quantitative Phase Imaging (QPI) methods for blood cell screening. Compared to traditional blood testing techniques, QPI has the advantage of avoiding dyeing or staining the specimen, which may cause damage to the cells. However, most existing systems are bulky and costly, requiring experienced personnel to operate. This work demonstrates the integration of one QPI method onto a smartphone platform and the application of imaging red blood cells. The adopted QPI method is based on solving the Intensity Transport Equation (ITE) from two de-focused pupil images taken in one shot by the smartphone camera. The device demonstrates a system resolution of about 1 μm, and is ready to be used for 3D morphological study of red blood cells.

  1. Reverse Phase Protein Arrays—Quantitative Assessment of Multiple Biomarkers in Biopsies for Clinical Use

    Directory of Open Access Journals (Sweden)

    Stefanie Boellner

    2015-03-01

    Full Text Available Reverse Phase Protein Arrays (RPPA represent a very promising sensitive and precise high-throughput technology for the quantitative measurement of hundreds of signaling proteins in biological and clinical samples. This array format allows quantification of one protein or phosphoprotein in multiple samples under the same experimental conditions at the same time. Moreover, it is suited for signal transduction profiling of small numbers of cultured cells or cells isolated from human biopsies, including formalin fixed and paraffin embedded (FFPE tissues. Owing to the much easier sample preparation, as compared to mass spectrometry based technologies, and the extraordinary sensitivity for the detection of low-abundance signaling proteins over a large linear range, RPPA have the potential for characterization of deregulated interconnecting protein pathways and networks in limited amounts of sample material in clinical routine settings. Current aspects of RPPA technology, including dilution curves, spotting, controls, signal detection, antibody validation, and calculation of protein levels are addressed.

  2. Compact, common path quantitative phase microscopic techniques for imaging cell dynamics

    Indian Academy of Sciences (India)

    A Anand; P Vora; S Mahajan; V Trivedi; V Chhaniwal; A Singh; R Leitgeb; B Javidi

    2014-01-01

    Microscopy using visible electromagnetic radiation can be used to investigate living cells in various environments. But bright field microscopy only provides two-dimensional (2D) intensity distribution at a single object plane. One of the ways to retrieve object height/thickness information is to employ quantitative phase microscopic (QPM) techniques. Interferometric QPM techniques are widely used for this. Digital holographic microscopy (DHM) is one of the stateof-the-art methods for quantitative three-dimensional (3D) imaging. Usually it is implemented in two-beam geometry, which is prone to mechanical vibrations. But to study dynamics of objects like red blood cells, one needs temporal stability much better than the fluctuations of the object, which the two-beam geometry fails to deliver. One way to overcome this hurdle is to use selfreferencing techniques, in which a portion of the object beam will act as the reference beam. Here the development of self-referencing QPM techniques is described along with the results.

  3. Quantitative analysis of intermolecular interactions in orthorhombic rubrene

    Directory of Open Access Journals (Sweden)

    Venkatesha R. Hathwar

    2015-09-01

    Full Text Available Rubrene is one of the most studied organic semiconductors to date due to its high charge carrier mobility which makes it a potentially applicable compound in modern electronic devices. Previous electronic device characterizations and first principles theoretical calculations assigned the semiconducting properties of rubrene to the presence of a large overlap of the extended π-conjugated core between molecules. We present here the electron density distribution in rubrene at 20 K and at 100 K obtained using a combination of high-resolution X-ray and neutron diffraction data. The topology of the electron density and energies of intermolecular interactions are studied quantitatively. Specifically, the presence of Cπ...Cπ interactions between neighbouring tetracene backbones of the rubrene molecules is experimentally confirmed from a topological analysis of the electron density, Non-Covalent Interaction (NCI analysis and the calculated interaction energy of molecular dimers. A significant contribution to the lattice energy of the crystal is provided by H—H interactions. The electron density features of H—H bonding, and the interaction energy of molecular dimers connected by H—H interaction clearly demonstrate an importance of these weak interactions in the stabilization of the crystal structure. The quantitative nature of the intermolecular interactions is virtually unchanged between 20 K and 100 K suggesting that any changes in carrier transport at these low temperatures would have a different origin. The obtained experimental results are further supported by theoretical calculations.

  4. Quantitative analysis on electrooculography (EOG) for neurodegenerative disease

    Science.gov (United States)

    Liu, Chang-Chia; Chaovalitwongse, W. Art; Pardalos, Panos M.; Seref, Onur; Xanthopoulos, Petros; Sackellares, J. C.; Skidmore, Frank M.

    2007-11-01

    Many studies have documented abnormal horizontal and vertical eye movements in human neurodegenerative disease as well as during altered states of consciousness (including drowsiness and intoxication) in healthy adults. Eye movement measurement may play an important role measuring the progress of neurodegenerative diseases and state of alertness in healthy individuals. There are several techniques for measuring eye movement, Infrared detection technique (IR). Video-oculography (VOG), Scleral eye coil and EOG. Among those available recording techniques, EOG is a major source for monitoring the abnormal eye movement. In this real-time quantitative analysis study, the methods which can capture the characteristic of the eye movement were proposed to accurately categorize the state of neurodegenerative subjects. The EOG recordings were taken while 5 tested subjects were watching a short (>120 s) animation clip. In response to the animated clip the participants executed a number of eye movements, including vertical smooth pursued (SVP), horizontal smooth pursued (HVP) and random saccades (RS). Detection of abnormalities in ocular movement may improve our diagnosis and understanding a neurodegenerative disease and altered states of consciousness. A standard real-time quantitative analysis will improve detection and provide a better understanding of pathology in these disorders.

  5. Quantitative analysis in outcome assessment of instrumented lumbosacral arthrodesis.

    Science.gov (United States)

    Champain, Sabina; Mazel, Christian; Mitulescu, Anca; Skalli, Wafa

    2007-08-01

    The outcome assessment in instrumented lumbosacral fusion mostly focuses on clinical criteria, complications and scores, with a high variability of imaging means, methods of fusion grading and parameters describing degenerative changes, making comparisons between studies difficult. The aim of this retrospective evaluation was to evaluate the interest of quantified radiographic analysis of lumbar spine in global outcome assessment and to highlight the key biomechanical factors involved. Clinical data and Beaujon-Lassale scores were collected for 49 patients who underwent lumbosacral arthrodesis after prior lumbar discectomy (mean follow-up: 5 years). Sagittal standing and lumbar flexion-extension X-ray films allowed quantifying vertebral, lumbar, pelvic and kinematic parameters of the lumbar spine, which were compared to reference values. Statistics were performed to assess evolution for all variables. At long-term follow-up, 90% of patients presented satisfactory clinical outcomes, associated to normal sagittal alignment; vertebral parameters objectified adjacent level degeneration in four cases (8%). Clinical outcome was correlated (r = 0.8) with fusion that was confirmed in 80% of cases, doubtful in 16% and pseudarthrosis seemed to occur in 4% (2) of cases. In addition to clinical data (outcomes comparable to the literature), quantitative analysis accurately described lumbar spine geometry and kinematics, highlighting parameters related to adjacent level's degeneration and a significant correlation between clinical outcome and fusion. Furthermore, criteria proposed to quantitatively evaluate fusion from lumbar dynamic radiographs seem to be appropriate and in agreement with surgeon's qualitative grading in 87% of cases.

  6. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors.

    Science.gov (United States)

    Mariani, Benoit; Rouhani, Hossein; Crevoisier, Xavier; Aminian, Kamiar

    2013-02-01

    Time periods composing stance phase of gait can be clinically meaningful parameters to reveal differences between normal and pathological gait. This study aimed, first, to describe a novel method for detecting stance and inner-stance temporal events based on foot-worn inertial sensors; second, to extract and validate relevant metrics from those events; and third, to investigate their suitability as clinical outcome for gait evaluations. 42 subjects including healthy subjects and patients before and after surgical treatments for ankle osteoarthritis performed 50-m walking trials while wearing foot-worn inertial sensors and pressure insoles as a reference system. Several hypotheses were evaluated to detect heel-strike, toe-strike, heel-off, and toe-off based on kinematic features. Detected events were compared with the reference system on 3193 gait cycles and showed good accuracy and precision. Absolute and relative stance periods, namely loading response, foot-flat, and push-off were then estimated, validated, and compared statistically between populations. Besides significant differences observed in stance duration, the analysis revealed differing tendencies with notably a shorter foot-flat in healthy subjects. The result indicated which features in inertial sensors' signals should be preferred for detecting precisely and accurately temporal events against a reference standard. The system is suitable for clinical evaluations and provides temporal analysis of gait beyond the common swing/stance decomposition, through a quantitative estimation of inner-stance phases such as foot-flat.

  7. Quantitative Analysis of the Interdisciplinarity of Applied Mathematics.

    Science.gov (United States)

    Xie, Zheng; Duan, Xiaojun; Ouyang, Zhenzheng; Zhang, Pengyuan

    2015-01-01

    The increasing use of mathematical techniques in scientific research leads to the interdisciplinarity of applied mathematics. This viewpoint is validated quantitatively here by statistical and network analysis on the corpus PNAS 1999-2013. A network describing the interdisciplinary relationships between disciplines in a panoramic view is built based on the corpus. Specific network indicators show the hub role of applied mathematics in interdisciplinary research. The statistical analysis on the corpus content finds that algorithms, a primary topic of applied mathematics, positively correlates, increasingly co-occurs, and has an equilibrium relationship in the long-run with certain typical research paradigms and methodologies. The finding can be understood as an intrinsic cause of the interdisciplinarity of applied mathematics.

  8. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  9. [Quantitative analysis of butachlor, oxadiazon and simetryn by gas chromatography].

    Science.gov (United States)

    Liu, F; Mu, W; Wang, J

    1999-03-01

    The quantitative analysis of the ingredients in 26% B-O-S (butachlor, oxadiazon and simetryn) emulsion by gas chromatographic method was carried out with a 5% SE-30 on Chromosorb AW DMCS, 2 m x 3 mm i.d., glass column at column temperature of 210 degrees C and detector temperature of 230 degrees C. The internal standard is di-n-butyl sebacate. The retentions of simetryn, internal standard, butachlor and oxadiazon were 6.5, 8.3, 9.9 and 11.9 min respectively. This method has a recovery of 98.62%-100.77% and the coefficients of variation of this analysis of butachlor, oxadiazon and simetryn were 0.46%, 0.32% and 0.57% respectively. All coefficients of linear correlation were higher than 0.999.

  10. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    Science.gov (United States)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  11. [Quantitative analysis of transformer oil dissolved gases using FTIR].

    Science.gov (United States)

    Zhao, An-xin; Tang, Xiao-jun; Wang, Er-zhen; Zhang, Zhong-hua; Liu, Jun-hua

    2013-09-01

    For the defects of requiring carrier gas and regular calibration, and low safety using chromatography to on line monitor transformer dissolved gases, it was attempted to establish a dissolved gas analysis system based on Fourier transform infrared spectroscopy. Taking into account the small amount of characteristic gases, many components, detection limit and safety requirements and the difficulty of degasser to put an end to the presence of interference gas, the quantitative analysis model was established based on sparse partial least squares, piecewise section correction and feature variable extraction algorithm using improvement TR regularization. With the characteristic gas of CH4, C2H6, C2H6, and CO2, the results show that using FTIR meets DGA requirements with the spectrum wave number resolution of 1 cm(-1) and optical path of 10 cm.

  12. Metabolic remodeling of the human red blood cell membrane measured by quantitative phase microscopy

    Science.gov (United States)

    Park, YongKeun; Best, Catherine; Auth, Thorsten; Gov, Nir S.; Safran, Samuel; Popescu, Gabriel

    2011-02-01

    We have quantitatively and systemically measured the morphologies and dynamics of fluctuations in human RBC membranes using a full-field laser interferometry technique that accurately measures dynamic membrane fluctuations. We present conclusive evidence that the presence of adenosine 5'-triphosphate (ATP) facilitates nonequilibrium dynamic fluctuations in the RBC membrane and that these fluctuations are highly correlated with specific regions in the biconcave shape of RBCs. Spatial analysis reveals that these nonequilibrium membrane fluctuations are enhanced at the scale of the spectrin mesh size. Our results indicate the presence of dynamic remodeling in the RBC membrane cortex powered by ATP, which results in nonequilibrium membrane fluctuations.

  13. Quantitative morphometric analysis for the tectonic characterisation of northern Tunisia.

    Science.gov (United States)

    Camafort, Miquel; Pérez-Peña, José Vicente; Booth-Rea, Guillermo; Ranero, César R.; Gràcia, Eulàlia; Azañón, José Miguel; Melki, Fetheddine; Ouadday, Mohamed

    2016-04-01

    Northern Tunisia is characterized by low deformation rates and low to moderate seismicity. Although instrumental seismicity reaches maximum magnitudes of Mw 5.5, some historical earthquakes have occurred with catastrophic consequences in this region. Aiming to improve our knowledge of active tectonics in Tunisia, we carried out both a quantitative morphometric analysis and field study in the north-western region. We applied different morphometric tools, like river profiles, knickpoint analysis, hypsometric curves and integrals and drainage pattern anomalies in order to differentiate between zones with high or low recent tectonic activity. This analysis helps identifying uplift and subsidence zones, which we relate to fault activity. Several active faults in a sparse distribution were identified. A selected sector was studied with a field campaign to test the results obtained with the quantitative analysis. During the fieldwork we identified geological evidence of recent activity and a considerable seismogenic potential along El Alia-Teboursouk (ETF) and Dkhila (DF) faults. The ETF fault could be responsible of one of the most devastating historical earthquakes in northern Tunisia that destroyed Utique in 412 A.D. Geological evidence include fluvial terraces folded by faults, striated and cracked pebbles, clastic dikes, sand volcanoes, coseismic cracks, etc. Although not reflected in the instrumental seismicity, our results support an important seismic hazard, evidenced by the several active tectonic structures identified and the two seismogenic faults described. After obtaining the current active tectonic framework of Tunisia we discuss our results within the western Mediterranean trying to contribute to the understanding of the western Mediterranean tectonic context. With our results, we suggest that the main reason explaining the sparse and scarce seismicity of the area in contrast with the adjacent parts of the Nubia-Eurasia boundary is due to its extended

  14. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features.

    Science.gov (United States)

    Gevaert, Olivier; Mitchell, Lex A; Achrol, Achal S; Xu, Jiajing; Echegaray, Sebastian; Steinberg, Gary K; Cheshier, Samuel H; Napel, Sandy; Zaharchuk, Greg; Plevritis, Sylvia K

    2014-10-01

    To derive quantitative image features from magnetic resonance (MR) images that characterize the radiographic phenotype of glioblastoma multiforme (GBM) lesions and to create radiogenomic maps associating these features with various molecular data. Clinical, molecular, and MR imaging data for GBMs in 55 patients were obtained from the Cancer Genome Atlas and the Cancer Imaging Archive after local ethics committee and institutional review board approval. Regions of interest (ROIs) corresponding to enhancing necrotic portions of tumor and peritumoral edema were drawn, and quantitative image features were derived from these ROIs. Robust quantitative image features were defined on the basis of an intraclass correlation coefficient of 0.6 for a digital algorithmic modification and a test-retest analysis. The robust features were visualized by using hierarchic clustering and were correlated with survival by using Cox proportional hazards modeling. Next, these robust image features were correlated with manual radiologist annotations from the Visually Accessible Rembrandt Images (VASARI) feature set and GBM molecular subgroups by using nonparametric statistical tests. A bioinformatic algorithm was used to create gene expression modules, defined as a set of coexpressed genes together with a multivariate model of cancer driver genes predictive of the module's expression pattern. Modules were correlated with robust image features by using the Spearman correlation test to create radiogenomic maps and to link robust image features with molecular pathways. Eighteen image features passed the robustness analysis and were further analyzed for the three types of ROIs, for a total of 54 image features. Three enhancement features were significantly correlated with survival, 77 significant correlations were found between robust quantitative features and the VASARI feature set, and seven image features were correlated with molecular subgroups (P < .05 for all). A radiogenomics map was

  15. Modeling and Quantitative Analysis of GNSS/INS Deep Integration Tracking Loops in High Dynamics

    Directory of Open Access Journals (Sweden)

    Yalong Ban

    2017-09-01

    Full Text Available To meet the requirements of global navigation satellite systems (GNSS precision applications in high dynamics, this paper describes a study on the carrier phase tracking technology of the GNSS/inertial navigation system (INS deep integration system. The error propagation models of INS-aided carrier tracking loops are modeled in detail in high dynamics. Additionally, quantitative analysis of carrier phase tracking errors caused by INS error sources is carried out under the uniform high dynamic linear acceleration motion of 100 g. Results show that the major INS error sources, affecting the carrier phase tracking accuracy in high dynamics, include initial attitude errors, accelerometer scale factors, gyro noise and gyro g-sensitivity errors. The initial attitude errors are usually combined with the receiver acceleration to impact the tracking loop performance, which can easily cause the failure of carrier phase tracking. The main INS error factors vary with the vehicle motion direction and the relative position of the receiver and the satellites. The analysis results also indicate that the low-cost micro-electro mechanical system (MEMS inertial measurement units (IMU has the ability to maintain GNSS carrier phase tracking in high dynamics.

  16. Multiparent intercross populations in analysis of quantitative traits

    Indian Academy of Sciences (India)

    Sujay Rakshit; Arunita Rakshit; J. V. Patil

    2011-04-01

    Most traits of interest to medical, agricultural and animal scientists show continuous variation and complex mode of inheritance. DNA-based markers are being deployed to analyse such complex traits, that are known as quantitative trait loci (QTL). In conventional QTL analysis, F2, backcross populations, recombinant inbred lines, backcross inbred lines and double haploids from biparental crosses are commonly used. Introgression lines and near isogenic lines are also being used for QTL analysis. However, such populations have major limitations like predominantly relying on the recombination events taking place in the F1 generation and mapping of only the allelic pairs present in the two parents. The second generation mapping resources like association mapping, nested association mapping and multiparent intercross populations potentially address the major limitations of available mapping resources. The potential of multiparent intercross populations in gene mapping has been discussed here. In such populations both linkage and association analysis can be conductted without encountering the limitations of structured populations. In such populations, larger genetic variation in the germplasm is accessed and various allelic and cytoplasmic interactions are assessed. For all practical purposes, across crop species, use of eight founders and a fixed population of 1000 individuals are most appropriate. Limitations with multiparent intercross populations are that they require longer time and more resource to be generated and they are likely to show extensive segregation for developmental traits, limiting their use in the analysis of complex traits. However, multiparent intercross population resources are likely to bring a paradigm shift towards QTL analysis in plant species.

  17. Phenotypic analysis of Arabidopsis mutants: quantitative analysis of root growth.

    Science.gov (United States)

    Doerner, Peter

    2008-03-01

    INTRODUCTIONThe growth of plant roots is very easy to measure and is particularly straightforward in Arabidopsis thaliana, because the increase in organ size is essentially restricted to one dimension. The precise measurement of root apical growth can be used to accurately determine growth activity (the rate of growth at a given time) during development in mutants, transgenic backgrounds, or in response to experimental treatments. Root growth is measured in a number of ways, the simplest of which is to grow the seedlings in a Petri dish and record the position of the advancing root tip at appropriate time points. The increase in root length is measured with a ruler and the data are entered into Microsoft Excel for analysis. When dealing with large numbers of seedlings, however, this procedure can be tedious, as well as inaccurate. An alternative approach, described in this protocol, uses "snapshots" of the growing plants, which are taken using gel-documentation equipment (i.e., a video camera with a frame-grabber unit, now commonly used to capture images from ethidium-bromide-stained electrophoresis gels). The images are analyzed using publicly available software (NIH-Image), which allows the user simply to cut and paste data into Microsoft Excel.

  18. Measuring dynamic membrane fluctuations in cell membrane using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, SangYun; Kim, Kyoohyun; Park, YongKeun

    2017-02-01

    There is a strong correlation between the dynamic membrane fluctuations and the biomechanical properties of living cells. The dynamic membrane fluctuation consists of submicron displacements, and can be altered by changing the cells' pathophysiological conditions. These results have significant relevance to the understanding of RBC biophysics and pathology, as follows. RBCs must withstand large mechanical deformations during repeated passages through the microvasculature and the fenestrated walls of the splenic sinusoids. This essential ability is diminished with senescence, resulting in physiological destruction of the aging RBCs. Pathological destruction of the red cells, however, occurs in cells affected by a host of diseases such as spherocytosis, malaria, and Sickle cell disease, as RBCs depart from their normal discoid shape and lose their deformability. Therefore, quantifying the RBC deformability insight into a variety of problems regarding the interplay of cell structure, dynamics, and function. Furthermore, the ability to monitor mechanical properties of RBCs is of vital interest in monitoring disease progression or response to treatment as molecular and pharmaceutical approaches for treatment of chronic diseases. Here, we present the measurements of dynamic membrane fluctuations in live cells using quantitative phase imaging techniques. Measuring both the 3-D refractive index maps and the dynamic phase images of live cells are simultaneously measured, from which dynamic membrane fluctuation and deformability of cells are precisely calculated. We also present its applications to various diseases ranging from sickle cell diseases, babesiosis, and to diabetes.

  19. Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy

    Science.gov (United States)

    Rinehart, Matthew T.; Park, Han Sang; Walzer, Katelyn A.; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-04-01

    Plasmodium falciparum infection causes structural and biochemical changes in red blood cells (RBCs). To quantify these changes, we apply a novel optical technique, quantitative phase spectroscopy (QPS) to characterize individual red blood cells (RBCs) during the intraerythrocytic life cycle of P. falciparum. QPS captures hyperspectral holograms of individual RBCs to measure spectroscopic changes across the visible wavelength range (475-700 nm), providing complex information, i.e. amplitude and phase, about the light field which has interacted with the cell. The complex field provides complimentary information on hemoglobin content and cell mass, which are both found to dramatically change upon infection by P. falciparum. Hb content progressively decreases with parasite life cycle, with an average 72.2% reduction observed for RBCs infected by schizont-stage P. falciparum compared to uninfected cells. Infection also resulted in a 33.1% reduction in RBC’s optical volume, a measure of the cells’ non-aqueous components. Notably, optical volume is only partially correlated with hemoglobin content, suggesting that changes in other dry mass components such as parasite mass may also be assessed using this technique. The unique ability of QPS to discriminate individual healthy and infected cells using spectroscopic changes indicates that the approach can be used to detect disease.

  20. Quantitative X-Ray Phase-Contrast Microtomography from a Compact Laser Driven Betatron Source

    CERN Document Server

    Wenz, J; Khrennikov, K; Bech, M; Thibault, P; Heigoldt, M; Pfeiffer, F; Karsch, S

    2014-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to brilliant keV X-ray emission. This so-called Betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present the first phase-contrast micro-tomogram revealing quantitative electron density values of a biological sample using betatron X-rays, and a comprehensive source characterization. Our results suggest that laser-based X-ray technology offers the potential fo...

  1. Detection of Two-Phase Flow Patterns in a Vertical Minichannel Using the Recurrence Quantification Analysis

    Directory of Open Access Journals (Sweden)

    Mosdorf Romuald

    2015-06-01

    Full Text Available The two-phase flow (water-air occurring in square minichannel (3x3 mm has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR and Determinism (DET have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.

  2. Phase Coherence Analysis of Insect Flight

    CERN Document Server

    Shchekinova, E Y

    2009-01-01

    During insect flight a high--frequency wing oscillatory motion is generated. Here we present analysis of kinematic data of tethered Drosophila melanogaster flight. For a reliable detection of specific regimes of frequency variation we propose phase coherence method. The approach is generic and can be applied to nonstationary biological signals that feature multi- scale frequency variations. Our analysis reveals existence of distinct oscillatory modes.

  3. Label-free imaging of intracellular motility by low-coherent quantitative phase microscope in reflection geometry

    Science.gov (United States)

    Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka

    2011-11-01

    We demonstrate tomographic imaging of intracellular activity of living cells by a low-coherent quantitative phase microscope. The intracellular organelles, such as the nucleus, nucleolus, and mitochondria, are moving around inside living cells, driven by the cellular physiological activity. In order to visualize the intracellular motility in a label-free manner we have developed a reflection-type quantitative phase microscope which employs the phase shifting interferometric technique with a low-coherent light source. The phase shifting interferometry enables us to quantitatively measure the intensity and phase of the optical field, and the low-coherence interferometry makes it possible to selectively probe a specific sectioning plane in the cell volume. The results quantitatively revealed the depth-resolved fluctuations of intracellular surfaces so that the plasma membrane and the membranes of intracellular organelles were independently measured. The transversal and the vertical spatial resolutions were 0.56 μm and 0.93 μm, respectively, and the mechanical sensitivity of the phase measurement was 1.2 nanometers. The mean-squared displacement was applied as a statistical tool to analyze the temporal fluctuation of the intracellular organelles. To the best of our knowledge, our system visualized depth-resolved intracellular organelles motion for the first time in sub-micrometer resolution without contrast agents.

  4. Epistasis analysis for quantitative traits by functional regression model.

    Science.gov (United States)

    Zhang, Futao; Boerwinkle, Eric; Xiong, Momiao

    2014-06-01

    The critical barrier in interaction analysis for rare variants is that most traditional statistical methods for testing interactions were originally designed for testing the interaction between common variants and are difficult to apply to rare variants because of their prohibitive computational time and poor ability. The great challenges for successful detection of interactions with next-generation sequencing (NGS) data are (1) lack of methods for interaction analysis with rare variants, (2) severe multiple testing, and (3) time-consuming computations. To meet these challenges, we shift the paradigm of interaction analysis between two loci to interaction analysis between two sets of loci or genomic regions and collectively test interactions between all possible pairs of SNPs within two genomic regions. In other words, we take a genome region as a basic unit of interaction analysis and use high-dimensional data reduction and functional data analysis techniques to develop a novel functional regression model to collectively test interactions between all possible pairs of single nucleotide polymorphisms (SNPs) within two genome regions. By intensive simulations, we demonstrate that the functional regression models for interaction analysis of the quantitative trait have the correct type 1 error rates and a much better ability to detect interactions than the current pairwise interaction analysis. The proposed method was applied to exome sequence data from the NHLBI's Exome Sequencing Project (ESP) and CHARGE-S study. We discovered 27 pairs of genes showing significant interactions after applying the Bonferroni correction (P-values < 4.58 × 10(-10)) in the ESP, and 11 were replicated in the CHARGE-S study.

  5. Discrete ambiguities in phase-shift analysis

    NARCIS (Netherlands)

    Heemskerk, A.C.; Kok, L.P.; Roo, M. de

    1975-01-01

    In two practical examples (α-3He and α-α scattering) we investigate to what extent the elastic amplitude above the first inelastic threshold, determined from phase-shift analysis, is subject to ambiguity. We find that it is extremely difficult to determine the correct physical amplitude uniquely.

  6. Quantitative CT analysis of small pulmonary vessels in lymphangioleiomyomatosis

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Katsutoshi, E-mail: kando@juntendo.ac.jp [Department of Internal Medicine, Division of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421 (Japan); The Study Group of Pneumothorax and Cystic Lung Diseases, 4-8-1 Seta, Setagaya-Ku, Tokyo 158-0095 (Japan); Tobino, Kazunori [Department of Respiratory Medicine, Iizuka Hospital, 3-83 Yoshio-Machi, Iizuka-City, Fukuoka 820-8505 (Japan); The Study Group of Pneumothorax and Cystic Lung Diseases, 4-8-1 Seta, Setagaya-Ku, Tokyo 158-0095 (Japan); Kurihara, Masatoshi; Kataoka, Hideyuki [Pneumothorax Center, Nissan Tamagawa Hospital, 4-8-1 Seta, Setagaya-Ku, Tokyo 158-0095 (Japan); The Study Group of Pneumothorax and Cystic Lung Diseases, 4-8-1 Seta, Setagaya-Ku, Tokyo 158-0095 (Japan); Doi, Tokuhide [Fukuoka Clinic, 7-18-11 Umeda, Adachi-Ku, Tokyo 123-0851 (Japan); Hoshika, Yoshito [Department of Internal Medicine, Division of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421 (Japan); The Study Group of Pneumothorax and Cystic Lung Diseases, 4-8-1 Seta, Setagaya-Ku, Tokyo 158-0095 (Japan); Takahashi, Kazuhisa [Department of Internal Medicine, Division of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421 (Japan); Seyama, Kuniaki [Department of Internal Medicine, Division of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421 (Japan); The Study Group of Pneumothorax and Cystic Lung Diseases, 4-8-1 Seta, Setagaya-Ku, Tokyo 158-0095 (Japan)

    2012-12-15

    Backgrounds: Lymphangioleiomyomatosis (LAM) is a destructive lung disease that share clinical, physiologic, and radiologic features with chronic obstructive pulmonary disease (COPD). This study aims to identify those features that are unique to LAM by using quantitative CT analysis. Methods: We measured total cross-sectional areas of small pulmonary vessels (CSA) less than 5 mm{sup 2} and 5–10 mm{sup 2} and calculated percentages of those lung areas (%CSA), respectively, in 50 LAM and 42 COPD patients. The extent of cystic destruction (LAA%) and mean parenchymal CT value were also calculated and correlated with pulmonary function. Results: The diffusing capacity for carbon monoxide/alveolar volume (DL{sub CO}/VA %predicted) was similar for both groups (LAM, 44.4 ± 19.8% vs. COPD, 45.7 ± 16.0%, p = 0.763), but less tissue damage occurred in LAM than COPD (LAA% 21.7 ± 16.3% vs. 29.3 ± 17.0; p < 0.05). Pulmonary function correlated negatively with LAA% (p < 0.001) in both groups, yet the correlation with %CSA was significant only in COPD (p < 0.001). When the same analysis was conducted in two groups with equal levels of LAA% and DL{sub CO}/VA %predicted, %CSA and mean parenchymal CT value were still greater for LAM than COPD (p < 0.05). Conclusions: Quantitative CT analysis revealing a correlation between cystic destruction and CSA in COPD but not LAM indicates that this approach successfully reflects different mechanisms governing the two pathologic courses. Such determinations of small pulmonary vessel density may serve to differentiate LAM from COPD even in patients with severe lung destruction.

  7. The Quantitative Analysis of Chennai Automotive Industry Cluster

    Science.gov (United States)

    Bhaskaran, Ethirajan

    2016-07-01

    Chennai, also called as Detroit of India due to presence of Automotive Industry producing over 40 % of the India's vehicle and components. During 2001-2002, the Automotive Component Industries (ACI) in Ambattur, Thirumalizai and Thirumudivakkam Industrial Estate, Chennai has faced problems on infrastructure, technology, procurement, production and marketing. The objective is to study the Quantitative Performance of Chennai Automotive Industry Cluster before (2001-2002) and after the CDA (2008-2009). The methodology adopted is collection of primary data from 100 ACI using quantitative questionnaire and analyzing using Correlation Analysis (CA), Regression Analysis (RA), Friedman Test (FMT), and Kruskall Wallis Test (KWT).The CA computed for the different set of variables reveals that there is high degree of relationship between the variables studied. The RA models constructed establish the strong relationship between the dependent variable and a host of independent variables. The models proposed here reveal the approximate relationship in a closer form. KWT proves, there is no significant difference between three locations clusters with respect to: Net Profit, Production Cost, Marketing Costs, Procurement Costs and Gross Output. This supports that each location has contributed for development of automobile component cluster uniformly. The FMT proves, there is no significant difference between industrial units in respect of cost like Production, Infrastructure, Technology, Marketing and Net Profit. To conclude, the Automotive Industries have fully utilized the Physical Infrastructure and Centralised Facilities by adopting CDA and now exporting their products to North America, South America, Europe, Australia, Africa and Asia. The value chain analysis models have been implemented in all the cluster units. This Cluster Development Approach (CDA) model can be implemented in industries of under developed and developing countries for cost reduction and productivity

  8. QuASAR: quantitative allele-specific analysis of reads.

    Science.gov (United States)

    Harvey, Chris T; Moyerbrailean, Gregory A; Davis, Gordon O; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-04-15

    Expression quantitative trait loci (eQTL) studies have discovered thousands of genetic variants that regulate gene expression, enabling a better understanding of the functional role of non-coding sequences. However, eQTL studies are costly, requiring large sample sizes and genome-wide genotyping of each sample. In contrast, analysis of allele-specific expression (ASE) is becoming a popular approach to detect the effect of genetic variation on gene expression, even within a single individual. This is typically achieved by counting the number of RNA-seq reads matching each allele at heterozygous sites and testing the null hypothesis of a 1:1 allelic ratio. In principle, when genotype information is not readily available, it could be inferred from the RNA-seq reads directly. However, there are currently no existing methods that jointly infer genotypes and conduct ASE inference, while considering uncertainty in the genotype calls. We present QuASAR, quantitative allele-specific analysis of reads, a novel statistical learning method for jointly detecting heterozygous genotypes and inferring ASE. The proposed ASE inference step takes into consideration the uncertainty in the genotype calls, while including parameters that model base-call errors in sequencing and allelic over-dispersion. We validated our method with experimental data for which high-quality genotypes are available. Results for an additional dataset with multiple replicates at different sequencing depths demonstrate that QuASAR is a powerful tool for ASE analysis when genotypes are not available. http://github.com/piquelab/QuASAR. fluca@wayne.edu or rpique@wayne.edu Supplementary Material is available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging

    Science.gov (United States)

    Jung, Jaehwang; Matemba, Lucas E.; Lee, Kyeoreh; Kazyoba, Paul E.; Yoon, Jonghee; Massaga, Julius J.; Kim, Kyoohyun; Kim, Dong-Jin; Park, Yongkeun

    2016-08-01

    Sickle cell disease (SCD) is common across Sub-Saharan Africa. However, the investigation of SCD in this area has been significantly limited mainly due to the lack of research facilities and skilled personnel. Here, we present optical measurements of individual red blood cells from healthy individuals and individuals with SCD and sickle cell trait in Tanzania using the quantitative phase imaging technique. By employing a quantitative phase imaging unit, an existing microscope in a clinic is transformed into a powerful quantitative phase microscope providing measurements on the morphological, biochemical, and biomechanical properties of individual cells. The present approach will open up new opportunities for cost-effective investigation and diagnosis of several diseases in low resource environments.

  10. Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging

    CERN Document Server

    Jung, JaeHwang; Lee, KyeoReh; Kazyoba, Paul E; Yoon, Jonghee; Massaga, Julius J; Kim, Kyoohyun; Kim, Dong-Jin; Park, YongKeun

    2016-01-01

    Sickle cell disease (SCD) is common across Sub-Saharan Africa. However, the investigation of SCD in this area has been significantly limited mainly due to the lack of research facilities and skilled personnel. Here, we present optical measurements of individual red blood cells (RBCs) from healthy individuals and individuals with SCD and sickle cell trait in Tanzania using the quantitative phase imaging technique. By employing a quantitative phase imaging unit (QPIU), an existing microscope in a clinic is transformed into a powerful quantitative phase microscope providing measurements on the morphological, biochemical, and biomechanical properties of individual cells. The present approach will open up new opportunities for cost-effective investigation and diagnosis of several diseases in low resource environments.

  11. Quantitative assessment of the effectiveness of phase 1 orthodontic treatment using the American Board of Orthodontics Discrepancy Index.

    Science.gov (United States)

    Vasilakou, Nefeli; Araujo, Eustaquio A; Kim, Ki Beom; Oliver, Donald R

    2016-12-01

    This retrospective study included a sample of 300 randomly selected patients from the archived records of Saint Louis University's graduate orthodontic clinic, St. Louis, Mo, from 1990 to 2012. The objective of this study was to quantify the changes obtained in phase 1 of orthodontic treatment and determine how much improvement, if any, has occurred before the initiation of the second phase. For the purpose of this study, prephase 1 and prephase 2 records of 300 subjects were gathered. All were measured using the American Board of Ortodontics Discrepancy Index (DI), and a score was given for each phase. The difference of the 2 scores indicated the quantitative change of the complexity of the treatment. Paired t tests were used to compare the scores. Additionally, the sample was categorized into 3 groups according to the Angle classifications, and the same statistics were used to identify significant changes between the 2 scores. Analysis of variance was applied to compare the 3 groups and determine which had the most change. Percentages of change were calculated for the significant scores. The total DI score overall and the scores of all 3 groups were significantly reduced from before to after phase 1. Overall, 42% improvement was observed. The Class I group showed 49.3% improvement, the Class II group 34.5% and the Class III group 58.5%. Most components of the DI improved significantly, but a few showed negative changes. Significant reductions of DI scores were observed in the total sample and in all Angle classification groups. This indicates that early treatment reduces the complexity of the malocclusions. Only 2 components of the DI showed statistically significant negative changes. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Quantitative modeling and data analysis of SELEX experiments

    Science.gov (United States)

    Djordjevic, Marko; Sengupta, Anirvan M.

    2006-03-01

    SELEX (systematic evolution of ligands by exponential enrichment) is an experimental procedure that allows the extraction, from an initially random pool of DNA, of those oligomers with high affinity for a given DNA-binding protein. We address what is a suitable experimental and computational procedure to infer parameters of transcription factor-DNA interaction from SELEX experiments. To answer this, we use a biophysical model of transcription factor-DNA interactions to quantitatively model SELEX. We show that a standard procedure is unsuitable for obtaining accurate interaction parameters. However, we theoretically show that a modified experiment in which chemical potential is fixed through different rounds of the experiment allows robust generation of an appropriate dataset. Based on our quantitative model, we propose a novel bioinformatic method of data analysis for such a modified experiment and apply it to extract the interaction parameters for a mammalian transcription factor CTF/NFI. From a practical point of view, our method results in a significantly improved false positive/false negative trade-off, as compared to both the standard information theory based method and a widely used empirically formulated procedure.

  13. Quantitative analysis of multiple sclerosis: a feasibility study

    Science.gov (United States)

    Li, Lihong; Li, Xiang; Wei, Xinzhou; Sturm, Deborah; Lu, Hongbing; Liang, Zhengrong

    2006-03-01

    Multiple Sclerosis (MS) is an inflammatory and demyelinating disorder of the central nervous system with a presumed immune-mediated etiology. For treatment of MS, the measurements of white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) are often used in conjunction with clinical evaluation to provide a more objective measure of MS burden. In this paper, we apply a new unifying automatic mixture-based algorithm for segmentation of brain tissues to quantitatively analyze MS. The method takes into account the following effects that commonly appear in MR imaging: 1) The MR data is modeled as a stochastic process with an inherent inhomogeneity effect of smoothly varying intensity; 2) A new partial volume (PV) model is built in establishing the maximum a posterior (MAP) segmentation scheme; 3) Noise artifacts are minimized by a priori Markov random field (MRF) penalty indicating neighborhood correlation from tissue mixture. The volumes of brain tissues (WM, GM) and CSF are extracted from the mixture-based segmentation. Experimental results of feasibility studies on quantitative analysis of MS are presented.

  14. Quantitative colorimetric-imaging analysis of nickel in iron meteorites.

    Science.gov (United States)

    Zamora, L Lahuerta; López, P Alemán; Fos, G M Antón; Algarra, R Martín; Romero, A M Mellado; Calatayud, J Martínez

    2011-02-15

    A quantitative analytical imaging approach for determining the nickel content of metallic meteorites is proposed. The approach uses a digital image of a series of standard solutions of the nickel-dimethylglyoxime coloured chelate and a meteorite sample solution subjected to the same treatment as the nickel standards for quantitation. The image is processed with suitable software to assign a colour-dependent numerical value (analytical signal) to each standard. Such a value is directly proportional to the analyte concentration, which facilitates construction of a calibration graph where the value for the unknown sample can be interpolated to calculate the nickel content of the meteorite. The results thus obtained were validated by comparison with the official, ISO-endorsed spectrophotometric method for nickel. The proposed method is fairly simple and inexpensive; in fact, it uses a commercially available digital camera as measuring instrument and the images it provides are processed with highly user-friendly public domain software (specifically, ImageJ, developed by the National Institutes of Health and freely available for download on the Internet). In a scenario dominated by increasingly sophisticated and expensive equipment, the proposed method provides a cost-effective alternative based on simple, robust hardware that is affordable and can be readily accessed worldwide. This can be especially advantageous for countries were available resources for analytical equipment investments are scant. The proposed method is essentially an adaptation of classical chemical analysis to current, straightforward, robust, cost-effective instrumentation. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Quantitative analysis of tumor burden in mouse lung via MRI.

    Science.gov (United States)

    Tidwell, Vanessa K; Garbow, Joel R; Krupnick, Alexander S; Engelbach, John A; Nehorai, Arye

    2012-02-01

    Lung cancer is the leading cause of cancer death in the United States. Despite recent advances in screening protocols, the majority of patients still present with advanced or disseminated disease. Preclinical rodent models provide a unique opportunity to test novel therapeutic drugs for targeting lung cancer. Respiratory-gated MRI is a key tool for quantitatively measuring lung-tumor burden and monitoring the time-course progression of individual tumors in mouse models of primary and metastatic lung cancer. However, quantitative analysis of lung-tumor burden in mice by MRI presents significant challenges. Herein, a method for measuring tumor burden based upon average lung-image intensity is described and validated. The method requires accurate lung segmentation; its efficiency and throughput would be greatly aided by the ability to automatically segment the lungs. A technique for automated lung segmentation in the presence of varying tumor burden levels is presented. The method includes development of a new, two-dimensional parametric model of the mouse lungs and a multi-faceted cost function to optimally fit the model parameters to each image. Results demonstrate a strong correlation (0.93), comparable with that of fully manual expert segmentation, between the automated method's tumor-burden metric and the tumor burden measured by lung weight.

  16. The Impact of Arithmetic Skills on Mastery of Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Bruce K. Blaylock

    2012-01-01

    Full Text Available Over the past several years math education has moved from a period where all math calculations were done by hand to an era where most calculations are done using a calculator or computer. There are certainly benefits to this approach, but when one concomitantly recognizes the declining scores on national standardized mathematics exams, it raises the question, “Could the lack of technology-assisted arithmetic manipulation skills have a carryover to understanding higher-level mathematical concepts or is it just a spurious correlation?” Eighty-seven students were tested for their ability to do simple arithmetic and algebra by hand. These scores were then regressed on three important areas of quantitative analysis: recognizing the appropriate tool to use in an analysis, creating a model to carry out the analysis, and interpreting the results of the analysis. The study revealed a significant relationship between the ability to accurately do arithmetic calculations and the ability to recognize the appropriate tool and creating a model. It found no significant relationship between results interpretation and arithmetic skills.

  17. Analysis of generalized interictal discharges using quantitative EEG.

    Science.gov (United States)

    da Silva Braga, Aline Marques; Fujisao, Elaine Keiko; Betting, Luiz Eduardo

    2014-12-01

    Experimental evidence from animal models of the absence seizures suggests a focal source for the initiation of generalized spike-and-wave (GSW) discharges. Furthermore, clinical studies indicate that patients diagnosed with idiopathic generalized epilepsy (IGE) exhibit focal electroencephalographic abnormalities, which involve the thalamo-cortical circuitry. This circuitry is a key network that has been implicated in the initiation of generalized discharges, and may contribute to the pathophysiology of GSW discharges. Quantitative electroencephalogram (qEEG) analysis may be able to detect abnormalities associated with the initiation of GSW discharges. The objective of this study was to determine whether interictal GSW discharges exhibit focal characteristics using qEEG analysis. In this study, 75 EEG recordings from 64 patients were analyzed. All EEG recordings analyzed contained at least one GSW discharge. EEG recordings were obtained by a 22-channel recorder with electrodes positioned according to the international 10-20 system of electrode placement. EEG activity was recorded for 20 min including photic stimulation and hyperventilation. The EEG recordings were visually inspected, and the first unequivocally confirmed generalized spike was marked for each discharge. Three methods of source imaging analysis were applied: dipole source imaging (DSI), classical LORETA analysis recursively applied (CLARA), and equivalent dipole of independent components with cluster analysis. A total of 753 GSW discharges were identified and spatiotemporally analyzed. Source evaluation analysis using all three techniques revealed that the frontal lobe was the principal source of GSW discharges (70%), followed by the parietal and occipital lobes (14%), and the basal ganglia (12%). The main anatomical sources of GSW discharges were the anterior cingulate cortex (36%) and the medial frontal gyrus (23%). Source analysis did not reveal a common focal source of GSW discharges. However

  18. Ozone Determination: A Comparison of Quantitative Analysis Methods

    Directory of Open Access Journals (Sweden)

    Rachmat Triandi Tjahjanto

    2012-10-01

    Full Text Available A comparison of ozone quantitative analysis methods by using spectrophotometric and volumetric method has been studied. The aim of this research is to determine the better method by considering the effect of reagent concentration and volume on the measured ozone concentration. Ozone which was analyzed in this research was synthesized from air, then it is used to ozonize methyl orange and potassium iodide solutions at different concentration and volume. Ozonation was held for 20 minutes with 363 mL/minutes air flow rates. The concentrations of ozonized methyl orange and potassium iodide solutions was analyzed by spectrophotometric and volumetric method, respectively. The result of this research shows that concentration and volume of reagent having an effect on the measured ozone concentration. Based on the results of both methods, it can be concluded that volumetric method is better than spectrophotometric method.

  19. Quantitative genetic analysis of injury liability in infants and toddlers

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, K.; Matheny, A.P. Jr. [Univ. of Louisville Medical School, KY (United States)

    1995-02-27

    A threshold model of latent liability was applied to infant and toddler twin data on total count of injuries sustained during the interval from birth to 36 months of age. A quantitative genetic analysis of estimated twin correlations in injury liability indicated strong genetic dominance effects, but no additive genetic variance was detected. Because interpretations involving overdominance have little research support, the results may be due to low order epistasis or other interaction effects. Boys had more injuries than girls, but this effect was found only for groups whose parents were prompted and questioned in detail about their children`s injuries. Activity and impulsivity are two behavioral predictors of childhood injury, and the results are discussed in relation to animal research on infant and adult activity levels, and impulsivity in adult humans. Genetic epidemiological approaches to childhood injury should aid in targeting higher risk children for preventive intervention. 30 refs., 4 figs., 3 tabs.

  20. Quantitative analysis of gallstones using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Singh, Vivek K; Singh, Vinita; Rai, Awadhesh K; Thakur, Surya N; Rai, Pradeep K; Singh, Jagdish P

    2008-11-01

    The utility of laser-induced breakdown spectroscopy (LIBS) for categorizing different types of gallbladder stone has been demonstrated by analyzing their major and minor constituents. LIBS spectra of three types of gallstone have been recorded in the 200-900 nm spectral region. Calcium is found to be the major element in all types of gallbladder stone. The spectrophotometric method has been used to classify the stones. A calibration-free LIBS method has been used for the quantitative analysis of metal elements, and the results have been compared with those obtained from inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements. The single-shot LIBS spectra from different points on the cross section (in steps of 0.5 mm from one end to the other) of gallstones have also been recorded to study the variation of constituents from the center to the surface. The presence of different metal elements and their possible role in gallstone formation is discussed.

  1. Quantitative image analysis of WE43-T6 cracking behavior

    Science.gov (United States)

    Ahmad, A.; Yahya, Z.

    2013-06-01

    Environment-assisted cracking of WE43 cast magnesium (4.2 wt.% Yt, 2.3 wt.% Nd, 0.7% Zr, 0.8% HRE) in the T6 peak-aged condition was induced in ambient air in notched specimens. The mechanism of fracture was studied using electron backscatter diffraction, serial sectioning and in situ observations of crack propagation. The intermetallic (rare earthed-enriched divorced intermetallic retained at grain boundaries and predominantly at triple points) material was found to play a significant role in initiating cracks which leads to failure of this material. Quantitative measurements were required for this project. The populations of the intermetallic and clusters of intermetallic particles were analyzed using image analysis of metallographic images. This is part of the work to generate a theoretical model of the effect of notch geometry on the static fatigue strength of this material.

  2. qfasar: quantitative fatty acid signature analysis with R

    Science.gov (United States)

    Bromaghin, Jeffrey

    2017-01-01

    Knowledge of predator diets provides essential insights into their ecology, yet diet estimation is challenging and remains an active area of research.Quantitative fatty acid signature analysis (QFASA) is a popular method of estimating diet composition that continues to be investigated and extended. However, software to implement QFASA has only recently become publicly available.I summarize a new R package, qfasar, for diet estimation using QFASA methods. The package also provides functionality to evaluate and potentially improve the performance of a library of prey signature data, compute goodness-of-fit diagnostics, and support simulation-based research. Several procedures in the package have not previously been published.qfasar makes traditional and recently published QFASA diet estimation methods accessible to ecologists for the first time. Use of the package is illustrated with signature data from Chukchi Sea polar bears and potential prey species.

  3. Large-Scale Quantitative Analysis of Painting Arts

    Science.gov (United States)

    Kim, Daniel; Son, Seung-Woo; Jeong, Hawoong

    2014-12-01

    Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images - the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances.

  4. Quantitative analysis of forest island pattern in selected Ohio landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, G.W.; Burgess, R.L.

    1981-07-01

    The purpose of this study was to quantitatively describe the various aspects of regional distribution patterns of forest islands and relate those patterns to other landscape features. Several maps showing the forest cover of various counties in Ohio were selected as representative examples of forest patterns to be quantified. Ten thousand hectare study areas (landscapes) were delineated on each map. A total of 15 landscapes representing a wide variety of forest island patterns was chosen. Data were converted into a series of continuous variables which contained information pertinent to the sizes, shape, numbers, and spacing of woodlots within a landscape. The continuous variables were used in a factor analysis to describe the variation among landscapes in terms of forest island pattern. The results showed that forest island patterns are related to topography and other environmental features correlated with topography.

  5. Quantitative analysis of secretome from adipocytes regulated by insulin

    Institute of Scientific and Technical Information of China (English)

    Hu Zhou; Yuanyuan Xiao; Rongxia Li; Shangyu Hong; Sujun Li; Lianshui Wang; Rong Zeng; Kan Liao

    2009-01-01

    Adipocyte is not only a central player involved in storage and release of energy, but also in regulation of energy metabolism in other organs via secretion of pep-tides and proteins. During the pathogenesis of insulin resistance and type 2 diabetes, adipocytes are subjected to the increased levels of insulin, which may have a major impact on the secretion of adipokines. We have undertaken cleavable isotope-coded affinity tag (clCAT) and label-free quantitation approaches to identify and quantify secretory factors that are differen-tially secreted by 3T3-LI adipocytes with or without insulin treatment. Combination of clCAT and label-free results, there are 317 proteins predicted or annotated as secretory proteins. Among these secretory proteins, 179 proteins and 53 proteins were significantly up-regulated and down-regulated, respectively. A total of 77 reported adipokines were quantified in our study, such as adiponectin, cathepsin D, cystatin C, resistin, and transferrin. Western blot analysis of these adipo-kines confirmed the quantitative results from mass spectrometry, and revealed individualized secreting pat-terns of these proteins by increasing insulin dose. In addition, 240 proteins were newly identified and quanti-fied as secreted proteins from 3T3-L1 adipocytes in our study, most of which were up-regulated upon insulin treatment. Further comprehensive bioinformatics analysis revealed that the secretory proteins in extra-cellular matrix-receptor interaction pathway and glycan structure degradation pathway were significantly up-regulated by insulin stimulation.

  6. Retrieval of complex χ((2)) parts for quantitative analysis of sum-frequency generation intensity spectra.

    Science.gov (United States)

    Hofmann, Matthias J; Koelsch, Patrick

    2015-10-07

    Vibrational sum-frequency generation (SFG) spectroscopy has become an established technique for in situ surface analysis. While spectral recording procedures and hardware have been optimized, unique data analysis routines have yet to be established. The SFG intensity is related to probing geometries and properties of the system under investigation such as the absolute square of the second-order susceptibility χ((2)) (2). A conventional SFG intensity measurement does not grant access to the complex parts of χ((2)) unless further assumptions have been made. It is therefore difficult, sometimes impossible, to establish a unique fitting solution for SFG intensity spectra. Recently, interferometric phase-sensitive SFG or heterodyne detection methods have been introduced to measure real and imaginary parts of χ((2)) experimentally. Here, we demonstrate that iterative phase-matching between complex spectra retrieved from maximum entropy method analysis and fitting of intensity SFG spectra (iMEMfit) leads to a unique solution for the complex parts of χ((2)) and enables quantitative analysis of SFG intensity spectra. A comparison between complex parts retrieved by iMEMfit applied to intensity spectra and phase sensitive experimental data shows excellent agreement between the two methods.

  7. PIQMIe: A web server for semi-quantitative proteomics data management and analysis

    NARCIS (Netherlands)

    A. Kuzniar (Arnold); R. Kanaar (Roland)

    2014-01-01

    textabstractWe present the Proteomics Identifications and Quantitations Data Management and Integration Service or PIQMIe that aids in reliable and scalable data management, analysis and visualization of semi-quantitative mass spectrometry based proteomics experiments. PIQMIe readily integrates pept

  8. Data set for the proteomic inventory and quantitative analysis of chicken uterine fluid during eggshell biomineralization

    Directory of Open Access Journals (Sweden)

    Pauline Marie

    2014-12-01

    Full Text Available Chicken eggshell is the protective barrier of the egg. It is a biomineral composed of 95% calcium carbonate on calcitic form and 3.5% organic matrix proteins. Mineralization process occurs in uterus into the uterine fluid. This acellular fluid contains ions and organic matrix proteins precursors which are interacting with the mineral phase and control crystal growth, eggshell structure and mechanical properties. We performed a proteomic approach and identified 308 uterine fluid proteins. Gene Ontology terms enrichments were determined to investigate their potential functions. Mass spectrometry analyses were also combined to label free quantitative analysis to determine the relative abundance of 96 proteins at initiation, rapid growth phase and termination of shell calcification. Sixty four showed differential abundance according to the mineralization stage. Their potential functions have been annotated. The complete proteomic, bioinformatic and functional analyses are reported in Marie et al., J. Proteomics (2015 [1].

  9. Automatic quantitative analysis of cardiac MR perfusion images

    Science.gov (United States)

    Breeuwer, Marcel M.; Spreeuwers, Luuk J.; Quist, Marcel J.

    2001-07-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the myocardium (the heart muscle) from MR images, using contrast-enhanced ECG-triggered MRI. We have developed an automatic quantitative analysis method, which works as follows. First, image registration is used to compensate for translation and rotation of the myocardium over time. Next, the boundaries of the myocardium are detected and for each position within the myocardium a time-intensity profile is constructed. The time interval during which the contrast agent passes for the first time through the left ventricle and the myocardium is detected and various parameters are measured from the time-intensity profiles in this interval. The measured parameters are visualized as color overlays on the original images. Analysis results are stored, so that they can later on be compared for different stress levels of the heart. The method is described in detail in this paper and preliminary validation results are presented.

  10. QTL analysis for some quantitative traits in bread wheat

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Quantitative trait loci (QTL) analysis was conducted in bread wheat for 14 important traits utilizing data from four different mapping populations involving different approaches of QTL analysis. Analysis for grain protein content (GPC) suggested that the major part of genetic variation for this trait is due to environmental interactions. In contrast, pre-harvest sprouting tolerance (PHST) was controlled mainly by main effect QTL (M-QTL) with very little genetic variation due to environmental interactions; a major QTL for PHST was detected on chromosome arm 3AL. For grain weight, one QTL each was detected on chromosome arms 1AS, 2BS and 7AS. QTL for 4 growth related traits taken together detected by different methods ranged from 37 to 40; nine QTL that were detected by single-locus as well as two-locus analyses were all M-QTL. Similarly, single-locus and two-locus QTL analyses for seven yield and yield contributing traits in two populations respectively allowed detection of 25 and 50 QTL by composite interval mapping (CIM), 16 and 25 QTL by multiple-trait composite interval mapping (MCIM) and 38 and 37 QTL by two-locus analyses. These studies should prove useful in QTL cloning and wheat improvement through marker aided selection.

  11. Quantitative polymerase chain reaction analysis by deconvolution of internal standard.

    Science.gov (United States)

    Hirakawa, Yasuko; Medh, Rheem D; Metzenberg, Stan

    2010-04-29

    Quantitative Polymerase Chain Reaction (qPCR) is a collection of methods for estimating the number of copies of a specific DNA template in a sample, but one that is not universally accepted because it can lead to highly inaccurate (albeit precise) results. The fundamental problem is that qPCR methods use mathematical models that explicitly or implicitly apply an estimate of amplification efficiency, the error of which is compounded in the analysis to unacceptable levels. We present a new method of qPCR analysis that is efficiency-independent and yields accurate and precise results in controlled experiments. The method depends on a computer-assisted deconvolution that finds the point of concordant amplification behavior between the "unknown" template and an admixed amplicon standard. We apply the method to demonstrate dexamethasone-induced changes in gene expression in lymphoblastic leukemia cell lines. This method of qPCR analysis does not use any explicit or implicit measure of efficiency, and may therefore be immune to problems inherent in other qPCR approaches. It yields an estimate of absolute initial copy number of template, and controlled tests show it generates accurate results.

  12. Quantitative polymerase chain reaction analysis by deconvolution of internal standard

    Directory of Open Access Journals (Sweden)

    Metzenberg Stan

    2010-04-01

    Full Text Available Abstract Background Quantitative Polymerase Chain Reaction (qPCR is a collection of methods for estimating the number of copies of a specific DNA template in a sample, but one that is not universally accepted because it can lead to highly inaccurate (albeit precise results. The fundamental problem is that qPCR methods use mathematical models that explicitly or implicitly apply an estimate of amplification efficiency, the error of which is compounded in the analysis to unacceptable levels. Results We present a new method of qPCR analysis that is efficiency-independent and yields accurate and precise results in controlled experiments. The method depends on a computer-assisted deconvolution that finds the point of concordant amplification behavior between the "unknown" template and an admixed amplicon standard. We apply the method to demonstrate dexamethasone-induced changes in gene expression in lymphoblastic leukemia cell lines. Conclusions This method of qPCR analysis does not use any explicit or implicit measure of efficiency, and may therefore be immune to problems inherent in other qPCR approaches. It yields an estimate of absolute initial copy number of template, and controlled tests show it generates accurate results.

  13. Enantiomer labelling, a method for the quantitative analysis of amino acids.

    Science.gov (United States)

    Frank, H; Nicholson, G J; Bayer, E

    1978-12-21

    Enantiomer labelling a method for the quntitative analysis of optically active natural compounds by gas chromatography, involves the use of the unnatural enantiomer as an internal standard. With Chirasil-Val, a chiral stationary phase that is thermally stable up to up to 240 degrees, the enantiomers of amino acids and a variety of other compounds can be separated and quantitated. Incomplete recovery from the sample, incomplete derivatization, hydrolysis and thermal decomposition of the derivative and shifting response factors can be compensated for by adding the unnatural enantiomer. The accuracy of amino acid analysis by enantiomer labelling is equal or superior to that of hitherto known methods. The procedure affords a complete analysis of peptides with respect to both amino acid composition and the optical purity of each amino acid.

  14. Quantitative analysis of perfumes in talcum powder by using headspace sorptive extraction.

    Science.gov (United States)

    Ng, Khim Hui; Heng, Audrey; Osborne, Murray

    2012-03-01

    Quantitative analysis of perfume dosage in talcum powder has been a challenge due to interference of the matrix and has so far not been widely reported. In this study, headspace sorptive extraction (HSSE) was validated as a solventless sample preparation method for the extraction and enrichment of perfume raw materials from talcum powder. Sample enrichment is performed on a thick film of poly(dimethylsiloxane) (PDMS) coated onto a magnetic stir bar incorporated in a glass jacket. Sampling is done by placing the PDMS stir bar in the headspace vial by using a holder. The stir bar is then thermally desorbed online with capillary gas chromatography-mass spectrometry. The HSSE method is based on the same principles as headspace solid-phase microextraction (HS-SPME). Nevertheless, a relatively larger amount of extracting phase is coated on the stir bar as compared to SPME. Sample amount and extraction time were optimized in this study. The method has shown good repeatability (with relative standard deviation no higher than 12.5%) and excellent linearity with correlation coefficients above 0.99 for all analytes. The method was also successfully applied in the quantitative analysis of talcum powder spiked with perfume at different dosages. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An approach for quantitative image quality analysis for CT

    Science.gov (United States)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  16. Quantitative XPS analysis of silica-supported Cu Co oxides

    Science.gov (United States)

    Cesar, Deborah V.; Peréz, Carlos A.; Schmal, Martin; Salim, Vera Maria M.

    2000-04-01

    Copper-cobalt oxides with Cu/Co=5:5, 15:15 and 35:35 bulk ratio have been prepared by deposition-precipitation method at constant pH from copper and cobalt nitrate solutions. Different oxides were obtained by decomposition of the precursors at 673 K for 7 h in air and analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD data showed the formation of different oxide phases; for the bulk atomic ratio of 15Cu:15Co, a phase containing Cu and Co with spinel-like structure was observed, while the other bimetallic oxides presented CuO and Co 3O 4 as distinct phases. The XPS qualitative analysis has shown that all samples exhibited Cu 2+ and Co 3+ species at the surface. The Cu-Co spinel presented a displacement in Cu 2p binding energy value. A mathematical model was proposed from relative intensity ratios, which allowed the determination of the oxide particle thickness and the fraction of coverage at the support. This model described accurately the system and showed that cobalt improved the copper dispersion.

  17. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  18. Quantitative analysis and parametric display of regional myocardial mechanics

    Science.gov (United States)

    Eusemann, Christian D.; Bellemann, Matthias E.; Robb, Richard A.

    2000-04-01

    Quantitative assessment of regional heart motion has significant potential for more accurate diagnosis of heart disease and/or cardiac irregularities. Local heart motion may be studied from medical imaging sequences. Using functional parametric mapping, regional myocardial motion during a cardiac cycle can be color mapped onto a deformable heart model to obtain better understanding of the structure- to-function relationships in the myocardium, including regional patterns of akinesis or diskinesis associated with ischemia or infarction. In this study, 3D reconstructions were obtained from the Dynamic Spatial Reconstructor at 15 time points throughout one cardiac cycle of pre-infarct and post-infarct hearts. Deformable models were created from the 3D images for each time point of the cardiac cycles. Form these polygonal models, regional excursions and velocities of each vertex representing a unit of myocardium were calculated for successive time-intervals. The calculated results were visualized through model animations and/or specially formatted static images. The time point of regional maximum velocity and excursion of myocardium through the cardiac cycle was displayed using color mapping. The absolute value of regional maximum velocity and maximum excursion were displayed in a similar manner. Using animations, the local myocardial velocity changes were visualized as color changes on the cardiac surface during the cardiac cycle. Moreover, the magnitude and direction of motion for individual segments of myocardium could be displayed. Comparison of these dynamic parametric displays suggest that the ability to encode quantitative functional information on dynamic cardiac anatomy enhances the diagnostic value of 4D images of the heart. Myocardial mechanics quantified this way adds a new dimension to the analysis of cardiac functional disease, including regional patterns of akinesis and diskinesis associated with ischemia and infarction. Similarly, disturbances in

  19. Quantitative analysis with the optoacoustic/ultrasound system OPUS

    Science.gov (United States)

    Haisch, Christoph; Zell, Karin; Sperl, Jonathan; Vogel, Mika W.; Niessner, Reinhard

    2009-02-01

    The OPUS (Optoacoustic plus Ultrasound) system is a combination of a medical ultrasound scanner with a highrepetition rate, wavelength-tunable laser system and a suitable triggering interface to synchronize the laser and the ultrasound system. The pulsed laser generates an optoacoustic (OA), or photoacoustic (PA), signal which is detected by the ultrasound system. Alternatively, imaging in conventional ultrasound mode can be performed. Both imaging modes can be superimposed. The laser light is coupled into the tissue laterally, parallel to the ultrasound transducer, which does not require for any major modification to the transducer or the ultrasound beam forming. This was a basic requirement on the instrument, as the intention of the project was to establish the optoacoustic imaging modality as add-on to a conventional standard ultrasound instrument. We believe that this approach may foster the introduction of OA imaging as routine tool in medical diagnosis. Another key aspect of the project was to exploit the capabilities of OA imaging for quantitative analysis. The intention of the presented work is to summarize all steps necessary to extract the significant information from the PA raw data, which are required for the quantification of local absorber distributions. We show results of spatially resolved absorption measurements in scattering samples and a comparison of four different image reconstruction algorithms, regarding their influence on lateral resolution as well as on the signal to noise ratio for different sample depths and absorption values. The reconstruction algorithms are based on Fourier transformation, on a generalized 2D Hough transformation, on circular back-projection and the classical delay-and-sum approach which is implemented in most ultrasound scanners. Furthermore, we discuss the influence of a newly developed laser source, combining diode and flash lamp pumping. Compared to all-flash-lamp pumped systems it features a significantly higher

  20. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Science.gov (United States)

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  1. Quantitative Phosphoproteomics Analysis of ERBB3/ERBB4 Signaling.

    Science.gov (United States)

    Wandinger, Sebastian K; Lahortiga, Idoya; Jacobs, Kris; Klammer, Martin; Jordan, Nicole; Elschenbroich, Sarah; Parade, Marc; Jacoby, Edgar; Linders, Joannes T M; Brehmer, Dirk; Cools, Jan; Daub, Henrik

    2016-01-01

    The four members of the epidermal growth factor receptor (EGFR/ERBB) family form homo- and heterodimers which mediate ligand-specific regulation of many key cellular processes in normal and cancer tissues. While signaling through the EGFR has been extensively studied on the molecular level, signal transduction through ERBB3/ERBB4 heterodimers is less well understood. Here, we generated isogenic mouse Ba/F3 cells that express full-length and functional membrane-integrated ERBB3 and ERBB4 or ERBB4 alone, to serve as a defined cellular model for biological and phosphoproteomics analysis of ERBB3/ERBB4 signaling. ERBB3 co-expression significantly enhanced Ba/F3 cell proliferation upon neuregulin-1 (NRG1) treatment. For comprehensive signaling studies we performed quantitative mass spectrometry (MS) experiments to compare the basal ERBB3/ERBB4 cell phosphoproteome to NRG1 treatment of ERBB3/ERBB4 and ERBB4 cells. We employed a workflow comprising differential isotope labeling with mTRAQ reagents followed by chromatographic peptide separation and final phosphopeptide enrichment prior to MS analysis. Overall, we identified 9686 phosphorylation sites which could be confidently localized to specific residues. Statistical analysis of three replicate experiments revealed 492 phosphorylation sites which were significantly changed in NRG1-treated ERBB3/ERBB4 cells. Bioinformatics data analysis recapitulated regulation of mitogen-activated protein kinase and Akt pathways, but also indicated signaling links to cytoskeletal functions and nuclear biology. Comparative assessment of NRG1-stimulated ERBB4 Ba/F3 cells revealed that ERBB3 did not trigger defined signaling pathways but more broadly enhanced phosphoproteome regulation in cells expressing both receptors. In conclusion, our data provide the first global picture of ERBB3/ERBB4 signaling and provide numerous potential starting points for further mechanistic studies.

  2. Quantitative Phosphoproteomics Analysis of ERBB3/ERBB4 Signaling.

    Directory of Open Access Journals (Sweden)

    Sebastian K Wandinger

    Full Text Available The four members of the epidermal growth factor receptor (EGFR/ERBB family form homo- and heterodimers which mediate ligand-specific regulation of many key cellular processes in normal and cancer tissues. While signaling through the EGFR has been extensively studied on the molecular level, signal transduction through ERBB3/ERBB4 heterodimers is less well understood. Here, we generated isogenic mouse Ba/F3 cells that express full-length and functional membrane-integrated ERBB3 and ERBB4 or ERBB4 alone, to serve as a defined cellular model for biological and phosphoproteomics analysis of ERBB3/ERBB4 signaling. ERBB3 co-expression significantly enhanced Ba/F3 cell proliferation upon neuregulin-1 (NRG1 treatment. For comprehensive signaling studies we performed quantitative mass spectrometry (MS experiments to compare the basal ERBB3/ERBB4 cell phosphoproteome to NRG1 treatment of ERBB3/ERBB4 and ERBB4 cells. We employed a workflow comprising differential isotope labeling with mTRAQ reagents followed by chromatographic peptide separation and final phosphopeptide enrichment prior to MS analysis. Overall, we identified 9686 phosphorylation sites which could be confidently localized to specific residues. Statistical analysis of three replicate experiments revealed 492 phosphorylation sites which were significantly changed in NRG1-treated ERBB3/ERBB4 cells. Bioinformatics data analysis recapitulated regulation of mitogen-activated protein kinase and Akt pathways, but also indicated signaling links to cytoskeletal functions and nuclear biology. Comparative assessment of NRG1-stimulated ERBB4 Ba/F3 cells revealed that ERBB3 did not trigger defined signaling pathways but more broadly enhanced phosphoproteome regulation in cells expressing both receptors. In conclusion, our data provide the first global picture of ERBB3/ERBB4 signaling and provide numerous potential starting points for further mechanistic studies.

  3. Quantitative analysis of cryptic splicing associated with TDP-43 depletion.

    Science.gov (United States)

    Humphrey, Jack; Emmett, Warren; Fratta, Pietro; Isaacs, Adrian M; Plagnol, Vincent

    2017-05-26

    Reliable exon recognition is key to the splicing of pre-mRNAs into mature mRNAs. TDP-43 is an RNA-binding protein whose nuclear loss and cytoplasmic aggregation are a hallmark pathology in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). TDP-43 depletion causes the aberrant inclusion of cryptic exons into a range of transcripts, but their extent, relevance to disease pathogenesis and whether they are caused by other RNA-binding proteins implicated in ALS/FTD are unknown. We developed an analysis pipeline to discover and quantify cryptic exon inclusion and applied it to publicly available human and murine RNA-sequencing data. We detected widespread cryptic splicing in TDP-43 depletion datasets but almost none in another ALS/FTD-linked protein FUS. Sequence motif and iCLIP analysis of cryptic exons demonstrated that they are bound by TDP-43. Unlike the cryptic exons seen in hnRNP C depletion, those repressed by TDP-43 cannot be linked to transposable elements. Cryptic exons are poorly conserved and inclusion overwhelmingly leads to nonsense-mediated decay of the host transcript, with reduced transcript levels observed in differential expression analysis. RNA-protein interaction data on 73 different RNA-binding proteins showed that, in addition to TDP-43, 7 specifically bind TDP-43 linked cryptic exons. This suggests that TDP-43 competes with other splicing factors for binding to cryptic exons and can repress cryptic exon inclusion. Our quantitative analysis pipeline confirms the presence of cryptic exons during the depletion of TDP-43 but not FUS providing new insight into to RNA-processing dysfunction as a cause or consequence in ALS/FTD.

  4. Quantifying collagen fiber orientation in breast cancer using quantitative phase imaging

    Science.gov (United States)

    Majeed, Hassaan; Okoro, Chukwuemeka; Kajdacsy-Balla, André; Toussaint, Kimani C., Jr.; Popescu, Gabriel

    2017-04-01

    Tumor progression in breast cancer is significantly influenced by its interaction with the surrounding stromal tissue. Specifically, the composition, orientation, and alignment of collagen fibers in tumor-adjacent stroma affect tumor growth and metastasis. Most of the work done on measuring this prognostic marker has involved imaging of collagen fibers using second-harmonic generation microscopy (SHGM), which provides label-free specificity. Here, we show that spatial light interference microscopy (SLIM), a label-free quantitative phase imaging technique, is able to provide information on collagen-fiber orientation that is comparable to that provided by SHGM. Due to its wide-field geometry, the throughput of the SLIM system is much higher than that of SHGM and, because of the linear imaging, the equipment is simpler and significantly less expensive. Our results indicate that SLIM images can be used to extract important prognostic information from collagen fibers in breast tissue, potentially providing a convenient high throughput clinical tool for assessing patient prognosis.

  5. Prediction of prostate cancer recurrence using quantitative phase imaging: Validation on a general population

    Science.gov (United States)

    Sridharan, Shamira; Macias, Virgilia; Tangella, Krishnarao; Melamed, Jonathan; Dube, Emily; Kong, Max Xiangtian; Kajdacsy-Balla, André; Popescu, Gabriel

    2016-09-01

    Prediction of biochemical recurrence risk of prostate cancer following radical prostatectomy is critical for determining whether the patient would benefit from adjuvant treatments. Various nomograms exist today for identifying individuals at higher risk for recurrence; however, an optimistic under-estimation of recurrence risk is a common problem associated with these methods. We previously showed that anisotropy of light scattering measured using quantitative phase imaging, in the stromal layer adjacent to cancerous glands, is predictive of recurrence. That nested-case controlled study consisted of specimens specifically chosen such that the current prognostic methods fail. Here we report on validating the utility of optical anisotropy for prediction of prostate cancer recurrence in a general population of 192 patients, with 17% probability of recurrence. Our results show that our method can identify recurrent cases with 73% sensitivity and 72% specificity, which is comparable to that of CAPRA-S, a current state of the art method, in the same population. However, our results show that optical anisotropy outperforms CAPRA-S for patients with Gleason grades 7–10. In essence, we demonstrate that anisotropy is a better biomarker for identifying high-risk cases, while Gleason grade is better suited for selecting non-recurrence. Therefore, we propose that anisotropy and current techniques be used together to maximize prediction accuracy.

  6. Quantitative study on experimentally observed poroelastic behavior of Berea sandstone in two-phase fluid system

    Science.gov (United States)

    Goto, Hiroki; Aichi, Masaatsu; Tokunaga, Tomochika; Yamamoto, Hajime; Ogawa, Toyokazu; Aoki, Tomoyuki

    2014-08-01

    Coupled two-phase fluid flow and poroelastic deformation of Berea sandstone is studied through laboratory experiment and numerical simulation. In the experiment, compressed air was infiltrated from the bottom of a water-saturated cylindrical Berea sandstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample showed sudden extension and monotonic and gradual extension afterward. Numerical simulation based on thermodynamically consistent constitutive equations was conducted in order to quantitatively analyze the experimental results. In a simulation assuming isotropy of material properties, the volumetric discharge rate of water at the outlet and one of the axial, circumferential, and volumetric strains at half the height of the sample were reproduced well by each parameter set, while the other two strains were not. When introducing transverse isotropy, all the experimental data were reproduced well. In addition, the effect of saturation dependency of Bishop's effective stress coefficient on the deformation behavior of porous media was discussed, and it was found that strains, both axial and circumferential, are sensitive to the coefficient.

  7. A computational tool for quantitative analysis of vascular networks.

    Directory of Open Access Journals (Sweden)

    Enrique Zudaire

    Full Text Available Angiogenesis is the generation of mature vascular networks from pre-existing vessels. Angiogenesis is crucial during the organism' development, for wound healing and for the female reproductive cycle. Several murine experimental systems are well suited for studying developmental and pathological angiogenesis. They include the embryonic hindbrain, the post-natal retina and allantois explants. In these systems vascular networks are visualised by appropriate staining procedures followed by microscopical analysis. Nevertheless, quantitative assessment of angiogenesis is hampered by the lack of readily available, standardized metrics and software analysis tools. Non-automated protocols are being used widely and they are, in general, time--and labour intensive, prone to human error and do not permit computation of complex spatial metrics. We have developed a light-weight, user friendly software, AngioTool, which allows for quick, hands-off and reproducible quantification of vascular networks in microscopic images. AngioTool computes several morphological and spatial parameters including the area covered by a vascular network, the number of vessels, vessel length, vascular density and lacunarity. In addition, AngioTool calculates the so-called "branching index" (branch points/unit area, providing a measurement of the sprouting activity of a specimen of interest. We have validated AngioTool using images of embryonic murine hindbrains, post-natal retinas and allantois explants. AngioTool is open source and can be downloaded free of charge.

  8. Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhe; Wu, Chaochao; Xie, Fang; Slysz, Gordon W.; Tolic, Nikola; Monroe, Matthew E.; Petyuk, Vladislav A.; Payne, Samuel H.; Fujimoto, Grant M.; Moore, Ronald J.; Fillmore, Thomas L.; Schepmoes, Athena A.; Levine, Douglas; Townsend, Reid; Davies, Sherri; Li, Shunqiang; Ellis, Matthew; Boja, Emily; Rivers, Robert; Rodriguez, Henry; Rodland, Karin D.; Liu, Tao; Smith, Richard D.

    2015-01-02

    Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective and robust analytical platform for comprehensive analyses of tissue peptidomes, which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Moreover, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. Peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.

  9. Correlation between two methods of florbetapir PET quantitative analysis.

    Science.gov (United States)

    Breault, Christopher; Piper, Jonathan; Joshi, Abhinay D; Pirozzi, Sara D; Nelson, Aaron S; Lu, Ming; Pontecorvo, Michael J; Mintun, Mark A; Devous, Michael D

    2017-01-01

    This study evaluated performance of a commercially available standardized software program for calculation of florbetapir PET standard uptake value ratios (SUVr) in comparison with an established research method. Florbetapir PET images for 183 subjects clinically diagnosed as cognitively normal (CN), mild cognitive impairment (MCI) or probable Alzheimer's disease (AD) (45 AD, 60 MCI, and 78 CN) were evaluated using two software processing algorithms. The research method uses a single florbetapir PET template generated by averaging both amyloid positive and amyloid negative registered brains together. The commercial software simultaneously optimizes the registration between the florbetapir PET images and three templates: amyloid negative, amyloid positive, and an average. Cortical average SUVr values were calculated across six predefined anatomic regions with respect to the whole cerebellum reference region. SUVr values were well correlated between the two methods (r2 = 0.98). The relationship between the methods computed from the regression analysis is: Commercial method SUVr = (0.9757*Research SUVr) + 0.0299. A previously defined cutoff SUVr of 1.1 for distinguishing amyloid positivity by the research method corresponded to 1.1 (95% CI = 1.098, 1.11) for the commercial method. This study suggests that the commercial method is comparable to the published research method of SUVr analysis for florbetapir PET images, thus facilitating the potential use of standardized quantitative approaches to PET amyloid imaging.

  10. Quantitative evaluation of midpalatal suture maturation via fractal analysis

    Science.gov (United States)

    Kwak, Kyoung Ho; Kim, Yong-Il; Kim, Yong-Deok

    2016-01-01

    Objective The purpose of this study was to determine whether the results of fractal analysis can be used as criteria for midpalatal suture maturation evaluation. Methods The study included 131 subjects aged over 18 years of age (range 18.1–53.4 years) who underwent cone-beam computed tomography. Skeletonized images of the midpalatal suture were obtained via image processing software and used to calculate fractal dimensions. Correlations between maturation stage and fractal dimensions were calculated using Spearman's correlation coefficient. Optimal fractal dimension cut-off values were determined using a receiver operating characteristic curve. Results The distribution of maturation stages of the midpalatal suture according to the cervical vertebrae maturation index was highly variable, and there was a strong negative correlation between maturation stage and fractal dimension (−0.623, p Fractal dimension was a statistically significant indicator of dichotomous results with regard to maturation stage (area under curve = 0.794, p fractal dimension was used to predict the resulting variable that splits maturation stages into ABC and D or E yielded an optimal fractal dimension cut-off value of 1.0235. Conclusions There was a strong negative correlation between fractal dimension and midpalatal suture maturation. Fractal analysis is an objective quantitative method, and therefore we suggest that it may be useful for the evaluation of midpalatal suture maturation. PMID:27668195

  11. Therapeutic electrical stimulation for spasticity: quantitative gait analysis.

    Science.gov (United States)

    Pease, W S

    1998-01-01

    Improvement in motor function following electrical stimulation is related to strengthening of the stimulated spastic muscle and inhibition of the antagonist. A 26-year-old man with familial spastic paraparesis presented with gait dysfunction and bilateral lower limb spastic muscle tone. Clinically, muscle strength and sensation were normal. He was considered appropriate for a trial of therapeutic electrical stimulation following failed trials of physical therapy and baclofen. No other treatment was used concurrent with the electrical stimulation. Before treatment, quantitative gait analysis revealed 63% of normal velocity and a crouched gait pattern, associated with excessive electromyographic activity in the hamstrings and gastrocnemius muscles. Based on these findings, bilateral stimulation of the quadriceps and anterior compartment musculature was performed two to three times per week for three months. Repeat gait analysis was conducted three weeks after the cessation of stimulation treatment. A 27% increase in velocity was noted associated with an increase in both cadence and right step length. Right hip and bilateral knee stance motion returned to normal (rather than "crouched"). No change in the timing of dynamic electromyographic activity was seen. These findings suggest a role for the use of electrical stimulation for rehabilitation of spasticity. The specific mechanism of this improvement remains uncertain.

  12. Using digital inline holographic microscopy and quantitative phase contrast imaging to assess viability of cultured mammalian cells

    Science.gov (United States)

    Missan, Sergey; Hrytsenko, Olga

    2015-03-01

    Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.

  13. Applying Qualitative Hazard Analysis to Support Quantitative Safety Analysis for Proposed Reduced Wake Separation Conops

    Science.gov (United States)

    Shortle, John F.; Allocco, Michael

    2005-01-01

    This paper describes a scenario-driven hazard analysis process to identify, eliminate, and control safety-related risks. Within this process, we develop selective criteria to determine the applicability of applying engineering modeling to hypothesized hazard scenarios. This provides a basis for evaluating and prioritizing the scenarios as candidates for further quantitative analysis. We have applied this methodology to proposed concepts of operations for reduced wake separation for closely spaced parallel runways. For arrivals, the process identified 43 core hazard scenarios. Of these, we classified 12 as appropriate for further quantitative modeling, 24 that should be mitigated through controls, recommendations, and / or procedures (that is, scenarios not appropriate for quantitative modeling), and 7 that have the lowest priority for further analysis.

  14. Evaluating the Quantitative Capabilities of Metagenomic Analysis Software.

    Science.gov (United States)

    Kerepesi, Csaba; Grolmusz, Vince

    2016-05-01

    DNA sequencing technologies are applied widely and frequently today to describe metagenomes, i.e., microbial communities in environmental or clinical samples, without the need for culturing them. These technologies usually return short (100-300 base-pairs long) DNA reads, and these reads are processed by metagenomic analysis software that assign phylogenetic composition-information to the dataset. Here we evaluate three metagenomic analysis software (AmphoraNet--a webserver implementation of AMPHORA2--, MG-RAST, and MEGAN5) for their capabilities of assigning quantitative phylogenetic information for the data, describing the frequency of appearance of the microorganisms of the same taxa in the sample. The difficulties of the task arise from the fact that longer genomes produce more reads from the same organism than shorter genomes, and some software assign higher frequencies to species with longer genomes than to those with shorter ones. This phenomenon is called the "genome length bias." Dozens of complex artificial metagenome benchmarks can be found in the literature. Because of the complexity of those benchmarks, it is usually difficult to judge the resistance of a metagenomic software to this "genome length bias." Therefore, we have made a simple benchmark for the evaluation of the "taxon-counting" in a metagenomic sample: we have taken the same number of copies of three full bacterial genomes of different lengths, break them up randomly to short reads of average length of 150 bp, and mixed the reads, creating our simple benchmark. Because of its simplicity, the benchmark is not supposed to serve as a mock metagenome, but if a software fails on that simple task, it will surely fail on most real metagenomes. We applied three software for the benchmark. The ideal quantitative solution would assign the same proportion to the three bacterial taxa. We have found that AMPHORA2/AmphoraNet gave the most accurate results and the other two software were under

  15. Quantitative analysis of left ventricular strain using cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Buss, Sebastian J., E-mail: sebastian.buss@med.uni-heidelberg.de [Department of Cardiology, University of Heidelberg, 69120 Heidelberg (Germany); Schulz, Felix; Mereles, Derliz [Department of Cardiology, University of Heidelberg, 69120 Heidelberg (Germany); Hosch, Waldemar [Department of Diagnostic and Interventional Radiology, University of Heidelberg, 69120 Heidelberg (Germany); Galuschky, Christian; Schummers, Georg; Stapf, Daniel [TomTec Imaging Systems GmbH, Munich (Germany); Hofmann, Nina; Giannitsis, Evangelos; Hardt, Stefan E. [Department of Cardiology, University of Heidelberg, 69120 Heidelberg (Germany); Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, University of Heidelberg, 69120 Heidelberg (Germany); Katus, Hugo A.; Korosoglou, Grigorios [Department of Cardiology, University of Heidelberg, 69120 Heidelberg (Germany)

    2014-03-15

    Objectives: To investigate whether cardiac computed tomography (CCT) can determine left ventricular (LV) radial, circumferential and longitudinal myocardial deformation in comparison to two-dimensional echocardiography in patients with congestive heart failure. Background: Echocardiography allows for accurate assessment of strain with high temporal resolution. A reduced strain is associated with a poor prognosis in cardiomyopathies. However, strain imaging is limited in patients with poor echogenic windows, so that, in selected cases, tomographic imaging techniques may be preferable for the evaluation of myocardial deformation. Methods: Consecutive patients (n = 27) with congestive heart failure who underwent a clinically indicated ECG-gated contrast-enhanced 64-slice dual-source CCT for the evaluation of the cardiac veins prior to cardiac resynchronization therapy (CRT) were included. All patients underwent additional echocardiography. LV radial, circumferential and longitudinal strain and strain rates were analyzed in identical midventricular short axis, 4-, 2- and 3-chamber views for both modalities using the same prototype software algorithm (feature tracking). Time for analysis was assessed for both modalities. Results: Close correlations were observed for both techniques regarding global strain (r = 0.93, r = 0.87 and r = 0.84 for radial, circumferential and longitudinal strain, respectively, p < 0.001 for all). Similar trends were observed for regional radial, longitudinal and circumferential strain (r = 0.88, r = 0.84 and r = 0.94, respectively, p < 0.001 for all). The number of non-diagnostic myocardial segments was significantly higher with echocardiography than with CCT (9.6% versus 1.9%, p < 0.001). In addition, the required time for complete quantitative strain analysis was significantly shorter for CCT compared to echocardiography (877 ± 119 s per patient versus 1105 ± 258 s per patient, p < 0.001). Conclusion: Quantitative assessment of LV strain

  16. Automated quantitative gait analysis in animal models of movement disorders

    Directory of Open Access Journals (Sweden)

    Vandeputte Caroline

    2010-08-01

    Full Text Available Abstract Background Accurate and reproducible behavioral tests in animal models are of major importance in the development and evaluation of new therapies for central nervous system disease. In this study we investigated for the first time gait parameters of rat models for Parkinson's disease (PD, Huntington's disease (HD and stroke using the Catwalk method, a novel automated gait analysis test. Static and dynamic gait parameters were measured in all animal models, and these data were compared to readouts of established behavioral tests, such as the cylinder test in the PD and stroke rats and the rotarod tests for the HD group. Results Hemiparkinsonian rats were generated by unilateral injection of the neurotoxin 6-hydroxydopamine in the striatum or in the medial forebrain bundle. For Huntington's disease, a transgenic rat model expressing a truncated huntingtin fragment with multiple CAG repeats was used. Thirdly, a stroke model was generated by a photothrombotic induced infarct in the right sensorimotor cortex. We found that multiple gait parameters were significantly altered in all three disease models compared to their respective controls. Behavioural deficits could be efficiently measured using the cylinder test in the PD and stroke animals, and in the case of the PD model, the deficits in gait essentially confirmed results obtained by the cylinder test. However, in the HD model and the stroke model the Catwalk analysis proved more sensitive than the rotarod test and also added new and more detailed information on specific gait parameters. Conclusion The automated quantitative gait analysis test may be a useful tool to study both motor impairment and recovery associated with various neurological motor disorders.

  17. Quantitative assessment of hip osteoarthritis based on image texture analysis.

    Science.gov (United States)

    Boniatis, I S; Costaridou, L I; Cavouras, D A; Panagiotopoulos, E C; Panayiotakis, G S

    2006-03-01

    A non-invasive method was developed to investigate the potential capacity of digital image texture analysis in evaluating the severity of hip osteoarthritis (OA) and in monitoring its progression. 19 textural features evaluating patterns of pixel intensity fluctuations were extracted from 64 images of radiographic hip joint spaces (HJS), corresponding to 32 patients with verified unilateral or bilateral OA. Images were enhanced employing custom developed software for the delineation of the articular margins on digitized pelvic radiographs. The severity of OA for each patient was assessed by expert orthopaedists employing the Kellgren and Lawrence (KL) scale. Additionally, an index expressing HJS-narrowing was computed considering patients from the unilateral OA-group. A textural feature that quantified pixel distribution non-uniformity (grey level non-uniformity, GLNU) demonstrated the strongest correlation with the HJS-narrowing index among all extracted features and utilized in further analysis. Classification rules employing GLNU feature were introduced to characterize a hip as normal or osteoarthritic and to assign it to one of three severity categories, formed in accordance with the KL scale. Application of the proposed rules resulted in relatively high classification accuracies in characterizing a hip as normal or osteoarthritic (90.6%) and in assigning it to the correct KL scale category (88.9%). Furthermore, the strong correlation between the HJS-narrowing index and the pathological GLNU (r = -0.9, p<0.001) was utilized to provide percentages quantifying hip OA-severity. Texture analysis may contribute in the quantitative assessment of OA-severity, in the monitoring of OA-progression and in the evaluation of a chondroprotective therapy.

  18. Nanotechnology patents in the automotive industry (a quantitative & qualitative analysis).

    Science.gov (United States)

    Prasad, Raghavendra; Bandyopadhyay, Tapas K

    2014-01-01

    The aim of the article is to present a trend in patent filings for application of nanotechnology to the automobile sector across the world, using the keyword-based patent search. Overviews of the patents related to nano technology in the automobile industry have been provided. The current work has started from the worldwide patent search to find the patents on nanotechnology in the automobile industry and classify the patents according to the various parts of an automobile to which they are related and the solutions which they are providing. In the next step various graphs have been produced to get an insight into various trends. In next step, analysis of patents in various classifications, have been performed. The trends shown in graphs provide the quantitative analysis whereas; the qualitative analysis has been done in another section. The classifications of patents based on the solution they provide have been performed by reading the claims, titles, abstract and full texts separately. Patentability of nano technology inventions have been discussed in a view to give an idea of requirements and statutory bars to the patentability of nanotechnology inventions. Another objective of the current work is to suggest appropriate framework for the companies regarding use of nano technology in the automobile industry and a suggestive strategy for patenting of the inventions related to the same. For example, US Patent, with patent number US2008-019426A1 discusses the invention related to Lubricant composition. This patent has been studied and classified to fall under classification of automobile parts. After studying this patent, it is deduced that, the problem of friction in engine is being solved by this patent. One classification is the "automobile part" based while other is the basis of "problem being solved". Hence, two classifications, namely reduction in friction and engine were created. Similarly, after studying all the patents, a similar matrix has been created.

  19. Quantitative Analysis of Piezoelectric and Seismoelectric Anomalies in Subsurface Geophysics

    Science.gov (United States)

    Eppelbaum, Lev

    2017-04-01

    problem was the basis for an inverse problem, i.e. revealing depth of a body occurrence, its location in a space as well as determining physical properties. At the same time, this method has not received a wide practical application taking into account complexity of real geological media. Careful analysis piezo- and seismoelectric anomalies shows the possibility of application of quantitative analysis of these effects advanced methodologies developed in magnetic prospecting for complex physical-geological conditions (Eppelbaum et al., 2000, 2001, 2010; Eppelbaum, 2010; 2011, 2015). Employment of these methodologies (improved modifications of tangents, characteristic points areal methods) for obtaining quantitative characteristics of ore bodies, environmental features and archaeological targets (models of horizontal circular cylinder, sphere, thin bed, thick bed and thin horizontal plate were utilized) have demonstrated their effectiveness. Case study at the archaeological site Tel Kara Hadid Field piezoelectric observations were conducted at the ancient archaeological site Tel Kara Hadid with gold-quartz mineralization in southern Israel within the Precambrian terrain at the northern extension of the Arabian-Nubian Shield (Neishtadt et al., 2006). The area of the archaeological site is located eight kilometers north of the town of Eilat, in an area of strong industrial noise. Ancient river alluvial terraces (extremely heterogeneous at a local scale, varying from boulders to silt) cover the quartz veins and complicate their identification. Piezoelectric measurements conducted over a quartz vein covered by surface sediments (approximately of 0.4 m thickness) produced a sharp (500 μV ) piezoelectric anomaly. Values recorded over the host rocks (clays and shales of basic composition) were close to zero. The observed piezoelectric anomaly was successfully interpreted by the use of methodologies developed in magnetic prospecting. For effective integration of piezo- and

  20. Analysis of the corium phases by X-ray diffraction; Analyses des phases du corium par diffraction des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Trillon, G

    2004-07-01

    In the framework of the severe accidents R and D studies led by CEA, the better knowledge of the corium behaviour, corium coming from the melting of a nuclear reactor, are fundamental stakes in order to master this kind of accident. Among the available physical properties of the corium, the nature of the final crystalline compounds which have been made during the, cooling gives information about its solidification and its stabilisation. X-Rays Diffraction is the reference method used in order to characterize the corium coming from the different facilities of the European platform PLINIUS of CEA-Cadarache. This work presents the scientific approach that has been followed in order to obtain information both qualitative and quantitative on corium, using X-Rays Diffraction. For instance, a specific method for identifying U{sub 1-x}Zr{sub x}O{sub 2} solid solutions has been developed, and the validity of quantitative analysis of corium crystalline phases using the Rietveld method (with an internal standard), has been tested. This last method has also permitted semi-quantitative measurements of amorphous phases within corium. For these studies, analysis of prototypical corium has been conducted on samples coming from the experiences led on the different facilities of the PLINIUS platform. These analysis allowed for the first time to obtain quantitative data of the corium crystalline phases in order to validate thermodynamic databases and has been used to estimate the thereto-physical properties of the corium. New information on crystalline phases of corium has also been found, especially for the UO{sub 2}-ZrO{sub 2} pseudo binary system. (author)

  1. Quantitative strain analysis of GaN/AlN quantum dot multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sarigiannidou, E. [Departement de Recherche Fondamentale sur la Matiere Condensee, SP2M/CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Laboratoire de Spectrometrie Physique, Universite Joseph Fourier-Grenoble I, 140 Avenue de la physique, BP 87, 38402 Saint Martin d' Heres (France); Andreev, A.D.; Daudin, B.; Rouviere, J.L. [Departement de Recherche Fondamentale sur la Matiere Condensee, SP2M/CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Monroy, E. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2006-06-15

    The strain distribution in vertically-correlated GaN quantum dot layers embedded in an AlN matrix is investigated from high-resolution transmission electron microscopy images. The quantitative strain analysis is realized using the geometrical phase analysis. The obtained results are further supported by elastic theoretical calculations carried out using a combination of Fourier transform and Green's function techniques. We find that the AlN spacers situated between consecutive wetting layers are almost fully relaxed. On the contrary, the AlN spacers located between the vertically correlated GaN quantum dots (QDs) are found to be in a tensile strain state. This local strain is generated by the GaN QDs on the surrounding AlN matrix and causes the vertical alignment of the dots inside the multilayer structure. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Quantitative analysis of polymorphic mixtures of ranitidine hydrochloride by Raman spectroscopy and principal components analysis.

    Science.gov (United States)

    Pratiwi, Destari; Fawcett, J Paul; Gordon, Keith C; Rades, Thomas

    2002-11-01

    Ranitidine hydrochloride exists as two polymorphs, forms I and II, both of which are used to manufacture commercial tablets. Raman spectroscopy can be used to differentiate the two forms but univariate methods of quantitative analysis of one polymorph as an impurity in the other lack sensitivity. We have applied principal components analysis (PCA) of Raman spectra to binary mixtures of the two polymorphs and to binary mixtures prepared by adding one polymorph to powdered tablets of the other. Based on absorption measurements of seven spectral regions, it was found that >97% of the spectral variation was accounted for by three principal components. Quantitative calibration models generated by multiple linear regression predicted a detection limit and quantitation limit for either forms I or II in mixtures of the two of 0.6 and 1.8%, respectively. This study demonstrates that PCA of Raman spectroscopic data provides a sensitive method for the quantitative analysis of polymorphic impurities of drugs in commercial tablets with a quantitation limit of less than 2%.

  3. Quantitative studies on inner interfaces in conical metal joints using hard x-ray inline phase contrast radiography

    Science.gov (United States)

    Zabler, S.; Rack, T.; Rack, A.; Nelson, K.

    2010-10-01

    Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1 μm are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system being 4 μm in absorption mode and ˜14 μm in phase contrast mode (z2=0.74 m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.

  4. Preparation of Biological Samples Containing Metoprolol and Bisoprolol for Applying Methods for Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Corina Mahu Ştefania

    2015-12-01

    Full Text Available Arterial hypertension is a complex disease with many serious complications, representing a leading cause of mortality. Selective beta-blockers such as metoprolol and bisoprolol are frequently used in the management of hypertension. Numerous analytical methods have been developed for the determination of these substances in biological fluids, such as liquid chromatography coupled with mass spectrometry, gas chromatography coupled with mass spectrometry, high performance liquid chromatography. Due to the complex composition of biological fluids a biological sample pre-treatment before the use of the method for quantitative determination is required in order to remove proteins and potential interferences. The most commonly used methods for processing biological samples containing metoprolol and bisoprolol were identified through a thorough literature search using PubMed, ScienceDirect, and Willey Journals databases. Articles published between years 2005-2015 were reviewed. Protein precipitation, liquid-liquid extraction and solid phase extraction are the main techniques for the extraction of these drugs from plasma, serum, whole blood and urine samples. In addition, numerous other techniques have been developed for the preparation of biological samples, such as dispersive liquid-liquid microextraction, carrier-mediated liquid phase microextraction, hollow fiber-protected liquid phase microextraction, on-line molecularly imprinted solid phase extraction. The analysis of metoprolol and bisoprolol in human plasma, urine and other biological fluids provides important information in clinical and toxicological trials, thus requiring the application of appropriate extraction techniques for the detection of these antihypertensive substances at nanogram and picogram levels.

  5. Quantitative risk analysis of urban flooding in lowland areas

    NARCIS (Netherlands)

    Ten Veldhuis, J.A.E.

    2010-01-01

    Urban flood risk analyses suffer from a lack of quantitative historical data on flooding incidents. Data collection takes place on an ad hoc basis and is usually restricted to severe events. The resulting data deficiency renders quantitative assessment of urban flood risks uncertain. The study repor

  6. Development and validation of HPLC method for quantitative analysis of triamcinolone in biodegradable microparticles

    Directory of Open Access Journals (Sweden)

    A. A. Silva-Júnior

    2009-01-01

    Full Text Available

    A simple, rapid, selective and specific high performance liquid chromatographic (HPLC method for quantitative analysis of the triamcinolone in polylactide-co-glycolide acid (PLGA microparticles was developed. The chromatographic parameters were reversed-phase C18 column, 250mm x 4.6mm, with particle size 5 m. The column oven was thermostated at 35 ºC ± 2 ºC. The mobile phase was methanol/water 45:55 (v/v and elution was isocratic at a flow-rate of 1mL.mL-1. The determinations were performed using a UV-Vis detector at 239 nm. The injected sample volume was 10 µL. The standard curve was linear (r2 > 0.999 in the concentration range 100-2500 ng.mL-1. The method showed adequate precision, with a relative standard deviation (RSD was smaller than 3%. The accuracy was analyzed by adding a standard drug and good recovery values were obtained for all drug concentrations used. The method showed specificity and selectivity with linearity in the working range and good precision and accuracy, making it very suitable for quantitation of triamcinolone in PLGA microparticles. Keywords: triamcinolone; HPLC analytical method; PLGA microparticles; analytical method validation.

  7. A Novel Quantitative Analysis Model for Information System Survivability Based on Conflict Analysis

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; WANG Huiqiang; ZHAO Guosheng

    2007-01-01

    This paper describes a novel quantitative analysis model for system survivability based on conflict analysis, which provides a direct-viewing survivable situation. Based on the three-dimensional state space of conflict, each player's efficiency matrix on its credible motion set can be obtained. The player whose desire is the strongest in all initiates the moving and the overall state transition matrix of information system may be achieved. In addition, the process of modeling and stability analysis of conflict can be converted into a Markov analysis process, thus the obtained results with occurring probability of each feasible situation will help the players to quantitatively judge the probability of their pursuing situations in conflict. Compared with the existing methods which are limited to post-explanation of system's survivable situation, the proposed model is relatively suitable for quantitatively analyzing and forecasting the future development situation of system survivability. The experimental results show that the model may be effectively applied to quantitative analysis for survivability. Moreover, there will be a good application prospect in practice.

  8. Quantitative determination of sibutramine in adulterated herbal slimming formulations by TLC-image analysis method.

    Science.gov (United States)

    Phattanawasin, Panadda; Sotanaphun, Uthai; Sukwattanasinit, Tasamaporn; Akkarawaranthorn, Jariya; Kitchaiya, Sarunyaporn

    2012-06-10

    A simple thin layer chromatographic (TLC)-image analysis method was developed for rapid determination and quantitation of sibutramine hydrochloride (SH) adulterated in herbal slimming products. Chromatographic separation of SH was achieved on a silica gel 60 F(254) TLC plate, using toluene-n-hexane-diethylamine (9:1:0.3, v/v/v) as the mobile phase and Dragendorff reagent as spot detection. Image analysis of the scanned TLC plate was performed to quantify the amount of SH. The polynomial regression data for the calibration plots showed good linear relationship in the concentration range of 1-6 μg/spot. The limits of detection and quantitation were 190 and 634 ng/spot, respectively. The method gave satisfactory specificity, precision, accuracy, robustness and was applied for determination of SH in herbal formulations. The contents of SH in adulterated samples determined by the TLC-image analysis and TLC-densitometry were also compared. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. APPLICATION OF NEOTAME IN CATCHUP: QUANTITATIVE DESCRIPTIVE AND PHYSICOCHEMICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    G. C. M. C. BANNWART

    2008-11-01

    Full Text Available

    In this study, fi ve prototypes of catchup were developed by replacing partially or totally the sucrose in the formulation by the sweetener Neotame (NTM. These prototypes were evaluated for their physicochemical characteristics and sensory profi le (Quantitative Descriptive Analysis. The main sensory differences observed among the prototypes were regarding to color, consistency, mouthfeel, sweet taste and tomato taste, for which lower means were obtained as the sugar level was decreased, and also in terms of salty taste, that had higher means with the decrease of sugar. In terms of bitter and sweetener aftertastes, the prototype 100% sweetened with NTM presented the higher mean score, but with no signifi cant difference when compared to other prototypes containing sucrose, for bitter taste, however, it had the highest mean score, statistically different from all the other prototypes. In terms of physicochemical characteristics, the differences were mainly in terms of consistency, solids and color. Despite the differences observed among the prototypes as the sugar level was reduced, it was concluded that NTM is a suitable sweetener for catchup, both for use in reduced calories and no sugar versions.

  10. Quantitative Analysis of AGV System in FMS Cell Layout

    Directory of Open Access Journals (Sweden)

    B. Ramana

    1997-01-01

    Full Text Available Material handling is a specialised activity for a modern manufacturing concern. Automated guided vehicles (AGVs are invariably used for material handling in flexible manufacturing Systems (FMSs due to their flexibility. The quantitative analysis of an AGV system is useful for determining the material flow rates, operation times, length of delivery, length of empty move of AGV and the number of AGVs required for a typical FMS cell layout. The efficiency of the material handling system, such as AGV can be improved by reducing the length of empty move. The length of empty move of AGV depends upon despatching and scheduling methods. If these methods of AGVs are not properly planned, the length of empty move of AGV is greater than the length of delivery .This results in increase in material handling time which in turn increases the number of AGVs required in FMS cell. This paper presents a method for optimising the length of empty travel of AGV in a typical FMS cell layout.

  11. Early child grammars: qualitative and quantitative analysis of morphosyntactic production.

    Science.gov (United States)

    Legendre, Géraldine

    2006-09-10

    This article reports on a series of 5 analyses of spontaneous production of verbal inflection (tense and person-number agreement) by 2-year-olds acquiring French as a native language. A formal analysis of the qualitative and quantitative results is developed using the unique resources of Optimality Theory (OT; Prince & Smolensky, 2004). It is argued that acquisition of morphosyntax proceeds via overlapping grammars (rather than through abrupt changes), which OT formalizes in terms of partial rather than total constraint rankings. Initially, economy of structure constraints take priority over faithfulness constraints that demand faithful expression of a speaker's intent, resulting in child production of tense that is comparable in level to that of child-directed speech. Using the independent Predominant Length of Utterance measure of syntactic development proposed in Vainikka, Legendre, and Todorova (1999), production of agreement is shown first to lag behind tense then to compete with tense at an intermediate stage of development. As the child's development progresses, faithfulness constraints become more dominant, and the overall production of tense and agreement becomes adult-like.

  12. Quantitative analysis of brain magnetic resonance imaging for hepatic encephalopathy

    Science.gov (United States)

    Syh, Hon-Wei; Chu, Wei-Kom; Ong, Chin-Sing

    1992-06-01

    High intensity lesions around ventricles have recently been observed in T1-weighted brain magnetic resonance images for patients suffering hepatic encephalopathy. The exact etiology that causes magnetic resonance imaging (MRI) gray scale changes has not been totally understood. The objective of our study was to investigate, through quantitative means, (1) the amount of changes to brain white matter due to the disease process, and (2) the extent and distribution of these high intensity lesions, since it is believed that the abnormality may not be entirely limited to the white matter only. Eleven patients with proven haptic encephalopathy and three normal persons without any evidence of liver abnormality constituted our current data base. Trans-axial, sagittal, and coronal brain MRI were obtained on a 1.5 Tesla scanner. All processing was carried out on a microcomputer-based image analysis system in an off-line manner. Histograms were decomposed into regular brain tissues and lesions. Gray scale ranges coded as lesion were then brought back to original images to identify distribution of abnormality. Our results indicated the disease process involved pallidus, mesencephalon, and subthalamic regions.

  13. European Identity in Russian Regions Bordering on Finland: Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    A. O. Domanov

    2014-01-01

    Full Text Available Th e quantitative analysis of an opinion poll conducted in October 2013 in three Russian cities located near Finnish border (St-Petersburg, Kronstadt and Vyborg explores European identity of their citizens. Th is area was chosen to illustrate the crucial importance of space interpretation in spatial identity formation by using critical geopolitical approach. Th e study shows how diff erent images of space on the same territory act as intermediate variables between objective territorial characteristics and citizens’ identities. As the geographical position at the border of Russia provides the citizens with geopolitical alternatives to identify their location as a fortress defending the nation (as in the case of Kronstadt or a bridge between cultures, the given study allows us to compare reasons for these geopolitical choices of inhabitants. Furthermore, the research aims at bridging the gap in the studies of European and multiple identity in Russian regions and provides Northwest Russian perspective on the perpetual discussion about subjective Eastern border of Europe.

  14. Quantitative analysis of plasma interleiukin-6 by immunoassay on microchip

    Science.gov (United States)

    Abe, K.; Hashimoto, Y.; Yatsushiro, S.; Yamamura, S.; Tanaka, M.; Ooie, T.; Baba, Y.; Kataoka, M.

    2012-03-01

    Sandwich enzyme-linked immunoassay (ELISA) is one of the most frequently employed assays for clinical diagnosis, since this enables the investigator to identify specific protein biomarkers. However, the conventional assay using a 96-well microtitration plate is time- and sample-consuming, and therefore is not suitable for rapid diagnosis. To overcome these drawbacks, we performed a sandwich ELISA on a microchip. We employed the piezoelectric inkjet printing for deposition and fixation of 1st antibody on the microchannnel surface (300 μm width and 100 μm depth). Model analyte was interleukin-6 (IL-6) which was one of the inflammatory cytokine. After blocking the microchannel, antigen, biotin-labeled 2nd antibody, and avidin-labeled peroxidase were infused into the microchannel and incubated for 20 min, 10 min, and 5 min, respectively. This assay could detect 2 pg/ml and quantitatively measure the range of 0-32 pg/ml. Liner regression analysis of plasma IL-6 concentration obtained by microchip and conventional methods exhibited a significant relationship (R2 = 0.9964). This assay reduced the time for the antigen-antibody reaction to 1/6, and the consumption of samples and reagents to 1/50 compared with the conventional method. This assay enables us to determine plasma IL-6 with accuracy, high sensitivity, time saving ability, and low consumption of sample and reagents, and thus will be applicable to clinic diagnosis.

  15. Quantitative image analysis of HIV-1 infection in lymphoid tissue

    Energy Technology Data Exchange (ETDEWEB)

    Haase, A.T.; Zupancic, M.; Cavert, W. [Univ. of Minnesota Medical School, Minneapolis, MN (United States)] [and others

    1996-11-08

    Tracking human immunodeficiency virus-type 1 (HIV-1) infection at the cellular level in tissue reservoirs provides opportunities to better understand the pathogenesis of infection and to rationally design and monitor therapy. A quantitative technique was developed to determine viral burden in two important cellular compartments in lymphoid developed to determine viral burden in two important cellular compartments in lymphoid tissues. Image analysis and in situ hybridization were combined to show that in the presymptomatic stages of infection there is a large, relatively stable pool of virions on the surfaces of follicular dendritic cells and a smaller pool of productivity infected cells. Despite evidence of constraints on HIV-1 replication in the infected cell population in lymphoid tissues, estimates of the numbers of these cells and the virus they could produce are consistent with the quantities of virus that have been detected in the bloodstream. The cellular sources of virus production and storage in lymphoid tissues can now be studied with this approach over the course of infection and treatment. 22 refs., 2 figs., 2 tabs.

  16. Full-Range Public Health Leadership, Part 1: Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Erik L. Carlton

    2015-04-01

    Full Text Available Background. Workforce and leadership development are central to the future of public health. However, public health has been slow to translate and apply leadership models from other professions and to incorporate local perspectives in understanding public health leadership. Purpose. This study utilized the full-range leadership model in order to examine public health leadership. Specifically, it sought to measure leadership styles among local health department directors and to understand the context of leadership local health departments.Methods. Leadership styles among local health department directors (n=13 were examined using survey methodology. Quantitative analysis methods included descriptive statistics, boxplots, and Pearson bivariate correlations using SPSS v18.0. Findings. Self-reported leadership styles were highly correlated to leadership outcomes at the organizational level. However, they were not related to county health rankings. Results suggest the preeminence of leader behaviors and providing individual consideration to staff as compared to idealized attributes of leaders, intellectual stimulation, or inspirational motivation. Implications. Holistic leadership assessment instruments, such as the Multifactor Leadership Questionnaire (MLQ can be useful in assessing public health leaders approaches and outcomes. Comprehensive, 360-degree reviews may be especially helpful. Further research is needed to examine the effectiveness of public health leadership development models, as well as the extent that public health leadership impacts public health outcomes.

  17. Quantitative Analysis and Comparisons of EPON Protection Schemes

    Institute of Scientific and Technical Information of China (English)

    CHENHong; JINDepeng; ZENGLieguang; SULi

    2005-01-01

    This paper presents the relationship between the intensity of network damage and the network survivability. Then a method for quantitatively analyzing the survivability of tree network is studied. Based on the analysis, the survivability of Ethernet passive optical network (EPON) with three kinds of protection schemes (i.e., Trunk-fiber protection scheme, Node-fiber protection scheme, and Bus-fiber protection) is discussed. Following this, the comparisons of the survivability among these three kinds of protection schemes of F.PON are put forward. The simulation results show that, when the coverage area is the same, the survivability of EPON with Node-fiber protection scheme is better than that of EPON with Trunk-fiber protection scheme, and when the number and distribution of Optical network unit (ONU) are the same, the survivability of EPON with Bus-fiber protection scheme is better than that of EPON with Nodefiber protection scheme. Under the same constraints, the needed fiber of EPON with Bus-fiber protection scheme is the least when there are more than 12 ONU nodes. These results are useful not only for forecasting and evaluating the survivability of EPON access network, but also for its topology design.

  18. Quantitative analysis of piperine in ayurvedic formulation by UV Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Gupta Vishvnath

    2011-02-01

    Full Text Available A simple and reproducible UV- spectrophotometric method for the quantitative determination of piperine in Sitopaladi churna (STPLC were developed and validated in the present work. The parameters linearity, precision , accuracy, and standard error were studies according to indian herbal pharmacopiea. In this present study a new, simple, rapid, sensitive, precise and economic spectrophotometric method in ultraviolet region has been developed for the determination of piperine in market and laboratory herbal formulation of Sitopaladi churna. which were procured and purchased respectively from the local market and they were evaluated as per Indian herbal Pharmacopoeia and WHO guidelines. The concentration of piperine present in raw material of PSC was found to be 1.45±0.014 w/w in piper longum fruits. Piperine has the maximum wavelength at 342.5 nm and hence the UV spectrophotometric method was performed at 342.5 nm. The samples were prepared in methanol and methos obeys Beers law in concentration ranges employed for evaluation. The content of piperine in ayurvedic formulation was determined. The result of analysis have been validated statistically and recovery studies confirmed the accuracy of the proposed method. Hence the proposed method can be used for the reliable quantification of Piperine in crude drug and its herbal formulation.

  19. A Quantitative Analysis of Photovoltaic Modules Using Halved Cells

    Directory of Open Access Journals (Sweden)

    S. Guo

    2013-01-01

    Full Text Available In a silicon wafer-based photovoltaic (PV module, significant power is lost due to current transport through the ribbons interconnecting neighbour cells. Using halved cells in PV modules is an effective method to reduce the resistive power loss which has already been applied by some major PV manufacturers (Mitsubishi, BP Solar in their commercial available PV modules. As a consequence, quantitative analysis of PV modules using halved cells is needed. In this paper we investigate theoretically and experimentally the difference between modules made with halved and full-size solar cells. Theoretically, we find an improvement in fill factor of 1.8% absolute and output power of 90 mW for the halved cell minimodule. Experimentally, we find an improvement in fill factor of 1.3% absolute and output power of 60 mW for the halved cell module. Also, we investigate theoretically how this effect confers to the case of large-size modules. It is found that the performance increment of halved cell PV modules is even higher for high-efficiency solar cells. After that, the resistive loss of large-size modules with different interconnection schemes is analysed. Finally, factors influencing the performance and cost of industrial halved cell PV modules are discussed.

  20. Quantitative analysis of 3-OH oxylipins in fermentation yeast.

    Science.gov (United States)

    Potter, Greg; Xia, Wei; Budge, Suzanne M; Speers, R Alex

    2017-02-01

    Despite the ubiquitous distribution of oxylipins in plants, animals, and microbes, and the application of numerous analytical techniques to study these molecules, 3-OH oxylipins have never been quantitatively assayed in yeasts. The formation of heptafluorobutyrate methyl ester derivatives and subsequent analysis with gas chromatography - negative chemical ionization - mass spectrometry allowed for the first determination of yeast 3-OH oxylipins. The concentration of 3-OH 10:0 (0.68-4.82 ng/mg dry cell mass) in the SMA strain of Saccharomyces pastorianus grown in laboratory-scale beverage fermentations was elevated relative to oxylipin concentrations in plant tissues and macroalgae. In fermenting yeasts, the onset of 3-OH oxylipin formation has been related to fermentation progression and flocculation initiation. When the SMA strain was grown in laboratory-scale fermentations, the maximal sugar consumption rate preceded the lowest concentration of 3-OH 10:0 by ∼4.5 h and a distinct increase in 3-OH 10:0 concentration by ∼16.5 h.

  1. Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging

    Science.gov (United States)

    Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro

    2015-05-01

    Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we

  2. Communication about vaccinations in Italian websites: a quantitative analysis.

    Science.gov (United States)

    Tafuri, Silvio; Gallone, Maria S; Gallone, Maria F; Zorico, Ivan; Aiello, Valeria; Germinario, Cinzia

    2014-01-01

    Babies' parents and people who look for information about vaccination often visit anti-vaccine movement's websites, blogs by naturopathic physicians or natural and alternative medicine practitioners. The aim of this work is to provide a quantitative analysis on the type of information available to Italian people regarding vaccination and a quality analysis of websites retrieved through our searches. A quality score was created to evaluate the technical level of websites. A research was performed through Yahoo, Google, and MSN using the keywords "vaccine" and "vaccination," with the function "OR" in order to identify the most frequently used websites. The 2 keywords were input in Italian, and the first 15 pages retrieved by each search engine were analyzed. 149 websites were selected through this methodology. Fifty-three per cent of the websites belonged to associations, groups, or scientific companies, 32.2% (n = 48) consisted of a personal blog and 14.8% (n = 22) belonged to some of the National Health System offices. Among all analyzed websites, 15.4% (n = 23) came from anti-vaccine movement groups. 37.6% reported webmaster name, 67.8% webmaster e-mail, 28.6% indicated the date of the last update and 46.6% the author's name. The quality score for government sites was higher on average than anti-vaccine websites; although, government sites don't use Web 2.0 functions, as the forums.: National Health System institutions who have to promote vaccination cannot avoid investing in web communication because it cannot be managed by private efforts but must be the result of Public Health, private and scientific association, and social movement synergy.

  3. Optomechanical properties of cancer cells revealed by light-induced deformation and quantitative phase microscopy

    Science.gov (United States)

    Kastl, Lena; Budde, Björn; Isbach, Michael; Rommel, Christina; Kemper, Björn; Schnekenburger, Jürgen

    2015-05-01

    There is a growing interest in cell biology and clinical diagnostics in label-free, optical techniques as the interaction with the sample is minimized and substances like dyes or fixatives do not affect the investigated cells. Such techniques include digital holographic microscopy (DHM) and the optical stretching by fiber optical two beam traps. DHM enables quantitative phase contrast imaging and thereby the determination of the cellular refractive index, dry mass and the volume, whereas optical cell stretching reveals the deformability of cells. Since optical stretching strongly depends on the optical properties and the shape of the investigated material we combined the usage of fiber optical stretching and DHM for the characterization of pancreatic tumor cells. The risk of tumors is their potential to metastasize, spread through the bloodstream and build distal tumors/metastases. The grade of dedifferentiation in which the cells lose their cell type specific properties is a measure for this metastatic potential. The less differentiated the cells are, the higher is their risk to metastasize. Our results demonstrate that pancreatic tumor cells, which are from the same tumor but vary in their grade of differentiation, show significant differences in their deformability. The retrieved data show that differentiated cells have a higher stiffness than less differentiated cells of the same tumor. Even cells that differ only in the expression of a single tumor suppressor gene which is responsible for cell-cell adhesions can be distinguished by their mechanical properties. Additionally, results from DHM measurements yield that the refractive index shows only few variations, indicating that it does not significantly influence optical cell stretching. The obtained results show a promising new approach for the phenotyping of different cell types, especially in tumor cell characterization and cancer diagnostics.

  4. Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization.

    Science.gov (United States)

    Kim, Kwang Ho; Bai, Xianglan; Cady, Sarah; Gable, Preston; Brown, Robert C

    2015-03-01

    We report on the quantitative analysis of free radicals in bio-oils produced from pyrolysis of cellulose, organosolv lignin, and corn stover by EPR spectroscopy. Also, we investigated their potential role in condensed-phase polymerization. Bio-oils produced from lignin and cellulose show clear evidence of homolytic cleavage reactions during pyrolysis that produce free radicals. The concentration of free radicals in lignin bio-oil was 7.5×10(20)  spin g(-1), which was 375 and 138 times higher than free-radical concentrations in bio-oil from cellulose and corn stover. Pyrolytic lignin had the highest concentration in free radicals, which could be a combination of carbon-centered (benzyl radicals) and oxygen-centered (phenoxy radicals) organic species because they are delocalized in a π system. Free-radical concentrations did not change during accelerated aging tests despite increases in molecular weight of bio-oils, suggesting that free radicals in condensed bio-oils are stable.

  5. Application of (13)C ramp CPMAS NMR with phase-adjusted spinning sidebands (PASS) for the quantitative estimation of carbon functional groups in natural organic matter.

    Science.gov (United States)

    Ikeya, Kosuke; Watanabe, Akira

    2016-01-01

    The composition of carbon (C) functional groups in natural organic matter (NOM), such as dissolved organic matter, soil organic matter, and humic substances, is frequently estimated using solid-state (13)C NMR techniques. A problem associated with quantitative analysis using general cross polarization/magic angle spinning (CPMAS) spectra is the appearance of spinning side bands (SSBs) split from the original center peaks of sp (2) hybridized C species (i.e., aromatic and carbonyl C). Ramp CP/phase-adjusted side band suppressing (PASS) is a pulse sequence that integrates SSBs separately and quantitatively recovers them into their inherent center peaks. In the present study, the applicability of ramp CP/PASS to NOM analysis was compared with direct polarization (DPMAS), another quantitative method but one that requires a long operation time, and/or a ramp CP/total suppression side band (ramp CP/TOSS) technique, a popular but non-quantitative method for deleting SSBs. The test materials were six soil humic acid samples with various known degrees of aromaticity and two fulvic acids. There were no significant differences in the relative abundance of alkyl C, O-alkyl C, and aromatic C between the ramp CP/PASS and DPMAS methods, while the signal intensities corresponding to aromatic C in the ramp CP/TOSS spectra were consistently less than the values obtained in the ramp CP/PASS spectra. These results indicate that ramp CP/PASS can be used to accurately estimate the C composition of NOM samples.

  6. Gas purge microsyringe extraction for quantitative direct gas chromatographic-mass spectrometric analysis of volatile and semivolatile chemicals.

    Science.gov (United States)

    Yang, Cui; Piao, Xiangfan; Qiu, Jinxue; Wang, Xiaoping; Ren, Chunyan; Li, Donghao

    2011-03-25

    Sample pretreatment before chromatographic analysis is the most time consuming and error prone part of analytical procedures, yet it is a key factor in the final success of the analysis. A quantitative and fast liquid phase microextraction technique termed as gas purge microsyringe extraction (GP-MSE) has been developed for simultaneous direct gas chromatography-mass spectrometry (GC-MS) analysis of volatile and semivolatile chemicals without cleanup process. Use of a gas flowing system, temperature control and a conventional microsyringe greatly increased the surface area of the liquid phase micro solvent, and led to quantitative recoveries of both volatile and semivolatile chemicals within short extraction time of only 2 min. Recoveries of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and alkylphenols (APs) determined were 85-107%, and reproducibility was between 2.8% and 8.5%. In particular, the technique shows high sensitivity for semivolatile chemicals which is difficult to achieve in other sample pretreatment techniques such as headspace-liquid phase microextraction. The variables affecting extraction efficiency such as gas flow rate, extraction time, extracting solvent type, temperature of sample and extracting solvent were investigated. Finally, the technique was evaluated to determine PAHs, APs and OCPs from plant and soil samples. The experimental results demonstrated that the technique is economic, sensitive to both volatile and semivolatile chemicals, is fast, simple to operate, and allows quantitative extraction. On-site monitoring of volatile and semivolatile chemicals is now possible using this technique due to the simplification and speed of sample treatment.

  7. A quantitative analysis of Salmonella Typhimurium metabolism during infection

    OpenAIRE

    Steeb, Benjamin

    2012-01-01

    In this thesis, Salmonella metabolism during infection was investigated. The goal was to gain a quantitative and comprehensive understanding of Salmonella in vivo nutrient supply, utilization and growth. To achieve this goal, we used a combined experimental / in silico approach. First, we generated a reconstruction of Salmonella metabolism ([1], see 2.1). This reconstruction was then combined with in vivo data from experimental mutant phenotypes to build a comprehensive quantitative in viv...

  8. Wavelet Analysis for Acoustic Phased Array

    Science.gov (United States)

    Kozlov, Inna; Zlotnick, Zvi

    2003-03-01

    Wavelet spectrum analysis is known to be one of the most powerful tools for exploring quasistationary signals. In this paper we use wavelet technique to develop a new Direction Finding (DF) Algorithm for the Acoustic Phased Array (APA) systems. Utilising multi-scale analysis of libraries of wavelets allows us to work with frequency bands instead of individual frequency of an acoustic source. These frequency bands could be regarded as features extracted from quasistationary signals emitted by a noisy object. For detection, tracing and identification of a sound source in a noisy environment we develop smart algorithm. The essential part of this algorithm is a special interacting procedure of the above-mentioned DF-algorithm and the wavelet-based Identification (ID) algorithm developed in [4]. Significant improvement of the basic properties of a receiving APA pattern is achieved.

  9. Quantitative analysis of flavanones and chalcones from willow bark.

    Science.gov (United States)

    Freischmidt, A; Untergehrer, M; Ziegler, J; Knuth, S; Okpanyi, S; Müller, J; Kelber, O; Weiser, D; Jürgenliemk, G

    2015-09-01

    Willow bark extracts are used for the treatment of fever, pain and inflammation. Recent clinical and pharmacological research revealed that not only the salicylic alcohol derivatives, but also the polyphenols significantly contribute to these effects. Quantitative analysis of the European Pharmacopoeia still focuses on the determination of the salicylic alcohol derivatives. The objective of the present study was the development of an effective quantification method for the determination of as many flavanone and chalcone glycosides as possible in Salix purpurea and other Salix species as well as commercial preparations thereof. As Salix species contain a diverse spectrum of the glycosidated flavanones naringenin, eriodictyol, and the chalcone chalconaringenin, a subsequent acidic and enzymatic hydrolysis was developed to yield naringenin and eriodictyol as aglycones, which were quantified by HPLC. The 5-O-glucosides were cleaved with 11.5% TFA before subsequent hydrolysis of the 7-O-glucosides with an almond β-glucosidase at pH 6-7. The method was validated with regard to LOD, LOQ, intraday and interday precision, accuracy, stability, recovery, time of hydrolysis, robustness and applicability to extracts. All 5-O- and 7-O-glucosides of naringenin, eriodictyol and chalconaringenin were completely hydrolysed and converted to naringenin and eriodictyol. The LOD of the HPLC method was 0.77 μM of naringenin and 0.45 μM of eriodictyol. The LOQ was 2.34 μM of naringenin and 1.35 μM for eriodictyol. The method is robust with regard to sample weight, but susceptible concerning enzyme deterioration. The developed method is applicable to the determination of flavanone and chalcone glycosides in willow bark and corresponding preparations.

  10. Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2008-08-03

    Rising energy prices and climate change are central issues in the debate about our nation's energy policy. Many are demanding increased energy efficiency as a way to help reduce greenhouse gas emissions and lower the total cost of electricity and energy services for consumers and businesses. Yet, as the National Action Plan on Energy Efficiency (NAPEE) pointed out, many utilities continue to shy away from seriously expanding their energy efficiency program offerings because they claim there is insufficient profit-motivation, or even a financial disincentive, when compared to supply-side investments. With the recent introduction of Duke Energy's Save-a-Watt incentive mechanism and ongoing discussions about decoupling, regulators and policymakers are now faced with an expanded and diverse landscape of financial incentive mechanisms, Determining the 'right' way forward to promote deep and sustainable demand side resource programs is challenging. Due to the renaissance that energy efficiency is currently experiencing, many want to better understand the tradeoffs in stakeholder benefits between these alternative incentive structures before aggressively embarking on a path for which course corrections can be time-consuming and costly. Using a prototypical Southwest utility and a publicly available financial model, we show how various stakeholders (e.g. shareholders, ratepayers, etc.) are affected by these different types of shareholder incentive mechanisms under varying assumptions about program portfolios. This quantitative analysis compares the financial consequences associated with a wide range of alternative incentive structures. The results will help regulators and policymakers better understand the financial implications of DSR program incentive regulation.

  11. Quantitative Analysis of the Effective Functional Structure in Yeast Glycolysis

    Science.gov (United States)

    De la Fuente, Ildefonso M.; Cortes, Jesus M.

    2012-01-01

    The understanding of the effective functionality that governs the enzymatic self-organized processes in cellular conditions is a crucial topic in the post-genomic era. In recent studies, Transfer Entropy has been proposed as a rigorous, robust and self-consistent method for the causal quantification of the functional information flow among nonlinear processes. Here, in order to quantify the functional connectivity for the glycolytic enzymes in dissipative conditions we have analyzed different catalytic patterns using the technique of Transfer Entropy. The data were obtained by means of a yeast glycolytic model formed by three delay differential equations where the enzymatic rate equations of the irreversible stages have been explicitly considered. These enzymatic activity functions were previously modeled and tested experimentally by other different groups. The results show the emergence of a new kind of dynamical functional structure, characterized by changing connectivity flows and a metabolic invariant that constrains the activity of the irreversible enzymes. In addition to the classical topological structure characterized by the specific location of enzymes, substrates, products and feedback-regulatory metabolites, an effective functional structure emerges in the modeled glycolytic system, which is dynamical and characterized by notable variations of the functional interactions. The dynamical structure also exhibits a metabolic invariant which constrains the functional attributes of the enzymes. Finally, in accordance with the classical biochemical studies, our numerical analysis reveals in a quantitative manner that the enzyme phosphofructokinase is the key-core of the metabolic system, behaving for all conditions as the main source of the effective causal flows in yeast glycolysis. PMID:22393350

  12. Descriptive quantitative analysis of hallux abductovalgus transverse plane radiographic parameters.

    Science.gov (United States)

    Meyr, Andrew J; Myers, Adam; Pontious, Jane

    2014-01-01

    Although the transverse plane radiographic parameters of the first intermetatarsal angle (IMA), hallux abductus angle (HAA), and the metatarsal-sesamoid position (MSP) form the basis of preoperative procedure selection and postoperative surgical evaluation of the hallux abductovalgus deformity, the so-called normal values of these measurements have not been well established. The objectives of the present study were to (1) evaluate the descriptive statistics of the first IMA, HAA, and MSP from a large patient population and (2) to determine an objective basis for defining "normal" versus "abnormal" measurements. Anteroposterior foot radiographs from 373 consecutive patients without a history of previous foot and ankle surgery and/or trauma were evaluated for the measurements of the first IMA, HAA, and MSP. The results revealed a mean measurement of 9.93°, 17.59°, and position 3.63 for the first IMA, HAA, and MSP, respectively. An advanced descriptive analysis demonstrated data characteristics of both parametric and nonparametric distributions. Furthermore, clear differentiations in deformity progression were appreciated when the variables were graphically depicted against each other. This could represent a quantitative basis for defining "normal" versus "abnormal" values. From the results of the present study, we have concluded that these radiographic parameters can be more conservatively reported and analyzed using nonparametric descriptive and comparative statistics within medical studies and that the combination of a first IMA, HAA, and MSP at or greater than approximately 10°, 18°, and position 4, respectively, appears to be an objective "tipping point" in terms of deformity progression and might represent an upper limit of acceptable in terms of surgical deformity correction.

  13. A qualitative and quantitative analysis of vegetable pricing in supermarket

    Science.gov (United States)

    Miranda, Suci

    2017-06-01

    The purpose of this study is to analyze the variables affecting the determination of the sale price of vegetable which is constant over time in a supermarket qualitatively and quantitavely. It focuses on the non-organic vegetable with a fixed selling price over time such as spinach, beet, and parsley. In qualitative analysis, the sale price determination is influenced by the vegetable characteristics: (1) vegetable segmentation (low to high daily consumed); (2) vegetable age (how long it can last related to freshness); which both characteristic relates to the inventory management and ultimately to the sale price in supermarket. While quantitatively, the vegetables are divided into two categories: the leaf vegetable group that the leaves are eaten as a vegetable with the aging product (a) = 0 and the shelf life (t) = 0, and the non-leafy vegetable group with the aging group (a) = a+1 and the shelf life (t) = t+1. The vegetable age (a) = 0 means they only last for one day when they are ordered then they have to terminate. Whereas a+1 is that they have a longer life for more than a day such as beet, white radish, and string beans. The shelf life refers to how long it will be placed in a shelf in supermarket in line with the vegetable age. According to the cost plus pricing method using full price costing approach, production costs, non-production costs, and markup are adjusted differently for each category. There is a holding cost added to the sale price of the non-leafy vegetable, yet it is assumed a 0 holding cost for the leafy vegetable category. The amount of expected margin of each category is correlated to the vegetable characteristics.

  14. Hydrocarbons on Phoebe, Iapetus, and Hyperion: Quantitative Analysis

    Science.gov (United States)

    Cruikshank, Dale P.; MoreauDalleOre, Cristina; Pendleton, Yvonne J.; Clark, Roger Nelson

    2012-01-01

    We present a quantitative analysis of the hydrocarbon spectral bands measured on three of Saturn's satellites, Phoebe, Iaperus, and Hyperion. These bands, measured with the Cassini Visible-Infrared Mapping Spectrometer on close fly-by's of these satellites, are the C-H stretching modes of aromatic hydrocarbons at approximately 3.28 micrometers (approximately 3050 per centimeter), and the are four blended bands of aliphatic -CH2- and -CH3 in the range approximately 3.36-3.52 micrometers (approximately 2980- 2840 per centimeter) bably indicating the presence of polycyclic aromatic hydrocarbons (PAH), is unusually strong in comparison to the aliphatic bands, resulting in a unique signarure among Solar System bodies measured so far, and as such offers a means of comparison among the three satellites. The ratio of the C-H bands in aromatic molecules to those in aliphatic molecules in the surface materials of Phoebe, NAro:NAliph approximately 24; for Hyperion the value is approximately 12, while laperus shows an intermediate value. In view of the trend of the evolution (dehydrogenation by heat and radiation) of aliphatic complexes toward more compact molecules and eventually to aromatics, the relative abundances of aliphatic -CH2- and -CH3- is an indication of the lengths of the molecular chain structures, hence the degree of modification of the original material. We derive CH2:CH3 approximately 2.2 in the spectrum of low-albedo material on laperus; this value is the same within measurement errors to the ratio in the diffuse interstellar medium. The similarity in the spectral signatures of the three satellites, plus the apparent weak trend of aromatic/aliphatic abundance from Phoebe to Hyperion, is consistent with, and effectively confirms that the source of the hydrocarbon-bearing material is Phoebe, and that the appearance of that material on the other two satellites arises from the deposition of the inward-spiraling dust that populates the Phoebe ring.

  15. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    Science.gov (United States)

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Isola, A A [Philips Research Laboratories, X-ray Imaging Systems Department, Weisshausstrasse 2, D-52066 Aachen (Germany); Schmitt, H; Van Stevendaal, U; Grass, M [Philips Research Laboratories, Sector Digital Imaging, Roentgenstrasse 24-26, D-22335 Hamburg (Germany); Begemann, P G [Department of Radiology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg (Germany); Coulon, P [Philips Healthcare France, 33 rue de Verdun, F-92150 Suresnes Cedex (France); Boussel, L, E-mail: Alfonso.Isola@Philips.com [Department of Radiology, Louis Pradel Hospital, CREATIS, UMR CNRS 5515, INSERM U630, Lyon (France)

    2011-09-21

    Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.

  17. Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT

    Science.gov (United States)

    Isola, A. A.; Schmitt, H.; van Stevendaal, U.; Begemann, P. G.; Coulon, P.; Boussel, L.; Grass, M.

    2011-09-01

    Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.

  18. Multifractality and Network Analysis of Phase Transition

    Science.gov (United States)

    Li, Wei; Yang, Chunbin; Han, Jihui; Su, Zhu; Zou, Yijiang

    2017-01-01

    Many models and real complex systems possess critical thresholds at which the systems shift dramatically from one sate to another. The discovery of early-warnings in the vicinity of critical points are of great importance to estimate how far the systems are away from the critical states. Multifractal Detrended Fluctuation analysis (MF-DFA) and visibility graph method have been employed to investigate the multifractal and geometrical properties of the magnetization time series of the two-dimensional Ising model. Multifractality of the time series near the critical point has been uncovered from the generalized Hurst exponents and singularity spectrum. Both long-term correlation and broad probability density function are identified to be the sources of multifractality. Heterogeneous nature of the networks constructed from magnetization time series have validated the fractal properties. Evolution of the topological quantities of the visibility graph, along with the variation of multifractality, serve as new early-warnings of phase transition. Those methods and results may provide new insights about the analysis of phase transition problems and can be used as early-warnings for a variety of complex systems. PMID:28107414

  19. Phase unwrapping work of photoelastic stress analysis

    Science.gov (United States)

    Huang, M. J.; Sung, P. C.; An, H. L.

    2010-03-01

    π Photoelasticity plays an important role in the field of stress analysis. Not only because it is a non-contact whole field optical method, but it provides isoclinic (principal stress direction) and isochomatic (principal stress difference) data as well, which serve as the two most important parameters in the field. But, unfortunately, the coupling between these two parameters induces phase ambiguity problem in the isochromatic data unless the isoclinic data have been correctly procured first. In this paper, a novel spatial phase unwrapping is first applied for retrieving the correct isoclinic data, which is then substituted into the isochromatic calculation to solve the 2 ambiguity problem conducted by wrapped isoclinic data. The result is checked with that from the theoretical analysis and shown to be with limited error. The same problem is solved in a different way - by the temporal approaches, load stepping or multiple wavelengths sourcing in advance. The intercomparison depicts that the spatial approach is more noise-immune than the temporal approach is. It is because that by the spatial approach the algorithm can check data not only of themselves but consult data also from their neighbors. As a result, any small localized error can be eliminated accordingly.

  20. Quantitative PCR analysis of salivary pathogen burden in periodontitis.

    Science.gov (United States)

    Salminen, Aino; Kopra, K A Elisa; Hyvärinen, Kati; Paju, Susanna; Mäntylä, Päivi; Buhlin, Kåre; Nieminen, Markku S; Sinisalo, Juha; Pussinen, Pirkko J

    2015-01-01

    Our aim was to investigate the value of salivary concentrations of four major periodontal pathogens and their combination in diagnostics of periodontitis. The Parogene study included 462 dentate subjects (mean age 62.9 ± 9.2 years) with coronary artery disease (CAD) diagnosis who underwent an extensive clinical and radiographic oral examination. Salivary levels of four major periodontal bacteria were measured by quantitative real-time PCR (qPCR). Median salivary concentrations of Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia, as well as the sum of the concentrations of the four bacteria, were higher in subjects with moderate to severe periodontitis compared to subjects with no to mild periodontitis. Median salivary Aggregatibacter actinomycetemcomitans concentrations did not differ significantly between the subjects with no to mild periodontitis and subjects with moderate to severe periodontitis. In logistic regression analysis adjusted for age, gender, diabetes, and the number of teeth and implants, high salivary concentrations of P. gingivalis, T. forsythia, and P. intermedia were significantly associated with moderate to severe periodontitis. When looking at different clinical and radiographic parameters of periodontitis, high concentrations of P. gingivalis and T. forsythia were significantly associated with the number of 4-5 mm periodontal pockets, ≥6 mm pockets, and alveolar bone loss (ABL). High level of T. forsythia was associated also with bleeding on probing (BOP). The combination of the four bacteria, i.e., the bacterial burden index, was associated with moderate to severe periodontitis with an odds ratio (OR) of 2.40 (95% CI 1.39-4.13). When A. actinomycetemcomitans was excluded from the combination of the bacteria, the OR was improved to 2.61 (95% CI 1.51-4.52). The highest OR 3.59 (95% CI 1.94-6.63) was achieved when P. intermedia was further excluded from the combination and only the levels of P. gingivalis and T

  1. Universal platform for quantitative analysis of DNA transposition

    Directory of Open Access Journals (Sweden)

    Pajunen Maria I

    2010-11-01

    Full Text Available Abstract Background Completed genome projects have revealed an astonishing diversity of transposable genetic elements, implying the existence of novel element families yet to be discovered from diverse life forms. Concurrently, several better understood transposon systems have been exploited as efficient tools in molecular biology and genomics applications. Characterization of new mobile elements and improvement of the existing transposition technology platforms warrant easy-to-use assays for the quantitative analysis of DNA transposition. Results Here we developed a universal in vivo platform for the analysis of transposition frequency with class II mobile elements, i.e., DNA transposons. For each particular transposon system, cloning of the transposon ends and the cognate transposase gene, in three consecutive steps, generates a multifunctional plasmid, which drives inducible expression of the transposase gene and includes a mobilisable lacZ-containing reporter transposon. The assay scores transposition events as blue microcolonies, papillae, growing within otherwise whitish Escherichia coli colonies on indicator plates. We developed the assay using phage Mu transposition as a test model and validated the platform using various MuA transposase mutants. For further validation and to illustrate universality, we introduced IS903 transposition system components into the assay. The developed assay is adjustable to a desired level of initial transposition via the control of a plasmid-borne E. coli arabinose promoter. In practice, the transposition frequency is modulated by varying the concentration of arabinose or glucose in the growth medium. We show that variable levels of transpositional activity can be analysed, thus enabling straightforward screens for hyper- or hypoactive transposase mutants, regardless of the original wild-type activity level. Conclusions The established universal papillation assay platform should be widely applicable to a

  2. Quantitative PCR analysis of salivary pathogen burden in periodontitis

    Directory of Open Access Journals (Sweden)

    Aino eSalminen

    2015-10-01

    Full Text Available Our aim was to investigate the value of salivary concentrations of four major periodontal pathogens and their combination in diagnostics of periodontitis. The Parogene study included 462 dentate subjects (mean age 62.9±9.2 years with coronary artery disease diagnosis who underwent an extensive clinical and radiographic oral examination. Salivary levels of four major periodontal bacteria were measured by quantitative real-time PCR. Median salivary concentrations of P. gingivalis, T. forsythia, and P. intermedia, as well as the sum of the concentrations of the four bacteria, were higher in subjects with moderate to severe periodontitis compared to subjects with no to mild periodontitis. Median salivary A. actinomycetemcomitans concentrations did not differ significantly between the subjects with no to mild periodontitis and subjects with moderate to severe periodontitis. In logistic regression analysis adjusted for age, gender, diabetes, and the number of teeth and implants, high salivary concentrations of P. gingivalis, T. forsythia, and P. intermedia were significantly associated with moderate to severe periodontitis. When looking at different clinical and radiographic parameters of periodontitis, high concentrations of P. gingivalis and T. forsythia were significantly associated with the number of 4-5 mm periodontal pockets, ≥ 6 mm pockets, and alveolar bone loss (ABL. High level of T. forsythia was associated also with bleeding on probing (BOP. The combination of the four bacteria, i.e. the bacterial burden index, was associated with moderate to severe periodontitis with an odds ratio (OR of 2.40 (95% CI 1.39–4.13. When A. actinomycetemcomitans was excluded from the combination of the bacteria, the OR was improved to 2.61 (95% CI 1.51–4.52. The highest odds ratio 3.59 (95% CI 1.94–6.63 was achieved when P. intermedia was further excluded from the combination and only the levels of P. gingivalis and T. forsythia were used. Salivary

  3. Quantitative analysis of volatile organic compounds using ion mobility spectra and cascade correlation neural networks

    Science.gov (United States)

    Harrington, Peter DEB.; Zheng, Peng

    1995-01-01

    Ion Mobility Spectrometry (IMS) is a powerful technique for trace organic analysis in the gas phase. Quantitative measurements are difficult, because IMS has a limited linear range. Factors that may affect the instrument response are pressure, temperature, and humidity. Nonlinear calibration methods, such as neural networks, may be ideally suited for IMS. Neural networks have the capability of modeling complex systems. Many neural networks suffer from long training times and overfitting. Cascade correlation neural networks train at very fast rates. They also build their own topology, that is a number of layers and number of units in each layer. By controlling the decay parameter in training neural networks, reproducible and general models may be obtained.

  4. A comparison of phase imaging and quantitative susceptibility mapping in the imaging of multiple sclerosis lesions at ultrahigh field

    OpenAIRE

    Cronin, Matthew John; Wharton, Samuel; Al-Radaideh, Ali; Constantinescu, Chris; Evangelou, Nikos; Bowtell, Richard W.; Gowland, Penny A.

    2016-01-01

    Objective\\ud \\ud The aim of this study was to compare the use of high-resolution phase and QSM images acquired at ultra-high field in the investigation of multiple sclerosis (MS) lesions with peripheral rings, and to discuss their usefulness for drawing inferences about underlying tissue composition.\\ud \\ud Materials and methods\\ud \\ud Thirty-nine Subjects were scanned at 7 T, using 3D T2*-weighted and T1-weighted sequences. Phase images were then unwrapped and filtered, and quantitative susc...

  5. A Quantitative Analysis of the Behavioral Checklist of the Movement ABC Motor Test

    Science.gov (United States)

    Ruiz, Luis Miguel; Gomez, Marta; Graupera, Jose Luis; Gutierrez, Melchor; Linaza, Jose Luis

    2007-01-01

    The fifth section of the Henderson and Sugden's Movement ABC Checklist is part of the general Checklist that accompanies The Movement ABC Battery. The authors maintain that the analysis of this section must be mainly qualitative instead of quantitative. The main objective of this study was to employ a quantitative analysis of this behavioural…

  6. [Bibliometric analysis of bacterial quantitative proteomics in English literatures].

    Science.gov (United States)

    Zhang, Xin; She, Danyang; Liu, Youning; Wang, Rui; Di, Xiuzhen; Liang, Beibei; Wang, Yue

    2014-07-01

    To analyze the worldwide advances on bacterial quantitative proteomics over the past fifteen years with bibliometric approach. Literature retrieval was conducted throughout the databases of Pubmed, Embase and Science citation index (SCI), using "bacterium" and "quantitative proteomics" as the key words. The deadline is July 2013. We sorted and analyzed these articles with Endnote X6 from the aspects of published year, the first author, name of journal, published institution, cited frequency and publication type. 932 English articles were included in our research after deleting the duplicates. The first article on bacterial quantitative proteomics was reported in 1999. The maximal publications were 163 related articles in 2012. Up till July 2013, authors from more than 23 countries and regions have published articles in this field. China ranks the fourth. The main publication type is original articles. The most frequently cited article is entitled with "Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition" by Silva JC, Gorenstein MV, Li GZ, et al in Mol Cell Proteomics 2006. The most productive author is Smith RD from Biological Sciences Division, Pac. Northwest National Laboratory. The top journal publishing bacterial quantitative proteomics is Proteomics. More and more researchers pay attention to quantitative proteomics which will be widely used in bacteriology.

  7. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.

    Science.gov (United States)

    Dovlo, Edem; Lashkari, Bahman; Soo Sean Choi, Sung; Mandelis, Andreas; Shi, Wei; Liu, Fei-Fei

    2016-10-19

    Overcoming the limitations of conventional linear spectroscopy used in multispectral photoacoustic imaging, wherein a linear relationship is assumed between the absorbed optical energy and the absorption spectra of the chromophore at a specific location, is crucial for obtaining accurate spatially-resolved quantitative functional information by exploiting known chromophore-specific spectral characteristics. This study introduces a non-invasive phase-filtered differential photoacoustic technique, wavelength-modulated differential photoacoustic radar (WM-DPAR) imaging that addresses this issue by eliminating the effect of the unknown wavelength-dependent fluence. It employs two laser wavelengths modulated out-of-phase to significantly suppress background absorption while amplifying the difference between the two photoacoustic signals. This facilitates pre-malignant tumor identification and hypoxia monitoring, as minute changes in total hemoglobin concentration and hemoglobin oxygenation are detectable. The system can be tuned for specific applications such as cancer screening and SO2 quantification by regulating the amplitude ratio and phase shift of the signal. The WM-DPAR imaging of a head and neck carcinoma tumor grown in the thigh of a nude rat demonstrates the functional PA imaging of small animals in vivo. The PA appearance of the tumor in relation to tumor vascularity is investigated by immunohistochemistry. Phase-filtered WM-DPAR imaging is also illustrated, maximizing quantitative SO2 imaging fidelity of tissues. Oxygenation levels within a tumor grown in the thigh of a nude rat using the two-wavelength phase-filtered differential PAR method.

  8. Novel X-ray phase-contrast tomography method for quantitative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, Rikke; Nielsen, Mikkel Schou; Einarsdottir, Hildur;

    2014-01-01

    The objective of this study was to evaluate the use of X-ray phase-contrast tomography combined with 3D image segmentation to investigate the heat induced structural changes in meat. The measurements were performed at the Swiss synchrotron radiation light source using a grating interferometric se...... in a qualitative and quantitative manner without prior sample preparation as isolation of single muscle components, calibration or histology....

  9. Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics.

    Science.gov (United States)

    Memmolo, Pasquale; Finizio, Andrea; Paturzo, Melania; Miccio, Lisa; Ferraro, Pietro

    2011-12-05

    We report on a compact twin-beam interferometer that can be adopted as a flexible diagnostic tool in microfluidic platforms with twofold functionality. The novel configuration allows 3D tracking of micro-particles and, at same time, can simultaneously furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. Experimental demonstration is given on for in vitro cells in a microfluidic environment.

  10. Quantitation of drugs via molecularly imprinted polymer solid phase extraction and electrospray ionization mass spectrometry: benzodiazepines in human plasma

    OpenAIRE

    2011-01-01

    The association of solid phase extraction with molecularly imprinted polymers (MIP) and electrospray ionization mass spectrometry (ESI-MS) is applied to the direct extraction and quantitation of benzodiazepines in human plasma. The target analytes are sequestered by MIP and directly analyzed by ESI-MS. Due to the MIP highly selective extraction, ionic suppression during ESI is minimized; hence no separation is necessary prior to ESI-MS, which greatly increases analytical speed. Benzodiazepine...

  11. Geographical classification of Epimedium based on HPLC fingerprint analysis combined with multi-ingredients quantitative analysis.

    Science.gov (United States)

    Xu, Ning; Zhou, Guofu; Li, Xiaojuan; Lu, Heng; Meng, Fanyun; Zhai, Huaqiang

    2017-05-01

    A reliable and comprehensive method for identifying the origin and assessing the quality of Epimedium has been developed. The method is based on analysis of HPLC fingerprints, combined with similarity analysis, hierarchical cluster analysis (HCA), principal component analysis (PCA) and multi-ingredient quantitative analysis. Nineteen batches of Epimedium, collected from different areas in the western regions of China, were used to establish the fingerprints and 18 peaks were selected for the analysis. Similarity analysis, HCA and PCA all classified the 19 areas into three groups. Simultaneous quantification of the five major bioactive ingredients in the Epimedium samples was also carried out to confirm the consistency of the quality tests. These methods were successfully used to identify the geographical origin of the Epimedium samples and to evaluate their quality.

  12. Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.

    Science.gov (United States)

    Hill, Devon W.; And Others

    1988-01-01

    Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

  13. Quantitative analysis of norfloxacin by 1H NMR and HPLC.

    Science.gov (United States)

    Frackowiak, Anita; Kokot, Zenon J

    2012-01-01

    1H NMR and developed previously HPLC methods were applied to quantitative determination of norfloxacin in veterinary solution form for pigeon. Changes in concentration can lead to significant changes in the 1H chemical shifts of non-exchangeable aromatic protons as a result of extensive self-association phenomena. This chemical shift variation of protons was analyzed and applied in the quantitative determination of norfloxacin. The method is simple, rapid, precise and accurate, and can be used for quality control of this drug.

  14. Quantitative analysis of sensor for pressure waveform measurement

    Directory of Open Access Journals (Sweden)

    Tyan Chu-Chang

    2010-01-01

    Full Text Available Abstract Background Arterial pressure waveforms contain important diagnostic and physiological information since their contour depends on a healthy cardiovascular system 1. A sensor was placed at the measured artery and some contact pressure was used to measure the pressure waveform. However, where is the location of the sensor just about enough to detect a complete pressure waveform for the diagnosis? How much contact pressure is needed over the pulse point? These two problems still remain unresolved. Method In this study, we propose a quantitative analysis to evaluate the pressure waveform for locating the position and applying the appropriate force between the sensor and the radial artery. The two-axis mechanism and the modified sensor have been designed to estimate the radial arterial width and detect the contact pressure. The template matching method was used to analyze the pressure waveform. In the X-axis scan, we found that the arterial diameter changed waveform (ADCW and the pressure waveform would change from small to large and then back to small again when the sensor was moved across the radial artery. In the Z-axis scan, we also found that the ADCW and the pressure waveform would change from small to large and then back to small again when the applied contact pressure continuously increased. Results In the X-axis scan, the template correlation coefficients of the left and right boundaries of the radial arterial width were 0.987 ± 0.016 and 0.978 ± 0.028, respectively. In the Z-axis scan, when the excessive contact pressure was more than 100 mm Hg, the template correlation was below 0.983. In applying force, when using the maximum amplitude as the criteria level, the lower contact pressure (r = 0.988 ± 0.004 was better than the higher contact pressure (r = 0.976 ± 0.012. Conclusions Although, the optimal detective position has to be close to the middle of the radial arterial, the pressure waveform also has a good completeness with

  15. Quantitative analysis of autophagy using advanced 3D fluorescence microscopy.

    Science.gov (United States)

    Changou, Chun A; Wolfson, Deanna L; Ahluwalia, Balpreet Singh; Bold, Richard J; Kung, Hsing-Jien; Chuang, Frank Y S

    2013-05-03

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early

  16. Microchromatography of hemoglobins. VIII. A general qualitative and quantitative method in plastic drinking straws and the quantitative analysis of Hb-F.

    Science.gov (United States)

    Schroeder, W A; Pace, L A

    1978-03-01

    The microchromatographic procedure for the quantitative analysis of the hemoglobin components in a hemolysate uses columns of DEAE-cellulose in a plastic drinking straw with a glycine-KCN-NaCl developer. Not only may the method be used for the quantitative analysis of Hb-F but also for the analysis of the varied components in mixtures of hemoglobins.

  17. Quantitative phase imaging of biological cells and tissues using singleshot white light interference microscopy and phase subtraction method for extended range of measurement

    Science.gov (United States)

    Mehta, Dalip Singh; Sharma, Anuradha; Dubey, Vishesh; Singh, Veena; Ahmad, Azeem

    2016-03-01

    We present a single-shot white light interference microscopy for the quantitative phase imaging (QPI) of biological cells and tissues. A common path white light interference microscope is developed and colorful white light interferogram is recorded by three-chip color CCD camera. The recorded white light interferogram is decomposed into the red, green and blue color wavelength component interferograms and processed it to find out the RI for different color wavelengths. The decomposed interferograms are analyzed using local model fitting (LMF)" algorithm developed for reconstructing the phase map from single interferogram. LMF is slightly off-axis interferometric QPI method which is a single-shot method that employs only a single image, so it is fast and accurate. The present method is very useful for dynamic process where path-length changes at millisecond level. From the single interferogram a wavelength-dependent quantitative phase imaging of human red blood cells (RBCs) are reconstructed and refractive index is determined. The LMF algorithm is simple to implement and is efficient in computation. The results are compared with the conventional phase shifting interferometry and Hilbert transform techniques.

  18. plusTipTracker: Quantitative image analysis software for the measurement of microtubule dynamics.

    Science.gov (United States)

    Applegate, Kathryn T; Besson, Sebastien; Matov, Alexandre; Bagonis, Maria H; Jaqaman, Khuloud; Danuser, Gaudenz

    2011-11-01

    Here we introduce plusTipTracker, a Matlab-based open source software package that combines automated tracking, data analysis, and visualization tools for movies of fluorescently-labeled microtubule (MT) plus end binding proteins (+TIPs). Although +TIPs mark only phases of MT growth, the plusTipTracker software allows inference of additional MT dynamics, including phases of pause and shrinkage, by linking collinear, sequential growth tracks. The algorithm underlying the reconstruction of full MT trajectories relies on the spatially and temporally global tracking framework described in Jaqaman et al. (2008). Post-processing of track populations yields a wealth of quantitative phenotypic information about MT network architecture that can be explored using several visualization modalities and bioinformatics tools included in plusTipTracker. Graphical user interfaces enable novice Matlab users to track thousands of MTs in minutes. In this paper, we describe the algorithms used by plusTipTracker and show how the package can be used to study regional differences in the relative proportion of MT subpopulations within a single cell. The strategy of grouping +TIP growth tracks for the analysis of MT dynamics has been introduced before (Matov et al., 2010). The numerical methods and analytical functionality incorporated in plusTipTracker substantially advance this previous work in terms of flexibility and robustness. To illustrate the enhanced performance of the new software we thus compare computer-assembled +TIP-marked trajectories to manually-traced MT trajectories from the same movie used in Matov et al. (2010).

  19. Hartsville data and analysis book: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Kerley, C.R.; Siegrist, C.

    1978-09-01

    A preconstruction data base is recorded for the impact area surrounding the Hartsville nuclear construction project. The objective is to document baseline information for socioeconomic characteristics that may be either temporarily or permanently altered by the project. The analysis suggests that the five counties surrounding the site make up a primary impact area, but some impacts may occur outside the area. The work force for the construction phase of the project is segregated into four components: (1) former residents of the site county, (2) former residents of other counties in the impact area, (3) in-movers to the site county, and (4) in-movers to other counties in the impact area. A theoretical model is developed to illustrate the contribution of each component to the spatial pattern of economic benefits and social costs in the impact area. A shift-share analysis of agricultural characteristics in the impact area shows that employment and farm numbers in the area have declined at a slightly faster rate than in the nation but at a slower rate than in the South. A population and construction project threshold analysis suggests that, given the project size and population base at Hartsville, significant social and economic constraints may be encountered in the public and private economic infrastructure. These include amenities such as housing, school space, medical and police protection.

  20. Qualitative Analysis of Self Phase Modulation (SPM

    Directory of Open Access Journals (Sweden)

    Ruby Verma

    2013-03-01

    Full Text Available Optical fiber changed the way of communication. In comparison with wireless communication, optical fiber communication is very fast and reliable. It is more secure but costly. Optical fiber uses the principle of total internal reflection for transmission. Optical fiber has core and cladding with different refractive index and major portion of the signal goes through the core. But due macro and micro bending, chromatic dispersion is observed.In this paper, we have analyzed self phase modulation in an optical fiber system and discussed how it causes dispersion in input signal. These effects are simulated using OPTISYSTEM tool at a bit rate of 10Gbps and analysed using eye pattern method with respect to bit error rate and Q factor. Simulation results from the OPTISYSTEM tool are also compared with the numerical analysis of nonlinear Schrodinger equation, which is simulated in MATLAB

  1. Quantitative analysis of distributed control paradigms of robot swarms

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    2010-01-01

    describe the physical and simulated robots, experiment scenario, and experiment setup. Third, we present our robot controllers based on behaviour based and neural network based paradigms. Fourth, we graphically show their experiment results and quantitatively analyse the results in comparison of the two...

  2. Teaching Quantitative Reasoning for Nonscience Majors through Carbon Footprint Analysis

    Science.gov (United States)

    Boose, David L.

    2014-01-01

    Quantitative reasoning is a key intellectual skill, applicable across disciplines and best taught in the context of authentic, relevant problems. Here, I describe and assess a laboratory exercise that has students calculate their "carbon footprint" and evaluate the impacts of various behavior choices on that footprint. Students gather…

  3. Quantitative security analysis for multi-threaded programs

    NARCIS (Netherlands)

    Ngo, Tri Minh; Huisman, Marieke

    2013-01-01

    Quantitative theories of information flow give us an approach to relax the absolute confidentiality properties that are difficult to satisfy for many practical programs. The classical information-theoretic approaches for sequential programs, where the program is modeled as a communication channel wi

  4. Quantitative and Qualitative Analysis of Biomarkers in Fusarium verticillioides

    Science.gov (United States)

    In this study, a combination HPLC-DART-TOF-MS system was utilized to identify and quantitatively analyze carbohydrates in wild type and mutant strains of Fusarium verticillioides. Carbohydrate fractions were isolated from F. verticillioides cellular extracts by HPLC using a cation-exchange size-excl...

  5. Reliability centered maintenance (RCM: quantitative analysis of an induction electric furnace

    Directory of Open Access Journals (Sweden)

    Diego Santos Cerveira

    2015-06-01

    Full Text Available The purpose of this article is to define a maintenance strategy for an electric induction furnace, installed on a special steels Foundry. The research method was the quantitative modeling. The proposed method is based on Reliability-Centered Maintenance (RCM, applied to industrial equipment. Quantitative analysis of reliability, availability and maintainability were used as support the definition of the maintenance strategy of the equipment. For research, historical data were collected from time-to-repair (TTR and time between failures (TBF of the equipment under consideration. Supported by ProConf 2000 software, most appropriate distributions have been identified and modeled to TTR (lognormal and TBF (Weibull. With the results, availability of equipment Av = 98,18% and form factor g = 1 of the Weibull distribution were calculated. It was possible to find a position for the equipment on the bathtub curve, in the maturity phase and define the best maintenance strategy for this case, the predictive maintenance. Finally, the current strategy was discussed and development suggestions were presented to this strategy.

  6. Evaluation of the lymphocyte interphase nuclei phenotype by quantitative phase imaging (QPI in patients with endometrial ovarian cysts

    Directory of Open Access Journals (Sweden)

    S. A. Gasparyan

    2017-01-01

    Full Text Available Rationale: Ovarian endometriosis is a progressive disease with growing prevalence and severity. Therefore, the development of robust non-invasive laboratory screening methods for early diagnosis on the out-patient basis seems quite relevant. Aim: To assess a potential of the quantitative phase imaging technique for early diagnosis of ovarian endometrial cysts and post-operative relapses of the disease. Materials and methods: We analyzed 1578 nuclei of the peripheral blood lymphocytes from 82 patients with ovarian endometrial cysts, aged 21 to 37 years (mean age 26.4 ± 3.6 years. The patients were follow-up in a gynecology out-patient clinic (the town of Yessentuki, Russia. Assessments were made longitudinally, i.e., before a laparoscopic cystectomy, at 6 and 12 months in the post-operative period with or without treatment with dienogest-containing agents. Morphological and functional status of the nuclei from the peripheral blood lymphocytes was assessed in the real-time mode by quantitative phase imaging (QPI with the phase-interference microscopy module of the Bioni hardware and software complex (Westgrade Ltd., Moscow for clinical and laboratory diagnostics, and the morphodensitometric segmentation technology. Results: The comparative analysis of morphometric parameters of CD3+ cells taken from peripheral blood of healthy non-pregnant women and patients with ovarian endometrial cysts before surgery showed a significant increase of the calculated functional activities of the lymphocyte nuclei (0.898 vs 0.783, p < 0.05. Assessment of changes overt time in the differential diagnostic criteria of the nuclear response in the peripheral blood lymphocytes from patients with endometrial ovarian cysts showed the following. Compared to the parameters obtained before treatment, at 6 and 12 months of the post-operative period the relative intensity of nuclear segments (ΔI decreased by 10.3 and 14.7, 10.6 and 12.9% in the group treated with and without

  7. Structural and Quantitative Analysis of Three C-Glycosylflavones by Variable Temperature Proton Quantitative Nuclear Magnetic Resonance

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2017-01-01

    Full Text Available Quantitative nuclear magnetic resonance is a powerful tool in drug analysis because of its speed, precision, and efficiency. In present study, the application of variable temperature proton quantitative nuclear magnetic resonance (VT-1H-qNMR for the calibration of three C-glycosylflavones including orientin, isoorientin, and schaftoside as reference substances was reported. Since there was conformational equilibrium due to the restricted rotation around the C(sp3-C(sp2 bond in C-glycosylflavones, the conformational behaviors were investigated by VT-NMR and verified by molecular mechanics (MM calculation. The VT-1H-qNMR method was validated including the linearity, limit of quantification, precision, and stability. The results were consistent with those obtained from mass balance approach. VT-1H-qNMR can be deployed as an effective tool in analyzing C-glycosylflavones.

  8. Structural and Quantitative Analysis of Three C-Glycosylflavones by Variable Temperature Proton Quantitative Nuclear Magnetic Resonance

    Science.gov (United States)

    Liu, Yang; Dai, Zhong

    2017-01-01

    Quantitative nuclear magnetic resonance is a powerful tool in drug analysis because of its speed, precision, and efficiency. In present study, the application of variable temperature proton quantitative nuclear magnetic resonance (VT-1H-qNMR) for the calibration of three C-glycosylflavones including orientin, isoorientin, and schaftoside as reference substances was reported. Since there was conformational equilibrium due to the restricted rotation around the C(sp3)-C(sp2) bond in C-glycosylflavones, the conformational behaviors were investigated by VT-NMR and verified by molecular mechanics (MM) calculation. The VT-1H-qNMR method was validated including the linearity, limit of quantification, precision, and stability. The results were consistent with those obtained from mass balance approach. VT-1H-qNMR can be deployed as an effective tool in analyzing C-glycosylflavones. PMID:28243484

  9. Phase-shifting Real-time Holographic Microscopy applied in micro-structures surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brito, I V; Gesualdi, M R R [Universidade Federal do ABC, R. Santa Adelia 166, Bangu, Santo Andre, 09210-170, SP (Brazil); Muramatsu, M [Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, Travessa R 186, Cidade Universitaria, 05508-090, Sao Paulo, SP (Brazil); Ricardo, J, E-mail: isis.brito@ufabc.edu.br [Universidad de Oriente, Ave. Patricio Lumumba s/n, Santiago de Cuba (Cuba)

    2011-01-01

    The microscopic real-time analysis of micro structured materials is of great importance in various domains of science and technology. For other hand, the holographic interferometry comprises a group of powerful optical methods for non-destructive testing in surface analysis. The holographic microscopy uses the holographic interferometric techniques to obtain quantitative intensity and phase information of the optical waves by microscopic systems. With the development of CCD cameras, computers (hardware and software), and new materials for holographic recording, these techniques can be used to replace the classical form of registration and became promising tools in surface analysis. In this work, we developed a prototype of Photorefractive and Digital Holographic Microscope for real-time analysis of micro-structured systems based on the phase-shifting real-time holographic interferometry techniques. Using this apparatus, we are made analysis of shapes and surfaces to obtain the phase maps and the 3D profiles of some samples.

  10. A quantitative analysis of cerebrospinal fluid flow in posttraumatic syringomyelia

    Energy Technology Data Exchange (ETDEWEB)

    Tobimatsu, Yoshiko; Nihei, Ryuuichi; Kimura, Tetsuhiko; Suyama, Tetsuo; Tobimatsu, Haruki (National Rehabilitation Center for the Disabled Hospital, Tokorozawa, Saitama (Japan))

    1991-08-01

    Cerebrospinal fluid (CSF) flow within the spinal canal and syrinx in posttraumatic syringomyelia were studied by cardiac-gated phase images of magnetic resonance imaging in 12 normal volunteers and 8 patients with syringomyelia. The cardiac-gated phase method was simple and useful for detection of CSF flow. Phase modulation was in direct proportion to flow velocity. Phase modulation was not affected by the T1 or T2 relaxation time. In normal volunteers, CSF flows caudally during systole and cranially during diastole. The maximum caudal CSF flow velocity at C2 level was from 0.45 cm/sec to 1.71 cm/sec, average; 1.27 cm/sec. All of symptomatic posttraumatic syringomyelia patients had the flow in the syrinx. (author).

  11. Quantitative analysis of immobilized metalloenzymes by atomic absorption spectroscopy.

    Science.gov (United States)

    Opwis, Klaus; Knittel, Dierk; Schollmeyer, Eckhard

    2004-12-01

    A new, sensitive assay for the quantitative determination of immobilized metal containing enzymes has been developed using atomic absorption spectroscopy (AAS). In contrast with conventionally used indirect methods the described quantitative AAS assay for metalloenzymes allows more exact analyses, because the carrier material with the enzyme is investigated directly. As an example, the validity and reliability of the method was examined by fixing the iron-containing enzyme catalase on cotton fabrics using different immobilization techniques. Sample preparation was carried out by dissolving the loaded fabrics in sulfuric acid before oxidising the residues with hydrogen peroxide. The iron concentrations were determined by flame atomic absorption spectrometry after calibration of the spectrometer with solutions of the free enzyme at different concentrations.

  12. Research on Petroleum Reservoir Diagenesis and Damage Using EDS Quantitative Analysis Method With Standard Samples

    Institute of Scientific and Technical Information of China (English)

    包书景; 陈文学; 等

    2000-01-01

    In recent years,the X-ray spectrometer has been devekloped not only just in enhancing resolution,but also towards dynamic analysis.Computer modeling processing,sampled quantitative analysis and supra-light element analysis.With the gradual sophistication of the quantitative analysis system software,the rationality and accuracy of the established sample deferential document have become the most important guarantee to the reliability of sample quantitative analysis.This work is an important technical subject in China Petroleum Reservoir Research.Through two years of research and experimental work,the EDS quantitative analysis method for petroleum geolgey and resevoir research has been established.and referential documents for five mineral(silicate,etc).specimen standards have been compiled.Closely combining the shape characters and compositional characters of the minerals together and applying them into reservoir diagenetic research and prevention of oil formations from damage,we have obtained obvious geological effects.

  13. Quantitative Phase Development of crystalline, nano-crystalline and amorphous phases during hydration of OPC blended with siliceous fly ash

    OpenAIRE

    Dittrich, Sebastian

    2015-01-01

    Ambitious efforts driven by political and environmental considerations to reduce carbon dioxide emission are currently present, amongst other branches in the construction material industry as well. One possible solution concentrates on the replacement of cement by supplementary cementitious materials like fly ash or granulated blast furnace slag. Due to its high amorphous phase content and the related reactivity potential fly ash seems well suited for being used in cement or concrete. Unfortu...

  14. Quantitative analysis of pheromone-binding protein specificity

    OpenAIRE

    Katti, S.; Lokhande, N.; D González; Cassill, A.; Renthal, R

    2012-01-01

    Many pheromones have very low water solubility, posing experimental difficulties for quantitative binding measurements. A new method is presented for determining thermodynamically valid dissociation constants for ligands binding to pheromone-binding proteins (OBPs), using β-cyclodextrin as a solubilizer and transfer agent. The method is applied to LUSH, a Drosophila OBP that binds the pheromone 11-cis vaccenyl acetate (cVA). Refolding of LUSH expressed in E. coli was assessed by measuring N-p...

  15. Public Library System in Ankara: A Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Bülent Yılmaz

    2014-12-01

    Full Text Available This study investigates 42 public libraries in 25 central districts within the boundaries of Ankara Metropolitan Municipality in respect of five factors according to national and international standards quantitatively. The findings show that public libraries in Ankara are insufficient with respect to the number of buildings, users, staff and collection and also in terms of standards. Therefore, it has been suggested that an urgent planning is necessary for public libraries in Ankara.

  16. Quantitative Trait Locus Analysis of the Early Domestication of Sunflower

    OpenAIRE

    David M Wills; Burke, John M.

    2007-01-01

    Genetic analyses of the domestication syndrome have revealed that domestication-related traits typically have a very similar genetic architecture across most crops, being conditioned by a small number of quantitative trait loci (QTL), each with a relatively large effect on the phenotype. To date, the domestication of sunflower (Helianthus annuus L.) stands as the only counterexample to this pattern. In previous work involving a cross between wild sunflower (also H. annuus) and a highly improv...

  17. Fluorescent microscopy approaches of quantitative soil microbial analysis

    Science.gov (United States)

    Ivanov, Konstantin; Polyanskaya, Lubov

    2015-04-01

    Classical fluorescent microscopy method was used during the last decades in various microbiological studies of terrestrial ecosystems. The method provides representative results and simple application which is allow to use it both as routine part of amplitudinous research and in small-scaled laboratories. Furthermore, depending on research targets a lot of modifications of fluorescent microscopy method were established. Combination and comparison of several approaches is an opportunity of quantitative estimation of microbial community in soil. The first analytical part of the study was dedicated to soil bacterial density estimation by fluorescent microscopy in dynamic of several 30-days experiments. The purpose of research was estimation of changes in soil bacterial community on the different soil horizons under aerobic and anaerobic conditions with adding nutrients in two experimental sets: cellulose and chitin. Was modified the nalidixic acid method for inhibition of DNA division of gram-negative bacteria, and the method provides the quantification of this bacterial group by fluorescent microscopy. Established approach allowed to estimate 3-4 times more cells of gram-negative bacteria in soil. The functions of actinomyces in soil polymer destruction are traditionally considered as dominant in comparison to gram-negative bacterial group. However, quantification of gram-negative bacteria in chernozem and peatland provides underestimation of classical notion for this bacterial group. Chitin introduction had no positive effect to gram-negative bacterial population density changes in chernozem but concurrently this nutrient provided the fast growing dynamics at the first 3 days of experiment both under aerobic and anaerobic conditions. This is confirming chitinolytic activity of gram-negative bacteria in soil organic matter decomposition. At the next part of research modified method for soil gram-negative bacteria quantification was compared to fluorescent in situ

  18. The effects of selection on linkage analysis for quantitative traits.

    Science.gov (United States)

    Mackinnon, M J; Georges, M A

    1992-12-01

    The effects of within-sample selection on the outcome of analyses detecting linkage between genetic markers and quantitative traits were studied. It was found that selection by truncation for the trait of interest significantly reduces the differences between marker genotype means thus reducing the power to detect linked quantitative trait loci (QTL). The size of this reduction is a function of proportion selected, the magnitude of the QTL effect, recombination rate between the marker locus and the QTL, and the allele frequency of the QTL. Proportion selected was the most influential of these factors on bias, e.g., for an allele substitution effect of one standard deviation unit, selecting the top 80%, 50% or 20% of the population required 2, 6 or 24 times the number of progeny, respectively, to offset the loss of power caused by this selection. The effect on power was approximately linear with respect to the size of gene effect, almost invariant to recombination rate, and a complex function of QTL allele frequency. It was concluded that experimental samples from animal populations which have been subjected to even minor amounts of selection will be inefficient in yielding information on linkage between markers and loci influencing the quantitative trait under selection.

  19. QUANTITATIVE IMAGE ANALYSIS OF MICROSTRUCTURE EVOLUTION DURING SOLID STATE SINTERING OF W-Cu

    Directory of Open Access Journals (Sweden)

    Ana Maria Popa

    2011-05-01

    Full Text Available The microstructure evolution of W-Cu composites during solid state sintering at 1050°C is studied on samples quenched after different sintering times. The microstructure is formed by 3 phases: tungsten (W, copper (Cu and pores. During the process, the initial mixture of W- and Cu-powder is transformed by migration of Cu and rearrangement of W particles. These microstructural changes are studied to identify the underlying phenomena and to control the material properties. Based on experiments performed with two different W powders, this paper deals with various aspects of the quantitative analysis of the observed evolution. A careful preparation of the images is necessary. The porous samples are impregnated with a resin under vacuum before being cut and carefully polished. Low voltage (<10 kV is used during image acquisition on a scanning electron microscope. Area fraction measurements are used to check the quality of the images and the segmentation process. Classical measurements are used to study the spreading of Cu onto the surface of W particles: surface area of each phase, area of contact between phases, chord length distributions. New measurements based on classical methods are also developed to distinguish between two mechanisms of Cu migration in the microstructure : Cu spreading on W surface (wetting of the surface, and capillary penetration in the inter-W channels. An analysis of the location of Cu and pores in the space between W particles (inter-W space is performed using a granulometry based on 2D openings. It evidences the mechanism of capillary penetration of Cu in the inter-W space in the case of small W-particles.

  20. Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: A quantitative fluorescence microscopy imaging approach

    DEFF Research Database (Denmark)

    Fidorra, Matthias; Garcia, Alejandra; Ipsen, John Hjort

    2009-01-01

    membrane domains correspond to equilibrium thermodynamic phases (i.e., solid ordered and liquid disordered phases). In addition, the fact that the lever rule is validated from 11 to 14 randomly selected GUVs per molar fraction indicates homogeneity in the lipid composition among the explored GUV...... lipid phase diagram's tie lines and to test whether or not the coexistence of lipid domains in GUVs correspond to equilibrium thermodynamic phases. The analysis was applied to DLPC/DPPC GUVs displaying coexistence of lipid domains. Our results confirm the lever rule, demonstrating that the observed...... populations. In conclusion, our study shows that GUVs are reliable model systems to perform equilibrium thermodynamic studies of membranes....

  1. The usefulness of 3D quantitative analysis with using MRI for measuring osteonecrosis of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ji Young; Lee, Sun Wha [Ewha Womans University College of Medicine, Seoul (Korea, Republic of); Park, Youn Soo [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2006-11-15

    We wanted to evaluate the usefulness of MRI 3D quantitative analysis for measuring osteonecrosis of the femoral head in comparison with MRI 2D quantitative analysis and quantitative analysis of the specimen. For 3 months at our hospital, 14 femoral head specimens with osteonecrosis were obtained after total hip arthroplasty. The patients preoperative MRIs were retrospectively reviewed for quantitative analysis of the size of the necrosis. Each necrotic fraction of the femoral head was measured by 2D quantitative analysis with using mid-coronal and mid-sagittal MRIs, and by 3D quantitative analysis with using serial continuous coronal MRIs and 3D reconstruction software. The necrotic fraction of the specimen was physically measured by the fluid displacement method. The necrotic fraction according to MRI 2D or 3D quantitative analysis was compared with that of the specimen by using Spearman's correlation test. On the correlative analysis, the necrotic fraction by MRI 2D quantitative analysis and quantitative analysis of the specimen showed moderate correlation (r = 0.657); on the other hand, the necrotic fraction by MRI 3D quantitative analysis and quantitative analysis of the specimen demonstrated a strong correlation (r = 0.952) ({rho} < 0.05). MRI 3D quantitative analysis was more accurate than 2D quantitative analysis using MRI for measuring osteonecrosis of the femoral head. Therefore, it may be useful for predicting the clinical outcome and deciding the proper treatment option.

  2. Quantitation of DNA methylation by melt curve analysis

    Directory of Open Access Journals (Sweden)

    Jones Michael E

    2009-04-01

    Full Text Available Abstract Background Methylation of DNA is a common mechanism for silencing genes, and aberrant methylation is increasingly being implicated in many diseases such as cancer. There is a need for robust, inexpensive methods to quantitate methylation across a region containing a number of CpGs. We describe and validate a rapid, in-tube method to quantitate DNA methylation using the melt data obtained following amplification of bisulfite modified DNA in a real-time thermocycler. Methods We first describe a mathematical method to normalise the raw fluorescence data generated by heating the amplified bisulfite modified DNA. From this normalised data the temperatures at which melting begins and finishes can be calculated, which reflect the less and more methylated template molecules present respectively. Also the T50, the temperature at which half the amplicons are melted, which represents the summative methylation of all the CpGs in the template mixture, can be calculated. These parameters describe the methylation characteristics of the region amplified in the original sample. Results For validation we used synthesized oligonucleotides and DNA from fresh cells and formalin fixed paraffin embedded tissue, each with known methylation. Using our quantitation we could distinguish between unmethylated, partially methylated and fully methylated oligonucleotides mixed in varying ratios. There was a linear relationship between T50 and the dilution of methylated into unmethylated DNA. We could quantitate the change in methylation over time in cell lines treated with the demethylating drug 5-aza-2'-deoxycytidine, and the differences in methylation associated with complete, clonal or no loss of MGMT expression in formalin fixed paraffin embedded tissues. Conclusion We have validated a rapid, simple in-tube method to quantify methylation which is robust and reproducible, utilizes easily designed primers and does not need proprietary algorithms or software. The

  3. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  4. Particle concentration measurement of virus samples using electrospray differential mobility analysis and quantitative amino acid analysis.

    Science.gov (United States)

    Cole, Kenneth D; Pease, Leonard F; Tsai, De-Hao; Singh, Tania; Lute, Scott; Brorson, Kurt A; Wang, Lili

    2009-07-24

    Virus reference materials are needed to develop and calibrate detection devices and instruments. We used electrospray differential mobility analysis (ES-DMA) and quantitative amino acid analysis (AAA) to determine the particle concentration of three small model viruses (bacteriophages MS2, PP7, and phiX174). The biological activity, purity, and aggregation of the virus samples were measured using plaque assays, denaturing gel electrophoresis, and size-exclusion chromatography. ES-DMA was developed to count the virus particles using gold nanoparticles as internal standards. ES-DMA additionally provides quantitative measurement of the size and extent of aggregation in the virus samples. Quantitative AAA was also used to determine the mass of the viral proteins in the pure virus samples. The samples were hydrolyzed and the masses of the well-recovered amino acids were used to calculate the equivalent concentration of viral particles in the samples. The concentration of the virus samples determined by ES-DMA was in good agreement with the concentration predicted by AAA for these purified samples. The advantages and limitations of ES-DMA and AAA to characterize virus reference materials are discussed.

  5. Quantitative analysis of triglyceride species of vegetable oils by high performance liquid chromatography via a flame ionization detector.

    Science.gov (United States)

    Phillips, F C; Erdahl, W L; Schmit, J A; Privett, O S

    1984-11-01

    A method for the quantitative analysis of triglyceride species composition of vegetable oils by reversed-phase high performance liquid chromatography (RP-HPLC) via a flame ionization detector (FID) is described. Triglycerides are separated into molecular species via Zorbax chemically bonded octadecylsilane (ODS) columns using gradient elution with methylene chloride in acetonitrile. Identification of species is made by matching the retention times of the peaks in the chromatogram with the order of elution of all of the species that could be present in the sample on the basis of a random distribution of the fatty acids and comparison of experimental and calculated theoretical carbon numbers (TCN). Quantitative analysis is based on a direct proportionality of peak areas. Differences in the response of individual species were small and did not dictate the use of response factors. The method is applied to cocoa butter before and after randomization, soybean oil and pure olive oil.

  6. Quantitative analysis of HIV-1 protease inhibitors in cell lysates using MALDI-FTICR mass spectrometry.

    NARCIS (Netherlands)

    Kampen, JJ van; Burgers, P.C.; Groot, R. de; Osterhaus, A.D.; Reedijk, M.L.; Verschuren, E.J.; Gruters, R.A.; Luider, T.M.

    2008-01-01

    In this report we explore the use of MALDI-FTICR mass spectrometry for the quantitative analysis of five HIV-1 protease inhibitors in cell lysates. 2,5-Dihydroxybenzoic acid (DHB) was used as the matrix. From a quantitative perspective, DHB is usually a poor matrix due to its poor shot-to-shot and p

  7. An Inexpensive Electrodeposition Device and Its Use in a Quantitative Analysis Laboratory Exercise

    Science.gov (United States)

    Parker, Richard H.

    2011-01-01

    An experimental procedure, using an apparatus that is easy to construct, was developed to incorporate a quantitative electrogravimetric determination of the solution nickel content into an undergraduate or advanced high school quantitative analysis laboratory. This procedure produces results comparable to the procedure used for the gravimetric…

  8. Complex pedigree analysis to detect quantitative trait loci in dairy cattle.

    NARCIS (Netherlands)

    Bink, M.C.A.M.

    1998-01-01

    In dairy cattle, many quantitative traits of economic importance show phenotypic variation. For breeding purposes the analysis of this phenotypic variation and uncovering the contribution of genetic factors is very important. Usually, the individual gene effects contributing to the quantitative gene

  9. Quantitative analysis of target components by comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Mispelaar, V.G. van; Tas, A.C.; Smilde, A.K.; Schoenmakers, P.J.; Asten, A.C. van

    2003-01-01

    Quantitative analysis using comprehensive two-dimensional (2D) gas chromatography (GC) is still rarely reported. This is largely due to a lack of suitable software. The objective of the present study is to generate quantitative results from a large GC x GC data set, consisting of 32 chromatograms. I

  10. Differentiating malignant from benign gastric mucosal lesions with quantitative analysis in dual energy spectral computed tomography

    Science.gov (United States)

    Meng, Xiaoyan; Ni, Cheng; Shen, Yaqi; Hu, Xuemei; Chen, Xiao; Li, Zhen; Hu, Daoyu

    2017-01-01

    Abstract To investigate the value of quantitative analysis in dual energy spectral computed tomography (DESCT) for differentiating malignant gastric mucosal lesions from benign gastric mucosal lesions (including gastric inflammation [GI] and normal gastric mucosa [NGM]). This study was approved by the ethics committee, and all patients provided written informed consent. A total of 161 consecutive patients (63 with gastric cancer [GC], 48 with GI, and 50 with NGM) who underwent dual-phase contrast enhanced DESCT scans in the arterial phase (AP) and portal venous phase (PVP) were included in this study. Iodine concentration (IC) in lesions was derived from the iodine-based material-decomposition images and normalized to that in the aorta to obtain normalized IC (nIC). The ratios of IC and nIC between the AP and PVP were calculated. Diagnostic confidence for GC and GI was evaluated with reviewing the features including gastric wall thickness, focal, and eccentric on the conventional polychromatic images. All statistical analyses were performed by using statistical software SPSS 17.0 (SPSS, Chicago, IL). IC and nIC in GC differed significantly from those in GI and NGM, except for nICAP in comparing GC with GI. Mean nIC values of GC (0.18 ± 0.06 in AP and 0.62 ± 0.16 in PVP) were significantly higher than that of NGM (0.12 ± 0.03 in AP and 0.37 ± 0.08 in PVP) (all P nIC and IC in PVP had high sensitivities of 88.89% and 90.48%, respectively, in differentiating GC from NGM, while the sensitivities were 71.43% and 88.89% during AP. Ratios IC and nIC ratios did not provide adequate diagnostic accuracy with their area under curves less than 0.65. With the conventional features, the diagnostic accuracies for GC and GI were 75.0% and 98.0%, respectively. Quantitative analysis of DESCT imaging parameters for gastric mucosa, such as nIC and IC, is useful for differentiating malignant from benign gastric mucosal lesions. PMID:28079827

  11. Quantitative analysis of martensite and bainite microstructures using electron backscatter diffraction.

    Science.gov (United States)

    Wang, Yongzhe; Hua, Jiajie; Kong, Mingguang; Zeng, Yi; Liu, Junliang; Liu, Ziwei

    2016-09-01

    In the present work, ultra-high-strength steels with multiphase microstructures containing martensite and bainite were prepared by controlling the cooling rate. A new approach was proposed for quantitatively statistical phase analysis using electron backscatter diffraction (EBSD) based on the band contrast which correlates to the quality and intensity of the diffraction patterns. This approach takes advantage of the inherently greater lattice imperfections of martensite, such as dislocations and low-angle grain boundaries, relative to that of bainite. These can reduce the intensity and quality of the EBSD patterns of martensite, which decrease the band contrast. Thus, combined with morphological observations, Gaussian two-peak fitting was employed to analyze the band contrast profile and confirm the ranges of band contrast for the two phases. The volume fractions of bainite and martensite in different samples were determined successfully. In addition, the results show that increased cooling rates improve the proportion of martensite and the ratio of martensite to bainite. Microsc. Res. Tech. 79:814-819, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Quantitative Assessment of the Condensed Phase Heats of Reaction in a Double Base Propellant

    Directory of Open Access Journals (Sweden)

    K. Kishore

    1985-01-01

    Full Text Available Heat of decomposition of the double base propellant has been calculated from the knowledge of the composition and decomposition enthalpy of the ingredients. This was compared with the experimentally observed value of the propellant decomposition which suggested that condensed phase contribution is very marginal (one twentieth of the total calorimetric value in double base propellants unlike composite solid propellants where condensed phase contribution is as high as one third. The condensed-phase in double base propellant was attributed to the nitration of the 2n-diphenylamine stabilizer in the propellant matrix.

  13. Prebeta-migrating high density lipoprotein: quantitation in normal and hyperlipidemic plasma by solid phase radioimmunoassay following electrophoretic transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, B.Y.; Frolich, J.; Fielding, C.J.

    1987-07-01

    A quantitative solid phase immunoassay has been developed for the determination of the mass of electrophoretically separated prebeta apolipoprotein A-I (apoA-I) in human plasma. Conditions have been identified for the quantitative transfer and immunoblotting of the apolipoprotein in the absence of organic solvents or detergents. In normolipidemic plasma, the prebeta-migrating fraction of apoA-I represented 4.2 +/- 1.8% of total apoA-I (61 +/- 26 micrograms of apoA-I per ml of plasma). Significantly higher levels were found in hypercholesterolemia of genetic origin, in primary and secondary hypertriglyceridemia, and in congenital lecithin:cholesterol acyltransferase deficiency. In all cases prebeta-migrating apoA-I consisted in large part of low molecular weight lipoprotein species, compared to the size of the major, alpha-migrating apoA-I fraction.

  14. Qualitative and quantitative analysis of anthraquinones in rhubarbs by high performance liquid chromatography with diode array detector and mass spectrometry.

    Science.gov (United States)

    Wei, Shao-yin; Yao, Wen-xin; Ji, Wen-yuan; Wei, Jia-qi; Peng, Shi-qi

    2013-12-01

    Rhubarb is well known in traditional Chinese medicines (TCMs) mainly due to its effective purgative activity. Anthraquinones, including anthraquinone derivatives and their glycosides, are thought to be the major active components in rhubarb. To improve the quality control method of rhubarb, we studied on the extraction method, and did qualitative and quantitative analysis of widely used rhubarbs, Rheum tanguticum Maxim. ex Balf. and Rheum palmatum L., by HPLC-photodiode array detection (HPLC-DAD) and HPLC-mass spectrum (HPLC-MS) on a Waters SymmetryShield RP18 column (250 mm × 4.6 mm i.d., 5 μm). Amount of five anthraquinones was viewed as the evaluating standard. A standardized characteristic fingerprint of rhubarb was provided. From the quantitative analysis, the rationality was demonstrated for ancestors to use these two species of rhubarb equally. Under modern extraction methods, the amount of five anthraquinones in Rheum tanguticum Maxim. ex Balf. is higher than that in Rheum palmatum L. Among various extraction methods, ultrasonication with 70% methanol for 30 min is a promising one. For HPLC analysis, mobile phase consisted of methanol and 0.1% phosphoric acid in water with a gradient program, the detection wavelength at 280nm for fingerprinting analysis and 254 nm for quantitative analysis are good choices.

  15. Quantitative studies on inner interfaces in conical metal joints using hard x-ray inline phase contrast radiography

    Energy Technology Data Exchange (ETDEWEB)

    Zabler, S. [Institute for Materials Science, Technical University of Berlin, EB 13, Strasse des 17, Juni 135, D-10623 Berlin (Germany); Rack, T.; Nelson, K. [Clinic for Oral and Maxifacial Surgery, Charite University Medicine, Augustenburger Platz 1, D-13353 Berlin (Germany); Rack, A. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble (France)

    2010-10-15

    Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1 {mu}m are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system being 4 {mu}m in absorption mode and {approx}14 {mu}m in phase contrast mode (z{sub 2}=0.74 m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.

  16. Using phase II data for the analysis of phase III studies: An application in rare diseases.

    Science.gov (United States)

    Wandel, Simon; Neuenschwander, Beat; Röver, Christian; Friede, Tim

    2017-06-01

    Clinical research and drug development in orphan diseases are challenging, since large-scale randomized studies are difficult to conduct. Formally synthesizing the evidence is therefore of great value, yet this is rarely done in the drug-approval process. Phase III designs that make better use of phase II data can facilitate drug development in orphan diseases. A Bayesian meta-analytic approach is used to inform the phase III study with phase II data. It is particularly attractive, since uncertainty of between-trial heterogeneity can be dealt with probabilistically, which is critical if the number of studies is small. Furthermore, it allows quantifying and discounting the phase II data through the predictive distribution relevant for phase III. A phase III design is proposed which uses the phase II data and considers approval based on a phase III interim analysis. The design is illustrated with a non-inferiority case study from a Food and Drug Administration approval in herpetic keratitis (an orphan disease). Design operating characteristics are compared to those of a traditional design, which ignores the phase II data. An analysis of the phase II data reveals good but insufficient evidence for non-inferiority, highlighting the need for a phase III study. For the phase III study supported by phase II data, the interim analysis is based on half of the patients. For this design, the meta-analytic interim results are conclusive and would justify approval. In contrast, based on the phase III data only, interim results are inconclusive and require further evidence. To accelerate drug development for orphan diseases, innovative study designs and appropriate methodology are needed. Taking advantage of randomized phase II data when analyzing phase III studies looks promising because the evidence from phase II supports informed decision-making. The implementation of the Bayesian design is straightforward with public software such as R.

  17. Quantitative analysis of wrist electrodermal activity during sleep

    OpenAIRE

    Sano, Akane; Picard, Rosalind W.; Stickgold, Robert

    2014-01-01

    We present the first quantitative characterization of electrodermal activity (EDA) patterns on the wrists of healthy adults during sleep using dry electrodes. We compare the new results on the wrist to the prior findings on palmar or finger EDA by characterizing data measured from 80 nights of sleep consisting of 9 nights of wrist and palm EDA from 9 healthy adults sleeping at home, 56 nights of wrist and palm EDA from one healthy adult sleeping at home, and 15 nights of wrist EDA from 15 hea...

  18. Identification of Case Content with Quantitative Network Analysis

    DEFF Research Database (Denmark)

    Christensen, Martin Lolle; Olsen, Henrik Palmer; Tarissan, Fabian

    2016-01-01

    the relevant articles. In order to enhance information retrieval about case content, without relying on manual labor and subjective judgment, we propose in this paper a quantitative method that gives a better indication of case content in terms of which articles a given case is more closely associated with...... of important cases and comparing manual investigation of real content of those cases with the MAININ and MAINOUT articles. Results show that MAININ in particular is able to infer correctly the real content in most of the cases....

  19. Quantitative Characterization of Inertial Confinement Fusion Capsules Using Phase Contrast Enhanced X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kozioziemski, B J; Koch, J A; Barty, A; Martz, H E; Lee, W; Fezzaa, K

    2004-05-07

    Current designs for inertial confinement fusion capsules for the National Ignition Facility (NIF) consist of a solid deuterium-tritium (D-T) fuel layer inside of a copper doped beryllium capsule. Phase contrast enhanced x-ray imaging is shown to render the D-T layer visible inside the Be(Cu) capsule. Phase contrast imaging is experimentally demonstrated for several surrogate capsules and validates computational models. Polyimide and low density divinyl benzene foam capsules were imaged at the Advanced Photon Source synchrotron. The surrogates demonstrate that phase contrast enhanced imaging provides a method to characterize surfaces when absorption imaging cannot be used. Our computational models demonstrate that a rough surface can be accurately reproduced in phase contrast enhanced x-ray images.

  20. Quantitative security evaluation of optical encryption using hybrid phase- and amplitude-modulated keys.

    Science.gov (United States)

    Sarkadi, Tamás; Koppa, Pál

    2012-02-20

    In the increasing number of system approaches published in the field of optical encryption, the security level of the system is evaluated by qualitative and empirical methods. To quantify the security of the optical system, we propose to use the equivalent of the key length routinely used in algorithmic encryption. We provide a calculation method of the number of independent keys and deduce the binary key length for optical data encryption. We then investigate and optimize the key length of the combined phase- and amplitude-modulated key encryption in the holographic storage environment, which is one of the promising solutions for the security enhancement of single- and double-random phase-encoding encryption and storage systems. We show that a substantial growth of the key length can be achieved by optimized phase and amplitude modulation compared to phase-only encryption. We also provide experimental confirmation of the model results.